Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2016 Linaro Ltd;  <ard.biesheuvel@linaro.org>
 
 
 
 
 
  4 */
  5
  6#include <linux/efi.h>
 
  7#include <asm/efi.h>
  8
  9#include "efistub.h"
 10
 11typedef union efi_rng_protocol efi_rng_protocol_t;
 12
 13union efi_rng_protocol {
 14	struct {
 15		efi_status_t (__efiapi *get_info)(efi_rng_protocol_t *,
 16						  unsigned long *,
 17						  efi_guid_t *);
 18		efi_status_t (__efiapi *get_rng)(efi_rng_protocol_t *,
 19						 efi_guid_t *, unsigned long,
 20						 u8 *out);
 21	};
 22	struct {
 23		u32 get_info;
 24		u32 get_rng;
 25	} mixed_mode;
 26};
 27
 28/**
 29 * efi_get_random_bytes() - fill a buffer with random bytes
 30 * @size:	size of the buffer
 31 * @out:	caller allocated buffer to receive the random bytes
 32 *
 33 * The call will fail if either the firmware does not implement the
 34 * EFI_RNG_PROTOCOL or there are not enough random bytes available to fill
 35 * the buffer.
 36 *
 37 * Return:	status code
 38 */
 39efi_status_t efi_get_random_bytes(unsigned long size, u8 *out)
 40{
 41	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
 42	efi_status_t status;
 43	efi_rng_protocol_t *rng = NULL;
 44
 45	status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng);
 
 46	if (status != EFI_SUCCESS)
 47		return status;
 48
 49	return efi_call_proto(rng, get_rng, NULL, size, out);
 50}
 51
 52/**
 53 * efi_random_get_seed() - provide random seed as configuration table
 54 *
 55 * The EFI_RNG_PROTOCOL is used to read random bytes. These random bytes are
 56 * saved as a configuration table which can be used as entropy by the kernel
 57 * for the initialization of its pseudo random number generator.
 58 *
 59 * If the EFI_RNG_PROTOCOL is not available or there are not enough random bytes
 60 * available, the configuration table will not be installed and an error code
 61 * will be returned.
 62 *
 63 * Return:	status code
 64 */
 65efi_status_t efi_random_get_seed(void)
 
 
 66{
 67	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
 68	efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
 69	efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
 70	struct linux_efi_random_seed *prev_seed, *seed = NULL;
 71	int prev_seed_size = 0, seed_size = EFI_RANDOM_SEED_SIZE;
 72	unsigned long nv_seed_size = 0, offset = 0;
 73	efi_rng_protocol_t *rng = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74	efi_status_t status;
 
 
 
 
 
 
 
 
 
 
 75
 76	status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng);
 77	if (status != EFI_SUCCESS)
 78		seed_size = 0;
 79
 80	// Call GetVariable() with a zero length buffer to obtain the size
 81	get_efi_var(L"RandomSeed", &rng_table_guid, NULL, &nv_seed_size, NULL);
 82	if (!seed_size && !nv_seed_size)
 83		return status;
 84
 85	seed_size += nv_seed_size;
 
 86
 87	/*
 88	 * Check whether a seed was provided by a prior boot stage. In that
 89	 * case, instead of overwriting it, let's create a new buffer that can
 90	 * hold both, and concatenate the existing and the new seeds.
 91	 * Note that we should read the seed size with caution, in case the
 92	 * table got corrupted in memory somehow.
 93	 */
 94	prev_seed = get_efi_config_table(rng_table_guid);
 95	if (prev_seed && prev_seed->size <= 512U) {
 96		prev_seed_size = prev_seed->size;
 97		seed_size += prev_seed_size;
 98	}
 99
 
 
 
100	/*
101	 * Use EFI_ACPI_RECLAIM_MEMORY here so that it is guaranteed that the
102	 * allocation will survive a kexec reboot (although we refresh the seed
103	 * beforehand)
 
 
 
 
 
 
104	 */
105	status = efi_bs_call(allocate_pool, EFI_ACPI_RECLAIM_MEMORY,
106			     struct_size(seed, bits, seed_size),
107			     (void **)&seed);
108	if (status != EFI_SUCCESS) {
109		efi_warn("Failed to allocate memory for RNG seed.\n");
110		goto err_warn;
111	}
 
 
112
113	if (rng) {
114		status = efi_call_proto(rng, get_rng, &rng_algo_raw,
115					EFI_RANDOM_SEED_SIZE, seed->bits);
116
117		if (status == EFI_UNSUPPORTED)
118			/*
119			 * Use whatever algorithm we have available if the raw algorithm
120			 * is not implemented.
121			 */
122			status = efi_call_proto(rng, get_rng, NULL,
123						EFI_RANDOM_SEED_SIZE, seed->bits);
124
 
 
125		if (status == EFI_SUCCESS)
126			offset = EFI_RANDOM_SEED_SIZE;
 
127	}
128
129	if (nv_seed_size) {
130		status = get_efi_var(L"RandomSeed", &rng_table_guid, NULL,
131				     &nv_seed_size, seed->bits + offset);
132
133		if (status == EFI_SUCCESS)
134			/*
135			 * We delete the seed here, and /hope/ that this causes
136			 * EFI to also zero out its representation on disk.
137			 * This is somewhat idealistic, but overwriting the
138			 * variable with zeros is likely just as fraught too.
139			 * TODO: in the future, maybe we can hash it forward
140			 * instead, and write a new seed.
141			 */
142			status = set_efi_var(L"RandomSeed", &rng_table_guid, 0,
143					     0, NULL);
144
145		if (status == EFI_SUCCESS)
146			offset += nv_seed_size;
147		else
148			memzero_explicit(seed->bits + offset, nv_seed_size);
149	}
 
 
 
150
151	if (!offset)
152		goto err_freepool;
 
 
153
154	if (prev_seed_size) {
155		memcpy(seed->bits + offset, prev_seed->bits, prev_seed_size);
156		offset += prev_seed_size;
157	}
 
 
 
 
 
 
 
 
 
 
 
158
159	seed->size = offset;
160	status = efi_bs_call(install_configuration_table, &rng_table_guid, seed);
161	if (status != EFI_SUCCESS)
162		goto err_freepool;
163
164	if (prev_seed_size) {
165		/* wipe and free the old seed if we managed to install the new one */
166		memzero_explicit(prev_seed->bits, prev_seed_size);
167		efi_bs_call(free_pool, prev_seed);
168	}
 
169	return EFI_SUCCESS;
170
171err_freepool:
172	memzero_explicit(seed, struct_size(seed, bits, seed_size));
173	efi_bs_call(free_pool, seed);
174	efi_warn("Failed to obtain seed from EFI_RNG_PROTOCOL or EFI variable\n");
175err_warn:
176	if (prev_seed)
177		efi_warn("Retaining bootloader-supplied seed only");
178	return status;
179}
v4.17
 
  1/*
  2 * Copyright (C) 2016 Linaro Ltd;  <ard.biesheuvel@linaro.org>
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 *
  8 */
  9
 10#include <linux/efi.h>
 11#include <linux/log2.h>
 12#include <asm/efi.h>
 13
 14#include "efistub.h"
 15
 16struct efi_rng_protocol {
 17	efi_status_t (*get_info)(struct efi_rng_protocol *,
 18				 unsigned long *, efi_guid_t *);
 19	efi_status_t (*get_rng)(struct efi_rng_protocol *,
 20				efi_guid_t *, unsigned long, u8 *out);
 
 
 
 
 
 
 
 
 
 
 21};
 22
 23efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
 24				  unsigned long size, u8 *out)
 
 
 
 
 
 
 
 
 
 
 25{
 26	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
 27	efi_status_t status;
 28	struct efi_rng_protocol *rng;
 29
 30	status = efi_call_early(locate_protocol, &rng_proto, NULL,
 31				(void **)&rng);
 32	if (status != EFI_SUCCESS)
 33		return status;
 34
 35	return rng->get_rng(rng, NULL, size, out);
 36}
 37
 38/*
 39 * Return the number of slots covered by this entry, i.e., the number of
 40 * addresses it covers that are suitably aligned and supply enough room
 41 * for the allocation.
 
 
 
 
 
 
 
 
 42 */
 43static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
 44					 unsigned long size,
 45					 unsigned long align_shift)
 46{
 47	unsigned long align = 1UL << align_shift;
 48	u64 first_slot, last_slot, region_end;
 49
 50	if (md->type != EFI_CONVENTIONAL_MEMORY)
 51		return 0;
 52
 53	region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
 54
 55	first_slot = round_up(md->phys_addr, align);
 56	last_slot = round_down(region_end - size + 1, align);
 57
 58	if (first_slot > last_slot)
 59		return 0;
 60
 61	return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
 62}
 63
 64/*
 65 * The UEFI memory descriptors have a virtual address field that is only used
 66 * when installing the virtual mapping using SetVirtualAddressMap(). Since it
 67 * is unused here, we can reuse it to keep track of each descriptor's slot
 68 * count.
 69 */
 70#define MD_NUM_SLOTS(md)	((md)->virt_addr)
 71
 72efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
 73			      unsigned long size,
 74			      unsigned long align,
 75			      unsigned long *addr,
 76			      unsigned long random_seed)
 77{
 78	unsigned long map_size, desc_size, total_slots = 0, target_slot;
 79	unsigned long buff_size;
 80	efi_status_t status;
 81	efi_memory_desc_t *memory_map;
 82	int map_offset;
 83	struct efi_boot_memmap map;
 84
 85	map.map =	&memory_map;
 86	map.map_size =	&map_size;
 87	map.desc_size =	&desc_size;
 88	map.desc_ver =	NULL;
 89	map.key_ptr =	NULL;
 90	map.buff_size =	&buff_size;
 91
 92	status = efi_get_memory_map(sys_table_arg, &map);
 93	if (status != EFI_SUCCESS)
 
 
 
 
 
 94		return status;
 95
 96	if (align < EFI_ALLOC_ALIGN)
 97		align = EFI_ALLOC_ALIGN;
 98
 99	/* count the suitable slots in each memory map entry */
100	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
101		efi_memory_desc_t *md = (void *)memory_map + map_offset;
102		unsigned long slots;
103
104		slots = get_entry_num_slots(md, size, ilog2(align));
105		MD_NUM_SLOTS(md) = slots;
106		total_slots += slots;
 
 
 
107	}
108
109	/* find a random number between 0 and total_slots */
110	target_slot = (total_slots * (u16)random_seed) >> 16;
111
112	/*
113	 * target_slot is now a value in the range [0, total_slots), and so
114	 * it corresponds with exactly one of the suitable slots we recorded
115	 * when iterating over the memory map the first time around.
116	 *
117	 * So iterate over the memory map again, subtracting the number of
118	 * slots of each entry at each iteration, until we have found the entry
119	 * that covers our chosen slot. Use the residual value of target_slot
120	 * to calculate the randomly chosen address, and allocate it directly
121	 * using EFI_ALLOCATE_ADDRESS.
122	 */
123	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
124		efi_memory_desc_t *md = (void *)memory_map + map_offset;
125		efi_physical_addr_t target;
126		unsigned long pages;
127
128		if (target_slot >= MD_NUM_SLOTS(md)) {
129			target_slot -= MD_NUM_SLOTS(md);
130			continue;
131		}
132
133		target = round_up(md->phys_addr, align) + target_slot * align;
134		pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
 
 
 
 
 
 
 
 
 
135
136		status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
137					EFI_LOADER_DATA, pages, &target);
138		if (status == EFI_SUCCESS)
139			*addr = target;
140		break;
141	}
142
143	efi_call_early(free_pool, memory_map);
 
 
144
145	return status;
146}
 
 
 
 
 
 
 
 
 
147
148efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
149{
150	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
151	efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
152	efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
153	struct efi_rng_protocol *rng;
154	struct linux_efi_random_seed *seed;
155	efi_status_t status;
156
157	status = efi_call_early(locate_protocol, &rng_proto, NULL,
158				(void **)&rng);
159	if (status != EFI_SUCCESS)
160		return status;
161
162	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
163				sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
164				(void **)&seed);
165	if (status != EFI_SUCCESS)
166		return status;
167
168	status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE,
169			      seed->bits);
170	if (status == EFI_UNSUPPORTED)
171		/*
172		 * Use whatever algorithm we have available if the raw algorithm
173		 * is not implemented.
174		 */
175		status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE,
176				      seed->bits);
177
 
 
178	if (status != EFI_SUCCESS)
179		goto err_freepool;
180
181	seed->size = EFI_RANDOM_SEED_SIZE;
182	status = efi_call_early(install_configuration_table, &rng_table_guid,
183				seed);
184	if (status != EFI_SUCCESS)
185		goto err_freepool;
186
187	return EFI_SUCCESS;
188
189err_freepool:
190	efi_call_early(free_pool, seed);
 
 
 
 
 
191	return status;
192}