Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Applied Micro X-Gene SoC DMA engine Driver
   4 *
   5 * Copyright (c) 2015, Applied Micro Circuits Corporation
   6 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
   7 *	    Loc Ho <lho@apm.com>
   8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 * NOTE: PM support is currently not available.
  10 */
  11
  12#include <linux/acpi.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmaengine.h>
  17#include <linux/dmapool.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/irq.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/module.h>
  23#include <linux/platform_device.h>
  24
  25#include "dmaengine.h"
  26
  27/* X-Gene DMA ring csr registers and bit definations */
  28#define XGENE_DMA_RING_CONFIG			0x04
  29#define XGENE_DMA_RING_ENABLE			BIT(31)
  30#define XGENE_DMA_RING_ID			0x08
  31#define XGENE_DMA_RING_ID_SETUP(v)		((v) | BIT(31))
  32#define XGENE_DMA_RING_ID_BUF			0x0C
  33#define XGENE_DMA_RING_ID_BUF_SETUP(v)		(((v) << 9) | BIT(21))
  34#define XGENE_DMA_RING_THRESLD0_SET1		0x30
  35#define XGENE_DMA_RING_THRESLD0_SET1_VAL	0X64
  36#define XGENE_DMA_RING_THRESLD1_SET1		0x34
  37#define XGENE_DMA_RING_THRESLD1_SET1_VAL	0xC8
  38#define XGENE_DMA_RING_HYSTERESIS		0x68
  39#define XGENE_DMA_RING_HYSTERESIS_VAL		0xFFFFFFFF
  40#define XGENE_DMA_RING_STATE			0x6C
  41#define XGENE_DMA_RING_STATE_WR_BASE		0x70
  42#define XGENE_DMA_RING_NE_INT_MODE		0x017C
  43#define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)	\
  44	((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
  45#define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)	\
  46	((m) &= (~BIT(31 - (v))))
  47#define XGENE_DMA_RING_CLKEN			0xC208
  48#define XGENE_DMA_RING_SRST			0xC200
  49#define XGENE_DMA_RING_MEM_RAM_SHUTDOWN		0xD070
  50#define XGENE_DMA_RING_BLK_MEM_RDY		0xD074
  51#define XGENE_DMA_RING_BLK_MEM_RDY_VAL		0xFFFFFFFF
  52#define XGENE_DMA_RING_ID_GET(owner, num)	(((owner) << 6) | (num))
  53#define XGENE_DMA_RING_DST_ID(v)		((1 << 10) | (v))
  54#define XGENE_DMA_RING_CMD_OFFSET		0x2C
  55#define XGENE_DMA_RING_CMD_BASE_OFFSET(v)	((v) << 6)
  56#define XGENE_DMA_RING_COHERENT_SET(m)		\
  57	(((u32 *)(m))[2] |= BIT(4))
  58#define XGENE_DMA_RING_ADDRL_SET(m, v)		\
  59	(((u32 *)(m))[2] |= (((v) >> 8) << 5))
  60#define XGENE_DMA_RING_ADDRH_SET(m, v)		\
  61	(((u32 *)(m))[3] |= ((v) >> 35))
  62#define XGENE_DMA_RING_ACCEPTLERR_SET(m)	\
  63	(((u32 *)(m))[3] |= BIT(19))
  64#define XGENE_DMA_RING_SIZE_SET(m, v)		\
  65	(((u32 *)(m))[3] |= ((v) << 23))
  66#define XGENE_DMA_RING_RECOMBBUF_SET(m)		\
  67	(((u32 *)(m))[3] |= BIT(27))
  68#define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)	\
  69	(((u32 *)(m))[3] |= (0x7 << 28))
  70#define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)	\
  71	(((u32 *)(m))[4] |= 0x3)
  72#define XGENE_DMA_RING_SELTHRSH_SET(m)		\
  73	(((u32 *)(m))[4] |= BIT(3))
  74#define XGENE_DMA_RING_TYPE_SET(m, v)		\
  75	(((u32 *)(m))[4] |= ((v) << 19))
  76
  77/* X-Gene DMA device csr registers and bit definitions */
  78#define XGENE_DMA_IPBRR				0x0
  79#define XGENE_DMA_DEV_ID_RD(v)			((v) & 0x00000FFF)
  80#define XGENE_DMA_BUS_ID_RD(v)			(((v) >> 12) & 3)
  81#define XGENE_DMA_REV_NO_RD(v)			(((v) >> 14) & 3)
  82#define XGENE_DMA_GCR				0x10
  83#define XGENE_DMA_CH_SETUP(v)			\
  84	((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
  85#define XGENE_DMA_ENABLE(v)			((v) |= BIT(31))
  86#define XGENE_DMA_DISABLE(v)			((v) &= ~BIT(31))
  87#define XGENE_DMA_RAID6_CONT			0x14
  88#define XGENE_DMA_RAID6_MULTI_CTRL(v)		((v) << 24)
  89#define XGENE_DMA_INT				0x70
  90#define XGENE_DMA_INT_MASK			0x74
  91#define XGENE_DMA_INT_ALL_MASK			0xFFFFFFFF
  92#define XGENE_DMA_INT_ALL_UNMASK		0x0
  93#define XGENE_DMA_INT_MASK_SHIFT		0x14
  94#define XGENE_DMA_RING_INT0_MASK		0x90A0
  95#define XGENE_DMA_RING_INT1_MASK		0x90A8
  96#define XGENE_DMA_RING_INT2_MASK		0x90B0
  97#define XGENE_DMA_RING_INT3_MASK		0x90B8
  98#define XGENE_DMA_RING_INT4_MASK		0x90C0
  99#define XGENE_DMA_CFG_RING_WQ_ASSOC		0x90E0
 100#define XGENE_DMA_ASSOC_RING_MNGR1		0xFFFFFFFF
 101#define XGENE_DMA_MEM_RAM_SHUTDOWN		0xD070
 102#define XGENE_DMA_BLK_MEM_RDY			0xD074
 103#define XGENE_DMA_BLK_MEM_RDY_VAL		0xFFFFFFFF
 104#define XGENE_DMA_RING_CMD_SM_OFFSET		0x8000
 105
 106/* X-Gene SoC EFUSE csr register and bit defination */
 107#define XGENE_SOC_JTAG1_SHADOW			0x18
 108#define XGENE_DMA_PQ_DISABLE_MASK		BIT(13)
 109
 110/* X-Gene DMA Descriptor format */
 111#define XGENE_DMA_DESC_NV_BIT			BIT_ULL(50)
 112#define XGENE_DMA_DESC_IN_BIT			BIT_ULL(55)
 113#define XGENE_DMA_DESC_C_BIT			BIT_ULL(63)
 114#define XGENE_DMA_DESC_DR_BIT			BIT_ULL(61)
 115#define XGENE_DMA_DESC_ELERR_POS		46
 116#define XGENE_DMA_DESC_RTYPE_POS		56
 117#define XGENE_DMA_DESC_LERR_POS			60
 118#define XGENE_DMA_DESC_BUFLEN_POS		48
 119#define XGENE_DMA_DESC_HOENQ_NUM_POS		48
 120#define XGENE_DMA_DESC_ELERR_RD(m)		\
 121	(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
 122#define XGENE_DMA_DESC_LERR_RD(m)		\
 123	(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
 124#define XGENE_DMA_DESC_STATUS(elerr, lerr)	\
 125	(((elerr) << 4) | (lerr))
 126
 127/* X-Gene DMA descriptor empty s/w signature */
 128#define XGENE_DMA_DESC_EMPTY_SIGNATURE		~0ULL
 129
 130/* X-Gene DMA configurable parameters defines */
 131#define XGENE_DMA_RING_NUM		512
 132#define XGENE_DMA_BUFNUM		0x0
 133#define XGENE_DMA_CPU_BUFNUM		0x18
 134#define XGENE_DMA_RING_OWNER_DMA	0x03
 135#define XGENE_DMA_RING_OWNER_CPU	0x0F
 136#define XGENE_DMA_RING_TYPE_REGULAR	0x01
 137#define XGENE_DMA_RING_WQ_DESC_SIZE	32	/* 32 Bytes */
 138#define XGENE_DMA_RING_NUM_CONFIG	5
 139#define XGENE_DMA_MAX_CHANNEL		4
 140#define XGENE_DMA_XOR_CHANNEL		0
 141#define XGENE_DMA_PQ_CHANNEL		1
 142#define XGENE_DMA_MAX_BYTE_CNT		0x4000	/* 16 KB */
 143#define XGENE_DMA_MAX_64B_DESC_BYTE_CNT	0x14000	/* 80 KB */
 144#define XGENE_DMA_MAX_XOR_SRC		5
 145#define XGENE_DMA_16K_BUFFER_LEN_CODE	0x0
 146#define XGENE_DMA_INVALID_LEN_CODE	0x7800000000000000ULL
 147
 148/* X-Gene DMA descriptor error codes */
 149#define ERR_DESC_AXI			0x01
 150#define ERR_BAD_DESC			0x02
 151#define ERR_READ_DATA_AXI		0x03
 152#define ERR_WRITE_DATA_AXI		0x04
 153#define ERR_FBP_TIMEOUT			0x05
 154#define ERR_ECC				0x06
 155#define ERR_DIFF_SIZE			0x08
 156#define ERR_SCT_GAT_LEN			0x09
 157#define ERR_CRC_ERR			0x11
 158#define ERR_CHKSUM			0x12
 159#define ERR_DIF				0x13
 160
 161/* X-Gene DMA error interrupt codes */
 162#define ERR_DIF_SIZE_INT		0x0
 163#define ERR_GS_ERR_INT			0x1
 164#define ERR_FPB_TIMEO_INT		0x2
 165#define ERR_WFIFO_OVF_INT		0x3
 166#define ERR_RFIFO_OVF_INT		0x4
 167#define ERR_WR_TIMEO_INT		0x5
 168#define ERR_RD_TIMEO_INT		0x6
 169#define ERR_WR_ERR_INT			0x7
 170#define ERR_RD_ERR_INT			0x8
 171#define ERR_BAD_DESC_INT		0x9
 172#define ERR_DESC_DST_INT		0xA
 173#define ERR_DESC_SRC_INT		0xB
 174
 175/* X-Gene DMA flyby operation code */
 176#define FLYBY_2SRC_XOR			0x80
 177#define FLYBY_3SRC_XOR			0x90
 178#define FLYBY_4SRC_XOR			0xA0
 179#define FLYBY_5SRC_XOR			0xB0
 180
 181/* X-Gene DMA SW descriptor flags */
 182#define XGENE_DMA_FLAG_64B_DESC		BIT(0)
 183
 184/* Define to dump X-Gene DMA descriptor */
 185#define XGENE_DMA_DESC_DUMP(desc, m)	\
 186	print_hex_dump(KERN_ERR, (m),	\
 187			DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
 188
 189#define to_dma_desc_sw(tx)		\
 190	container_of(tx, struct xgene_dma_desc_sw, tx)
 191#define to_dma_chan(dchan)		\
 192	container_of(dchan, struct xgene_dma_chan, dma_chan)
 193
 194#define chan_dbg(chan, fmt, arg...)	\
 195	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
 196#define chan_err(chan, fmt, arg...)	\
 197	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
 198
 199struct xgene_dma_desc_hw {
 200	__le64 m0;
 201	__le64 m1;
 202	__le64 m2;
 203	__le64 m3;
 204};
 205
 206enum xgene_dma_ring_cfgsize {
 207	XGENE_DMA_RING_CFG_SIZE_512B,
 208	XGENE_DMA_RING_CFG_SIZE_2KB,
 209	XGENE_DMA_RING_CFG_SIZE_16KB,
 210	XGENE_DMA_RING_CFG_SIZE_64KB,
 211	XGENE_DMA_RING_CFG_SIZE_512KB,
 212	XGENE_DMA_RING_CFG_SIZE_INVALID
 213};
 214
 215struct xgene_dma_ring {
 216	struct xgene_dma *pdma;
 217	u8 buf_num;
 218	u16 id;
 219	u16 num;
 220	u16 head;
 221	u16 owner;
 222	u16 slots;
 223	u16 dst_ring_num;
 224	u32 size;
 225	void __iomem *cmd;
 226	void __iomem *cmd_base;
 227	dma_addr_t desc_paddr;
 228	u32 state[XGENE_DMA_RING_NUM_CONFIG];
 229	enum xgene_dma_ring_cfgsize cfgsize;
 230	union {
 231		void *desc_vaddr;
 232		struct xgene_dma_desc_hw *desc_hw;
 233	};
 234};
 235
 236struct xgene_dma_desc_sw {
 237	struct xgene_dma_desc_hw desc1;
 238	struct xgene_dma_desc_hw desc2;
 239	u32 flags;
 240	struct list_head node;
 241	struct list_head tx_list;
 242	struct dma_async_tx_descriptor tx;
 243};
 244
 245/**
 246 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
 247 * @dma_chan: dmaengine channel object member
 248 * @pdma: X-Gene DMA device structure reference
 249 * @dev: struct device reference for dma mapping api
 250 * @id: raw id of this channel
 251 * @rx_irq: channel IRQ
 252 * @name: name of X-Gene DMA channel
 253 * @lock: serializes enqueue/dequeue operations to the descriptor pool
 254 * @pending: number of transaction request pushed to DMA controller for
 255 *	execution, but still waiting for completion,
 256 * @max_outstanding: max number of outstanding request we can push to channel
 257 * @ld_pending: descriptors which are queued to run, but have not yet been
 258 *	submitted to the hardware for execution
 259 * @ld_running: descriptors which are currently being executing by the hardware
 260 * @ld_completed: descriptors which have finished execution by the hardware.
 261 *	These descriptors have already had their cleanup actions run. They
 262 *	are waiting for the ACK bit to be set by the async tx API.
 263 * @desc_pool: descriptor pool for DMA operations
 264 * @tasklet: bottom half where all completed descriptors cleans
 265 * @tx_ring: transmit ring descriptor that we use to prepare actual
 266 *	descriptors for further executions
 267 * @rx_ring: receive ring descriptor that we use to get completed DMA
 268 *	descriptors during cleanup time
 269 */
 270struct xgene_dma_chan {
 271	struct dma_chan dma_chan;
 272	struct xgene_dma *pdma;
 273	struct device *dev;
 274	int id;
 275	int rx_irq;
 276	char name[10];
 277	spinlock_t lock;
 278	int pending;
 279	int max_outstanding;
 280	struct list_head ld_pending;
 281	struct list_head ld_running;
 282	struct list_head ld_completed;
 283	struct dma_pool *desc_pool;
 284	struct tasklet_struct tasklet;
 285	struct xgene_dma_ring tx_ring;
 286	struct xgene_dma_ring rx_ring;
 287};
 288
 289/**
 290 * struct xgene_dma - internal representation of an X-Gene DMA device
 291 * @dev: reference to this device's struct device
 292 * @clk: reference to this device's clock
 293 * @err_irq: DMA error irq number
 294 * @ring_num: start id number for DMA ring
 295 * @csr_dma: base for DMA register access
 296 * @csr_ring: base for DMA ring register access
 297 * @csr_ring_cmd: base for DMA ring command register access
 298 * @csr_efuse: base for efuse register access
 299 * @dma_dev: embedded struct dma_device
 300 * @chan: reference to X-Gene DMA channels
 301 */
 302struct xgene_dma {
 303	struct device *dev;
 304	struct clk *clk;
 305	int err_irq;
 306	int ring_num;
 307	void __iomem *csr_dma;
 308	void __iomem *csr_ring;
 309	void __iomem *csr_ring_cmd;
 310	void __iomem *csr_efuse;
 311	struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
 312	struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
 313};
 314
 315static const char * const xgene_dma_desc_err[] = {
 316	[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
 317	[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
 318	[ERR_READ_DATA_AXI] = "AXI error when reading data",
 319	[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
 320	[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
 321	[ERR_ECC] = "ECC double bit error",
 322	[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
 323	[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
 324	[ERR_CRC_ERR] = "CRC error",
 325	[ERR_CHKSUM] = "Checksum error",
 326	[ERR_DIF] = "DIF error",
 327};
 328
 329static const char * const xgene_dma_err[] = {
 330	[ERR_DIF_SIZE_INT] = "DIF size error",
 331	[ERR_GS_ERR_INT] = "Gather scatter not same size error",
 332	[ERR_FPB_TIMEO_INT] = "Free pool time out error",
 333	[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
 334	[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
 335	[ERR_WR_TIMEO_INT] = "Write time out error",
 336	[ERR_RD_TIMEO_INT] = "Read time out error",
 337	[ERR_WR_ERR_INT] = "HBF bus write error",
 338	[ERR_RD_ERR_INT] = "HBF bus read error",
 339	[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
 340	[ERR_DESC_DST_INT] = "HFB reading dst link address error",
 341	[ERR_DESC_SRC_INT] = "HFB reading src link address error",
 342};
 343
 344static bool is_pq_enabled(struct xgene_dma *pdma)
 345{
 346	u32 val;
 347
 348	val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
 349	return !(val & XGENE_DMA_PQ_DISABLE_MASK);
 350}
 351
 352static u64 xgene_dma_encode_len(size_t len)
 353{
 354	return (len < XGENE_DMA_MAX_BYTE_CNT) ?
 355		((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
 356		XGENE_DMA_16K_BUFFER_LEN_CODE;
 357}
 358
 359static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
 360{
 361	static u8 flyby_type[] = {
 362		FLYBY_2SRC_XOR, /* Dummy */
 363		FLYBY_2SRC_XOR, /* Dummy */
 364		FLYBY_2SRC_XOR,
 365		FLYBY_3SRC_XOR,
 366		FLYBY_4SRC_XOR,
 367		FLYBY_5SRC_XOR
 368	};
 369
 370	return flyby_type[src_cnt];
 371}
 372
 373static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
 374				     dma_addr_t *paddr)
 375{
 376	size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
 377			*len : XGENE_DMA_MAX_BYTE_CNT;
 378
 379	*ext8 |= cpu_to_le64(*paddr);
 380	*ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
 381	*len -= nbytes;
 382	*paddr += nbytes;
 383}
 384
 385static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
 386{
 387	switch (idx) {
 388	case 0:
 389		return &desc->m1;
 390	case 1:
 391		return &desc->m0;
 392	case 2:
 393		return &desc->m3;
 394	case 3:
 395		return &desc->m2;
 396	default:
 397		pr_err("Invalid dma descriptor index\n");
 398	}
 399
 400	return NULL;
 401}
 402
 403static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
 404				u16 dst_ring_num)
 405{
 406	desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
 407	desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
 408				XGENE_DMA_DESC_RTYPE_POS);
 409	desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
 410	desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
 411				XGENE_DMA_DESC_HOENQ_NUM_POS);
 412}
 413
 414static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
 415				    struct xgene_dma_desc_sw *desc_sw,
 416				    dma_addr_t *dst, dma_addr_t *src,
 417				    u32 src_cnt, size_t *nbytes,
 418				    const u8 *scf)
 419{
 420	struct xgene_dma_desc_hw *desc1, *desc2;
 421	size_t len = *nbytes;
 422	int i;
 423
 424	desc1 = &desc_sw->desc1;
 425	desc2 = &desc_sw->desc2;
 426
 427	/* Initialize DMA descriptor */
 428	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
 429
 430	/* Set destination address */
 431	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
 432	desc1->m3 |= cpu_to_le64(*dst);
 433
 434	/* We have multiple source addresses, so need to set NV bit*/
 435	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
 436
 437	/* Set flyby opcode */
 438	desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
 439
 440	/* Set 1st to 5th source addresses */
 441	for (i = 0; i < src_cnt; i++) {
 442		len = *nbytes;
 443		xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
 444					 xgene_dma_lookup_ext8(desc2, i - 1),
 445					 &len, &src[i]);
 446		desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
 447	}
 448
 449	/* Update meta data */
 450	*nbytes = len;
 451	*dst += XGENE_DMA_MAX_BYTE_CNT;
 452
 453	/* We need always 64B descriptor to perform xor or pq operations */
 454	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
 455}
 456
 457static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 458{
 459	struct xgene_dma_desc_sw *desc;
 460	struct xgene_dma_chan *chan;
 461	dma_cookie_t cookie;
 462
 463	if (unlikely(!tx))
 464		return -EINVAL;
 465
 466	chan = to_dma_chan(tx->chan);
 467	desc = to_dma_desc_sw(tx);
 468
 469	spin_lock_bh(&chan->lock);
 470
 471	cookie = dma_cookie_assign(tx);
 472
 473	/* Add this transaction list onto the tail of the pending queue */
 474	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 475
 476	spin_unlock_bh(&chan->lock);
 477
 478	return cookie;
 479}
 480
 481static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
 482				       struct xgene_dma_desc_sw *desc)
 483{
 484	list_del(&desc->node);
 485	chan_dbg(chan, "LD %p free\n", desc);
 486	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
 487}
 488
 489static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
 490				 struct xgene_dma_chan *chan)
 491{
 492	struct xgene_dma_desc_sw *desc;
 493	dma_addr_t phys;
 494
 495	desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
 496	if (!desc) {
 497		chan_err(chan, "Failed to allocate LDs\n");
 498		return NULL;
 499	}
 500
 501	INIT_LIST_HEAD(&desc->tx_list);
 502	desc->tx.phys = phys;
 503	desc->tx.tx_submit = xgene_dma_tx_submit;
 504	dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
 505
 506	chan_dbg(chan, "LD %p allocated\n", desc);
 507
 508	return desc;
 509}
 510
 511/**
 512 * xgene_dma_clean_completed_descriptor - free all descriptors which
 513 * has been completed and acked
 514 * @chan: X-Gene DMA channel
 515 *
 516 * This function is used on all completed and acked descriptors.
 517 */
 518static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
 519{
 520	struct xgene_dma_desc_sw *desc, *_desc;
 521
 522	/* Run the callback for each descriptor, in order */
 523	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
 524		if (async_tx_test_ack(&desc->tx))
 525			xgene_dma_clean_descriptor(chan, desc);
 526	}
 527}
 528
 529/**
 530 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
 531 * @chan: X-Gene DMA channel
 532 * @desc: descriptor to cleanup and free
 533 *
 534 * This function is used on a descriptor which has been executed by the DMA
 535 * controller. It will run any callbacks, submit any dependencies.
 536 */
 537static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
 538					      struct xgene_dma_desc_sw *desc)
 539{
 540	struct dma_async_tx_descriptor *tx = &desc->tx;
 541
 542	/*
 543	 * If this is not the last transaction in the group,
 544	 * then no need to complete cookie and run any callback as
 545	 * this is not the tx_descriptor which had been sent to caller
 546	 * of this DMA request
 547	 */
 548
 549	if (tx->cookie == 0)
 550		return;
 551
 552	dma_cookie_complete(tx);
 553	dma_descriptor_unmap(tx);
 554
 555	/* Run the link descriptor callback function */
 556	dmaengine_desc_get_callback_invoke(tx, NULL);
 557
 558	/* Run any dependencies */
 559	dma_run_dependencies(tx);
 560}
 561
 562/**
 563 * xgene_dma_clean_running_descriptor - move the completed descriptor from
 564 * ld_running to ld_completed
 565 * @chan: X-Gene DMA channel
 566 * @desc: the descriptor which is completed
 567 *
 568 * Free the descriptor directly if acked by async_tx api,
 569 * else move it to queue ld_completed.
 570 */
 571static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
 572					       struct xgene_dma_desc_sw *desc)
 573{
 574	/* Remove from the list of running transactions */
 575	list_del(&desc->node);
 576
 577	/*
 578	 * the client is allowed to attach dependent operations
 579	 * until 'ack' is set
 580	 */
 581	if (!async_tx_test_ack(&desc->tx)) {
 582		/*
 583		 * Move this descriptor to the list of descriptors which is
 584		 * completed, but still awaiting the 'ack' bit to be set.
 585		 */
 586		list_add_tail(&desc->node, &chan->ld_completed);
 587		return;
 588	}
 589
 590	chan_dbg(chan, "LD %p free\n", desc);
 591	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
 592}
 593
 594static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
 595				    struct xgene_dma_desc_sw *desc_sw)
 596{
 597	struct xgene_dma_ring *ring = &chan->tx_ring;
 598	struct xgene_dma_desc_hw *desc_hw;
 599
 600	/* Get hw descriptor from DMA tx ring */
 601	desc_hw = &ring->desc_hw[ring->head];
 602
 603	/*
 604	 * Increment the head count to point next
 605	 * descriptor for next time
 606	 */
 607	if (++ring->head == ring->slots)
 608		ring->head = 0;
 609
 610	/* Copy prepared sw descriptor data to hw descriptor */
 611	memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
 612
 613	/*
 614	 * Check if we have prepared 64B descriptor,
 615	 * in this case we need one more hw descriptor
 616	 */
 617	if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
 618		desc_hw = &ring->desc_hw[ring->head];
 619
 620		if (++ring->head == ring->slots)
 621			ring->head = 0;
 622
 623		memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
 624	}
 625
 626	/* Increment the pending transaction count */
 627	chan->pending += ((desc_sw->flags &
 628			  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
 629
 630	/* Notify the hw that we have descriptor ready for execution */
 631	iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
 632		  2 : 1, ring->cmd);
 633}
 634
 635/**
 636 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
 637 * @chan : X-Gene DMA channel
 638 *
 639 * LOCKING: must hold chan->lock
 640 */
 641static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
 642{
 643	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
 644
 645	/*
 646	 * If the list of pending descriptors is empty, then we
 647	 * don't need to do any work at all
 648	 */
 649	if (list_empty(&chan->ld_pending)) {
 650		chan_dbg(chan, "No pending LDs\n");
 651		return;
 652	}
 653
 654	/*
 655	 * Move elements from the queue of pending transactions onto the list
 656	 * of running transactions and push it to hw for further executions
 657	 */
 658	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
 659		/*
 660		 * Check if have pushed max number of transactions to hw
 661		 * as capable, so let's stop here and will push remaining
 662		 * elements from pening ld queue after completing some
 663		 * descriptors that we have already pushed
 664		 */
 665		if (chan->pending >= chan->max_outstanding)
 666			return;
 667
 668		xgene_chan_xfer_request(chan, desc_sw);
 669
 670		/*
 671		 * Delete this element from ld pending queue and append it to
 672		 * ld running queue
 673		 */
 674		list_move_tail(&desc_sw->node, &chan->ld_running);
 675	}
 676}
 677
 678/**
 679 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
 680 * and move them to ld_completed to free until flag 'ack' is set
 681 * @chan: X-Gene DMA channel
 682 *
 683 * This function is used on descriptors which have been executed by the DMA
 684 * controller. It will run any callbacks, submit any dependencies, then
 685 * free these descriptors if flag 'ack' is set.
 686 */
 687static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
 688{
 689	struct xgene_dma_ring *ring = &chan->rx_ring;
 690	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
 691	struct xgene_dma_desc_hw *desc_hw;
 692	struct list_head ld_completed;
 693	u8 status;
 694
 695	INIT_LIST_HEAD(&ld_completed);
 696
 697	spin_lock(&chan->lock);
 698
 699	/* Clean already completed and acked descriptors */
 700	xgene_dma_clean_completed_descriptor(chan);
 701
 702	/* Move all completed descriptors to ld completed queue, in order */
 703	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
 704		/* Get subsequent hw descriptor from DMA rx ring */
 705		desc_hw = &ring->desc_hw[ring->head];
 706
 707		/* Check if this descriptor has been completed */
 708		if (unlikely(le64_to_cpu(desc_hw->m0) ==
 709			     XGENE_DMA_DESC_EMPTY_SIGNATURE))
 710			break;
 711
 712		if (++ring->head == ring->slots)
 713			ring->head = 0;
 714
 715		/* Check if we have any error with DMA transactions */
 716		status = XGENE_DMA_DESC_STATUS(
 717				XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
 718							desc_hw->m0)),
 719				XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
 720						       desc_hw->m0)));
 721		if (status) {
 722			/* Print the DMA error type */
 723			chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
 724
 725			/*
 726			 * We have DMA transactions error here. Dump DMA Tx
 727			 * and Rx descriptors for this request */
 728			XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
 729					    "X-Gene DMA TX DESC1: ");
 730
 731			if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
 732				XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
 733						    "X-Gene DMA TX DESC2: ");
 734
 735			XGENE_DMA_DESC_DUMP(desc_hw,
 736					    "X-Gene DMA RX ERR DESC: ");
 737		}
 738
 739		/* Notify the hw about this completed descriptor */
 740		iowrite32(-1, ring->cmd);
 741
 742		/* Mark this hw descriptor as processed */
 743		desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
 744
 745		/*
 746		 * Decrement the pending transaction count
 747		 * as we have processed one
 748		 */
 749		chan->pending -= ((desc_sw->flags &
 750				  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
 751
 752		/*
 753		 * Delete this node from ld running queue and append it to
 754		 * ld completed queue for further processing
 755		 */
 756		list_move_tail(&desc_sw->node, &ld_completed);
 757	}
 758
 759	/*
 760	 * Start any pending transactions automatically
 761	 * In the ideal case, we keep the DMA controller busy while we go
 762	 * ahead and free the descriptors below.
 763	 */
 764	xgene_chan_xfer_ld_pending(chan);
 765
 766	spin_unlock(&chan->lock);
 767
 768	/* Run the callback for each descriptor, in order */
 769	list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
 770		xgene_dma_run_tx_complete_actions(chan, desc_sw);
 771		xgene_dma_clean_running_descriptor(chan, desc_sw);
 772	}
 773}
 774
 775static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
 776{
 777	struct xgene_dma_chan *chan = to_dma_chan(dchan);
 778
 779	/* Has this channel already been allocated? */
 780	if (chan->desc_pool)
 781		return 1;
 782
 783	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 784					  sizeof(struct xgene_dma_desc_sw),
 785					  0, 0);
 786	if (!chan->desc_pool) {
 787		chan_err(chan, "Failed to allocate descriptor pool\n");
 788		return -ENOMEM;
 789	}
 790
 791	chan_dbg(chan, "Allocate descriptor pool\n");
 792
 793	return 1;
 794}
 795
 796/**
 797 * xgene_dma_free_desc_list - Free all descriptors in a queue
 798 * @chan: X-Gene DMA channel
 799 * @list: the list to free
 800 *
 801 * LOCKING: must hold chan->lock
 802 */
 803static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
 804				     struct list_head *list)
 805{
 806	struct xgene_dma_desc_sw *desc, *_desc;
 807
 808	list_for_each_entry_safe(desc, _desc, list, node)
 809		xgene_dma_clean_descriptor(chan, desc);
 810}
 811
 812static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
 813{
 814	struct xgene_dma_chan *chan = to_dma_chan(dchan);
 815
 816	chan_dbg(chan, "Free all resources\n");
 817
 818	if (!chan->desc_pool)
 819		return;
 820
 821	/* Process all running descriptor */
 822	xgene_dma_cleanup_descriptors(chan);
 823
 824	spin_lock_bh(&chan->lock);
 825
 826	/* Clean all link descriptor queues */
 827	xgene_dma_free_desc_list(chan, &chan->ld_pending);
 828	xgene_dma_free_desc_list(chan, &chan->ld_running);
 829	xgene_dma_free_desc_list(chan, &chan->ld_completed);
 830
 831	spin_unlock_bh(&chan->lock);
 832
 833	/* Delete this channel DMA pool */
 834	dma_pool_destroy(chan->desc_pool);
 835	chan->desc_pool = NULL;
 836}
 837
 838static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
 839	struct dma_chan *dchan, dma_addr_t dst,	dma_addr_t *src,
 840	u32 src_cnt, size_t len, unsigned long flags)
 841{
 842	struct xgene_dma_desc_sw *first = NULL, *new;
 843	struct xgene_dma_chan *chan;
 844	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
 845				0x01, 0x01, 0x01, 0x01, 0x01};
 846
 847	if (unlikely(!dchan || !len))
 848		return NULL;
 849
 850	chan = to_dma_chan(dchan);
 851
 852	do {
 853		/* Allocate the link descriptor from DMA pool */
 854		new = xgene_dma_alloc_descriptor(chan);
 855		if (!new)
 856			goto fail;
 857
 858		/* Prepare xor DMA descriptor */
 859		xgene_dma_prep_xor_desc(chan, new, &dst, src,
 860					src_cnt, &len, multi);
 861
 862		if (!first)
 863			first = new;
 864
 865		new->tx.cookie = 0;
 866		async_tx_ack(&new->tx);
 867
 868		/* Insert the link descriptor to the LD ring */
 869		list_add_tail(&new->node, &first->tx_list);
 870	} while (len);
 871
 872	new->tx.flags = flags; /* client is in control of this ack */
 873	new->tx.cookie = -EBUSY;
 874	list_splice(&first->tx_list, &new->tx_list);
 875
 876	return &new->tx;
 877
 878fail:
 879	if (!first)
 880		return NULL;
 881
 882	xgene_dma_free_desc_list(chan, &first->tx_list);
 883	return NULL;
 884}
 885
 886static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
 887	struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
 888	u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
 889{
 890	struct xgene_dma_desc_sw *first = NULL, *new;
 891	struct xgene_dma_chan *chan;
 892	size_t _len = len;
 893	dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
 894	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
 895
 896	if (unlikely(!dchan || !len))
 897		return NULL;
 898
 899	chan = to_dma_chan(dchan);
 900
 901	/*
 902	 * Save source addresses on local variable, may be we have to
 903	 * prepare two descriptor to generate P and Q if both enabled
 904	 * in the flags by client
 905	 */
 906	memcpy(_src, src, sizeof(*src) * src_cnt);
 907
 908	if (flags & DMA_PREP_PQ_DISABLE_P)
 909		len = 0;
 910
 911	if (flags & DMA_PREP_PQ_DISABLE_Q)
 912		_len = 0;
 913
 914	do {
 915		/* Allocate the link descriptor from DMA pool */
 916		new = xgene_dma_alloc_descriptor(chan);
 917		if (!new)
 918			goto fail;
 919
 920		if (!first)
 921			first = new;
 922
 923		new->tx.cookie = 0;
 924		async_tx_ack(&new->tx);
 925
 926		/* Insert the link descriptor to the LD ring */
 927		list_add_tail(&new->node, &first->tx_list);
 928
 929		/*
 930		 * Prepare DMA descriptor to generate P,
 931		 * if DMA_PREP_PQ_DISABLE_P flag is not set
 932		 */
 933		if (len) {
 934			xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
 935						src_cnt, &len, multi);
 936			continue;
 937		}
 938
 939		/*
 940		 * Prepare DMA descriptor to generate Q,
 941		 * if DMA_PREP_PQ_DISABLE_Q flag is not set
 942		 */
 943		if (_len) {
 944			xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
 945						src_cnt, &_len, scf);
 946		}
 947	} while (len || _len);
 948
 949	new->tx.flags = flags; /* client is in control of this ack */
 950	new->tx.cookie = -EBUSY;
 951	list_splice(&first->tx_list, &new->tx_list);
 952
 953	return &new->tx;
 954
 955fail:
 956	if (!first)
 957		return NULL;
 958
 959	xgene_dma_free_desc_list(chan, &first->tx_list);
 960	return NULL;
 961}
 962
 963static void xgene_dma_issue_pending(struct dma_chan *dchan)
 964{
 965	struct xgene_dma_chan *chan = to_dma_chan(dchan);
 966
 967	spin_lock_bh(&chan->lock);
 968	xgene_chan_xfer_ld_pending(chan);
 969	spin_unlock_bh(&chan->lock);
 970}
 971
 972static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
 973					   dma_cookie_t cookie,
 974					   struct dma_tx_state *txstate)
 975{
 976	return dma_cookie_status(dchan, cookie, txstate);
 977}
 978
 979static void xgene_dma_tasklet_cb(struct tasklet_struct *t)
 980{
 981	struct xgene_dma_chan *chan = from_tasklet(chan, t, tasklet);
 982
 983	/* Run all cleanup for descriptors which have been completed */
 984	xgene_dma_cleanup_descriptors(chan);
 985
 986	/* Re-enable DMA channel IRQ */
 987	enable_irq(chan->rx_irq);
 988}
 989
 990static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
 991{
 992	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
 993
 994	BUG_ON(!chan);
 995
 996	/*
 997	 * Disable DMA channel IRQ until we process completed
 998	 * descriptors
 999	 */
1000	disable_irq_nosync(chan->rx_irq);
1001
1002	/*
1003	 * Schedule the tasklet to handle all cleanup of the current
1004	 * transaction. It will start a new transaction if there is
1005	 * one pending.
1006	 */
1007	tasklet_schedule(&chan->tasklet);
1008
1009	return IRQ_HANDLED;
1010}
1011
1012static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1013{
1014	struct xgene_dma *pdma = (struct xgene_dma *)id;
1015	unsigned long int_mask;
1016	u32 val, i;
1017
1018	val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1019
1020	/* Clear DMA interrupts */
1021	iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1022
1023	/* Print DMA error info */
1024	int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1025	for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1026		dev_err(pdma->dev,
1027			"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1028
1029	return IRQ_HANDLED;
1030}
1031
1032static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1033{
1034	int i;
1035
1036	iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1037
1038	for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1039		iowrite32(ring->state[i], ring->pdma->csr_ring +
1040			  XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1041}
1042
1043static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1044{
1045	memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1046	xgene_dma_wr_ring_state(ring);
1047}
1048
1049static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1050{
1051	void *ring_cfg = ring->state;
1052	u64 addr = ring->desc_paddr;
1053	u32 i, val;
1054
1055	ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1056
1057	/* Clear DMA ring state */
1058	xgene_dma_clr_ring_state(ring);
1059
1060	/* Set DMA ring type */
1061	XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1062
1063	if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1064		/* Set recombination buffer and timeout */
1065		XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1066		XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1067		XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1068	}
1069
1070	/* Initialize DMA ring state */
1071	XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1072	XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1073	XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1074	XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1075	XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1076	XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1077
1078	/* Write DMA ring configurations */
1079	xgene_dma_wr_ring_state(ring);
1080
1081	/* Set DMA ring id */
1082	iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1083		  ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1084
1085	/* Set DMA ring buffer */
1086	iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1087		  ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1088
1089	if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1090		return;
1091
1092	/* Set empty signature to DMA Rx ring descriptors */
1093	for (i = 0; i < ring->slots; i++) {
1094		struct xgene_dma_desc_hw *desc;
1095
1096		desc = &ring->desc_hw[i];
1097		desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1098	}
1099
1100	/* Enable DMA Rx ring interrupt */
1101	val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1102	XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1103	iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1104}
1105
1106static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1107{
1108	u32 ring_id, val;
1109
1110	if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1111		/* Disable DMA Rx ring interrupt */
1112		val = ioread32(ring->pdma->csr_ring +
1113			       XGENE_DMA_RING_NE_INT_MODE);
1114		XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1115		iowrite32(val, ring->pdma->csr_ring +
1116			  XGENE_DMA_RING_NE_INT_MODE);
1117	}
1118
1119	/* Clear DMA ring state */
1120	ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1121	iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1122
1123	iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1124	xgene_dma_clr_ring_state(ring);
1125}
1126
1127static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1128{
1129	ring->cmd_base = ring->pdma->csr_ring_cmd +
1130				XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1131							  XGENE_DMA_RING_NUM));
1132
1133	ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1134}
1135
1136static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1137				   enum xgene_dma_ring_cfgsize cfgsize)
1138{
1139	int size;
1140
1141	switch (cfgsize) {
1142	case XGENE_DMA_RING_CFG_SIZE_512B:
1143		size = 0x200;
1144		break;
1145	case XGENE_DMA_RING_CFG_SIZE_2KB:
1146		size = 0x800;
1147		break;
1148	case XGENE_DMA_RING_CFG_SIZE_16KB:
1149		size = 0x4000;
1150		break;
1151	case XGENE_DMA_RING_CFG_SIZE_64KB:
1152		size = 0x10000;
1153		break;
1154	case XGENE_DMA_RING_CFG_SIZE_512KB:
1155		size = 0x80000;
1156		break;
1157	default:
1158		chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1159		return -EINVAL;
1160	}
1161
1162	return size;
1163}
1164
1165static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1166{
1167	/* Clear DMA ring configurations */
1168	xgene_dma_clear_ring(ring);
1169
1170	/* De-allocate DMA ring descriptor */
1171	if (ring->desc_vaddr) {
1172		dma_free_coherent(ring->pdma->dev, ring->size,
1173				  ring->desc_vaddr, ring->desc_paddr);
1174		ring->desc_vaddr = NULL;
1175	}
1176}
1177
1178static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1179{
1180	xgene_dma_delete_ring_one(&chan->rx_ring);
1181	xgene_dma_delete_ring_one(&chan->tx_ring);
1182}
1183
1184static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1185				     struct xgene_dma_ring *ring,
1186				     enum xgene_dma_ring_cfgsize cfgsize)
1187{
1188	int ret;
1189
1190	/* Setup DMA ring descriptor variables */
1191	ring->pdma = chan->pdma;
1192	ring->cfgsize = cfgsize;
1193	ring->num = chan->pdma->ring_num++;
1194	ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1195
1196	ret = xgene_dma_get_ring_size(chan, cfgsize);
1197	if (ret <= 0)
1198		return ret;
1199	ring->size = ret;
1200
1201	/* Allocate memory for DMA ring descriptor */
1202	ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
1203					      &ring->desc_paddr, GFP_KERNEL);
1204	if (!ring->desc_vaddr) {
1205		chan_err(chan, "Failed to allocate ring desc\n");
1206		return -ENOMEM;
1207	}
1208
1209	/* Configure and enable DMA ring */
1210	xgene_dma_set_ring_cmd(ring);
1211	xgene_dma_setup_ring(ring);
1212
1213	return 0;
1214}
1215
1216static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1217{
1218	struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1219	struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1220	int ret;
1221
1222	/* Create DMA Rx ring descriptor */
1223	rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1224	rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1225
1226	ret = xgene_dma_create_ring_one(chan, rx_ring,
1227					XGENE_DMA_RING_CFG_SIZE_64KB);
1228	if (ret)
1229		return ret;
1230
1231	chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1232		 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1233
1234	/* Create DMA Tx ring descriptor */
1235	tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1236	tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1237
1238	ret = xgene_dma_create_ring_one(chan, tx_ring,
1239					XGENE_DMA_RING_CFG_SIZE_64KB);
1240	if (ret) {
1241		xgene_dma_delete_ring_one(rx_ring);
1242		return ret;
1243	}
1244
1245	tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1246
1247	chan_dbg(chan,
1248		 "Tx ring id 0x%X num %d desc 0x%p\n",
1249		 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1250
1251	/* Set the max outstanding request possible to this channel */
1252	chan->max_outstanding = tx_ring->slots;
1253
1254	return ret;
1255}
1256
1257static int xgene_dma_init_rings(struct xgene_dma *pdma)
1258{
1259	int ret, i, j;
1260
1261	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1262		ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1263		if (ret) {
1264			for (j = 0; j < i; j++)
1265				xgene_dma_delete_chan_rings(&pdma->chan[j]);
1266			return ret;
1267		}
1268	}
1269
1270	return ret;
1271}
1272
1273static void xgene_dma_enable(struct xgene_dma *pdma)
1274{
1275	u32 val;
1276
1277	/* Configure and enable DMA engine */
1278	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1279	XGENE_DMA_CH_SETUP(val);
1280	XGENE_DMA_ENABLE(val);
1281	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1282}
1283
1284static void xgene_dma_disable(struct xgene_dma *pdma)
1285{
1286	u32 val;
1287
1288	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1289	XGENE_DMA_DISABLE(val);
1290	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1291}
1292
1293static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1294{
1295	/*
1296	 * Mask DMA ring overflow, underflow and
1297	 * AXI write/read error interrupts
1298	 */
1299	iowrite32(XGENE_DMA_INT_ALL_MASK,
1300		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1301	iowrite32(XGENE_DMA_INT_ALL_MASK,
1302		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1303	iowrite32(XGENE_DMA_INT_ALL_MASK,
1304		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1305	iowrite32(XGENE_DMA_INT_ALL_MASK,
1306		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1307	iowrite32(XGENE_DMA_INT_ALL_MASK,
1308		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1309
1310	/* Mask DMA error interrupts */
1311	iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1312}
1313
1314static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1315{
1316	/*
1317	 * Unmask DMA ring overflow, underflow and
1318	 * AXI write/read error interrupts
1319	 */
1320	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1321		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1322	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1323		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1324	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1325		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1326	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1327		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1328	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1329		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1330
1331	/* Unmask DMA error interrupts */
1332	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1333		  pdma->csr_dma + XGENE_DMA_INT_MASK);
1334}
1335
1336static void xgene_dma_init_hw(struct xgene_dma *pdma)
1337{
1338	u32 val;
1339
1340	/* Associate DMA ring to corresponding ring HW */
1341	iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1342		  pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1343
1344	/* Configure RAID6 polynomial control setting */
1345	if (is_pq_enabled(pdma))
1346		iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1347			  pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1348	else
1349		dev_info(pdma->dev, "PQ is disabled in HW\n");
1350
1351	xgene_dma_enable(pdma);
1352	xgene_dma_unmask_interrupts(pdma);
1353
1354	/* Get DMA id and version info */
1355	val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1356
1357	/* DMA device info */
1358	dev_info(pdma->dev,
1359		 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1360		 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1361		 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1362}
1363
1364static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1365{
1366	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1367	    (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1368		return 0;
1369
1370	iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1371	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1372
1373	/* Bring up memory */
1374	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1375
1376	/* Force a barrier */
1377	ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1378
1379	/* reset may take up to 1ms */
1380	usleep_range(1000, 1100);
1381
1382	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1383		!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1384		dev_err(pdma->dev,
1385			"Failed to release ring mngr memory from shutdown\n");
1386		return -ENODEV;
1387	}
1388
1389	/* program threshold set 1 and all hysteresis */
1390	iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1391		  pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1392	iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1393		  pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1394	iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1395		  pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1396
1397	/* Enable QPcore and assign error queue */
1398	iowrite32(XGENE_DMA_RING_ENABLE,
1399		  pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1400
1401	return 0;
1402}
1403
1404static int xgene_dma_init_mem(struct xgene_dma *pdma)
1405{
1406	int ret;
1407
1408	ret = xgene_dma_init_ring_mngr(pdma);
1409	if (ret)
1410		return ret;
1411
1412	/* Bring up memory */
1413	iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1414
1415	/* Force a barrier */
1416	ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1417
1418	/* reset may take up to 1ms */
1419	usleep_range(1000, 1100);
1420
1421	if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1422		!= XGENE_DMA_BLK_MEM_RDY_VAL) {
1423		dev_err(pdma->dev,
1424			"Failed to release DMA memory from shutdown\n");
1425		return -ENODEV;
1426	}
1427
1428	return 0;
1429}
1430
1431static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1432{
1433	struct xgene_dma_chan *chan;
1434	int ret, i, j;
1435
1436	/* Register DMA error irq */
1437	ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1438			       0, "dma_error", pdma);
1439	if (ret) {
1440		dev_err(pdma->dev,
1441			"Failed to register error IRQ %d\n", pdma->err_irq);
1442		return ret;
1443	}
1444
1445	/* Register DMA channel rx irq */
1446	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1447		chan = &pdma->chan[i];
1448		irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1449		ret = devm_request_irq(chan->dev, chan->rx_irq,
1450				       xgene_dma_chan_ring_isr,
1451				       0, chan->name, chan);
1452		if (ret) {
1453			chan_err(chan, "Failed to register Rx IRQ %d\n",
1454				 chan->rx_irq);
1455			devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1456
1457			for (j = 0; j < i; j++) {
1458				chan = &pdma->chan[i];
1459				irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1460				devm_free_irq(chan->dev, chan->rx_irq, chan);
1461			}
1462
1463			return ret;
1464		}
1465	}
1466
1467	return 0;
1468}
1469
1470static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1471{
1472	struct xgene_dma_chan *chan;
1473	int i;
1474
1475	/* Free DMA device error irq */
1476	devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1477
1478	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1479		chan = &pdma->chan[i];
1480		irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1481		devm_free_irq(chan->dev, chan->rx_irq, chan);
1482	}
1483}
1484
1485static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1486			       struct dma_device *dma_dev)
1487{
1488	/* Initialize DMA device capability mask */
1489	dma_cap_zero(dma_dev->cap_mask);
1490
1491	/* Set DMA device capability */
1492
1493	/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1494	 * and channel 1 supports XOR, PQ both. First thing here is we have
1495	 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1496	 * we can make sure this by reading SoC Efuse register.
1497	 * Second thing, we have hw errata that if we run channel 0 and
1498	 * channel 1 simultaneously with executing XOR and PQ request,
1499	 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1500	 * if XOR and PQ supports on channel 1 is disabled.
1501	 */
1502	if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1503	    is_pq_enabled(chan->pdma)) {
1504		dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1505		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1506	} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1507		   !is_pq_enabled(chan->pdma)) {
1508		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1509	}
1510
1511	/* Set base and prep routines */
1512	dma_dev->dev = chan->dev;
1513	dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1514	dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1515	dma_dev->device_issue_pending = xgene_dma_issue_pending;
1516	dma_dev->device_tx_status = xgene_dma_tx_status;
1517
1518	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1519		dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1520		dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1521		dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1522	}
1523
1524	if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1525		dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1526		dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1527		dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1528	}
1529}
1530
1531static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1532{
1533	struct xgene_dma_chan *chan = &pdma->chan[id];
1534	struct dma_device *dma_dev = &pdma->dma_dev[id];
1535	int ret;
1536
1537	chan->dma_chan.device = dma_dev;
1538
1539	spin_lock_init(&chan->lock);
1540	INIT_LIST_HEAD(&chan->ld_pending);
1541	INIT_LIST_HEAD(&chan->ld_running);
1542	INIT_LIST_HEAD(&chan->ld_completed);
1543	tasklet_setup(&chan->tasklet, xgene_dma_tasklet_cb);
 
1544
1545	chan->pending = 0;
1546	chan->desc_pool = NULL;
1547	dma_cookie_init(&chan->dma_chan);
1548
1549	/* Setup dma device capabilities and prep routines */
1550	xgene_dma_set_caps(chan, dma_dev);
1551
1552	/* Initialize DMA device list head */
1553	INIT_LIST_HEAD(&dma_dev->channels);
1554	list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1555
1556	/* Register with Linux async DMA framework*/
1557	ret = dma_async_device_register(dma_dev);
1558	if (ret) {
1559		chan_err(chan, "Failed to register async device %d", ret);
1560		tasklet_kill(&chan->tasklet);
1561
1562		return ret;
1563	}
1564
1565	/* DMA capability info */
1566	dev_info(pdma->dev,
1567		 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1568		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1569		 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1570
1571	return 0;
1572}
1573
1574static int xgene_dma_init_async(struct xgene_dma *pdma)
1575{
1576	int ret, i, j;
1577
1578	for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1579		ret = xgene_dma_async_register(pdma, i);
1580		if (ret) {
1581			for (j = 0; j < i; j++) {
1582				dma_async_device_unregister(&pdma->dma_dev[j]);
1583				tasklet_kill(&pdma->chan[j].tasklet);
1584			}
1585
1586			return ret;
1587		}
1588	}
1589
1590	return ret;
1591}
1592
1593static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1594{
1595	int i;
1596
1597	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1598		dma_async_device_unregister(&pdma->dma_dev[i]);
1599}
1600
1601static void xgene_dma_init_channels(struct xgene_dma *pdma)
1602{
1603	struct xgene_dma_chan *chan;
1604	int i;
1605
1606	pdma->ring_num = XGENE_DMA_RING_NUM;
1607
1608	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1609		chan = &pdma->chan[i];
1610		chan->dev = pdma->dev;
1611		chan->pdma = pdma;
1612		chan->id = i;
1613		snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1614	}
1615}
1616
1617static int xgene_dma_get_resources(struct platform_device *pdev,
1618				   struct xgene_dma *pdma)
1619{
1620	struct resource *res;
1621	int irq, i;
1622
1623	/* Get DMA csr region */
1624	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1625	if (!res) {
1626		dev_err(&pdev->dev, "Failed to get csr region\n");
1627		return -ENXIO;
1628	}
1629
1630	pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1631				     resource_size(res));
1632	if (!pdma->csr_dma) {
1633		dev_err(&pdev->dev, "Failed to ioremap csr region");
1634		return -ENOMEM;
1635	}
1636
1637	/* Get DMA ring csr region */
1638	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1639	if (!res) {
1640		dev_err(&pdev->dev, "Failed to get ring csr region\n");
1641		return -ENXIO;
1642	}
1643
1644	pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1645				       resource_size(res));
1646	if (!pdma->csr_ring) {
1647		dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1648		return -ENOMEM;
1649	}
1650
1651	/* Get DMA ring cmd csr region */
1652	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1653	if (!res) {
1654		dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1655		return -ENXIO;
1656	}
1657
1658	pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1659					  resource_size(res));
1660	if (!pdma->csr_ring_cmd) {
1661		dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1662		return -ENOMEM;
1663	}
1664
1665	pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1666
1667	/* Get efuse csr region */
1668	res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1669	if (!res) {
1670		dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1671		return -ENXIO;
1672	}
1673
1674	pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1675				       resource_size(res));
1676	if (!pdma->csr_efuse) {
1677		dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1678		return -ENOMEM;
1679	}
1680
1681	/* Get DMA error interrupt */
1682	irq = platform_get_irq(pdev, 0);
1683	if (irq <= 0)
 
1684		return -ENXIO;
 
1685
1686	pdma->err_irq = irq;
1687
1688	/* Get DMA Rx ring descriptor interrupts for all DMA channels */
1689	for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1690		irq = platform_get_irq(pdev, i);
1691		if (irq <= 0)
 
1692			return -ENXIO;
 
1693
1694		pdma->chan[i - 1].rx_irq = irq;
1695	}
1696
1697	return 0;
1698}
1699
1700static int xgene_dma_probe(struct platform_device *pdev)
1701{
1702	struct xgene_dma *pdma;
1703	int ret, i;
1704
1705	pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1706	if (!pdma)
1707		return -ENOMEM;
1708
1709	pdma->dev = &pdev->dev;
1710	platform_set_drvdata(pdev, pdma);
1711
1712	ret = xgene_dma_get_resources(pdev, pdma);
1713	if (ret)
1714		return ret;
1715
1716	pdma->clk = devm_clk_get(&pdev->dev, NULL);
1717	if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1718		dev_err(&pdev->dev, "Failed to get clk\n");
1719		return PTR_ERR(pdma->clk);
1720	}
1721
1722	/* Enable clk before accessing registers */
1723	if (!IS_ERR(pdma->clk)) {
1724		ret = clk_prepare_enable(pdma->clk);
1725		if (ret) {
1726			dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1727			return ret;
1728		}
1729	}
1730
1731	/* Remove DMA RAM out of shutdown */
1732	ret = xgene_dma_init_mem(pdma);
1733	if (ret)
1734		goto err_clk_enable;
1735
1736	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1737	if (ret) {
1738		dev_err(&pdev->dev, "No usable DMA configuration\n");
1739		goto err_dma_mask;
1740	}
1741
1742	/* Initialize DMA channels software state */
1743	xgene_dma_init_channels(pdma);
1744
1745	/* Configue DMA rings */
1746	ret = xgene_dma_init_rings(pdma);
1747	if (ret)
1748		goto err_clk_enable;
1749
1750	ret = xgene_dma_request_irqs(pdma);
1751	if (ret)
1752		goto err_request_irq;
1753
1754	/* Configure and enable DMA engine */
1755	xgene_dma_init_hw(pdma);
1756
1757	/* Register DMA device with linux async framework */
1758	ret = xgene_dma_init_async(pdma);
1759	if (ret)
1760		goto err_async_init;
1761
1762	return 0;
1763
1764err_async_init:
1765	xgene_dma_free_irqs(pdma);
1766
1767err_request_irq:
1768	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1769		xgene_dma_delete_chan_rings(&pdma->chan[i]);
1770
1771err_dma_mask:
1772err_clk_enable:
1773	if (!IS_ERR(pdma->clk))
1774		clk_disable_unprepare(pdma->clk);
1775
1776	return ret;
1777}
1778
1779static void xgene_dma_remove(struct platform_device *pdev)
1780{
1781	struct xgene_dma *pdma = platform_get_drvdata(pdev);
1782	struct xgene_dma_chan *chan;
1783	int i;
1784
1785	xgene_dma_async_unregister(pdma);
1786
1787	/* Mask interrupts and disable DMA engine */
1788	xgene_dma_mask_interrupts(pdma);
1789	xgene_dma_disable(pdma);
1790	xgene_dma_free_irqs(pdma);
1791
1792	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1793		chan = &pdma->chan[i];
1794		tasklet_kill(&chan->tasklet);
1795		xgene_dma_delete_chan_rings(chan);
1796	}
1797
1798	if (!IS_ERR(pdma->clk))
1799		clk_disable_unprepare(pdma->clk);
 
 
1800}
1801
1802#ifdef CONFIG_ACPI
1803static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1804	{"APMC0D43", 0},
1805	{},
1806};
1807MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1808#endif
1809
1810static const struct of_device_id xgene_dma_of_match_ptr[] = {
1811	{.compatible = "apm,xgene-storm-dma",},
1812	{},
1813};
1814MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1815
1816static struct platform_driver xgene_dma_driver = {
1817	.probe = xgene_dma_probe,
1818	.remove_new = xgene_dma_remove,
1819	.driver = {
1820		.name = "X-Gene-DMA",
1821		.of_match_table = xgene_dma_of_match_ptr,
1822		.acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1823	},
1824};
1825
1826module_platform_driver(xgene_dma_driver);
1827
1828MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1829MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1830MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1831MODULE_LICENSE("GPL");
1832MODULE_VERSION("1.0");
v4.17
 
   1/*
   2 * Applied Micro X-Gene SoC DMA engine Driver
   3 *
   4 * Copyright (c) 2015, Applied Micro Circuits Corporation
   5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
   6 *	    Loc Ho <lho@apm.com>
   7 *
   8 * This program is free software; you can redistribute  it and/or modify it
   9 * under  the terms of  the GNU General  Public License as published by the
  10 * Free Software Foundation;  either version 2 of the  License, or (at your
  11 * option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  20 *
  21 * NOTE: PM support is currently not available.
  22 */
  23
  24#include <linux/acpi.h>
  25#include <linux/clk.h>
  26#include <linux/delay.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/dmaengine.h>
  29#include <linux/dmapool.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/irq.h>
 
  33#include <linux/module.h>
  34#include <linux/of_device.h>
  35
  36#include "dmaengine.h"
  37
  38/* X-Gene DMA ring csr registers and bit definations */
  39#define XGENE_DMA_RING_CONFIG			0x04
  40#define XGENE_DMA_RING_ENABLE			BIT(31)
  41#define XGENE_DMA_RING_ID			0x08
  42#define XGENE_DMA_RING_ID_SETUP(v)		((v) | BIT(31))
  43#define XGENE_DMA_RING_ID_BUF			0x0C
  44#define XGENE_DMA_RING_ID_BUF_SETUP(v)		(((v) << 9) | BIT(21))
  45#define XGENE_DMA_RING_THRESLD0_SET1		0x30
  46#define XGENE_DMA_RING_THRESLD0_SET1_VAL	0X64
  47#define XGENE_DMA_RING_THRESLD1_SET1		0x34
  48#define XGENE_DMA_RING_THRESLD1_SET1_VAL	0xC8
  49#define XGENE_DMA_RING_HYSTERESIS		0x68
  50#define XGENE_DMA_RING_HYSTERESIS_VAL		0xFFFFFFFF
  51#define XGENE_DMA_RING_STATE			0x6C
  52#define XGENE_DMA_RING_STATE_WR_BASE		0x70
  53#define XGENE_DMA_RING_NE_INT_MODE		0x017C
  54#define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)	\
  55	((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
  56#define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)	\
  57	((m) &= (~BIT(31 - (v))))
  58#define XGENE_DMA_RING_CLKEN			0xC208
  59#define XGENE_DMA_RING_SRST			0xC200
  60#define XGENE_DMA_RING_MEM_RAM_SHUTDOWN		0xD070
  61#define XGENE_DMA_RING_BLK_MEM_RDY		0xD074
  62#define XGENE_DMA_RING_BLK_MEM_RDY_VAL		0xFFFFFFFF
  63#define XGENE_DMA_RING_ID_GET(owner, num)	(((owner) << 6) | (num))
  64#define XGENE_DMA_RING_DST_ID(v)		((1 << 10) | (v))
  65#define XGENE_DMA_RING_CMD_OFFSET		0x2C
  66#define XGENE_DMA_RING_CMD_BASE_OFFSET(v)	((v) << 6)
  67#define XGENE_DMA_RING_COHERENT_SET(m)		\
  68	(((u32 *)(m))[2] |= BIT(4))
  69#define XGENE_DMA_RING_ADDRL_SET(m, v)		\
  70	(((u32 *)(m))[2] |= (((v) >> 8) << 5))
  71#define XGENE_DMA_RING_ADDRH_SET(m, v)		\
  72	(((u32 *)(m))[3] |= ((v) >> 35))
  73#define XGENE_DMA_RING_ACCEPTLERR_SET(m)	\
  74	(((u32 *)(m))[3] |= BIT(19))
  75#define XGENE_DMA_RING_SIZE_SET(m, v)		\
  76	(((u32 *)(m))[3] |= ((v) << 23))
  77#define XGENE_DMA_RING_RECOMBBUF_SET(m)		\
  78	(((u32 *)(m))[3] |= BIT(27))
  79#define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)	\
  80	(((u32 *)(m))[3] |= (0x7 << 28))
  81#define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)	\
  82	(((u32 *)(m))[4] |= 0x3)
  83#define XGENE_DMA_RING_SELTHRSH_SET(m)		\
  84	(((u32 *)(m))[4] |= BIT(3))
  85#define XGENE_DMA_RING_TYPE_SET(m, v)		\
  86	(((u32 *)(m))[4] |= ((v) << 19))
  87
  88/* X-Gene DMA device csr registers and bit definitions */
  89#define XGENE_DMA_IPBRR				0x0
  90#define XGENE_DMA_DEV_ID_RD(v)			((v) & 0x00000FFF)
  91#define XGENE_DMA_BUS_ID_RD(v)			(((v) >> 12) & 3)
  92#define XGENE_DMA_REV_NO_RD(v)			(((v) >> 14) & 3)
  93#define XGENE_DMA_GCR				0x10
  94#define XGENE_DMA_CH_SETUP(v)			\
  95	((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
  96#define XGENE_DMA_ENABLE(v)			((v) |= BIT(31))
  97#define XGENE_DMA_DISABLE(v)			((v) &= ~BIT(31))
  98#define XGENE_DMA_RAID6_CONT			0x14
  99#define XGENE_DMA_RAID6_MULTI_CTRL(v)		((v) << 24)
 100#define XGENE_DMA_INT				0x70
 101#define XGENE_DMA_INT_MASK			0x74
 102#define XGENE_DMA_INT_ALL_MASK			0xFFFFFFFF
 103#define XGENE_DMA_INT_ALL_UNMASK		0x0
 104#define XGENE_DMA_INT_MASK_SHIFT		0x14
 105#define XGENE_DMA_RING_INT0_MASK		0x90A0
 106#define XGENE_DMA_RING_INT1_MASK		0x90A8
 107#define XGENE_DMA_RING_INT2_MASK		0x90B0
 108#define XGENE_DMA_RING_INT3_MASK		0x90B8
 109#define XGENE_DMA_RING_INT4_MASK		0x90C0
 110#define XGENE_DMA_CFG_RING_WQ_ASSOC		0x90E0
 111#define XGENE_DMA_ASSOC_RING_MNGR1		0xFFFFFFFF
 112#define XGENE_DMA_MEM_RAM_SHUTDOWN		0xD070
 113#define XGENE_DMA_BLK_MEM_RDY			0xD074
 114#define XGENE_DMA_BLK_MEM_RDY_VAL		0xFFFFFFFF
 115#define XGENE_DMA_RING_CMD_SM_OFFSET		0x8000
 116
 117/* X-Gene SoC EFUSE csr register and bit defination */
 118#define XGENE_SOC_JTAG1_SHADOW			0x18
 119#define XGENE_DMA_PQ_DISABLE_MASK		BIT(13)
 120
 121/* X-Gene DMA Descriptor format */
 122#define XGENE_DMA_DESC_NV_BIT			BIT_ULL(50)
 123#define XGENE_DMA_DESC_IN_BIT			BIT_ULL(55)
 124#define XGENE_DMA_DESC_C_BIT			BIT_ULL(63)
 125#define XGENE_DMA_DESC_DR_BIT			BIT_ULL(61)
 126#define XGENE_DMA_DESC_ELERR_POS		46
 127#define XGENE_DMA_DESC_RTYPE_POS		56
 128#define XGENE_DMA_DESC_LERR_POS			60
 129#define XGENE_DMA_DESC_BUFLEN_POS		48
 130#define XGENE_DMA_DESC_HOENQ_NUM_POS		48
 131#define XGENE_DMA_DESC_ELERR_RD(m)		\
 132	(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
 133#define XGENE_DMA_DESC_LERR_RD(m)		\
 134	(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
 135#define XGENE_DMA_DESC_STATUS(elerr, lerr)	\
 136	(((elerr) << 4) | (lerr))
 137
 138/* X-Gene DMA descriptor empty s/w signature */
 139#define XGENE_DMA_DESC_EMPTY_SIGNATURE		~0ULL
 140
 141/* X-Gene DMA configurable parameters defines */
 142#define XGENE_DMA_RING_NUM		512
 143#define XGENE_DMA_BUFNUM		0x0
 144#define XGENE_DMA_CPU_BUFNUM		0x18
 145#define XGENE_DMA_RING_OWNER_DMA	0x03
 146#define XGENE_DMA_RING_OWNER_CPU	0x0F
 147#define XGENE_DMA_RING_TYPE_REGULAR	0x01
 148#define XGENE_DMA_RING_WQ_DESC_SIZE	32	/* 32 Bytes */
 149#define XGENE_DMA_RING_NUM_CONFIG	5
 150#define XGENE_DMA_MAX_CHANNEL		4
 151#define XGENE_DMA_XOR_CHANNEL		0
 152#define XGENE_DMA_PQ_CHANNEL		1
 153#define XGENE_DMA_MAX_BYTE_CNT		0x4000	/* 16 KB */
 154#define XGENE_DMA_MAX_64B_DESC_BYTE_CNT	0x14000	/* 80 KB */
 155#define XGENE_DMA_MAX_XOR_SRC		5
 156#define XGENE_DMA_16K_BUFFER_LEN_CODE	0x0
 157#define XGENE_DMA_INVALID_LEN_CODE	0x7800000000000000ULL
 158
 159/* X-Gene DMA descriptor error codes */
 160#define ERR_DESC_AXI			0x01
 161#define ERR_BAD_DESC			0x02
 162#define ERR_READ_DATA_AXI		0x03
 163#define ERR_WRITE_DATA_AXI		0x04
 164#define ERR_FBP_TIMEOUT			0x05
 165#define ERR_ECC				0x06
 166#define ERR_DIFF_SIZE			0x08
 167#define ERR_SCT_GAT_LEN			0x09
 168#define ERR_CRC_ERR			0x11
 169#define ERR_CHKSUM			0x12
 170#define ERR_DIF				0x13
 171
 172/* X-Gene DMA error interrupt codes */
 173#define ERR_DIF_SIZE_INT		0x0
 174#define ERR_GS_ERR_INT			0x1
 175#define ERR_FPB_TIMEO_INT		0x2
 176#define ERR_WFIFO_OVF_INT		0x3
 177#define ERR_RFIFO_OVF_INT		0x4
 178#define ERR_WR_TIMEO_INT		0x5
 179#define ERR_RD_TIMEO_INT		0x6
 180#define ERR_WR_ERR_INT			0x7
 181#define ERR_RD_ERR_INT			0x8
 182#define ERR_BAD_DESC_INT		0x9
 183#define ERR_DESC_DST_INT		0xA
 184#define ERR_DESC_SRC_INT		0xB
 185
 186/* X-Gene DMA flyby operation code */
 187#define FLYBY_2SRC_XOR			0x80
 188#define FLYBY_3SRC_XOR			0x90
 189#define FLYBY_4SRC_XOR			0xA0
 190#define FLYBY_5SRC_XOR			0xB0
 191
 192/* X-Gene DMA SW descriptor flags */
 193#define XGENE_DMA_FLAG_64B_DESC		BIT(0)
 194
 195/* Define to dump X-Gene DMA descriptor */
 196#define XGENE_DMA_DESC_DUMP(desc, m)	\
 197	print_hex_dump(KERN_ERR, (m),	\
 198			DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
 199
 200#define to_dma_desc_sw(tx)		\
 201	container_of(tx, struct xgene_dma_desc_sw, tx)
 202#define to_dma_chan(dchan)		\
 203	container_of(dchan, struct xgene_dma_chan, dma_chan)
 204
 205#define chan_dbg(chan, fmt, arg...)	\
 206	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
 207#define chan_err(chan, fmt, arg...)	\
 208	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
 209
 210struct xgene_dma_desc_hw {
 211	__le64 m0;
 212	__le64 m1;
 213	__le64 m2;
 214	__le64 m3;
 215};
 216
 217enum xgene_dma_ring_cfgsize {
 218	XGENE_DMA_RING_CFG_SIZE_512B,
 219	XGENE_DMA_RING_CFG_SIZE_2KB,
 220	XGENE_DMA_RING_CFG_SIZE_16KB,
 221	XGENE_DMA_RING_CFG_SIZE_64KB,
 222	XGENE_DMA_RING_CFG_SIZE_512KB,
 223	XGENE_DMA_RING_CFG_SIZE_INVALID
 224};
 225
 226struct xgene_dma_ring {
 227	struct xgene_dma *pdma;
 228	u8 buf_num;
 229	u16 id;
 230	u16 num;
 231	u16 head;
 232	u16 owner;
 233	u16 slots;
 234	u16 dst_ring_num;
 235	u32 size;
 236	void __iomem *cmd;
 237	void __iomem *cmd_base;
 238	dma_addr_t desc_paddr;
 239	u32 state[XGENE_DMA_RING_NUM_CONFIG];
 240	enum xgene_dma_ring_cfgsize cfgsize;
 241	union {
 242		void *desc_vaddr;
 243		struct xgene_dma_desc_hw *desc_hw;
 244	};
 245};
 246
 247struct xgene_dma_desc_sw {
 248	struct xgene_dma_desc_hw desc1;
 249	struct xgene_dma_desc_hw desc2;
 250	u32 flags;
 251	struct list_head node;
 252	struct list_head tx_list;
 253	struct dma_async_tx_descriptor tx;
 254};
 255
 256/**
 257 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
 258 * @dma_chan: dmaengine channel object member
 259 * @pdma: X-Gene DMA device structure reference
 260 * @dev: struct device reference for dma mapping api
 261 * @id: raw id of this channel
 262 * @rx_irq: channel IRQ
 263 * @name: name of X-Gene DMA channel
 264 * @lock: serializes enqueue/dequeue operations to the descriptor pool
 265 * @pending: number of transaction request pushed to DMA controller for
 266 *	execution, but still waiting for completion,
 267 * @max_outstanding: max number of outstanding request we can push to channel
 268 * @ld_pending: descriptors which are queued to run, but have not yet been
 269 *	submitted to the hardware for execution
 270 * @ld_running: descriptors which are currently being executing by the hardware
 271 * @ld_completed: descriptors which have finished execution by the hardware.
 272 *	These descriptors have already had their cleanup actions run. They
 273 *	are waiting for the ACK bit to be set by the async tx API.
 274 * @desc_pool: descriptor pool for DMA operations
 275 * @tasklet: bottom half where all completed descriptors cleans
 276 * @tx_ring: transmit ring descriptor that we use to prepare actual
 277 *	descriptors for further executions
 278 * @rx_ring: receive ring descriptor that we use to get completed DMA
 279 *	descriptors during cleanup time
 280 */
 281struct xgene_dma_chan {
 282	struct dma_chan dma_chan;
 283	struct xgene_dma *pdma;
 284	struct device *dev;
 285	int id;
 286	int rx_irq;
 287	char name[10];
 288	spinlock_t lock;
 289	int pending;
 290	int max_outstanding;
 291	struct list_head ld_pending;
 292	struct list_head ld_running;
 293	struct list_head ld_completed;
 294	struct dma_pool *desc_pool;
 295	struct tasklet_struct tasklet;
 296	struct xgene_dma_ring tx_ring;
 297	struct xgene_dma_ring rx_ring;
 298};
 299
 300/**
 301 * struct xgene_dma - internal representation of an X-Gene DMA device
 
 
 302 * @err_irq: DMA error irq number
 303 * @ring_num: start id number for DMA ring
 304 * @csr_dma: base for DMA register access
 305 * @csr_ring: base for DMA ring register access
 306 * @csr_ring_cmd: base for DMA ring command register access
 307 * @csr_efuse: base for efuse register access
 308 * @dma_dev: embedded struct dma_device
 309 * @chan: reference to X-Gene DMA channels
 310 */
 311struct xgene_dma {
 312	struct device *dev;
 313	struct clk *clk;
 314	int err_irq;
 315	int ring_num;
 316	void __iomem *csr_dma;
 317	void __iomem *csr_ring;
 318	void __iomem *csr_ring_cmd;
 319	void __iomem *csr_efuse;
 320	struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
 321	struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
 322};
 323
 324static const char * const xgene_dma_desc_err[] = {
 325	[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
 326	[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
 327	[ERR_READ_DATA_AXI] = "AXI error when reading data",
 328	[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
 329	[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
 330	[ERR_ECC] = "ECC double bit error",
 331	[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
 332	[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
 333	[ERR_CRC_ERR] = "CRC error",
 334	[ERR_CHKSUM] = "Checksum error",
 335	[ERR_DIF] = "DIF error",
 336};
 337
 338static const char * const xgene_dma_err[] = {
 339	[ERR_DIF_SIZE_INT] = "DIF size error",
 340	[ERR_GS_ERR_INT] = "Gather scatter not same size error",
 341	[ERR_FPB_TIMEO_INT] = "Free pool time out error",
 342	[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
 343	[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
 344	[ERR_WR_TIMEO_INT] = "Write time out error",
 345	[ERR_RD_TIMEO_INT] = "Read time out error",
 346	[ERR_WR_ERR_INT] = "HBF bus write error",
 347	[ERR_RD_ERR_INT] = "HBF bus read error",
 348	[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
 349	[ERR_DESC_DST_INT] = "HFB reading dst link address error",
 350	[ERR_DESC_SRC_INT] = "HFB reading src link address error",
 351};
 352
 353static bool is_pq_enabled(struct xgene_dma *pdma)
 354{
 355	u32 val;
 356
 357	val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
 358	return !(val & XGENE_DMA_PQ_DISABLE_MASK);
 359}
 360
 361static u64 xgene_dma_encode_len(size_t len)
 362{
 363	return (len < XGENE_DMA_MAX_BYTE_CNT) ?
 364		((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
 365		XGENE_DMA_16K_BUFFER_LEN_CODE;
 366}
 367
 368static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
 369{
 370	static u8 flyby_type[] = {
 371		FLYBY_2SRC_XOR, /* Dummy */
 372		FLYBY_2SRC_XOR, /* Dummy */
 373		FLYBY_2SRC_XOR,
 374		FLYBY_3SRC_XOR,
 375		FLYBY_4SRC_XOR,
 376		FLYBY_5SRC_XOR
 377	};
 378
 379	return flyby_type[src_cnt];
 380}
 381
 382static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
 383				     dma_addr_t *paddr)
 384{
 385	size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
 386			*len : XGENE_DMA_MAX_BYTE_CNT;
 387
 388	*ext8 |= cpu_to_le64(*paddr);
 389	*ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
 390	*len -= nbytes;
 391	*paddr += nbytes;
 392}
 393
 394static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
 395{
 396	switch (idx) {
 397	case 0:
 398		return &desc->m1;
 399	case 1:
 400		return &desc->m0;
 401	case 2:
 402		return &desc->m3;
 403	case 3:
 404		return &desc->m2;
 405	default:
 406		pr_err("Invalid dma descriptor index\n");
 407	}
 408
 409	return NULL;
 410}
 411
 412static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
 413				u16 dst_ring_num)
 414{
 415	desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
 416	desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
 417				XGENE_DMA_DESC_RTYPE_POS);
 418	desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
 419	desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
 420				XGENE_DMA_DESC_HOENQ_NUM_POS);
 421}
 422
 423static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
 424				    struct xgene_dma_desc_sw *desc_sw,
 425				    dma_addr_t *dst, dma_addr_t *src,
 426				    u32 src_cnt, size_t *nbytes,
 427				    const u8 *scf)
 428{
 429	struct xgene_dma_desc_hw *desc1, *desc2;
 430	size_t len = *nbytes;
 431	int i;
 432
 433	desc1 = &desc_sw->desc1;
 434	desc2 = &desc_sw->desc2;
 435
 436	/* Initialize DMA descriptor */
 437	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
 438
 439	/* Set destination address */
 440	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
 441	desc1->m3 |= cpu_to_le64(*dst);
 442
 443	/* We have multiple source addresses, so need to set NV bit*/
 444	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
 445
 446	/* Set flyby opcode */
 447	desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
 448
 449	/* Set 1st to 5th source addresses */
 450	for (i = 0; i < src_cnt; i++) {
 451		len = *nbytes;
 452		xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
 453					 xgene_dma_lookup_ext8(desc2, i - 1),
 454					 &len, &src[i]);
 455		desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
 456	}
 457
 458	/* Update meta data */
 459	*nbytes = len;
 460	*dst += XGENE_DMA_MAX_BYTE_CNT;
 461
 462	/* We need always 64B descriptor to perform xor or pq operations */
 463	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
 464}
 465
 466static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 467{
 468	struct xgene_dma_desc_sw *desc;
 469	struct xgene_dma_chan *chan;
 470	dma_cookie_t cookie;
 471
 472	if (unlikely(!tx))
 473		return -EINVAL;
 474
 475	chan = to_dma_chan(tx->chan);
 476	desc = to_dma_desc_sw(tx);
 477
 478	spin_lock_bh(&chan->lock);
 479
 480	cookie = dma_cookie_assign(tx);
 481
 482	/* Add this transaction list onto the tail of the pending queue */
 483	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 484
 485	spin_unlock_bh(&chan->lock);
 486
 487	return cookie;
 488}
 489
 490static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
 491				       struct xgene_dma_desc_sw *desc)
 492{
 493	list_del(&desc->node);
 494	chan_dbg(chan, "LD %p free\n", desc);
 495	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
 496}
 497
 498static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
 499				 struct xgene_dma_chan *chan)
 500{
 501	struct xgene_dma_desc_sw *desc;
 502	dma_addr_t phys;
 503
 504	desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
 505	if (!desc) {
 506		chan_err(chan, "Failed to allocate LDs\n");
 507		return NULL;
 508	}
 509
 510	INIT_LIST_HEAD(&desc->tx_list);
 511	desc->tx.phys = phys;
 512	desc->tx.tx_submit = xgene_dma_tx_submit;
 513	dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
 514
 515	chan_dbg(chan, "LD %p allocated\n", desc);
 516
 517	return desc;
 518}
 519
 520/**
 521 * xgene_dma_clean_completed_descriptor - free all descriptors which
 522 * has been completed and acked
 523 * @chan: X-Gene DMA channel
 524 *
 525 * This function is used on all completed and acked descriptors.
 526 */
 527static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
 528{
 529	struct xgene_dma_desc_sw *desc, *_desc;
 530
 531	/* Run the callback for each descriptor, in order */
 532	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
 533		if (async_tx_test_ack(&desc->tx))
 534			xgene_dma_clean_descriptor(chan, desc);
 535	}
 536}
 537
 538/**
 539 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
 540 * @chan: X-Gene DMA channel
 541 * @desc: descriptor to cleanup and free
 542 *
 543 * This function is used on a descriptor which has been executed by the DMA
 544 * controller. It will run any callbacks, submit any dependencies.
 545 */
 546static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
 547					      struct xgene_dma_desc_sw *desc)
 548{
 549	struct dma_async_tx_descriptor *tx = &desc->tx;
 550
 551	/*
 552	 * If this is not the last transaction in the group,
 553	 * then no need to complete cookie and run any callback as
 554	 * this is not the tx_descriptor which had been sent to caller
 555	 * of this DMA request
 556	 */
 557
 558	if (tx->cookie == 0)
 559		return;
 560
 561	dma_cookie_complete(tx);
 562	dma_descriptor_unmap(tx);
 563
 564	/* Run the link descriptor callback function */
 565	dmaengine_desc_get_callback_invoke(tx, NULL);
 566
 567	/* Run any dependencies */
 568	dma_run_dependencies(tx);
 569}
 570
 571/**
 572 * xgene_dma_clean_running_descriptor - move the completed descriptor from
 573 * ld_running to ld_completed
 574 * @chan: X-Gene DMA channel
 575 * @desc: the descriptor which is completed
 576 *
 577 * Free the descriptor directly if acked by async_tx api,
 578 * else move it to queue ld_completed.
 579 */
 580static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
 581					       struct xgene_dma_desc_sw *desc)
 582{
 583	/* Remove from the list of running transactions */
 584	list_del(&desc->node);
 585
 586	/*
 587	 * the client is allowed to attach dependent operations
 588	 * until 'ack' is set
 589	 */
 590	if (!async_tx_test_ack(&desc->tx)) {
 591		/*
 592		 * Move this descriptor to the list of descriptors which is
 593		 * completed, but still awaiting the 'ack' bit to be set.
 594		 */
 595		list_add_tail(&desc->node, &chan->ld_completed);
 596		return;
 597	}
 598
 599	chan_dbg(chan, "LD %p free\n", desc);
 600	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
 601}
 602
 603static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
 604				    struct xgene_dma_desc_sw *desc_sw)
 605{
 606	struct xgene_dma_ring *ring = &chan->tx_ring;
 607	struct xgene_dma_desc_hw *desc_hw;
 608
 609	/* Get hw descriptor from DMA tx ring */
 610	desc_hw = &ring->desc_hw[ring->head];
 611
 612	/*
 613	 * Increment the head count to point next
 614	 * descriptor for next time
 615	 */
 616	if (++ring->head == ring->slots)
 617		ring->head = 0;
 618
 619	/* Copy prepared sw descriptor data to hw descriptor */
 620	memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
 621
 622	/*
 623	 * Check if we have prepared 64B descriptor,
 624	 * in this case we need one more hw descriptor
 625	 */
 626	if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
 627		desc_hw = &ring->desc_hw[ring->head];
 628
 629		if (++ring->head == ring->slots)
 630			ring->head = 0;
 631
 632		memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
 633	}
 634
 635	/* Increment the pending transaction count */
 636	chan->pending += ((desc_sw->flags &
 637			  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
 638
 639	/* Notify the hw that we have descriptor ready for execution */
 640	iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
 641		  2 : 1, ring->cmd);
 642}
 643
 644/**
 645 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
 646 * @chan : X-Gene DMA channel
 647 *
 648 * LOCKING: must hold chan->lock
 649 */
 650static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
 651{
 652	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
 653
 654	/*
 655	 * If the list of pending descriptors is empty, then we
 656	 * don't need to do any work at all
 657	 */
 658	if (list_empty(&chan->ld_pending)) {
 659		chan_dbg(chan, "No pending LDs\n");
 660		return;
 661	}
 662
 663	/*
 664	 * Move elements from the queue of pending transactions onto the list
 665	 * of running transactions and push it to hw for further executions
 666	 */
 667	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
 668		/*
 669		 * Check if have pushed max number of transactions to hw
 670		 * as capable, so let's stop here and will push remaining
 671		 * elements from pening ld queue after completing some
 672		 * descriptors that we have already pushed
 673		 */
 674		if (chan->pending >= chan->max_outstanding)
 675			return;
 676
 677		xgene_chan_xfer_request(chan, desc_sw);
 678
 679		/*
 680		 * Delete this element from ld pending queue and append it to
 681		 * ld running queue
 682		 */
 683		list_move_tail(&desc_sw->node, &chan->ld_running);
 684	}
 685}
 686
 687/**
 688 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
 689 * and move them to ld_completed to free until flag 'ack' is set
 690 * @chan: X-Gene DMA channel
 691 *
 692 * This function is used on descriptors which have been executed by the DMA
 693 * controller. It will run any callbacks, submit any dependencies, then
 694 * free these descriptors if flag 'ack' is set.
 695 */
 696static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
 697{
 698	struct xgene_dma_ring *ring = &chan->rx_ring;
 699	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
 700	struct xgene_dma_desc_hw *desc_hw;
 701	struct list_head ld_completed;
 702	u8 status;
 703
 704	INIT_LIST_HEAD(&ld_completed);
 705
 706	spin_lock_bh(&chan->lock);
 707
 708	/* Clean already completed and acked descriptors */
 709	xgene_dma_clean_completed_descriptor(chan);
 710
 711	/* Move all completed descriptors to ld completed queue, in order */
 712	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
 713		/* Get subsequent hw descriptor from DMA rx ring */
 714		desc_hw = &ring->desc_hw[ring->head];
 715
 716		/* Check if this descriptor has been completed */
 717		if (unlikely(le64_to_cpu(desc_hw->m0) ==
 718			     XGENE_DMA_DESC_EMPTY_SIGNATURE))
 719			break;
 720
 721		if (++ring->head == ring->slots)
 722			ring->head = 0;
 723
 724		/* Check if we have any error with DMA transactions */
 725		status = XGENE_DMA_DESC_STATUS(
 726				XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
 727							desc_hw->m0)),
 728				XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
 729						       desc_hw->m0)));
 730		if (status) {
 731			/* Print the DMA error type */
 732			chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
 733
 734			/*
 735			 * We have DMA transactions error here. Dump DMA Tx
 736			 * and Rx descriptors for this request */
 737			XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
 738					    "X-Gene DMA TX DESC1: ");
 739
 740			if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
 741				XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
 742						    "X-Gene DMA TX DESC2: ");
 743
 744			XGENE_DMA_DESC_DUMP(desc_hw,
 745					    "X-Gene DMA RX ERR DESC: ");
 746		}
 747
 748		/* Notify the hw about this completed descriptor */
 749		iowrite32(-1, ring->cmd);
 750
 751		/* Mark this hw descriptor as processed */
 752		desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
 753
 754		/*
 755		 * Decrement the pending transaction count
 756		 * as we have processed one
 757		 */
 758		chan->pending -= ((desc_sw->flags &
 759				  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
 760
 761		/*
 762		 * Delete this node from ld running queue and append it to
 763		 * ld completed queue for further processing
 764		 */
 765		list_move_tail(&desc_sw->node, &ld_completed);
 766	}
 767
 768	/*
 769	 * Start any pending transactions automatically
 770	 * In the ideal case, we keep the DMA controller busy while we go
 771	 * ahead and free the descriptors below.
 772	 */
 773	xgene_chan_xfer_ld_pending(chan);
 774
 775	spin_unlock_bh(&chan->lock);
 776
 777	/* Run the callback for each descriptor, in order */
 778	list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
 779		xgene_dma_run_tx_complete_actions(chan, desc_sw);
 780		xgene_dma_clean_running_descriptor(chan, desc_sw);
 781	}
 782}
 783
 784static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
 785{
 786	struct xgene_dma_chan *chan = to_dma_chan(dchan);
 787
 788	/* Has this channel already been allocated? */
 789	if (chan->desc_pool)
 790		return 1;
 791
 792	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 793					  sizeof(struct xgene_dma_desc_sw),
 794					  0, 0);
 795	if (!chan->desc_pool) {
 796		chan_err(chan, "Failed to allocate descriptor pool\n");
 797		return -ENOMEM;
 798	}
 799
 800	chan_dbg(chan, "Allocate descripto pool\n");
 801
 802	return 1;
 803}
 804
 805/**
 806 * xgene_dma_free_desc_list - Free all descriptors in a queue
 807 * @chan: X-Gene DMA channel
 808 * @list: the list to free
 809 *
 810 * LOCKING: must hold chan->lock
 811 */
 812static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
 813				     struct list_head *list)
 814{
 815	struct xgene_dma_desc_sw *desc, *_desc;
 816
 817	list_for_each_entry_safe(desc, _desc, list, node)
 818		xgene_dma_clean_descriptor(chan, desc);
 819}
 820
 821static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
 822{
 823	struct xgene_dma_chan *chan = to_dma_chan(dchan);
 824
 825	chan_dbg(chan, "Free all resources\n");
 826
 827	if (!chan->desc_pool)
 828		return;
 829
 830	/* Process all running descriptor */
 831	xgene_dma_cleanup_descriptors(chan);
 832
 833	spin_lock_bh(&chan->lock);
 834
 835	/* Clean all link descriptor queues */
 836	xgene_dma_free_desc_list(chan, &chan->ld_pending);
 837	xgene_dma_free_desc_list(chan, &chan->ld_running);
 838	xgene_dma_free_desc_list(chan, &chan->ld_completed);
 839
 840	spin_unlock_bh(&chan->lock);
 841
 842	/* Delete this channel DMA pool */
 843	dma_pool_destroy(chan->desc_pool);
 844	chan->desc_pool = NULL;
 845}
 846
 847static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
 848	struct dma_chan *dchan, dma_addr_t dst,	dma_addr_t *src,
 849	u32 src_cnt, size_t len, unsigned long flags)
 850{
 851	struct xgene_dma_desc_sw *first = NULL, *new;
 852	struct xgene_dma_chan *chan;
 853	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
 854				0x01, 0x01, 0x01, 0x01, 0x01};
 855
 856	if (unlikely(!dchan || !len))
 857		return NULL;
 858
 859	chan = to_dma_chan(dchan);
 860
 861	do {
 862		/* Allocate the link descriptor from DMA pool */
 863		new = xgene_dma_alloc_descriptor(chan);
 864		if (!new)
 865			goto fail;
 866
 867		/* Prepare xor DMA descriptor */
 868		xgene_dma_prep_xor_desc(chan, new, &dst, src,
 869					src_cnt, &len, multi);
 870
 871		if (!first)
 872			first = new;
 873
 874		new->tx.cookie = 0;
 875		async_tx_ack(&new->tx);
 876
 877		/* Insert the link descriptor to the LD ring */
 878		list_add_tail(&new->node, &first->tx_list);
 879	} while (len);
 880
 881	new->tx.flags = flags; /* client is in control of this ack */
 882	new->tx.cookie = -EBUSY;
 883	list_splice(&first->tx_list, &new->tx_list);
 884
 885	return &new->tx;
 886
 887fail:
 888	if (!first)
 889		return NULL;
 890
 891	xgene_dma_free_desc_list(chan, &first->tx_list);
 892	return NULL;
 893}
 894
 895static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
 896	struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
 897	u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
 898{
 899	struct xgene_dma_desc_sw *first = NULL, *new;
 900	struct xgene_dma_chan *chan;
 901	size_t _len = len;
 902	dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
 903	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
 904
 905	if (unlikely(!dchan || !len))
 906		return NULL;
 907
 908	chan = to_dma_chan(dchan);
 909
 910	/*
 911	 * Save source addresses on local variable, may be we have to
 912	 * prepare two descriptor to generate P and Q if both enabled
 913	 * in the flags by client
 914	 */
 915	memcpy(_src, src, sizeof(*src) * src_cnt);
 916
 917	if (flags & DMA_PREP_PQ_DISABLE_P)
 918		len = 0;
 919
 920	if (flags & DMA_PREP_PQ_DISABLE_Q)
 921		_len = 0;
 922
 923	do {
 924		/* Allocate the link descriptor from DMA pool */
 925		new = xgene_dma_alloc_descriptor(chan);
 926		if (!new)
 927			goto fail;
 928
 929		if (!first)
 930			first = new;
 931
 932		new->tx.cookie = 0;
 933		async_tx_ack(&new->tx);
 934
 935		/* Insert the link descriptor to the LD ring */
 936		list_add_tail(&new->node, &first->tx_list);
 937
 938		/*
 939		 * Prepare DMA descriptor to generate P,
 940		 * if DMA_PREP_PQ_DISABLE_P flag is not set
 941		 */
 942		if (len) {
 943			xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
 944						src_cnt, &len, multi);
 945			continue;
 946		}
 947
 948		/*
 949		 * Prepare DMA descriptor to generate Q,
 950		 * if DMA_PREP_PQ_DISABLE_Q flag is not set
 951		 */
 952		if (_len) {
 953			xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
 954						src_cnt, &_len, scf);
 955		}
 956	} while (len || _len);
 957
 958	new->tx.flags = flags; /* client is in control of this ack */
 959	new->tx.cookie = -EBUSY;
 960	list_splice(&first->tx_list, &new->tx_list);
 961
 962	return &new->tx;
 963
 964fail:
 965	if (!first)
 966		return NULL;
 967
 968	xgene_dma_free_desc_list(chan, &first->tx_list);
 969	return NULL;
 970}
 971
 972static void xgene_dma_issue_pending(struct dma_chan *dchan)
 973{
 974	struct xgene_dma_chan *chan = to_dma_chan(dchan);
 975
 976	spin_lock_bh(&chan->lock);
 977	xgene_chan_xfer_ld_pending(chan);
 978	spin_unlock_bh(&chan->lock);
 979}
 980
 981static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
 982					   dma_cookie_t cookie,
 983					   struct dma_tx_state *txstate)
 984{
 985	return dma_cookie_status(dchan, cookie, txstate);
 986}
 987
 988static void xgene_dma_tasklet_cb(unsigned long data)
 989{
 990	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
 991
 992	/* Run all cleanup for descriptors which have been completed */
 993	xgene_dma_cleanup_descriptors(chan);
 994
 995	/* Re-enable DMA channel IRQ */
 996	enable_irq(chan->rx_irq);
 997}
 998
 999static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1000{
1001	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1002
1003	BUG_ON(!chan);
1004
1005	/*
1006	 * Disable DMA channel IRQ until we process completed
1007	 * descriptors
1008	 */
1009	disable_irq_nosync(chan->rx_irq);
1010
1011	/*
1012	 * Schedule the tasklet to handle all cleanup of the current
1013	 * transaction. It will start a new transaction if there is
1014	 * one pending.
1015	 */
1016	tasklet_schedule(&chan->tasklet);
1017
1018	return IRQ_HANDLED;
1019}
1020
1021static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1022{
1023	struct xgene_dma *pdma = (struct xgene_dma *)id;
1024	unsigned long int_mask;
1025	u32 val, i;
1026
1027	val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1028
1029	/* Clear DMA interrupts */
1030	iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1031
1032	/* Print DMA error info */
1033	int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1034	for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1035		dev_err(pdma->dev,
1036			"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1037
1038	return IRQ_HANDLED;
1039}
1040
1041static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1042{
1043	int i;
1044
1045	iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1046
1047	for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1048		iowrite32(ring->state[i], ring->pdma->csr_ring +
1049			  XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1050}
1051
1052static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1053{
1054	memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1055	xgene_dma_wr_ring_state(ring);
1056}
1057
1058static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1059{
1060	void *ring_cfg = ring->state;
1061	u64 addr = ring->desc_paddr;
1062	u32 i, val;
1063
1064	ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1065
1066	/* Clear DMA ring state */
1067	xgene_dma_clr_ring_state(ring);
1068
1069	/* Set DMA ring type */
1070	XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1071
1072	if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1073		/* Set recombination buffer and timeout */
1074		XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1075		XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1076		XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1077	}
1078
1079	/* Initialize DMA ring state */
1080	XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1081	XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1082	XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1083	XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1084	XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1085	XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1086
1087	/* Write DMA ring configurations */
1088	xgene_dma_wr_ring_state(ring);
1089
1090	/* Set DMA ring id */
1091	iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1092		  ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1093
1094	/* Set DMA ring buffer */
1095	iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1096		  ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1097
1098	if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1099		return;
1100
1101	/* Set empty signature to DMA Rx ring descriptors */
1102	for (i = 0; i < ring->slots; i++) {
1103		struct xgene_dma_desc_hw *desc;
1104
1105		desc = &ring->desc_hw[i];
1106		desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1107	}
1108
1109	/* Enable DMA Rx ring interrupt */
1110	val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1111	XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1112	iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1113}
1114
1115static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1116{
1117	u32 ring_id, val;
1118
1119	if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1120		/* Disable DMA Rx ring interrupt */
1121		val = ioread32(ring->pdma->csr_ring +
1122			       XGENE_DMA_RING_NE_INT_MODE);
1123		XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1124		iowrite32(val, ring->pdma->csr_ring +
1125			  XGENE_DMA_RING_NE_INT_MODE);
1126	}
1127
1128	/* Clear DMA ring state */
1129	ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1130	iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1131
1132	iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1133	xgene_dma_clr_ring_state(ring);
1134}
1135
1136static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1137{
1138	ring->cmd_base = ring->pdma->csr_ring_cmd +
1139				XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1140							  XGENE_DMA_RING_NUM));
1141
1142	ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1143}
1144
1145static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1146				   enum xgene_dma_ring_cfgsize cfgsize)
1147{
1148	int size;
1149
1150	switch (cfgsize) {
1151	case XGENE_DMA_RING_CFG_SIZE_512B:
1152		size = 0x200;
1153		break;
1154	case XGENE_DMA_RING_CFG_SIZE_2KB:
1155		size = 0x800;
1156		break;
1157	case XGENE_DMA_RING_CFG_SIZE_16KB:
1158		size = 0x4000;
1159		break;
1160	case XGENE_DMA_RING_CFG_SIZE_64KB:
1161		size = 0x10000;
1162		break;
1163	case XGENE_DMA_RING_CFG_SIZE_512KB:
1164		size = 0x80000;
1165		break;
1166	default:
1167		chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1168		return -EINVAL;
1169	}
1170
1171	return size;
1172}
1173
1174static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1175{
1176	/* Clear DMA ring configurations */
1177	xgene_dma_clear_ring(ring);
1178
1179	/* De-allocate DMA ring descriptor */
1180	if (ring->desc_vaddr) {
1181		dma_free_coherent(ring->pdma->dev, ring->size,
1182				  ring->desc_vaddr, ring->desc_paddr);
1183		ring->desc_vaddr = NULL;
1184	}
1185}
1186
1187static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1188{
1189	xgene_dma_delete_ring_one(&chan->rx_ring);
1190	xgene_dma_delete_ring_one(&chan->tx_ring);
1191}
1192
1193static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1194				     struct xgene_dma_ring *ring,
1195				     enum xgene_dma_ring_cfgsize cfgsize)
1196{
1197	int ret;
1198
1199	/* Setup DMA ring descriptor variables */
1200	ring->pdma = chan->pdma;
1201	ring->cfgsize = cfgsize;
1202	ring->num = chan->pdma->ring_num++;
1203	ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1204
1205	ret = xgene_dma_get_ring_size(chan, cfgsize);
1206	if (ret <= 0)
1207		return ret;
1208	ring->size = ret;
1209
1210	/* Allocate memory for DMA ring descriptor */
1211	ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1212					       &ring->desc_paddr, GFP_KERNEL);
1213	if (!ring->desc_vaddr) {
1214		chan_err(chan, "Failed to allocate ring desc\n");
1215		return -ENOMEM;
1216	}
1217
1218	/* Configure and enable DMA ring */
1219	xgene_dma_set_ring_cmd(ring);
1220	xgene_dma_setup_ring(ring);
1221
1222	return 0;
1223}
1224
1225static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1226{
1227	struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1228	struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1229	int ret;
1230
1231	/* Create DMA Rx ring descriptor */
1232	rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1233	rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1234
1235	ret = xgene_dma_create_ring_one(chan, rx_ring,
1236					XGENE_DMA_RING_CFG_SIZE_64KB);
1237	if (ret)
1238		return ret;
1239
1240	chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1241		 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1242
1243	/* Create DMA Tx ring descriptor */
1244	tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1245	tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1246
1247	ret = xgene_dma_create_ring_one(chan, tx_ring,
1248					XGENE_DMA_RING_CFG_SIZE_64KB);
1249	if (ret) {
1250		xgene_dma_delete_ring_one(rx_ring);
1251		return ret;
1252	}
1253
1254	tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1255
1256	chan_dbg(chan,
1257		 "Tx ring id 0x%X num %d desc 0x%p\n",
1258		 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1259
1260	/* Set the max outstanding request possible to this channel */
1261	chan->max_outstanding = tx_ring->slots;
1262
1263	return ret;
1264}
1265
1266static int xgene_dma_init_rings(struct xgene_dma *pdma)
1267{
1268	int ret, i, j;
1269
1270	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1271		ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1272		if (ret) {
1273			for (j = 0; j < i; j++)
1274				xgene_dma_delete_chan_rings(&pdma->chan[j]);
1275			return ret;
1276		}
1277	}
1278
1279	return ret;
1280}
1281
1282static void xgene_dma_enable(struct xgene_dma *pdma)
1283{
1284	u32 val;
1285
1286	/* Configure and enable DMA engine */
1287	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1288	XGENE_DMA_CH_SETUP(val);
1289	XGENE_DMA_ENABLE(val);
1290	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1291}
1292
1293static void xgene_dma_disable(struct xgene_dma *pdma)
1294{
1295	u32 val;
1296
1297	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1298	XGENE_DMA_DISABLE(val);
1299	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1300}
1301
1302static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1303{
1304	/*
1305	 * Mask DMA ring overflow, underflow and
1306	 * AXI write/read error interrupts
1307	 */
1308	iowrite32(XGENE_DMA_INT_ALL_MASK,
1309		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1310	iowrite32(XGENE_DMA_INT_ALL_MASK,
1311		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1312	iowrite32(XGENE_DMA_INT_ALL_MASK,
1313		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1314	iowrite32(XGENE_DMA_INT_ALL_MASK,
1315		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1316	iowrite32(XGENE_DMA_INT_ALL_MASK,
1317		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1318
1319	/* Mask DMA error interrupts */
1320	iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1321}
1322
1323static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1324{
1325	/*
1326	 * Unmask DMA ring overflow, underflow and
1327	 * AXI write/read error interrupts
1328	 */
1329	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1330		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1331	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1332		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1333	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1334		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1335	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1336		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1337	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1338		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1339
1340	/* Unmask DMA error interrupts */
1341	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1342		  pdma->csr_dma + XGENE_DMA_INT_MASK);
1343}
1344
1345static void xgene_dma_init_hw(struct xgene_dma *pdma)
1346{
1347	u32 val;
1348
1349	/* Associate DMA ring to corresponding ring HW */
1350	iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1351		  pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1352
1353	/* Configure RAID6 polynomial control setting */
1354	if (is_pq_enabled(pdma))
1355		iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1356			  pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1357	else
1358		dev_info(pdma->dev, "PQ is disabled in HW\n");
1359
1360	xgene_dma_enable(pdma);
1361	xgene_dma_unmask_interrupts(pdma);
1362
1363	/* Get DMA id and version info */
1364	val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1365
1366	/* DMA device info */
1367	dev_info(pdma->dev,
1368		 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1369		 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1370		 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1371}
1372
1373static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1374{
1375	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1376	    (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1377		return 0;
1378
1379	iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1380	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1381
1382	/* Bring up memory */
1383	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1384
1385	/* Force a barrier */
1386	ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1387
1388	/* reset may take up to 1ms */
1389	usleep_range(1000, 1100);
1390
1391	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1392		!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1393		dev_err(pdma->dev,
1394			"Failed to release ring mngr memory from shutdown\n");
1395		return -ENODEV;
1396	}
1397
1398	/* program threshold set 1 and all hysteresis */
1399	iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1400		  pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1401	iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1402		  pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1403	iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1404		  pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1405
1406	/* Enable QPcore and assign error queue */
1407	iowrite32(XGENE_DMA_RING_ENABLE,
1408		  pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1409
1410	return 0;
1411}
1412
1413static int xgene_dma_init_mem(struct xgene_dma *pdma)
1414{
1415	int ret;
1416
1417	ret = xgene_dma_init_ring_mngr(pdma);
1418	if (ret)
1419		return ret;
1420
1421	/* Bring up memory */
1422	iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1423
1424	/* Force a barrier */
1425	ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1426
1427	/* reset may take up to 1ms */
1428	usleep_range(1000, 1100);
1429
1430	if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1431		!= XGENE_DMA_BLK_MEM_RDY_VAL) {
1432		dev_err(pdma->dev,
1433			"Failed to release DMA memory from shutdown\n");
1434		return -ENODEV;
1435	}
1436
1437	return 0;
1438}
1439
1440static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1441{
1442	struct xgene_dma_chan *chan;
1443	int ret, i, j;
1444
1445	/* Register DMA error irq */
1446	ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1447			       0, "dma_error", pdma);
1448	if (ret) {
1449		dev_err(pdma->dev,
1450			"Failed to register error IRQ %d\n", pdma->err_irq);
1451		return ret;
1452	}
1453
1454	/* Register DMA channel rx irq */
1455	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1456		chan = &pdma->chan[i];
1457		irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1458		ret = devm_request_irq(chan->dev, chan->rx_irq,
1459				       xgene_dma_chan_ring_isr,
1460				       0, chan->name, chan);
1461		if (ret) {
1462			chan_err(chan, "Failed to register Rx IRQ %d\n",
1463				 chan->rx_irq);
1464			devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1465
1466			for (j = 0; j < i; j++) {
1467				chan = &pdma->chan[i];
1468				irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1469				devm_free_irq(chan->dev, chan->rx_irq, chan);
1470			}
1471
1472			return ret;
1473		}
1474	}
1475
1476	return 0;
1477}
1478
1479static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1480{
1481	struct xgene_dma_chan *chan;
1482	int i;
1483
1484	/* Free DMA device error irq */
1485	devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1486
1487	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1488		chan = &pdma->chan[i];
1489		irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1490		devm_free_irq(chan->dev, chan->rx_irq, chan);
1491	}
1492}
1493
1494static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1495			       struct dma_device *dma_dev)
1496{
1497	/* Initialize DMA device capability mask */
1498	dma_cap_zero(dma_dev->cap_mask);
1499
1500	/* Set DMA device capability */
1501
1502	/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1503	 * and channel 1 supports XOR, PQ both. First thing here is we have
1504	 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1505	 * we can make sure this by reading SoC Efuse register.
1506	 * Second thing, we have hw errata that if we run channel 0 and
1507	 * channel 1 simultaneously with executing XOR and PQ request,
1508	 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1509	 * if XOR and PQ supports on channel 1 is disabled.
1510	 */
1511	if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1512	    is_pq_enabled(chan->pdma)) {
1513		dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1514		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1515	} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1516		   !is_pq_enabled(chan->pdma)) {
1517		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1518	}
1519
1520	/* Set base and prep routines */
1521	dma_dev->dev = chan->dev;
1522	dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1523	dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1524	dma_dev->device_issue_pending = xgene_dma_issue_pending;
1525	dma_dev->device_tx_status = xgene_dma_tx_status;
1526
1527	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1528		dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1529		dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1530		dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1531	}
1532
1533	if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1534		dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1535		dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1536		dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1537	}
1538}
1539
1540static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1541{
1542	struct xgene_dma_chan *chan = &pdma->chan[id];
1543	struct dma_device *dma_dev = &pdma->dma_dev[id];
1544	int ret;
1545
1546	chan->dma_chan.device = dma_dev;
1547
1548	spin_lock_init(&chan->lock);
1549	INIT_LIST_HEAD(&chan->ld_pending);
1550	INIT_LIST_HEAD(&chan->ld_running);
1551	INIT_LIST_HEAD(&chan->ld_completed);
1552	tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1553		     (unsigned long)chan);
1554
1555	chan->pending = 0;
1556	chan->desc_pool = NULL;
1557	dma_cookie_init(&chan->dma_chan);
1558
1559	/* Setup dma device capabilities and prep routines */
1560	xgene_dma_set_caps(chan, dma_dev);
1561
1562	/* Initialize DMA device list head */
1563	INIT_LIST_HEAD(&dma_dev->channels);
1564	list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1565
1566	/* Register with Linux async DMA framework*/
1567	ret = dma_async_device_register(dma_dev);
1568	if (ret) {
1569		chan_err(chan, "Failed to register async device %d", ret);
1570		tasklet_kill(&chan->tasklet);
1571
1572		return ret;
1573	}
1574
1575	/* DMA capability info */
1576	dev_info(pdma->dev,
1577		 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1578		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1579		 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1580
1581	return 0;
1582}
1583
1584static int xgene_dma_init_async(struct xgene_dma *pdma)
1585{
1586	int ret, i, j;
1587
1588	for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1589		ret = xgene_dma_async_register(pdma, i);
1590		if (ret) {
1591			for (j = 0; j < i; j++) {
1592				dma_async_device_unregister(&pdma->dma_dev[j]);
1593				tasklet_kill(&pdma->chan[j].tasklet);
1594			}
1595
1596			return ret;
1597		}
1598	}
1599
1600	return ret;
1601}
1602
1603static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1604{
1605	int i;
1606
1607	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1608		dma_async_device_unregister(&pdma->dma_dev[i]);
1609}
1610
1611static void xgene_dma_init_channels(struct xgene_dma *pdma)
1612{
1613	struct xgene_dma_chan *chan;
1614	int i;
1615
1616	pdma->ring_num = XGENE_DMA_RING_NUM;
1617
1618	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1619		chan = &pdma->chan[i];
1620		chan->dev = pdma->dev;
1621		chan->pdma = pdma;
1622		chan->id = i;
1623		snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1624	}
1625}
1626
1627static int xgene_dma_get_resources(struct platform_device *pdev,
1628				   struct xgene_dma *pdma)
1629{
1630	struct resource *res;
1631	int irq, i;
1632
1633	/* Get DMA csr region */
1634	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1635	if (!res) {
1636		dev_err(&pdev->dev, "Failed to get csr region\n");
1637		return -ENXIO;
1638	}
1639
1640	pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1641				     resource_size(res));
1642	if (!pdma->csr_dma) {
1643		dev_err(&pdev->dev, "Failed to ioremap csr region");
1644		return -ENOMEM;
1645	}
1646
1647	/* Get DMA ring csr region */
1648	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1649	if (!res) {
1650		dev_err(&pdev->dev, "Failed to get ring csr region\n");
1651		return -ENXIO;
1652	}
1653
1654	pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1655				       resource_size(res));
1656	if (!pdma->csr_ring) {
1657		dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1658		return -ENOMEM;
1659	}
1660
1661	/* Get DMA ring cmd csr region */
1662	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1663	if (!res) {
1664		dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1665		return -ENXIO;
1666	}
1667
1668	pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1669					  resource_size(res));
1670	if (!pdma->csr_ring_cmd) {
1671		dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1672		return -ENOMEM;
1673	}
1674
1675	pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1676
1677	/* Get efuse csr region */
1678	res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1679	if (!res) {
1680		dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1681		return -ENXIO;
1682	}
1683
1684	pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1685				       resource_size(res));
1686	if (!pdma->csr_efuse) {
1687		dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1688		return -ENOMEM;
1689	}
1690
1691	/* Get DMA error interrupt */
1692	irq = platform_get_irq(pdev, 0);
1693	if (irq <= 0) {
1694		dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1695		return -ENXIO;
1696	}
1697
1698	pdma->err_irq = irq;
1699
1700	/* Get DMA Rx ring descriptor interrupts for all DMA channels */
1701	for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1702		irq = platform_get_irq(pdev, i);
1703		if (irq <= 0) {
1704			dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1705			return -ENXIO;
1706		}
1707
1708		pdma->chan[i - 1].rx_irq = irq;
1709	}
1710
1711	return 0;
1712}
1713
1714static int xgene_dma_probe(struct platform_device *pdev)
1715{
1716	struct xgene_dma *pdma;
1717	int ret, i;
1718
1719	pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1720	if (!pdma)
1721		return -ENOMEM;
1722
1723	pdma->dev = &pdev->dev;
1724	platform_set_drvdata(pdev, pdma);
1725
1726	ret = xgene_dma_get_resources(pdev, pdma);
1727	if (ret)
1728		return ret;
1729
1730	pdma->clk = devm_clk_get(&pdev->dev, NULL);
1731	if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1732		dev_err(&pdev->dev, "Failed to get clk\n");
1733		return PTR_ERR(pdma->clk);
1734	}
1735
1736	/* Enable clk before accessing registers */
1737	if (!IS_ERR(pdma->clk)) {
1738		ret = clk_prepare_enable(pdma->clk);
1739		if (ret) {
1740			dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1741			return ret;
1742		}
1743	}
1744
1745	/* Remove DMA RAM out of shutdown */
1746	ret = xgene_dma_init_mem(pdma);
1747	if (ret)
1748		goto err_clk_enable;
1749
1750	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1751	if (ret) {
1752		dev_err(&pdev->dev, "No usable DMA configuration\n");
1753		goto err_dma_mask;
1754	}
1755
1756	/* Initialize DMA channels software state */
1757	xgene_dma_init_channels(pdma);
1758
1759	/* Configue DMA rings */
1760	ret = xgene_dma_init_rings(pdma);
1761	if (ret)
1762		goto err_clk_enable;
1763
1764	ret = xgene_dma_request_irqs(pdma);
1765	if (ret)
1766		goto err_request_irq;
1767
1768	/* Configure and enable DMA engine */
1769	xgene_dma_init_hw(pdma);
1770
1771	/* Register DMA device with linux async framework */
1772	ret = xgene_dma_init_async(pdma);
1773	if (ret)
1774		goto err_async_init;
1775
1776	return 0;
1777
1778err_async_init:
1779	xgene_dma_free_irqs(pdma);
1780
1781err_request_irq:
1782	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1783		xgene_dma_delete_chan_rings(&pdma->chan[i]);
1784
1785err_dma_mask:
1786err_clk_enable:
1787	if (!IS_ERR(pdma->clk))
1788		clk_disable_unprepare(pdma->clk);
1789
1790	return ret;
1791}
1792
1793static int xgene_dma_remove(struct platform_device *pdev)
1794{
1795	struct xgene_dma *pdma = platform_get_drvdata(pdev);
1796	struct xgene_dma_chan *chan;
1797	int i;
1798
1799	xgene_dma_async_unregister(pdma);
1800
1801	/* Mask interrupts and disable DMA engine */
1802	xgene_dma_mask_interrupts(pdma);
1803	xgene_dma_disable(pdma);
1804	xgene_dma_free_irqs(pdma);
1805
1806	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1807		chan = &pdma->chan[i];
1808		tasklet_kill(&chan->tasklet);
1809		xgene_dma_delete_chan_rings(chan);
1810	}
1811
1812	if (!IS_ERR(pdma->clk))
1813		clk_disable_unprepare(pdma->clk);
1814
1815	return 0;
1816}
1817
1818#ifdef CONFIG_ACPI
1819static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1820	{"APMC0D43", 0},
1821	{},
1822};
1823MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1824#endif
1825
1826static const struct of_device_id xgene_dma_of_match_ptr[] = {
1827	{.compatible = "apm,xgene-storm-dma",},
1828	{},
1829};
1830MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1831
1832static struct platform_driver xgene_dma_driver = {
1833	.probe = xgene_dma_probe,
1834	.remove = xgene_dma_remove,
1835	.driver = {
1836		.name = "X-Gene-DMA",
1837		.of_match_table = xgene_dma_of_match_ptr,
1838		.acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1839	},
1840};
1841
1842module_platform_driver(xgene_dma_driver);
1843
1844MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1845MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1846MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1847MODULE_LICENSE("GPL");
1848MODULE_VERSION("1.0");