Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * This file contains common routines for dealing with free of page tables
  4 * Along with common page table handling code
  5 *
  6 *  Derived from arch/powerpc/mm/tlb_64.c:
  7 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  8 *
  9 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 10 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 11 *    Copyright (C) 1996 Paul Mackerras
 12 *
 13 *  Derived from "arch/i386/mm/init.c"
 14 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 15 *
 16 *  Dave Engebretsen <engebret@us.ibm.com>
 17 *      Rework for PPC64 port.
 
 
 
 
 
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/gfp.h>
 22#include <linux/mm.h>
 23#include <linux/percpu.h>
 24#include <linux/hardirq.h>
 25#include <linux/hugetlb.h>
 
 26#include <asm/tlbflush.h>
 27#include <asm/tlb.h>
 28#include <asm/hugetlb.h>
 29#include <asm/pte-walk.h>
 30
 31#ifdef CONFIG_PPC64
 32#define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD)
 33#else
 34#define PGD_ALIGN PAGE_SIZE
 35#endif
 36
 37pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN);
 38
 39static inline int is_exec_fault(void)
 40{
 41	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
 42}
 43
 44/* We only try to do i/d cache coherency on stuff that looks like
 45 * reasonably "normal" PTEs. We currently require a PTE to be present
 46 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
 47 * on userspace PTEs
 48 */
 49static inline int pte_looks_normal(pte_t pte, unsigned long addr)
 50{
 51
 52	if (pte_present(pte) && !pte_special(pte)) {
 
 53		if (pte_ci(pte))
 54			return 0;
 55		if (!is_kernel_addr(addr))
 56			return 1;
 57	}
 58	return 0;
 
 
 
 
 
 
 59}
 60
 61static struct folio *maybe_pte_to_folio(pte_t pte)
 62{
 63	unsigned long pfn = pte_pfn(pte);
 64	struct page *page;
 65
 66	if (unlikely(!pfn_valid(pfn)))
 67		return NULL;
 68	page = pfn_to_page(pfn);
 69	if (PageReserved(page))
 70		return NULL;
 71	return page_folio(page);
 72}
 73
 74#ifdef CONFIG_PPC_BOOK3S
 75
 76/* Server-style MMU handles coherency when hashing if HW exec permission
 77 * is supposed per page (currently 64-bit only). If not, then, we always
 78 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
 79 * support falls into the same category.
 80 */
 81
 82static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr)
 83{
 
 
 
 84	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 85	if (pte_looks_normal(pte, addr) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
 86					     cpu_has_feature(CPU_FTR_NOEXECUTE))) {
 87		struct folio *folio = maybe_pte_to_folio(pte);
 88		if (!folio)
 89			return pte;
 90		if (!test_bit(PG_dcache_clean, &folio->flags)) {
 91			flush_dcache_icache_folio(folio);
 92			set_bit(PG_dcache_clean, &folio->flags);
 93		}
 94	}
 95	return pte;
 96}
 97
 98#else /* CONFIG_PPC_BOOK3S */
 99
100static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr) { return pte; }
 
 
101
102#endif /* CONFIG_PPC_BOOK3S */
103
104/* Embedded type MMU with HW exec support. This is a bit more complicated
105 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
106 * instead we "filter out" the exec permission for non clean pages.
107 *
108 * This is also called once for the folio. So only work with folio->flags here.
109 */
110static inline pte_t set_pte_filter(pte_t pte, unsigned long addr)
111{
112	struct folio *folio;
113
114	if (radix_enabled())
115		return pte;
116
117	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
118		return set_pte_filter_hash(pte, addr);
119
120	/* No exec permission in the first place, move on */
121	if (!pte_exec(pte) || !pte_looks_normal(pte, addr))
122		return pte;
123
124	/* If you set _PAGE_EXEC on weird pages you're on your own */
125	folio = maybe_pte_to_folio(pte);
126	if (unlikely(!folio))
127		return pte;
128
129	/* If the page clean, we move on */
130	if (test_bit(PG_dcache_clean, &folio->flags))
131		return pte;
132
133	/* If it's an exec fault, we flush the cache and make it clean */
134	if (is_exec_fault()) {
135		flush_dcache_icache_folio(folio);
136		set_bit(PG_dcache_clean, &folio->flags);
137		return pte;
138	}
139
140	/* Else, we filter out _PAGE_EXEC */
141	return pte_exprotect(pte);
142}
143
144static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
145				     int dirty)
146{
147	struct folio *folio;
148
149	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
150		return pte;
151
152	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
153		return pte;
154
155	/* So here, we only care about exec faults, as we use them
156	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
157	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
158	 * we just bail out
159	 */
160	if (dirty || pte_exec(pte) || !is_exec_fault())
161		return pte;
162
163#ifdef CONFIG_DEBUG_VM
164	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
165	 * an error we would have bailed out earlier in do_page_fault()
166	 * but let's make sure of it
167	 */
168	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
169		return pte;
170#endif /* CONFIG_DEBUG_VM */
171
172	/* If you set _PAGE_EXEC on weird pages you're on your own */
173	folio = maybe_pte_to_folio(pte);
174	if (unlikely(!folio))
175		goto bail;
176
177	/* If the page is already clean, we move on */
178	if (test_bit(PG_dcache_clean, &folio->flags))
179		goto bail;
180
181	/* Clean the page and set PG_dcache_clean */
182	flush_dcache_icache_folio(folio);
183	set_bit(PG_dcache_clean, &folio->flags);
184
185 bail:
186	return pte_mkexec(pte);
187}
188
 
 
189/*
190 * set_pte stores a linux PTE into the linux page table.
191 */
192void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
193		pte_t pte, unsigned int nr)
194{
195
196	/* Note: mm->context.id might not yet have been assigned as
197	 * this context might not have been activated yet when this
198	 * is called. Filter the pte value and use the filtered value
199	 * to setup all the ptes in the range.
200	 */
201	pte = set_pte_filter(pte, addr);
202
203	/*
204	 * We don't need to call arch_enter/leave_lazy_mmu_mode()
205	 * because we expect set_ptes to be only be used on not present
206	 * and not hw_valid ptes. Hence there is no translation cache flush
207	 * involved that need to be batched.
208	 */
209	for (;;) {
210
211		/*
212		 * Make sure hardware valid bit is not set. We don't do
213		 * tlb flush for this update.
214		 */
215		VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
216
217		/* Perform the setting of the PTE */
218		__set_pte_at(mm, addr, ptep, pte, 0);
219		if (--nr == 0)
220			break;
221		ptep++;
222		addr += PAGE_SIZE;
223		/*
224		 * increment the pfn.
225		 */
226		pte = pfn_pte(pte_pfn(pte) + 1, pte_pgprot((pte)));
227	}
228}
229
230void unmap_kernel_page(unsigned long va)
231{
232	pmd_t *pmdp = pmd_off_k(va);
233	pte_t *ptep = pte_offset_kernel(pmdp, va);
 
234
235	pte_clear(&init_mm, va, ptep);
236	flush_tlb_kernel_range(va, va + PAGE_SIZE);
237}
238
239/*
240 * This is called when relaxing access to a PTE. It's also called in the page
241 * fault path when we don't hit any of the major fault cases, ie, a minor
242 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
243 * handled those two for us, we additionally deal with missing execute
244 * permission here on some processors
245 */
246int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
247			  pte_t *ptep, pte_t entry, int dirty)
248{
249	int changed;
250	entry = set_access_flags_filter(entry, vma, dirty);
251	changed = !pte_same(*(ptep), entry);
252	if (changed) {
253		assert_pte_locked(vma->vm_mm, address);
254		__ptep_set_access_flags(vma, ptep, entry,
255					address, mmu_virtual_psize);
256	}
257	return changed;
258}
259
260#ifdef CONFIG_HUGETLB_PAGE
261int huge_ptep_set_access_flags(struct vm_area_struct *vma,
262			       unsigned long addr, pte_t *ptep,
263			       pte_t pte, int dirty)
264{
265#ifdef HUGETLB_NEED_PRELOAD
266	/*
267	 * The "return 1" forces a call of update_mmu_cache, which will write a
268	 * TLB entry.  Without this, platforms that don't do a write of the TLB
269	 * entry in the TLB miss handler asm will fault ad infinitum.
270	 */
271	ptep_set_access_flags(vma, addr, ptep, pte, dirty);
272	return 1;
273#else
274	int changed, psize;
275
276	pte = set_access_flags_filter(pte, vma, dirty);
277	changed = !pte_same(*(ptep), pte);
278	if (changed) {
279
280#ifdef CONFIG_PPC_BOOK3S_64
281		struct hstate *h = hstate_vma(vma);
282
283		psize = hstate_get_psize(h);
284#ifdef CONFIG_DEBUG_VM
285		assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
286#endif
287
288#else
289		/*
290		 * Not used on non book3s64 platforms.
291		 * 8xx compares it with mmu_virtual_psize to
292		 * know if it is a huge page or not.
293		 */
294		psize = MMU_PAGE_COUNT;
295#endif
296		__ptep_set_access_flags(vma, ptep, pte, addr, psize);
297	}
298	return changed;
299#endif
300}
301
302#if defined(CONFIG_PPC_8xx)
303void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
304		     pte_t pte, unsigned long sz)
305{
306	pmd_t *pmd = pmd_off(mm, addr);
307	pte_basic_t val;
308	pte_basic_t *entry = (pte_basic_t *)ptep;
309	int num, i;
310
311	/*
312	 * Make sure hardware valid bit is not set. We don't do
313	 * tlb flush for this update.
314	 */
315	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
316
317	pte = set_pte_filter(pte, addr);
318
319	val = pte_val(pte);
320
321	num = number_of_cells_per_pte(pmd, val, 1);
322
323	for (i = 0; i < num; i++, entry++, val += SZ_4K)
324		*entry = val;
325}
326#endif
327#endif /* CONFIG_HUGETLB_PAGE */
328
329#ifdef CONFIG_DEBUG_VM
330void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
331{
332	pgd_t *pgd;
333	p4d_t *p4d;
334	pud_t *pud;
335	pmd_t *pmd;
336	pte_t *pte;
337	spinlock_t *ptl;
338
339	if (mm == &init_mm)
340		return;
341	pgd = mm->pgd + pgd_index(addr);
342	BUG_ON(pgd_none(*pgd));
343	p4d = p4d_offset(pgd, addr);
344	BUG_ON(p4d_none(*p4d));
345	pud = pud_offset(p4d, addr);
346	BUG_ON(pud_none(*pud));
347	pmd = pmd_offset(pud, addr);
348	/*
349	 * khugepaged to collapse normal pages to hugepage, first set
350	 * pmd to none to force page fault/gup to take mmap_lock. After
351	 * pmd is set to none, we do a pte_clear which does this assertion
352	 * so if we find pmd none, return.
353	 */
354	if (pmd_none(*pmd))
355		return;
356	pte = pte_offset_map_nolock(mm, pmd, addr, &ptl);
357	BUG_ON(!pte);
358	assert_spin_locked(ptl);
359	pte_unmap(pte);
360}
361#endif /* CONFIG_DEBUG_VM */
362
363unsigned long vmalloc_to_phys(void *va)
364{
365	unsigned long pfn = vmalloc_to_pfn(va);
366
367	BUG_ON(!pfn);
368	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
369}
370EXPORT_SYMBOL_GPL(vmalloc_to_phys);
371
372/*
373 * We have 4 cases for pgds and pmds:
374 * (1) invalid (all zeroes)
375 * (2) pointer to next table, as normal; bottom 6 bits == 0
376 * (3) leaf pte for huge page _PAGE_PTE set
377 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
378 *
379 * So long as we atomically load page table pointers we are safe against teardown,
380 * we can follow the address down to the page and take a ref on it.
381 * This function need to be called with interrupts disabled. We use this variant
382 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
383 */
384pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
385			bool *is_thp, unsigned *hpage_shift)
386{
387	pgd_t *pgdp;
388	p4d_t p4d, *p4dp;
389	pud_t pud, *pudp;
390	pmd_t pmd, *pmdp;
391	pte_t *ret_pte;
392	hugepd_t *hpdp = NULL;
393	unsigned pdshift;
394
395	if (hpage_shift)
396		*hpage_shift = 0;
397
398	if (is_thp)
399		*is_thp = false;
400
401	/*
402	 * Always operate on the local stack value. This make sure the
403	 * value don't get updated by a parallel THP split/collapse,
404	 * page fault or a page unmap. The return pte_t * is still not
405	 * stable. So should be checked there for above conditions.
406	 * Top level is an exception because it is folded into p4d.
407	 */
408	pgdp = pgdir + pgd_index(ea);
409	p4dp = p4d_offset(pgdp, ea);
410	p4d  = READ_ONCE(*p4dp);
411	pdshift = P4D_SHIFT;
412
413	if (p4d_none(p4d))
414		return NULL;
415
416	if (p4d_is_leaf(p4d)) {
417		ret_pte = (pte_t *)p4dp;
418		goto out;
419	}
420
421	if (is_hugepd(__hugepd(p4d_val(p4d)))) {
422		hpdp = (hugepd_t *)&p4d;
423		goto out_huge;
424	}
425
426	/*
427	 * Even if we end up with an unmap, the pgtable will not
428	 * be freed, because we do an rcu free and here we are
429	 * irq disabled
430	 */
431	pdshift = PUD_SHIFT;
432	pudp = pud_offset(&p4d, ea);
433	pud  = READ_ONCE(*pudp);
434
435	if (pud_none(pud))
436		return NULL;
437
438	if (pud_is_leaf(pud)) {
439		ret_pte = (pte_t *)pudp;
440		goto out;
441	}
442
443	if (is_hugepd(__hugepd(pud_val(pud)))) {
444		hpdp = (hugepd_t *)&pud;
445		goto out_huge;
446	}
447
448	pdshift = PMD_SHIFT;
449	pmdp = pmd_offset(&pud, ea);
450	pmd  = READ_ONCE(*pmdp);
451
452	/*
453	 * A hugepage collapse is captured by this condition, see
454	 * pmdp_collapse_flush.
455	 */
456	if (pmd_none(pmd))
457		return NULL;
458
459#ifdef CONFIG_PPC_BOOK3S_64
460	/*
461	 * A hugepage split is captured by this condition, see
462	 * pmdp_invalidate.
463	 *
464	 * Huge page modification can be caught here too.
465	 */
466	if (pmd_is_serializing(pmd))
467		return NULL;
468#endif
469
470	if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
471		if (is_thp)
472			*is_thp = true;
473		ret_pte = (pte_t *)pmdp;
474		goto out;
475	}
476
477	if (pmd_is_leaf(pmd)) {
478		ret_pte = (pte_t *)pmdp;
479		goto out;
480	}
481
482	if (is_hugepd(__hugepd(pmd_val(pmd)))) {
483		hpdp = (hugepd_t *)&pmd;
484		goto out_huge;
485	}
486
487	return pte_offset_kernel(&pmd, ea);
488
489out_huge:
490	if (!hpdp)
491		return NULL;
492
493	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
494	pdshift = hugepd_shift(*hpdp);
495out:
496	if (hpage_shift)
497		*hpage_shift = pdshift;
498	return ret_pte;
499}
500EXPORT_SYMBOL_GPL(__find_linux_pte);
501
502/* Note due to the way vm flags are laid out, the bits are XWR */
503const pgprot_t protection_map[16] = {
504	[VM_NONE]					= PAGE_NONE,
505	[VM_READ]					= PAGE_READONLY,
506	[VM_WRITE]					= PAGE_COPY,
507	[VM_WRITE | VM_READ]				= PAGE_COPY,
508	[VM_EXEC]					= PAGE_EXECONLY_X,
509	[VM_EXEC | VM_READ]				= PAGE_READONLY_X,
510	[VM_EXEC | VM_WRITE]				= PAGE_COPY_X,
511	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_X,
512	[VM_SHARED]					= PAGE_NONE,
513	[VM_SHARED | VM_READ]				= PAGE_READONLY,
514	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
515	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
516	[VM_SHARED | VM_EXEC]				= PAGE_EXECONLY_X,
517	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_X,
518	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_X,
519	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_X
520};
521
522#ifndef CONFIG_PPC_BOOK3S_64
523DECLARE_VM_GET_PAGE_PROT
524#endif
v4.17
 
  1/*
  2 * This file contains common routines for dealing with free of page tables
  3 * Along with common page table handling code
  4 *
  5 *  Derived from arch/powerpc/mm/tlb_64.c:
  6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  7 *
  8 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  9 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 10 *    Copyright (C) 1996 Paul Mackerras
 11 *
 12 *  Derived from "arch/i386/mm/init.c"
 13 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 14 *
 15 *  Dave Engebretsen <engebret@us.ibm.com>
 16 *      Rework for PPC64 port.
 17 *
 18 *  This program is free software; you can redistribute it and/or
 19 *  modify it under the terms of the GNU General Public License
 20 *  as published by the Free Software Foundation; either version
 21 *  2 of the License, or (at your option) any later version.
 22 */
 23
 24#include <linux/kernel.h>
 25#include <linux/gfp.h>
 26#include <linux/mm.h>
 27#include <linux/percpu.h>
 28#include <linux/hardirq.h>
 29#include <linux/hugetlb.h>
 30#include <asm/pgalloc.h>
 31#include <asm/tlbflush.h>
 32#include <asm/tlb.h>
 
 
 
 
 
 
 
 
 
 
 33
 34static inline int is_exec_fault(void)
 35{
 36	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
 37}
 38
 39/* We only try to do i/d cache coherency on stuff that looks like
 40 * reasonably "normal" PTEs. We currently require a PTE to be present
 41 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
 42 * on userspace PTEs
 43 */
 44static inline int pte_looks_normal(pte_t pte)
 45{
 46
 47#if defined(CONFIG_PPC_BOOK3S_64)
 48	if ((pte_val(pte) & (_PAGE_PRESENT | _PAGE_SPECIAL)) == _PAGE_PRESENT) {
 49		if (pte_ci(pte))
 50			return 0;
 51		if (pte_user(pte))
 52			return 1;
 53	}
 54	return 0;
 55#else
 56	return (pte_val(pte) &
 57		(_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER |
 58		 _PAGE_PRIVILEGED)) ==
 59		(_PAGE_PRESENT | _PAGE_USER);
 60#endif
 61}
 62
 63static struct page *maybe_pte_to_page(pte_t pte)
 64{
 65	unsigned long pfn = pte_pfn(pte);
 66	struct page *page;
 67
 68	if (unlikely(!pfn_valid(pfn)))
 69		return NULL;
 70	page = pfn_to_page(pfn);
 71	if (PageReserved(page))
 72		return NULL;
 73	return page;
 74}
 75
 76#if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
 77
 78/* Server-style MMU handles coherency when hashing if HW exec permission
 79 * is supposed per page (currently 64-bit only). If not, then, we always
 80 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
 81 * support falls into the same category.
 82 */
 83
 84static pte_t set_pte_filter(pte_t pte)
 85{
 86	if (radix_enabled())
 87		return pte;
 88
 89	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 90	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
 91				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
 92		struct page *pg = maybe_pte_to_page(pte);
 93		if (!pg)
 94			return pte;
 95		if (!test_bit(PG_arch_1, &pg->flags)) {
 96			flush_dcache_icache_page(pg);
 97			set_bit(PG_arch_1, &pg->flags);
 98		}
 99	}
100	return pte;
101}
102
103static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
104				     int dirty)
105{
106	return pte;
107}
108
109#else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
110
111/* Embedded type MMU with HW exec support. This is a bit more complicated
112 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
113 * instead we "filter out" the exec permission for non clean pages.
 
 
114 */
115static pte_t set_pte_filter(pte_t pte)
116{
117	struct page *pg;
 
 
 
 
 
 
118
119	/* No exec permission in the first place, move on */
120	if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
121		return pte;
122
123	/* If you set _PAGE_EXEC on weird pages you're on your own */
124	pg = maybe_pte_to_page(pte);
125	if (unlikely(!pg))
126		return pte;
127
128	/* If the page clean, we move on */
129	if (test_bit(PG_arch_1, &pg->flags))
130		return pte;
131
132	/* If it's an exec fault, we flush the cache and make it clean */
133	if (is_exec_fault()) {
134		flush_dcache_icache_page(pg);
135		set_bit(PG_arch_1, &pg->flags);
136		return pte;
137	}
138
139	/* Else, we filter out _PAGE_EXEC */
140	return __pte(pte_val(pte) & ~_PAGE_EXEC);
141}
142
143static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
144				     int dirty)
145{
146	struct page *pg;
 
 
 
 
 
 
147
148	/* So here, we only care about exec faults, as we use them
149	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
150	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
151	 * we just bail out
152	 */
153	if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
154		return pte;
155
156#ifdef CONFIG_DEBUG_VM
157	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
158	 * an error we would have bailed out earlier in do_page_fault()
159	 * but let's make sure of it
160	 */
161	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
162		return pte;
163#endif /* CONFIG_DEBUG_VM */
164
165	/* If you set _PAGE_EXEC on weird pages you're on your own */
166	pg = maybe_pte_to_page(pte);
167	if (unlikely(!pg))
168		goto bail;
169
170	/* If the page is already clean, we move on */
171	if (test_bit(PG_arch_1, &pg->flags))
172		goto bail;
173
174	/* Clean the page and set PG_arch_1 */
175	flush_dcache_icache_page(pg);
176	set_bit(PG_arch_1, &pg->flags);
177
178 bail:
179	return __pte(pte_val(pte) | _PAGE_EXEC);
180}
181
182#endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
183
184/*
185 * set_pte stores a linux PTE into the linux page table.
186 */
187void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
188		pte_t pte)
189{
 
 
 
 
 
 
 
 
190	/*
191	 * When handling numa faults, we already have the pte marked
192	 * _PAGE_PRESENT, but we can be sure that it is not in hpte.
193	 * Hence we can use set_pte_at for them.
 
194	 */
195	VM_WARN_ON(pte_present(*ptep) && !pte_protnone(*ptep));
196
197	/* Add the pte bit when trying to set a pte */
198	pte = __pte(pte_val(pte) | _PAGE_PTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
200	/* Note: mm->context.id might not yet have been assigned as
201	 * this context might not have been activated yet when this
202	 * is called.
203	 */
204	pte = set_pte_filter(pte);
205
206	/* Perform the setting of the PTE */
207	__set_pte_at(mm, addr, ptep, pte, 0);
208}
209
210/*
211 * This is called when relaxing access to a PTE. It's also called in the page
212 * fault path when we don't hit any of the major fault cases, ie, a minor
213 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
214 * handled those two for us, we additionally deal with missing execute
215 * permission here on some processors
216 */
217int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
218			  pte_t *ptep, pte_t entry, int dirty)
219{
220	int changed;
221	entry = set_access_flags_filter(entry, vma, dirty);
222	changed = !pte_same(*(ptep), entry);
223	if (changed) {
224		if (!is_vm_hugetlb_page(vma))
225			assert_pte_locked(vma->vm_mm, address);
226		__ptep_set_access_flags(vma->vm_mm, ptep, entry, address);
227		flush_tlb_page(vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228	}
229	return changed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230}
 
 
231
232#ifdef CONFIG_DEBUG_VM
233void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
234{
235	pgd_t *pgd;
 
236	pud_t *pud;
237	pmd_t *pmd;
 
 
238
239	if (mm == &init_mm)
240		return;
241	pgd = mm->pgd + pgd_index(addr);
242	BUG_ON(pgd_none(*pgd));
243	pud = pud_offset(pgd, addr);
 
 
244	BUG_ON(pud_none(*pud));
245	pmd = pmd_offset(pud, addr);
246	/*
247	 * khugepaged to collapse normal pages to hugepage, first set
248	 * pmd to none to force page fault/gup to take mmap_sem. After
249	 * pmd is set to none, we do a pte_clear which does this assertion
250	 * so if we find pmd none, return.
251	 */
252	if (pmd_none(*pmd))
253		return;
254	BUG_ON(!pmd_present(*pmd));
255	assert_spin_locked(pte_lockptr(mm, pmd));
 
 
256}
257#endif /* CONFIG_DEBUG_VM */
258
259unsigned long vmalloc_to_phys(void *va)
260{
261	unsigned long pfn = vmalloc_to_pfn(va);
262
263	BUG_ON(!pfn);
264	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
265}
266EXPORT_SYMBOL_GPL(vmalloc_to_phys);