Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Freescale FlexTimer Module (FTM) timer driver.
  3 *
  4 * Copyright 2014 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version 2
  9 * of the License, or (at your option) any later version.
 10 */
 11
 12#include <linux/clk.h>
 13#include <linux/clockchips.h>
 14#include <linux/clocksource.h>
 15#include <linux/err.h>
 16#include <linux/interrupt.h>
 17#include <linux/io.h>
 18#include <linux/of_address.h>
 19#include <linux/of_irq.h>
 20#include <linux/sched_clock.h>
 21#include <linux/slab.h>
 22
 23#define FTM_SC		0x00
 24#define FTM_SC_CLK_SHIFT	3
 25#define FTM_SC_CLK_MASK	(0x3 << FTM_SC_CLK_SHIFT)
 26#define FTM_SC_CLK(c)	((c) << FTM_SC_CLK_SHIFT)
 27#define FTM_SC_PS_MASK	0x7
 28#define FTM_SC_TOIE	BIT(6)
 29#define FTM_SC_TOF	BIT(7)
 30
 31#define FTM_CNT		0x04
 32#define FTM_MOD		0x08
 33#define FTM_CNTIN	0x4C
 34
 35#define FTM_PS_MAX	7
 36
 37struct ftm_clock_device {
 38	void __iomem *clksrc_base;
 39	void __iomem *clkevt_base;
 40	unsigned long periodic_cyc;
 41	unsigned long ps;
 42	bool big_endian;
 43};
 44
 45static struct ftm_clock_device *priv;
 46
 47static inline u32 ftm_readl(void __iomem *addr)
 48{
 49	if (priv->big_endian)
 50		return ioread32be(addr);
 51	else
 52		return ioread32(addr);
 53}
 54
 55static inline void ftm_writel(u32 val, void __iomem *addr)
 56{
 57	if (priv->big_endian)
 58		iowrite32be(val, addr);
 59	else
 60		iowrite32(val, addr);
 61}
 62
 63static inline void ftm_counter_enable(void __iomem *base)
 64{
 65	u32 val;
 66
 67	/* select and enable counter clock source */
 68	val = ftm_readl(base + FTM_SC);
 69	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
 70	val |= priv->ps | FTM_SC_CLK(1);
 71	ftm_writel(val, base + FTM_SC);
 72}
 73
 74static inline void ftm_counter_disable(void __iomem *base)
 75{
 76	u32 val;
 77
 78	/* disable counter clock source */
 79	val = ftm_readl(base + FTM_SC);
 80	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
 81	ftm_writel(val, base + FTM_SC);
 82}
 83
 84static inline void ftm_irq_acknowledge(void __iomem *base)
 85{
 86	u32 val;
 87
 88	val = ftm_readl(base + FTM_SC);
 89	val &= ~FTM_SC_TOF;
 90	ftm_writel(val, base + FTM_SC);
 91}
 92
 93static inline void ftm_irq_enable(void __iomem *base)
 94{
 95	u32 val;
 96
 97	val = ftm_readl(base + FTM_SC);
 98	val |= FTM_SC_TOIE;
 99	ftm_writel(val, base + FTM_SC);
100}
101
102static inline void ftm_irq_disable(void __iomem *base)
103{
104	u32 val;
105
106	val = ftm_readl(base + FTM_SC);
107	val &= ~FTM_SC_TOIE;
108	ftm_writel(val, base + FTM_SC);
109}
110
111static inline void ftm_reset_counter(void __iomem *base)
112{
113	/*
114	 * The CNT register contains the FTM counter value.
115	 * Reset clears the CNT register. Writing any value to COUNT
116	 * updates the counter with its initial value, CNTIN.
117	 */
118	ftm_writel(0x00, base + FTM_CNT);
119}
120
121static u64 notrace ftm_read_sched_clock(void)
122{
123	return ftm_readl(priv->clksrc_base + FTM_CNT);
124}
125
126static int ftm_set_next_event(unsigned long delta,
127				struct clock_event_device *unused)
128{
129	/*
130	 * The CNNIN and MOD are all double buffer registers, writing
131	 * to the MOD register latches the value into a buffer. The MOD
132	 * register is updated with the value of its write buffer with
133	 * the following scenario:
134	 * a, the counter source clock is diabled.
135	 */
136	ftm_counter_disable(priv->clkevt_base);
137
138	/* Force the value of CNTIN to be loaded into the FTM counter */
139	ftm_reset_counter(priv->clkevt_base);
140
141	/*
142	 * The counter increments until the value of MOD is reached,
143	 * at which point the counter is reloaded with the value of CNTIN.
144	 * The TOF (the overflow flag) bit is set when the FTM counter
145	 * changes from MOD to CNTIN. So we should using the delta - 1.
146	 */
147	ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
148
149	ftm_counter_enable(priv->clkevt_base);
150
151	ftm_irq_enable(priv->clkevt_base);
152
153	return 0;
154}
155
156static int ftm_set_oneshot(struct clock_event_device *evt)
157{
158	ftm_counter_disable(priv->clkevt_base);
159	return 0;
160}
161
162static int ftm_set_periodic(struct clock_event_device *evt)
163{
164	ftm_set_next_event(priv->periodic_cyc, evt);
165	return 0;
166}
167
168static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
169{
170	struct clock_event_device *evt = dev_id;
171
172	ftm_irq_acknowledge(priv->clkevt_base);
173
174	if (likely(clockevent_state_oneshot(evt))) {
175		ftm_irq_disable(priv->clkevt_base);
176		ftm_counter_disable(priv->clkevt_base);
177	}
178
179	evt->event_handler(evt);
180
181	return IRQ_HANDLED;
182}
183
184static struct clock_event_device ftm_clockevent = {
185	.name			= "Freescale ftm timer",
186	.features		= CLOCK_EVT_FEAT_PERIODIC |
187				  CLOCK_EVT_FEAT_ONESHOT,
188	.set_state_periodic	= ftm_set_periodic,
189	.set_state_oneshot	= ftm_set_oneshot,
190	.set_next_event		= ftm_set_next_event,
191	.rating			= 300,
192};
193
194static struct irqaction ftm_timer_irq = {
195	.name		= "Freescale ftm timer",
196	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
197	.handler	= ftm_evt_interrupt,
198	.dev_id		= &ftm_clockevent,
199};
200
201static int __init ftm_clockevent_init(unsigned long freq, int irq)
202{
203	int err;
204
205	ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
206	ftm_writel(~0u, priv->clkevt_base + FTM_MOD);
207
208	ftm_reset_counter(priv->clkevt_base);
209
210	err = setup_irq(irq, &ftm_timer_irq);
211	if (err) {
212		pr_err("ftm: setup irq failed: %d\n", err);
213		return err;
214	}
215
216	ftm_clockevent.cpumask = cpumask_of(0);
217	ftm_clockevent.irq = irq;
218
219	clockevents_config_and_register(&ftm_clockevent,
220					freq / (1 << priv->ps),
221					1, 0xffff);
222
223	ftm_counter_enable(priv->clkevt_base);
224
225	return 0;
226}
227
228static int __init ftm_clocksource_init(unsigned long freq)
229{
230	int err;
231
232	ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
233	ftm_writel(~0u, priv->clksrc_base + FTM_MOD);
234
235	ftm_reset_counter(priv->clksrc_base);
236
237	sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
238	err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
239				    freq / (1 << priv->ps), 300, 16,
240				    clocksource_mmio_readl_up);
241	if (err) {
242		pr_err("ftm: init clock source mmio failed: %d\n", err);
243		return err;
244	}
245
246	ftm_counter_enable(priv->clksrc_base);
247
248	return 0;
249}
250
251static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
252				 char *ftm_name)
253{
254	struct clk *clk;
255	int err;
256
257	clk = of_clk_get_by_name(np, cnt_name);
258	if (IS_ERR(clk)) {
259		pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
260		return PTR_ERR(clk);
261	}
262	err = clk_prepare_enable(clk);
263	if (err) {
264		pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
265			cnt_name, err);
266		return err;
267	}
268
269	clk = of_clk_get_by_name(np, ftm_name);
270	if (IS_ERR(clk)) {
271		pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
272		return PTR_ERR(clk);
273	}
274	err = clk_prepare_enable(clk);
275	if (err)
276		pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
277			ftm_name, err);
278
279	return clk_get_rate(clk);
280}
281
282static unsigned long __init ftm_clk_init(struct device_node *np)
283{
284	long freq;
285
286	freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
287	if (freq <= 0)
288		return 0;
289
290	freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
291	if (freq <= 0)
292		return 0;
293
294	return freq;
295}
296
297static int __init ftm_calc_closest_round_cyc(unsigned long freq)
298{
299	priv->ps = 0;
300
301	/* The counter register is only using the lower 16 bits, and
302	 * if the 'freq' value is to big here, then the periodic_cyc
303	 * may exceed 0xFFFF.
304	 */
305	do {
306		priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
307						HZ * (1 << priv->ps++));
308	} while (priv->periodic_cyc > 0xFFFF);
309
310	if (priv->ps > FTM_PS_MAX) {
311		pr_err("ftm: the prescaler is %lu > %d\n",
312				priv->ps, FTM_PS_MAX);
313		return -EINVAL;
314	}
315
316	return 0;
317}
318
319static int __init ftm_timer_init(struct device_node *np)
320{
321	unsigned long freq;
322	int ret, irq;
323
324	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
325	if (!priv)
326		return -ENOMEM;
327
328	ret = -ENXIO;
329	priv->clkevt_base = of_iomap(np, 0);
330	if (!priv->clkevt_base) {
331		pr_err("ftm: unable to map event timer registers\n");
332		goto err_clkevt;
333	}
334
335	priv->clksrc_base = of_iomap(np, 1);
336	if (!priv->clksrc_base) {
337		pr_err("ftm: unable to map source timer registers\n");
338		goto err_clksrc;
339	}
340
341	ret = -EINVAL;
342	irq = irq_of_parse_and_map(np, 0);
343	if (irq <= 0) {
344		pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
345		goto err;
346	}
347
348	priv->big_endian = of_property_read_bool(np, "big-endian");
349
350	freq = ftm_clk_init(np);
351	if (!freq)
352		goto err;
353
354	ret = ftm_calc_closest_round_cyc(freq);
355	if (ret)
356		goto err;
357
358	ret = ftm_clocksource_init(freq);
359	if (ret)
360		goto err;
361
362	ret = ftm_clockevent_init(freq, irq);
363	if (ret)
364		goto err;
365
366	return 0;
367
368err:
369	iounmap(priv->clksrc_base);
370err_clksrc:
371	iounmap(priv->clkevt_base);
372err_clkevt:
373	kfree(priv);
374	return ret;
375}
376TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);