Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
   3 *
   4 *  Copyright (C) 2011 Weinmann Medical GmbH
   5 *  Author: Nikolaus Voss <n.voss@weinmann.de>
   6 *
   7 *  Evolved from original work by:
   8 *  Copyright (C) 2004 Rick Bronson
   9 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
  10 *
  11 *  Borrowed heavily from original work by:
  12 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or
  17 *  (at your option) any later version.
  18 */
  19
  20#include <linux/clk.h>
  21#include <linux/completion.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/err.h>
  25#include <linux/i2c.h>
  26#include <linux/interrupt.h>
  27#include <linux/io.h>
  28#include <linux/module.h>
  29#include <linux/of.h>
  30#include <linux/of_device.h>
  31#include <linux/platform_device.h>
  32#include <linux/slab.h>
  33#include <linux/platform_data/dma-atmel.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/pinctrl/consumer.h>
  36
  37#define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */
  38#define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */
  39#define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */
  40#define AUTOSUSPEND_TIMEOUT		2000
  41#define AT91_I2C_MAX_ALT_CMD_DATA_SIZE	256
  42
  43/* AT91 TWI register definitions */
  44#define	AT91_TWI_CR		0x0000	/* Control Register */
  45#define	AT91_TWI_START		BIT(0)	/* Send a Start Condition */
  46#define	AT91_TWI_STOP		BIT(1)	/* Send a Stop Condition */
  47#define	AT91_TWI_MSEN		BIT(2)	/* Master Transfer Enable */
  48#define	AT91_TWI_MSDIS		BIT(3)	/* Master Transfer Disable */
  49#define	AT91_TWI_SVEN		BIT(4)	/* Slave Transfer Enable */
  50#define	AT91_TWI_SVDIS		BIT(5)	/* Slave Transfer Disable */
  51#define	AT91_TWI_QUICK		BIT(6)	/* SMBus quick command */
  52#define	AT91_TWI_SWRST		BIT(7)	/* Software Reset */
  53#define	AT91_TWI_ACMEN		BIT(16) /* Alternative Command Mode Enable */
  54#define	AT91_TWI_ACMDIS		BIT(17) /* Alternative Command Mode Disable */
  55#define	AT91_TWI_THRCLR		BIT(24) /* Transmit Holding Register Clear */
  56#define	AT91_TWI_RHRCLR		BIT(25) /* Receive Holding Register Clear */
  57#define	AT91_TWI_LOCKCLR	BIT(26) /* Lock Clear */
  58#define	AT91_TWI_FIFOEN		BIT(28) /* FIFO Enable */
  59#define	AT91_TWI_FIFODIS	BIT(29) /* FIFO Disable */
  60
  61#define	AT91_TWI_MMR		0x0004	/* Master Mode Register */
  62#define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */
  63#define	AT91_TWI_MREAD		BIT(12)	/* Master Read Direction */
  64
  65#define	AT91_TWI_IADR		0x000c	/* Internal Address Register */
  66
  67#define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */
  68#define	AT91_TWI_CWGR_HOLD_MAX	0x1f
  69#define	AT91_TWI_CWGR_HOLD(x)	(((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
  70
  71#define	AT91_TWI_SR		0x0020	/* Status Register */
  72#define	AT91_TWI_TXCOMP		BIT(0)	/* Transmission Complete */
  73#define	AT91_TWI_RXRDY		BIT(1)	/* Receive Holding Register Ready */
  74#define	AT91_TWI_TXRDY		BIT(2)	/* Transmit Holding Register Ready */
  75#define	AT91_TWI_OVRE		BIT(6)	/* Overrun Error */
  76#define	AT91_TWI_UNRE		BIT(7)	/* Underrun Error */
  77#define	AT91_TWI_NACK		BIT(8)	/* Not Acknowledged */
  78#define	AT91_TWI_LOCK		BIT(23) /* TWI Lock due to Frame Errors */
  79
  80#define	AT91_TWI_INT_MASK \
  81	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
  82
  83#define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */
  84#define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */
  85#define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */
  86#define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */
  87#define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */
  88
  89#define	AT91_TWI_ACR		0x0040	/* Alternative Command Register */
  90#define	AT91_TWI_ACR_DATAL(len)	((len) & 0xff)
  91#define	AT91_TWI_ACR_DIR	BIT(8)
  92
  93#define	AT91_TWI_FMR		0x0050	/* FIFO Mode Register */
  94#define	AT91_TWI_FMR_TXRDYM(mode)	(((mode) & 0x3) << 0)
  95#define	AT91_TWI_FMR_TXRDYM_MASK	(0x3 << 0)
  96#define	AT91_TWI_FMR_RXRDYM(mode)	(((mode) & 0x3) << 4)
  97#define	AT91_TWI_FMR_RXRDYM_MASK	(0x3 << 4)
  98#define	AT91_TWI_ONE_DATA	0x0
  99#define	AT91_TWI_TWO_DATA	0x1
 100#define	AT91_TWI_FOUR_DATA	0x2
 101
 102#define	AT91_TWI_FLR		0x0054	/* FIFO Level Register */
 103
 104#define	AT91_TWI_FSR		0x0060	/* FIFO Status Register */
 105#define	AT91_TWI_FIER		0x0064	/* FIFO Interrupt Enable Register */
 106#define	AT91_TWI_FIDR		0x0068	/* FIFO Interrupt Disable Register */
 107#define	AT91_TWI_FIMR		0x006c	/* FIFO Interrupt Mask Register */
 108
 109#define	AT91_TWI_VER		0x00fc	/* Version Register */
 110
 111struct at91_twi_pdata {
 112	unsigned clk_max_div;
 113	unsigned clk_offset;
 114	bool has_unre_flag;
 115	bool has_alt_cmd;
 116	bool has_hold_field;
 117	struct at_dma_slave dma_slave;
 118};
 119
 120struct at91_twi_dma {
 121	struct dma_chan *chan_rx;
 122	struct dma_chan *chan_tx;
 123	struct scatterlist sg[2];
 124	struct dma_async_tx_descriptor *data_desc;
 125	enum dma_data_direction direction;
 126	bool buf_mapped;
 127	bool xfer_in_progress;
 128};
 129
 130struct at91_twi_dev {
 131	struct device *dev;
 132	void __iomem *base;
 133	struct completion cmd_complete;
 134	struct clk *clk;
 135	u8 *buf;
 136	size_t buf_len;
 137	struct i2c_msg *msg;
 138	int irq;
 139	unsigned imr;
 140	unsigned transfer_status;
 141	struct i2c_adapter adapter;
 142	unsigned twi_cwgr_reg;
 143	struct at91_twi_pdata *pdata;
 144	bool use_dma;
 145	bool use_alt_cmd;
 146	bool recv_len_abort;
 147	u32 fifo_size;
 148	struct at91_twi_dma dma;
 149};
 150
 151static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
 152{
 153	return readl_relaxed(dev->base + reg);
 154}
 155
 156static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
 157{
 158	writel_relaxed(val, dev->base + reg);
 159}
 160
 161static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
 162{
 163	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
 164}
 165
 166static void at91_twi_irq_save(struct at91_twi_dev *dev)
 167{
 168	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
 169	at91_disable_twi_interrupts(dev);
 170}
 171
 172static void at91_twi_irq_restore(struct at91_twi_dev *dev)
 173{
 174	at91_twi_write(dev, AT91_TWI_IER, dev->imr);
 175}
 176
 177static void at91_init_twi_bus(struct at91_twi_dev *dev)
 178{
 179	at91_disable_twi_interrupts(dev);
 180	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
 181	/* FIFO should be enabled immediately after the software reset */
 182	if (dev->fifo_size)
 183		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
 184	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
 185	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
 186	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
 187}
 188
 189/*
 190 * Calculate symmetric clock as stated in datasheet:
 191 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
 192 */
 193static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
 194{
 195	int ckdiv, cdiv, div, hold = 0;
 196	struct at91_twi_pdata *pdata = dev->pdata;
 197	int offset = pdata->clk_offset;
 198	int max_ckdiv = pdata->clk_max_div;
 199	u32 twd_hold_time_ns = 0;
 200
 201	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
 202				       2 * twi_clk) - offset);
 203	ckdiv = fls(div >> 8);
 204	cdiv = div >> ckdiv;
 205
 206	if (ckdiv > max_ckdiv) {
 207		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
 208			 ckdiv, max_ckdiv);
 209		ckdiv = max_ckdiv;
 210		cdiv = 255;
 211	}
 212
 213	if (pdata->has_hold_field) {
 214		of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
 215				     &twd_hold_time_ns);
 216
 217		/*
 218		 * hold time = HOLD + 3 x T_peripheral_clock
 219		 * Use clk rate in kHz to prevent overflows when computing
 220		 * hold.
 221		 */
 222		hold = DIV_ROUND_UP(twd_hold_time_ns
 223				    * (clk_get_rate(dev->clk) / 1000), 1000000);
 224		hold -= 3;
 225		if (hold < 0)
 226			hold = 0;
 227		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
 228			dev_warn(dev->dev,
 229				 "HOLD field set to its maximum value (%d instead of %d)\n",
 230				 AT91_TWI_CWGR_HOLD_MAX, hold);
 231			hold = AT91_TWI_CWGR_HOLD_MAX;
 232		}
 233	}
 234
 235	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
 236			    | AT91_TWI_CWGR_HOLD(hold);
 237
 238	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
 239		cdiv, ckdiv, hold, twd_hold_time_ns);
 240}
 241
 242static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
 243{
 244	struct at91_twi_dma *dma = &dev->dma;
 245
 246	at91_twi_irq_save(dev);
 247
 248	if (dma->xfer_in_progress) {
 249		if (dma->direction == DMA_FROM_DEVICE)
 250			dmaengine_terminate_all(dma->chan_rx);
 251		else
 252			dmaengine_terminate_all(dma->chan_tx);
 253		dma->xfer_in_progress = false;
 254	}
 255	if (dma->buf_mapped) {
 256		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
 257				 dev->buf_len, dma->direction);
 258		dma->buf_mapped = false;
 259	}
 260
 261	at91_twi_irq_restore(dev);
 262}
 263
 264static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
 265{
 266	if (!dev->buf_len)
 267		return;
 268
 269	/* 8bit write works with and without FIFO */
 270	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
 271
 272	/* send stop when last byte has been written */
 273	if (--dev->buf_len == 0)
 274		if (!dev->use_alt_cmd)
 275			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 276
 277	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 278
 279	++dev->buf;
 280}
 281
 282static void at91_twi_write_data_dma_callback(void *data)
 283{
 284	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 285
 286	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 287			 dev->buf_len, DMA_TO_DEVICE);
 288
 289	/*
 290	 * When this callback is called, THR/TX FIFO is likely not to be empty
 291	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
 292	 * Status Register to be sure that the STOP bit has been sent and the
 293	 * transfer is completed. The NACK interrupt has already been enabled,
 294	 * we just have to enable TXCOMP one.
 295	 */
 296	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 297	if (!dev->use_alt_cmd)
 298		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 299}
 300
 301static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
 302{
 303	dma_addr_t dma_addr;
 304	struct dma_async_tx_descriptor *txdesc;
 305	struct at91_twi_dma *dma = &dev->dma;
 306	struct dma_chan *chan_tx = dma->chan_tx;
 307	unsigned int sg_len = 1;
 308
 309	if (!dev->buf_len)
 310		return;
 311
 312	dma->direction = DMA_TO_DEVICE;
 313
 314	at91_twi_irq_save(dev);
 315	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
 316				  DMA_TO_DEVICE);
 317	if (dma_mapping_error(dev->dev, dma_addr)) {
 318		dev_err(dev->dev, "dma map failed\n");
 319		return;
 320	}
 321	dma->buf_mapped = true;
 322	at91_twi_irq_restore(dev);
 323
 324	if (dev->fifo_size) {
 325		size_t part1_len, part2_len;
 326		struct scatterlist *sg;
 327		unsigned fifo_mr;
 328
 329		sg_len = 0;
 330
 331		part1_len = dev->buf_len & ~0x3;
 332		if (part1_len) {
 333			sg = &dma->sg[sg_len++];
 334			sg_dma_len(sg) = part1_len;
 335			sg_dma_address(sg) = dma_addr;
 336		}
 337
 338		part2_len = dev->buf_len & 0x3;
 339		if (part2_len) {
 340			sg = &dma->sg[sg_len++];
 341			sg_dma_len(sg) = part2_len;
 342			sg_dma_address(sg) = dma_addr + part1_len;
 343		}
 344
 345		/*
 346		 * DMA controller is triggered when at least 4 data can be
 347		 * written into the TX FIFO
 348		 */
 349		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 350		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
 351		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
 352		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 353	} else {
 354		sg_dma_len(&dma->sg[0]) = dev->buf_len;
 355		sg_dma_address(&dma->sg[0]) = dma_addr;
 356	}
 357
 358	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
 359					 DMA_MEM_TO_DEV,
 360					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 361	if (!txdesc) {
 362		dev_err(dev->dev, "dma prep slave sg failed\n");
 363		goto error;
 364	}
 365
 366	txdesc->callback = at91_twi_write_data_dma_callback;
 367	txdesc->callback_param = dev;
 368
 369	dma->xfer_in_progress = true;
 370	dmaengine_submit(txdesc);
 371	dma_async_issue_pending(chan_tx);
 372
 373	return;
 374
 375error:
 376	at91_twi_dma_cleanup(dev);
 377}
 378
 379static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
 380{
 381	/*
 382	 * If we are in this case, it means there is garbage data in RHR, so
 383	 * delete them.
 384	 */
 385	if (!dev->buf_len) {
 386		at91_twi_read(dev, AT91_TWI_RHR);
 387		return;
 388	}
 389
 390	/* 8bit read works with and without FIFO */
 391	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
 392	--dev->buf_len;
 393
 394	/* return if aborting, we only needed to read RHR to clear RXRDY*/
 395	if (dev->recv_len_abort)
 396		return;
 397
 398	/* handle I2C_SMBUS_BLOCK_DATA */
 399	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
 400		/* ensure length byte is a valid value */
 401		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
 402			dev->msg->flags &= ~I2C_M_RECV_LEN;
 403			dev->buf_len += *dev->buf;
 404			dev->msg->len = dev->buf_len + 1;
 405			dev_dbg(dev->dev, "received block length %zu\n",
 406					 dev->buf_len);
 407		} else {
 408			/* abort and send the stop by reading one more byte */
 409			dev->recv_len_abort = true;
 410			dev->buf_len = 1;
 411		}
 412	}
 413
 414	/* send stop if second but last byte has been read */
 415	if (!dev->use_alt_cmd && dev->buf_len == 1)
 416		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 417
 418	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 419
 420	++dev->buf;
 421}
 422
 423static void at91_twi_read_data_dma_callback(void *data)
 424{
 425	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 426	unsigned ier = AT91_TWI_TXCOMP;
 427
 428	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 429			 dev->buf_len, DMA_FROM_DEVICE);
 430
 431	if (!dev->use_alt_cmd) {
 432		/* The last two bytes have to be read without using dma */
 433		dev->buf += dev->buf_len - 2;
 434		dev->buf_len = 2;
 435		ier |= AT91_TWI_RXRDY;
 436	}
 437	at91_twi_write(dev, AT91_TWI_IER, ier);
 438}
 439
 440static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
 441{
 442	dma_addr_t dma_addr;
 443	struct dma_async_tx_descriptor *rxdesc;
 444	struct at91_twi_dma *dma = &dev->dma;
 445	struct dma_chan *chan_rx = dma->chan_rx;
 446	size_t buf_len;
 447
 448	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
 449	dma->direction = DMA_FROM_DEVICE;
 450
 451	/* Keep in mind that we won't use dma to read the last two bytes */
 452	at91_twi_irq_save(dev);
 453	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
 454	if (dma_mapping_error(dev->dev, dma_addr)) {
 455		dev_err(dev->dev, "dma map failed\n");
 456		return;
 457	}
 458	dma->buf_mapped = true;
 459	at91_twi_irq_restore(dev);
 460
 461	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
 462		unsigned fifo_mr;
 463
 464		/*
 465		 * DMA controller is triggered when at least 4 data can be
 466		 * read from the RX FIFO
 467		 */
 468		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 469		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
 470		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
 471		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 472	}
 473
 474	sg_dma_len(&dma->sg[0]) = buf_len;
 475	sg_dma_address(&dma->sg[0]) = dma_addr;
 476
 477	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
 478					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 479	if (!rxdesc) {
 480		dev_err(dev->dev, "dma prep slave sg failed\n");
 481		goto error;
 482	}
 483
 484	rxdesc->callback = at91_twi_read_data_dma_callback;
 485	rxdesc->callback_param = dev;
 486
 487	dma->xfer_in_progress = true;
 488	dmaengine_submit(rxdesc);
 489	dma_async_issue_pending(dma->chan_rx);
 490
 491	return;
 492
 493error:
 494	at91_twi_dma_cleanup(dev);
 495}
 496
 497static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
 498{
 499	struct at91_twi_dev *dev = dev_id;
 500	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
 501	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
 502
 503	if (!irqstatus)
 504		return IRQ_NONE;
 505	/*
 506	 * In reception, the behavior of the twi device (before sama5d2) is
 507	 * weird. There is some magic about RXRDY flag! When a data has been
 508	 * almost received, the reception of a new one is anticipated if there
 509	 * is no stop command to send. That is the reason why ask for sending
 510	 * the stop command not on the last data but on the second last one.
 511	 *
 512	 * Unfortunately, we could still have the RXRDY flag set even if the
 513	 * transfer is done and we have read the last data. It might happen
 514	 * when the i2c slave device sends too quickly data after receiving the
 515	 * ack from the master. The data has been almost received before having
 516	 * the order to send stop. In this case, sending the stop command could
 517	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
 518	 * the RXRDY interrupt first in order to not keep garbage data in the
 519	 * Receive Holding Register for the next transfer.
 520	 */
 521	if (irqstatus & AT91_TWI_RXRDY)
 522		at91_twi_read_next_byte(dev);
 523
 524	/*
 525	 * When a NACK condition is detected, the I2C controller sets the NACK,
 526	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
 527	 *
 528	 * 1 - Handling NACK errors with CPU write transfer.
 529	 *
 530	 * In such case, we should not write the next byte into the Transmit
 531	 * Holding Register (THR) otherwise the I2C controller would start a new
 532	 * transfer and the I2C slave is likely to reply by another NACK.
 533	 *
 534	 * 2 - Handling NACK errors with DMA write transfer.
 535	 *
 536	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
 537	 * the DMA controller to write the next data into the THR. Then the
 538	 * result depends on the hardware version of the I2C controller.
 539	 *
 540	 * 2a - Without support of the Alternative Command mode.
 541	 *
 542	 * This is the worst case: the DMA controller is triggered to write the
 543	 * next data into the THR, hence starting a new transfer: the I2C slave
 544	 * is likely to reply by another NACK.
 545	 * Concurrently, this interrupt handler is likely to be called to manage
 546	 * the first NACK before the I2C controller detects the second NACK and
 547	 * sets once again the NACK bit into the SR.
 548	 * When handling the first NACK, this interrupt handler disables the I2C
 549	 * controller interruptions, especially the NACK interrupt.
 550	 * Hence, the NACK bit is pending into the SR. This is why we should
 551	 * read the SR to clear all pending interrupts at the beginning of
 552	 * at91_do_twi_transfer() before actually starting a new transfer.
 553	 *
 554	 * 2b - With support of the Alternative Command mode.
 555	 *
 556	 * When a NACK condition is detected, the I2C controller also locks the
 557	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
 558	 * is triggered by the TXRDY bit to write the next data into the THR,
 559	 * this data actually won't go on the I2C bus hence a second NACK is not
 560	 * generated.
 561	 */
 562	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
 563		at91_disable_twi_interrupts(dev);
 564		complete(&dev->cmd_complete);
 565	} else if (irqstatus & AT91_TWI_TXRDY) {
 566		at91_twi_write_next_byte(dev);
 567	}
 568
 569	/* catch error flags */
 570	dev->transfer_status |= status;
 571
 572	return IRQ_HANDLED;
 573}
 574
 575static int at91_do_twi_transfer(struct at91_twi_dev *dev)
 576{
 577	int ret;
 578	unsigned long time_left;
 579	bool has_unre_flag = dev->pdata->has_unre_flag;
 580	bool has_alt_cmd = dev->pdata->has_alt_cmd;
 581
 582	/*
 583	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
 584	 * read flag but shows the state of the transmission at the time the
 585	 * Status Register is read. According to the programmer datasheet,
 586	 * TXCOMP is set when both holding register and internal shifter are
 587	 * empty and STOP condition has been sent.
 588	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
 589	 * detect transmission failure.
 590	 * Indeed let's take the case of an i2c write command using DMA.
 591	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
 592	 * TXCOMP bits are set together into the Status Register.
 593	 * LOCK is a clear on write bit, which is set to prevent the DMA
 594	 * controller from sending new data on the i2c bus after a NACK
 595	 * condition has happened. Once locked, this i2c peripheral stops
 596	 * triggering the DMA controller for new data but it is more than
 597	 * likely that a new DMA transaction is already in progress, writing
 598	 * into the Transmit Holding Register. Since the peripheral is locked,
 599	 * these new data won't be sent to the i2c bus but they will remain
 600	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
 601	 * Then when the interrupt handler is called, the Status Register is
 602	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
 603	 * manage the error properly, without waiting for timeout.
 604	 * This case can be reproduced easyly when writing into an at24 eeprom.
 605	 *
 606	 * Besides, the TXCOMP bit is already set before the i2c transaction
 607	 * has been started. For read transactions, this bit is cleared when
 608	 * writing the START bit into the Control Register. So the
 609	 * corresponding interrupt can safely be enabled just after.
 610	 * However for write transactions managed by the CPU, we first write
 611	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
 612	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
 613	 * the interrupt handler would be called immediately and the i2c command
 614	 * would be reported as completed.
 615	 * Also when a write transaction is managed by the DMA controller,
 616	 * enabling the TXCOMP interrupt in this function may lead to a race
 617	 * condition since we don't know whether the TXCOMP interrupt is enabled
 618	 * before or after the DMA has started to write into THR. So the TXCOMP
 619	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
 620	 * Immediately after in that DMA callback, if the alternative command
 621	 * mode is not used, we still need to send the STOP condition manually
 622	 * writing the corresponding bit into the Control Register.
 623	 */
 624
 625	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
 626		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
 627
 628	reinit_completion(&dev->cmd_complete);
 629	dev->transfer_status = 0;
 630
 631	/* Clear pending interrupts, such as NACK. */
 632	at91_twi_read(dev, AT91_TWI_SR);
 633
 634	if (dev->fifo_size) {
 635		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 636
 637		/* Reset FIFO mode register */
 638		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
 639			     AT91_TWI_FMR_RXRDYM_MASK);
 640		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
 641		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
 642		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 643
 644		/* Flush FIFOs */
 645		at91_twi_write(dev, AT91_TWI_CR,
 646			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
 647	}
 648
 649	if (!dev->buf_len) {
 650		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
 651		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 652	} else if (dev->msg->flags & I2C_M_RD) {
 653		unsigned start_flags = AT91_TWI_START;
 654
 655		/* if only one byte is to be read, immediately stop transfer */
 656		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
 657		    !(dev->msg->flags & I2C_M_RECV_LEN))
 658			start_flags |= AT91_TWI_STOP;
 659		at91_twi_write(dev, AT91_TWI_CR, start_flags);
 660		/*
 661		 * When using dma without alternative command mode, the last
 662		 * byte has to be read manually in order to not send the stop
 663		 * command too late and then to receive extra data.
 664		 * In practice, there are some issues if you use the dma to
 665		 * read n-1 bytes because of latency.
 666		 * Reading n-2 bytes with dma and the two last ones manually
 667		 * seems to be the best solution.
 668		 */
 669		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 670			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 671			at91_twi_read_data_dma(dev);
 672		} else {
 673			at91_twi_write(dev, AT91_TWI_IER,
 674				       AT91_TWI_TXCOMP |
 675				       AT91_TWI_NACK |
 676				       AT91_TWI_RXRDY);
 677		}
 678	} else {
 679		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 680			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 681			at91_twi_write_data_dma(dev);
 682		} else {
 683			at91_twi_write_next_byte(dev);
 684			at91_twi_write(dev, AT91_TWI_IER,
 685				       AT91_TWI_TXCOMP |
 686				       AT91_TWI_NACK |
 687				       AT91_TWI_TXRDY);
 688		}
 689	}
 690
 691	time_left = wait_for_completion_timeout(&dev->cmd_complete,
 692					      dev->adapter.timeout);
 693	if (time_left == 0) {
 694		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
 695		dev_err(dev->dev, "controller timed out\n");
 696		at91_init_twi_bus(dev);
 697		ret = -ETIMEDOUT;
 698		goto error;
 699	}
 700	if (dev->transfer_status & AT91_TWI_NACK) {
 701		dev_dbg(dev->dev, "received nack\n");
 702		ret = -EREMOTEIO;
 703		goto error;
 704	}
 705	if (dev->transfer_status & AT91_TWI_OVRE) {
 706		dev_err(dev->dev, "overrun while reading\n");
 707		ret = -EIO;
 708		goto error;
 709	}
 710	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
 711		dev_err(dev->dev, "underrun while writing\n");
 712		ret = -EIO;
 713		goto error;
 714	}
 715	if ((has_alt_cmd || dev->fifo_size) &&
 716	    (dev->transfer_status & AT91_TWI_LOCK)) {
 717		dev_err(dev->dev, "tx locked\n");
 718		ret = -EIO;
 719		goto error;
 720	}
 721	if (dev->recv_len_abort) {
 722		dev_err(dev->dev, "invalid smbus block length recvd\n");
 723		ret = -EPROTO;
 724		goto error;
 725	}
 726
 727	dev_dbg(dev->dev, "transfer complete\n");
 728
 729	return 0;
 730
 731error:
 732	/* first stop DMA transfer if still in progress */
 733	at91_twi_dma_cleanup(dev);
 734	/* then flush THR/FIFO and unlock TX if locked */
 735	if ((has_alt_cmd || dev->fifo_size) &&
 736	    (dev->transfer_status & AT91_TWI_LOCK)) {
 737		dev_dbg(dev->dev, "unlock tx\n");
 738		at91_twi_write(dev, AT91_TWI_CR,
 739			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
 740	}
 741	return ret;
 742}
 743
 744static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
 745{
 746	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
 747	int ret;
 748	unsigned int_addr_flag = 0;
 749	struct i2c_msg *m_start = msg;
 750	bool is_read;
 751
 752	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
 753
 754	ret = pm_runtime_get_sync(dev->dev);
 755	if (ret < 0)
 756		goto out;
 757
 758	if (num == 2) {
 759		int internal_address = 0;
 760		int i;
 761
 762		/* 1st msg is put into the internal address, start with 2nd */
 763		m_start = &msg[1];
 764		for (i = 0; i < msg->len; ++i) {
 765			const unsigned addr = msg->buf[msg->len - 1 - i];
 766
 767			internal_address |= addr << (8 * i);
 768			int_addr_flag += AT91_TWI_IADRSZ_1;
 769		}
 770		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
 771	}
 772
 773	dev->use_alt_cmd = false;
 774	is_read = (m_start->flags & I2C_M_RD);
 775	if (dev->pdata->has_alt_cmd) {
 776		if (m_start->len > 0 &&
 777		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
 778			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
 779			at91_twi_write(dev, AT91_TWI_ACR,
 780				       AT91_TWI_ACR_DATAL(m_start->len) |
 781				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
 782			dev->use_alt_cmd = true;
 783		} else {
 784			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
 785		}
 786	}
 787
 788	at91_twi_write(dev, AT91_TWI_MMR,
 789		       (m_start->addr << 16) |
 790		       int_addr_flag |
 791		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
 792
 793	dev->buf_len = m_start->len;
 794	dev->buf = m_start->buf;
 795	dev->msg = m_start;
 796	dev->recv_len_abort = false;
 797
 798	ret = at91_do_twi_transfer(dev);
 799
 800	ret = (ret < 0) ? ret : num;
 801out:
 802	pm_runtime_mark_last_busy(dev->dev);
 803	pm_runtime_put_autosuspend(dev->dev);
 804
 805	return ret;
 806}
 807
 808/*
 809 * The hardware can handle at most two messages concatenated by a
 810 * repeated start via it's internal address feature.
 811 */
 812static const struct i2c_adapter_quirks at91_twi_quirks = {
 813	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
 814	.max_comb_1st_msg_len = 3,
 815};
 816
 817static u32 at91_twi_func(struct i2c_adapter *adapter)
 818{
 819	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
 820		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
 821}
 822
 823static const struct i2c_algorithm at91_twi_algorithm = {
 824	.master_xfer	= at91_twi_xfer,
 825	.functionality	= at91_twi_func,
 826};
 827
 828static struct at91_twi_pdata at91rm9200_config = {
 829	.clk_max_div = 5,
 830	.clk_offset = 3,
 831	.has_unre_flag = true,
 832	.has_alt_cmd = false,
 833	.has_hold_field = false,
 834};
 835
 836static struct at91_twi_pdata at91sam9261_config = {
 837	.clk_max_div = 5,
 838	.clk_offset = 4,
 839	.has_unre_flag = false,
 840	.has_alt_cmd = false,
 841	.has_hold_field = false,
 842};
 843
 844static struct at91_twi_pdata at91sam9260_config = {
 845	.clk_max_div = 7,
 846	.clk_offset = 4,
 847	.has_unre_flag = false,
 848	.has_alt_cmd = false,
 849	.has_hold_field = false,
 850};
 851
 852static struct at91_twi_pdata at91sam9g20_config = {
 853	.clk_max_div = 7,
 854	.clk_offset = 4,
 855	.has_unre_flag = false,
 856	.has_alt_cmd = false,
 857	.has_hold_field = false,
 858};
 859
 860static struct at91_twi_pdata at91sam9g10_config = {
 861	.clk_max_div = 7,
 862	.clk_offset = 4,
 863	.has_unre_flag = false,
 864	.has_alt_cmd = false,
 865	.has_hold_field = false,
 866};
 867
 868static const struct platform_device_id at91_twi_devtypes[] = {
 869	{
 870		.name = "i2c-at91rm9200",
 871		.driver_data = (unsigned long) &at91rm9200_config,
 872	}, {
 873		.name = "i2c-at91sam9261",
 874		.driver_data = (unsigned long) &at91sam9261_config,
 875	}, {
 876		.name = "i2c-at91sam9260",
 877		.driver_data = (unsigned long) &at91sam9260_config,
 878	}, {
 879		.name = "i2c-at91sam9g20",
 880		.driver_data = (unsigned long) &at91sam9g20_config,
 881	}, {
 882		.name = "i2c-at91sam9g10",
 883		.driver_data = (unsigned long) &at91sam9g10_config,
 884	}, {
 885		/* sentinel */
 886	}
 887};
 888
 889#if defined(CONFIG_OF)
 890static struct at91_twi_pdata at91sam9x5_config = {
 891	.clk_max_div = 7,
 892	.clk_offset = 4,
 893	.has_unre_flag = false,
 894	.has_alt_cmd = false,
 895	.has_hold_field = false,
 896};
 897
 898static struct at91_twi_pdata sama5d4_config = {
 899	.clk_max_div = 7,
 900	.clk_offset = 4,
 901	.has_unre_flag = false,
 902	.has_alt_cmd = false,
 903	.has_hold_field = true,
 904};
 905
 906static struct at91_twi_pdata sama5d2_config = {
 907	.clk_max_div = 7,
 908	.clk_offset = 4,
 909	.has_unre_flag = true,
 910	.has_alt_cmd = true,
 911	.has_hold_field = true,
 912};
 913
 914static const struct of_device_id atmel_twi_dt_ids[] = {
 915	{
 916		.compatible = "atmel,at91rm9200-i2c",
 917		.data = &at91rm9200_config,
 918	} , {
 919		.compatible = "atmel,at91sam9260-i2c",
 920		.data = &at91sam9260_config,
 921	} , {
 922		.compatible = "atmel,at91sam9261-i2c",
 923		.data = &at91sam9261_config,
 924	} , {
 925		.compatible = "atmel,at91sam9g20-i2c",
 926		.data = &at91sam9g20_config,
 927	} , {
 928		.compatible = "atmel,at91sam9g10-i2c",
 929		.data = &at91sam9g10_config,
 930	}, {
 931		.compatible = "atmel,at91sam9x5-i2c",
 932		.data = &at91sam9x5_config,
 933	}, {
 934		.compatible = "atmel,sama5d4-i2c",
 935		.data = &sama5d4_config,
 936	}, {
 937		.compatible = "atmel,sama5d2-i2c",
 938		.data = &sama5d2_config,
 939	}, {
 940		/* sentinel */
 941	}
 942};
 943MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
 944#endif
 945
 946static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
 947{
 948	int ret = 0;
 949	struct dma_slave_config slave_config;
 950	struct at91_twi_dma *dma = &dev->dma;
 951	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 952
 953	/*
 954	 * The actual width of the access will be chosen in
 955	 * dmaengine_prep_slave_sg():
 956	 * for each buffer in the scatter-gather list, if its size is aligned
 957	 * to addr_width then addr_width accesses will be performed to transfer
 958	 * the buffer. On the other hand, if the buffer size is not aligned to
 959	 * addr_width then the buffer is transferred using single byte accesses.
 960	 * Please refer to the Atmel eXtended DMA controller driver.
 961	 * When FIFOs are used, the TXRDYM threshold can always be set to
 962	 * trigger the XDMAC when at least 4 data can be written into the TX
 963	 * FIFO, even if single byte accesses are performed.
 964	 * However the RXRDYM threshold must be set to fit the access width,
 965	 * deduced from buffer length, so the XDMAC is triggered properly to
 966	 * read data from the RX FIFO.
 967	 */
 968	if (dev->fifo_size)
 969		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 970
 971	memset(&slave_config, 0, sizeof(slave_config));
 972	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
 973	slave_config.src_addr_width = addr_width;
 974	slave_config.src_maxburst = 1;
 975	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
 976	slave_config.dst_addr_width = addr_width;
 977	slave_config.dst_maxburst = 1;
 978	slave_config.device_fc = false;
 979
 980	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
 981	if (IS_ERR(dma->chan_tx)) {
 982		ret = PTR_ERR(dma->chan_tx);
 983		dma->chan_tx = NULL;
 984		goto error;
 985	}
 986
 987	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
 988	if (IS_ERR(dma->chan_rx)) {
 989		ret = PTR_ERR(dma->chan_rx);
 990		dma->chan_rx = NULL;
 991		goto error;
 992	}
 993
 994	slave_config.direction = DMA_MEM_TO_DEV;
 995	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
 996		dev_err(dev->dev, "failed to configure tx channel\n");
 997		ret = -EINVAL;
 998		goto error;
 999	}
1000
1001	slave_config.direction = DMA_DEV_TO_MEM;
1002	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
1003		dev_err(dev->dev, "failed to configure rx channel\n");
1004		ret = -EINVAL;
1005		goto error;
1006	}
1007
1008	sg_init_table(dma->sg, 2);
1009	dma->buf_mapped = false;
1010	dma->xfer_in_progress = false;
1011	dev->use_dma = true;
1012
1013	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
1014		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
1015
1016	return ret;
1017
1018error:
1019	if (ret != -EPROBE_DEFER)
1020		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
1021	if (dma->chan_rx)
1022		dma_release_channel(dma->chan_rx);
1023	if (dma->chan_tx)
1024		dma_release_channel(dma->chan_tx);
1025	return ret;
1026}
1027
1028static struct at91_twi_pdata *at91_twi_get_driver_data(
1029					struct platform_device *pdev)
1030{
1031	if (pdev->dev.of_node) {
1032		const struct of_device_id *match;
1033		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
1034		if (!match)
1035			return NULL;
1036		return (struct at91_twi_pdata *)match->data;
1037	}
1038	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
1039}
1040
1041static int at91_twi_probe(struct platform_device *pdev)
1042{
1043	struct at91_twi_dev *dev;
1044	struct resource *mem;
1045	int rc;
1046	u32 phy_addr;
1047	u32 bus_clk_rate;
1048
1049	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1050	if (!dev)
1051		return -ENOMEM;
1052	init_completion(&dev->cmd_complete);
1053	dev->dev = &pdev->dev;
1054
1055	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1056	if (!mem)
1057		return -ENODEV;
1058	phy_addr = mem->start;
1059
1060	dev->pdata = at91_twi_get_driver_data(pdev);
1061	if (!dev->pdata)
1062		return -ENODEV;
1063
1064	dev->base = devm_ioremap_resource(&pdev->dev, mem);
1065	if (IS_ERR(dev->base))
1066		return PTR_ERR(dev->base);
1067
1068	dev->irq = platform_get_irq(pdev, 0);
1069	if (dev->irq < 0)
1070		return dev->irq;
1071
1072	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1073			 dev_name(dev->dev), dev);
1074	if (rc) {
1075		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1076		return rc;
1077	}
1078
1079	platform_set_drvdata(pdev, dev);
1080
1081	dev->clk = devm_clk_get(dev->dev, NULL);
1082	if (IS_ERR(dev->clk)) {
1083		dev_err(dev->dev, "no clock defined\n");
1084		return -ENODEV;
1085	}
1086	rc = clk_prepare_enable(dev->clk);
1087	if (rc)
1088		return rc;
1089
1090	if (dev->dev->of_node) {
1091		rc = at91_twi_configure_dma(dev, phy_addr);
1092		if (rc == -EPROBE_DEFER) {
1093			clk_disable_unprepare(dev->clk);
1094			return rc;
1095		}
1096	}
1097
1098	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1099				  &dev->fifo_size)) {
1100		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1101	}
1102
1103	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1104			&bus_clk_rate);
1105	if (rc)
1106		bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1107
1108	at91_calc_twi_clock(dev, bus_clk_rate);
1109	at91_init_twi_bus(dev);
1110
1111	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1112	i2c_set_adapdata(&dev->adapter, dev);
1113	dev->adapter.owner = THIS_MODULE;
1114	dev->adapter.class = I2C_CLASS_DEPRECATED;
1115	dev->adapter.algo = &at91_twi_algorithm;
1116	dev->adapter.quirks = &at91_twi_quirks;
1117	dev->adapter.dev.parent = dev->dev;
1118	dev->adapter.nr = pdev->id;
1119	dev->adapter.timeout = AT91_I2C_TIMEOUT;
1120	dev->adapter.dev.of_node = pdev->dev.of_node;
1121
1122	pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1123	pm_runtime_use_autosuspend(dev->dev);
1124	pm_runtime_set_active(dev->dev);
1125	pm_runtime_enable(dev->dev);
1126
1127	rc = i2c_add_numbered_adapter(&dev->adapter);
1128	if (rc) {
1129		clk_disable_unprepare(dev->clk);
1130
1131		pm_runtime_disable(dev->dev);
1132		pm_runtime_set_suspended(dev->dev);
1133
1134		return rc;
1135	}
1136
1137	dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1138		 at91_twi_read(dev, AT91_TWI_VER));
1139	return 0;
1140}
1141
1142static int at91_twi_remove(struct platform_device *pdev)
1143{
1144	struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1145
1146	i2c_del_adapter(&dev->adapter);
1147	clk_disable_unprepare(dev->clk);
1148
1149	pm_runtime_disable(dev->dev);
1150	pm_runtime_set_suspended(dev->dev);
1151
1152	return 0;
1153}
1154
1155#ifdef CONFIG_PM
1156
1157static int at91_twi_runtime_suspend(struct device *dev)
1158{
1159	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1160
1161	clk_disable_unprepare(twi_dev->clk);
1162
1163	pinctrl_pm_select_sleep_state(dev);
1164
1165	return 0;
1166}
1167
1168static int at91_twi_runtime_resume(struct device *dev)
1169{
1170	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1171
1172	pinctrl_pm_select_default_state(dev);
1173
1174	return clk_prepare_enable(twi_dev->clk);
1175}
1176
1177static int at91_twi_suspend_noirq(struct device *dev)
1178{
1179	if (!pm_runtime_status_suspended(dev))
1180		at91_twi_runtime_suspend(dev);
1181
1182	return 0;
1183}
1184
1185static int at91_twi_resume_noirq(struct device *dev)
1186{
1187	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1188	int ret;
1189
1190	if (!pm_runtime_status_suspended(dev)) {
1191		ret = at91_twi_runtime_resume(dev);
1192		if (ret)
1193			return ret;
1194	}
1195
1196	pm_runtime_mark_last_busy(dev);
1197	pm_request_autosuspend(dev);
1198
1199	at91_init_twi_bus(twi_dev);
1200
1201	return 0;
1202}
1203
1204static const struct dev_pm_ops at91_twi_pm = {
1205	.suspend_noirq	= at91_twi_suspend_noirq,
1206	.resume_noirq	= at91_twi_resume_noirq,
1207	.runtime_suspend	= at91_twi_runtime_suspend,
1208	.runtime_resume		= at91_twi_runtime_resume,
1209};
1210
1211#define at91_twi_pm_ops (&at91_twi_pm)
1212#else
1213#define at91_twi_pm_ops NULL
1214#endif
1215
1216static struct platform_driver at91_twi_driver = {
1217	.probe		= at91_twi_probe,
1218	.remove		= at91_twi_remove,
1219	.id_table	= at91_twi_devtypes,
1220	.driver		= {
1221		.name	= "at91_i2c",
1222		.of_match_table = of_match_ptr(atmel_twi_dt_ids),
1223		.pm	= at91_twi_pm_ops,
1224	},
1225};
1226
1227static int __init at91_twi_init(void)
1228{
1229	return platform_driver_register(&at91_twi_driver);
1230}
1231
1232static void __exit at91_twi_exit(void)
1233{
1234	platform_driver_unregister(&at91_twi_driver);
1235}
1236
1237subsys_initcall(at91_twi_init);
1238module_exit(at91_twi_exit);
1239
1240MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1241MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1242MODULE_LICENSE("GPL");
1243MODULE_ALIAS("platform:at91_i2c");