Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Faraday Technology FTTMR010 timer driver
  4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
  5 *
  6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
  7 * Copyright (C) 2001-2006 Storlink, Corp.
  8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
  9 */
 10#include <linux/interrupt.h>
 11#include <linux/io.h>
 12#include <linux/of.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/clockchips.h>
 16#include <linux/clocksource.h>
 17#include <linux/sched_clock.h>
 18#include <linux/clk.h>
 19#include <linux/slab.h>
 20#include <linux/bitops.h>
 21#include <linux/delay.h>
 22
 23/*
 24 * Register definitions common for all the timer variants.
 25 */
 26#define TIMER1_COUNT		(0x00)
 27#define TIMER1_LOAD		(0x04)
 28#define TIMER1_MATCH1		(0x08)
 29#define TIMER1_MATCH2		(0x0c)
 30#define TIMER2_COUNT		(0x10)
 31#define TIMER2_LOAD		(0x14)
 32#define TIMER2_MATCH1		(0x18)
 33#define TIMER2_MATCH2		(0x1c)
 34#define TIMER3_COUNT		(0x20)
 35#define TIMER3_LOAD		(0x24)
 36#define TIMER3_MATCH1		(0x28)
 37#define TIMER3_MATCH2		(0x2c)
 38#define TIMER_CR		(0x30)
 
 
 39
 40/*
 41 * Control register set to clear for ast2600 only.
 42 */
 43#define AST2600_TIMER_CR_CLR	(0x3c)
 44
 45/*
 46 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
 47 */
 48#define TIMER_1_CR_ENABLE	BIT(0)
 49#define TIMER_1_CR_CLOCK	BIT(1)
 50#define TIMER_1_CR_INT		BIT(2)
 51#define TIMER_2_CR_ENABLE	BIT(3)
 52#define TIMER_2_CR_CLOCK	BIT(4)
 53#define TIMER_2_CR_INT		BIT(5)
 54#define TIMER_3_CR_ENABLE	BIT(6)
 55#define TIMER_3_CR_CLOCK	BIT(7)
 56#define TIMER_3_CR_INT		BIT(8)
 57#define TIMER_1_CR_UPDOWN	BIT(9)
 58#define TIMER_2_CR_UPDOWN	BIT(10)
 59#define TIMER_3_CR_UPDOWN	BIT(11)
 60
 61/*
 62 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
 63 * The aspeed timers move bits around in the control register and lacks
 64 * bits for setting the timer to count upwards.
 65 */
 66#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
 67#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
 68#define TIMER_1_CR_ASPEED_INT		BIT(2)
 69#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
 70#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
 71#define TIMER_2_CR_ASPEED_INT		BIT(6)
 72#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
 73#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
 74#define TIMER_3_CR_ASPEED_INT		BIT(10)
 75
 76/*
 77 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
 78 * timers.
 79 * The registers don't exist and they are not needed on aspeed timers
 80 * because:
 81 *   - aspeed timer overflow interrupt is controlled by bits in Control
 82 *     Register (TMC30).
 83 *   - aspeed timers always generate interrupt when either one of the
 84 *     Match registers equals to Status register.
 85 */
 86#define TIMER_INTR_STATE	(0x34)
 87#define TIMER_INTR_MASK		(0x38)
 88#define TIMER_1_INT_MATCH1	BIT(0)
 89#define TIMER_1_INT_MATCH2	BIT(1)
 90#define TIMER_1_INT_OVERFLOW	BIT(2)
 91#define TIMER_2_INT_MATCH1	BIT(3)
 92#define TIMER_2_INT_MATCH2	BIT(4)
 93#define TIMER_2_INT_OVERFLOW	BIT(5)
 94#define TIMER_3_INT_MATCH1	BIT(6)
 95#define TIMER_3_INT_MATCH2	BIT(7)
 96#define TIMER_3_INT_OVERFLOW	BIT(8)
 97#define TIMER_INT_ALL_MASK	0x1ff
 98
 99struct fttmr010 {
100	void __iomem *base;
101	unsigned int tick_rate;
102	bool is_aspeed;
103	u32 t1_enable_val;
104	struct clock_event_device clkevt;
105	int (*timer_shutdown)(struct clock_event_device *evt);
106#ifdef CONFIG_ARM
107	struct delay_timer delay_timer;
108#endif
109};
110
111/*
112 * A local singleton used by sched_clock and delay timer reads, which are
113 * fast and stateless
114 */
115static struct fttmr010 *local_fttmr;
116
117static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
118{
119	return container_of(evt, struct fttmr010, clkevt);
120}
121
122static unsigned long fttmr010_read_current_timer_up(void)
123{
124	return readl(local_fttmr->base + TIMER2_COUNT);
125}
126
127static unsigned long fttmr010_read_current_timer_down(void)
128{
129	return ~readl(local_fttmr->base + TIMER2_COUNT);
130}
131
132static u64 notrace fttmr010_read_sched_clock_up(void)
133{
134	return fttmr010_read_current_timer_up();
135}
136
137static u64 notrace fttmr010_read_sched_clock_down(void)
138{
139	return fttmr010_read_current_timer_down();
140}
141
142static int fttmr010_timer_set_next_event(unsigned long cycles,
143				       struct clock_event_device *evt)
144{
145	struct fttmr010 *fttmr010 = to_fttmr010(evt);
146	u32 cr;
147
148	/* Stop */
149	fttmr010->timer_shutdown(evt);
 
 
150
151	if (fttmr010->is_aspeed) {
152		/*
153		 * ASPEED Timer Controller will load TIMER1_LOAD register
154		 * into TIMER1_COUNT register when the timer is re-enabled.
155		 */
156		writel(cycles, fttmr010->base + TIMER1_LOAD);
157	} else {
158		/* Setup the match register forward in time */
159		cr = readl(fttmr010->base + TIMER1_COUNT);
160		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
161	}
162
163	/* Start */
164	cr = readl(fttmr010->base + TIMER_CR);
165	cr |= fttmr010->t1_enable_val;
166	writel(cr, fttmr010->base + TIMER_CR);
167
168	return 0;
169}
170
171static int ast2600_timer_shutdown(struct clock_event_device *evt)
172{
173	struct fttmr010 *fttmr010 = to_fttmr010(evt);
174
175	/* Stop */
176	writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
177
178	return 0;
179}
180
181static int fttmr010_timer_shutdown(struct clock_event_device *evt)
182{
183	struct fttmr010 *fttmr010 = to_fttmr010(evt);
184	u32 cr;
185
186	/* Stop */
187	cr = readl(fttmr010->base + TIMER_CR);
188	cr &= ~fttmr010->t1_enable_val;
189	writel(cr, fttmr010->base + TIMER_CR);
190
191	return 0;
192}
193
194static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
195{
196	struct fttmr010 *fttmr010 = to_fttmr010(evt);
197	u32 cr;
198
199	/* Stop */
200	fttmr010->timer_shutdown(evt);
 
 
201
202	/* Setup counter start from 0 or ~0 */
203	writel(0, fttmr010->base + TIMER1_COUNT);
204	if (fttmr010->is_aspeed) {
205		writel(~0, fttmr010->base + TIMER1_LOAD);
206	} else {
207		writel(0, fttmr010->base + TIMER1_LOAD);
208
209		/* Enable interrupt */
210		cr = readl(fttmr010->base + TIMER_INTR_MASK);
211		cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
212		cr |= TIMER_1_INT_MATCH1;
213		writel(cr, fttmr010->base + TIMER_INTR_MASK);
214	}
215
216	return 0;
217}
218
219static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
220{
221	struct fttmr010 *fttmr010 = to_fttmr010(evt);
222	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
223	u32 cr;
224
225	/* Stop */
226	fttmr010->timer_shutdown(evt);
 
 
227
228	/* Setup timer to fire at 1/HZ intervals. */
229	if (fttmr010->is_aspeed) {
230		writel(period, fttmr010->base + TIMER1_LOAD);
 
231	} else {
232		cr = 0xffffffff - (period - 1);
233		writel(cr, fttmr010->base + TIMER1_COUNT);
234		writel(cr, fttmr010->base + TIMER1_LOAD);
235
236		/* Enable interrupt on overflow */
237		cr = readl(fttmr010->base + TIMER_INTR_MASK);
238		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
239		cr |= TIMER_1_INT_OVERFLOW;
240		writel(cr, fttmr010->base + TIMER_INTR_MASK);
241	}
242
243	/* Start the timer */
244	cr = readl(fttmr010->base + TIMER_CR);
245	cr |= fttmr010->t1_enable_val;
246	writel(cr, fttmr010->base + TIMER_CR);
247
248	return 0;
249}
250
251/*
252 * IRQ handler for the timer
253 */
254static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
255{
256	struct clock_event_device *evt = dev_id;
257
258	evt->event_handler(evt);
259	return IRQ_HANDLED;
260}
261
262static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
263{
264	struct clock_event_device *evt = dev_id;
265	struct fttmr010 *fttmr010 = to_fttmr010(evt);
266
267	writel(0x1, fttmr010->base + TIMER_INTR_STATE);
268
269	evt->event_handler(evt);
270	return IRQ_HANDLED;
271}
272
273static int __init fttmr010_common_init(struct device_node *np,
274				       bool is_aspeed, bool is_ast2600)
275{
276	struct fttmr010 *fttmr010;
277	int irq;
278	struct clk *clk;
279	int ret;
280	u32 val;
281
282	/*
283	 * These implementations require a clock reference.
284	 * FIXME: we currently only support clocking using PCLK
285	 * and using EXTCLK is not supported in the driver.
286	 */
287	clk = of_clk_get_by_name(np, "PCLK");
288	if (IS_ERR(clk)) {
289		pr_err("could not get PCLK\n");
290		return PTR_ERR(clk);
291	}
292	ret = clk_prepare_enable(clk);
293	if (ret) {
294		pr_err("failed to enable PCLK\n");
295		return ret;
296	}
297
298	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
299	if (!fttmr010) {
300		ret = -ENOMEM;
301		goto out_disable_clock;
302	}
303	fttmr010->tick_rate = clk_get_rate(clk);
304
305	fttmr010->base = of_iomap(np, 0);
306	if (!fttmr010->base) {
307		pr_err("Can't remap registers\n");
308		ret = -ENXIO;
309		goto out_free;
310	}
311	/* IRQ for timer 1 */
312	irq = irq_of_parse_and_map(np, 0);
313	if (irq <= 0) {
314		pr_err("Can't parse IRQ\n");
315		ret = -EINVAL;
316		goto out_unmap;
317	}
318
319	/*
320	 * The Aspeed timers move bits around in the control register.
 
321	 */
322	if (is_aspeed) {
323		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
324			TIMER_1_CR_ASPEED_INT;
325		fttmr010->is_aspeed = true;
 
326	} else {
327		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
328
329		/*
330		 * Reset the interrupt mask and status
331		 */
332		writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
333		writel(0, fttmr010->base + TIMER_INTR_STATE);
334	}
335
336	/*
 
 
 
 
 
 
337	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
338	 * where everything just counts down.
339	 */
340	if (is_aspeed)
341		val = TIMER_2_CR_ASPEED_ENABLE;
342	else {
343		val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
344			TIMER_2_CR_UPDOWN;
 
345	}
346	writel(val, fttmr010->base + TIMER_CR);
347
348	/*
349	 * Setup free-running clocksource timer (interrupts
350	 * disabled.)
351	 */
352	local_fttmr = fttmr010;
353	writel(0, fttmr010->base + TIMER2_COUNT);
354	writel(0, fttmr010->base + TIMER2_MATCH1);
355	writel(0, fttmr010->base + TIMER2_MATCH2);
356
357	if (fttmr010->is_aspeed) {
358		writel(~0, fttmr010->base + TIMER2_LOAD);
359		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
360				      "FTTMR010-TIMER2",
361				      fttmr010->tick_rate,
362				      300, 32, clocksource_mmio_readl_down);
363		sched_clock_register(fttmr010_read_sched_clock_down, 32,
364				     fttmr010->tick_rate);
365	} else {
366		writel(0, fttmr010->base + TIMER2_LOAD);
367		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
368				      "FTTMR010-TIMER2",
369				      fttmr010->tick_rate,
370				      300, 32, clocksource_mmio_readl_up);
371		sched_clock_register(fttmr010_read_sched_clock_up, 32,
372				     fttmr010->tick_rate);
373	}
374
375	/*
376	 * Setup clockevent timer (interrupt-driven) on timer 1.
377	 */
378	writel(0, fttmr010->base + TIMER1_COUNT);
379	writel(0, fttmr010->base + TIMER1_LOAD);
380	writel(0, fttmr010->base + TIMER1_MATCH1);
381	writel(0, fttmr010->base + TIMER1_MATCH2);
382
383	if (is_ast2600) {
384		fttmr010->timer_shutdown = ast2600_timer_shutdown;
385		ret = request_irq(irq, ast2600_timer_interrupt,
386				  IRQF_TIMER, "FTTMR010-TIMER1",
387				  &fttmr010->clkevt);
388	} else {
389		fttmr010->timer_shutdown = fttmr010_timer_shutdown;
390		ret = request_irq(irq, fttmr010_timer_interrupt,
391				  IRQF_TIMER, "FTTMR010-TIMER1",
392				  &fttmr010->clkevt);
393	}
394	if (ret) {
395		pr_err("FTTMR010-TIMER1 no IRQ\n");
396		goto out_unmap;
397	}
398
399	fttmr010->clkevt.name = "FTTMR010-TIMER1";
400	/* Reasonably fast and accurate clock event */
401	fttmr010->clkevt.rating = 300;
402	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
403		CLOCK_EVT_FEAT_ONESHOT;
404	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
405	fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
406	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
407	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
408	fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
409	fttmr010->clkevt.cpumask = cpumask_of(0);
410	fttmr010->clkevt.irq = irq;
411	clockevents_config_and_register(&fttmr010->clkevt,
412					fttmr010->tick_rate,
413					1, 0xffffffff);
414
415#ifdef CONFIG_ARM
416	/* Also use this timer for delays */
417	if (fttmr010->is_aspeed)
418		fttmr010->delay_timer.read_current_timer =
419			fttmr010_read_current_timer_down;
420	else
421		fttmr010->delay_timer.read_current_timer =
422			fttmr010_read_current_timer_up;
423	fttmr010->delay_timer.freq = fttmr010->tick_rate;
424	register_current_timer_delay(&fttmr010->delay_timer);
425#endif
426
427	return 0;
428
429out_unmap:
430	iounmap(fttmr010->base);
431out_free:
432	kfree(fttmr010);
433out_disable_clock:
434	clk_disable_unprepare(clk);
435
436	return ret;
437}
438
439static __init int ast2600_timer_init(struct device_node *np)
440{
441	return fttmr010_common_init(np, true, true);
442}
443
444static __init int aspeed_timer_init(struct device_node *np)
445{
446	return fttmr010_common_init(np, true, false);
447}
448
449static __init int fttmr010_timer_init(struct device_node *np)
450{
451	return fttmr010_common_init(np, false, false);
452}
453
454TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
455TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
456TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
457TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
458TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
459TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Faraday Technology FTTMR010 timer driver
  4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
  5 *
  6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
  7 * Copyright (C) 2001-2006 Storlink, Corp.
  8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
  9 */
 10#include <linux/interrupt.h>
 11#include <linux/io.h>
 12#include <linux/of.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/clockchips.h>
 16#include <linux/clocksource.h>
 17#include <linux/sched_clock.h>
 18#include <linux/clk.h>
 19#include <linux/slab.h>
 20#include <linux/bitops.h>
 21#include <linux/delay.h>
 22
 23/*
 24 * Register definitions for the timers
 25 */
 26#define TIMER1_COUNT		(0x00)
 27#define TIMER1_LOAD		(0x04)
 28#define TIMER1_MATCH1		(0x08)
 29#define TIMER1_MATCH2		(0x0c)
 30#define TIMER2_COUNT		(0x10)
 31#define TIMER2_LOAD		(0x14)
 32#define TIMER2_MATCH1		(0x18)
 33#define TIMER2_MATCH2		(0x1c)
 34#define TIMER3_COUNT		(0x20)
 35#define TIMER3_LOAD		(0x24)
 36#define TIMER3_MATCH1		(0x28)
 37#define TIMER3_MATCH2		(0x2c)
 38#define TIMER_CR		(0x30)
 39#define TIMER_INTR_STATE	(0x34)
 40#define TIMER_INTR_MASK		(0x38)
 41
 
 
 
 
 
 
 
 
 42#define TIMER_1_CR_ENABLE	BIT(0)
 43#define TIMER_1_CR_CLOCK	BIT(1)
 44#define TIMER_1_CR_INT		BIT(2)
 45#define TIMER_2_CR_ENABLE	BIT(3)
 46#define TIMER_2_CR_CLOCK	BIT(4)
 47#define TIMER_2_CR_INT		BIT(5)
 48#define TIMER_3_CR_ENABLE	BIT(6)
 49#define TIMER_3_CR_CLOCK	BIT(7)
 50#define TIMER_3_CR_INT		BIT(8)
 51#define TIMER_1_CR_UPDOWN	BIT(9)
 52#define TIMER_2_CR_UPDOWN	BIT(10)
 53#define TIMER_3_CR_UPDOWN	BIT(11)
 54
 55/*
 56 * The Aspeed AST2400 moves bits around in the control register
 57 * and lacks bits for setting the timer to count upwards.
 
 58 */
 59#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
 60#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
 61#define TIMER_1_CR_ASPEED_INT		BIT(2)
 62#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
 63#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
 64#define TIMER_2_CR_ASPEED_INT		BIT(6)
 65#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
 66#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
 67#define TIMER_3_CR_ASPEED_INT		BIT(10)
 68
 
 
 
 
 
 
 
 
 
 
 
 
 69#define TIMER_1_INT_MATCH1	BIT(0)
 70#define TIMER_1_INT_MATCH2	BIT(1)
 71#define TIMER_1_INT_OVERFLOW	BIT(2)
 72#define TIMER_2_INT_MATCH1	BIT(3)
 73#define TIMER_2_INT_MATCH2	BIT(4)
 74#define TIMER_2_INT_OVERFLOW	BIT(5)
 75#define TIMER_3_INT_MATCH1	BIT(6)
 76#define TIMER_3_INT_MATCH2	BIT(7)
 77#define TIMER_3_INT_OVERFLOW	BIT(8)
 78#define TIMER_INT_ALL_MASK	0x1ff
 79
 80struct fttmr010 {
 81	void __iomem *base;
 82	unsigned int tick_rate;
 83	bool count_down;
 84	u32 t1_enable_val;
 85	struct clock_event_device clkevt;
 
 86#ifdef CONFIG_ARM
 87	struct delay_timer delay_timer;
 88#endif
 89};
 90
 91/*
 92 * A local singleton used by sched_clock and delay timer reads, which are
 93 * fast and stateless
 94 */
 95static struct fttmr010 *local_fttmr;
 96
 97static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
 98{
 99	return container_of(evt, struct fttmr010, clkevt);
100}
101
102static unsigned long fttmr010_read_current_timer_up(void)
103{
104	return readl(local_fttmr->base + TIMER2_COUNT);
105}
106
107static unsigned long fttmr010_read_current_timer_down(void)
108{
109	return ~readl(local_fttmr->base + TIMER2_COUNT);
110}
111
112static u64 notrace fttmr010_read_sched_clock_up(void)
113{
114	return fttmr010_read_current_timer_up();
115}
116
117static u64 notrace fttmr010_read_sched_clock_down(void)
118{
119	return fttmr010_read_current_timer_down();
120}
121
122static int fttmr010_timer_set_next_event(unsigned long cycles,
123				       struct clock_event_device *evt)
124{
125	struct fttmr010 *fttmr010 = to_fttmr010(evt);
126	u32 cr;
127
128	/* Stop */
129	cr = readl(fttmr010->base + TIMER_CR);
130	cr &= ~fttmr010->t1_enable_val;
131	writel(cr, fttmr010->base + TIMER_CR);
132
133	/* Setup the match register forward/backward in time */
134	cr = readl(fttmr010->base + TIMER1_COUNT);
135	if (fttmr010->count_down)
136		cr -= cycles;
137	else
138		cr += cycles;
139	writel(cr, fttmr010->base + TIMER1_MATCH1);
 
 
 
 
140
141	/* Start */
142	cr = readl(fttmr010->base + TIMER_CR);
143	cr |= fttmr010->t1_enable_val;
144	writel(cr, fttmr010->base + TIMER_CR);
145
146	return 0;
147}
148
 
 
 
 
 
 
 
 
 
 
149static int fttmr010_timer_shutdown(struct clock_event_device *evt)
150{
151	struct fttmr010 *fttmr010 = to_fttmr010(evt);
152	u32 cr;
153
154	/* Stop */
155	cr = readl(fttmr010->base + TIMER_CR);
156	cr &= ~fttmr010->t1_enable_val;
157	writel(cr, fttmr010->base + TIMER_CR);
158
159	return 0;
160}
161
162static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
163{
164	struct fttmr010 *fttmr010 = to_fttmr010(evt);
165	u32 cr;
166
167	/* Stop */
168	cr = readl(fttmr010->base + TIMER_CR);
169	cr &= ~fttmr010->t1_enable_val;
170	writel(cr, fttmr010->base + TIMER_CR);
171
172	/* Setup counter start from 0 or ~0 */
173	writel(0, fttmr010->base + TIMER1_COUNT);
174	if (fttmr010->count_down)
175		writel(~0, fttmr010->base + TIMER1_LOAD);
176	else
177		writel(0, fttmr010->base + TIMER1_LOAD);
178
179	/* Enable interrupt */
180	cr = readl(fttmr010->base + TIMER_INTR_MASK);
181	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
182	cr |= TIMER_1_INT_MATCH1;
183	writel(cr, fttmr010->base + TIMER_INTR_MASK);
 
184
185	return 0;
186}
187
188static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
189{
190	struct fttmr010 *fttmr010 = to_fttmr010(evt);
191	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
192	u32 cr;
193
194	/* Stop */
195	cr = readl(fttmr010->base + TIMER_CR);
196	cr &= ~fttmr010->t1_enable_val;
197	writel(cr, fttmr010->base + TIMER_CR);
198
199	/* Setup timer to fire at 1/HZ intervals. */
200	if (fttmr010->count_down) {
201		writel(period, fttmr010->base + TIMER1_LOAD);
202		writel(0, fttmr010->base + TIMER1_MATCH1);
203	} else {
204		cr = 0xffffffff - (period - 1);
205		writel(cr, fttmr010->base + TIMER1_COUNT);
206		writel(cr, fttmr010->base + TIMER1_LOAD);
207
208		/* Enable interrupt on overflow */
209		cr = readl(fttmr010->base + TIMER_INTR_MASK);
210		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
211		cr |= TIMER_1_INT_OVERFLOW;
212		writel(cr, fttmr010->base + TIMER_INTR_MASK);
213	}
214
215	/* Start the timer */
216	cr = readl(fttmr010->base + TIMER_CR);
217	cr |= fttmr010->t1_enable_val;
218	writel(cr, fttmr010->base + TIMER_CR);
219
220	return 0;
221}
222
223/*
224 * IRQ handler for the timer
225 */
226static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
227{
228	struct clock_event_device *evt = dev_id;
229
230	evt->event_handler(evt);
231	return IRQ_HANDLED;
232}
233
234static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
 
 
 
 
 
 
 
 
 
 
 
 
235{
236	struct fttmr010 *fttmr010;
237	int irq;
238	struct clk *clk;
239	int ret;
240	u32 val;
241
242	/*
243	 * These implementations require a clock reference.
244	 * FIXME: we currently only support clocking using PCLK
245	 * and using EXTCLK is not supported in the driver.
246	 */
247	clk = of_clk_get_by_name(np, "PCLK");
248	if (IS_ERR(clk)) {
249		pr_err("could not get PCLK\n");
250		return PTR_ERR(clk);
251	}
252	ret = clk_prepare_enable(clk);
253	if (ret) {
254		pr_err("failed to enable PCLK\n");
255		return ret;
256	}
257
258	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
259	if (!fttmr010) {
260		ret = -ENOMEM;
261		goto out_disable_clock;
262	}
263	fttmr010->tick_rate = clk_get_rate(clk);
264
265	fttmr010->base = of_iomap(np, 0);
266	if (!fttmr010->base) {
267		pr_err("Can't remap registers\n");
268		ret = -ENXIO;
269		goto out_free;
270	}
271	/* IRQ for timer 1 */
272	irq = irq_of_parse_and_map(np, 0);
273	if (irq <= 0) {
274		pr_err("Can't parse IRQ\n");
275		ret = -EINVAL;
276		goto out_unmap;
277	}
278
279	/*
280	 * The Aspeed AST2400 moves bits around in the control register,
281	 * otherwise it works the same.
282	 */
283	if (is_aspeed) {
284		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
285			TIMER_1_CR_ASPEED_INT;
286		/* Downward not available */
287		fttmr010->count_down = true;
288	} else {
289		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
 
 
 
 
 
 
290	}
291
292	/*
293	 * Reset the interrupt mask and status
294	 */
295	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
296	writel(0, fttmr010->base + TIMER_INTR_STATE);
297
298	/*
299	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
300	 * where everything just counts down.
301	 */
302	if (is_aspeed)
303		val = TIMER_2_CR_ASPEED_ENABLE;
304	else {
305		val = TIMER_2_CR_ENABLE;
306		if (!fttmr010->count_down)
307			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
308	}
309	writel(val, fttmr010->base + TIMER_CR);
310
311	/*
312	 * Setup free-running clocksource timer (interrupts
313	 * disabled.)
314	 */
315	local_fttmr = fttmr010;
316	writel(0, fttmr010->base + TIMER2_COUNT);
317	writel(0, fttmr010->base + TIMER2_MATCH1);
318	writel(0, fttmr010->base + TIMER2_MATCH2);
319
320	if (fttmr010->count_down) {
321		writel(~0, fttmr010->base + TIMER2_LOAD);
322		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
323				      "FTTMR010-TIMER2",
324				      fttmr010->tick_rate,
325				      300, 32, clocksource_mmio_readl_down);
326		sched_clock_register(fttmr010_read_sched_clock_down, 32,
327				     fttmr010->tick_rate);
328	} else {
329		writel(0, fttmr010->base + TIMER2_LOAD);
330		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
331				      "FTTMR010-TIMER2",
332				      fttmr010->tick_rate,
333				      300, 32, clocksource_mmio_readl_up);
334		sched_clock_register(fttmr010_read_sched_clock_up, 32,
335				     fttmr010->tick_rate);
336	}
337
338	/*
339	 * Setup clockevent timer (interrupt-driven) on timer 1.
340	 */
341	writel(0, fttmr010->base + TIMER1_COUNT);
342	writel(0, fttmr010->base + TIMER1_LOAD);
343	writel(0, fttmr010->base + TIMER1_MATCH1);
344	writel(0, fttmr010->base + TIMER1_MATCH2);
345	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
346			  "FTTMR010-TIMER1", &fttmr010->clkevt);
 
 
 
 
 
 
 
 
 
 
347	if (ret) {
348		pr_err("FTTMR010-TIMER1 no IRQ\n");
349		goto out_unmap;
350	}
351
352	fttmr010->clkevt.name = "FTTMR010-TIMER1";
353	/* Reasonably fast and accurate clock event */
354	fttmr010->clkevt.rating = 300;
355	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
356		CLOCK_EVT_FEAT_ONESHOT;
357	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
358	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
359	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
360	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
361	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
362	fttmr010->clkevt.cpumask = cpumask_of(0);
363	fttmr010->clkevt.irq = irq;
364	clockevents_config_and_register(&fttmr010->clkevt,
365					fttmr010->tick_rate,
366					1, 0xffffffff);
367
368#ifdef CONFIG_ARM
369	/* Also use this timer for delays */
370	if (fttmr010->count_down)
371		fttmr010->delay_timer.read_current_timer =
372			fttmr010_read_current_timer_down;
373	else
374		fttmr010->delay_timer.read_current_timer =
375			fttmr010_read_current_timer_up;
376	fttmr010->delay_timer.freq = fttmr010->tick_rate;
377	register_current_timer_delay(&fttmr010->delay_timer);
378#endif
379
380	return 0;
381
382out_unmap:
383	iounmap(fttmr010->base);
384out_free:
385	kfree(fttmr010);
386out_disable_clock:
387	clk_disable_unprepare(clk);
388
389	return ret;
390}
391
 
 
 
 
 
392static __init int aspeed_timer_init(struct device_node *np)
393{
394	return fttmr010_common_init(np, true);
395}
396
397static __init int fttmr010_timer_init(struct device_node *np)
398{
399	return fttmr010_common_init(np, false);
400}
401
402TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
403TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
404TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
405TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
406TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);