Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *  			- Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *  			- Added support for C3 on SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/sort.h>
  20#include <linux/tick.h>
  21#include <linux/cpuidle.h>
  22#include <linux/cpu.h>
  23#include <linux/minmax.h>
  24#include <linux/perf_event.h>
  25#include <acpi/processor.h>
  26#include <linux/context_tracking.h>
  27
  28/*
  29 * Include the apic definitions for x86 to have the APIC timer related defines
  30 * available also for UP (on SMP it gets magically included via linux/smp.h).
  31 * asm/acpi.h is not an option, as it would require more include magic. Also
  32 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  33 */
  34#ifdef CONFIG_X86
  35#include <asm/apic.h>
  36#include <asm/cpu.h>
  37#endif
  38
 
 
 
 
  39#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  40
  41static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  42module_param(max_cstate, uint, 0400);
  43static bool nocst __read_mostly;
  44module_param(nocst, bool, 0400);
  45static bool bm_check_disable __read_mostly;
  46module_param(bm_check_disable, bool, 0400);
  47
  48static unsigned int latency_factor __read_mostly = 2;
  49module_param(latency_factor, uint, 0644);
  50
  51static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  52
  53struct cpuidle_driver acpi_idle_driver = {
  54	.name =		"acpi_idle",
  55	.owner =	THIS_MODULE,
  56};
  57
  58#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  59static
  60DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  61
  62static int disabled_by_idle_boot_param(void)
  63{
  64	return boot_option_idle_override == IDLE_POLL ||
  65		boot_option_idle_override == IDLE_HALT;
  66}
  67
  68/*
  69 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  70 * For now disable this. Probably a bug somewhere else.
  71 *
  72 * To skip this limit, boot/load with a large max_cstate limit.
  73 */
  74static int set_max_cstate(const struct dmi_system_id *id)
  75{
  76	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  77		return 0;
  78
  79	pr_notice("%s detected - limiting to C%ld max_cstate."
  80		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  81		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  82
  83	max_cstate = (long)id->driver_data;
  84
  85	return 0;
  86}
  87
  88static const struct dmi_system_id processor_power_dmi_table[] = {
  89	{ set_max_cstate, "Clevo 5600D", {
  90	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  91	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  92	 (void *)2},
  93	{ set_max_cstate, "Pavilion zv5000", {
  94	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  95	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  96	 (void *)1},
  97	{ set_max_cstate, "Asus L8400B", {
  98	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  99	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 100	 (void *)1},
 101	{},
 102};
 103
 104
 105/*
 106 * Callers should disable interrupts before the call and enable
 107 * interrupts after return.
 108 */
 109static void __cpuidle acpi_safe_halt(void)
 110{
 111	if (!tif_need_resched()) {
 112		raw_safe_halt();
 113		raw_local_irq_disable();
 114	}
 115}
 116
 117#ifdef ARCH_APICTIMER_STOPS_ON_C3
 118
 119/*
 120 * Some BIOS implementations switch to C3 in the published C2 state.
 121 * This seems to be a common problem on AMD boxen, but other vendors
 122 * are affected too. We pick the most conservative approach: we assume
 123 * that the local APIC stops in both C2 and C3.
 124 */
 125static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 126				   struct acpi_processor_cx *cx)
 127{
 128	struct acpi_processor_power *pwr = &pr->power;
 129	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 130
 131	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 132		return;
 133
 134	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 135		type = ACPI_STATE_C1;
 136
 137	/*
 138	 * Check, if one of the previous states already marked the lapic
 139	 * unstable
 140	 */
 141	if (pwr->timer_broadcast_on_state < state)
 142		return;
 143
 144	if (cx->type >= type)
 145		pr->power.timer_broadcast_on_state = state;
 146}
 147
 148static void __lapic_timer_propagate_broadcast(void *arg)
 149{
 150	struct acpi_processor *pr = arg;
 151
 152	if (pr->power.timer_broadcast_on_state < INT_MAX)
 153		tick_broadcast_enable();
 154	else
 155		tick_broadcast_disable();
 156}
 157
 158static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 159{
 160	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 161				 (void *)pr, 1);
 162}
 163
 164/* Power(C) State timer broadcast control */
 165static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 166					struct acpi_processor_cx *cx)
 167{
 168	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 
 
 
 
 
 
 
 
 169}
 170
 171#else
 172
 173static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 174				   struct acpi_processor_cx *cstate) { }
 175static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 176
 177static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 178					struct acpi_processor_cx *cx)
 179{
 180	return false;
 181}
 182
 183#endif
 184
 185#if defined(CONFIG_X86)
 186static void tsc_check_state(int state)
 187{
 188	switch (boot_cpu_data.x86_vendor) {
 189	case X86_VENDOR_HYGON:
 190	case X86_VENDOR_AMD:
 191	case X86_VENDOR_INTEL:
 192	case X86_VENDOR_CENTAUR:
 193	case X86_VENDOR_ZHAOXIN:
 194		/*
 195		 * AMD Fam10h TSC will tick in all
 196		 * C/P/S0/S1 states when this bit is set.
 197		 */
 198		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 199			return;
 200		fallthrough;
 
 201	default:
 202		/* TSC could halt in idle, so notify users */
 203		if (state > ACPI_STATE_C1)
 204			mark_tsc_unstable("TSC halts in idle");
 205	}
 206}
 207#else
 208static void tsc_check_state(int state) { return; }
 209#endif
 210
 211static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 212{
 213
 214	if (!pr->pblk)
 215		return -ENODEV;
 216
 217	/* if info is obtained from pblk/fadt, type equals state */
 218	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 219	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 220
 221#ifndef CONFIG_HOTPLUG_CPU
 222	/*
 223	 * Check for P_LVL2_UP flag before entering C2 and above on
 224	 * an SMP system.
 225	 */
 226	if ((num_online_cpus() > 1) &&
 227	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 228		return -ENODEV;
 229#endif
 230
 231	/* determine C2 and C3 address from pblk */
 232	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 233	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 234
 235	/* determine latencies from FADT */
 236	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 237	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 238
 239	/*
 240	 * FADT specified C2 latency must be less than or equal to
 241	 * 100 microseconds.
 242	 */
 243	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 244		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
 245				  acpi_gbl_FADT.c2_latency);
 246		/* invalidate C2 */
 247		pr->power.states[ACPI_STATE_C2].address = 0;
 248	}
 249
 250	/*
 251	 * FADT supplied C3 latency must be less than or equal to
 252	 * 1000 microseconds.
 253	 */
 254	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 255		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
 256				  acpi_gbl_FADT.c3_latency);
 257		/* invalidate C3 */
 258		pr->power.states[ACPI_STATE_C3].address = 0;
 259	}
 260
 261	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
 
 262			  pr->power.states[ACPI_STATE_C2].address,
 263			  pr->power.states[ACPI_STATE_C3].address);
 264
 265	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 266			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 267			 pr->power.states[ACPI_STATE_C2].address);
 268	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 269			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 270			 pr->power.states[ACPI_STATE_C3].address);
 271
 272	return 0;
 273}
 274
 275static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 276{
 277	if (!pr->power.states[ACPI_STATE_C1].valid) {
 278		/* set the first C-State to C1 */
 279		/* all processors need to support C1 */
 280		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 281		pr->power.states[ACPI_STATE_C1].valid = 1;
 282		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 283
 284		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 285			 ACPI_CX_DESC_LEN, "ACPI HLT");
 286	}
 287	/* the C0 state only exists as a filler in our array */
 288	pr->power.states[ACPI_STATE_C0].valid = 1;
 289	return 0;
 290}
 291
 292static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 293{
 294	int ret;
 
 
 
 
 
 295
 296	if (nocst)
 297		return -ENODEV;
 298
 299	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 300	if (ret)
 301		return ret;
 
 
 
 
 302
 303	if (!pr->power.count)
 304		return -EFAULT;
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306	pr->flags.has_cst = 1;
 307	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308}
 309
 310static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 311					   struct acpi_processor_cx *cx)
 312{
 313	static int bm_check_flag = -1;
 314	static int bm_control_flag = -1;
 315
 316
 317	if (!cx->address)
 318		return;
 319
 320	/*
 321	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 322	 * DMA transfers are used by any ISA device to avoid livelock.
 323	 * Note that we could disable Type-F DMA (as recommended by
 324	 * the erratum), but this is known to disrupt certain ISA
 325	 * devices thus we take the conservative approach.
 326	 */
 327	if (errata.piix4.fdma) {
 328		acpi_handle_debug(pr->handle,
 329				  "C3 not supported on PIIX4 with Type-F DMA\n");
 330		return;
 331	}
 332
 333	/* All the logic here assumes flags.bm_check is same across all CPUs */
 334	if (bm_check_flag == -1) {
 335		/* Determine whether bm_check is needed based on CPU  */
 336		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 337		bm_check_flag = pr->flags.bm_check;
 338		bm_control_flag = pr->flags.bm_control;
 339	} else {
 340		pr->flags.bm_check = bm_check_flag;
 341		pr->flags.bm_control = bm_control_flag;
 342	}
 343
 344	if (pr->flags.bm_check) {
 345		if (!pr->flags.bm_control) {
 346			if (pr->flags.has_cst != 1) {
 347				/* bus mastering control is necessary */
 348				acpi_handle_debug(pr->handle,
 349						  "C3 support requires BM control\n");
 350				return;
 351			} else {
 352				/* Here we enter C3 without bus mastering */
 353				acpi_handle_debug(pr->handle,
 354						  "C3 support without BM control\n");
 355			}
 356		}
 357	} else {
 358		/*
 359		 * WBINVD should be set in fadt, for C3 state to be
 360		 * supported on when bm_check is not required.
 361		 */
 362		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 363			acpi_handle_debug(pr->handle,
 364					  "Cache invalidation should work properly"
 365					  " for C3 to be enabled on SMP systems\n");
 366			return;
 367		}
 368	}
 369
 370	/*
 371	 * Otherwise we've met all of our C3 requirements.
 372	 * Normalize the C3 latency to expidite policy.  Enable
 373	 * checking of bus mastering status (bm_check) so we can
 374	 * use this in our C3 policy
 375	 */
 376	cx->valid = 1;
 377
 378	/*
 379	 * On older chipsets, BM_RLD needs to be set
 380	 * in order for Bus Master activity to wake the
 381	 * system from C3.  Newer chipsets handle DMA
 382	 * during C3 automatically and BM_RLD is a NOP.
 383	 * In either case, the proper way to
 384	 * handle BM_RLD is to set it and leave it set.
 385	 */
 386	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 387}
 388
 389static int acpi_cst_latency_cmp(const void *a, const void *b)
 390{
 391	const struct acpi_processor_cx *x = a, *y = b;
 392
 393	if (!(x->valid && y->valid))
 394		return 0;
 395	if (x->latency > y->latency)
 396		return 1;
 397	if (x->latency < y->latency)
 398		return -1;
 399	return 0;
 400}
 401static void acpi_cst_latency_swap(void *a, void *b, int n)
 402{
 403	struct acpi_processor_cx *x = a, *y = b;
 404
 405	if (!(x->valid && y->valid))
 406		return;
 407	swap(x->latency, y->latency);
 408}
 409
 410static int acpi_processor_power_verify(struct acpi_processor *pr)
 411{
 412	unsigned int i;
 413	unsigned int working = 0;
 414	unsigned int last_latency = 0;
 415	unsigned int last_type = 0;
 416	bool buggy_latency = false;
 417
 418	pr->power.timer_broadcast_on_state = INT_MAX;
 419
 420	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 421		struct acpi_processor_cx *cx = &pr->power.states[i];
 422
 423		switch (cx->type) {
 424		case ACPI_STATE_C1:
 425			cx->valid = 1;
 426			break;
 427
 428		case ACPI_STATE_C2:
 429			if (!cx->address)
 430				break;
 431			cx->valid = 1;
 432			break;
 433
 434		case ACPI_STATE_C3:
 435			acpi_processor_power_verify_c3(pr, cx);
 436			break;
 437		}
 438		if (!cx->valid)
 439			continue;
 440		if (cx->type >= last_type && cx->latency < last_latency)
 441			buggy_latency = true;
 442		last_latency = cx->latency;
 443		last_type = cx->type;
 444
 445		lapic_timer_check_state(i, pr, cx);
 446		tsc_check_state(cx->type);
 447		working++;
 448	}
 449
 450	if (buggy_latency) {
 451		pr_notice("FW issue: working around C-state latencies out of order\n");
 452		sort(&pr->power.states[1], max_cstate,
 453		     sizeof(struct acpi_processor_cx),
 454		     acpi_cst_latency_cmp,
 455		     acpi_cst_latency_swap);
 456	}
 457
 458	lapic_timer_propagate_broadcast(pr);
 459
 460	return working;
 461}
 462
 463static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 464{
 465	unsigned int i;
 466	int result;
 467
 468
 469	/* NOTE: the idle thread may not be running while calling
 470	 * this function */
 471
 472	/* Zero initialize all the C-states info. */
 473	memset(pr->power.states, 0, sizeof(pr->power.states));
 474
 475	result = acpi_processor_get_power_info_cst(pr);
 476	if (result == -ENODEV)
 477		result = acpi_processor_get_power_info_fadt(pr);
 478
 479	if (result)
 480		return result;
 481
 482	acpi_processor_get_power_info_default(pr);
 483
 484	pr->power.count = acpi_processor_power_verify(pr);
 485
 486	/*
 487	 * if one state of type C2 or C3 is available, mark this
 488	 * CPU as being "idle manageable"
 489	 */
 490	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 491		if (pr->power.states[i].valid) {
 492			pr->power.count = i;
 493			pr->flags.power = 1;
 
 494		}
 495	}
 496
 497	return 0;
 498}
 499
 500/**
 501 * acpi_idle_bm_check - checks if bus master activity was detected
 502 */
 503static int acpi_idle_bm_check(void)
 504{
 505	u32 bm_status = 0;
 506
 507	if (bm_check_disable)
 508		return 0;
 509
 510	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 511	if (bm_status)
 512		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 513	/*
 514	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 515	 * the true state of bus mastering activity; forcing us to
 516	 * manually check the BMIDEA bit of each IDE channel.
 517	 */
 518	else if (errata.piix4.bmisx) {
 519		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 520		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 521			bm_status = 1;
 522	}
 523	return bm_status;
 524}
 525
 526static __cpuidle void io_idle(unsigned long addr)
 527{
 528	/* IO port based C-state */
 529	inb(addr);
 530
 531#ifdef	CONFIG_X86
 532	/* No delay is needed if we are in guest */
 533	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 534		return;
 535	/*
 536	 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
 537	 * not this code.  Assume that any Intel systems using this
 538	 * are ancient and may need the dummy wait.  This also assumes
 539	 * that the motivating chipset issue was Intel-only.
 540	 */
 541	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 542		return;
 543#endif
 544	/*
 545	 * Dummy wait op - must do something useless after P_LVL2 read
 546	 * because chipsets cannot guarantee that STPCLK# signal gets
 547	 * asserted in time to freeze execution properly
 548	 *
 549	 * This workaround has been in place since the original ACPI
 550	 * implementation was merged, circa 2002.
 551	 *
 552	 * If a profile is pointing to this instruction, please first
 553	 * consider moving your system to a more modern idle
 554	 * mechanism.
 555	 */
 556	inl(acpi_gbl_FADT.xpm_timer_block.address);
 557}
 558
 559/**
 560 * acpi_idle_do_entry - enter idle state using the appropriate method
 561 * @cx: cstate data
 562 *
 563 * Caller disables interrupt before call and enables interrupt after return.
 564 */
 565static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 566{
 567	perf_lopwr_cb(true);
 568
 569	if (cx->entry_method == ACPI_CSTATE_FFH) {
 570		/* Call into architectural FFH based C-state */
 571		acpi_processor_ffh_cstate_enter(cx);
 572	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 573		acpi_safe_halt();
 574	} else {
 575		io_idle(cx->address);
 
 
 
 
 
 576	}
 577
 578	perf_lopwr_cb(false);
 579}
 580
 581/**
 582 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 583 * @dev: the target CPU
 584 * @index: the index of suggested state
 585 */
 586static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 587{
 588	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 589
 590	ACPI_FLUSH_CPU_CACHE();
 591
 592	while (1) {
 593
 594		if (cx->entry_method == ACPI_CSTATE_HALT)
 595			raw_safe_halt();
 596		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 597			io_idle(cx->address);
 
 
 598		} else
 599			return -ENODEV;
 600	}
 601
 602	/* Never reached */
 603	return 0;
 604}
 605
 606static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 607{
 608	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 609		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 610}
 611
 612static int c3_cpu_count;
 613static DEFINE_RAW_SPINLOCK(c3_lock);
 614
 615/**
 616 * acpi_idle_enter_bm - enters C3 with proper BM handling
 617 * @drv: cpuidle driver
 618 * @pr: Target processor
 619 * @cx: Target state context
 620 * @index: index of target state
 621 */
 622static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
 623			       struct acpi_processor *pr,
 624			       struct acpi_processor_cx *cx,
 625			       int index)
 626{
 627	static struct acpi_processor_cx safe_cx = {
 628		.entry_method = ACPI_CSTATE_HALT,
 629	};
 
 
 
 630
 631	/*
 632	 * disable bus master
 633	 * bm_check implies we need ARB_DIS
 634	 * bm_control implies whether we can do ARB_DIS
 635	 *
 636	 * That leaves a case where bm_check is set and bm_control is not set.
 637	 * In that case we cannot do much, we enter C3 without doing anything.
 
 638	 */
 639	bool dis_bm = pr->flags.bm_control;
 640
 641	instrumentation_begin();
 642
 643	/* If we can skip BM, demote to a safe state. */
 644	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 645		dis_bm = false;
 646		index = drv->safe_state_index;
 647		if (index >= 0) {
 648			cx = this_cpu_read(acpi_cstate[index]);
 649		} else {
 650			cx = &safe_cx;
 651			index = -EBUSY;
 652		}
 653	}
 654
 655	if (dis_bm) {
 656		raw_spin_lock(&c3_lock);
 657		c3_cpu_count++;
 658		/* Disable bus master arbitration when all CPUs are in C3 */
 659		if (c3_cpu_count == num_online_cpus())
 660			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 661		raw_spin_unlock(&c3_lock);
 662	}
 663
 664	ct_cpuidle_enter();
 665
 666	acpi_idle_do_entry(cx);
 667
 668	ct_cpuidle_exit();
 669
 670	/* Re-enable bus master arbitration */
 671	if (dis_bm) {
 672		raw_spin_lock(&c3_lock);
 673		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 674		c3_cpu_count--;
 675		raw_spin_unlock(&c3_lock);
 676	}
 677
 678	instrumentation_end();
 679
 680	return index;
 681}
 682
 683static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
 684			   struct cpuidle_driver *drv, int index)
 685{
 686	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 687	struct acpi_processor *pr;
 688
 689	pr = __this_cpu_read(processors);
 690	if (unlikely(!pr))
 691		return -EINVAL;
 692
 693	if (cx->type != ACPI_STATE_C1) {
 694		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
 695			return acpi_idle_enter_bm(drv, pr, cx, index);
 696
 697		/* C2 to C1 demotion. */
 698		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 699			index = ACPI_IDLE_STATE_START;
 700			cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 
 
 
 
 
 
 
 
 701		}
 702	}
 703
 
 
 704	if (cx->type == ACPI_STATE_C3)
 705		ACPI_FLUSH_CPU_CACHE();
 706
 707	acpi_idle_do_entry(cx);
 708
 
 
 709	return index;
 710}
 711
 712static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 713				  struct cpuidle_driver *drv, int index)
 714{
 715	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 716
 717	if (cx->type == ACPI_STATE_C3) {
 718		struct acpi_processor *pr = __this_cpu_read(processors);
 719
 720		if (unlikely(!pr))
 721			return 0;
 722
 723		if (pr->flags.bm_check) {
 724			u8 bm_sts_skip = cx->bm_sts_skip;
 725
 726			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
 727			cx->bm_sts_skip = 1;
 728			acpi_idle_enter_bm(drv, pr, cx, index);
 729			cx->bm_sts_skip = bm_sts_skip;
 730
 731			return 0;
 732		} else {
 733			ACPI_FLUSH_CPU_CACHE();
 734		}
 735	}
 736	acpi_idle_do_entry(cx);
 737
 738	return 0;
 739}
 740
 741static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 742					   struct cpuidle_device *dev)
 743{
 744	int i, count = ACPI_IDLE_STATE_START;
 745	struct acpi_processor_cx *cx;
 746	struct cpuidle_state *state;
 747
 748	if (max_cstate == 0)
 749		max_cstate = 1;
 750
 751	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 752		state = &acpi_idle_driver.states[count];
 753		cx = &pr->power.states[i];
 754
 755		if (!cx->valid)
 756			continue;
 757
 758		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 759
 760		if (lapic_timer_needs_broadcast(pr, cx))
 761			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 762
 763		if (cx->type == ACPI_STATE_C3) {
 764			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
 765			if (pr->flags.bm_check)
 766				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
 767		}
 768
 769		count++;
 770		if (count == CPUIDLE_STATE_MAX)
 771			break;
 772	}
 773
 774	if (!count)
 775		return -EINVAL;
 776
 777	return 0;
 778}
 779
 780static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 781{
 782	int i, count;
 783	struct acpi_processor_cx *cx;
 784	struct cpuidle_state *state;
 785	struct cpuidle_driver *drv = &acpi_idle_driver;
 786
 787	if (max_cstate == 0)
 788		max_cstate = 1;
 789
 790	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 791		cpuidle_poll_state_init(drv);
 792		count = 1;
 793	} else {
 794		count = 0;
 795	}
 796
 797	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 798		cx = &pr->power.states[i];
 799
 800		if (!cx->valid)
 801			continue;
 802
 803		state = &drv->states[count];
 804		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 805		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 806		state->exit_latency = cx->latency;
 807		state->target_residency = cx->latency * latency_factor;
 808		state->enter = acpi_idle_enter;
 809
 810		state->flags = 0;
 811		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
 812		    cx->type == ACPI_STATE_C3) {
 813			state->enter_dead = acpi_idle_play_dead;
 814			if (cx->type != ACPI_STATE_C3)
 815				drv->safe_state_index = count;
 816		}
 817		/*
 818		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 819		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 820		 * particularly interesting from the suspend-to-idle angle, so
 821		 * avoid C1 and the situations in which we may need to fall back
 822		 * to it altogether.
 823		 */
 824		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 825			state->enter_s2idle = acpi_idle_enter_s2idle;
 826
 827		count++;
 828		if (count == CPUIDLE_STATE_MAX)
 829			break;
 830	}
 831
 832	drv->state_count = count;
 833
 834	if (!count)
 835		return -EINVAL;
 836
 837	return 0;
 838}
 839
 840static inline void acpi_processor_cstate_first_run_checks(void)
 841{
 
 842	static int first_run;
 843
 844	if (first_run)
 845		return;
 846	dmi_check_system(processor_power_dmi_table);
 847	max_cstate = acpi_processor_cstate_check(max_cstate);
 848	if (max_cstate < ACPI_C_STATES_MAX)
 849		pr_notice("processor limited to max C-state %d\n", max_cstate);
 850
 851	first_run++;
 852
 853	if (nocst)
 854		return;
 855
 856	acpi_processor_claim_cst_control();
 
 
 
 857}
 858#else
 859
 860static inline int disabled_by_idle_boot_param(void) { return 0; }
 861static inline void acpi_processor_cstate_first_run_checks(void) { }
 862static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 863{
 864	return -ENODEV;
 865}
 866
 867static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 868					   struct cpuidle_device *dev)
 869{
 870	return -EINVAL;
 871}
 872
 873static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 874{
 875	return -EINVAL;
 876}
 877
 878#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 879
 880struct acpi_lpi_states_array {
 881	unsigned int size;
 882	unsigned int composite_states_size;
 883	struct acpi_lpi_state *entries;
 884	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 885};
 886
 887static int obj_get_integer(union acpi_object *obj, u32 *value)
 888{
 889	if (obj->type != ACPI_TYPE_INTEGER)
 890		return -EINVAL;
 891
 892	*value = obj->integer.value;
 893	return 0;
 894}
 895
 896static int acpi_processor_evaluate_lpi(acpi_handle handle,
 897				       struct acpi_lpi_states_array *info)
 898{
 899	acpi_status status;
 900	int ret = 0;
 901	int pkg_count, state_idx = 1, loop;
 902	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 903	union acpi_object *lpi_data;
 904	struct acpi_lpi_state *lpi_state;
 905
 906	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 907	if (ACPI_FAILURE(status)) {
 908		acpi_handle_debug(handle, "No _LPI, giving up\n");
 909		return -ENODEV;
 910	}
 911
 912	lpi_data = buffer.pointer;
 913
 914	/* There must be at least 4 elements = 3 elements + 1 package */
 915	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 916	    lpi_data->package.count < 4) {
 917		pr_debug("not enough elements in _LPI\n");
 918		ret = -ENODATA;
 919		goto end;
 920	}
 921
 922	pkg_count = lpi_data->package.elements[2].integer.value;
 923
 924	/* Validate number of power states. */
 925	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 926		pr_debug("count given by _LPI is not valid\n");
 927		ret = -ENODATA;
 928		goto end;
 929	}
 930
 931	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 932	if (!lpi_state) {
 933		ret = -ENOMEM;
 934		goto end;
 935	}
 936
 937	info->size = pkg_count;
 938	info->entries = lpi_state;
 939
 940	/* LPI States start at index 3 */
 941	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 942		union acpi_object *element, *pkg_elem, *obj;
 943
 944		element = &lpi_data->package.elements[loop];
 945		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 946			continue;
 947
 948		pkg_elem = element->package.elements;
 949
 950		obj = pkg_elem + 6;
 951		if (obj->type == ACPI_TYPE_BUFFER) {
 952			struct acpi_power_register *reg;
 953
 954			reg = (struct acpi_power_register *)obj->buffer.pointer;
 955			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 956			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 957				continue;
 958
 959			lpi_state->address = reg->address;
 960			lpi_state->entry_method =
 961				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 962				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 963		} else if (obj->type == ACPI_TYPE_INTEGER) {
 964			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 965			lpi_state->address = obj->integer.value;
 966		} else {
 967			continue;
 968		}
 969
 970		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 971
 972		obj = pkg_elem + 9;
 973		if (obj->type == ACPI_TYPE_STRING)
 974			strscpy(lpi_state->desc, obj->string.pointer,
 975				ACPI_CX_DESC_LEN);
 976
 977		lpi_state->index = state_idx;
 978		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 979			pr_debug("No min. residency found, assuming 10 us\n");
 980			lpi_state->min_residency = 10;
 981		}
 982
 983		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 984			pr_debug("No wakeup residency found, assuming 10 us\n");
 985			lpi_state->wake_latency = 10;
 986		}
 987
 988		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 989			lpi_state->flags = 0;
 990
 991		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 992			lpi_state->arch_flags = 0;
 993
 994		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 995			lpi_state->res_cnt_freq = 1;
 996
 997		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 998			lpi_state->enable_parent_state = 0;
 999	}
1000
1001	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1002end:
1003	kfree(buffer.pointer);
1004	return ret;
1005}
1006
1007/*
1008 * flat_state_cnt - the number of composite LPI states after the process of flattening
1009 */
1010static int flat_state_cnt;
1011
1012/**
1013 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1014 *
1015 * @local: local LPI state
1016 * @parent: parent LPI state
1017 * @result: composite LPI state
1018 */
1019static bool combine_lpi_states(struct acpi_lpi_state *local,
1020			       struct acpi_lpi_state *parent,
1021			       struct acpi_lpi_state *result)
1022{
1023	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1024		if (!parent->address) /* 0 means autopromotable */
1025			return false;
1026		result->address = local->address + parent->address;
1027	} else {
1028		result->address = parent->address;
1029	}
1030
1031	result->min_residency = max(local->min_residency, parent->min_residency);
1032	result->wake_latency = local->wake_latency + parent->wake_latency;
1033	result->enable_parent_state = parent->enable_parent_state;
1034	result->entry_method = local->entry_method;
1035
1036	result->flags = parent->flags;
1037	result->arch_flags = parent->arch_flags;
1038	result->index = parent->index;
1039
1040	strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1041	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1042	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1043	return true;
1044}
1045
1046#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1047
1048static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1049				  struct acpi_lpi_state *t)
1050{
1051	curr_level->composite_states[curr_level->composite_states_size++] = t;
1052}
1053
1054static int flatten_lpi_states(struct acpi_processor *pr,
1055			      struct acpi_lpi_states_array *curr_level,
1056			      struct acpi_lpi_states_array *prev_level)
1057{
1058	int i, j, state_count = curr_level->size;
1059	struct acpi_lpi_state *p, *t = curr_level->entries;
1060
1061	curr_level->composite_states_size = 0;
1062	for (j = 0; j < state_count; j++, t++) {
1063		struct acpi_lpi_state *flpi;
1064
1065		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1066			continue;
1067
1068		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1069			pr_warn("Limiting number of LPI states to max (%d)\n",
1070				ACPI_PROCESSOR_MAX_POWER);
1071			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1072			break;
1073		}
1074
1075		flpi = &pr->power.lpi_states[flat_state_cnt];
1076
1077		if (!prev_level) { /* leaf/processor node */
1078			memcpy(flpi, t, sizeof(*t));
1079			stash_composite_state(curr_level, flpi);
1080			flat_state_cnt++;
1081			continue;
1082		}
1083
1084		for (i = 0; i < prev_level->composite_states_size; i++) {
1085			p = prev_level->composite_states[i];
1086			if (t->index <= p->enable_parent_state &&
1087			    combine_lpi_states(p, t, flpi)) {
1088				stash_composite_state(curr_level, flpi);
1089				flat_state_cnt++;
1090				flpi++;
1091			}
1092		}
1093	}
1094
1095	kfree(curr_level->entries);
1096	return 0;
1097}
1098
1099int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1100{
1101	return -EOPNOTSUPP;
1102}
1103
1104static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1105{
1106	int ret, i;
1107	acpi_status status;
1108	acpi_handle handle = pr->handle, pr_ahandle;
1109	struct acpi_device *d = NULL;
1110	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1111
1112	/* make sure our architecture has support */
1113	ret = acpi_processor_ffh_lpi_probe(pr->id);
1114	if (ret == -EOPNOTSUPP)
1115		return ret;
1116
1117	if (!osc_pc_lpi_support_confirmed)
1118		return -EOPNOTSUPP;
1119
1120	if (!acpi_has_method(handle, "_LPI"))
1121		return -EINVAL;
1122
1123	flat_state_cnt = 0;
1124	prev = &info[0];
1125	curr = &info[1];
1126	handle = pr->handle;
1127	ret = acpi_processor_evaluate_lpi(handle, prev);
1128	if (ret)
1129		return ret;
1130	flatten_lpi_states(pr, prev, NULL);
1131
1132	status = acpi_get_parent(handle, &pr_ahandle);
1133	while (ACPI_SUCCESS(status)) {
1134		d = acpi_fetch_acpi_dev(pr_ahandle);
1135		if (!d)
1136			break;
1137
1138		handle = pr_ahandle;
1139
1140		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1141			break;
1142
1143		/* can be optional ? */
1144		if (!acpi_has_method(handle, "_LPI"))
1145			break;
1146
1147		ret = acpi_processor_evaluate_lpi(handle, curr);
1148		if (ret)
1149			break;
1150
1151		/* flatten all the LPI states in this level of hierarchy */
1152		flatten_lpi_states(pr, curr, prev);
1153
1154		tmp = prev, prev = curr, curr = tmp;
1155
1156		status = acpi_get_parent(handle, &pr_ahandle);
1157	}
1158
1159	pr->power.count = flat_state_cnt;
1160	/* reset the index after flattening */
1161	for (i = 0; i < pr->power.count; i++)
1162		pr->power.lpi_states[i].index = i;
1163
1164	/* Tell driver that _LPI is supported. */
1165	pr->flags.has_lpi = 1;
1166	pr->flags.power = 1;
1167
1168	return 0;
1169}
1170
 
 
 
 
 
1171int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1172{
1173	return -ENODEV;
1174}
1175
1176/**
1177 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1178 * @dev: the target CPU
1179 * @drv: cpuidle driver containing cpuidle state info
1180 * @index: index of target state
1181 *
1182 * Return: 0 for success or negative value for error
1183 */
1184static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1185			       struct cpuidle_driver *drv, int index)
1186{
1187	struct acpi_processor *pr;
1188	struct acpi_lpi_state *lpi;
1189
1190	pr = __this_cpu_read(processors);
1191
1192	if (unlikely(!pr))
1193		return -EINVAL;
1194
1195	lpi = &pr->power.lpi_states[index];
1196	if (lpi->entry_method == ACPI_CSTATE_FFH)
1197		return acpi_processor_ffh_lpi_enter(lpi);
1198
1199	return -EINVAL;
1200}
1201
1202static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1203{
1204	int i;
1205	struct acpi_lpi_state *lpi;
1206	struct cpuidle_state *state;
1207	struct cpuidle_driver *drv = &acpi_idle_driver;
1208
1209	if (!pr->flags.has_lpi)
1210		return -EOPNOTSUPP;
1211
1212	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1213		lpi = &pr->power.lpi_states[i];
1214
1215		state = &drv->states[i];
1216		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1217		strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1218		state->exit_latency = lpi->wake_latency;
1219		state->target_residency = lpi->min_residency;
1220		state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1221		if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1222			state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1223		state->enter = acpi_idle_lpi_enter;
1224		drv->safe_state_index = i;
1225	}
1226
1227	drv->state_count = i;
1228
1229	return 0;
1230}
1231
1232/**
1233 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1234 * global state data i.e. idle routines
1235 *
1236 * @pr: the ACPI processor
1237 */
1238static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1239{
1240	int i;
1241	struct cpuidle_driver *drv = &acpi_idle_driver;
1242
1243	if (!pr->flags.power_setup_done || !pr->flags.power)
1244		return -EINVAL;
1245
1246	drv->safe_state_index = -1;
1247	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1248		drv->states[i].name[0] = '\0';
1249		drv->states[i].desc[0] = '\0';
1250	}
1251
1252	if (pr->flags.has_lpi)
1253		return acpi_processor_setup_lpi_states(pr);
1254
1255	return acpi_processor_setup_cstates(pr);
1256}
1257
1258/**
1259 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1260 * device i.e. per-cpu data
1261 *
1262 * @pr: the ACPI processor
1263 * @dev : the cpuidle device
1264 */
1265static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1266					    struct cpuidle_device *dev)
1267{
1268	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1269		return -EINVAL;
1270
1271	dev->cpu = pr->id;
1272	if (pr->flags.has_lpi)
1273		return acpi_processor_ffh_lpi_probe(pr->id);
1274
1275	return acpi_processor_setup_cpuidle_cx(pr, dev);
1276}
1277
1278static int acpi_processor_get_power_info(struct acpi_processor *pr)
1279{
1280	int ret;
1281
1282	ret = acpi_processor_get_lpi_info(pr);
1283	if (ret)
1284		ret = acpi_processor_get_cstate_info(pr);
1285
1286	return ret;
1287}
1288
1289int acpi_processor_hotplug(struct acpi_processor *pr)
1290{
1291	int ret = 0;
1292	struct cpuidle_device *dev;
1293
1294	if (disabled_by_idle_boot_param())
1295		return 0;
1296
1297	if (!pr->flags.power_setup_done)
1298		return -ENODEV;
1299
1300	dev = per_cpu(acpi_cpuidle_device, pr->id);
1301	cpuidle_pause_and_lock();
1302	cpuidle_disable_device(dev);
1303	ret = acpi_processor_get_power_info(pr);
1304	if (!ret && pr->flags.power) {
1305		acpi_processor_setup_cpuidle_dev(pr, dev);
1306		ret = cpuidle_enable_device(dev);
1307	}
1308	cpuidle_resume_and_unlock();
1309
1310	return ret;
1311}
1312
1313int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1314{
1315	int cpu;
1316	struct acpi_processor *_pr;
1317	struct cpuidle_device *dev;
1318
1319	if (disabled_by_idle_boot_param())
1320		return 0;
1321
1322	if (!pr->flags.power_setup_done)
1323		return -ENODEV;
1324
1325	/*
1326	 * FIXME:  Design the ACPI notification to make it once per
1327	 * system instead of once per-cpu.  This condition is a hack
1328	 * to make the code that updates C-States be called once.
1329	 */
1330
1331	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1332
1333		/* Protect against cpu-hotplug */
1334		cpus_read_lock();
1335		cpuidle_pause_and_lock();
1336
1337		/* Disable all cpuidle devices */
1338		for_each_online_cpu(cpu) {
1339			_pr = per_cpu(processors, cpu);
1340			if (!_pr || !_pr->flags.power_setup_done)
1341				continue;
1342			dev = per_cpu(acpi_cpuidle_device, cpu);
1343			cpuidle_disable_device(dev);
1344		}
1345
1346		/* Populate Updated C-state information */
1347		acpi_processor_get_power_info(pr);
1348		acpi_processor_setup_cpuidle_states(pr);
1349
1350		/* Enable all cpuidle devices */
1351		for_each_online_cpu(cpu) {
1352			_pr = per_cpu(processors, cpu);
1353			if (!_pr || !_pr->flags.power_setup_done)
1354				continue;
1355			acpi_processor_get_power_info(_pr);
1356			if (_pr->flags.power) {
1357				dev = per_cpu(acpi_cpuidle_device, cpu);
1358				acpi_processor_setup_cpuidle_dev(_pr, dev);
1359				cpuidle_enable_device(dev);
1360			}
1361		}
1362		cpuidle_resume_and_unlock();
1363		cpus_read_unlock();
1364	}
1365
1366	return 0;
1367}
1368
1369static int acpi_processor_registered;
1370
1371int acpi_processor_power_init(struct acpi_processor *pr)
1372{
1373	int retval;
1374	struct cpuidle_device *dev;
1375
1376	if (disabled_by_idle_boot_param())
1377		return 0;
1378
1379	acpi_processor_cstate_first_run_checks();
1380
1381	if (!acpi_processor_get_power_info(pr))
1382		pr->flags.power_setup_done = 1;
1383
1384	/*
1385	 * Install the idle handler if processor power management is supported.
1386	 * Note that we use previously set idle handler will be used on
1387	 * platforms that only support C1.
1388	 */
1389	if (pr->flags.power) {
1390		/* Register acpi_idle_driver if not already registered */
1391		if (!acpi_processor_registered) {
1392			acpi_processor_setup_cpuidle_states(pr);
1393			retval = cpuidle_register_driver(&acpi_idle_driver);
1394			if (retval)
1395				return retval;
1396			pr_debug("%s registered with cpuidle\n",
1397				 acpi_idle_driver.name);
1398		}
1399
1400		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1401		if (!dev)
1402			return -ENOMEM;
1403		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1404
1405		acpi_processor_setup_cpuidle_dev(pr, dev);
1406
1407		/* Register per-cpu cpuidle_device. Cpuidle driver
1408		 * must already be registered before registering device
1409		 */
1410		retval = cpuidle_register_device(dev);
1411		if (retval) {
1412			if (acpi_processor_registered == 0)
1413				cpuidle_unregister_driver(&acpi_idle_driver);
1414			return retval;
1415		}
1416		acpi_processor_registered++;
1417	}
1418	return 0;
1419}
1420
1421int acpi_processor_power_exit(struct acpi_processor *pr)
1422{
1423	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1424
1425	if (disabled_by_idle_boot_param())
1426		return 0;
1427
1428	if (pr->flags.power) {
1429		cpuidle_unregister_device(dev);
1430		acpi_processor_registered--;
1431		if (acpi_processor_registered == 0)
1432			cpuidle_unregister_driver(&acpi_idle_driver);
1433	}
1434
1435	pr->flags.power_setup_done = 0;
1436	return 0;
1437}
v4.17
 
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
  28#include <linux/module.h>
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
 
  32#include <linux/tick.h>
  33#include <linux/cpuidle.h>
  34#include <linux/cpu.h>
 
 
  35#include <acpi/processor.h>
 
  36
  37/*
  38 * Include the apic definitions for x86 to have the APIC timer related defines
  39 * available also for UP (on SMP it gets magically included via linux/smp.h).
  40 * asm/acpi.h is not an option, as it would require more include magic. Also
  41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  42 */
  43#ifdef CONFIG_X86
  44#include <asm/apic.h>
 
  45#endif
  46
  47#define ACPI_PROCESSOR_CLASS            "processor"
  48#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  49ACPI_MODULE_NAME("processor_idle");
  50
  51#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  52
  53static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  54module_param(max_cstate, uint, 0000);
  55static unsigned int nocst __read_mostly;
  56module_param(nocst, uint, 0000);
  57static int bm_check_disable __read_mostly;
  58module_param(bm_check_disable, uint, 0000);
  59
  60static unsigned int latency_factor __read_mostly = 2;
  61module_param(latency_factor, uint, 0644);
  62
  63static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  64
  65struct cpuidle_driver acpi_idle_driver = {
  66	.name =		"acpi_idle",
  67	.owner =	THIS_MODULE,
  68};
  69
  70#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  71static
  72DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  73
  74static int disabled_by_idle_boot_param(void)
  75{
  76	return boot_option_idle_override == IDLE_POLL ||
  77		boot_option_idle_override == IDLE_HALT;
  78}
  79
  80/*
  81 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  82 * For now disable this. Probably a bug somewhere else.
  83 *
  84 * To skip this limit, boot/load with a large max_cstate limit.
  85 */
  86static int set_max_cstate(const struct dmi_system_id *id)
  87{
  88	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  89		return 0;
  90
  91	pr_notice("%s detected - limiting to C%ld max_cstate."
  92		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  93		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  94
  95	max_cstate = (long)id->driver_data;
  96
  97	return 0;
  98}
  99
 100static const struct dmi_system_id processor_power_dmi_table[] = {
 101	{ set_max_cstate, "Clevo 5600D", {
 102	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 103	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 104	 (void *)2},
 105	{ set_max_cstate, "Pavilion zv5000", {
 106	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 107	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 108	 (void *)1},
 109	{ set_max_cstate, "Asus L8400B", {
 110	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 111	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 112	 (void *)1},
 113	{},
 114};
 115
 116
 117/*
 118 * Callers should disable interrupts before the call and enable
 119 * interrupts after return.
 120 */
 121static void __cpuidle acpi_safe_halt(void)
 122{
 123	if (!tif_need_resched()) {
 124		safe_halt();
 125		local_irq_disable();
 126	}
 127}
 128
 129#ifdef ARCH_APICTIMER_STOPS_ON_C3
 130
 131/*
 132 * Some BIOS implementations switch to C3 in the published C2 state.
 133 * This seems to be a common problem on AMD boxen, but other vendors
 134 * are affected too. We pick the most conservative approach: we assume
 135 * that the local APIC stops in both C2 and C3.
 136 */
 137static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 138				   struct acpi_processor_cx *cx)
 139{
 140	struct acpi_processor_power *pwr = &pr->power;
 141	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 142
 143	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 144		return;
 145
 146	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 147		type = ACPI_STATE_C1;
 148
 149	/*
 150	 * Check, if one of the previous states already marked the lapic
 151	 * unstable
 152	 */
 153	if (pwr->timer_broadcast_on_state < state)
 154		return;
 155
 156	if (cx->type >= type)
 157		pr->power.timer_broadcast_on_state = state;
 158}
 159
 160static void __lapic_timer_propagate_broadcast(void *arg)
 161{
 162	struct acpi_processor *pr = (struct acpi_processor *) arg;
 163
 164	if (pr->power.timer_broadcast_on_state < INT_MAX)
 165		tick_broadcast_enable();
 166	else
 167		tick_broadcast_disable();
 168}
 169
 170static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 171{
 172	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 173				 (void *)pr, 1);
 174}
 175
 176/* Power(C) State timer broadcast control */
 177static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 178				       struct acpi_processor_cx *cx,
 179				       int broadcast)
 180{
 181	int state = cx - pr->power.states;
 182
 183	if (state >= pr->power.timer_broadcast_on_state) {
 184		if (broadcast)
 185			tick_broadcast_enter();
 186		else
 187			tick_broadcast_exit();
 188	}
 189}
 190
 191#else
 192
 193static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 194				   struct acpi_processor_cx *cstate) { }
 195static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 196static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 197				       struct acpi_processor_cx *cx,
 198				       int broadcast)
 199{
 
 200}
 201
 202#endif
 203
 204#if defined(CONFIG_X86)
 205static void tsc_check_state(int state)
 206{
 207	switch (boot_cpu_data.x86_vendor) {
 
 208	case X86_VENDOR_AMD:
 209	case X86_VENDOR_INTEL:
 210	case X86_VENDOR_CENTAUR:
 
 211		/*
 212		 * AMD Fam10h TSC will tick in all
 213		 * C/P/S0/S1 states when this bit is set.
 214		 */
 215		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 216			return;
 217
 218		/*FALL THROUGH*/
 219	default:
 220		/* TSC could halt in idle, so notify users */
 221		if (state > ACPI_STATE_C1)
 222			mark_tsc_unstable("TSC halts in idle");
 223	}
 224}
 225#else
 226static void tsc_check_state(int state) { return; }
 227#endif
 228
 229static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 230{
 231
 232	if (!pr->pblk)
 233		return -ENODEV;
 234
 235	/* if info is obtained from pblk/fadt, type equals state */
 236	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 237	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 238
 239#ifndef CONFIG_HOTPLUG_CPU
 240	/*
 241	 * Check for P_LVL2_UP flag before entering C2 and above on
 242	 * an SMP system.
 243	 */
 244	if ((num_online_cpus() > 1) &&
 245	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 246		return -ENODEV;
 247#endif
 248
 249	/* determine C2 and C3 address from pblk */
 250	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 251	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 252
 253	/* determine latencies from FADT */
 254	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 255	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 256
 257	/*
 258	 * FADT specified C2 latency must be less than or equal to
 259	 * 100 microseconds.
 260	 */
 261	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 262		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 263			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 264		/* invalidate C2 */
 265		pr->power.states[ACPI_STATE_C2].address = 0;
 266	}
 267
 268	/*
 269	 * FADT supplied C3 latency must be less than or equal to
 270	 * 1000 microseconds.
 271	 */
 272	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 273		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 274			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 275		/* invalidate C3 */
 276		pr->power.states[ACPI_STATE_C3].address = 0;
 277	}
 278
 279	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 280			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 281			  pr->power.states[ACPI_STATE_C2].address,
 282			  pr->power.states[ACPI_STATE_C3].address));
 
 
 
 
 
 
 
 283
 284	return 0;
 285}
 286
 287static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 288{
 289	if (!pr->power.states[ACPI_STATE_C1].valid) {
 290		/* set the first C-State to C1 */
 291		/* all processors need to support C1 */
 292		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 293		pr->power.states[ACPI_STATE_C1].valid = 1;
 294		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 295
 296		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 297			 ACPI_CX_DESC_LEN, "ACPI HLT");
 298	}
 299	/* the C0 state only exists as a filler in our array */
 300	pr->power.states[ACPI_STATE_C0].valid = 1;
 301	return 0;
 302}
 303
 304static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 305{
 306	acpi_status status;
 307	u64 count;
 308	int current_count;
 309	int i, ret = 0;
 310	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 311	union acpi_object *cst;
 312
 313	if (nocst)
 314		return -ENODEV;
 315
 316	current_count = 0;
 317
 318	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 319	if (ACPI_FAILURE(status)) {
 320		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 321		return -ENODEV;
 322	}
 323
 324	cst = buffer.pointer;
 
 325
 326	/* There must be at least 2 elements */
 327	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 328		pr_err("not enough elements in _CST\n");
 329		ret = -EFAULT;
 330		goto end;
 331	}
 332
 333	count = cst->package.elements[0].integer.value;
 334
 335	/* Validate number of power states. */
 336	if (count < 1 || count != cst->package.count - 1) {
 337		pr_err("count given by _CST is not valid\n");
 338		ret = -EFAULT;
 339		goto end;
 340	}
 341
 342	/* Tell driver that at least _CST is supported. */
 343	pr->flags.has_cst = 1;
 344
 345	for (i = 1; i <= count; i++) {
 346		union acpi_object *element;
 347		union acpi_object *obj;
 348		struct acpi_power_register *reg;
 349		struct acpi_processor_cx cx;
 350
 351		memset(&cx, 0, sizeof(cx));
 352
 353		element = &(cst->package.elements[i]);
 354		if (element->type != ACPI_TYPE_PACKAGE)
 355			continue;
 356
 357		if (element->package.count != 4)
 358			continue;
 359
 360		obj = &(element->package.elements[0]);
 361
 362		if (obj->type != ACPI_TYPE_BUFFER)
 363			continue;
 364
 365		reg = (struct acpi_power_register *)obj->buffer.pointer;
 366
 367		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 368		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 369			continue;
 370
 371		/* There should be an easy way to extract an integer... */
 372		obj = &(element->package.elements[1]);
 373		if (obj->type != ACPI_TYPE_INTEGER)
 374			continue;
 375
 376		cx.type = obj->integer.value;
 377		/*
 378		 * Some buggy BIOSes won't list C1 in _CST -
 379		 * Let acpi_processor_get_power_info_default() handle them later
 380		 */
 381		if (i == 1 && cx.type != ACPI_STATE_C1)
 382			current_count++;
 383
 384		cx.address = reg->address;
 385		cx.index = current_count + 1;
 386
 387		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 388		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 389			if (acpi_processor_ffh_cstate_probe
 390					(pr->id, &cx, reg) == 0) {
 391				cx.entry_method = ACPI_CSTATE_FFH;
 392			} else if (cx.type == ACPI_STATE_C1) {
 393				/*
 394				 * C1 is a special case where FIXED_HARDWARE
 395				 * can be handled in non-MWAIT way as well.
 396				 * In that case, save this _CST entry info.
 397				 * Otherwise, ignore this info and continue.
 398				 */
 399				cx.entry_method = ACPI_CSTATE_HALT;
 400				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 401			} else {
 402				continue;
 403			}
 404			if (cx.type == ACPI_STATE_C1 &&
 405			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 406				/*
 407				 * In most cases the C1 space_id obtained from
 408				 * _CST object is FIXED_HARDWARE access mode.
 409				 * But when the option of idle=halt is added,
 410				 * the entry_method type should be changed from
 411				 * CSTATE_FFH to CSTATE_HALT.
 412				 * When the option of idle=nomwait is added,
 413				 * the C1 entry_method type should be
 414				 * CSTATE_HALT.
 415				 */
 416				cx.entry_method = ACPI_CSTATE_HALT;
 417				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 418			}
 419		} else {
 420			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 421				 cx.address);
 422		}
 423
 424		if (cx.type == ACPI_STATE_C1) {
 425			cx.valid = 1;
 426		}
 427
 428		obj = &(element->package.elements[2]);
 429		if (obj->type != ACPI_TYPE_INTEGER)
 430			continue;
 431
 432		cx.latency = obj->integer.value;
 433
 434		obj = &(element->package.elements[3]);
 435		if (obj->type != ACPI_TYPE_INTEGER)
 436			continue;
 437
 438		current_count++;
 439		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 440
 441		/*
 442		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 443		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 444		 */
 445		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 446			pr_warn("Limiting number of power states to max (%d)\n",
 447				ACPI_PROCESSOR_MAX_POWER);
 448			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 449			break;
 450		}
 451	}
 452
 453	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 454			  current_count));
 455
 456	/* Validate number of power states discovered */
 457	if (current_count < 2)
 458		ret = -EFAULT;
 459
 460      end:
 461	kfree(buffer.pointer);
 462
 463	return ret;
 464}
 465
 466static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 467					   struct acpi_processor_cx *cx)
 468{
 469	static int bm_check_flag = -1;
 470	static int bm_control_flag = -1;
 471
 472
 473	if (!cx->address)
 474		return;
 475
 476	/*
 477	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 478	 * DMA transfers are used by any ISA device to avoid livelock.
 479	 * Note that we could disable Type-F DMA (as recommended by
 480	 * the erratum), but this is known to disrupt certain ISA
 481	 * devices thus we take the conservative approach.
 482	 */
 483	else if (errata.piix4.fdma) {
 484		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 485				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 486		return;
 487	}
 488
 489	/* All the logic here assumes flags.bm_check is same across all CPUs */
 490	if (bm_check_flag == -1) {
 491		/* Determine whether bm_check is needed based on CPU  */
 492		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 493		bm_check_flag = pr->flags.bm_check;
 494		bm_control_flag = pr->flags.bm_control;
 495	} else {
 496		pr->flags.bm_check = bm_check_flag;
 497		pr->flags.bm_control = bm_control_flag;
 498	}
 499
 500	if (pr->flags.bm_check) {
 501		if (!pr->flags.bm_control) {
 502			if (pr->flags.has_cst != 1) {
 503				/* bus mastering control is necessary */
 504				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 505					"C3 support requires BM control\n"));
 506				return;
 507			} else {
 508				/* Here we enter C3 without bus mastering */
 509				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 510					"C3 support without BM control\n"));
 511			}
 512		}
 513	} else {
 514		/*
 515		 * WBINVD should be set in fadt, for C3 state to be
 516		 * supported on when bm_check is not required.
 517		 */
 518		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 519			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 520					  "Cache invalidation should work properly"
 521					  " for C3 to be enabled on SMP systems\n"));
 522			return;
 523		}
 524	}
 525
 526	/*
 527	 * Otherwise we've met all of our C3 requirements.
 528	 * Normalize the C3 latency to expidite policy.  Enable
 529	 * checking of bus mastering status (bm_check) so we can
 530	 * use this in our C3 policy
 531	 */
 532	cx->valid = 1;
 533
 534	/*
 535	 * On older chipsets, BM_RLD needs to be set
 536	 * in order for Bus Master activity to wake the
 537	 * system from C3.  Newer chipsets handle DMA
 538	 * during C3 automatically and BM_RLD is a NOP.
 539	 * In either case, the proper way to
 540	 * handle BM_RLD is to set it and leave it set.
 541	 */
 542	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 
 543
 544	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545}
 546
 547static int acpi_processor_power_verify(struct acpi_processor *pr)
 548{
 549	unsigned int i;
 550	unsigned int working = 0;
 
 
 
 551
 552	pr->power.timer_broadcast_on_state = INT_MAX;
 553
 554	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 555		struct acpi_processor_cx *cx = &pr->power.states[i];
 556
 557		switch (cx->type) {
 558		case ACPI_STATE_C1:
 559			cx->valid = 1;
 560			break;
 561
 562		case ACPI_STATE_C2:
 563			if (!cx->address)
 564				break;
 565			cx->valid = 1;
 566			break;
 567
 568		case ACPI_STATE_C3:
 569			acpi_processor_power_verify_c3(pr, cx);
 570			break;
 571		}
 572		if (!cx->valid)
 573			continue;
 
 
 
 
 574
 575		lapic_timer_check_state(i, pr, cx);
 576		tsc_check_state(cx->type);
 577		working++;
 578	}
 579
 
 
 
 
 
 
 
 
 580	lapic_timer_propagate_broadcast(pr);
 581
 582	return (working);
 583}
 584
 585static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 586{
 587	unsigned int i;
 588	int result;
 589
 590
 591	/* NOTE: the idle thread may not be running while calling
 592	 * this function */
 593
 594	/* Zero initialize all the C-states info. */
 595	memset(pr->power.states, 0, sizeof(pr->power.states));
 596
 597	result = acpi_processor_get_power_info_cst(pr);
 598	if (result == -ENODEV)
 599		result = acpi_processor_get_power_info_fadt(pr);
 600
 601	if (result)
 602		return result;
 603
 604	acpi_processor_get_power_info_default(pr);
 605
 606	pr->power.count = acpi_processor_power_verify(pr);
 607
 608	/*
 609	 * if one state of type C2 or C3 is available, mark this
 610	 * CPU as being "idle manageable"
 611	 */
 612	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 613		if (pr->power.states[i].valid) {
 614			pr->power.count = i;
 615			if (pr->power.states[i].type >= ACPI_STATE_C2)
 616				pr->flags.power = 1;
 617		}
 618	}
 619
 620	return 0;
 621}
 622
 623/**
 624 * acpi_idle_bm_check - checks if bus master activity was detected
 625 */
 626static int acpi_idle_bm_check(void)
 627{
 628	u32 bm_status = 0;
 629
 630	if (bm_check_disable)
 631		return 0;
 632
 633	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 634	if (bm_status)
 635		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 636	/*
 637	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 638	 * the true state of bus mastering activity; forcing us to
 639	 * manually check the BMIDEA bit of each IDE channel.
 640	 */
 641	else if (errata.piix4.bmisx) {
 642		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 643		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 644			bm_status = 1;
 645	}
 646	return bm_status;
 647}
 648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649/**
 650 * acpi_idle_do_entry - enter idle state using the appropriate method
 651 * @cx: cstate data
 652 *
 653 * Caller disables interrupt before call and enables interrupt after return.
 654 */
 655static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 656{
 
 
 657	if (cx->entry_method == ACPI_CSTATE_FFH) {
 658		/* Call into architectural FFH based C-state */
 659		acpi_processor_ffh_cstate_enter(cx);
 660	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 661		acpi_safe_halt();
 662	} else {
 663		/* IO port based C-state */
 664		inb(cx->address);
 665		/* Dummy wait op - must do something useless after P_LVL2 read
 666		   because chipsets cannot guarantee that STPCLK# signal
 667		   gets asserted in time to freeze execution properly. */
 668		inl(acpi_gbl_FADT.xpm_timer_block.address);
 669	}
 
 
 670}
 671
 672/**
 673 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 674 * @dev: the target CPU
 675 * @index: the index of suggested state
 676 */
 677static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 678{
 679	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 680
 681	ACPI_FLUSH_CPU_CACHE();
 682
 683	while (1) {
 684
 685		if (cx->entry_method == ACPI_CSTATE_HALT)
 686			safe_halt();
 687		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 688			inb(cx->address);
 689			/* See comment in acpi_idle_do_entry() */
 690			inl(acpi_gbl_FADT.xpm_timer_block.address);
 691		} else
 692			return -ENODEV;
 693	}
 694
 695	/* Never reached */
 696	return 0;
 697}
 698
 699static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 700{
 701	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 702		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 703}
 704
 705static int c3_cpu_count;
 706static DEFINE_RAW_SPINLOCK(c3_lock);
 707
 708/**
 709 * acpi_idle_enter_bm - enters C3 with proper BM handling
 
 710 * @pr: Target processor
 711 * @cx: Target state context
 712 * @timer_bc: Whether or not to change timer mode to broadcast
 713 */
 714static void acpi_idle_enter_bm(struct acpi_processor *pr,
 715			       struct acpi_processor_cx *cx, bool timer_bc)
 716{
 717	acpi_unlazy_tlb(smp_processor_id());
 718
 719	/*
 720	 * Must be done before busmaster disable as we might need to
 721	 * access HPET !
 722	 */
 723	if (timer_bc)
 724		lapic_timer_state_broadcast(pr, cx, 1);
 725
 726	/*
 727	 * disable bus master
 728	 * bm_check implies we need ARB_DIS
 729	 * bm_control implies whether we can do ARB_DIS
 730	 *
 731	 * That leaves a case where bm_check is set and bm_control is
 732	 * not set. In that case we cannot do much, we enter C3
 733	 * without doing anything.
 734	 */
 735	if (pr->flags.bm_control) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736		raw_spin_lock(&c3_lock);
 737		c3_cpu_count++;
 738		/* Disable bus master arbitration when all CPUs are in C3 */
 739		if (c3_cpu_count == num_online_cpus())
 740			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 741		raw_spin_unlock(&c3_lock);
 742	}
 743
 
 
 744	acpi_idle_do_entry(cx);
 745
 
 
 746	/* Re-enable bus master arbitration */
 747	if (pr->flags.bm_control) {
 748		raw_spin_lock(&c3_lock);
 749		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 750		c3_cpu_count--;
 751		raw_spin_unlock(&c3_lock);
 752	}
 753
 754	if (timer_bc)
 755		lapic_timer_state_broadcast(pr, cx, 0);
 
 756}
 757
 758static int acpi_idle_enter(struct cpuidle_device *dev,
 759			   struct cpuidle_driver *drv, int index)
 760{
 761	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 762	struct acpi_processor *pr;
 763
 764	pr = __this_cpu_read(processors);
 765	if (unlikely(!pr))
 766		return -EINVAL;
 767
 768	if (cx->type != ACPI_STATE_C1) {
 
 
 
 
 769		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 770			index = ACPI_IDLE_STATE_START;
 771			cx = per_cpu(acpi_cstate[index], dev->cpu);
 772		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 773			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 774				acpi_idle_enter_bm(pr, cx, true);
 775				return index;
 776			} else if (drv->safe_state_index >= 0) {
 777				index = drv->safe_state_index;
 778				cx = per_cpu(acpi_cstate[index], dev->cpu);
 779			} else {
 780				acpi_safe_halt();
 781				return -EBUSY;
 782			}
 783		}
 784	}
 785
 786	lapic_timer_state_broadcast(pr, cx, 1);
 787
 788	if (cx->type == ACPI_STATE_C3)
 789		ACPI_FLUSH_CPU_CACHE();
 790
 791	acpi_idle_do_entry(cx);
 792
 793	lapic_timer_state_broadcast(pr, cx, 0);
 794
 795	return index;
 796}
 797
 798static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 799				   struct cpuidle_driver *drv, int index)
 800{
 801	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 802
 803	if (cx->type == ACPI_STATE_C3) {
 804		struct acpi_processor *pr = __this_cpu_read(processors);
 805
 806		if (unlikely(!pr))
 807			return;
 808
 809		if (pr->flags.bm_check) {
 810			acpi_idle_enter_bm(pr, cx, false);
 811			return;
 
 
 
 
 
 
 812		} else {
 813			ACPI_FLUSH_CPU_CACHE();
 814		}
 815	}
 816	acpi_idle_do_entry(cx);
 
 
 817}
 818
 819static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 820					   struct cpuidle_device *dev)
 821{
 822	int i, count = ACPI_IDLE_STATE_START;
 823	struct acpi_processor_cx *cx;
 
 824
 825	if (max_cstate == 0)
 826		max_cstate = 1;
 827
 828	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 
 829		cx = &pr->power.states[i];
 830
 831		if (!cx->valid)
 832			continue;
 833
 834		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 835
 
 
 
 
 
 
 
 
 
 836		count++;
 837		if (count == CPUIDLE_STATE_MAX)
 838			break;
 839	}
 840
 841	if (!count)
 842		return -EINVAL;
 843
 844	return 0;
 845}
 846
 847static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 848{
 849	int i, count;
 850	struct acpi_processor_cx *cx;
 851	struct cpuidle_state *state;
 852	struct cpuidle_driver *drv = &acpi_idle_driver;
 853
 854	if (max_cstate == 0)
 855		max_cstate = 1;
 856
 857	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 858		cpuidle_poll_state_init(drv);
 859		count = 1;
 860	} else {
 861		count = 0;
 862	}
 863
 864	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 865		cx = &pr->power.states[i];
 866
 867		if (!cx->valid)
 868			continue;
 869
 870		state = &drv->states[count];
 871		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 872		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 873		state->exit_latency = cx->latency;
 874		state->target_residency = cx->latency * latency_factor;
 875		state->enter = acpi_idle_enter;
 876
 877		state->flags = 0;
 878		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 
 879			state->enter_dead = acpi_idle_play_dead;
 880			drv->safe_state_index = count;
 
 881		}
 882		/*
 883		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 884		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 885		 * particularly interesting from the suspend-to-idle angle, so
 886		 * avoid C1 and the situations in which we may need to fall back
 887		 * to it altogether.
 888		 */
 889		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 890			state->enter_s2idle = acpi_idle_enter_s2idle;
 891
 892		count++;
 893		if (count == CPUIDLE_STATE_MAX)
 894			break;
 895	}
 896
 897	drv->state_count = count;
 898
 899	if (!count)
 900		return -EINVAL;
 901
 902	return 0;
 903}
 904
 905static inline void acpi_processor_cstate_first_run_checks(void)
 906{
 907	acpi_status status;
 908	static int first_run;
 909
 910	if (first_run)
 911		return;
 912	dmi_check_system(processor_power_dmi_table);
 913	max_cstate = acpi_processor_cstate_check(max_cstate);
 914	if (max_cstate < ACPI_C_STATES_MAX)
 915		pr_notice("ACPI: processor limited to max C-state %d\n",
 916			  max_cstate);
 917	first_run++;
 918
 919	if (acpi_gbl_FADT.cst_control && !nocst) {
 920		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 921					    acpi_gbl_FADT.cst_control, 8);
 922		if (ACPI_FAILURE(status))
 923			ACPI_EXCEPTION((AE_INFO, status,
 924					"Notifying BIOS of _CST ability failed"));
 925	}
 926}
 927#else
 928
 929static inline int disabled_by_idle_boot_param(void) { return 0; }
 930static inline void acpi_processor_cstate_first_run_checks(void) { }
 931static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 932{
 933	return -ENODEV;
 934}
 935
 936static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 937					   struct cpuidle_device *dev)
 938{
 939	return -EINVAL;
 940}
 941
 942static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 943{
 944	return -EINVAL;
 945}
 946
 947#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 948
 949struct acpi_lpi_states_array {
 950	unsigned int size;
 951	unsigned int composite_states_size;
 952	struct acpi_lpi_state *entries;
 953	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 954};
 955
 956static int obj_get_integer(union acpi_object *obj, u32 *value)
 957{
 958	if (obj->type != ACPI_TYPE_INTEGER)
 959		return -EINVAL;
 960
 961	*value = obj->integer.value;
 962	return 0;
 963}
 964
 965static int acpi_processor_evaluate_lpi(acpi_handle handle,
 966				       struct acpi_lpi_states_array *info)
 967{
 968	acpi_status status;
 969	int ret = 0;
 970	int pkg_count, state_idx = 1, loop;
 971	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 972	union acpi_object *lpi_data;
 973	struct acpi_lpi_state *lpi_state;
 974
 975	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 976	if (ACPI_FAILURE(status)) {
 977		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 978		return -ENODEV;
 979	}
 980
 981	lpi_data = buffer.pointer;
 982
 983	/* There must be at least 4 elements = 3 elements + 1 package */
 984	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 985	    lpi_data->package.count < 4) {
 986		pr_debug("not enough elements in _LPI\n");
 987		ret = -ENODATA;
 988		goto end;
 989	}
 990
 991	pkg_count = lpi_data->package.elements[2].integer.value;
 992
 993	/* Validate number of power states. */
 994	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 995		pr_debug("count given by _LPI is not valid\n");
 996		ret = -ENODATA;
 997		goto end;
 998	}
 999
1000	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1001	if (!lpi_state) {
1002		ret = -ENOMEM;
1003		goto end;
1004	}
1005
1006	info->size = pkg_count;
1007	info->entries = lpi_state;
1008
1009	/* LPI States start at index 3 */
1010	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1011		union acpi_object *element, *pkg_elem, *obj;
1012
1013		element = &lpi_data->package.elements[loop];
1014		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1015			continue;
1016
1017		pkg_elem = element->package.elements;
1018
1019		obj = pkg_elem + 6;
1020		if (obj->type == ACPI_TYPE_BUFFER) {
1021			struct acpi_power_register *reg;
1022
1023			reg = (struct acpi_power_register *)obj->buffer.pointer;
1024			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1025			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1026				continue;
1027
1028			lpi_state->address = reg->address;
1029			lpi_state->entry_method =
1030				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1031				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1032		} else if (obj->type == ACPI_TYPE_INTEGER) {
1033			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1034			lpi_state->address = obj->integer.value;
1035		} else {
1036			continue;
1037		}
1038
1039		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1040
1041		obj = pkg_elem + 9;
1042		if (obj->type == ACPI_TYPE_STRING)
1043			strlcpy(lpi_state->desc, obj->string.pointer,
1044				ACPI_CX_DESC_LEN);
1045
1046		lpi_state->index = state_idx;
1047		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1048			pr_debug("No min. residency found, assuming 10 us\n");
1049			lpi_state->min_residency = 10;
1050		}
1051
1052		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1053			pr_debug("No wakeup residency found, assuming 10 us\n");
1054			lpi_state->wake_latency = 10;
1055		}
1056
1057		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1058			lpi_state->flags = 0;
1059
1060		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1061			lpi_state->arch_flags = 0;
1062
1063		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1064			lpi_state->res_cnt_freq = 1;
1065
1066		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1067			lpi_state->enable_parent_state = 0;
1068	}
1069
1070	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1071end:
1072	kfree(buffer.pointer);
1073	return ret;
1074}
1075
1076/*
1077 * flat_state_cnt - the number of composite LPI states after the process of flattening
1078 */
1079static int flat_state_cnt;
1080
1081/**
1082 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1083 *
1084 * @local: local LPI state
1085 * @parent: parent LPI state
1086 * @result: composite LPI state
1087 */
1088static bool combine_lpi_states(struct acpi_lpi_state *local,
1089			       struct acpi_lpi_state *parent,
1090			       struct acpi_lpi_state *result)
1091{
1092	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1093		if (!parent->address) /* 0 means autopromotable */
1094			return false;
1095		result->address = local->address + parent->address;
1096	} else {
1097		result->address = parent->address;
1098	}
1099
1100	result->min_residency = max(local->min_residency, parent->min_residency);
1101	result->wake_latency = local->wake_latency + parent->wake_latency;
1102	result->enable_parent_state = parent->enable_parent_state;
1103	result->entry_method = local->entry_method;
1104
1105	result->flags = parent->flags;
1106	result->arch_flags = parent->arch_flags;
1107	result->index = parent->index;
1108
1109	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1110	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1111	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1112	return true;
1113}
1114
1115#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1116
1117static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1118				  struct acpi_lpi_state *t)
1119{
1120	curr_level->composite_states[curr_level->composite_states_size++] = t;
1121}
1122
1123static int flatten_lpi_states(struct acpi_processor *pr,
1124			      struct acpi_lpi_states_array *curr_level,
1125			      struct acpi_lpi_states_array *prev_level)
1126{
1127	int i, j, state_count = curr_level->size;
1128	struct acpi_lpi_state *p, *t = curr_level->entries;
1129
1130	curr_level->composite_states_size = 0;
1131	for (j = 0; j < state_count; j++, t++) {
1132		struct acpi_lpi_state *flpi;
1133
1134		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1135			continue;
1136
1137		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1138			pr_warn("Limiting number of LPI states to max (%d)\n",
1139				ACPI_PROCESSOR_MAX_POWER);
1140			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1141			break;
1142		}
1143
1144		flpi = &pr->power.lpi_states[flat_state_cnt];
1145
1146		if (!prev_level) { /* leaf/processor node */
1147			memcpy(flpi, t, sizeof(*t));
1148			stash_composite_state(curr_level, flpi);
1149			flat_state_cnt++;
1150			continue;
1151		}
1152
1153		for (i = 0; i < prev_level->composite_states_size; i++) {
1154			p = prev_level->composite_states[i];
1155			if (t->index <= p->enable_parent_state &&
1156			    combine_lpi_states(p, t, flpi)) {
1157				stash_composite_state(curr_level, flpi);
1158				flat_state_cnt++;
1159				flpi++;
1160			}
1161		}
1162	}
1163
1164	kfree(curr_level->entries);
1165	return 0;
1166}
1167
 
 
 
 
 
1168static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1169{
1170	int ret, i;
1171	acpi_status status;
1172	acpi_handle handle = pr->handle, pr_ahandle;
1173	struct acpi_device *d = NULL;
1174	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1175
 
 
 
 
 
1176	if (!osc_pc_lpi_support_confirmed)
1177		return -EOPNOTSUPP;
1178
1179	if (!acpi_has_method(handle, "_LPI"))
1180		return -EINVAL;
1181
1182	flat_state_cnt = 0;
1183	prev = &info[0];
1184	curr = &info[1];
1185	handle = pr->handle;
1186	ret = acpi_processor_evaluate_lpi(handle, prev);
1187	if (ret)
1188		return ret;
1189	flatten_lpi_states(pr, prev, NULL);
1190
1191	status = acpi_get_parent(handle, &pr_ahandle);
1192	while (ACPI_SUCCESS(status)) {
1193		acpi_bus_get_device(pr_ahandle, &d);
 
 
 
1194		handle = pr_ahandle;
1195
1196		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1197			break;
1198
1199		/* can be optional ? */
1200		if (!acpi_has_method(handle, "_LPI"))
1201			break;
1202
1203		ret = acpi_processor_evaluate_lpi(handle, curr);
1204		if (ret)
1205			break;
1206
1207		/* flatten all the LPI states in this level of hierarchy */
1208		flatten_lpi_states(pr, curr, prev);
1209
1210		tmp = prev, prev = curr, curr = tmp;
1211
1212		status = acpi_get_parent(handle, &pr_ahandle);
1213	}
1214
1215	pr->power.count = flat_state_cnt;
1216	/* reset the index after flattening */
1217	for (i = 0; i < pr->power.count; i++)
1218		pr->power.lpi_states[i].index = i;
1219
1220	/* Tell driver that _LPI is supported. */
1221	pr->flags.has_lpi = 1;
1222	pr->flags.power = 1;
1223
1224	return 0;
1225}
1226
1227int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1228{
1229	return -ENODEV;
1230}
1231
1232int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1233{
1234	return -ENODEV;
1235}
1236
1237/**
1238 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1239 * @dev: the target CPU
1240 * @drv: cpuidle driver containing cpuidle state info
1241 * @index: index of target state
1242 *
1243 * Return: 0 for success or negative value for error
1244 */
1245static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1246			       struct cpuidle_driver *drv, int index)
1247{
1248	struct acpi_processor *pr;
1249	struct acpi_lpi_state *lpi;
1250
1251	pr = __this_cpu_read(processors);
1252
1253	if (unlikely(!pr))
1254		return -EINVAL;
1255
1256	lpi = &pr->power.lpi_states[index];
1257	if (lpi->entry_method == ACPI_CSTATE_FFH)
1258		return acpi_processor_ffh_lpi_enter(lpi);
1259
1260	return -EINVAL;
1261}
1262
1263static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1264{
1265	int i;
1266	struct acpi_lpi_state *lpi;
1267	struct cpuidle_state *state;
1268	struct cpuidle_driver *drv = &acpi_idle_driver;
1269
1270	if (!pr->flags.has_lpi)
1271		return -EOPNOTSUPP;
1272
1273	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1274		lpi = &pr->power.lpi_states[i];
1275
1276		state = &drv->states[i];
1277		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1278		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1279		state->exit_latency = lpi->wake_latency;
1280		state->target_residency = lpi->min_residency;
1281		if (lpi->arch_flags)
1282			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 
1283		state->enter = acpi_idle_lpi_enter;
1284		drv->safe_state_index = i;
1285	}
1286
1287	drv->state_count = i;
1288
1289	return 0;
1290}
1291
1292/**
1293 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1294 * global state data i.e. idle routines
1295 *
1296 * @pr: the ACPI processor
1297 */
1298static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1299{
1300	int i;
1301	struct cpuidle_driver *drv = &acpi_idle_driver;
1302
1303	if (!pr->flags.power_setup_done || !pr->flags.power)
1304		return -EINVAL;
1305
1306	drv->safe_state_index = -1;
1307	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1308		drv->states[i].name[0] = '\0';
1309		drv->states[i].desc[0] = '\0';
1310	}
1311
1312	if (pr->flags.has_lpi)
1313		return acpi_processor_setup_lpi_states(pr);
1314
1315	return acpi_processor_setup_cstates(pr);
1316}
1317
1318/**
1319 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1320 * device i.e. per-cpu data
1321 *
1322 * @pr: the ACPI processor
1323 * @dev : the cpuidle device
1324 */
1325static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1326					    struct cpuidle_device *dev)
1327{
1328	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1329		return -EINVAL;
1330
1331	dev->cpu = pr->id;
1332	if (pr->flags.has_lpi)
1333		return acpi_processor_ffh_lpi_probe(pr->id);
1334
1335	return acpi_processor_setup_cpuidle_cx(pr, dev);
1336}
1337
1338static int acpi_processor_get_power_info(struct acpi_processor *pr)
1339{
1340	int ret;
1341
1342	ret = acpi_processor_get_lpi_info(pr);
1343	if (ret)
1344		ret = acpi_processor_get_cstate_info(pr);
1345
1346	return ret;
1347}
1348
1349int acpi_processor_hotplug(struct acpi_processor *pr)
1350{
1351	int ret = 0;
1352	struct cpuidle_device *dev;
1353
1354	if (disabled_by_idle_boot_param())
1355		return 0;
1356
1357	if (!pr->flags.power_setup_done)
1358		return -ENODEV;
1359
1360	dev = per_cpu(acpi_cpuidle_device, pr->id);
1361	cpuidle_pause_and_lock();
1362	cpuidle_disable_device(dev);
1363	ret = acpi_processor_get_power_info(pr);
1364	if (!ret && pr->flags.power) {
1365		acpi_processor_setup_cpuidle_dev(pr, dev);
1366		ret = cpuidle_enable_device(dev);
1367	}
1368	cpuidle_resume_and_unlock();
1369
1370	return ret;
1371}
1372
1373int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1374{
1375	int cpu;
1376	struct acpi_processor *_pr;
1377	struct cpuidle_device *dev;
1378
1379	if (disabled_by_idle_boot_param())
1380		return 0;
1381
1382	if (!pr->flags.power_setup_done)
1383		return -ENODEV;
1384
1385	/*
1386	 * FIXME:  Design the ACPI notification to make it once per
1387	 * system instead of once per-cpu.  This condition is a hack
1388	 * to make the code that updates C-States be called once.
1389	 */
1390
1391	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1392
1393		/* Protect against cpu-hotplug */
1394		get_online_cpus();
1395		cpuidle_pause_and_lock();
1396
1397		/* Disable all cpuidle devices */
1398		for_each_online_cpu(cpu) {
1399			_pr = per_cpu(processors, cpu);
1400			if (!_pr || !_pr->flags.power_setup_done)
1401				continue;
1402			dev = per_cpu(acpi_cpuidle_device, cpu);
1403			cpuidle_disable_device(dev);
1404		}
1405
1406		/* Populate Updated C-state information */
1407		acpi_processor_get_power_info(pr);
1408		acpi_processor_setup_cpuidle_states(pr);
1409
1410		/* Enable all cpuidle devices */
1411		for_each_online_cpu(cpu) {
1412			_pr = per_cpu(processors, cpu);
1413			if (!_pr || !_pr->flags.power_setup_done)
1414				continue;
1415			acpi_processor_get_power_info(_pr);
1416			if (_pr->flags.power) {
1417				dev = per_cpu(acpi_cpuidle_device, cpu);
1418				acpi_processor_setup_cpuidle_dev(_pr, dev);
1419				cpuidle_enable_device(dev);
1420			}
1421		}
1422		cpuidle_resume_and_unlock();
1423		put_online_cpus();
1424	}
1425
1426	return 0;
1427}
1428
1429static int acpi_processor_registered;
1430
1431int acpi_processor_power_init(struct acpi_processor *pr)
1432{
1433	int retval;
1434	struct cpuidle_device *dev;
1435
1436	if (disabled_by_idle_boot_param())
1437		return 0;
1438
1439	acpi_processor_cstate_first_run_checks();
1440
1441	if (!acpi_processor_get_power_info(pr))
1442		pr->flags.power_setup_done = 1;
1443
1444	/*
1445	 * Install the idle handler if processor power management is supported.
1446	 * Note that we use previously set idle handler will be used on
1447	 * platforms that only support C1.
1448	 */
1449	if (pr->flags.power) {
1450		/* Register acpi_idle_driver if not already registered */
1451		if (!acpi_processor_registered) {
1452			acpi_processor_setup_cpuidle_states(pr);
1453			retval = cpuidle_register_driver(&acpi_idle_driver);
1454			if (retval)
1455				return retval;
1456			pr_debug("%s registered with cpuidle\n",
1457				 acpi_idle_driver.name);
1458		}
1459
1460		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1461		if (!dev)
1462			return -ENOMEM;
1463		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1464
1465		acpi_processor_setup_cpuidle_dev(pr, dev);
1466
1467		/* Register per-cpu cpuidle_device. Cpuidle driver
1468		 * must already be registered before registering device
1469		 */
1470		retval = cpuidle_register_device(dev);
1471		if (retval) {
1472			if (acpi_processor_registered == 0)
1473				cpuidle_unregister_driver(&acpi_idle_driver);
1474			return retval;
1475		}
1476		acpi_processor_registered++;
1477	}
1478	return 0;
1479}
1480
1481int acpi_processor_power_exit(struct acpi_processor *pr)
1482{
1483	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1484
1485	if (disabled_by_idle_boot_param())
1486		return 0;
1487
1488	if (pr->flags.power) {
1489		cpuidle_unregister_device(dev);
1490		acpi_processor_registered--;
1491		if (acpi_processor_registered == 0)
1492			cpuidle_unregister_driver(&acpi_idle_driver);
1493	}
1494
1495	pr->flags.power_setup_done = 0;
1496	return 0;
1497}