Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * cacheinfo support - processor cache information via sysfs
  4 *
  5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
  6 * Author: Sudeep Holla <sudeep.holla@arm.com>
  7 */
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/acpi.h>
 11#include <linux/bitops.h>
 12#include <linux/cacheinfo.h>
 13#include <linux/compiler.h>
 14#include <linux/cpu.h>
 15#include <linux/device.h>
 16#include <linux/init.h>
 17#include <linux/of.h>
 18#include <linux/sched.h>
 19#include <linux/slab.h>
 20#include <linux/smp.h>
 21#include <linux/sysfs.h>
 22
 23/* pointer to per cpu cacheinfo */
 24static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
 25#define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
 26#define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
 27#define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
 28#define per_cpu_cacheinfo_idx(cpu, idx)		\
 29				(per_cpu_cacheinfo(cpu) + (idx))
 30
 31/* Set if no cache information is found in DT/ACPI. */
 32static bool use_arch_info;
 33
 34struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
 35{
 36	return ci_cacheinfo(cpu);
 37}
 38
 39static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
 40					   struct cacheinfo *sib_leaf)
 41{
 42	/*
 43	 * For non DT/ACPI systems, assume unique level 1 caches,
 44	 * system-wide shared caches for all other levels.
 45	 */
 46	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
 47	    use_arch_info)
 48		return (this_leaf->level != 1) && (sib_leaf->level != 1);
 49
 50	if ((sib_leaf->attributes & CACHE_ID) &&
 51	    (this_leaf->attributes & CACHE_ID))
 52		return sib_leaf->id == this_leaf->id;
 53
 54	return sib_leaf->fw_token == this_leaf->fw_token;
 55}
 56
 57bool last_level_cache_is_valid(unsigned int cpu)
 58{
 59	struct cacheinfo *llc;
 60
 61	if (!cache_leaves(cpu))
 62		return false;
 
 
 
 
 
 
 
 63
 64	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
 
 
 
 
 
 
 
 
 
 
 65
 66	return (llc->attributes & CACHE_ID) || !!llc->fw_token;
 
 67
 
 68}
 69
 70bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
 
 71{
 72	struct cacheinfo *llc_x, *llc_y;
 73
 74	if (!last_level_cache_is_valid(cpu_x) ||
 75	    !last_level_cache_is_valid(cpu_y))
 76		return false;
 77
 78	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
 79	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
 80
 81	return cache_leaves_are_shared(llc_x, llc_y);
 82}
 83
 84#ifdef CONFIG_OF
 85
 86static bool of_check_cache_nodes(struct device_node *np);
 87
 88/* OF properties to query for a given cache type */
 89struct cache_type_info {
 90	const char *size_prop;
 91	const char *line_size_props[2];
 92	const char *nr_sets_prop;
 93};
 94
 95static const struct cache_type_info cache_type_info[] = {
 96	{
 97		.size_prop       = "cache-size",
 98		.line_size_props = { "cache-line-size",
 99				     "cache-block-size", },
100		.nr_sets_prop    = "cache-sets",
101	}, {
102		.size_prop       = "i-cache-size",
103		.line_size_props = { "i-cache-line-size",
104				     "i-cache-block-size", },
105		.nr_sets_prop    = "i-cache-sets",
106	}, {
107		.size_prop       = "d-cache-size",
108		.line_size_props = { "d-cache-line-size",
109				     "d-cache-block-size", },
110		.nr_sets_prop    = "d-cache-sets",
111	},
112};
113
114static inline int get_cacheinfo_idx(enum cache_type type)
115{
116	if (type == CACHE_TYPE_UNIFIED)
117		return 0;
118	return type;
119}
120
121static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122{
123	const char *propname;
 
124	int ct_idx;
125
126	ct_idx = get_cacheinfo_idx(this_leaf->type);
127	propname = cache_type_info[ct_idx].size_prop;
128
129	of_property_read_u32(np, propname, &this_leaf->size);
 
 
130}
131
132/* not cache_line_size() because that's a macro in include/linux/cache.h */
133static void cache_get_line_size(struct cacheinfo *this_leaf,
134				struct device_node *np)
135{
 
136	int i, lim, ct_idx;
137
138	ct_idx = get_cacheinfo_idx(this_leaf->type);
139	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140
141	for (i = 0; i < lim; i++) {
142		int ret;
143		u32 line_size;
144		const char *propname;
145
146		propname = cache_type_info[ct_idx].line_size_props[i];
147		ret = of_property_read_u32(np, propname, &line_size);
148		if (!ret) {
149			this_leaf->coherency_line_size = line_size;
150			break;
151		}
152	}
 
 
 
153}
154
155static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156{
157	const char *propname;
 
158	int ct_idx;
159
160	ct_idx = get_cacheinfo_idx(this_leaf->type);
161	propname = cache_type_info[ct_idx].nr_sets_prop;
162
163	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
 
 
164}
165
166static void cache_associativity(struct cacheinfo *this_leaf)
167{
168	unsigned int line_size = this_leaf->coherency_line_size;
169	unsigned int nr_sets = this_leaf->number_of_sets;
170	unsigned int size = this_leaf->size;
171
172	/*
173	 * If the cache is fully associative, there is no need to
174	 * check the other properties.
175	 */
176	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178}
179
180static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181				  struct device_node *np)
182{
183	return of_property_read_bool(np, "cache-unified");
184}
185
186static void cache_of_set_props(struct cacheinfo *this_leaf,
187			       struct device_node *np)
188{
189	/*
190	 * init_cache_level must setup the cache level correctly
191	 * overriding the architecturally specified levels, so
192	 * if type is NONE at this stage, it should be unified
193	 */
194	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195	    cache_node_is_unified(this_leaf, np))
196		this_leaf->type = CACHE_TYPE_UNIFIED;
197	cache_size(this_leaf, np);
198	cache_get_line_size(this_leaf, np);
199	cache_nr_sets(this_leaf, np);
200	cache_associativity(this_leaf);
201}
202
203static int cache_setup_of_node(unsigned int cpu)
204{
205	struct device_node *np, *prev;
206	struct cacheinfo *this_leaf;
207	unsigned int index = 0;
208
209	np = of_cpu_device_node_get(cpu);
210	if (!np) {
211		pr_err("Failed to find cpu%d device node\n", cpu);
212		return -ENOENT;
213	}
214
215	if (!of_check_cache_nodes(np)) {
216		of_node_put(np);
217		return -ENOENT;
218	}
219
220	prev = np;
221
222	while (index < cache_leaves(cpu)) {
223		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
224		if (this_leaf->level != 1) {
225			np = of_find_next_cache_node(np);
226			of_node_put(prev);
227			prev = np;
228			if (!np)
229				break;
230		}
231		cache_of_set_props(this_leaf, np);
232		this_leaf->fw_token = np;
233		index++;
234	}
235
236	of_node_put(np);
237
238	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
239		return -ENOENT;
240
241	return 0;
242}
243
244static bool of_check_cache_nodes(struct device_node *np)
245{
246	struct device_node *next;
247
248	if (of_property_present(np, "cache-size")   ||
249	    of_property_present(np, "i-cache-size") ||
250	    of_property_present(np, "d-cache-size") ||
251	    of_property_present(np, "cache-unified"))
252		return true;
253
254	next = of_find_next_cache_node(np);
255	if (next) {
256		of_node_put(next);
257		return true;
258	}
259
260	return false;
261}
262
263static int of_count_cache_leaves(struct device_node *np)
264{
265	unsigned int leaves = 0;
266
267	if (of_property_read_bool(np, "cache-size"))
268		++leaves;
269	if (of_property_read_bool(np, "i-cache-size"))
270		++leaves;
271	if (of_property_read_bool(np, "d-cache-size"))
272		++leaves;
273
274	if (!leaves) {
275		/* The '[i-|d-|]cache-size' property is required, but
276		 * if absent, fallback on the 'cache-unified' property.
277		 */
278		if (of_property_read_bool(np, "cache-unified"))
279			return 1;
280		else
281			return 2;
282	}
283
284	return leaves;
285}
286
287int init_of_cache_level(unsigned int cpu)
288{
289	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
290	struct device_node *np = of_cpu_device_node_get(cpu);
291	struct device_node *prev = NULL;
292	unsigned int levels = 0, leaves, level;
293
294	if (!of_check_cache_nodes(np)) {
295		of_node_put(np);
296		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
297	}
298
299	leaves = of_count_cache_leaves(np);
300	if (leaves > 0)
301		levels = 1;
302
303	prev = np;
304	while ((np = of_find_next_cache_node(np))) {
305		of_node_put(prev);
306		prev = np;
307		if (!of_device_is_compatible(np, "cache"))
308			goto err_out;
309		if (of_property_read_u32(np, "cache-level", &level))
310			goto err_out;
311		if (level <= levels)
312			goto err_out;
313
314		leaves += of_count_cache_leaves(np);
315		levels = level;
316	}
317
318	of_node_put(np);
319	this_cpu_ci->num_levels = levels;
320	this_cpu_ci->num_leaves = leaves;
321
322	return 0;
323
324err_out:
325	of_node_put(np);
326	return -EINVAL;
327}
328
329#else
 
330static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
331int init_of_cache_level(unsigned int cpu) { return 0; }
332#endif
333
334int __weak cache_setup_acpi(unsigned int cpu)
335{
336	return -ENOTSUPP;
337}
338
339unsigned int coherency_max_size;
340
341static int cache_setup_properties(unsigned int cpu)
342{
343	int ret = 0;
344
345	if (of_have_populated_dt())
346		ret = cache_setup_of_node(cpu);
347	else if (!acpi_disabled)
348		ret = cache_setup_acpi(cpu);
349
350	// Assume there is no cache information available in DT/ACPI from now.
351	if (ret && use_arch_cache_info())
352		use_arch_info = true;
353
354	return ret;
355}
 
356
357static int cache_shared_cpu_map_setup(unsigned int cpu)
358{
359	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
360	struct cacheinfo *this_leaf, *sib_leaf;
361	unsigned int index, sib_index;
362	int ret = 0;
363
364	if (this_cpu_ci->cpu_map_populated)
365		return 0;
366
367	/*
368	 * skip setting up cache properties if LLC is valid, just need
369	 * to update the shared cpu_map if the cache attributes were
370	 * populated early before all the cpus are brought online
371	 */
372	if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
373		ret = cache_setup_properties(cpu);
374		if (ret)
375			return ret;
376	}
377
378	for (index = 0; index < cache_leaves(cpu); index++) {
379		unsigned int i;
380
381		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
 
 
 
382
383		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
384		for_each_online_cpu(i) {
385			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
386
387			if (i == cpu || !sib_cpu_ci->info_list)
388				continue;/* skip if itself or no cacheinfo */
389			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
390				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
391
392				/*
393				 * Comparing cache IDs only makes sense if the leaves
394				 * belong to the same cache level of same type. Skip
395				 * the check if level and type do not match.
396				 */
397				if (sib_leaf->level != this_leaf->level ||
398				    sib_leaf->type != this_leaf->type)
399					continue;
400
401				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
402					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
403					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
404					break;
405				}
406			}
407		}
408		/* record the maximum cache line size */
409		if (this_leaf->coherency_line_size > coherency_max_size)
410			coherency_max_size = this_leaf->coherency_line_size;
411	}
412
413	/* shared_cpu_map is now populated for the cpu */
414	this_cpu_ci->cpu_map_populated = true;
415	return 0;
416}
417
418static void cache_shared_cpu_map_remove(unsigned int cpu)
419{
420	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
421	struct cacheinfo *this_leaf, *sib_leaf;
422	unsigned int sibling, index, sib_index;
423
424	for (index = 0; index < cache_leaves(cpu); index++) {
425		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
426		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
427			struct cpu_cacheinfo *sib_cpu_ci =
428						get_cpu_cacheinfo(sibling);
429
430			if (sibling == cpu || !sib_cpu_ci->info_list)
431				continue;/* skip if itself or no cacheinfo */
432
433			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
434				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
 
435
436				/*
437				 * Comparing cache IDs only makes sense if the leaves
438				 * belong to the same cache level of same type. Skip
439				 * the check if level and type do not match.
440				 */
441				if (sib_leaf->level != this_leaf->level ||
442				    sib_leaf->type != this_leaf->type)
443					continue;
444
445				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
446					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
447					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
448					break;
449				}
450			}
451		}
 
452	}
 
453
454	/* cpu is no longer populated in the shared map */
455	this_cpu_ci->cpu_map_populated = false;
 
 
456}
457
458static void free_cache_attributes(unsigned int cpu)
459{
460	if (!per_cpu_cacheinfo(cpu))
461		return;
462
463	cache_shared_cpu_map_remove(cpu);
464}
465
466int __weak early_cache_level(unsigned int cpu)
467{
468	return -ENOENT;
469}
470
471int __weak init_cache_level(unsigned int cpu)
472{
473	return -ENOENT;
474}
475
476int __weak populate_cache_leaves(unsigned int cpu)
477{
478	return -ENOENT;
479}
480
481static inline
482int allocate_cache_info(int cpu)
483{
484	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
485					 sizeof(struct cacheinfo), GFP_ATOMIC);
486	if (!per_cpu_cacheinfo(cpu)) {
487		cache_leaves(cpu) = 0;
488		return -ENOMEM;
489	}
490
491	return 0;
492}
493
494int fetch_cache_info(unsigned int cpu)
495{
496	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
497	unsigned int levels = 0, split_levels = 0;
498	int ret;
499
500	if (acpi_disabled) {
501		ret = init_of_cache_level(cpu);
502	} else {
503		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
504		if (!ret) {
505			this_cpu_ci->num_levels = levels;
506			/*
507			 * This assumes that:
508			 * - there cannot be any split caches (data/instruction)
509			 *   above a unified cache
510			 * - data/instruction caches come by pair
511			 */
512			this_cpu_ci->num_leaves = levels + split_levels;
513		}
514	}
515
516	if (ret || !cache_leaves(cpu)) {
517		ret = early_cache_level(cpu);
518		if (ret)
519			return ret;
520
521		if (!cache_leaves(cpu))
522			return -ENOENT;
523
524		this_cpu_ci->early_ci_levels = true;
525	}
526
527	return allocate_cache_info(cpu);
528}
529
530static inline int init_level_allocate_ci(unsigned int cpu)
531{
532	unsigned int early_leaves = cache_leaves(cpu);
533
534	/* Since early initialization/allocation of the cacheinfo is allowed
535	 * via fetch_cache_info() and this also gets called as CPU hotplug
536	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
537	 * as it will happen only once (the cacheinfo memory is never freed).
538	 * Just populate the cacheinfo. However, if the cacheinfo has been
539	 * allocated early through the arch-specific early_cache_level() call,
540	 * there is a chance the info is wrong (this can happen on arm64). In
541	 * that case, call init_cache_level() anyway to give the arch-specific
542	 * code a chance to make things right.
543	 */
544	if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
545		return 0;
546
547	if (init_cache_level(cpu) || !cache_leaves(cpu))
548		return -ENOENT;
549
550	/*
551	 * Now that we have properly initialized the cache level info, make
552	 * sure we don't try to do that again the next time we are called
553	 * (e.g. as CPU hotplug callbacks).
554	 */
555	ci_cacheinfo(cpu)->early_ci_levels = false;
556
557	if (cache_leaves(cpu) <= early_leaves)
558		return 0;
559
560	kfree(per_cpu_cacheinfo(cpu));
561	return allocate_cache_info(cpu);
562}
563
564int detect_cache_attributes(unsigned int cpu)
565{
566	int ret;
567
568	ret = init_level_allocate_ci(cpu);
569	if (ret)
570		return ret;
571
572	/*
573	 * If LLC is valid the cache leaves were already populated so just go to
574	 * update the cpu map.
575	 */
576	if (!last_level_cache_is_valid(cpu)) {
577		/*
578		 * populate_cache_leaves() may completely setup the cache leaves and
579		 * shared_cpu_map or it may leave it partially setup.
580		 */
581		ret = populate_cache_leaves(cpu);
582		if (ret)
583			goto free_ci;
584	}
585
586	/*
587	 * For systems using DT for cache hierarchy, fw_token
588	 * and shared_cpu_map will be set up here only if they are
589	 * not populated already
590	 */
591	ret = cache_shared_cpu_map_setup(cpu);
592	if (ret) {
593		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
594		goto free_ci;
595	}
596
 
597	return 0;
598
599free_ci:
600	free_cache_attributes(cpu);
601	return ret;
602}
603
604/* pointer to cpuX/cache device */
605static DEFINE_PER_CPU(struct device *, ci_cache_dev);
606#define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
607
608static cpumask_t cache_dev_map;
609
610/* pointer to array of devices for cpuX/cache/indexY */
611static DEFINE_PER_CPU(struct device **, ci_index_dev);
612#define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
613#define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
614
615#define show_one(file_name, object)				\
616static ssize_t file_name##_show(struct device *dev,		\
617		struct device_attribute *attr, char *buf)	\
618{								\
619	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
620	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
621}
622
623show_one(id, id);
624show_one(level, level);
625show_one(coherency_line_size, coherency_line_size);
626show_one(number_of_sets, number_of_sets);
627show_one(physical_line_partition, physical_line_partition);
628show_one(ways_of_associativity, ways_of_associativity);
629
630static ssize_t size_show(struct device *dev,
631			 struct device_attribute *attr, char *buf)
632{
633	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
634
635	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
636}
637
638static ssize_t shared_cpu_map_show(struct device *dev,
639				   struct device_attribute *attr, char *buf)
640{
641	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
642	const struct cpumask *mask = &this_leaf->shared_cpu_map;
643
644	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
 
 
 
 
 
 
645}
646
647static ssize_t shared_cpu_list_show(struct device *dev,
648				    struct device_attribute *attr, char *buf)
649{
650	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
651	const struct cpumask *mask = &this_leaf->shared_cpu_map;
652
653	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
654}
655
656static ssize_t type_show(struct device *dev,
657			 struct device_attribute *attr, char *buf)
658{
659	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
660	const char *output;
661
662	switch (this_leaf->type) {
663	case CACHE_TYPE_DATA:
664		output = "Data";
665		break;
666	case CACHE_TYPE_INST:
667		output = "Instruction";
668		break;
669	case CACHE_TYPE_UNIFIED:
670		output = "Unified";
671		break;
672	default:
673		return -EINVAL;
674	}
675
676	return sysfs_emit(buf, "%s\n", output);
677}
678
679static ssize_t allocation_policy_show(struct device *dev,
680				      struct device_attribute *attr, char *buf)
681{
682	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
683	unsigned int ci_attr = this_leaf->attributes;
684	const char *output;
685
686	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
687		output = "ReadWriteAllocate";
688	else if (ci_attr & CACHE_READ_ALLOCATE)
689		output = "ReadAllocate";
690	else if (ci_attr & CACHE_WRITE_ALLOCATE)
691		output = "WriteAllocate";
692	else
693		return 0;
694
695	return sysfs_emit(buf, "%s\n", output);
696}
697
698static ssize_t write_policy_show(struct device *dev,
699				 struct device_attribute *attr, char *buf)
700{
701	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
702	unsigned int ci_attr = this_leaf->attributes;
703	int n = 0;
704
705	if (ci_attr & CACHE_WRITE_THROUGH)
706		n = sysfs_emit(buf, "WriteThrough\n");
707	else if (ci_attr & CACHE_WRITE_BACK)
708		n = sysfs_emit(buf, "WriteBack\n");
709	return n;
710}
711
712static DEVICE_ATTR_RO(id);
713static DEVICE_ATTR_RO(level);
714static DEVICE_ATTR_RO(type);
715static DEVICE_ATTR_RO(coherency_line_size);
716static DEVICE_ATTR_RO(ways_of_associativity);
717static DEVICE_ATTR_RO(number_of_sets);
718static DEVICE_ATTR_RO(size);
719static DEVICE_ATTR_RO(allocation_policy);
720static DEVICE_ATTR_RO(write_policy);
721static DEVICE_ATTR_RO(shared_cpu_map);
722static DEVICE_ATTR_RO(shared_cpu_list);
723static DEVICE_ATTR_RO(physical_line_partition);
724
725static struct attribute *cache_default_attrs[] = {
726	&dev_attr_id.attr,
727	&dev_attr_type.attr,
728	&dev_attr_level.attr,
729	&dev_attr_shared_cpu_map.attr,
730	&dev_attr_shared_cpu_list.attr,
731	&dev_attr_coherency_line_size.attr,
732	&dev_attr_ways_of_associativity.attr,
733	&dev_attr_number_of_sets.attr,
734	&dev_attr_size.attr,
735	&dev_attr_allocation_policy.attr,
736	&dev_attr_write_policy.attr,
737	&dev_attr_physical_line_partition.attr,
738	NULL
739};
740
741static umode_t
742cache_default_attrs_is_visible(struct kobject *kobj,
743			       struct attribute *attr, int unused)
744{
745	struct device *dev = kobj_to_dev(kobj);
746	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
747	const struct cpumask *mask = &this_leaf->shared_cpu_map;
748	umode_t mode = attr->mode;
749
750	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
751		return mode;
752	if ((attr == &dev_attr_type.attr) && this_leaf->type)
753		return mode;
754	if ((attr == &dev_attr_level.attr) && this_leaf->level)
755		return mode;
756	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
757		return mode;
758	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
759		return mode;
760	if ((attr == &dev_attr_coherency_line_size.attr) &&
761	    this_leaf->coherency_line_size)
762		return mode;
763	if ((attr == &dev_attr_ways_of_associativity.attr) &&
764	    this_leaf->size) /* allow 0 = full associativity */
765		return mode;
766	if ((attr == &dev_attr_number_of_sets.attr) &&
767	    this_leaf->number_of_sets)
768		return mode;
769	if ((attr == &dev_attr_size.attr) && this_leaf->size)
770		return mode;
771	if ((attr == &dev_attr_write_policy.attr) &&
772	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
773		return mode;
774	if ((attr == &dev_attr_allocation_policy.attr) &&
775	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
776		return mode;
777	if ((attr == &dev_attr_physical_line_partition.attr) &&
778	    this_leaf->physical_line_partition)
779		return mode;
780
781	return 0;
782}
783
784static const struct attribute_group cache_default_group = {
785	.attrs = cache_default_attrs,
786	.is_visible = cache_default_attrs_is_visible,
787};
788
789static const struct attribute_group *cache_default_groups[] = {
790	&cache_default_group,
791	NULL,
792};
793
794static const struct attribute_group *cache_private_groups[] = {
795	&cache_default_group,
796	NULL, /* Place holder for private group */
797	NULL,
798};
799
800const struct attribute_group *
801__weak cache_get_priv_group(struct cacheinfo *this_leaf)
802{
803	return NULL;
804}
805
806static const struct attribute_group **
807cache_get_attribute_groups(struct cacheinfo *this_leaf)
808{
809	const struct attribute_group *priv_group =
810			cache_get_priv_group(this_leaf);
811
812	if (!priv_group)
813		return cache_default_groups;
814
815	if (!cache_private_groups[1])
816		cache_private_groups[1] = priv_group;
817
818	return cache_private_groups;
819}
820
821/* Add/Remove cache interface for CPU device */
822static void cpu_cache_sysfs_exit(unsigned int cpu)
823{
824	int i;
825	struct device *ci_dev;
826
827	if (per_cpu_index_dev(cpu)) {
828		for (i = 0; i < cache_leaves(cpu); i++) {
829			ci_dev = per_cache_index_dev(cpu, i);
830			if (!ci_dev)
831				continue;
832			device_unregister(ci_dev);
833		}
834		kfree(per_cpu_index_dev(cpu));
835		per_cpu_index_dev(cpu) = NULL;
836	}
837	device_unregister(per_cpu_cache_dev(cpu));
838	per_cpu_cache_dev(cpu) = NULL;
839}
840
841static int cpu_cache_sysfs_init(unsigned int cpu)
842{
843	struct device *dev = get_cpu_device(cpu);
844
845	if (per_cpu_cacheinfo(cpu) == NULL)
846		return -ENOENT;
847
848	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
849	if (IS_ERR(per_cpu_cache_dev(cpu)))
850		return PTR_ERR(per_cpu_cache_dev(cpu));
851
852	/* Allocate all required memory */
853	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
854					 sizeof(struct device *), GFP_KERNEL);
855	if (unlikely(per_cpu_index_dev(cpu) == NULL))
856		goto err_out;
857
858	return 0;
859
860err_out:
861	cpu_cache_sysfs_exit(cpu);
862	return -ENOMEM;
863}
864
865static int cache_add_dev(unsigned int cpu)
866{
867	unsigned int i;
868	int rc;
869	struct device *ci_dev, *parent;
870	struct cacheinfo *this_leaf;
 
871	const struct attribute_group **cache_groups;
872
873	rc = cpu_cache_sysfs_init(cpu);
874	if (unlikely(rc < 0))
875		return rc;
876
877	parent = per_cpu_cache_dev(cpu);
878	for (i = 0; i < cache_leaves(cpu); i++) {
879		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
880		if (this_leaf->disable_sysfs)
881			continue;
882		if (this_leaf->type == CACHE_TYPE_NOCACHE)
883			break;
884		cache_groups = cache_get_attribute_groups(this_leaf);
885		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
886					   "index%1u", i);
887		if (IS_ERR(ci_dev)) {
888			rc = PTR_ERR(ci_dev);
889			goto err;
890		}
891		per_cache_index_dev(cpu, i) = ci_dev;
892	}
893	cpumask_set_cpu(cpu, &cache_dev_map);
894
895	return 0;
896err:
897	cpu_cache_sysfs_exit(cpu);
898	return rc;
899}
900
901/*
902 * Calculate the size of the per-CPU data cache slice.  This can be
903 * used to estimate the size of the data cache slice that can be used
904 * by one CPU under ideal circumstances.  UNIFIED caches are counted
905 * in addition to DATA caches.  So, please consider code cache usage
906 * when use the result.
907 *
908 * Because the cache inclusive/non-inclusive information isn't
909 * available, we just use the size of the per-CPU slice of LLC to make
910 * the result more predictable across architectures.
911 */
912static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
913{
914	struct cpu_cacheinfo *ci;
915	struct cacheinfo *llc;
916	unsigned int nr_shared;
917
918	if (!last_level_cache_is_valid(cpu))
919		return;
920
921	ci = ci_cacheinfo(cpu);
922	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
923
924	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
925		return;
926
927	nr_shared = cpumask_weight(&llc->shared_cpu_map);
928	if (nr_shared)
929		ci->per_cpu_data_slice_size = llc->size / nr_shared;
930}
931
932static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu)
933{
934	unsigned int icpu;
935
936	for_each_online_cpu(icpu) {
937		if (!cpu_online && icpu == cpu)
938			continue;
939		update_per_cpu_data_slice_size_cpu(icpu);
940	}
941}
942
943static int cacheinfo_cpu_online(unsigned int cpu)
944{
945	int rc = detect_cache_attributes(cpu);
946
947	if (rc)
948		return rc;
949	rc = cache_add_dev(cpu);
950	if (rc)
951		goto err;
952	update_per_cpu_data_slice_size(true, cpu);
953	setup_pcp_cacheinfo();
954	return 0;
955err:
956	free_cache_attributes(cpu);
957	return rc;
958}
959
960static int cacheinfo_cpu_pre_down(unsigned int cpu)
961{
962	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
963		cpu_cache_sysfs_exit(cpu);
964
965	free_cache_attributes(cpu);
966	update_per_cpu_data_slice_size(false, cpu);
967	setup_pcp_cacheinfo();
968	return 0;
969}
970
971static int __init cacheinfo_sysfs_init(void)
972{
973	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
974				 "base/cacheinfo:online",
975				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
976}
977device_initcall(cacheinfo_sysfs_init);
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * cacheinfo support - processor cache information via sysfs
  4 *
  5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
  6 * Author: Sudeep Holla <sudeep.holla@arm.com>
  7 */
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/acpi.h>
 11#include <linux/bitops.h>
 12#include <linux/cacheinfo.h>
 13#include <linux/compiler.h>
 14#include <linux/cpu.h>
 15#include <linux/device.h>
 16#include <linux/init.h>
 17#include <linux/of.h>
 18#include <linux/sched.h>
 19#include <linux/slab.h>
 20#include <linux/smp.h>
 21#include <linux/sysfs.h>
 22
 23/* pointer to per cpu cacheinfo */
 24static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
 25#define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
 26#define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
 27#define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
 
 
 
 
 
 28
 29struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
 30{
 31	return ci_cacheinfo(cpu);
 32}
 33
 34#ifdef CONFIG_OF
 35static int cache_setup_of_node(unsigned int cpu)
 36{
 37	struct device_node *np;
 38	struct cacheinfo *this_leaf;
 39	struct device *cpu_dev = get_cpu_device(cpu);
 40	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 41	unsigned int index = 0;
 
 
 
 
 
 
 
 
 
 42
 43	/* skip if of_node is already populated */
 44	if (this_cpu_ci->info_list->of_node)
 45		return 0;
 46
 47	if (!cpu_dev) {
 48		pr_err("No cpu device for CPU %d\n", cpu);
 49		return -ENODEV;
 50	}
 51	np = cpu_dev->of_node;
 52	if (!np) {
 53		pr_err("Failed to find cpu%d device node\n", cpu);
 54		return -ENOENT;
 55	}
 56
 57	while (index < cache_leaves(cpu)) {
 58		this_leaf = this_cpu_ci->info_list + index;
 59		if (this_leaf->level != 1)
 60			np = of_find_next_cache_node(np);
 61		else
 62			np = of_node_get(np);/* cpu node itself */
 63		if (!np)
 64			break;
 65		this_leaf->of_node = np;
 66		index++;
 67	}
 68
 69	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
 70		return -ENOENT;
 71
 72	return 0;
 73}
 74
 75static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
 76					   struct cacheinfo *sib_leaf)
 77{
 78	return sib_leaf->of_node == this_leaf->of_node;
 
 
 
 
 
 
 
 
 
 79}
 80
 
 
 
 
 81/* OF properties to query for a given cache type */
 82struct cache_type_info {
 83	const char *size_prop;
 84	const char *line_size_props[2];
 85	const char *nr_sets_prop;
 86};
 87
 88static const struct cache_type_info cache_type_info[] = {
 89	{
 90		.size_prop       = "cache-size",
 91		.line_size_props = { "cache-line-size",
 92				     "cache-block-size", },
 93		.nr_sets_prop    = "cache-sets",
 94	}, {
 95		.size_prop       = "i-cache-size",
 96		.line_size_props = { "i-cache-line-size",
 97				     "i-cache-block-size", },
 98		.nr_sets_prop    = "i-cache-sets",
 99	}, {
100		.size_prop       = "d-cache-size",
101		.line_size_props = { "d-cache-line-size",
102				     "d-cache-block-size", },
103		.nr_sets_prop    = "d-cache-sets",
104	},
105};
106
107static inline int get_cacheinfo_idx(enum cache_type type)
108{
109	if (type == CACHE_TYPE_UNIFIED)
110		return 0;
111	return type;
112}
113
114static void cache_size(struct cacheinfo *this_leaf)
115{
116	const char *propname;
117	const __be32 *cache_size;
118	int ct_idx;
119
120	ct_idx = get_cacheinfo_idx(this_leaf->type);
121	propname = cache_type_info[ct_idx].size_prop;
122
123	cache_size = of_get_property(this_leaf->of_node, propname, NULL);
124	if (cache_size)
125		this_leaf->size = of_read_number(cache_size, 1);
126}
127
128/* not cache_line_size() because that's a macro in include/linux/cache.h */
129static void cache_get_line_size(struct cacheinfo *this_leaf)
 
130{
131	const __be32 *line_size;
132	int i, lim, ct_idx;
133
134	ct_idx = get_cacheinfo_idx(this_leaf->type);
135	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
136
137	for (i = 0; i < lim; i++) {
 
 
138		const char *propname;
139
140		propname = cache_type_info[ct_idx].line_size_props[i];
141		line_size = of_get_property(this_leaf->of_node, propname, NULL);
142		if (line_size)
 
143			break;
 
144	}
145
146	if (line_size)
147		this_leaf->coherency_line_size = of_read_number(line_size, 1);
148}
149
150static void cache_nr_sets(struct cacheinfo *this_leaf)
151{
152	const char *propname;
153	const __be32 *nr_sets;
154	int ct_idx;
155
156	ct_idx = get_cacheinfo_idx(this_leaf->type);
157	propname = cache_type_info[ct_idx].nr_sets_prop;
158
159	nr_sets = of_get_property(this_leaf->of_node, propname, NULL);
160	if (nr_sets)
161		this_leaf->number_of_sets = of_read_number(nr_sets, 1);
162}
163
164static void cache_associativity(struct cacheinfo *this_leaf)
165{
166	unsigned int line_size = this_leaf->coherency_line_size;
167	unsigned int nr_sets = this_leaf->number_of_sets;
168	unsigned int size = this_leaf->size;
169
170	/*
171	 * If the cache is fully associative, there is no need to
172	 * check the other properties.
173	 */
174	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
175		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
176}
177
178static bool cache_node_is_unified(struct cacheinfo *this_leaf)
 
179{
180	return of_property_read_bool(this_leaf->of_node, "cache-unified");
181}
182
183static void cache_of_override_properties(unsigned int cpu)
 
184{
185	int index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186	struct cacheinfo *this_leaf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 
 
 
188
189	for (index = 0; index < cache_leaves(cpu); index++) {
190		this_leaf = this_cpu_ci->info_list + index;
191		/*
192		 * init_cache_level must setup the cache level correctly
193		 * overriding the architecturally specified levels, so
194		 * if type is NONE at this stage, it should be unified
195		 */
196		if (this_leaf->type == CACHE_TYPE_NOCACHE &&
197		    cache_node_is_unified(this_leaf))
198			this_leaf->type = CACHE_TYPE_UNIFIED;
199		cache_size(this_leaf);
200		cache_get_line_size(this_leaf);
201		cache_nr_sets(this_leaf);
202		cache_associativity(this_leaf);
203	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204}
 
205#else
206static void cache_of_override_properties(unsigned int cpu) { }
207static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
208static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
209					   struct cacheinfo *sib_leaf)
 
 
 
 
 
 
 
 
 
210{
211	/*
212	 * For non-DT systems, assume unique level 1 cache, system-wide
213	 * shared caches for all other levels. This will be used only if
214	 * arch specific code has not populated shared_cpu_map
215	 */
216	return !(this_leaf->level == 1);
 
 
 
 
 
 
217}
218#endif
219
220static int cache_shared_cpu_map_setup(unsigned int cpu)
221{
222	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
223	struct cacheinfo *this_leaf, *sib_leaf;
224	unsigned int index;
225	int ret = 0;
226
227	if (this_cpu_ci->cpu_map_populated)
228		return 0;
229
230	if (of_have_populated_dt())
231		ret = cache_setup_of_node(cpu);
232	else if (!acpi_disabled)
233		/* No cache property/hierarchy support yet in ACPI */
234		ret = -ENOTSUPP;
235	if (ret)
236		return ret;
 
 
 
237
238	for (index = 0; index < cache_leaves(cpu); index++) {
239		unsigned int i;
240
241		this_leaf = this_cpu_ci->info_list + index;
242		/* skip if shared_cpu_map is already populated */
243		if (!cpumask_empty(&this_leaf->shared_cpu_map))
244			continue;
245
246		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
247		for_each_online_cpu(i) {
248			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
249
250			if (i == cpu || !sib_cpu_ci->info_list)
251				continue;/* skip if itself or no cacheinfo */
252			sib_leaf = sib_cpu_ci->info_list + index;
253			if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
254				cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
255				cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
256			}
257		}
 
 
 
258	}
259
 
 
260	return 0;
261}
262
263static void cache_shared_cpu_map_remove(unsigned int cpu)
264{
265	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
266	struct cacheinfo *this_leaf, *sib_leaf;
267	unsigned int sibling, index;
268
269	for (index = 0; index < cache_leaves(cpu); index++) {
270		this_leaf = this_cpu_ci->info_list + index;
271		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
272			struct cpu_cacheinfo *sib_cpu_ci;
 
273
274			if (sibling == cpu) /* skip itself */
275				continue;
276
277			sib_cpu_ci = get_cpu_cacheinfo(sibling);
278			if (!sib_cpu_ci->info_list)
279				continue;
280
281			sib_leaf = sib_cpu_ci->info_list + index;
282			cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
283			cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
 
 
 
 
 
 
 
 
 
 
 
 
284		}
285		of_node_put(this_leaf->of_node);
286	}
287}
288
289static void cache_override_properties(unsigned int cpu)
290{
291	if (of_have_populated_dt())
292		return cache_of_override_properties(cpu);
293}
294
295static void free_cache_attributes(unsigned int cpu)
296{
297	if (!per_cpu_cacheinfo(cpu))
298		return;
299
300	cache_shared_cpu_map_remove(cpu);
 
301
302	kfree(per_cpu_cacheinfo(cpu));
303	per_cpu_cacheinfo(cpu) = NULL;
 
304}
305
306int __weak init_cache_level(unsigned int cpu)
307{
308	return -ENOENT;
309}
310
311int __weak populate_cache_leaves(unsigned int cpu)
312{
313	return -ENOENT;
314}
315
316static int detect_cache_attributes(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
317{
 
 
318	int ret;
319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320	if (init_cache_level(cpu) || !cache_leaves(cpu))
321		return -ENOENT;
322
323	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
324					 sizeof(struct cacheinfo), GFP_KERNEL);
325	if (per_cpu_cacheinfo(cpu) == NULL)
326		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
327
328	ret = populate_cache_leaves(cpu);
329	if (ret)
330		goto free_ci;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331	/*
332	 * For systems using DT for cache hierarchy, of_node and shared_cpu_map
333	 * will be set up here only if they are not populated already
 
334	 */
335	ret = cache_shared_cpu_map_setup(cpu);
336	if (ret) {
337		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
338		goto free_ci;
339	}
340
341	cache_override_properties(cpu);
342	return 0;
343
344free_ci:
345	free_cache_attributes(cpu);
346	return ret;
347}
348
349/* pointer to cpuX/cache device */
350static DEFINE_PER_CPU(struct device *, ci_cache_dev);
351#define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
352
353static cpumask_t cache_dev_map;
354
355/* pointer to array of devices for cpuX/cache/indexY */
356static DEFINE_PER_CPU(struct device **, ci_index_dev);
357#define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
358#define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
359
360#define show_one(file_name, object)				\
361static ssize_t file_name##_show(struct device *dev,		\
362		struct device_attribute *attr, char *buf)	\
363{								\
364	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
365	return sprintf(buf, "%u\n", this_leaf->object);		\
366}
367
368show_one(id, id);
369show_one(level, level);
370show_one(coherency_line_size, coherency_line_size);
371show_one(number_of_sets, number_of_sets);
372show_one(physical_line_partition, physical_line_partition);
373show_one(ways_of_associativity, ways_of_associativity);
374
375static ssize_t size_show(struct device *dev,
376			 struct device_attribute *attr, char *buf)
377{
378	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
379
380	return sprintf(buf, "%uK\n", this_leaf->size >> 10);
381}
382
383static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
 
384{
385	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
386	const struct cpumask *mask = &this_leaf->shared_cpu_map;
387
388	return cpumap_print_to_pagebuf(list, buf, mask);
389}
390
391static ssize_t shared_cpu_map_show(struct device *dev,
392				   struct device_attribute *attr, char *buf)
393{
394	return shared_cpumap_show_func(dev, false, buf);
395}
396
397static ssize_t shared_cpu_list_show(struct device *dev,
398				    struct device_attribute *attr, char *buf)
399{
400	return shared_cpumap_show_func(dev, true, buf);
 
 
 
401}
402
403static ssize_t type_show(struct device *dev,
404			 struct device_attribute *attr, char *buf)
405{
406	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
 
407
408	switch (this_leaf->type) {
409	case CACHE_TYPE_DATA:
410		return sprintf(buf, "Data\n");
 
411	case CACHE_TYPE_INST:
412		return sprintf(buf, "Instruction\n");
 
413	case CACHE_TYPE_UNIFIED:
414		return sprintf(buf, "Unified\n");
 
415	default:
416		return -EINVAL;
417	}
 
 
418}
419
420static ssize_t allocation_policy_show(struct device *dev,
421				      struct device_attribute *attr, char *buf)
422{
423	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
424	unsigned int ci_attr = this_leaf->attributes;
425	int n = 0;
426
427	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
428		n = sprintf(buf, "ReadWriteAllocate\n");
429	else if (ci_attr & CACHE_READ_ALLOCATE)
430		n = sprintf(buf, "ReadAllocate\n");
431	else if (ci_attr & CACHE_WRITE_ALLOCATE)
432		n = sprintf(buf, "WriteAllocate\n");
433	return n;
 
 
 
434}
435
436static ssize_t write_policy_show(struct device *dev,
437				 struct device_attribute *attr, char *buf)
438{
439	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
440	unsigned int ci_attr = this_leaf->attributes;
441	int n = 0;
442
443	if (ci_attr & CACHE_WRITE_THROUGH)
444		n = sprintf(buf, "WriteThrough\n");
445	else if (ci_attr & CACHE_WRITE_BACK)
446		n = sprintf(buf, "WriteBack\n");
447	return n;
448}
449
450static DEVICE_ATTR_RO(id);
451static DEVICE_ATTR_RO(level);
452static DEVICE_ATTR_RO(type);
453static DEVICE_ATTR_RO(coherency_line_size);
454static DEVICE_ATTR_RO(ways_of_associativity);
455static DEVICE_ATTR_RO(number_of_sets);
456static DEVICE_ATTR_RO(size);
457static DEVICE_ATTR_RO(allocation_policy);
458static DEVICE_ATTR_RO(write_policy);
459static DEVICE_ATTR_RO(shared_cpu_map);
460static DEVICE_ATTR_RO(shared_cpu_list);
461static DEVICE_ATTR_RO(physical_line_partition);
462
463static struct attribute *cache_default_attrs[] = {
464	&dev_attr_id.attr,
465	&dev_attr_type.attr,
466	&dev_attr_level.attr,
467	&dev_attr_shared_cpu_map.attr,
468	&dev_attr_shared_cpu_list.attr,
469	&dev_attr_coherency_line_size.attr,
470	&dev_attr_ways_of_associativity.attr,
471	&dev_attr_number_of_sets.attr,
472	&dev_attr_size.attr,
473	&dev_attr_allocation_policy.attr,
474	&dev_attr_write_policy.attr,
475	&dev_attr_physical_line_partition.attr,
476	NULL
477};
478
479static umode_t
480cache_default_attrs_is_visible(struct kobject *kobj,
481			       struct attribute *attr, int unused)
482{
483	struct device *dev = kobj_to_dev(kobj);
484	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
485	const struct cpumask *mask = &this_leaf->shared_cpu_map;
486	umode_t mode = attr->mode;
487
488	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
489		return mode;
490	if ((attr == &dev_attr_type.attr) && this_leaf->type)
491		return mode;
492	if ((attr == &dev_attr_level.attr) && this_leaf->level)
493		return mode;
494	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
495		return mode;
496	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
497		return mode;
498	if ((attr == &dev_attr_coherency_line_size.attr) &&
499	    this_leaf->coherency_line_size)
500		return mode;
501	if ((attr == &dev_attr_ways_of_associativity.attr) &&
502	    this_leaf->size) /* allow 0 = full associativity */
503		return mode;
504	if ((attr == &dev_attr_number_of_sets.attr) &&
505	    this_leaf->number_of_sets)
506		return mode;
507	if ((attr == &dev_attr_size.attr) && this_leaf->size)
508		return mode;
509	if ((attr == &dev_attr_write_policy.attr) &&
510	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
511		return mode;
512	if ((attr == &dev_attr_allocation_policy.attr) &&
513	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
514		return mode;
515	if ((attr == &dev_attr_physical_line_partition.attr) &&
516	    this_leaf->physical_line_partition)
517		return mode;
518
519	return 0;
520}
521
522static const struct attribute_group cache_default_group = {
523	.attrs = cache_default_attrs,
524	.is_visible = cache_default_attrs_is_visible,
525};
526
527static const struct attribute_group *cache_default_groups[] = {
528	&cache_default_group,
529	NULL,
530};
531
532static const struct attribute_group *cache_private_groups[] = {
533	&cache_default_group,
534	NULL, /* Place holder for private group */
535	NULL,
536};
537
538const struct attribute_group *
539__weak cache_get_priv_group(struct cacheinfo *this_leaf)
540{
541	return NULL;
542}
543
544static const struct attribute_group **
545cache_get_attribute_groups(struct cacheinfo *this_leaf)
546{
547	const struct attribute_group *priv_group =
548			cache_get_priv_group(this_leaf);
549
550	if (!priv_group)
551		return cache_default_groups;
552
553	if (!cache_private_groups[1])
554		cache_private_groups[1] = priv_group;
555
556	return cache_private_groups;
557}
558
559/* Add/Remove cache interface for CPU device */
560static void cpu_cache_sysfs_exit(unsigned int cpu)
561{
562	int i;
563	struct device *ci_dev;
564
565	if (per_cpu_index_dev(cpu)) {
566		for (i = 0; i < cache_leaves(cpu); i++) {
567			ci_dev = per_cache_index_dev(cpu, i);
568			if (!ci_dev)
569				continue;
570			device_unregister(ci_dev);
571		}
572		kfree(per_cpu_index_dev(cpu));
573		per_cpu_index_dev(cpu) = NULL;
574	}
575	device_unregister(per_cpu_cache_dev(cpu));
576	per_cpu_cache_dev(cpu) = NULL;
577}
578
579static int cpu_cache_sysfs_init(unsigned int cpu)
580{
581	struct device *dev = get_cpu_device(cpu);
582
583	if (per_cpu_cacheinfo(cpu) == NULL)
584		return -ENOENT;
585
586	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
587	if (IS_ERR(per_cpu_cache_dev(cpu)))
588		return PTR_ERR(per_cpu_cache_dev(cpu));
589
590	/* Allocate all required memory */
591	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
592					 sizeof(struct device *), GFP_KERNEL);
593	if (unlikely(per_cpu_index_dev(cpu) == NULL))
594		goto err_out;
595
596	return 0;
597
598err_out:
599	cpu_cache_sysfs_exit(cpu);
600	return -ENOMEM;
601}
602
603static int cache_add_dev(unsigned int cpu)
604{
605	unsigned int i;
606	int rc;
607	struct device *ci_dev, *parent;
608	struct cacheinfo *this_leaf;
609	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
610	const struct attribute_group **cache_groups;
611
612	rc = cpu_cache_sysfs_init(cpu);
613	if (unlikely(rc < 0))
614		return rc;
615
616	parent = per_cpu_cache_dev(cpu);
617	for (i = 0; i < cache_leaves(cpu); i++) {
618		this_leaf = this_cpu_ci->info_list + i;
619		if (this_leaf->disable_sysfs)
620			continue;
 
 
621		cache_groups = cache_get_attribute_groups(this_leaf);
622		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
623					   "index%1u", i);
624		if (IS_ERR(ci_dev)) {
625			rc = PTR_ERR(ci_dev);
626			goto err;
627		}
628		per_cache_index_dev(cpu, i) = ci_dev;
629	}
630	cpumask_set_cpu(cpu, &cache_dev_map);
631
632	return 0;
633err:
634	cpu_cache_sysfs_exit(cpu);
635	return rc;
636}
637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638static int cacheinfo_cpu_online(unsigned int cpu)
639{
640	int rc = detect_cache_attributes(cpu);
641
642	if (rc)
643		return rc;
644	rc = cache_add_dev(cpu);
645	if (rc)
646		free_cache_attributes(cpu);
 
 
 
 
 
647	return rc;
648}
649
650static int cacheinfo_cpu_pre_down(unsigned int cpu)
651{
652	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
653		cpu_cache_sysfs_exit(cpu);
654
655	free_cache_attributes(cpu);
 
 
656	return 0;
657}
658
659static int __init cacheinfo_sysfs_init(void)
660{
661	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
 
662				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
663}
664device_initcall(cacheinfo_sysfs_init);