Loading...
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3/*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13#ifndef _GNU_SOURCE
14#define _GNU_SOURCE
15#endif
16#include <stdlib.h>
17#include <stdio.h>
18#include <stdarg.h>
19#include <libgen.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <string.h>
23#include <unistd.h>
24#include <endian.h>
25#include <fcntl.h>
26#include <errno.h>
27#include <ctype.h>
28#include <asm/unistd.h>
29#include <linux/err.h>
30#include <linux/kernel.h>
31#include <linux/bpf.h>
32#include <linux/btf.h>
33#include <linux/filter.h>
34#include <linux/limits.h>
35#include <linux/perf_event.h>
36#include <linux/ring_buffer.h>
37#include <sys/epoll.h>
38#include <sys/ioctl.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/types.h>
42#include <sys/vfs.h>
43#include <sys/utsname.h>
44#include <sys/resource.h>
45#include <libelf.h>
46#include <gelf.h>
47#include <zlib.h>
48
49#include "libbpf.h"
50#include "bpf.h"
51#include "btf.h"
52#include "str_error.h"
53#include "libbpf_internal.h"
54#include "hashmap.h"
55#include "bpf_gen_internal.h"
56#include "zip.h"
57
58#ifndef BPF_FS_MAGIC
59#define BPF_FS_MAGIC 0xcafe4a11
60#endif
61
62#define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64/* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67#pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69#define __printf(a, b) __attribute__((format(printf, a, b)))
70
71static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
107 [BPF_LIRC_MODE2] = "lirc_mode2",
108 [BPF_FLOW_DISSECTOR] = "flow_dissector",
109 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
110 [BPF_TRACE_FENTRY] = "trace_fentry",
111 [BPF_TRACE_FEXIT] = "trace_fexit",
112 [BPF_MODIFY_RETURN] = "modify_return",
113 [BPF_LSM_MAC] = "lsm_mac",
114 [BPF_LSM_CGROUP] = "lsm_cgroup",
115 [BPF_SK_LOOKUP] = "sk_lookup",
116 [BPF_TRACE_ITER] = "trace_iter",
117 [BPF_XDP_DEVMAP] = "xdp_devmap",
118 [BPF_XDP_CPUMAP] = "xdp_cpumap",
119 [BPF_XDP] = "xdp",
120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
122 [BPF_PERF_EVENT] = "perf_event",
123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
124 [BPF_STRUCT_OPS] = "struct_ops",
125 [BPF_NETFILTER] = "netfilter",
126 [BPF_TCX_INGRESS] = "tcx_ingress",
127 [BPF_TCX_EGRESS] = "tcx_egress",
128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
129 [BPF_NETKIT_PRIMARY] = "netkit_primary",
130 [BPF_NETKIT_PEER] = "netkit_peer",
131};
132
133static const char * const link_type_name[] = {
134 [BPF_LINK_TYPE_UNSPEC] = "unspec",
135 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
136 [BPF_LINK_TYPE_TRACING] = "tracing",
137 [BPF_LINK_TYPE_CGROUP] = "cgroup",
138 [BPF_LINK_TYPE_ITER] = "iter",
139 [BPF_LINK_TYPE_NETNS] = "netns",
140 [BPF_LINK_TYPE_XDP] = "xdp",
141 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
142 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
143 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
144 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
145 [BPF_LINK_TYPE_TCX] = "tcx",
146 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
147 [BPF_LINK_TYPE_NETKIT] = "netkit",
148};
149
150static const char * const map_type_name[] = {
151 [BPF_MAP_TYPE_UNSPEC] = "unspec",
152 [BPF_MAP_TYPE_HASH] = "hash",
153 [BPF_MAP_TYPE_ARRAY] = "array",
154 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
155 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
156 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
157 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
158 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
159 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
160 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
161 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
162 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
163 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
164 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
165 [BPF_MAP_TYPE_DEVMAP] = "devmap",
166 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
167 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
168 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
169 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
170 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
171 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
172 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
173 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
174 [BPF_MAP_TYPE_QUEUE] = "queue",
175 [BPF_MAP_TYPE_STACK] = "stack",
176 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
177 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
178 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
179 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
180 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
181 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
182 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
183 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
184};
185
186static const char * const prog_type_name[] = {
187 [BPF_PROG_TYPE_UNSPEC] = "unspec",
188 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
189 [BPF_PROG_TYPE_KPROBE] = "kprobe",
190 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
191 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
192 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
193 [BPF_PROG_TYPE_XDP] = "xdp",
194 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
195 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
196 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
197 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
198 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
199 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
200 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
201 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
202 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
203 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
204 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
205 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
206 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
207 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
208 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
209 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
210 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
211 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
212 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
213 [BPF_PROG_TYPE_TRACING] = "tracing",
214 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
215 [BPF_PROG_TYPE_EXT] = "ext",
216 [BPF_PROG_TYPE_LSM] = "lsm",
217 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
218 [BPF_PROG_TYPE_SYSCALL] = "syscall",
219 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
220};
221
222static int __base_pr(enum libbpf_print_level level, const char *format,
223 va_list args)
224{
225 if (level == LIBBPF_DEBUG)
226 return 0;
227
228 return vfprintf(stderr, format, args);
229}
230
231static libbpf_print_fn_t __libbpf_pr = __base_pr;
232
233libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
234{
235 libbpf_print_fn_t old_print_fn;
236
237 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
238
239 return old_print_fn;
240}
241
242__printf(2, 3)
243void libbpf_print(enum libbpf_print_level level, const char *format, ...)
244{
245 va_list args;
246 int old_errno;
247 libbpf_print_fn_t print_fn;
248
249 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
250 if (!print_fn)
251 return;
252
253 old_errno = errno;
254
255 va_start(args, format);
256 __libbpf_pr(level, format, args);
257 va_end(args);
258
259 errno = old_errno;
260}
261
262static void pr_perm_msg(int err)
263{
264 struct rlimit limit;
265 char buf[100];
266
267 if (err != -EPERM || geteuid() != 0)
268 return;
269
270 err = getrlimit(RLIMIT_MEMLOCK, &limit);
271 if (err)
272 return;
273
274 if (limit.rlim_cur == RLIM_INFINITY)
275 return;
276
277 if (limit.rlim_cur < 1024)
278 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
279 else if (limit.rlim_cur < 1024*1024)
280 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
281 else
282 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
283
284 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
285 buf);
286}
287
288#define STRERR_BUFSIZE 128
289
290/* Copied from tools/perf/util/util.h */
291#ifndef zfree
292# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
293#endif
294
295#ifndef zclose
296# define zclose(fd) ({ \
297 int ___err = 0; \
298 if ((fd) >= 0) \
299 ___err = close((fd)); \
300 fd = -1; \
301 ___err; })
302#endif
303
304static inline __u64 ptr_to_u64(const void *ptr)
305{
306 return (__u64) (unsigned long) ptr;
307}
308
309int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
310{
311 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
312 return 0;
313}
314
315__u32 libbpf_major_version(void)
316{
317 return LIBBPF_MAJOR_VERSION;
318}
319
320__u32 libbpf_minor_version(void)
321{
322 return LIBBPF_MINOR_VERSION;
323}
324
325const char *libbpf_version_string(void)
326{
327#define __S(X) #X
328#define _S(X) __S(X)
329 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
330#undef _S
331#undef __S
332}
333
334enum reloc_type {
335 RELO_LD64,
336 RELO_CALL,
337 RELO_DATA,
338 RELO_EXTERN_LD64,
339 RELO_EXTERN_CALL,
340 RELO_SUBPROG_ADDR,
341 RELO_CORE,
342};
343
344struct reloc_desc {
345 enum reloc_type type;
346 int insn_idx;
347 union {
348 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
349 struct {
350 int map_idx;
351 int sym_off;
352 int ext_idx;
353 };
354 };
355};
356
357/* stored as sec_def->cookie for all libbpf-supported SEC()s */
358enum sec_def_flags {
359 SEC_NONE = 0,
360 /* expected_attach_type is optional, if kernel doesn't support that */
361 SEC_EXP_ATTACH_OPT = 1,
362 /* legacy, only used by libbpf_get_type_names() and
363 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
364 * This used to be associated with cgroup (and few other) BPF programs
365 * that were attachable through BPF_PROG_ATTACH command. Pretty
366 * meaningless nowadays, though.
367 */
368 SEC_ATTACHABLE = 2,
369 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
370 /* attachment target is specified through BTF ID in either kernel or
371 * other BPF program's BTF object
372 */
373 SEC_ATTACH_BTF = 4,
374 /* BPF program type allows sleeping/blocking in kernel */
375 SEC_SLEEPABLE = 8,
376 /* BPF program support non-linear XDP buffer */
377 SEC_XDP_FRAGS = 16,
378 /* Setup proper attach type for usdt probes. */
379 SEC_USDT = 32,
380};
381
382struct bpf_sec_def {
383 char *sec;
384 enum bpf_prog_type prog_type;
385 enum bpf_attach_type expected_attach_type;
386 long cookie;
387 int handler_id;
388
389 libbpf_prog_setup_fn_t prog_setup_fn;
390 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
391 libbpf_prog_attach_fn_t prog_attach_fn;
392};
393
394/*
395 * bpf_prog should be a better name but it has been used in
396 * linux/filter.h.
397 */
398struct bpf_program {
399 char *name;
400 char *sec_name;
401 size_t sec_idx;
402 const struct bpf_sec_def *sec_def;
403 /* this program's instruction offset (in number of instructions)
404 * within its containing ELF section
405 */
406 size_t sec_insn_off;
407 /* number of original instructions in ELF section belonging to this
408 * program, not taking into account subprogram instructions possible
409 * appended later during relocation
410 */
411 size_t sec_insn_cnt;
412 /* Offset (in number of instructions) of the start of instruction
413 * belonging to this BPF program within its containing main BPF
414 * program. For the entry-point (main) BPF program, this is always
415 * zero. For a sub-program, this gets reset before each of main BPF
416 * programs are processed and relocated and is used to determined
417 * whether sub-program was already appended to the main program, and
418 * if yes, at which instruction offset.
419 */
420 size_t sub_insn_off;
421
422 /* instructions that belong to BPF program; insns[0] is located at
423 * sec_insn_off instruction within its ELF section in ELF file, so
424 * when mapping ELF file instruction index to the local instruction,
425 * one needs to subtract sec_insn_off; and vice versa.
426 */
427 struct bpf_insn *insns;
428 /* actual number of instruction in this BPF program's image; for
429 * entry-point BPF programs this includes the size of main program
430 * itself plus all the used sub-programs, appended at the end
431 */
432 size_t insns_cnt;
433
434 struct reloc_desc *reloc_desc;
435 int nr_reloc;
436
437 /* BPF verifier log settings */
438 char *log_buf;
439 size_t log_size;
440 __u32 log_level;
441
442 struct bpf_object *obj;
443
444 int fd;
445 bool autoload;
446 bool autoattach;
447 bool sym_global;
448 bool mark_btf_static;
449 enum bpf_prog_type type;
450 enum bpf_attach_type expected_attach_type;
451 int exception_cb_idx;
452
453 int prog_ifindex;
454 __u32 attach_btf_obj_fd;
455 __u32 attach_btf_id;
456 __u32 attach_prog_fd;
457
458 void *func_info;
459 __u32 func_info_rec_size;
460 __u32 func_info_cnt;
461
462 void *line_info;
463 __u32 line_info_rec_size;
464 __u32 line_info_cnt;
465 __u32 prog_flags;
466};
467
468struct bpf_struct_ops {
469 const char *tname;
470 const struct btf_type *type;
471 struct bpf_program **progs;
472 __u32 *kern_func_off;
473 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
474 void *data;
475 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
476 * btf_vmlinux's format.
477 * struct bpf_struct_ops_tcp_congestion_ops {
478 * [... some other kernel fields ...]
479 * struct tcp_congestion_ops data;
480 * }
481 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
482 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
483 * from "data".
484 */
485 void *kern_vdata;
486 __u32 type_id;
487};
488
489#define DATA_SEC ".data"
490#define BSS_SEC ".bss"
491#define RODATA_SEC ".rodata"
492#define KCONFIG_SEC ".kconfig"
493#define KSYMS_SEC ".ksyms"
494#define STRUCT_OPS_SEC ".struct_ops"
495#define STRUCT_OPS_LINK_SEC ".struct_ops.link"
496
497enum libbpf_map_type {
498 LIBBPF_MAP_UNSPEC,
499 LIBBPF_MAP_DATA,
500 LIBBPF_MAP_BSS,
501 LIBBPF_MAP_RODATA,
502 LIBBPF_MAP_KCONFIG,
503};
504
505struct bpf_map_def {
506 unsigned int type;
507 unsigned int key_size;
508 unsigned int value_size;
509 unsigned int max_entries;
510 unsigned int map_flags;
511};
512
513struct bpf_map {
514 struct bpf_object *obj;
515 char *name;
516 /* real_name is defined for special internal maps (.rodata*,
517 * .data*, .bss, .kconfig) and preserves their original ELF section
518 * name. This is important to be able to find corresponding BTF
519 * DATASEC information.
520 */
521 char *real_name;
522 int fd;
523 int sec_idx;
524 size_t sec_offset;
525 int map_ifindex;
526 int inner_map_fd;
527 struct bpf_map_def def;
528 __u32 numa_node;
529 __u32 btf_var_idx;
530 __u32 btf_key_type_id;
531 __u32 btf_value_type_id;
532 __u32 btf_vmlinux_value_type_id;
533 enum libbpf_map_type libbpf_type;
534 void *mmaped;
535 struct bpf_struct_ops *st_ops;
536 struct bpf_map *inner_map;
537 void **init_slots;
538 int init_slots_sz;
539 char *pin_path;
540 bool pinned;
541 bool reused;
542 bool autocreate;
543 __u64 map_extra;
544};
545
546enum extern_type {
547 EXT_UNKNOWN,
548 EXT_KCFG,
549 EXT_KSYM,
550};
551
552enum kcfg_type {
553 KCFG_UNKNOWN,
554 KCFG_CHAR,
555 KCFG_BOOL,
556 KCFG_INT,
557 KCFG_TRISTATE,
558 KCFG_CHAR_ARR,
559};
560
561struct extern_desc {
562 enum extern_type type;
563 int sym_idx;
564 int btf_id;
565 int sec_btf_id;
566 const char *name;
567 char *essent_name;
568 bool is_set;
569 bool is_weak;
570 union {
571 struct {
572 enum kcfg_type type;
573 int sz;
574 int align;
575 int data_off;
576 bool is_signed;
577 } kcfg;
578 struct {
579 unsigned long long addr;
580
581 /* target btf_id of the corresponding kernel var. */
582 int kernel_btf_obj_fd;
583 int kernel_btf_id;
584
585 /* local btf_id of the ksym extern's type. */
586 __u32 type_id;
587 /* BTF fd index to be patched in for insn->off, this is
588 * 0 for vmlinux BTF, index in obj->fd_array for module
589 * BTF
590 */
591 __s16 btf_fd_idx;
592 } ksym;
593 };
594};
595
596struct module_btf {
597 struct btf *btf;
598 char *name;
599 __u32 id;
600 int fd;
601 int fd_array_idx;
602};
603
604enum sec_type {
605 SEC_UNUSED = 0,
606 SEC_RELO,
607 SEC_BSS,
608 SEC_DATA,
609 SEC_RODATA,
610};
611
612struct elf_sec_desc {
613 enum sec_type sec_type;
614 Elf64_Shdr *shdr;
615 Elf_Data *data;
616};
617
618struct elf_state {
619 int fd;
620 const void *obj_buf;
621 size_t obj_buf_sz;
622 Elf *elf;
623 Elf64_Ehdr *ehdr;
624 Elf_Data *symbols;
625 Elf_Data *st_ops_data;
626 Elf_Data *st_ops_link_data;
627 size_t shstrndx; /* section index for section name strings */
628 size_t strtabidx;
629 struct elf_sec_desc *secs;
630 size_t sec_cnt;
631 int btf_maps_shndx;
632 __u32 btf_maps_sec_btf_id;
633 int text_shndx;
634 int symbols_shndx;
635 int st_ops_shndx;
636 int st_ops_link_shndx;
637};
638
639struct usdt_manager;
640
641struct bpf_object {
642 char name[BPF_OBJ_NAME_LEN];
643 char license[64];
644 __u32 kern_version;
645
646 struct bpf_program *programs;
647 size_t nr_programs;
648 struct bpf_map *maps;
649 size_t nr_maps;
650 size_t maps_cap;
651
652 char *kconfig;
653 struct extern_desc *externs;
654 int nr_extern;
655 int kconfig_map_idx;
656
657 bool loaded;
658 bool has_subcalls;
659 bool has_rodata;
660
661 struct bpf_gen *gen_loader;
662
663 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
664 struct elf_state efile;
665
666 struct btf *btf;
667 struct btf_ext *btf_ext;
668
669 /* Parse and load BTF vmlinux if any of the programs in the object need
670 * it at load time.
671 */
672 struct btf *btf_vmlinux;
673 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
674 * override for vmlinux BTF.
675 */
676 char *btf_custom_path;
677 /* vmlinux BTF override for CO-RE relocations */
678 struct btf *btf_vmlinux_override;
679 /* Lazily initialized kernel module BTFs */
680 struct module_btf *btf_modules;
681 bool btf_modules_loaded;
682 size_t btf_module_cnt;
683 size_t btf_module_cap;
684
685 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
686 char *log_buf;
687 size_t log_size;
688 __u32 log_level;
689
690 int *fd_array;
691 size_t fd_array_cap;
692 size_t fd_array_cnt;
693
694 struct usdt_manager *usdt_man;
695
696 char path[];
697};
698
699static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
700static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
701static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
702static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
703static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
704static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
705static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
706static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
707static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
708
709void bpf_program__unload(struct bpf_program *prog)
710{
711 if (!prog)
712 return;
713
714 zclose(prog->fd);
715
716 zfree(&prog->func_info);
717 zfree(&prog->line_info);
718}
719
720static void bpf_program__exit(struct bpf_program *prog)
721{
722 if (!prog)
723 return;
724
725 bpf_program__unload(prog);
726 zfree(&prog->name);
727 zfree(&prog->sec_name);
728 zfree(&prog->insns);
729 zfree(&prog->reloc_desc);
730
731 prog->nr_reloc = 0;
732 prog->insns_cnt = 0;
733 prog->sec_idx = -1;
734}
735
736static bool insn_is_subprog_call(const struct bpf_insn *insn)
737{
738 return BPF_CLASS(insn->code) == BPF_JMP &&
739 BPF_OP(insn->code) == BPF_CALL &&
740 BPF_SRC(insn->code) == BPF_K &&
741 insn->src_reg == BPF_PSEUDO_CALL &&
742 insn->dst_reg == 0 &&
743 insn->off == 0;
744}
745
746static bool is_call_insn(const struct bpf_insn *insn)
747{
748 return insn->code == (BPF_JMP | BPF_CALL);
749}
750
751static bool insn_is_pseudo_func(struct bpf_insn *insn)
752{
753 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
754}
755
756static int
757bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
758 const char *name, size_t sec_idx, const char *sec_name,
759 size_t sec_off, void *insn_data, size_t insn_data_sz)
760{
761 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
762 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
763 sec_name, name, sec_off, insn_data_sz);
764 return -EINVAL;
765 }
766
767 memset(prog, 0, sizeof(*prog));
768 prog->obj = obj;
769
770 prog->sec_idx = sec_idx;
771 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
772 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
773 /* insns_cnt can later be increased by appending used subprograms */
774 prog->insns_cnt = prog->sec_insn_cnt;
775
776 prog->type = BPF_PROG_TYPE_UNSPEC;
777 prog->fd = -1;
778 prog->exception_cb_idx = -1;
779
780 /* libbpf's convention for SEC("?abc...") is that it's just like
781 * SEC("abc...") but the corresponding bpf_program starts out with
782 * autoload set to false.
783 */
784 if (sec_name[0] == '?') {
785 prog->autoload = false;
786 /* from now on forget there was ? in section name */
787 sec_name++;
788 } else {
789 prog->autoload = true;
790 }
791
792 prog->autoattach = true;
793
794 /* inherit object's log_level */
795 prog->log_level = obj->log_level;
796
797 prog->sec_name = strdup(sec_name);
798 if (!prog->sec_name)
799 goto errout;
800
801 prog->name = strdup(name);
802 if (!prog->name)
803 goto errout;
804
805 prog->insns = malloc(insn_data_sz);
806 if (!prog->insns)
807 goto errout;
808 memcpy(prog->insns, insn_data, insn_data_sz);
809
810 return 0;
811errout:
812 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
813 bpf_program__exit(prog);
814 return -ENOMEM;
815}
816
817static int
818bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
819 const char *sec_name, int sec_idx)
820{
821 Elf_Data *symbols = obj->efile.symbols;
822 struct bpf_program *prog, *progs;
823 void *data = sec_data->d_buf;
824 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
825 int nr_progs, err, i;
826 const char *name;
827 Elf64_Sym *sym;
828
829 progs = obj->programs;
830 nr_progs = obj->nr_programs;
831 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
832
833 for (i = 0; i < nr_syms; i++) {
834 sym = elf_sym_by_idx(obj, i);
835
836 if (sym->st_shndx != sec_idx)
837 continue;
838 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
839 continue;
840
841 prog_sz = sym->st_size;
842 sec_off = sym->st_value;
843
844 name = elf_sym_str(obj, sym->st_name);
845 if (!name) {
846 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
847 sec_name, sec_off);
848 return -LIBBPF_ERRNO__FORMAT;
849 }
850
851 if (sec_off + prog_sz > sec_sz) {
852 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
853 sec_name, sec_off);
854 return -LIBBPF_ERRNO__FORMAT;
855 }
856
857 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
858 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
859 return -ENOTSUP;
860 }
861
862 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
863 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
864
865 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
866 if (!progs) {
867 /*
868 * In this case the original obj->programs
869 * is still valid, so don't need special treat for
870 * bpf_close_object().
871 */
872 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
873 sec_name, name);
874 return -ENOMEM;
875 }
876 obj->programs = progs;
877
878 prog = &progs[nr_progs];
879
880 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
881 sec_off, data + sec_off, prog_sz);
882 if (err)
883 return err;
884
885 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
886 prog->sym_global = true;
887
888 /* if function is a global/weak symbol, but has restricted
889 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
890 * as static to enable more permissive BPF verification mode
891 * with more outside context available to BPF verifier
892 */
893 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
894 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
895 prog->mark_btf_static = true;
896
897 nr_progs++;
898 obj->nr_programs = nr_progs;
899 }
900
901 return 0;
902}
903
904static const struct btf_member *
905find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
906{
907 struct btf_member *m;
908 int i;
909
910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
911 if (btf_member_bit_offset(t, i) == bit_offset)
912 return m;
913 }
914
915 return NULL;
916}
917
918static const struct btf_member *
919find_member_by_name(const struct btf *btf, const struct btf_type *t,
920 const char *name)
921{
922 struct btf_member *m;
923 int i;
924
925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
927 return m;
928 }
929
930 return NULL;
931}
932
933#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
934static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
935 const char *name, __u32 kind);
936
937static int
938find_struct_ops_kern_types(const struct btf *btf, const char *tname,
939 const struct btf_type **type, __u32 *type_id,
940 const struct btf_type **vtype, __u32 *vtype_id,
941 const struct btf_member **data_member)
942{
943 const struct btf_type *kern_type, *kern_vtype;
944 const struct btf_member *kern_data_member;
945 __s32 kern_vtype_id, kern_type_id;
946 __u32 i;
947
948 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
949 if (kern_type_id < 0) {
950 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
951 tname);
952 return kern_type_id;
953 }
954 kern_type = btf__type_by_id(btf, kern_type_id);
955
956 /* Find the corresponding "map_value" type that will be used
957 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
958 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
959 * btf_vmlinux.
960 */
961 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
962 tname, BTF_KIND_STRUCT);
963 if (kern_vtype_id < 0) {
964 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
965 STRUCT_OPS_VALUE_PREFIX, tname);
966 return kern_vtype_id;
967 }
968 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
969
970 /* Find "struct tcp_congestion_ops" from
971 * struct bpf_struct_ops_tcp_congestion_ops {
972 * [ ... ]
973 * struct tcp_congestion_ops data;
974 * }
975 */
976 kern_data_member = btf_members(kern_vtype);
977 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
978 if (kern_data_member->type == kern_type_id)
979 break;
980 }
981 if (i == btf_vlen(kern_vtype)) {
982 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
983 tname, STRUCT_OPS_VALUE_PREFIX, tname);
984 return -EINVAL;
985 }
986
987 *type = kern_type;
988 *type_id = kern_type_id;
989 *vtype = kern_vtype;
990 *vtype_id = kern_vtype_id;
991 *data_member = kern_data_member;
992
993 return 0;
994}
995
996static bool bpf_map__is_struct_ops(const struct bpf_map *map)
997{
998 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
999}
1000
1001/* Init the map's fields that depend on kern_btf */
1002static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1003 const struct btf *btf,
1004 const struct btf *kern_btf)
1005{
1006 const struct btf_member *member, *kern_member, *kern_data_member;
1007 const struct btf_type *type, *kern_type, *kern_vtype;
1008 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1009 struct bpf_struct_ops *st_ops;
1010 void *data, *kern_data;
1011 const char *tname;
1012 int err;
1013
1014 st_ops = map->st_ops;
1015 type = st_ops->type;
1016 tname = st_ops->tname;
1017 err = find_struct_ops_kern_types(kern_btf, tname,
1018 &kern_type, &kern_type_id,
1019 &kern_vtype, &kern_vtype_id,
1020 &kern_data_member);
1021 if (err)
1022 return err;
1023
1024 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1025 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1026
1027 map->def.value_size = kern_vtype->size;
1028 map->btf_vmlinux_value_type_id = kern_vtype_id;
1029
1030 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1031 if (!st_ops->kern_vdata)
1032 return -ENOMEM;
1033
1034 data = st_ops->data;
1035 kern_data_off = kern_data_member->offset / 8;
1036 kern_data = st_ops->kern_vdata + kern_data_off;
1037
1038 member = btf_members(type);
1039 for (i = 0; i < btf_vlen(type); i++, member++) {
1040 const struct btf_type *mtype, *kern_mtype;
1041 __u32 mtype_id, kern_mtype_id;
1042 void *mdata, *kern_mdata;
1043 __s64 msize, kern_msize;
1044 __u32 moff, kern_moff;
1045 __u32 kern_member_idx;
1046 const char *mname;
1047
1048 mname = btf__name_by_offset(btf, member->name_off);
1049 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1050 if (!kern_member) {
1051 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1052 map->name, mname);
1053 return -ENOTSUP;
1054 }
1055
1056 kern_member_idx = kern_member - btf_members(kern_type);
1057 if (btf_member_bitfield_size(type, i) ||
1058 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1059 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1060 map->name, mname);
1061 return -ENOTSUP;
1062 }
1063
1064 moff = member->offset / 8;
1065 kern_moff = kern_member->offset / 8;
1066
1067 mdata = data + moff;
1068 kern_mdata = kern_data + kern_moff;
1069
1070 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1071 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1072 &kern_mtype_id);
1073 if (BTF_INFO_KIND(mtype->info) !=
1074 BTF_INFO_KIND(kern_mtype->info)) {
1075 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1076 map->name, mname, BTF_INFO_KIND(mtype->info),
1077 BTF_INFO_KIND(kern_mtype->info));
1078 return -ENOTSUP;
1079 }
1080
1081 if (btf_is_ptr(mtype)) {
1082 struct bpf_program *prog;
1083
1084 prog = st_ops->progs[i];
1085 if (!prog)
1086 continue;
1087
1088 kern_mtype = skip_mods_and_typedefs(kern_btf,
1089 kern_mtype->type,
1090 &kern_mtype_id);
1091
1092 /* mtype->type must be a func_proto which was
1093 * guaranteed in bpf_object__collect_st_ops_relos(),
1094 * so only check kern_mtype for func_proto here.
1095 */
1096 if (!btf_is_func_proto(kern_mtype)) {
1097 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1098 map->name, mname);
1099 return -ENOTSUP;
1100 }
1101
1102 prog->attach_btf_id = kern_type_id;
1103 prog->expected_attach_type = kern_member_idx;
1104
1105 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1106
1107 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1108 map->name, mname, prog->name, moff,
1109 kern_moff);
1110
1111 continue;
1112 }
1113
1114 msize = btf__resolve_size(btf, mtype_id);
1115 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1116 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1117 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1118 map->name, mname, (ssize_t)msize,
1119 (ssize_t)kern_msize);
1120 return -ENOTSUP;
1121 }
1122
1123 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1124 map->name, mname, (unsigned int)msize,
1125 moff, kern_moff);
1126 memcpy(kern_mdata, mdata, msize);
1127 }
1128
1129 return 0;
1130}
1131
1132static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1133{
1134 struct bpf_map *map;
1135 size_t i;
1136 int err;
1137
1138 for (i = 0; i < obj->nr_maps; i++) {
1139 map = &obj->maps[i];
1140
1141 if (!bpf_map__is_struct_ops(map))
1142 continue;
1143
1144 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1145 obj->btf_vmlinux);
1146 if (err)
1147 return err;
1148 }
1149
1150 return 0;
1151}
1152
1153static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1154 int shndx, Elf_Data *data, __u32 map_flags)
1155{
1156 const struct btf_type *type, *datasec;
1157 const struct btf_var_secinfo *vsi;
1158 struct bpf_struct_ops *st_ops;
1159 const char *tname, *var_name;
1160 __s32 type_id, datasec_id;
1161 const struct btf *btf;
1162 struct bpf_map *map;
1163 __u32 i;
1164
1165 if (shndx == -1)
1166 return 0;
1167
1168 btf = obj->btf;
1169 datasec_id = btf__find_by_name_kind(btf, sec_name,
1170 BTF_KIND_DATASEC);
1171 if (datasec_id < 0) {
1172 pr_warn("struct_ops init: DATASEC %s not found\n",
1173 sec_name);
1174 return -EINVAL;
1175 }
1176
1177 datasec = btf__type_by_id(btf, datasec_id);
1178 vsi = btf_var_secinfos(datasec);
1179 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1180 type = btf__type_by_id(obj->btf, vsi->type);
1181 var_name = btf__name_by_offset(obj->btf, type->name_off);
1182
1183 type_id = btf__resolve_type(obj->btf, vsi->type);
1184 if (type_id < 0) {
1185 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1186 vsi->type, sec_name);
1187 return -EINVAL;
1188 }
1189
1190 type = btf__type_by_id(obj->btf, type_id);
1191 tname = btf__name_by_offset(obj->btf, type->name_off);
1192 if (!tname[0]) {
1193 pr_warn("struct_ops init: anonymous type is not supported\n");
1194 return -ENOTSUP;
1195 }
1196 if (!btf_is_struct(type)) {
1197 pr_warn("struct_ops init: %s is not a struct\n", tname);
1198 return -EINVAL;
1199 }
1200
1201 map = bpf_object__add_map(obj);
1202 if (IS_ERR(map))
1203 return PTR_ERR(map);
1204
1205 map->sec_idx = shndx;
1206 map->sec_offset = vsi->offset;
1207 map->name = strdup(var_name);
1208 if (!map->name)
1209 return -ENOMEM;
1210
1211 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1212 map->def.key_size = sizeof(int);
1213 map->def.value_size = type->size;
1214 map->def.max_entries = 1;
1215 map->def.map_flags = map_flags;
1216
1217 map->st_ops = calloc(1, sizeof(*map->st_ops));
1218 if (!map->st_ops)
1219 return -ENOMEM;
1220 st_ops = map->st_ops;
1221 st_ops->data = malloc(type->size);
1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1223 st_ops->kern_func_off = malloc(btf_vlen(type) *
1224 sizeof(*st_ops->kern_func_off));
1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1226 return -ENOMEM;
1227
1228 if (vsi->offset + type->size > data->d_size) {
1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1230 var_name, sec_name);
1231 return -EINVAL;
1232 }
1233
1234 memcpy(st_ops->data,
1235 data->d_buf + vsi->offset,
1236 type->size);
1237 st_ops->tname = tname;
1238 st_ops->type = type;
1239 st_ops->type_id = type_id;
1240
1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1242 tname, type_id, var_name, vsi->offset);
1243 }
1244
1245 return 0;
1246}
1247
1248static int bpf_object_init_struct_ops(struct bpf_object *obj)
1249{
1250 int err;
1251
1252 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1253 obj->efile.st_ops_data, 0);
1254 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1255 obj->efile.st_ops_link_shndx,
1256 obj->efile.st_ops_link_data,
1257 BPF_F_LINK);
1258 return err;
1259}
1260
1261static struct bpf_object *bpf_object__new(const char *path,
1262 const void *obj_buf,
1263 size_t obj_buf_sz,
1264 const char *obj_name)
1265{
1266 struct bpf_object *obj;
1267 char *end;
1268
1269 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1270 if (!obj) {
1271 pr_warn("alloc memory failed for %s\n", path);
1272 return ERR_PTR(-ENOMEM);
1273 }
1274
1275 strcpy(obj->path, path);
1276 if (obj_name) {
1277 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1278 } else {
1279 /* Using basename() GNU version which doesn't modify arg. */
1280 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1281 end = strchr(obj->name, '.');
1282 if (end)
1283 *end = 0;
1284 }
1285
1286 obj->efile.fd = -1;
1287 /*
1288 * Caller of this function should also call
1289 * bpf_object__elf_finish() after data collection to return
1290 * obj_buf to user. If not, we should duplicate the buffer to
1291 * avoid user freeing them before elf finish.
1292 */
1293 obj->efile.obj_buf = obj_buf;
1294 obj->efile.obj_buf_sz = obj_buf_sz;
1295 obj->efile.btf_maps_shndx = -1;
1296 obj->efile.st_ops_shndx = -1;
1297 obj->efile.st_ops_link_shndx = -1;
1298 obj->kconfig_map_idx = -1;
1299
1300 obj->kern_version = get_kernel_version();
1301 obj->loaded = false;
1302
1303 return obj;
1304}
1305
1306static void bpf_object__elf_finish(struct bpf_object *obj)
1307{
1308 if (!obj->efile.elf)
1309 return;
1310
1311 elf_end(obj->efile.elf);
1312 obj->efile.elf = NULL;
1313 obj->efile.symbols = NULL;
1314 obj->efile.st_ops_data = NULL;
1315 obj->efile.st_ops_link_data = NULL;
1316
1317 zfree(&obj->efile.secs);
1318 obj->efile.sec_cnt = 0;
1319 zclose(obj->efile.fd);
1320 obj->efile.obj_buf = NULL;
1321 obj->efile.obj_buf_sz = 0;
1322}
1323
1324static int bpf_object__elf_init(struct bpf_object *obj)
1325{
1326 Elf64_Ehdr *ehdr;
1327 int err = 0;
1328 Elf *elf;
1329
1330 if (obj->efile.elf) {
1331 pr_warn("elf: init internal error\n");
1332 return -LIBBPF_ERRNO__LIBELF;
1333 }
1334
1335 if (obj->efile.obj_buf_sz > 0) {
1336 /* obj_buf should have been validated by bpf_object__open_mem(). */
1337 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1338 } else {
1339 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1340 if (obj->efile.fd < 0) {
1341 char errmsg[STRERR_BUFSIZE], *cp;
1342
1343 err = -errno;
1344 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1345 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1346 return err;
1347 }
1348
1349 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1350 }
1351
1352 if (!elf) {
1353 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1354 err = -LIBBPF_ERRNO__LIBELF;
1355 goto errout;
1356 }
1357
1358 obj->efile.elf = elf;
1359
1360 if (elf_kind(elf) != ELF_K_ELF) {
1361 err = -LIBBPF_ERRNO__FORMAT;
1362 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1363 goto errout;
1364 }
1365
1366 if (gelf_getclass(elf) != ELFCLASS64) {
1367 err = -LIBBPF_ERRNO__FORMAT;
1368 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1369 goto errout;
1370 }
1371
1372 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1373 if (!obj->efile.ehdr) {
1374 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1375 err = -LIBBPF_ERRNO__FORMAT;
1376 goto errout;
1377 }
1378
1379 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1380 pr_warn("elf: failed to get section names section index for %s: %s\n",
1381 obj->path, elf_errmsg(-1));
1382 err = -LIBBPF_ERRNO__FORMAT;
1383 goto errout;
1384 }
1385
1386 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1387 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1388 pr_warn("elf: failed to get section names strings from %s: %s\n",
1389 obj->path, elf_errmsg(-1));
1390 err = -LIBBPF_ERRNO__FORMAT;
1391 goto errout;
1392 }
1393
1394 /* Old LLVM set e_machine to EM_NONE */
1395 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1396 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1397 err = -LIBBPF_ERRNO__FORMAT;
1398 goto errout;
1399 }
1400
1401 return 0;
1402errout:
1403 bpf_object__elf_finish(obj);
1404 return err;
1405}
1406
1407static int bpf_object__check_endianness(struct bpf_object *obj)
1408{
1409#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1411 return 0;
1412#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1413 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1414 return 0;
1415#else
1416# error "Unrecognized __BYTE_ORDER__"
1417#endif
1418 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1419 return -LIBBPF_ERRNO__ENDIAN;
1420}
1421
1422static int
1423bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1424{
1425 if (!data) {
1426 pr_warn("invalid license section in %s\n", obj->path);
1427 return -LIBBPF_ERRNO__FORMAT;
1428 }
1429 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1430 * go over allowed ELF data section buffer
1431 */
1432 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1433 pr_debug("license of %s is %s\n", obj->path, obj->license);
1434 return 0;
1435}
1436
1437static int
1438bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1439{
1440 __u32 kver;
1441
1442 if (!data || size != sizeof(kver)) {
1443 pr_warn("invalid kver section in %s\n", obj->path);
1444 return -LIBBPF_ERRNO__FORMAT;
1445 }
1446 memcpy(&kver, data, sizeof(kver));
1447 obj->kern_version = kver;
1448 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1449 return 0;
1450}
1451
1452static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1453{
1454 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1455 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1456 return true;
1457 return false;
1458}
1459
1460static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1461{
1462 Elf_Data *data;
1463 Elf_Scn *scn;
1464
1465 if (!name)
1466 return -EINVAL;
1467
1468 scn = elf_sec_by_name(obj, name);
1469 data = elf_sec_data(obj, scn);
1470 if (data) {
1471 *size = data->d_size;
1472 return 0; /* found it */
1473 }
1474
1475 return -ENOENT;
1476}
1477
1478static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1479{
1480 Elf_Data *symbols = obj->efile.symbols;
1481 const char *sname;
1482 size_t si;
1483
1484 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1485 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1486
1487 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1488 continue;
1489
1490 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1491 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1492 continue;
1493
1494 sname = elf_sym_str(obj, sym->st_name);
1495 if (!sname) {
1496 pr_warn("failed to get sym name string for var %s\n", name);
1497 return ERR_PTR(-EIO);
1498 }
1499 if (strcmp(name, sname) == 0)
1500 return sym;
1501 }
1502
1503 return ERR_PTR(-ENOENT);
1504}
1505
1506static int create_placeholder_fd(void)
1507{
1508 int fd;
1509
1510 fd = ensure_good_fd(memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1511 if (fd < 0)
1512 return -errno;
1513 return fd;
1514}
1515
1516static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1517{
1518 struct bpf_map *map;
1519 int err;
1520
1521 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1522 sizeof(*obj->maps), obj->nr_maps + 1);
1523 if (err)
1524 return ERR_PTR(err);
1525
1526 map = &obj->maps[obj->nr_maps++];
1527 map->obj = obj;
1528 /* Preallocate map FD without actually creating BPF map just yet.
1529 * These map FD "placeholders" will be reused later without changing
1530 * FD value when map is actually created in the kernel.
1531 *
1532 * This is useful to be able to perform BPF program relocations
1533 * without having to create BPF maps before that step. This allows us
1534 * to finalize and load BTF very late in BPF object's loading phase,
1535 * right before BPF maps have to be created and BPF programs have to
1536 * be loaded. By having these map FD placeholders we can perform all
1537 * the sanitizations, relocations, and any other adjustments before we
1538 * start creating actual BPF kernel objects (BTF, maps, progs).
1539 */
1540 map->fd = create_placeholder_fd();
1541 if (map->fd < 0)
1542 return ERR_PTR(map->fd);
1543 map->inner_map_fd = -1;
1544 map->autocreate = true;
1545
1546 return map;
1547}
1548
1549static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1550{
1551 const long page_sz = sysconf(_SC_PAGE_SIZE);
1552 size_t map_sz;
1553
1554 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1555 map_sz = roundup(map_sz, page_sz);
1556 return map_sz;
1557}
1558
1559static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1560{
1561 void *mmaped;
1562
1563 if (!map->mmaped)
1564 return -EINVAL;
1565
1566 if (old_sz == new_sz)
1567 return 0;
1568
1569 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1570 if (mmaped == MAP_FAILED)
1571 return -errno;
1572
1573 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1574 munmap(map->mmaped, old_sz);
1575 map->mmaped = mmaped;
1576 return 0;
1577}
1578
1579static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1580{
1581 char map_name[BPF_OBJ_NAME_LEN], *p;
1582 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1583
1584 /* This is one of the more confusing parts of libbpf for various
1585 * reasons, some of which are historical. The original idea for naming
1586 * internal names was to include as much of BPF object name prefix as
1587 * possible, so that it can be distinguished from similar internal
1588 * maps of a different BPF object.
1589 * As an example, let's say we have bpf_object named 'my_object_name'
1590 * and internal map corresponding to '.rodata' ELF section. The final
1591 * map name advertised to user and to the kernel will be
1592 * 'my_objec.rodata', taking first 8 characters of object name and
1593 * entire 7 characters of '.rodata'.
1594 * Somewhat confusingly, if internal map ELF section name is shorter
1595 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1596 * for the suffix, even though we only have 4 actual characters, and
1597 * resulting map will be called 'my_objec.bss', not even using all 15
1598 * characters allowed by the kernel. Oh well, at least the truncated
1599 * object name is somewhat consistent in this case. But if the map
1600 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1601 * (8 chars) and thus will be left with only first 7 characters of the
1602 * object name ('my_obje'). Happy guessing, user, that the final map
1603 * name will be "my_obje.kconfig".
1604 * Now, with libbpf starting to support arbitrarily named .rodata.*
1605 * and .data.* data sections, it's possible that ELF section name is
1606 * longer than allowed 15 chars, so we now need to be careful to take
1607 * only up to 15 first characters of ELF name, taking no BPF object
1608 * name characters at all. So '.rodata.abracadabra' will result in
1609 * '.rodata.abracad' kernel and user-visible name.
1610 * We need to keep this convoluted logic intact for .data, .bss and
1611 * .rodata maps, but for new custom .data.custom and .rodata.custom
1612 * maps we use their ELF names as is, not prepending bpf_object name
1613 * in front. We still need to truncate them to 15 characters for the
1614 * kernel. Full name can be recovered for such maps by using DATASEC
1615 * BTF type associated with such map's value type, though.
1616 */
1617 if (sfx_len >= BPF_OBJ_NAME_LEN)
1618 sfx_len = BPF_OBJ_NAME_LEN - 1;
1619
1620 /* if there are two or more dots in map name, it's a custom dot map */
1621 if (strchr(real_name + 1, '.') != NULL)
1622 pfx_len = 0;
1623 else
1624 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1625
1626 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1627 sfx_len, real_name);
1628
1629 /* sanitise map name to characters allowed by kernel */
1630 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1631 if (!isalnum(*p) && *p != '_' && *p != '.')
1632 *p = '_';
1633
1634 return strdup(map_name);
1635}
1636
1637static int
1638map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1639
1640/* Internal BPF map is mmap()'able only if at least one of corresponding
1641 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1642 * variable and it's not marked as __hidden (which turns it into, effectively,
1643 * a STATIC variable).
1644 */
1645static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1646{
1647 const struct btf_type *t, *vt;
1648 struct btf_var_secinfo *vsi;
1649 int i, n;
1650
1651 if (!map->btf_value_type_id)
1652 return false;
1653
1654 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1655 if (!btf_is_datasec(t))
1656 return false;
1657
1658 vsi = btf_var_secinfos(t);
1659 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1660 vt = btf__type_by_id(obj->btf, vsi->type);
1661 if (!btf_is_var(vt))
1662 continue;
1663
1664 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1665 return true;
1666 }
1667
1668 return false;
1669}
1670
1671static int
1672bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1673 const char *real_name, int sec_idx, void *data, size_t data_sz)
1674{
1675 struct bpf_map_def *def;
1676 struct bpf_map *map;
1677 size_t mmap_sz;
1678 int err;
1679
1680 map = bpf_object__add_map(obj);
1681 if (IS_ERR(map))
1682 return PTR_ERR(map);
1683
1684 map->libbpf_type = type;
1685 map->sec_idx = sec_idx;
1686 map->sec_offset = 0;
1687 map->real_name = strdup(real_name);
1688 map->name = internal_map_name(obj, real_name);
1689 if (!map->real_name || !map->name) {
1690 zfree(&map->real_name);
1691 zfree(&map->name);
1692 return -ENOMEM;
1693 }
1694
1695 def = &map->def;
1696 def->type = BPF_MAP_TYPE_ARRAY;
1697 def->key_size = sizeof(int);
1698 def->value_size = data_sz;
1699 def->max_entries = 1;
1700 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1701 ? BPF_F_RDONLY_PROG : 0;
1702
1703 /* failures are fine because of maps like .rodata.str1.1 */
1704 (void) map_fill_btf_type_info(obj, map);
1705
1706 if (map_is_mmapable(obj, map))
1707 def->map_flags |= BPF_F_MMAPABLE;
1708
1709 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1710 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1711
1712 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1713 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1714 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1715 if (map->mmaped == MAP_FAILED) {
1716 err = -errno;
1717 map->mmaped = NULL;
1718 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1719 map->name, err);
1720 zfree(&map->real_name);
1721 zfree(&map->name);
1722 return err;
1723 }
1724
1725 if (data)
1726 memcpy(map->mmaped, data, data_sz);
1727
1728 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1729 return 0;
1730}
1731
1732static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1733{
1734 struct elf_sec_desc *sec_desc;
1735 const char *sec_name;
1736 int err = 0, sec_idx;
1737
1738 /*
1739 * Populate obj->maps with libbpf internal maps.
1740 */
1741 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1742 sec_desc = &obj->efile.secs[sec_idx];
1743
1744 /* Skip recognized sections with size 0. */
1745 if (!sec_desc->data || sec_desc->data->d_size == 0)
1746 continue;
1747
1748 switch (sec_desc->sec_type) {
1749 case SEC_DATA:
1750 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1751 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1752 sec_name, sec_idx,
1753 sec_desc->data->d_buf,
1754 sec_desc->data->d_size);
1755 break;
1756 case SEC_RODATA:
1757 obj->has_rodata = true;
1758 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1759 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1760 sec_name, sec_idx,
1761 sec_desc->data->d_buf,
1762 sec_desc->data->d_size);
1763 break;
1764 case SEC_BSS:
1765 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1766 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1767 sec_name, sec_idx,
1768 NULL,
1769 sec_desc->data->d_size);
1770 break;
1771 default:
1772 /* skip */
1773 break;
1774 }
1775 if (err)
1776 return err;
1777 }
1778 return 0;
1779}
1780
1781
1782static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1783 const void *name)
1784{
1785 int i;
1786
1787 for (i = 0; i < obj->nr_extern; i++) {
1788 if (strcmp(obj->externs[i].name, name) == 0)
1789 return &obj->externs[i];
1790 }
1791 return NULL;
1792}
1793
1794static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1795 char value)
1796{
1797 switch (ext->kcfg.type) {
1798 case KCFG_BOOL:
1799 if (value == 'm') {
1800 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1801 ext->name, value);
1802 return -EINVAL;
1803 }
1804 *(bool *)ext_val = value == 'y' ? true : false;
1805 break;
1806 case KCFG_TRISTATE:
1807 if (value == 'y')
1808 *(enum libbpf_tristate *)ext_val = TRI_YES;
1809 else if (value == 'm')
1810 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1811 else /* value == 'n' */
1812 *(enum libbpf_tristate *)ext_val = TRI_NO;
1813 break;
1814 case KCFG_CHAR:
1815 *(char *)ext_val = value;
1816 break;
1817 case KCFG_UNKNOWN:
1818 case KCFG_INT:
1819 case KCFG_CHAR_ARR:
1820 default:
1821 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1822 ext->name, value);
1823 return -EINVAL;
1824 }
1825 ext->is_set = true;
1826 return 0;
1827}
1828
1829static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1830 const char *value)
1831{
1832 size_t len;
1833
1834 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1835 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1836 ext->name, value);
1837 return -EINVAL;
1838 }
1839
1840 len = strlen(value);
1841 if (value[len - 1] != '"') {
1842 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1843 ext->name, value);
1844 return -EINVAL;
1845 }
1846
1847 /* strip quotes */
1848 len -= 2;
1849 if (len >= ext->kcfg.sz) {
1850 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1851 ext->name, value, len, ext->kcfg.sz - 1);
1852 len = ext->kcfg.sz - 1;
1853 }
1854 memcpy(ext_val, value + 1, len);
1855 ext_val[len] = '\0';
1856 ext->is_set = true;
1857 return 0;
1858}
1859
1860static int parse_u64(const char *value, __u64 *res)
1861{
1862 char *value_end;
1863 int err;
1864
1865 errno = 0;
1866 *res = strtoull(value, &value_end, 0);
1867 if (errno) {
1868 err = -errno;
1869 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1870 return err;
1871 }
1872 if (*value_end) {
1873 pr_warn("failed to parse '%s' as integer completely\n", value);
1874 return -EINVAL;
1875 }
1876 return 0;
1877}
1878
1879static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1880{
1881 int bit_sz = ext->kcfg.sz * 8;
1882
1883 if (ext->kcfg.sz == 8)
1884 return true;
1885
1886 /* Validate that value stored in u64 fits in integer of `ext->sz`
1887 * bytes size without any loss of information. If the target integer
1888 * is signed, we rely on the following limits of integer type of
1889 * Y bits and subsequent transformation:
1890 *
1891 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1892 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1893 * 0 <= X + 2^(Y-1) < 2^Y
1894 *
1895 * For unsigned target integer, check that all the (64 - Y) bits are
1896 * zero.
1897 */
1898 if (ext->kcfg.is_signed)
1899 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1900 else
1901 return (v >> bit_sz) == 0;
1902}
1903
1904static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1905 __u64 value)
1906{
1907 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1908 ext->kcfg.type != KCFG_BOOL) {
1909 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1910 ext->name, (unsigned long long)value);
1911 return -EINVAL;
1912 }
1913 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1914 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1915 ext->name, (unsigned long long)value);
1916 return -EINVAL;
1917
1918 }
1919 if (!is_kcfg_value_in_range(ext, value)) {
1920 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1921 ext->name, (unsigned long long)value, ext->kcfg.sz);
1922 return -ERANGE;
1923 }
1924 switch (ext->kcfg.sz) {
1925 case 1:
1926 *(__u8 *)ext_val = value;
1927 break;
1928 case 2:
1929 *(__u16 *)ext_val = value;
1930 break;
1931 case 4:
1932 *(__u32 *)ext_val = value;
1933 break;
1934 case 8:
1935 *(__u64 *)ext_val = value;
1936 break;
1937 default:
1938 return -EINVAL;
1939 }
1940 ext->is_set = true;
1941 return 0;
1942}
1943
1944static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1945 char *buf, void *data)
1946{
1947 struct extern_desc *ext;
1948 char *sep, *value;
1949 int len, err = 0;
1950 void *ext_val;
1951 __u64 num;
1952
1953 if (!str_has_pfx(buf, "CONFIG_"))
1954 return 0;
1955
1956 sep = strchr(buf, '=');
1957 if (!sep) {
1958 pr_warn("failed to parse '%s': no separator\n", buf);
1959 return -EINVAL;
1960 }
1961
1962 /* Trim ending '\n' */
1963 len = strlen(buf);
1964 if (buf[len - 1] == '\n')
1965 buf[len - 1] = '\0';
1966 /* Split on '=' and ensure that a value is present. */
1967 *sep = '\0';
1968 if (!sep[1]) {
1969 *sep = '=';
1970 pr_warn("failed to parse '%s': no value\n", buf);
1971 return -EINVAL;
1972 }
1973
1974 ext = find_extern_by_name(obj, buf);
1975 if (!ext || ext->is_set)
1976 return 0;
1977
1978 ext_val = data + ext->kcfg.data_off;
1979 value = sep + 1;
1980
1981 switch (*value) {
1982 case 'y': case 'n': case 'm':
1983 err = set_kcfg_value_tri(ext, ext_val, *value);
1984 break;
1985 case '"':
1986 err = set_kcfg_value_str(ext, ext_val, value);
1987 break;
1988 default:
1989 /* assume integer */
1990 err = parse_u64(value, &num);
1991 if (err) {
1992 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1993 return err;
1994 }
1995 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1996 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1997 return -EINVAL;
1998 }
1999 err = set_kcfg_value_num(ext, ext_val, num);
2000 break;
2001 }
2002 if (err)
2003 return err;
2004 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2005 return 0;
2006}
2007
2008static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2009{
2010 char buf[PATH_MAX];
2011 struct utsname uts;
2012 int len, err = 0;
2013 gzFile file;
2014
2015 uname(&uts);
2016 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2017 if (len < 0)
2018 return -EINVAL;
2019 else if (len >= PATH_MAX)
2020 return -ENAMETOOLONG;
2021
2022 /* gzopen also accepts uncompressed files. */
2023 file = gzopen(buf, "re");
2024 if (!file)
2025 file = gzopen("/proc/config.gz", "re");
2026
2027 if (!file) {
2028 pr_warn("failed to open system Kconfig\n");
2029 return -ENOENT;
2030 }
2031
2032 while (gzgets(file, buf, sizeof(buf))) {
2033 err = bpf_object__process_kconfig_line(obj, buf, data);
2034 if (err) {
2035 pr_warn("error parsing system Kconfig line '%s': %d\n",
2036 buf, err);
2037 goto out;
2038 }
2039 }
2040
2041out:
2042 gzclose(file);
2043 return err;
2044}
2045
2046static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2047 const char *config, void *data)
2048{
2049 char buf[PATH_MAX];
2050 int err = 0;
2051 FILE *file;
2052
2053 file = fmemopen((void *)config, strlen(config), "r");
2054 if (!file) {
2055 err = -errno;
2056 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2057 return err;
2058 }
2059
2060 while (fgets(buf, sizeof(buf), file)) {
2061 err = bpf_object__process_kconfig_line(obj, buf, data);
2062 if (err) {
2063 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2064 buf, err);
2065 break;
2066 }
2067 }
2068
2069 fclose(file);
2070 return err;
2071}
2072
2073static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2074{
2075 struct extern_desc *last_ext = NULL, *ext;
2076 size_t map_sz;
2077 int i, err;
2078
2079 for (i = 0; i < obj->nr_extern; i++) {
2080 ext = &obj->externs[i];
2081 if (ext->type == EXT_KCFG)
2082 last_ext = ext;
2083 }
2084
2085 if (!last_ext)
2086 return 0;
2087
2088 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2089 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2090 ".kconfig", obj->efile.symbols_shndx,
2091 NULL, map_sz);
2092 if (err)
2093 return err;
2094
2095 obj->kconfig_map_idx = obj->nr_maps - 1;
2096
2097 return 0;
2098}
2099
2100const struct btf_type *
2101skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2102{
2103 const struct btf_type *t = btf__type_by_id(btf, id);
2104
2105 if (res_id)
2106 *res_id = id;
2107
2108 while (btf_is_mod(t) || btf_is_typedef(t)) {
2109 if (res_id)
2110 *res_id = t->type;
2111 t = btf__type_by_id(btf, t->type);
2112 }
2113
2114 return t;
2115}
2116
2117static const struct btf_type *
2118resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2119{
2120 const struct btf_type *t;
2121
2122 t = skip_mods_and_typedefs(btf, id, NULL);
2123 if (!btf_is_ptr(t))
2124 return NULL;
2125
2126 t = skip_mods_and_typedefs(btf, t->type, res_id);
2127
2128 return btf_is_func_proto(t) ? t : NULL;
2129}
2130
2131static const char *__btf_kind_str(__u16 kind)
2132{
2133 switch (kind) {
2134 case BTF_KIND_UNKN: return "void";
2135 case BTF_KIND_INT: return "int";
2136 case BTF_KIND_PTR: return "ptr";
2137 case BTF_KIND_ARRAY: return "array";
2138 case BTF_KIND_STRUCT: return "struct";
2139 case BTF_KIND_UNION: return "union";
2140 case BTF_KIND_ENUM: return "enum";
2141 case BTF_KIND_FWD: return "fwd";
2142 case BTF_KIND_TYPEDEF: return "typedef";
2143 case BTF_KIND_VOLATILE: return "volatile";
2144 case BTF_KIND_CONST: return "const";
2145 case BTF_KIND_RESTRICT: return "restrict";
2146 case BTF_KIND_FUNC: return "func";
2147 case BTF_KIND_FUNC_PROTO: return "func_proto";
2148 case BTF_KIND_VAR: return "var";
2149 case BTF_KIND_DATASEC: return "datasec";
2150 case BTF_KIND_FLOAT: return "float";
2151 case BTF_KIND_DECL_TAG: return "decl_tag";
2152 case BTF_KIND_TYPE_TAG: return "type_tag";
2153 case BTF_KIND_ENUM64: return "enum64";
2154 default: return "unknown";
2155 }
2156}
2157
2158const char *btf_kind_str(const struct btf_type *t)
2159{
2160 return __btf_kind_str(btf_kind(t));
2161}
2162
2163/*
2164 * Fetch integer attribute of BTF map definition. Such attributes are
2165 * represented using a pointer to an array, in which dimensionality of array
2166 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2167 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2168 * type definition, while using only sizeof(void *) space in ELF data section.
2169 */
2170static bool get_map_field_int(const char *map_name, const struct btf *btf,
2171 const struct btf_member *m, __u32 *res)
2172{
2173 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2174 const char *name = btf__name_by_offset(btf, m->name_off);
2175 const struct btf_array *arr_info;
2176 const struct btf_type *arr_t;
2177
2178 if (!btf_is_ptr(t)) {
2179 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2180 map_name, name, btf_kind_str(t));
2181 return false;
2182 }
2183
2184 arr_t = btf__type_by_id(btf, t->type);
2185 if (!arr_t) {
2186 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2187 map_name, name, t->type);
2188 return false;
2189 }
2190 if (!btf_is_array(arr_t)) {
2191 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2192 map_name, name, btf_kind_str(arr_t));
2193 return false;
2194 }
2195 arr_info = btf_array(arr_t);
2196 *res = arr_info->nelems;
2197 return true;
2198}
2199
2200static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2201{
2202 int len;
2203
2204 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2205 if (len < 0)
2206 return -EINVAL;
2207 if (len >= buf_sz)
2208 return -ENAMETOOLONG;
2209
2210 return 0;
2211}
2212
2213static int build_map_pin_path(struct bpf_map *map, const char *path)
2214{
2215 char buf[PATH_MAX];
2216 int err;
2217
2218 if (!path)
2219 path = "/sys/fs/bpf";
2220
2221 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2222 if (err)
2223 return err;
2224
2225 return bpf_map__set_pin_path(map, buf);
2226}
2227
2228/* should match definition in bpf_helpers.h */
2229enum libbpf_pin_type {
2230 LIBBPF_PIN_NONE,
2231 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2232 LIBBPF_PIN_BY_NAME,
2233};
2234
2235int parse_btf_map_def(const char *map_name, struct btf *btf,
2236 const struct btf_type *def_t, bool strict,
2237 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2238{
2239 const struct btf_type *t;
2240 const struct btf_member *m;
2241 bool is_inner = inner_def == NULL;
2242 int vlen, i;
2243
2244 vlen = btf_vlen(def_t);
2245 m = btf_members(def_t);
2246 for (i = 0; i < vlen; i++, m++) {
2247 const char *name = btf__name_by_offset(btf, m->name_off);
2248
2249 if (!name) {
2250 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2251 return -EINVAL;
2252 }
2253 if (strcmp(name, "type") == 0) {
2254 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2255 return -EINVAL;
2256 map_def->parts |= MAP_DEF_MAP_TYPE;
2257 } else if (strcmp(name, "max_entries") == 0) {
2258 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2259 return -EINVAL;
2260 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2261 } else if (strcmp(name, "map_flags") == 0) {
2262 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2263 return -EINVAL;
2264 map_def->parts |= MAP_DEF_MAP_FLAGS;
2265 } else if (strcmp(name, "numa_node") == 0) {
2266 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2267 return -EINVAL;
2268 map_def->parts |= MAP_DEF_NUMA_NODE;
2269 } else if (strcmp(name, "key_size") == 0) {
2270 __u32 sz;
2271
2272 if (!get_map_field_int(map_name, btf, m, &sz))
2273 return -EINVAL;
2274 if (map_def->key_size && map_def->key_size != sz) {
2275 pr_warn("map '%s': conflicting key size %u != %u.\n",
2276 map_name, map_def->key_size, sz);
2277 return -EINVAL;
2278 }
2279 map_def->key_size = sz;
2280 map_def->parts |= MAP_DEF_KEY_SIZE;
2281 } else if (strcmp(name, "key") == 0) {
2282 __s64 sz;
2283
2284 t = btf__type_by_id(btf, m->type);
2285 if (!t) {
2286 pr_warn("map '%s': key type [%d] not found.\n",
2287 map_name, m->type);
2288 return -EINVAL;
2289 }
2290 if (!btf_is_ptr(t)) {
2291 pr_warn("map '%s': key spec is not PTR: %s.\n",
2292 map_name, btf_kind_str(t));
2293 return -EINVAL;
2294 }
2295 sz = btf__resolve_size(btf, t->type);
2296 if (sz < 0) {
2297 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2298 map_name, t->type, (ssize_t)sz);
2299 return sz;
2300 }
2301 if (map_def->key_size && map_def->key_size != sz) {
2302 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2303 map_name, map_def->key_size, (ssize_t)sz);
2304 return -EINVAL;
2305 }
2306 map_def->key_size = sz;
2307 map_def->key_type_id = t->type;
2308 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2309 } else if (strcmp(name, "value_size") == 0) {
2310 __u32 sz;
2311
2312 if (!get_map_field_int(map_name, btf, m, &sz))
2313 return -EINVAL;
2314 if (map_def->value_size && map_def->value_size != sz) {
2315 pr_warn("map '%s': conflicting value size %u != %u.\n",
2316 map_name, map_def->value_size, sz);
2317 return -EINVAL;
2318 }
2319 map_def->value_size = sz;
2320 map_def->parts |= MAP_DEF_VALUE_SIZE;
2321 } else if (strcmp(name, "value") == 0) {
2322 __s64 sz;
2323
2324 t = btf__type_by_id(btf, m->type);
2325 if (!t) {
2326 pr_warn("map '%s': value type [%d] not found.\n",
2327 map_name, m->type);
2328 return -EINVAL;
2329 }
2330 if (!btf_is_ptr(t)) {
2331 pr_warn("map '%s': value spec is not PTR: %s.\n",
2332 map_name, btf_kind_str(t));
2333 return -EINVAL;
2334 }
2335 sz = btf__resolve_size(btf, t->type);
2336 if (sz < 0) {
2337 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2338 map_name, t->type, (ssize_t)sz);
2339 return sz;
2340 }
2341 if (map_def->value_size && map_def->value_size != sz) {
2342 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2343 map_name, map_def->value_size, (ssize_t)sz);
2344 return -EINVAL;
2345 }
2346 map_def->value_size = sz;
2347 map_def->value_type_id = t->type;
2348 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2349 }
2350 else if (strcmp(name, "values") == 0) {
2351 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2352 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2353 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2354 char inner_map_name[128];
2355 int err;
2356
2357 if (is_inner) {
2358 pr_warn("map '%s': multi-level inner maps not supported.\n",
2359 map_name);
2360 return -ENOTSUP;
2361 }
2362 if (i != vlen - 1) {
2363 pr_warn("map '%s': '%s' member should be last.\n",
2364 map_name, name);
2365 return -EINVAL;
2366 }
2367 if (!is_map_in_map && !is_prog_array) {
2368 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2369 map_name);
2370 return -ENOTSUP;
2371 }
2372 if (map_def->value_size && map_def->value_size != 4) {
2373 pr_warn("map '%s': conflicting value size %u != 4.\n",
2374 map_name, map_def->value_size);
2375 return -EINVAL;
2376 }
2377 map_def->value_size = 4;
2378 t = btf__type_by_id(btf, m->type);
2379 if (!t) {
2380 pr_warn("map '%s': %s type [%d] not found.\n",
2381 map_name, desc, m->type);
2382 return -EINVAL;
2383 }
2384 if (!btf_is_array(t) || btf_array(t)->nelems) {
2385 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2386 map_name, desc);
2387 return -EINVAL;
2388 }
2389 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2390 if (!btf_is_ptr(t)) {
2391 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2392 map_name, desc, btf_kind_str(t));
2393 return -EINVAL;
2394 }
2395 t = skip_mods_and_typedefs(btf, t->type, NULL);
2396 if (is_prog_array) {
2397 if (!btf_is_func_proto(t)) {
2398 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2399 map_name, btf_kind_str(t));
2400 return -EINVAL;
2401 }
2402 continue;
2403 }
2404 if (!btf_is_struct(t)) {
2405 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2406 map_name, btf_kind_str(t));
2407 return -EINVAL;
2408 }
2409
2410 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2411 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2412 if (err)
2413 return err;
2414
2415 map_def->parts |= MAP_DEF_INNER_MAP;
2416 } else if (strcmp(name, "pinning") == 0) {
2417 __u32 val;
2418
2419 if (is_inner) {
2420 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2421 return -EINVAL;
2422 }
2423 if (!get_map_field_int(map_name, btf, m, &val))
2424 return -EINVAL;
2425 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2426 pr_warn("map '%s': invalid pinning value %u.\n",
2427 map_name, val);
2428 return -EINVAL;
2429 }
2430 map_def->pinning = val;
2431 map_def->parts |= MAP_DEF_PINNING;
2432 } else if (strcmp(name, "map_extra") == 0) {
2433 __u32 map_extra;
2434
2435 if (!get_map_field_int(map_name, btf, m, &map_extra))
2436 return -EINVAL;
2437 map_def->map_extra = map_extra;
2438 map_def->parts |= MAP_DEF_MAP_EXTRA;
2439 } else {
2440 if (strict) {
2441 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2442 return -ENOTSUP;
2443 }
2444 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2445 }
2446 }
2447
2448 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2449 pr_warn("map '%s': map type isn't specified.\n", map_name);
2450 return -EINVAL;
2451 }
2452
2453 return 0;
2454}
2455
2456static size_t adjust_ringbuf_sz(size_t sz)
2457{
2458 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2459 __u32 mul;
2460
2461 /* if user forgot to set any size, make sure they see error */
2462 if (sz == 0)
2463 return 0;
2464 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2465 * a power-of-2 multiple of kernel's page size. If user diligently
2466 * satisified these conditions, pass the size through.
2467 */
2468 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2469 return sz;
2470
2471 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2472 * user-set size to satisfy both user size request and kernel
2473 * requirements and substitute correct max_entries for map creation.
2474 */
2475 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2476 if (mul * page_sz > sz)
2477 return mul * page_sz;
2478 }
2479
2480 /* if it's impossible to satisfy the conditions (i.e., user size is
2481 * very close to UINT_MAX but is not a power-of-2 multiple of
2482 * page_size) then just return original size and let kernel reject it
2483 */
2484 return sz;
2485}
2486
2487static bool map_is_ringbuf(const struct bpf_map *map)
2488{
2489 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2490 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2491}
2492
2493static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2494{
2495 map->def.type = def->map_type;
2496 map->def.key_size = def->key_size;
2497 map->def.value_size = def->value_size;
2498 map->def.max_entries = def->max_entries;
2499 map->def.map_flags = def->map_flags;
2500 map->map_extra = def->map_extra;
2501
2502 map->numa_node = def->numa_node;
2503 map->btf_key_type_id = def->key_type_id;
2504 map->btf_value_type_id = def->value_type_id;
2505
2506 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2507 if (map_is_ringbuf(map))
2508 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2509
2510 if (def->parts & MAP_DEF_MAP_TYPE)
2511 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2512
2513 if (def->parts & MAP_DEF_KEY_TYPE)
2514 pr_debug("map '%s': found key [%u], sz = %u.\n",
2515 map->name, def->key_type_id, def->key_size);
2516 else if (def->parts & MAP_DEF_KEY_SIZE)
2517 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2518
2519 if (def->parts & MAP_DEF_VALUE_TYPE)
2520 pr_debug("map '%s': found value [%u], sz = %u.\n",
2521 map->name, def->value_type_id, def->value_size);
2522 else if (def->parts & MAP_DEF_VALUE_SIZE)
2523 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2524
2525 if (def->parts & MAP_DEF_MAX_ENTRIES)
2526 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2527 if (def->parts & MAP_DEF_MAP_FLAGS)
2528 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2529 if (def->parts & MAP_DEF_MAP_EXTRA)
2530 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2531 (unsigned long long)def->map_extra);
2532 if (def->parts & MAP_DEF_PINNING)
2533 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2534 if (def->parts & MAP_DEF_NUMA_NODE)
2535 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2536
2537 if (def->parts & MAP_DEF_INNER_MAP)
2538 pr_debug("map '%s': found inner map definition.\n", map->name);
2539}
2540
2541static const char *btf_var_linkage_str(__u32 linkage)
2542{
2543 switch (linkage) {
2544 case BTF_VAR_STATIC: return "static";
2545 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2546 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2547 default: return "unknown";
2548 }
2549}
2550
2551static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2552 const struct btf_type *sec,
2553 int var_idx, int sec_idx,
2554 const Elf_Data *data, bool strict,
2555 const char *pin_root_path)
2556{
2557 struct btf_map_def map_def = {}, inner_def = {};
2558 const struct btf_type *var, *def;
2559 const struct btf_var_secinfo *vi;
2560 const struct btf_var *var_extra;
2561 const char *map_name;
2562 struct bpf_map *map;
2563 int err;
2564
2565 vi = btf_var_secinfos(sec) + var_idx;
2566 var = btf__type_by_id(obj->btf, vi->type);
2567 var_extra = btf_var(var);
2568 map_name = btf__name_by_offset(obj->btf, var->name_off);
2569
2570 if (map_name == NULL || map_name[0] == '\0') {
2571 pr_warn("map #%d: empty name.\n", var_idx);
2572 return -EINVAL;
2573 }
2574 if ((__u64)vi->offset + vi->size > data->d_size) {
2575 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2576 return -EINVAL;
2577 }
2578 if (!btf_is_var(var)) {
2579 pr_warn("map '%s': unexpected var kind %s.\n",
2580 map_name, btf_kind_str(var));
2581 return -EINVAL;
2582 }
2583 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2584 pr_warn("map '%s': unsupported map linkage %s.\n",
2585 map_name, btf_var_linkage_str(var_extra->linkage));
2586 return -EOPNOTSUPP;
2587 }
2588
2589 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2590 if (!btf_is_struct(def)) {
2591 pr_warn("map '%s': unexpected def kind %s.\n",
2592 map_name, btf_kind_str(var));
2593 return -EINVAL;
2594 }
2595 if (def->size > vi->size) {
2596 pr_warn("map '%s': invalid def size.\n", map_name);
2597 return -EINVAL;
2598 }
2599
2600 map = bpf_object__add_map(obj);
2601 if (IS_ERR(map))
2602 return PTR_ERR(map);
2603 map->name = strdup(map_name);
2604 if (!map->name) {
2605 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2606 return -ENOMEM;
2607 }
2608 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2609 map->def.type = BPF_MAP_TYPE_UNSPEC;
2610 map->sec_idx = sec_idx;
2611 map->sec_offset = vi->offset;
2612 map->btf_var_idx = var_idx;
2613 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2614 map_name, map->sec_idx, map->sec_offset);
2615
2616 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2617 if (err)
2618 return err;
2619
2620 fill_map_from_def(map, &map_def);
2621
2622 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2623 err = build_map_pin_path(map, pin_root_path);
2624 if (err) {
2625 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2626 return err;
2627 }
2628 }
2629
2630 if (map_def.parts & MAP_DEF_INNER_MAP) {
2631 map->inner_map = calloc(1, sizeof(*map->inner_map));
2632 if (!map->inner_map)
2633 return -ENOMEM;
2634 map->inner_map->fd = create_placeholder_fd();
2635 if (map->inner_map->fd < 0)
2636 return map->inner_map->fd;
2637 map->inner_map->sec_idx = sec_idx;
2638 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2639 if (!map->inner_map->name)
2640 return -ENOMEM;
2641 sprintf(map->inner_map->name, "%s.inner", map_name);
2642
2643 fill_map_from_def(map->inner_map, &inner_def);
2644 }
2645
2646 err = map_fill_btf_type_info(obj, map);
2647 if (err)
2648 return err;
2649
2650 return 0;
2651}
2652
2653static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2654 const char *pin_root_path)
2655{
2656 const struct btf_type *sec = NULL;
2657 int nr_types, i, vlen, err;
2658 const struct btf_type *t;
2659 const char *name;
2660 Elf_Data *data;
2661 Elf_Scn *scn;
2662
2663 if (obj->efile.btf_maps_shndx < 0)
2664 return 0;
2665
2666 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2667 data = elf_sec_data(obj, scn);
2668 if (!scn || !data) {
2669 pr_warn("elf: failed to get %s map definitions for %s\n",
2670 MAPS_ELF_SEC, obj->path);
2671 return -EINVAL;
2672 }
2673
2674 nr_types = btf__type_cnt(obj->btf);
2675 for (i = 1; i < nr_types; i++) {
2676 t = btf__type_by_id(obj->btf, i);
2677 if (!btf_is_datasec(t))
2678 continue;
2679 name = btf__name_by_offset(obj->btf, t->name_off);
2680 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2681 sec = t;
2682 obj->efile.btf_maps_sec_btf_id = i;
2683 break;
2684 }
2685 }
2686
2687 if (!sec) {
2688 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2689 return -ENOENT;
2690 }
2691
2692 vlen = btf_vlen(sec);
2693 for (i = 0; i < vlen; i++) {
2694 err = bpf_object__init_user_btf_map(obj, sec, i,
2695 obj->efile.btf_maps_shndx,
2696 data, strict,
2697 pin_root_path);
2698 if (err)
2699 return err;
2700 }
2701
2702 return 0;
2703}
2704
2705static int bpf_object__init_maps(struct bpf_object *obj,
2706 const struct bpf_object_open_opts *opts)
2707{
2708 const char *pin_root_path;
2709 bool strict;
2710 int err = 0;
2711
2712 strict = !OPTS_GET(opts, relaxed_maps, false);
2713 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2714
2715 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2716 err = err ?: bpf_object__init_global_data_maps(obj);
2717 err = err ?: bpf_object__init_kconfig_map(obj);
2718 err = err ?: bpf_object_init_struct_ops(obj);
2719
2720 return err;
2721}
2722
2723static bool section_have_execinstr(struct bpf_object *obj, int idx)
2724{
2725 Elf64_Shdr *sh;
2726
2727 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2728 if (!sh)
2729 return false;
2730
2731 return sh->sh_flags & SHF_EXECINSTR;
2732}
2733
2734static bool btf_needs_sanitization(struct bpf_object *obj)
2735{
2736 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2737 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2738 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2739 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2740 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2741 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2742 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2743
2744 return !has_func || !has_datasec || !has_func_global || !has_float ||
2745 !has_decl_tag || !has_type_tag || !has_enum64;
2746}
2747
2748static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2749{
2750 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2751 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2752 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2753 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2754 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2755 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2756 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2757 int enum64_placeholder_id = 0;
2758 struct btf_type *t;
2759 int i, j, vlen;
2760
2761 for (i = 1; i < btf__type_cnt(btf); i++) {
2762 t = (struct btf_type *)btf__type_by_id(btf, i);
2763
2764 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2765 /* replace VAR/DECL_TAG with INT */
2766 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2767 /*
2768 * using size = 1 is the safest choice, 4 will be too
2769 * big and cause kernel BTF validation failure if
2770 * original variable took less than 4 bytes
2771 */
2772 t->size = 1;
2773 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2774 } else if (!has_datasec && btf_is_datasec(t)) {
2775 /* replace DATASEC with STRUCT */
2776 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2777 struct btf_member *m = btf_members(t);
2778 struct btf_type *vt;
2779 char *name;
2780
2781 name = (char *)btf__name_by_offset(btf, t->name_off);
2782 while (*name) {
2783 if (*name == '.')
2784 *name = '_';
2785 name++;
2786 }
2787
2788 vlen = btf_vlen(t);
2789 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2790 for (j = 0; j < vlen; j++, v++, m++) {
2791 /* order of field assignments is important */
2792 m->offset = v->offset * 8;
2793 m->type = v->type;
2794 /* preserve variable name as member name */
2795 vt = (void *)btf__type_by_id(btf, v->type);
2796 m->name_off = vt->name_off;
2797 }
2798 } else if (!has_func && btf_is_func_proto(t)) {
2799 /* replace FUNC_PROTO with ENUM */
2800 vlen = btf_vlen(t);
2801 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2802 t->size = sizeof(__u32); /* kernel enforced */
2803 } else if (!has_func && btf_is_func(t)) {
2804 /* replace FUNC with TYPEDEF */
2805 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2806 } else if (!has_func_global && btf_is_func(t)) {
2807 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2808 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2809 } else if (!has_float && btf_is_float(t)) {
2810 /* replace FLOAT with an equally-sized empty STRUCT;
2811 * since C compilers do not accept e.g. "float" as a
2812 * valid struct name, make it anonymous
2813 */
2814 t->name_off = 0;
2815 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2816 } else if (!has_type_tag && btf_is_type_tag(t)) {
2817 /* replace TYPE_TAG with a CONST */
2818 t->name_off = 0;
2819 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2820 } else if (!has_enum64 && btf_is_enum(t)) {
2821 /* clear the kflag */
2822 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2823 } else if (!has_enum64 && btf_is_enum64(t)) {
2824 /* replace ENUM64 with a union */
2825 struct btf_member *m;
2826
2827 if (enum64_placeholder_id == 0) {
2828 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2829 if (enum64_placeholder_id < 0)
2830 return enum64_placeholder_id;
2831
2832 t = (struct btf_type *)btf__type_by_id(btf, i);
2833 }
2834
2835 m = btf_members(t);
2836 vlen = btf_vlen(t);
2837 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2838 for (j = 0; j < vlen; j++, m++) {
2839 m->type = enum64_placeholder_id;
2840 m->offset = 0;
2841 }
2842 }
2843 }
2844
2845 return 0;
2846}
2847
2848static bool libbpf_needs_btf(const struct bpf_object *obj)
2849{
2850 return obj->efile.btf_maps_shndx >= 0 ||
2851 obj->efile.st_ops_shndx >= 0 ||
2852 obj->efile.st_ops_link_shndx >= 0 ||
2853 obj->nr_extern > 0;
2854}
2855
2856static bool kernel_needs_btf(const struct bpf_object *obj)
2857{
2858 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2859}
2860
2861static int bpf_object__init_btf(struct bpf_object *obj,
2862 Elf_Data *btf_data,
2863 Elf_Data *btf_ext_data)
2864{
2865 int err = -ENOENT;
2866
2867 if (btf_data) {
2868 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2869 err = libbpf_get_error(obj->btf);
2870 if (err) {
2871 obj->btf = NULL;
2872 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2873 goto out;
2874 }
2875 /* enforce 8-byte pointers for BPF-targeted BTFs */
2876 btf__set_pointer_size(obj->btf, 8);
2877 }
2878 if (btf_ext_data) {
2879 struct btf_ext_info *ext_segs[3];
2880 int seg_num, sec_num;
2881
2882 if (!obj->btf) {
2883 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2884 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2885 goto out;
2886 }
2887 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2888 err = libbpf_get_error(obj->btf_ext);
2889 if (err) {
2890 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2891 BTF_EXT_ELF_SEC, err);
2892 obj->btf_ext = NULL;
2893 goto out;
2894 }
2895
2896 /* setup .BTF.ext to ELF section mapping */
2897 ext_segs[0] = &obj->btf_ext->func_info;
2898 ext_segs[1] = &obj->btf_ext->line_info;
2899 ext_segs[2] = &obj->btf_ext->core_relo_info;
2900 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2901 struct btf_ext_info *seg = ext_segs[seg_num];
2902 const struct btf_ext_info_sec *sec;
2903 const char *sec_name;
2904 Elf_Scn *scn;
2905
2906 if (seg->sec_cnt == 0)
2907 continue;
2908
2909 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2910 if (!seg->sec_idxs) {
2911 err = -ENOMEM;
2912 goto out;
2913 }
2914
2915 sec_num = 0;
2916 for_each_btf_ext_sec(seg, sec) {
2917 /* preventively increment index to avoid doing
2918 * this before every continue below
2919 */
2920 sec_num++;
2921
2922 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2923 if (str_is_empty(sec_name))
2924 continue;
2925 scn = elf_sec_by_name(obj, sec_name);
2926 if (!scn)
2927 continue;
2928
2929 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2930 }
2931 }
2932 }
2933out:
2934 if (err && libbpf_needs_btf(obj)) {
2935 pr_warn("BTF is required, but is missing or corrupted.\n");
2936 return err;
2937 }
2938 return 0;
2939}
2940
2941static int compare_vsi_off(const void *_a, const void *_b)
2942{
2943 const struct btf_var_secinfo *a = _a;
2944 const struct btf_var_secinfo *b = _b;
2945
2946 return a->offset - b->offset;
2947}
2948
2949static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2950 struct btf_type *t)
2951{
2952 __u32 size = 0, i, vars = btf_vlen(t);
2953 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2954 struct btf_var_secinfo *vsi;
2955 bool fixup_offsets = false;
2956 int err;
2957
2958 if (!sec_name) {
2959 pr_debug("No name found in string section for DATASEC kind.\n");
2960 return -ENOENT;
2961 }
2962
2963 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2964 * variable offsets set at the previous step. Further, not every
2965 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2966 * all fixups altogether for such sections and go straight to sorting
2967 * VARs within their DATASEC.
2968 */
2969 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2970 goto sort_vars;
2971
2972 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2973 * fix this up. But BPF static linker already fixes this up and fills
2974 * all the sizes and offsets during static linking. So this step has
2975 * to be optional. But the STV_HIDDEN handling is non-optional for any
2976 * non-extern DATASEC, so the variable fixup loop below handles both
2977 * functions at the same time, paying the cost of BTF VAR <-> ELF
2978 * symbol matching just once.
2979 */
2980 if (t->size == 0) {
2981 err = find_elf_sec_sz(obj, sec_name, &size);
2982 if (err || !size) {
2983 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2984 sec_name, size, err);
2985 return -ENOENT;
2986 }
2987
2988 t->size = size;
2989 fixup_offsets = true;
2990 }
2991
2992 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2993 const struct btf_type *t_var;
2994 struct btf_var *var;
2995 const char *var_name;
2996 Elf64_Sym *sym;
2997
2998 t_var = btf__type_by_id(btf, vsi->type);
2999 if (!t_var || !btf_is_var(t_var)) {
3000 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3001 return -EINVAL;
3002 }
3003
3004 var = btf_var(t_var);
3005 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3006 continue;
3007
3008 var_name = btf__name_by_offset(btf, t_var->name_off);
3009 if (!var_name) {
3010 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3011 sec_name, i);
3012 return -ENOENT;
3013 }
3014
3015 sym = find_elf_var_sym(obj, var_name);
3016 if (IS_ERR(sym)) {
3017 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3018 sec_name, var_name);
3019 return -ENOENT;
3020 }
3021
3022 if (fixup_offsets)
3023 vsi->offset = sym->st_value;
3024
3025 /* if variable is a global/weak symbol, but has restricted
3026 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3027 * as static. This follows similar logic for functions (BPF
3028 * subprogs) and influences libbpf's further decisions about
3029 * whether to make global data BPF array maps as
3030 * BPF_F_MMAPABLE.
3031 */
3032 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3033 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3034 var->linkage = BTF_VAR_STATIC;
3035 }
3036
3037sort_vars:
3038 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3039 return 0;
3040}
3041
3042static int bpf_object_fixup_btf(struct bpf_object *obj)
3043{
3044 int i, n, err = 0;
3045
3046 if (!obj->btf)
3047 return 0;
3048
3049 n = btf__type_cnt(obj->btf);
3050 for (i = 1; i < n; i++) {
3051 struct btf_type *t = btf_type_by_id(obj->btf, i);
3052
3053 /* Loader needs to fix up some of the things compiler
3054 * couldn't get its hands on while emitting BTF. This
3055 * is section size and global variable offset. We use
3056 * the info from the ELF itself for this purpose.
3057 */
3058 if (btf_is_datasec(t)) {
3059 err = btf_fixup_datasec(obj, obj->btf, t);
3060 if (err)
3061 return err;
3062 }
3063 }
3064
3065 return 0;
3066}
3067
3068static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3069{
3070 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3071 prog->type == BPF_PROG_TYPE_LSM)
3072 return true;
3073
3074 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3075 * also need vmlinux BTF
3076 */
3077 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3078 return true;
3079
3080 return false;
3081}
3082
3083static bool map_needs_vmlinux_btf(struct bpf_map *map)
3084{
3085 return bpf_map__is_struct_ops(map);
3086}
3087
3088static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3089{
3090 struct bpf_program *prog;
3091 struct bpf_map *map;
3092 int i;
3093
3094 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3095 * is not specified
3096 */
3097 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3098 return true;
3099
3100 /* Support for typed ksyms needs kernel BTF */
3101 for (i = 0; i < obj->nr_extern; i++) {
3102 const struct extern_desc *ext;
3103
3104 ext = &obj->externs[i];
3105 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3106 return true;
3107 }
3108
3109 bpf_object__for_each_program(prog, obj) {
3110 if (!prog->autoload)
3111 continue;
3112 if (prog_needs_vmlinux_btf(prog))
3113 return true;
3114 }
3115
3116 bpf_object__for_each_map(map, obj) {
3117 if (map_needs_vmlinux_btf(map))
3118 return true;
3119 }
3120
3121 return false;
3122}
3123
3124static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3125{
3126 int err;
3127
3128 /* btf_vmlinux could be loaded earlier */
3129 if (obj->btf_vmlinux || obj->gen_loader)
3130 return 0;
3131
3132 if (!force && !obj_needs_vmlinux_btf(obj))
3133 return 0;
3134
3135 obj->btf_vmlinux = btf__load_vmlinux_btf();
3136 err = libbpf_get_error(obj->btf_vmlinux);
3137 if (err) {
3138 pr_warn("Error loading vmlinux BTF: %d\n", err);
3139 obj->btf_vmlinux = NULL;
3140 return err;
3141 }
3142 return 0;
3143}
3144
3145static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3146{
3147 struct btf *kern_btf = obj->btf;
3148 bool btf_mandatory, sanitize;
3149 int i, err = 0;
3150
3151 if (!obj->btf)
3152 return 0;
3153
3154 if (!kernel_supports(obj, FEAT_BTF)) {
3155 if (kernel_needs_btf(obj)) {
3156 err = -EOPNOTSUPP;
3157 goto report;
3158 }
3159 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3160 return 0;
3161 }
3162
3163 /* Even though some subprogs are global/weak, user might prefer more
3164 * permissive BPF verification process that BPF verifier performs for
3165 * static functions, taking into account more context from the caller
3166 * functions. In such case, they need to mark such subprogs with
3167 * __attribute__((visibility("hidden"))) and libbpf will adjust
3168 * corresponding FUNC BTF type to be marked as static and trigger more
3169 * involved BPF verification process.
3170 */
3171 for (i = 0; i < obj->nr_programs; i++) {
3172 struct bpf_program *prog = &obj->programs[i];
3173 struct btf_type *t;
3174 const char *name;
3175 int j, n;
3176
3177 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3178 continue;
3179
3180 n = btf__type_cnt(obj->btf);
3181 for (j = 1; j < n; j++) {
3182 t = btf_type_by_id(obj->btf, j);
3183 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3184 continue;
3185
3186 name = btf__str_by_offset(obj->btf, t->name_off);
3187 if (strcmp(name, prog->name) != 0)
3188 continue;
3189
3190 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3191 break;
3192 }
3193 }
3194
3195 sanitize = btf_needs_sanitization(obj);
3196 if (sanitize) {
3197 const void *raw_data;
3198 __u32 sz;
3199
3200 /* clone BTF to sanitize a copy and leave the original intact */
3201 raw_data = btf__raw_data(obj->btf, &sz);
3202 kern_btf = btf__new(raw_data, sz);
3203 err = libbpf_get_error(kern_btf);
3204 if (err)
3205 return err;
3206
3207 /* enforce 8-byte pointers for BPF-targeted BTFs */
3208 btf__set_pointer_size(obj->btf, 8);
3209 err = bpf_object__sanitize_btf(obj, kern_btf);
3210 if (err)
3211 return err;
3212 }
3213
3214 if (obj->gen_loader) {
3215 __u32 raw_size = 0;
3216 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3217
3218 if (!raw_data)
3219 return -ENOMEM;
3220 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3221 /* Pretend to have valid FD to pass various fd >= 0 checks.
3222 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3223 */
3224 btf__set_fd(kern_btf, 0);
3225 } else {
3226 /* currently BPF_BTF_LOAD only supports log_level 1 */
3227 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3228 obj->log_level ? 1 : 0);
3229 }
3230 if (sanitize) {
3231 if (!err) {
3232 /* move fd to libbpf's BTF */
3233 btf__set_fd(obj->btf, btf__fd(kern_btf));
3234 btf__set_fd(kern_btf, -1);
3235 }
3236 btf__free(kern_btf);
3237 }
3238report:
3239 if (err) {
3240 btf_mandatory = kernel_needs_btf(obj);
3241 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3242 btf_mandatory ? "BTF is mandatory, can't proceed."
3243 : "BTF is optional, ignoring.");
3244 if (!btf_mandatory)
3245 err = 0;
3246 }
3247 return err;
3248}
3249
3250static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3251{
3252 const char *name;
3253
3254 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3255 if (!name) {
3256 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3257 off, obj->path, elf_errmsg(-1));
3258 return NULL;
3259 }
3260
3261 return name;
3262}
3263
3264static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3265{
3266 const char *name;
3267
3268 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3269 if (!name) {
3270 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3271 off, obj->path, elf_errmsg(-1));
3272 return NULL;
3273 }
3274
3275 return name;
3276}
3277
3278static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3279{
3280 Elf_Scn *scn;
3281
3282 scn = elf_getscn(obj->efile.elf, idx);
3283 if (!scn) {
3284 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3285 idx, obj->path, elf_errmsg(-1));
3286 return NULL;
3287 }
3288 return scn;
3289}
3290
3291static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3292{
3293 Elf_Scn *scn = NULL;
3294 Elf *elf = obj->efile.elf;
3295 const char *sec_name;
3296
3297 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3298 sec_name = elf_sec_name(obj, scn);
3299 if (!sec_name)
3300 return NULL;
3301
3302 if (strcmp(sec_name, name) != 0)
3303 continue;
3304
3305 return scn;
3306 }
3307 return NULL;
3308}
3309
3310static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3311{
3312 Elf64_Shdr *shdr;
3313
3314 if (!scn)
3315 return NULL;
3316
3317 shdr = elf64_getshdr(scn);
3318 if (!shdr) {
3319 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3320 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3321 return NULL;
3322 }
3323
3324 return shdr;
3325}
3326
3327static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3328{
3329 const char *name;
3330 Elf64_Shdr *sh;
3331
3332 if (!scn)
3333 return NULL;
3334
3335 sh = elf_sec_hdr(obj, scn);
3336 if (!sh)
3337 return NULL;
3338
3339 name = elf_sec_str(obj, sh->sh_name);
3340 if (!name) {
3341 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3342 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3343 return NULL;
3344 }
3345
3346 return name;
3347}
3348
3349static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3350{
3351 Elf_Data *data;
3352
3353 if (!scn)
3354 return NULL;
3355
3356 data = elf_getdata(scn, 0);
3357 if (!data) {
3358 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3359 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3360 obj->path, elf_errmsg(-1));
3361 return NULL;
3362 }
3363
3364 return data;
3365}
3366
3367static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3368{
3369 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3370 return NULL;
3371
3372 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3373}
3374
3375static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3376{
3377 if (idx >= data->d_size / sizeof(Elf64_Rel))
3378 return NULL;
3379
3380 return (Elf64_Rel *)data->d_buf + idx;
3381}
3382
3383static bool is_sec_name_dwarf(const char *name)
3384{
3385 /* approximation, but the actual list is too long */
3386 return str_has_pfx(name, ".debug_");
3387}
3388
3389static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3390{
3391 /* no special handling of .strtab */
3392 if (hdr->sh_type == SHT_STRTAB)
3393 return true;
3394
3395 /* ignore .llvm_addrsig section as well */
3396 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3397 return true;
3398
3399 /* no subprograms will lead to an empty .text section, ignore it */
3400 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3401 strcmp(name, ".text") == 0)
3402 return true;
3403
3404 /* DWARF sections */
3405 if (is_sec_name_dwarf(name))
3406 return true;
3407
3408 if (str_has_pfx(name, ".rel")) {
3409 name += sizeof(".rel") - 1;
3410 /* DWARF section relocations */
3411 if (is_sec_name_dwarf(name))
3412 return true;
3413
3414 /* .BTF and .BTF.ext don't need relocations */
3415 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3416 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3417 return true;
3418 }
3419
3420 return false;
3421}
3422
3423static int cmp_progs(const void *_a, const void *_b)
3424{
3425 const struct bpf_program *a = _a;
3426 const struct bpf_program *b = _b;
3427
3428 if (a->sec_idx != b->sec_idx)
3429 return a->sec_idx < b->sec_idx ? -1 : 1;
3430
3431 /* sec_insn_off can't be the same within the section */
3432 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3433}
3434
3435static int bpf_object__elf_collect(struct bpf_object *obj)
3436{
3437 struct elf_sec_desc *sec_desc;
3438 Elf *elf = obj->efile.elf;
3439 Elf_Data *btf_ext_data = NULL;
3440 Elf_Data *btf_data = NULL;
3441 int idx = 0, err = 0;
3442 const char *name;
3443 Elf_Data *data;
3444 Elf_Scn *scn;
3445 Elf64_Shdr *sh;
3446
3447 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3448 * section. Since section count retrieved by elf_getshdrnum() does
3449 * include sec #0, it is already the necessary size of an array to keep
3450 * all the sections.
3451 */
3452 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3453 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3454 obj->path, elf_errmsg(-1));
3455 return -LIBBPF_ERRNO__FORMAT;
3456 }
3457 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3458 if (!obj->efile.secs)
3459 return -ENOMEM;
3460
3461 /* a bunch of ELF parsing functionality depends on processing symbols,
3462 * so do the first pass and find the symbol table
3463 */
3464 scn = NULL;
3465 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3466 sh = elf_sec_hdr(obj, scn);
3467 if (!sh)
3468 return -LIBBPF_ERRNO__FORMAT;
3469
3470 if (sh->sh_type == SHT_SYMTAB) {
3471 if (obj->efile.symbols) {
3472 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3473 return -LIBBPF_ERRNO__FORMAT;
3474 }
3475
3476 data = elf_sec_data(obj, scn);
3477 if (!data)
3478 return -LIBBPF_ERRNO__FORMAT;
3479
3480 idx = elf_ndxscn(scn);
3481
3482 obj->efile.symbols = data;
3483 obj->efile.symbols_shndx = idx;
3484 obj->efile.strtabidx = sh->sh_link;
3485 }
3486 }
3487
3488 if (!obj->efile.symbols) {
3489 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3490 obj->path);
3491 return -ENOENT;
3492 }
3493
3494 scn = NULL;
3495 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3496 idx = elf_ndxscn(scn);
3497 sec_desc = &obj->efile.secs[idx];
3498
3499 sh = elf_sec_hdr(obj, scn);
3500 if (!sh)
3501 return -LIBBPF_ERRNO__FORMAT;
3502
3503 name = elf_sec_str(obj, sh->sh_name);
3504 if (!name)
3505 return -LIBBPF_ERRNO__FORMAT;
3506
3507 if (ignore_elf_section(sh, name))
3508 continue;
3509
3510 data = elf_sec_data(obj, scn);
3511 if (!data)
3512 return -LIBBPF_ERRNO__FORMAT;
3513
3514 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3515 idx, name, (unsigned long)data->d_size,
3516 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3517 (int)sh->sh_type);
3518
3519 if (strcmp(name, "license") == 0) {
3520 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3521 if (err)
3522 return err;
3523 } else if (strcmp(name, "version") == 0) {
3524 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3525 if (err)
3526 return err;
3527 } else if (strcmp(name, "maps") == 0) {
3528 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3529 return -ENOTSUP;
3530 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3531 obj->efile.btf_maps_shndx = idx;
3532 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3533 if (sh->sh_type != SHT_PROGBITS)
3534 return -LIBBPF_ERRNO__FORMAT;
3535 btf_data = data;
3536 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3537 if (sh->sh_type != SHT_PROGBITS)
3538 return -LIBBPF_ERRNO__FORMAT;
3539 btf_ext_data = data;
3540 } else if (sh->sh_type == SHT_SYMTAB) {
3541 /* already processed during the first pass above */
3542 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3543 if (sh->sh_flags & SHF_EXECINSTR) {
3544 if (strcmp(name, ".text") == 0)
3545 obj->efile.text_shndx = idx;
3546 err = bpf_object__add_programs(obj, data, name, idx);
3547 if (err)
3548 return err;
3549 } else if (strcmp(name, DATA_SEC) == 0 ||
3550 str_has_pfx(name, DATA_SEC ".")) {
3551 sec_desc->sec_type = SEC_DATA;
3552 sec_desc->shdr = sh;
3553 sec_desc->data = data;
3554 } else if (strcmp(name, RODATA_SEC) == 0 ||
3555 str_has_pfx(name, RODATA_SEC ".")) {
3556 sec_desc->sec_type = SEC_RODATA;
3557 sec_desc->shdr = sh;
3558 sec_desc->data = data;
3559 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3560 obj->efile.st_ops_data = data;
3561 obj->efile.st_ops_shndx = idx;
3562 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3563 obj->efile.st_ops_link_data = data;
3564 obj->efile.st_ops_link_shndx = idx;
3565 } else {
3566 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3567 idx, name);
3568 }
3569 } else if (sh->sh_type == SHT_REL) {
3570 int targ_sec_idx = sh->sh_info; /* points to other section */
3571
3572 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3573 targ_sec_idx >= obj->efile.sec_cnt)
3574 return -LIBBPF_ERRNO__FORMAT;
3575
3576 /* Only do relo for section with exec instructions */
3577 if (!section_have_execinstr(obj, targ_sec_idx) &&
3578 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3579 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3580 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3581 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3582 idx, name, targ_sec_idx,
3583 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3584 continue;
3585 }
3586
3587 sec_desc->sec_type = SEC_RELO;
3588 sec_desc->shdr = sh;
3589 sec_desc->data = data;
3590 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3591 str_has_pfx(name, BSS_SEC "."))) {
3592 sec_desc->sec_type = SEC_BSS;
3593 sec_desc->shdr = sh;
3594 sec_desc->data = data;
3595 } else {
3596 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3597 (size_t)sh->sh_size);
3598 }
3599 }
3600
3601 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3602 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3603 return -LIBBPF_ERRNO__FORMAT;
3604 }
3605
3606 /* sort BPF programs by section name and in-section instruction offset
3607 * for faster search
3608 */
3609 if (obj->nr_programs)
3610 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3611
3612 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3613}
3614
3615static bool sym_is_extern(const Elf64_Sym *sym)
3616{
3617 int bind = ELF64_ST_BIND(sym->st_info);
3618 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3619 return sym->st_shndx == SHN_UNDEF &&
3620 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3621 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3622}
3623
3624static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3625{
3626 int bind = ELF64_ST_BIND(sym->st_info);
3627 int type = ELF64_ST_TYPE(sym->st_info);
3628
3629 /* in .text section */
3630 if (sym->st_shndx != text_shndx)
3631 return false;
3632
3633 /* local function */
3634 if (bind == STB_LOCAL && type == STT_SECTION)
3635 return true;
3636
3637 /* global function */
3638 return bind == STB_GLOBAL && type == STT_FUNC;
3639}
3640
3641static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3642{
3643 const struct btf_type *t;
3644 const char *tname;
3645 int i, n;
3646
3647 if (!btf)
3648 return -ESRCH;
3649
3650 n = btf__type_cnt(btf);
3651 for (i = 1; i < n; i++) {
3652 t = btf__type_by_id(btf, i);
3653
3654 if (!btf_is_var(t) && !btf_is_func(t))
3655 continue;
3656
3657 tname = btf__name_by_offset(btf, t->name_off);
3658 if (strcmp(tname, ext_name))
3659 continue;
3660
3661 if (btf_is_var(t) &&
3662 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3663 return -EINVAL;
3664
3665 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3666 return -EINVAL;
3667
3668 return i;
3669 }
3670
3671 return -ENOENT;
3672}
3673
3674static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3675 const struct btf_var_secinfo *vs;
3676 const struct btf_type *t;
3677 int i, j, n;
3678
3679 if (!btf)
3680 return -ESRCH;
3681
3682 n = btf__type_cnt(btf);
3683 for (i = 1; i < n; i++) {
3684 t = btf__type_by_id(btf, i);
3685
3686 if (!btf_is_datasec(t))
3687 continue;
3688
3689 vs = btf_var_secinfos(t);
3690 for (j = 0; j < btf_vlen(t); j++, vs++) {
3691 if (vs->type == ext_btf_id)
3692 return i;
3693 }
3694 }
3695
3696 return -ENOENT;
3697}
3698
3699static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3700 bool *is_signed)
3701{
3702 const struct btf_type *t;
3703 const char *name;
3704
3705 t = skip_mods_and_typedefs(btf, id, NULL);
3706 name = btf__name_by_offset(btf, t->name_off);
3707
3708 if (is_signed)
3709 *is_signed = false;
3710 switch (btf_kind(t)) {
3711 case BTF_KIND_INT: {
3712 int enc = btf_int_encoding(t);
3713
3714 if (enc & BTF_INT_BOOL)
3715 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3716 if (is_signed)
3717 *is_signed = enc & BTF_INT_SIGNED;
3718 if (t->size == 1)
3719 return KCFG_CHAR;
3720 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3721 return KCFG_UNKNOWN;
3722 return KCFG_INT;
3723 }
3724 case BTF_KIND_ENUM:
3725 if (t->size != 4)
3726 return KCFG_UNKNOWN;
3727 if (strcmp(name, "libbpf_tristate"))
3728 return KCFG_UNKNOWN;
3729 return KCFG_TRISTATE;
3730 case BTF_KIND_ENUM64:
3731 if (strcmp(name, "libbpf_tristate"))
3732 return KCFG_UNKNOWN;
3733 return KCFG_TRISTATE;
3734 case BTF_KIND_ARRAY:
3735 if (btf_array(t)->nelems == 0)
3736 return KCFG_UNKNOWN;
3737 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3738 return KCFG_UNKNOWN;
3739 return KCFG_CHAR_ARR;
3740 default:
3741 return KCFG_UNKNOWN;
3742 }
3743}
3744
3745static int cmp_externs(const void *_a, const void *_b)
3746{
3747 const struct extern_desc *a = _a;
3748 const struct extern_desc *b = _b;
3749
3750 if (a->type != b->type)
3751 return a->type < b->type ? -1 : 1;
3752
3753 if (a->type == EXT_KCFG) {
3754 /* descending order by alignment requirements */
3755 if (a->kcfg.align != b->kcfg.align)
3756 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3757 /* ascending order by size, within same alignment class */
3758 if (a->kcfg.sz != b->kcfg.sz)
3759 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3760 }
3761
3762 /* resolve ties by name */
3763 return strcmp(a->name, b->name);
3764}
3765
3766static int find_int_btf_id(const struct btf *btf)
3767{
3768 const struct btf_type *t;
3769 int i, n;
3770
3771 n = btf__type_cnt(btf);
3772 for (i = 1; i < n; i++) {
3773 t = btf__type_by_id(btf, i);
3774
3775 if (btf_is_int(t) && btf_int_bits(t) == 32)
3776 return i;
3777 }
3778
3779 return 0;
3780}
3781
3782static int add_dummy_ksym_var(struct btf *btf)
3783{
3784 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3785 const struct btf_var_secinfo *vs;
3786 const struct btf_type *sec;
3787
3788 if (!btf)
3789 return 0;
3790
3791 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3792 BTF_KIND_DATASEC);
3793 if (sec_btf_id < 0)
3794 return 0;
3795
3796 sec = btf__type_by_id(btf, sec_btf_id);
3797 vs = btf_var_secinfos(sec);
3798 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3799 const struct btf_type *vt;
3800
3801 vt = btf__type_by_id(btf, vs->type);
3802 if (btf_is_func(vt))
3803 break;
3804 }
3805
3806 /* No func in ksyms sec. No need to add dummy var. */
3807 if (i == btf_vlen(sec))
3808 return 0;
3809
3810 int_btf_id = find_int_btf_id(btf);
3811 dummy_var_btf_id = btf__add_var(btf,
3812 "dummy_ksym",
3813 BTF_VAR_GLOBAL_ALLOCATED,
3814 int_btf_id);
3815 if (dummy_var_btf_id < 0)
3816 pr_warn("cannot create a dummy_ksym var\n");
3817
3818 return dummy_var_btf_id;
3819}
3820
3821static int bpf_object__collect_externs(struct bpf_object *obj)
3822{
3823 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3824 const struct btf_type *t;
3825 struct extern_desc *ext;
3826 int i, n, off, dummy_var_btf_id;
3827 const char *ext_name, *sec_name;
3828 size_t ext_essent_len;
3829 Elf_Scn *scn;
3830 Elf64_Shdr *sh;
3831
3832 if (!obj->efile.symbols)
3833 return 0;
3834
3835 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3836 sh = elf_sec_hdr(obj, scn);
3837 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3838 return -LIBBPF_ERRNO__FORMAT;
3839
3840 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3841 if (dummy_var_btf_id < 0)
3842 return dummy_var_btf_id;
3843
3844 n = sh->sh_size / sh->sh_entsize;
3845 pr_debug("looking for externs among %d symbols...\n", n);
3846
3847 for (i = 0; i < n; i++) {
3848 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3849
3850 if (!sym)
3851 return -LIBBPF_ERRNO__FORMAT;
3852 if (!sym_is_extern(sym))
3853 continue;
3854 ext_name = elf_sym_str(obj, sym->st_name);
3855 if (!ext_name || !ext_name[0])
3856 continue;
3857
3858 ext = obj->externs;
3859 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3860 if (!ext)
3861 return -ENOMEM;
3862 obj->externs = ext;
3863 ext = &ext[obj->nr_extern];
3864 memset(ext, 0, sizeof(*ext));
3865 obj->nr_extern++;
3866
3867 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3868 if (ext->btf_id <= 0) {
3869 pr_warn("failed to find BTF for extern '%s': %d\n",
3870 ext_name, ext->btf_id);
3871 return ext->btf_id;
3872 }
3873 t = btf__type_by_id(obj->btf, ext->btf_id);
3874 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3875 ext->sym_idx = i;
3876 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3877
3878 ext_essent_len = bpf_core_essential_name_len(ext->name);
3879 ext->essent_name = NULL;
3880 if (ext_essent_len != strlen(ext->name)) {
3881 ext->essent_name = strndup(ext->name, ext_essent_len);
3882 if (!ext->essent_name)
3883 return -ENOMEM;
3884 }
3885
3886 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3887 if (ext->sec_btf_id <= 0) {
3888 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3889 ext_name, ext->btf_id, ext->sec_btf_id);
3890 return ext->sec_btf_id;
3891 }
3892 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3893 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3894
3895 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3896 if (btf_is_func(t)) {
3897 pr_warn("extern function %s is unsupported under %s section\n",
3898 ext->name, KCONFIG_SEC);
3899 return -ENOTSUP;
3900 }
3901 kcfg_sec = sec;
3902 ext->type = EXT_KCFG;
3903 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3904 if (ext->kcfg.sz <= 0) {
3905 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3906 ext_name, ext->kcfg.sz);
3907 return ext->kcfg.sz;
3908 }
3909 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3910 if (ext->kcfg.align <= 0) {
3911 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3912 ext_name, ext->kcfg.align);
3913 return -EINVAL;
3914 }
3915 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3916 &ext->kcfg.is_signed);
3917 if (ext->kcfg.type == KCFG_UNKNOWN) {
3918 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3919 return -ENOTSUP;
3920 }
3921 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3922 ksym_sec = sec;
3923 ext->type = EXT_KSYM;
3924 skip_mods_and_typedefs(obj->btf, t->type,
3925 &ext->ksym.type_id);
3926 } else {
3927 pr_warn("unrecognized extern section '%s'\n", sec_name);
3928 return -ENOTSUP;
3929 }
3930 }
3931 pr_debug("collected %d externs total\n", obj->nr_extern);
3932
3933 if (!obj->nr_extern)
3934 return 0;
3935
3936 /* sort externs by type, for kcfg ones also by (align, size, name) */
3937 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3938
3939 /* for .ksyms section, we need to turn all externs into allocated
3940 * variables in BTF to pass kernel verification; we do this by
3941 * pretending that each extern is a 8-byte variable
3942 */
3943 if (ksym_sec) {
3944 /* find existing 4-byte integer type in BTF to use for fake
3945 * extern variables in DATASEC
3946 */
3947 int int_btf_id = find_int_btf_id(obj->btf);
3948 /* For extern function, a dummy_var added earlier
3949 * will be used to replace the vs->type and
3950 * its name string will be used to refill
3951 * the missing param's name.
3952 */
3953 const struct btf_type *dummy_var;
3954
3955 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3956 for (i = 0; i < obj->nr_extern; i++) {
3957 ext = &obj->externs[i];
3958 if (ext->type != EXT_KSYM)
3959 continue;
3960 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3961 i, ext->sym_idx, ext->name);
3962 }
3963
3964 sec = ksym_sec;
3965 n = btf_vlen(sec);
3966 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3967 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3968 struct btf_type *vt;
3969
3970 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3971 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3972 ext = find_extern_by_name(obj, ext_name);
3973 if (!ext) {
3974 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3975 btf_kind_str(vt), ext_name);
3976 return -ESRCH;
3977 }
3978 if (btf_is_func(vt)) {
3979 const struct btf_type *func_proto;
3980 struct btf_param *param;
3981 int j;
3982
3983 func_proto = btf__type_by_id(obj->btf,
3984 vt->type);
3985 param = btf_params(func_proto);
3986 /* Reuse the dummy_var string if the
3987 * func proto does not have param name.
3988 */
3989 for (j = 0; j < btf_vlen(func_proto); j++)
3990 if (param[j].type && !param[j].name_off)
3991 param[j].name_off =
3992 dummy_var->name_off;
3993 vs->type = dummy_var_btf_id;
3994 vt->info &= ~0xffff;
3995 vt->info |= BTF_FUNC_GLOBAL;
3996 } else {
3997 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3998 vt->type = int_btf_id;
3999 }
4000 vs->offset = off;
4001 vs->size = sizeof(int);
4002 }
4003 sec->size = off;
4004 }
4005
4006 if (kcfg_sec) {
4007 sec = kcfg_sec;
4008 /* for kcfg externs calculate their offsets within a .kconfig map */
4009 off = 0;
4010 for (i = 0; i < obj->nr_extern; i++) {
4011 ext = &obj->externs[i];
4012 if (ext->type != EXT_KCFG)
4013 continue;
4014
4015 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4016 off = ext->kcfg.data_off + ext->kcfg.sz;
4017 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4018 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4019 }
4020 sec->size = off;
4021 n = btf_vlen(sec);
4022 for (i = 0; i < n; i++) {
4023 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4024
4025 t = btf__type_by_id(obj->btf, vs->type);
4026 ext_name = btf__name_by_offset(obj->btf, t->name_off);
4027 ext = find_extern_by_name(obj, ext_name);
4028 if (!ext) {
4029 pr_warn("failed to find extern definition for BTF var '%s'\n",
4030 ext_name);
4031 return -ESRCH;
4032 }
4033 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4034 vs->offset = ext->kcfg.data_off;
4035 }
4036 }
4037 return 0;
4038}
4039
4040static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4041{
4042 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4043}
4044
4045struct bpf_program *
4046bpf_object__find_program_by_name(const struct bpf_object *obj,
4047 const char *name)
4048{
4049 struct bpf_program *prog;
4050
4051 bpf_object__for_each_program(prog, obj) {
4052 if (prog_is_subprog(obj, prog))
4053 continue;
4054 if (!strcmp(prog->name, name))
4055 return prog;
4056 }
4057 return errno = ENOENT, NULL;
4058}
4059
4060static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4061 int shndx)
4062{
4063 switch (obj->efile.secs[shndx].sec_type) {
4064 case SEC_BSS:
4065 case SEC_DATA:
4066 case SEC_RODATA:
4067 return true;
4068 default:
4069 return false;
4070 }
4071}
4072
4073static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4074 int shndx)
4075{
4076 return shndx == obj->efile.btf_maps_shndx;
4077}
4078
4079static enum libbpf_map_type
4080bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4081{
4082 if (shndx == obj->efile.symbols_shndx)
4083 return LIBBPF_MAP_KCONFIG;
4084
4085 switch (obj->efile.secs[shndx].sec_type) {
4086 case SEC_BSS:
4087 return LIBBPF_MAP_BSS;
4088 case SEC_DATA:
4089 return LIBBPF_MAP_DATA;
4090 case SEC_RODATA:
4091 return LIBBPF_MAP_RODATA;
4092 default:
4093 return LIBBPF_MAP_UNSPEC;
4094 }
4095}
4096
4097static int bpf_program__record_reloc(struct bpf_program *prog,
4098 struct reloc_desc *reloc_desc,
4099 __u32 insn_idx, const char *sym_name,
4100 const Elf64_Sym *sym, const Elf64_Rel *rel)
4101{
4102 struct bpf_insn *insn = &prog->insns[insn_idx];
4103 size_t map_idx, nr_maps = prog->obj->nr_maps;
4104 struct bpf_object *obj = prog->obj;
4105 __u32 shdr_idx = sym->st_shndx;
4106 enum libbpf_map_type type;
4107 const char *sym_sec_name;
4108 struct bpf_map *map;
4109
4110 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4111 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4112 prog->name, sym_name, insn_idx, insn->code);
4113 return -LIBBPF_ERRNO__RELOC;
4114 }
4115
4116 if (sym_is_extern(sym)) {
4117 int sym_idx = ELF64_R_SYM(rel->r_info);
4118 int i, n = obj->nr_extern;
4119 struct extern_desc *ext;
4120
4121 for (i = 0; i < n; i++) {
4122 ext = &obj->externs[i];
4123 if (ext->sym_idx == sym_idx)
4124 break;
4125 }
4126 if (i >= n) {
4127 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4128 prog->name, sym_name, sym_idx);
4129 return -LIBBPF_ERRNO__RELOC;
4130 }
4131 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4132 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4133 if (insn->code == (BPF_JMP | BPF_CALL))
4134 reloc_desc->type = RELO_EXTERN_CALL;
4135 else
4136 reloc_desc->type = RELO_EXTERN_LD64;
4137 reloc_desc->insn_idx = insn_idx;
4138 reloc_desc->ext_idx = i;
4139 return 0;
4140 }
4141
4142 /* sub-program call relocation */
4143 if (is_call_insn(insn)) {
4144 if (insn->src_reg != BPF_PSEUDO_CALL) {
4145 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4146 return -LIBBPF_ERRNO__RELOC;
4147 }
4148 /* text_shndx can be 0, if no default "main" program exists */
4149 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4150 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4151 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4152 prog->name, sym_name, sym_sec_name);
4153 return -LIBBPF_ERRNO__RELOC;
4154 }
4155 if (sym->st_value % BPF_INSN_SZ) {
4156 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4157 prog->name, sym_name, (size_t)sym->st_value);
4158 return -LIBBPF_ERRNO__RELOC;
4159 }
4160 reloc_desc->type = RELO_CALL;
4161 reloc_desc->insn_idx = insn_idx;
4162 reloc_desc->sym_off = sym->st_value;
4163 return 0;
4164 }
4165
4166 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4167 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4168 prog->name, sym_name, shdr_idx);
4169 return -LIBBPF_ERRNO__RELOC;
4170 }
4171
4172 /* loading subprog addresses */
4173 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4174 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4175 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4176 */
4177 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4178 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4179 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4180 return -LIBBPF_ERRNO__RELOC;
4181 }
4182
4183 reloc_desc->type = RELO_SUBPROG_ADDR;
4184 reloc_desc->insn_idx = insn_idx;
4185 reloc_desc->sym_off = sym->st_value;
4186 return 0;
4187 }
4188
4189 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4190 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4191
4192 /* generic map reference relocation */
4193 if (type == LIBBPF_MAP_UNSPEC) {
4194 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4195 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4196 prog->name, sym_name, sym_sec_name);
4197 return -LIBBPF_ERRNO__RELOC;
4198 }
4199 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4200 map = &obj->maps[map_idx];
4201 if (map->libbpf_type != type ||
4202 map->sec_idx != sym->st_shndx ||
4203 map->sec_offset != sym->st_value)
4204 continue;
4205 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4206 prog->name, map_idx, map->name, map->sec_idx,
4207 map->sec_offset, insn_idx);
4208 break;
4209 }
4210 if (map_idx >= nr_maps) {
4211 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4212 prog->name, sym_sec_name, (size_t)sym->st_value);
4213 return -LIBBPF_ERRNO__RELOC;
4214 }
4215 reloc_desc->type = RELO_LD64;
4216 reloc_desc->insn_idx = insn_idx;
4217 reloc_desc->map_idx = map_idx;
4218 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4219 return 0;
4220 }
4221
4222 /* global data map relocation */
4223 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4224 pr_warn("prog '%s': bad data relo against section '%s'\n",
4225 prog->name, sym_sec_name);
4226 return -LIBBPF_ERRNO__RELOC;
4227 }
4228 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4229 map = &obj->maps[map_idx];
4230 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4231 continue;
4232 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4233 prog->name, map_idx, map->name, map->sec_idx,
4234 map->sec_offset, insn_idx);
4235 break;
4236 }
4237 if (map_idx >= nr_maps) {
4238 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4239 prog->name, sym_sec_name);
4240 return -LIBBPF_ERRNO__RELOC;
4241 }
4242
4243 reloc_desc->type = RELO_DATA;
4244 reloc_desc->insn_idx = insn_idx;
4245 reloc_desc->map_idx = map_idx;
4246 reloc_desc->sym_off = sym->st_value;
4247 return 0;
4248}
4249
4250static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4251{
4252 return insn_idx >= prog->sec_insn_off &&
4253 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4254}
4255
4256static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4257 size_t sec_idx, size_t insn_idx)
4258{
4259 int l = 0, r = obj->nr_programs - 1, m;
4260 struct bpf_program *prog;
4261
4262 if (!obj->nr_programs)
4263 return NULL;
4264
4265 while (l < r) {
4266 m = l + (r - l + 1) / 2;
4267 prog = &obj->programs[m];
4268
4269 if (prog->sec_idx < sec_idx ||
4270 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4271 l = m;
4272 else
4273 r = m - 1;
4274 }
4275 /* matching program could be at index l, but it still might be the
4276 * wrong one, so we need to double check conditions for the last time
4277 */
4278 prog = &obj->programs[l];
4279 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4280 return prog;
4281 return NULL;
4282}
4283
4284static int
4285bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4286{
4287 const char *relo_sec_name, *sec_name;
4288 size_t sec_idx = shdr->sh_info, sym_idx;
4289 struct bpf_program *prog;
4290 struct reloc_desc *relos;
4291 int err, i, nrels;
4292 const char *sym_name;
4293 __u32 insn_idx;
4294 Elf_Scn *scn;
4295 Elf_Data *scn_data;
4296 Elf64_Sym *sym;
4297 Elf64_Rel *rel;
4298
4299 if (sec_idx >= obj->efile.sec_cnt)
4300 return -EINVAL;
4301
4302 scn = elf_sec_by_idx(obj, sec_idx);
4303 scn_data = elf_sec_data(obj, scn);
4304 if (!scn_data)
4305 return -LIBBPF_ERRNO__FORMAT;
4306
4307 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4308 sec_name = elf_sec_name(obj, scn);
4309 if (!relo_sec_name || !sec_name)
4310 return -EINVAL;
4311
4312 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4313 relo_sec_name, sec_idx, sec_name);
4314 nrels = shdr->sh_size / shdr->sh_entsize;
4315
4316 for (i = 0; i < nrels; i++) {
4317 rel = elf_rel_by_idx(data, i);
4318 if (!rel) {
4319 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4320 return -LIBBPF_ERRNO__FORMAT;
4321 }
4322
4323 sym_idx = ELF64_R_SYM(rel->r_info);
4324 sym = elf_sym_by_idx(obj, sym_idx);
4325 if (!sym) {
4326 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4327 relo_sec_name, sym_idx, i);
4328 return -LIBBPF_ERRNO__FORMAT;
4329 }
4330
4331 if (sym->st_shndx >= obj->efile.sec_cnt) {
4332 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4333 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4334 return -LIBBPF_ERRNO__FORMAT;
4335 }
4336
4337 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4338 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4339 relo_sec_name, (size_t)rel->r_offset, i);
4340 return -LIBBPF_ERRNO__FORMAT;
4341 }
4342
4343 insn_idx = rel->r_offset / BPF_INSN_SZ;
4344 /* relocations against static functions are recorded as
4345 * relocations against the section that contains a function;
4346 * in such case, symbol will be STT_SECTION and sym.st_name
4347 * will point to empty string (0), so fetch section name
4348 * instead
4349 */
4350 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4351 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4352 else
4353 sym_name = elf_sym_str(obj, sym->st_name);
4354 sym_name = sym_name ?: "<?";
4355
4356 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4357 relo_sec_name, i, insn_idx, sym_name);
4358
4359 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4360 if (!prog) {
4361 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4362 relo_sec_name, i, sec_name, insn_idx);
4363 continue;
4364 }
4365
4366 relos = libbpf_reallocarray(prog->reloc_desc,
4367 prog->nr_reloc + 1, sizeof(*relos));
4368 if (!relos)
4369 return -ENOMEM;
4370 prog->reloc_desc = relos;
4371
4372 /* adjust insn_idx to local BPF program frame of reference */
4373 insn_idx -= prog->sec_insn_off;
4374 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4375 insn_idx, sym_name, sym, rel);
4376 if (err)
4377 return err;
4378
4379 prog->nr_reloc++;
4380 }
4381 return 0;
4382}
4383
4384static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4385{
4386 int id;
4387
4388 if (!obj->btf)
4389 return -ENOENT;
4390
4391 /* if it's BTF-defined map, we don't need to search for type IDs.
4392 * For struct_ops map, it does not need btf_key_type_id and
4393 * btf_value_type_id.
4394 */
4395 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4396 return 0;
4397
4398 /*
4399 * LLVM annotates global data differently in BTF, that is,
4400 * only as '.data', '.bss' or '.rodata'.
4401 */
4402 if (!bpf_map__is_internal(map))
4403 return -ENOENT;
4404
4405 id = btf__find_by_name(obj->btf, map->real_name);
4406 if (id < 0)
4407 return id;
4408
4409 map->btf_key_type_id = 0;
4410 map->btf_value_type_id = id;
4411 return 0;
4412}
4413
4414static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4415{
4416 char file[PATH_MAX], buff[4096];
4417 FILE *fp;
4418 __u32 val;
4419 int err;
4420
4421 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4422 memset(info, 0, sizeof(*info));
4423
4424 fp = fopen(file, "re");
4425 if (!fp) {
4426 err = -errno;
4427 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4428 err);
4429 return err;
4430 }
4431
4432 while (fgets(buff, sizeof(buff), fp)) {
4433 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4434 info->type = val;
4435 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4436 info->key_size = val;
4437 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4438 info->value_size = val;
4439 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4440 info->max_entries = val;
4441 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4442 info->map_flags = val;
4443 }
4444
4445 fclose(fp);
4446
4447 return 0;
4448}
4449
4450bool bpf_map__autocreate(const struct bpf_map *map)
4451{
4452 return map->autocreate;
4453}
4454
4455int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4456{
4457 if (map->obj->loaded)
4458 return libbpf_err(-EBUSY);
4459
4460 map->autocreate = autocreate;
4461 return 0;
4462}
4463
4464int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4465{
4466 struct bpf_map_info info;
4467 __u32 len = sizeof(info), name_len;
4468 int new_fd, err;
4469 char *new_name;
4470
4471 memset(&info, 0, len);
4472 err = bpf_map_get_info_by_fd(fd, &info, &len);
4473 if (err && errno == EINVAL)
4474 err = bpf_get_map_info_from_fdinfo(fd, &info);
4475 if (err)
4476 return libbpf_err(err);
4477
4478 name_len = strlen(info.name);
4479 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4480 new_name = strdup(map->name);
4481 else
4482 new_name = strdup(info.name);
4483
4484 if (!new_name)
4485 return libbpf_err(-errno);
4486
4487 /*
4488 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4489 * This is similar to what we do in ensure_good_fd(), but without
4490 * closing original FD.
4491 */
4492 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4493 if (new_fd < 0) {
4494 err = -errno;
4495 goto err_free_new_name;
4496 }
4497
4498 err = reuse_fd(map->fd, new_fd);
4499 if (err)
4500 goto err_free_new_name;
4501
4502 free(map->name);
4503
4504 map->name = new_name;
4505 map->def.type = info.type;
4506 map->def.key_size = info.key_size;
4507 map->def.value_size = info.value_size;
4508 map->def.max_entries = info.max_entries;
4509 map->def.map_flags = info.map_flags;
4510 map->btf_key_type_id = info.btf_key_type_id;
4511 map->btf_value_type_id = info.btf_value_type_id;
4512 map->reused = true;
4513 map->map_extra = info.map_extra;
4514
4515 return 0;
4516
4517err_free_new_name:
4518 free(new_name);
4519 return libbpf_err(err);
4520}
4521
4522__u32 bpf_map__max_entries(const struct bpf_map *map)
4523{
4524 return map->def.max_entries;
4525}
4526
4527struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4528{
4529 if (!bpf_map_type__is_map_in_map(map->def.type))
4530 return errno = EINVAL, NULL;
4531
4532 return map->inner_map;
4533}
4534
4535int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4536{
4537 if (map->obj->loaded)
4538 return libbpf_err(-EBUSY);
4539
4540 map->def.max_entries = max_entries;
4541
4542 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4543 if (map_is_ringbuf(map))
4544 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4545
4546 return 0;
4547}
4548
4549static int
4550bpf_object__probe_loading(struct bpf_object *obj)
4551{
4552 char *cp, errmsg[STRERR_BUFSIZE];
4553 struct bpf_insn insns[] = {
4554 BPF_MOV64_IMM(BPF_REG_0, 0),
4555 BPF_EXIT_INSN(),
4556 };
4557 int ret, insn_cnt = ARRAY_SIZE(insns);
4558
4559 if (obj->gen_loader)
4560 return 0;
4561
4562 ret = bump_rlimit_memlock();
4563 if (ret)
4564 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4565
4566 /* make sure basic loading works */
4567 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4568 if (ret < 0)
4569 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4570 if (ret < 0) {
4571 ret = errno;
4572 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4573 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4574 "program. Make sure your kernel supports BPF "
4575 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4576 "set to big enough value.\n", __func__, cp, ret);
4577 return -ret;
4578 }
4579 close(ret);
4580
4581 return 0;
4582}
4583
4584static int probe_fd(int fd)
4585{
4586 if (fd >= 0)
4587 close(fd);
4588 return fd >= 0;
4589}
4590
4591static int probe_kern_prog_name(void)
4592{
4593 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4594 struct bpf_insn insns[] = {
4595 BPF_MOV64_IMM(BPF_REG_0, 0),
4596 BPF_EXIT_INSN(),
4597 };
4598 union bpf_attr attr;
4599 int ret;
4600
4601 memset(&attr, 0, attr_sz);
4602 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4603 attr.license = ptr_to_u64("GPL");
4604 attr.insns = ptr_to_u64(insns);
4605 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4606 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4607
4608 /* make sure loading with name works */
4609 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4610 return probe_fd(ret);
4611}
4612
4613static int probe_kern_global_data(void)
4614{
4615 char *cp, errmsg[STRERR_BUFSIZE];
4616 struct bpf_insn insns[] = {
4617 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4618 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4619 BPF_MOV64_IMM(BPF_REG_0, 0),
4620 BPF_EXIT_INSN(),
4621 };
4622 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4623
4624 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4625 if (map < 0) {
4626 ret = -errno;
4627 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4628 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4629 __func__, cp, -ret);
4630 return ret;
4631 }
4632
4633 insns[0].imm = map;
4634
4635 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4636 close(map);
4637 return probe_fd(ret);
4638}
4639
4640static int probe_kern_btf(void)
4641{
4642 static const char strs[] = "\0int";
4643 __u32 types[] = {
4644 /* int */
4645 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4646 };
4647
4648 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4649 strs, sizeof(strs)));
4650}
4651
4652static int probe_kern_btf_func(void)
4653{
4654 static const char strs[] = "\0int\0x\0a";
4655 /* void x(int a) {} */
4656 __u32 types[] = {
4657 /* int */
4658 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4659 /* FUNC_PROTO */ /* [2] */
4660 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4661 BTF_PARAM_ENC(7, 1),
4662 /* FUNC x */ /* [3] */
4663 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4664 };
4665
4666 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4667 strs, sizeof(strs)));
4668}
4669
4670static int probe_kern_btf_func_global(void)
4671{
4672 static const char strs[] = "\0int\0x\0a";
4673 /* static void x(int a) {} */
4674 __u32 types[] = {
4675 /* int */
4676 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4677 /* FUNC_PROTO */ /* [2] */
4678 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4679 BTF_PARAM_ENC(7, 1),
4680 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4681 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4682 };
4683
4684 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4685 strs, sizeof(strs)));
4686}
4687
4688static int probe_kern_btf_datasec(void)
4689{
4690 static const char strs[] = "\0x\0.data";
4691 /* static int a; */
4692 __u32 types[] = {
4693 /* int */
4694 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4695 /* VAR x */ /* [2] */
4696 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4697 BTF_VAR_STATIC,
4698 /* DATASEC val */ /* [3] */
4699 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4700 BTF_VAR_SECINFO_ENC(2, 0, 4),
4701 };
4702
4703 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4704 strs, sizeof(strs)));
4705}
4706
4707static int probe_kern_btf_float(void)
4708{
4709 static const char strs[] = "\0float";
4710 __u32 types[] = {
4711 /* float */
4712 BTF_TYPE_FLOAT_ENC(1, 4),
4713 };
4714
4715 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4716 strs, sizeof(strs)));
4717}
4718
4719static int probe_kern_btf_decl_tag(void)
4720{
4721 static const char strs[] = "\0tag";
4722 __u32 types[] = {
4723 /* int */
4724 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4725 /* VAR x */ /* [2] */
4726 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4727 BTF_VAR_STATIC,
4728 /* attr */
4729 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4730 };
4731
4732 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4733 strs, sizeof(strs)));
4734}
4735
4736static int probe_kern_btf_type_tag(void)
4737{
4738 static const char strs[] = "\0tag";
4739 __u32 types[] = {
4740 /* int */
4741 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4742 /* attr */
4743 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4744 /* ptr */
4745 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4746 };
4747
4748 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4749 strs, sizeof(strs)));
4750}
4751
4752static int probe_kern_array_mmap(void)
4753{
4754 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4755 int fd;
4756
4757 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4758 return probe_fd(fd);
4759}
4760
4761static int probe_kern_exp_attach_type(void)
4762{
4763 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4764 struct bpf_insn insns[] = {
4765 BPF_MOV64_IMM(BPF_REG_0, 0),
4766 BPF_EXIT_INSN(),
4767 };
4768 int fd, insn_cnt = ARRAY_SIZE(insns);
4769
4770 /* use any valid combination of program type and (optional)
4771 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4772 * to see if kernel supports expected_attach_type field for
4773 * BPF_PROG_LOAD command
4774 */
4775 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4776 return probe_fd(fd);
4777}
4778
4779static int probe_kern_probe_read_kernel(void)
4780{
4781 struct bpf_insn insns[] = {
4782 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4783 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4784 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4785 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4786 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4787 BPF_EXIT_INSN(),
4788 };
4789 int fd, insn_cnt = ARRAY_SIZE(insns);
4790
4791 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4792 return probe_fd(fd);
4793}
4794
4795static int probe_prog_bind_map(void)
4796{
4797 char *cp, errmsg[STRERR_BUFSIZE];
4798 struct bpf_insn insns[] = {
4799 BPF_MOV64_IMM(BPF_REG_0, 0),
4800 BPF_EXIT_INSN(),
4801 };
4802 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4803
4804 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4805 if (map < 0) {
4806 ret = -errno;
4807 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4808 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4809 __func__, cp, -ret);
4810 return ret;
4811 }
4812
4813 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4814 if (prog < 0) {
4815 close(map);
4816 return 0;
4817 }
4818
4819 ret = bpf_prog_bind_map(prog, map, NULL);
4820
4821 close(map);
4822 close(prog);
4823
4824 return ret >= 0;
4825}
4826
4827static int probe_module_btf(void)
4828{
4829 static const char strs[] = "\0int";
4830 __u32 types[] = {
4831 /* int */
4832 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4833 };
4834 struct bpf_btf_info info;
4835 __u32 len = sizeof(info);
4836 char name[16];
4837 int fd, err;
4838
4839 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4840 if (fd < 0)
4841 return 0; /* BTF not supported at all */
4842
4843 memset(&info, 0, sizeof(info));
4844 info.name = ptr_to_u64(name);
4845 info.name_len = sizeof(name);
4846
4847 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4848 * kernel's module BTF support coincides with support for
4849 * name/name_len fields in struct bpf_btf_info.
4850 */
4851 err = bpf_btf_get_info_by_fd(fd, &info, &len);
4852 close(fd);
4853 return !err;
4854}
4855
4856static int probe_perf_link(void)
4857{
4858 struct bpf_insn insns[] = {
4859 BPF_MOV64_IMM(BPF_REG_0, 0),
4860 BPF_EXIT_INSN(),
4861 };
4862 int prog_fd, link_fd, err;
4863
4864 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4865 insns, ARRAY_SIZE(insns), NULL);
4866 if (prog_fd < 0)
4867 return -errno;
4868
4869 /* use invalid perf_event FD to get EBADF, if link is supported;
4870 * otherwise EINVAL should be returned
4871 */
4872 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4873 err = -errno; /* close() can clobber errno */
4874
4875 if (link_fd >= 0)
4876 close(link_fd);
4877 close(prog_fd);
4878
4879 return link_fd < 0 && err == -EBADF;
4880}
4881
4882static int probe_uprobe_multi_link(void)
4883{
4884 LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4885 .expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4886 );
4887 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4888 struct bpf_insn insns[] = {
4889 BPF_MOV64_IMM(BPF_REG_0, 0),
4890 BPF_EXIT_INSN(),
4891 };
4892 int prog_fd, link_fd, err;
4893 unsigned long offset = 0;
4894
4895 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4896 insns, ARRAY_SIZE(insns), &load_opts);
4897 if (prog_fd < 0)
4898 return -errno;
4899
4900 /* Creating uprobe in '/' binary should fail with -EBADF. */
4901 link_opts.uprobe_multi.path = "/";
4902 link_opts.uprobe_multi.offsets = &offset;
4903 link_opts.uprobe_multi.cnt = 1;
4904
4905 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4906 err = -errno; /* close() can clobber errno */
4907
4908 if (link_fd >= 0)
4909 close(link_fd);
4910 close(prog_fd);
4911
4912 return link_fd < 0 && err == -EBADF;
4913}
4914
4915static int probe_kern_bpf_cookie(void)
4916{
4917 struct bpf_insn insns[] = {
4918 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4919 BPF_EXIT_INSN(),
4920 };
4921 int ret, insn_cnt = ARRAY_SIZE(insns);
4922
4923 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4924 return probe_fd(ret);
4925}
4926
4927static int probe_kern_btf_enum64(void)
4928{
4929 static const char strs[] = "\0enum64";
4930 __u32 types[] = {
4931 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4932 };
4933
4934 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4935 strs, sizeof(strs)));
4936}
4937
4938static int probe_kern_syscall_wrapper(void);
4939
4940enum kern_feature_result {
4941 FEAT_UNKNOWN = 0,
4942 FEAT_SUPPORTED = 1,
4943 FEAT_MISSING = 2,
4944};
4945
4946typedef int (*feature_probe_fn)(void);
4947
4948static struct kern_feature_desc {
4949 const char *desc;
4950 feature_probe_fn probe;
4951 enum kern_feature_result res;
4952} feature_probes[__FEAT_CNT] = {
4953 [FEAT_PROG_NAME] = {
4954 "BPF program name", probe_kern_prog_name,
4955 },
4956 [FEAT_GLOBAL_DATA] = {
4957 "global variables", probe_kern_global_data,
4958 },
4959 [FEAT_BTF] = {
4960 "minimal BTF", probe_kern_btf,
4961 },
4962 [FEAT_BTF_FUNC] = {
4963 "BTF functions", probe_kern_btf_func,
4964 },
4965 [FEAT_BTF_GLOBAL_FUNC] = {
4966 "BTF global function", probe_kern_btf_func_global,
4967 },
4968 [FEAT_BTF_DATASEC] = {
4969 "BTF data section and variable", probe_kern_btf_datasec,
4970 },
4971 [FEAT_ARRAY_MMAP] = {
4972 "ARRAY map mmap()", probe_kern_array_mmap,
4973 },
4974 [FEAT_EXP_ATTACH_TYPE] = {
4975 "BPF_PROG_LOAD expected_attach_type attribute",
4976 probe_kern_exp_attach_type,
4977 },
4978 [FEAT_PROBE_READ_KERN] = {
4979 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4980 },
4981 [FEAT_PROG_BIND_MAP] = {
4982 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4983 },
4984 [FEAT_MODULE_BTF] = {
4985 "module BTF support", probe_module_btf,
4986 },
4987 [FEAT_BTF_FLOAT] = {
4988 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4989 },
4990 [FEAT_PERF_LINK] = {
4991 "BPF perf link support", probe_perf_link,
4992 },
4993 [FEAT_BTF_DECL_TAG] = {
4994 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4995 },
4996 [FEAT_BTF_TYPE_TAG] = {
4997 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4998 },
4999 [FEAT_MEMCG_ACCOUNT] = {
5000 "memcg-based memory accounting", probe_memcg_account,
5001 },
5002 [FEAT_BPF_COOKIE] = {
5003 "BPF cookie support", probe_kern_bpf_cookie,
5004 },
5005 [FEAT_BTF_ENUM64] = {
5006 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
5007 },
5008 [FEAT_SYSCALL_WRAPPER] = {
5009 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
5010 },
5011 [FEAT_UPROBE_MULTI_LINK] = {
5012 "BPF multi-uprobe link support", probe_uprobe_multi_link,
5013 },
5014};
5015
5016bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5017{
5018 struct kern_feature_desc *feat = &feature_probes[feat_id];
5019 int ret;
5020
5021 if (obj && obj->gen_loader)
5022 /* To generate loader program assume the latest kernel
5023 * to avoid doing extra prog_load, map_create syscalls.
5024 */
5025 return true;
5026
5027 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
5028 ret = feat->probe();
5029 if (ret > 0) {
5030 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
5031 } else if (ret == 0) {
5032 WRITE_ONCE(feat->res, FEAT_MISSING);
5033 } else {
5034 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
5035 WRITE_ONCE(feat->res, FEAT_MISSING);
5036 }
5037 }
5038
5039 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
5040}
5041
5042static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5043{
5044 struct bpf_map_info map_info;
5045 char msg[STRERR_BUFSIZE];
5046 __u32 map_info_len = sizeof(map_info);
5047 int err;
5048
5049 memset(&map_info, 0, map_info_len);
5050 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5051 if (err && errno == EINVAL)
5052 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5053 if (err) {
5054 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5055 libbpf_strerror_r(errno, msg, sizeof(msg)));
5056 return false;
5057 }
5058
5059 return (map_info.type == map->def.type &&
5060 map_info.key_size == map->def.key_size &&
5061 map_info.value_size == map->def.value_size &&
5062 map_info.max_entries == map->def.max_entries &&
5063 map_info.map_flags == map->def.map_flags &&
5064 map_info.map_extra == map->map_extra);
5065}
5066
5067static int
5068bpf_object__reuse_map(struct bpf_map *map)
5069{
5070 char *cp, errmsg[STRERR_BUFSIZE];
5071 int err, pin_fd;
5072
5073 pin_fd = bpf_obj_get(map->pin_path);
5074 if (pin_fd < 0) {
5075 err = -errno;
5076 if (err == -ENOENT) {
5077 pr_debug("found no pinned map to reuse at '%s'\n",
5078 map->pin_path);
5079 return 0;
5080 }
5081
5082 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5083 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5084 map->pin_path, cp);
5085 return err;
5086 }
5087
5088 if (!map_is_reuse_compat(map, pin_fd)) {
5089 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5090 map->pin_path);
5091 close(pin_fd);
5092 return -EINVAL;
5093 }
5094
5095 err = bpf_map__reuse_fd(map, pin_fd);
5096 close(pin_fd);
5097 if (err)
5098 return err;
5099
5100 map->pinned = true;
5101 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5102
5103 return 0;
5104}
5105
5106static int
5107bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5108{
5109 enum libbpf_map_type map_type = map->libbpf_type;
5110 char *cp, errmsg[STRERR_BUFSIZE];
5111 int err, zero = 0;
5112
5113 if (obj->gen_loader) {
5114 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5115 map->mmaped, map->def.value_size);
5116 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5117 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5118 return 0;
5119 }
5120 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5121 if (err) {
5122 err = -errno;
5123 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5124 pr_warn("Error setting initial map(%s) contents: %s\n",
5125 map->name, cp);
5126 return err;
5127 }
5128
5129 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5130 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5131 err = bpf_map_freeze(map->fd);
5132 if (err) {
5133 err = -errno;
5134 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5135 pr_warn("Error freezing map(%s) as read-only: %s\n",
5136 map->name, cp);
5137 return err;
5138 }
5139 }
5140 return 0;
5141}
5142
5143static void bpf_map__destroy(struct bpf_map *map);
5144
5145static bool map_is_created(const struct bpf_map *map)
5146{
5147 return map->obj->loaded || map->reused;
5148}
5149
5150static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5151{
5152 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5153 struct bpf_map_def *def = &map->def;
5154 const char *map_name = NULL;
5155 int err = 0, map_fd;
5156
5157 if (kernel_supports(obj, FEAT_PROG_NAME))
5158 map_name = map->name;
5159 create_attr.map_ifindex = map->map_ifindex;
5160 create_attr.map_flags = def->map_flags;
5161 create_attr.numa_node = map->numa_node;
5162 create_attr.map_extra = map->map_extra;
5163
5164 if (bpf_map__is_struct_ops(map))
5165 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5166
5167 if (obj->btf && btf__fd(obj->btf) >= 0) {
5168 create_attr.btf_fd = btf__fd(obj->btf);
5169 create_attr.btf_key_type_id = map->btf_key_type_id;
5170 create_attr.btf_value_type_id = map->btf_value_type_id;
5171 }
5172
5173 if (bpf_map_type__is_map_in_map(def->type)) {
5174 if (map->inner_map) {
5175 err = bpf_object__create_map(obj, map->inner_map, true);
5176 if (err) {
5177 pr_warn("map '%s': failed to create inner map: %d\n",
5178 map->name, err);
5179 return err;
5180 }
5181 map->inner_map_fd = map->inner_map->fd;
5182 }
5183 if (map->inner_map_fd >= 0)
5184 create_attr.inner_map_fd = map->inner_map_fd;
5185 }
5186
5187 switch (def->type) {
5188 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5189 case BPF_MAP_TYPE_CGROUP_ARRAY:
5190 case BPF_MAP_TYPE_STACK_TRACE:
5191 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5192 case BPF_MAP_TYPE_HASH_OF_MAPS:
5193 case BPF_MAP_TYPE_DEVMAP:
5194 case BPF_MAP_TYPE_DEVMAP_HASH:
5195 case BPF_MAP_TYPE_CPUMAP:
5196 case BPF_MAP_TYPE_XSKMAP:
5197 case BPF_MAP_TYPE_SOCKMAP:
5198 case BPF_MAP_TYPE_SOCKHASH:
5199 case BPF_MAP_TYPE_QUEUE:
5200 case BPF_MAP_TYPE_STACK:
5201 create_attr.btf_fd = 0;
5202 create_attr.btf_key_type_id = 0;
5203 create_attr.btf_value_type_id = 0;
5204 map->btf_key_type_id = 0;
5205 map->btf_value_type_id = 0;
5206 default:
5207 break;
5208 }
5209
5210 if (obj->gen_loader) {
5211 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5212 def->key_size, def->value_size, def->max_entries,
5213 &create_attr, is_inner ? -1 : map - obj->maps);
5214 /* We keep pretenting we have valid FD to pass various fd >= 0
5215 * checks by just keeping original placeholder FDs in place.
5216 * See bpf_object__add_map() comment.
5217 * This placeholder fd will not be used with any syscall and
5218 * will be reset to -1 eventually.
5219 */
5220 map_fd = map->fd;
5221 } else {
5222 map_fd = bpf_map_create(def->type, map_name,
5223 def->key_size, def->value_size,
5224 def->max_entries, &create_attr);
5225 }
5226 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5227 char *cp, errmsg[STRERR_BUFSIZE];
5228
5229 err = -errno;
5230 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5231 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5232 map->name, cp, err);
5233 create_attr.btf_fd = 0;
5234 create_attr.btf_key_type_id = 0;
5235 create_attr.btf_value_type_id = 0;
5236 map->btf_key_type_id = 0;
5237 map->btf_value_type_id = 0;
5238 map_fd = bpf_map_create(def->type, map_name,
5239 def->key_size, def->value_size,
5240 def->max_entries, &create_attr);
5241 }
5242
5243 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5244 if (obj->gen_loader)
5245 map->inner_map->fd = -1;
5246 bpf_map__destroy(map->inner_map);
5247 zfree(&map->inner_map);
5248 }
5249
5250 if (map_fd < 0)
5251 return map_fd;
5252
5253 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5254 if (map->fd == map_fd)
5255 return 0;
5256
5257 /* Keep placeholder FD value but now point it to the BPF map object.
5258 * This way everything that relied on this map's FD (e.g., relocated
5259 * ldimm64 instructions) will stay valid and won't need adjustments.
5260 * map->fd stays valid but now point to what map_fd points to.
5261 */
5262 return reuse_fd(map->fd, map_fd);
5263}
5264
5265static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5266{
5267 const struct bpf_map *targ_map;
5268 unsigned int i;
5269 int fd, err = 0;
5270
5271 for (i = 0; i < map->init_slots_sz; i++) {
5272 if (!map->init_slots[i])
5273 continue;
5274
5275 targ_map = map->init_slots[i];
5276 fd = targ_map->fd;
5277
5278 if (obj->gen_loader) {
5279 bpf_gen__populate_outer_map(obj->gen_loader,
5280 map - obj->maps, i,
5281 targ_map - obj->maps);
5282 } else {
5283 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5284 }
5285 if (err) {
5286 err = -errno;
5287 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5288 map->name, i, targ_map->name, fd, err);
5289 return err;
5290 }
5291 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5292 map->name, i, targ_map->name, fd);
5293 }
5294
5295 zfree(&map->init_slots);
5296 map->init_slots_sz = 0;
5297
5298 return 0;
5299}
5300
5301static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5302{
5303 const struct bpf_program *targ_prog;
5304 unsigned int i;
5305 int fd, err;
5306
5307 if (obj->gen_loader)
5308 return -ENOTSUP;
5309
5310 for (i = 0; i < map->init_slots_sz; i++) {
5311 if (!map->init_slots[i])
5312 continue;
5313
5314 targ_prog = map->init_slots[i];
5315 fd = bpf_program__fd(targ_prog);
5316
5317 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5318 if (err) {
5319 err = -errno;
5320 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5321 map->name, i, targ_prog->name, fd, err);
5322 return err;
5323 }
5324 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5325 map->name, i, targ_prog->name, fd);
5326 }
5327
5328 zfree(&map->init_slots);
5329 map->init_slots_sz = 0;
5330
5331 return 0;
5332}
5333
5334static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5335{
5336 struct bpf_map *map;
5337 int i, err;
5338
5339 for (i = 0; i < obj->nr_maps; i++) {
5340 map = &obj->maps[i];
5341
5342 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5343 continue;
5344
5345 err = init_prog_array_slots(obj, map);
5346 if (err < 0)
5347 return err;
5348 }
5349 return 0;
5350}
5351
5352static int map_set_def_max_entries(struct bpf_map *map)
5353{
5354 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5355 int nr_cpus;
5356
5357 nr_cpus = libbpf_num_possible_cpus();
5358 if (nr_cpus < 0) {
5359 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5360 map->name, nr_cpus);
5361 return nr_cpus;
5362 }
5363 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5364 map->def.max_entries = nr_cpus;
5365 }
5366
5367 return 0;
5368}
5369
5370static int
5371bpf_object__create_maps(struct bpf_object *obj)
5372{
5373 struct bpf_map *map;
5374 char *cp, errmsg[STRERR_BUFSIZE];
5375 unsigned int i, j;
5376 int err;
5377 bool retried;
5378
5379 for (i = 0; i < obj->nr_maps; i++) {
5380 map = &obj->maps[i];
5381
5382 /* To support old kernels, we skip creating global data maps
5383 * (.rodata, .data, .kconfig, etc); later on, during program
5384 * loading, if we detect that at least one of the to-be-loaded
5385 * programs is referencing any global data map, we'll error
5386 * out with program name and relocation index logged.
5387 * This approach allows to accommodate Clang emitting
5388 * unnecessary .rodata.str1.1 sections for string literals,
5389 * but also it allows to have CO-RE applications that use
5390 * global variables in some of BPF programs, but not others.
5391 * If those global variable-using programs are not loaded at
5392 * runtime due to bpf_program__set_autoload(prog, false),
5393 * bpf_object loading will succeed just fine even on old
5394 * kernels.
5395 */
5396 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5397 map->autocreate = false;
5398
5399 if (!map->autocreate) {
5400 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5401 continue;
5402 }
5403
5404 err = map_set_def_max_entries(map);
5405 if (err)
5406 goto err_out;
5407
5408 retried = false;
5409retry:
5410 if (map->pin_path) {
5411 err = bpf_object__reuse_map(map);
5412 if (err) {
5413 pr_warn("map '%s': error reusing pinned map\n",
5414 map->name);
5415 goto err_out;
5416 }
5417 if (retried && map->fd < 0) {
5418 pr_warn("map '%s': cannot find pinned map\n",
5419 map->name);
5420 err = -ENOENT;
5421 goto err_out;
5422 }
5423 }
5424
5425 if (map->reused) {
5426 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5427 map->name, map->fd);
5428 } else {
5429 err = bpf_object__create_map(obj, map, false);
5430 if (err)
5431 goto err_out;
5432
5433 pr_debug("map '%s': created successfully, fd=%d\n",
5434 map->name, map->fd);
5435
5436 if (bpf_map__is_internal(map)) {
5437 err = bpf_object__populate_internal_map(obj, map);
5438 if (err < 0)
5439 goto err_out;
5440 }
5441
5442 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5443 err = init_map_in_map_slots(obj, map);
5444 if (err < 0)
5445 goto err_out;
5446 }
5447 }
5448
5449 if (map->pin_path && !map->pinned) {
5450 err = bpf_map__pin(map, NULL);
5451 if (err) {
5452 if (!retried && err == -EEXIST) {
5453 retried = true;
5454 goto retry;
5455 }
5456 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5457 map->name, map->pin_path, err);
5458 goto err_out;
5459 }
5460 }
5461 }
5462
5463 return 0;
5464
5465err_out:
5466 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5467 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5468 pr_perm_msg(err);
5469 for (j = 0; j < i; j++)
5470 zclose(obj->maps[j].fd);
5471 return err;
5472}
5473
5474static bool bpf_core_is_flavor_sep(const char *s)
5475{
5476 /* check X___Y name pattern, where X and Y are not underscores */
5477 return s[0] != '_' && /* X */
5478 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5479 s[4] != '_'; /* Y */
5480}
5481
5482/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5483 * before last triple underscore. Struct name part after last triple
5484 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5485 */
5486size_t bpf_core_essential_name_len(const char *name)
5487{
5488 size_t n = strlen(name);
5489 int i;
5490
5491 for (i = n - 5; i >= 0; i--) {
5492 if (bpf_core_is_flavor_sep(name + i))
5493 return i + 1;
5494 }
5495 return n;
5496}
5497
5498void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5499{
5500 if (!cands)
5501 return;
5502
5503 free(cands->cands);
5504 free(cands);
5505}
5506
5507int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5508 size_t local_essent_len,
5509 const struct btf *targ_btf,
5510 const char *targ_btf_name,
5511 int targ_start_id,
5512 struct bpf_core_cand_list *cands)
5513{
5514 struct bpf_core_cand *new_cands, *cand;
5515 const struct btf_type *t, *local_t;
5516 const char *targ_name, *local_name;
5517 size_t targ_essent_len;
5518 int n, i;
5519
5520 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5521 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5522
5523 n = btf__type_cnt(targ_btf);
5524 for (i = targ_start_id; i < n; i++) {
5525 t = btf__type_by_id(targ_btf, i);
5526 if (!btf_kind_core_compat(t, local_t))
5527 continue;
5528
5529 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5530 if (str_is_empty(targ_name))
5531 continue;
5532
5533 targ_essent_len = bpf_core_essential_name_len(targ_name);
5534 if (targ_essent_len != local_essent_len)
5535 continue;
5536
5537 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5538 continue;
5539
5540 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5541 local_cand->id, btf_kind_str(local_t),
5542 local_name, i, btf_kind_str(t), targ_name,
5543 targ_btf_name);
5544 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5545 sizeof(*cands->cands));
5546 if (!new_cands)
5547 return -ENOMEM;
5548
5549 cand = &new_cands[cands->len];
5550 cand->btf = targ_btf;
5551 cand->id = i;
5552
5553 cands->cands = new_cands;
5554 cands->len++;
5555 }
5556 return 0;
5557}
5558
5559static int load_module_btfs(struct bpf_object *obj)
5560{
5561 struct bpf_btf_info info;
5562 struct module_btf *mod_btf;
5563 struct btf *btf;
5564 char name[64];
5565 __u32 id = 0, len;
5566 int err, fd;
5567
5568 if (obj->btf_modules_loaded)
5569 return 0;
5570
5571 if (obj->gen_loader)
5572 return 0;
5573
5574 /* don't do this again, even if we find no module BTFs */
5575 obj->btf_modules_loaded = true;
5576
5577 /* kernel too old to support module BTFs */
5578 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5579 return 0;
5580
5581 while (true) {
5582 err = bpf_btf_get_next_id(id, &id);
5583 if (err && errno == ENOENT)
5584 return 0;
5585 if (err && errno == EPERM) {
5586 pr_debug("skipping module BTFs loading, missing privileges\n");
5587 return 0;
5588 }
5589 if (err) {
5590 err = -errno;
5591 pr_warn("failed to iterate BTF objects: %d\n", err);
5592 return err;
5593 }
5594
5595 fd = bpf_btf_get_fd_by_id(id);
5596 if (fd < 0) {
5597 if (errno == ENOENT)
5598 continue; /* expected race: BTF was unloaded */
5599 err = -errno;
5600 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5601 return err;
5602 }
5603
5604 len = sizeof(info);
5605 memset(&info, 0, sizeof(info));
5606 info.name = ptr_to_u64(name);
5607 info.name_len = sizeof(name);
5608
5609 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5610 if (err) {
5611 err = -errno;
5612 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5613 goto err_out;
5614 }
5615
5616 /* ignore non-module BTFs */
5617 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5618 close(fd);
5619 continue;
5620 }
5621
5622 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5623 err = libbpf_get_error(btf);
5624 if (err) {
5625 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5626 name, id, err);
5627 goto err_out;
5628 }
5629
5630 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5631 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5632 if (err)
5633 goto err_out;
5634
5635 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5636
5637 mod_btf->btf = btf;
5638 mod_btf->id = id;
5639 mod_btf->fd = fd;
5640 mod_btf->name = strdup(name);
5641 if (!mod_btf->name) {
5642 err = -ENOMEM;
5643 goto err_out;
5644 }
5645 continue;
5646
5647err_out:
5648 close(fd);
5649 return err;
5650 }
5651
5652 return 0;
5653}
5654
5655static struct bpf_core_cand_list *
5656bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5657{
5658 struct bpf_core_cand local_cand = {};
5659 struct bpf_core_cand_list *cands;
5660 const struct btf *main_btf;
5661 const struct btf_type *local_t;
5662 const char *local_name;
5663 size_t local_essent_len;
5664 int err, i;
5665
5666 local_cand.btf = local_btf;
5667 local_cand.id = local_type_id;
5668 local_t = btf__type_by_id(local_btf, local_type_id);
5669 if (!local_t)
5670 return ERR_PTR(-EINVAL);
5671
5672 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5673 if (str_is_empty(local_name))
5674 return ERR_PTR(-EINVAL);
5675 local_essent_len = bpf_core_essential_name_len(local_name);
5676
5677 cands = calloc(1, sizeof(*cands));
5678 if (!cands)
5679 return ERR_PTR(-ENOMEM);
5680
5681 /* Attempt to find target candidates in vmlinux BTF first */
5682 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5683 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5684 if (err)
5685 goto err_out;
5686
5687 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5688 if (cands->len)
5689 return cands;
5690
5691 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5692 if (obj->btf_vmlinux_override)
5693 return cands;
5694
5695 /* now look through module BTFs, trying to still find candidates */
5696 err = load_module_btfs(obj);
5697 if (err)
5698 goto err_out;
5699
5700 for (i = 0; i < obj->btf_module_cnt; i++) {
5701 err = bpf_core_add_cands(&local_cand, local_essent_len,
5702 obj->btf_modules[i].btf,
5703 obj->btf_modules[i].name,
5704 btf__type_cnt(obj->btf_vmlinux),
5705 cands);
5706 if (err)
5707 goto err_out;
5708 }
5709
5710 return cands;
5711err_out:
5712 bpf_core_free_cands(cands);
5713 return ERR_PTR(err);
5714}
5715
5716/* Check local and target types for compatibility. This check is used for
5717 * type-based CO-RE relocations and follow slightly different rules than
5718 * field-based relocations. This function assumes that root types were already
5719 * checked for name match. Beyond that initial root-level name check, names
5720 * are completely ignored. Compatibility rules are as follows:
5721 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5722 * kind should match for local and target types (i.e., STRUCT is not
5723 * compatible with UNION);
5724 * - for ENUMs, the size is ignored;
5725 * - for INT, size and signedness are ignored;
5726 * - for ARRAY, dimensionality is ignored, element types are checked for
5727 * compatibility recursively;
5728 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5729 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5730 * - FUNC_PROTOs are compatible if they have compatible signature: same
5731 * number of input args and compatible return and argument types.
5732 * These rules are not set in stone and probably will be adjusted as we get
5733 * more experience with using BPF CO-RE relocations.
5734 */
5735int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5736 const struct btf *targ_btf, __u32 targ_id)
5737{
5738 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5739}
5740
5741int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5742 const struct btf *targ_btf, __u32 targ_id)
5743{
5744 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5745}
5746
5747static size_t bpf_core_hash_fn(const long key, void *ctx)
5748{
5749 return key;
5750}
5751
5752static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5753{
5754 return k1 == k2;
5755}
5756
5757static int record_relo_core(struct bpf_program *prog,
5758 const struct bpf_core_relo *core_relo, int insn_idx)
5759{
5760 struct reloc_desc *relos, *relo;
5761
5762 relos = libbpf_reallocarray(prog->reloc_desc,
5763 prog->nr_reloc + 1, sizeof(*relos));
5764 if (!relos)
5765 return -ENOMEM;
5766 relo = &relos[prog->nr_reloc];
5767 relo->type = RELO_CORE;
5768 relo->insn_idx = insn_idx;
5769 relo->core_relo = core_relo;
5770 prog->reloc_desc = relos;
5771 prog->nr_reloc++;
5772 return 0;
5773}
5774
5775static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5776{
5777 struct reloc_desc *relo;
5778 int i;
5779
5780 for (i = 0; i < prog->nr_reloc; i++) {
5781 relo = &prog->reloc_desc[i];
5782 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5783 continue;
5784
5785 return relo->core_relo;
5786 }
5787
5788 return NULL;
5789}
5790
5791static int bpf_core_resolve_relo(struct bpf_program *prog,
5792 const struct bpf_core_relo *relo,
5793 int relo_idx,
5794 const struct btf *local_btf,
5795 struct hashmap *cand_cache,
5796 struct bpf_core_relo_res *targ_res)
5797{
5798 struct bpf_core_spec specs_scratch[3] = {};
5799 struct bpf_core_cand_list *cands = NULL;
5800 const char *prog_name = prog->name;
5801 const struct btf_type *local_type;
5802 const char *local_name;
5803 __u32 local_id = relo->type_id;
5804 int err;
5805
5806 local_type = btf__type_by_id(local_btf, local_id);
5807 if (!local_type)
5808 return -EINVAL;
5809
5810 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5811 if (!local_name)
5812 return -EINVAL;
5813
5814 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5815 !hashmap__find(cand_cache, local_id, &cands)) {
5816 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5817 if (IS_ERR(cands)) {
5818 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5819 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5820 local_name, PTR_ERR(cands));
5821 return PTR_ERR(cands);
5822 }
5823 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5824 if (err) {
5825 bpf_core_free_cands(cands);
5826 return err;
5827 }
5828 }
5829
5830 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5831 targ_res);
5832}
5833
5834static int
5835bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5836{
5837 const struct btf_ext_info_sec *sec;
5838 struct bpf_core_relo_res targ_res;
5839 const struct bpf_core_relo *rec;
5840 const struct btf_ext_info *seg;
5841 struct hashmap_entry *entry;
5842 struct hashmap *cand_cache = NULL;
5843 struct bpf_program *prog;
5844 struct bpf_insn *insn;
5845 const char *sec_name;
5846 int i, err = 0, insn_idx, sec_idx, sec_num;
5847
5848 if (obj->btf_ext->core_relo_info.len == 0)
5849 return 0;
5850
5851 if (targ_btf_path) {
5852 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5853 err = libbpf_get_error(obj->btf_vmlinux_override);
5854 if (err) {
5855 pr_warn("failed to parse target BTF: %d\n", err);
5856 return err;
5857 }
5858 }
5859
5860 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5861 if (IS_ERR(cand_cache)) {
5862 err = PTR_ERR(cand_cache);
5863 goto out;
5864 }
5865
5866 seg = &obj->btf_ext->core_relo_info;
5867 sec_num = 0;
5868 for_each_btf_ext_sec(seg, sec) {
5869 sec_idx = seg->sec_idxs[sec_num];
5870 sec_num++;
5871
5872 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5873 if (str_is_empty(sec_name)) {
5874 err = -EINVAL;
5875 goto out;
5876 }
5877
5878 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5879
5880 for_each_btf_ext_rec(seg, sec, i, rec) {
5881 if (rec->insn_off % BPF_INSN_SZ)
5882 return -EINVAL;
5883 insn_idx = rec->insn_off / BPF_INSN_SZ;
5884 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5885 if (!prog) {
5886 /* When __weak subprog is "overridden" by another instance
5887 * of the subprog from a different object file, linker still
5888 * appends all the .BTF.ext info that used to belong to that
5889 * eliminated subprogram.
5890 * This is similar to what x86-64 linker does for relocations.
5891 * So just ignore such relocations just like we ignore
5892 * subprog instructions when discovering subprograms.
5893 */
5894 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5895 sec_name, i, insn_idx);
5896 continue;
5897 }
5898 /* no need to apply CO-RE relocation if the program is
5899 * not going to be loaded
5900 */
5901 if (!prog->autoload)
5902 continue;
5903
5904 /* adjust insn_idx from section frame of reference to the local
5905 * program's frame of reference; (sub-)program code is not yet
5906 * relocated, so it's enough to just subtract in-section offset
5907 */
5908 insn_idx = insn_idx - prog->sec_insn_off;
5909 if (insn_idx >= prog->insns_cnt)
5910 return -EINVAL;
5911 insn = &prog->insns[insn_idx];
5912
5913 err = record_relo_core(prog, rec, insn_idx);
5914 if (err) {
5915 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5916 prog->name, i, err);
5917 goto out;
5918 }
5919
5920 if (prog->obj->gen_loader)
5921 continue;
5922
5923 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5924 if (err) {
5925 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5926 prog->name, i, err);
5927 goto out;
5928 }
5929
5930 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5931 if (err) {
5932 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5933 prog->name, i, insn_idx, err);
5934 goto out;
5935 }
5936 }
5937 }
5938
5939out:
5940 /* obj->btf_vmlinux and module BTFs are freed after object load */
5941 btf__free(obj->btf_vmlinux_override);
5942 obj->btf_vmlinux_override = NULL;
5943
5944 if (!IS_ERR_OR_NULL(cand_cache)) {
5945 hashmap__for_each_entry(cand_cache, entry, i) {
5946 bpf_core_free_cands(entry->pvalue);
5947 }
5948 hashmap__free(cand_cache);
5949 }
5950 return err;
5951}
5952
5953/* base map load ldimm64 special constant, used also for log fixup logic */
5954#define POISON_LDIMM64_MAP_BASE 2001000000
5955#define POISON_LDIMM64_MAP_PFX "200100"
5956
5957static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5958 int insn_idx, struct bpf_insn *insn,
5959 int map_idx, const struct bpf_map *map)
5960{
5961 int i;
5962
5963 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5964 prog->name, relo_idx, insn_idx, map_idx, map->name);
5965
5966 /* we turn single ldimm64 into two identical invalid calls */
5967 for (i = 0; i < 2; i++) {
5968 insn->code = BPF_JMP | BPF_CALL;
5969 insn->dst_reg = 0;
5970 insn->src_reg = 0;
5971 insn->off = 0;
5972 /* if this instruction is reachable (not a dead code),
5973 * verifier will complain with something like:
5974 * invalid func unknown#2001000123
5975 * where lower 123 is map index into obj->maps[] array
5976 */
5977 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5978
5979 insn++;
5980 }
5981}
5982
5983/* unresolved kfunc call special constant, used also for log fixup logic */
5984#define POISON_CALL_KFUNC_BASE 2002000000
5985#define POISON_CALL_KFUNC_PFX "2002"
5986
5987static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5988 int insn_idx, struct bpf_insn *insn,
5989 int ext_idx, const struct extern_desc *ext)
5990{
5991 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5992 prog->name, relo_idx, insn_idx, ext->name);
5993
5994 /* we turn kfunc call into invalid helper call with identifiable constant */
5995 insn->code = BPF_JMP | BPF_CALL;
5996 insn->dst_reg = 0;
5997 insn->src_reg = 0;
5998 insn->off = 0;
5999 /* if this instruction is reachable (not a dead code),
6000 * verifier will complain with something like:
6001 * invalid func unknown#2001000123
6002 * where lower 123 is extern index into obj->externs[] array
6003 */
6004 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6005}
6006
6007/* Relocate data references within program code:
6008 * - map references;
6009 * - global variable references;
6010 * - extern references.
6011 */
6012static int
6013bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6014{
6015 int i;
6016
6017 for (i = 0; i < prog->nr_reloc; i++) {
6018 struct reloc_desc *relo = &prog->reloc_desc[i];
6019 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6020 const struct bpf_map *map;
6021 struct extern_desc *ext;
6022
6023 switch (relo->type) {
6024 case RELO_LD64:
6025 map = &obj->maps[relo->map_idx];
6026 if (obj->gen_loader) {
6027 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6028 insn[0].imm = relo->map_idx;
6029 } else if (map->autocreate) {
6030 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6031 insn[0].imm = map->fd;
6032 } else {
6033 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6034 relo->map_idx, map);
6035 }
6036 break;
6037 case RELO_DATA:
6038 map = &obj->maps[relo->map_idx];
6039 insn[1].imm = insn[0].imm + relo->sym_off;
6040 if (obj->gen_loader) {
6041 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6042 insn[0].imm = relo->map_idx;
6043 } else if (map->autocreate) {
6044 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6045 insn[0].imm = map->fd;
6046 } else {
6047 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6048 relo->map_idx, map);
6049 }
6050 break;
6051 case RELO_EXTERN_LD64:
6052 ext = &obj->externs[relo->ext_idx];
6053 if (ext->type == EXT_KCFG) {
6054 if (obj->gen_loader) {
6055 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6056 insn[0].imm = obj->kconfig_map_idx;
6057 } else {
6058 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6059 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6060 }
6061 insn[1].imm = ext->kcfg.data_off;
6062 } else /* EXT_KSYM */ {
6063 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6064 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6065 insn[0].imm = ext->ksym.kernel_btf_id;
6066 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6067 } else { /* typeless ksyms or unresolved typed ksyms */
6068 insn[0].imm = (__u32)ext->ksym.addr;
6069 insn[1].imm = ext->ksym.addr >> 32;
6070 }
6071 }
6072 break;
6073 case RELO_EXTERN_CALL:
6074 ext = &obj->externs[relo->ext_idx];
6075 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6076 if (ext->is_set) {
6077 insn[0].imm = ext->ksym.kernel_btf_id;
6078 insn[0].off = ext->ksym.btf_fd_idx;
6079 } else { /* unresolved weak kfunc call */
6080 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6081 relo->ext_idx, ext);
6082 }
6083 break;
6084 case RELO_SUBPROG_ADDR:
6085 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6086 pr_warn("prog '%s': relo #%d: bad insn\n",
6087 prog->name, i);
6088 return -EINVAL;
6089 }
6090 /* handled already */
6091 break;
6092 case RELO_CALL:
6093 /* handled already */
6094 break;
6095 case RELO_CORE:
6096 /* will be handled by bpf_program_record_relos() */
6097 break;
6098 default:
6099 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6100 prog->name, i, relo->type);
6101 return -EINVAL;
6102 }
6103 }
6104
6105 return 0;
6106}
6107
6108static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6109 const struct bpf_program *prog,
6110 const struct btf_ext_info *ext_info,
6111 void **prog_info, __u32 *prog_rec_cnt,
6112 __u32 *prog_rec_sz)
6113{
6114 void *copy_start = NULL, *copy_end = NULL;
6115 void *rec, *rec_end, *new_prog_info;
6116 const struct btf_ext_info_sec *sec;
6117 size_t old_sz, new_sz;
6118 int i, sec_num, sec_idx, off_adj;
6119
6120 sec_num = 0;
6121 for_each_btf_ext_sec(ext_info, sec) {
6122 sec_idx = ext_info->sec_idxs[sec_num];
6123 sec_num++;
6124 if (prog->sec_idx != sec_idx)
6125 continue;
6126
6127 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6128 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6129
6130 if (insn_off < prog->sec_insn_off)
6131 continue;
6132 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6133 break;
6134
6135 if (!copy_start)
6136 copy_start = rec;
6137 copy_end = rec + ext_info->rec_size;
6138 }
6139
6140 if (!copy_start)
6141 return -ENOENT;
6142
6143 /* append func/line info of a given (sub-)program to the main
6144 * program func/line info
6145 */
6146 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6147 new_sz = old_sz + (copy_end - copy_start);
6148 new_prog_info = realloc(*prog_info, new_sz);
6149 if (!new_prog_info)
6150 return -ENOMEM;
6151 *prog_info = new_prog_info;
6152 *prog_rec_cnt = new_sz / ext_info->rec_size;
6153 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6154
6155 /* Kernel instruction offsets are in units of 8-byte
6156 * instructions, while .BTF.ext instruction offsets generated
6157 * by Clang are in units of bytes. So convert Clang offsets
6158 * into kernel offsets and adjust offset according to program
6159 * relocated position.
6160 */
6161 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6162 rec = new_prog_info + old_sz;
6163 rec_end = new_prog_info + new_sz;
6164 for (; rec < rec_end; rec += ext_info->rec_size) {
6165 __u32 *insn_off = rec;
6166
6167 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6168 }
6169 *prog_rec_sz = ext_info->rec_size;
6170 return 0;
6171 }
6172
6173 return -ENOENT;
6174}
6175
6176static int
6177reloc_prog_func_and_line_info(const struct bpf_object *obj,
6178 struct bpf_program *main_prog,
6179 const struct bpf_program *prog)
6180{
6181 int err;
6182
6183 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6184 * support func/line info
6185 */
6186 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6187 return 0;
6188
6189 /* only attempt func info relocation if main program's func_info
6190 * relocation was successful
6191 */
6192 if (main_prog != prog && !main_prog->func_info)
6193 goto line_info;
6194
6195 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6196 &main_prog->func_info,
6197 &main_prog->func_info_cnt,
6198 &main_prog->func_info_rec_size);
6199 if (err) {
6200 if (err != -ENOENT) {
6201 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6202 prog->name, err);
6203 return err;
6204 }
6205 if (main_prog->func_info) {
6206 /*
6207 * Some info has already been found but has problem
6208 * in the last btf_ext reloc. Must have to error out.
6209 */
6210 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6211 return err;
6212 }
6213 /* Have problem loading the very first info. Ignore the rest. */
6214 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6215 prog->name);
6216 }
6217
6218line_info:
6219 /* don't relocate line info if main program's relocation failed */
6220 if (main_prog != prog && !main_prog->line_info)
6221 return 0;
6222
6223 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6224 &main_prog->line_info,
6225 &main_prog->line_info_cnt,
6226 &main_prog->line_info_rec_size);
6227 if (err) {
6228 if (err != -ENOENT) {
6229 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6230 prog->name, err);
6231 return err;
6232 }
6233 if (main_prog->line_info) {
6234 /*
6235 * Some info has already been found but has problem
6236 * in the last btf_ext reloc. Must have to error out.
6237 */
6238 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6239 return err;
6240 }
6241 /* Have problem loading the very first info. Ignore the rest. */
6242 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6243 prog->name);
6244 }
6245 return 0;
6246}
6247
6248static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6249{
6250 size_t insn_idx = *(const size_t *)key;
6251 const struct reloc_desc *relo = elem;
6252
6253 if (insn_idx == relo->insn_idx)
6254 return 0;
6255 return insn_idx < relo->insn_idx ? -1 : 1;
6256}
6257
6258static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6259{
6260 if (!prog->nr_reloc)
6261 return NULL;
6262 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6263 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6264}
6265
6266static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6267{
6268 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6269 struct reloc_desc *relos;
6270 int i;
6271
6272 if (main_prog == subprog)
6273 return 0;
6274 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6275 /* if new count is zero, reallocarray can return a valid NULL result;
6276 * in this case the previous pointer will be freed, so we *have to*
6277 * reassign old pointer to the new value (even if it's NULL)
6278 */
6279 if (!relos && new_cnt)
6280 return -ENOMEM;
6281 if (subprog->nr_reloc)
6282 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6283 sizeof(*relos) * subprog->nr_reloc);
6284
6285 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6286 relos[i].insn_idx += subprog->sub_insn_off;
6287 /* After insn_idx adjustment the 'relos' array is still sorted
6288 * by insn_idx and doesn't break bsearch.
6289 */
6290 main_prog->reloc_desc = relos;
6291 main_prog->nr_reloc = new_cnt;
6292 return 0;
6293}
6294
6295static int
6296bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6297 struct bpf_program *subprog)
6298{
6299 struct bpf_insn *insns;
6300 size_t new_cnt;
6301 int err;
6302
6303 subprog->sub_insn_off = main_prog->insns_cnt;
6304
6305 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6306 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6307 if (!insns) {
6308 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6309 return -ENOMEM;
6310 }
6311 main_prog->insns = insns;
6312 main_prog->insns_cnt = new_cnt;
6313
6314 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6315 subprog->insns_cnt * sizeof(*insns));
6316
6317 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6318 main_prog->name, subprog->insns_cnt, subprog->name);
6319
6320 /* The subprog insns are now appended. Append its relos too. */
6321 err = append_subprog_relos(main_prog, subprog);
6322 if (err)
6323 return err;
6324 return 0;
6325}
6326
6327static int
6328bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6329 struct bpf_program *prog)
6330{
6331 size_t sub_insn_idx, insn_idx;
6332 struct bpf_program *subprog;
6333 struct reloc_desc *relo;
6334 struct bpf_insn *insn;
6335 int err;
6336
6337 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6338 if (err)
6339 return err;
6340
6341 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6342 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6343 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6344 continue;
6345
6346 relo = find_prog_insn_relo(prog, insn_idx);
6347 if (relo && relo->type == RELO_EXTERN_CALL)
6348 /* kfunc relocations will be handled later
6349 * in bpf_object__relocate_data()
6350 */
6351 continue;
6352 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6353 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6354 prog->name, insn_idx, relo->type);
6355 return -LIBBPF_ERRNO__RELOC;
6356 }
6357 if (relo) {
6358 /* sub-program instruction index is a combination of
6359 * an offset of a symbol pointed to by relocation and
6360 * call instruction's imm field; for global functions,
6361 * call always has imm = -1, but for static functions
6362 * relocation is against STT_SECTION and insn->imm
6363 * points to a start of a static function
6364 *
6365 * for subprog addr relocation, the relo->sym_off + insn->imm is
6366 * the byte offset in the corresponding section.
6367 */
6368 if (relo->type == RELO_CALL)
6369 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6370 else
6371 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6372 } else if (insn_is_pseudo_func(insn)) {
6373 /*
6374 * RELO_SUBPROG_ADDR relo is always emitted even if both
6375 * functions are in the same section, so it shouldn't reach here.
6376 */
6377 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6378 prog->name, insn_idx);
6379 return -LIBBPF_ERRNO__RELOC;
6380 } else {
6381 /* if subprogram call is to a static function within
6382 * the same ELF section, there won't be any relocation
6383 * emitted, but it also means there is no additional
6384 * offset necessary, insns->imm is relative to
6385 * instruction's original position within the section
6386 */
6387 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6388 }
6389
6390 /* we enforce that sub-programs should be in .text section */
6391 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6392 if (!subprog) {
6393 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6394 prog->name);
6395 return -LIBBPF_ERRNO__RELOC;
6396 }
6397
6398 /* if it's the first call instruction calling into this
6399 * subprogram (meaning this subprog hasn't been processed
6400 * yet) within the context of current main program:
6401 * - append it at the end of main program's instructions blog;
6402 * - process is recursively, while current program is put on hold;
6403 * - if that subprogram calls some other not yet processes
6404 * subprogram, same thing will happen recursively until
6405 * there are no more unprocesses subprograms left to append
6406 * and relocate.
6407 */
6408 if (subprog->sub_insn_off == 0) {
6409 err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6410 if (err)
6411 return err;
6412 err = bpf_object__reloc_code(obj, main_prog, subprog);
6413 if (err)
6414 return err;
6415 }
6416
6417 /* main_prog->insns memory could have been re-allocated, so
6418 * calculate pointer again
6419 */
6420 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6421 /* calculate correct instruction position within current main
6422 * prog; each main prog can have a different set of
6423 * subprograms appended (potentially in different order as
6424 * well), so position of any subprog can be different for
6425 * different main programs
6426 */
6427 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6428
6429 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6430 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6431 }
6432
6433 return 0;
6434}
6435
6436/*
6437 * Relocate sub-program calls.
6438 *
6439 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6440 * main prog) is processed separately. For each subprog (non-entry functions,
6441 * that can be called from either entry progs or other subprogs) gets their
6442 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6443 * hasn't been yet appended and relocated within current main prog. Once its
6444 * relocated, sub_insn_off will point at the position within current main prog
6445 * where given subprog was appended. This will further be used to relocate all
6446 * the call instructions jumping into this subprog.
6447 *
6448 * We start with main program and process all call instructions. If the call
6449 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6450 * is zero), subprog instructions are appended at the end of main program's
6451 * instruction array. Then main program is "put on hold" while we recursively
6452 * process newly appended subprogram. If that subprogram calls into another
6453 * subprogram that hasn't been appended, new subprogram is appended again to
6454 * the *main* prog's instructions (subprog's instructions are always left
6455 * untouched, as they need to be in unmodified state for subsequent main progs
6456 * and subprog instructions are always sent only as part of a main prog) and
6457 * the process continues recursively. Once all the subprogs called from a main
6458 * prog or any of its subprogs are appended (and relocated), all their
6459 * positions within finalized instructions array are known, so it's easy to
6460 * rewrite call instructions with correct relative offsets, corresponding to
6461 * desired target subprog.
6462 *
6463 * Its important to realize that some subprogs might not be called from some
6464 * main prog and any of its called/used subprogs. Those will keep their
6465 * subprog->sub_insn_off as zero at all times and won't be appended to current
6466 * main prog and won't be relocated within the context of current main prog.
6467 * They might still be used from other main progs later.
6468 *
6469 * Visually this process can be shown as below. Suppose we have two main
6470 * programs mainA and mainB and BPF object contains three subprogs: subA,
6471 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6472 * subC both call subB:
6473 *
6474 * +--------+ +-------+
6475 * | v v |
6476 * +--+---+ +--+-+-+ +---+--+
6477 * | subA | | subB | | subC |
6478 * +--+---+ +------+ +---+--+
6479 * ^ ^
6480 * | |
6481 * +---+-------+ +------+----+
6482 * | mainA | | mainB |
6483 * +-----------+ +-----------+
6484 *
6485 * We'll start relocating mainA, will find subA, append it and start
6486 * processing sub A recursively:
6487 *
6488 * +-----------+------+
6489 * | mainA | subA |
6490 * +-----------+------+
6491 *
6492 * At this point we notice that subB is used from subA, so we append it and
6493 * relocate (there are no further subcalls from subB):
6494 *
6495 * +-----------+------+------+
6496 * | mainA | subA | subB |
6497 * +-----------+------+------+
6498 *
6499 * At this point, we relocate subA calls, then go one level up and finish with
6500 * relocatin mainA calls. mainA is done.
6501 *
6502 * For mainB process is similar but results in different order. We start with
6503 * mainB and skip subA and subB, as mainB never calls them (at least
6504 * directly), but we see subC is needed, so we append and start processing it:
6505 *
6506 * +-----------+------+
6507 * | mainB | subC |
6508 * +-----------+------+
6509 * Now we see subC needs subB, so we go back to it, append and relocate it:
6510 *
6511 * +-----------+------+------+
6512 * | mainB | subC | subB |
6513 * +-----------+------+------+
6514 *
6515 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6516 */
6517static int
6518bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6519{
6520 struct bpf_program *subprog;
6521 int i, err;
6522
6523 /* mark all subprogs as not relocated (yet) within the context of
6524 * current main program
6525 */
6526 for (i = 0; i < obj->nr_programs; i++) {
6527 subprog = &obj->programs[i];
6528 if (!prog_is_subprog(obj, subprog))
6529 continue;
6530
6531 subprog->sub_insn_off = 0;
6532 }
6533
6534 err = bpf_object__reloc_code(obj, prog, prog);
6535 if (err)
6536 return err;
6537
6538 return 0;
6539}
6540
6541static void
6542bpf_object__free_relocs(struct bpf_object *obj)
6543{
6544 struct bpf_program *prog;
6545 int i;
6546
6547 /* free up relocation descriptors */
6548 for (i = 0; i < obj->nr_programs; i++) {
6549 prog = &obj->programs[i];
6550 zfree(&prog->reloc_desc);
6551 prog->nr_reloc = 0;
6552 }
6553}
6554
6555static int cmp_relocs(const void *_a, const void *_b)
6556{
6557 const struct reloc_desc *a = _a;
6558 const struct reloc_desc *b = _b;
6559
6560 if (a->insn_idx != b->insn_idx)
6561 return a->insn_idx < b->insn_idx ? -1 : 1;
6562
6563 /* no two relocations should have the same insn_idx, but ... */
6564 if (a->type != b->type)
6565 return a->type < b->type ? -1 : 1;
6566
6567 return 0;
6568}
6569
6570static void bpf_object__sort_relos(struct bpf_object *obj)
6571{
6572 int i;
6573
6574 for (i = 0; i < obj->nr_programs; i++) {
6575 struct bpf_program *p = &obj->programs[i];
6576
6577 if (!p->nr_reloc)
6578 continue;
6579
6580 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6581 }
6582}
6583
6584static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6585{
6586 const char *str = "exception_callback:";
6587 size_t pfx_len = strlen(str);
6588 int i, j, n;
6589
6590 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6591 return 0;
6592
6593 n = btf__type_cnt(obj->btf);
6594 for (i = 1; i < n; i++) {
6595 const char *name;
6596 struct btf_type *t;
6597
6598 t = btf_type_by_id(obj->btf, i);
6599 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6600 continue;
6601
6602 name = btf__str_by_offset(obj->btf, t->name_off);
6603 if (strncmp(name, str, pfx_len) != 0)
6604 continue;
6605
6606 t = btf_type_by_id(obj->btf, t->type);
6607 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6608 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6609 prog->name);
6610 return -EINVAL;
6611 }
6612 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6613 continue;
6614 /* Multiple callbacks are specified for the same prog,
6615 * the verifier will eventually return an error for this
6616 * case, hence simply skip appending a subprog.
6617 */
6618 if (prog->exception_cb_idx >= 0) {
6619 prog->exception_cb_idx = -1;
6620 break;
6621 }
6622
6623 name += pfx_len;
6624 if (str_is_empty(name)) {
6625 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6626 prog->name);
6627 return -EINVAL;
6628 }
6629
6630 for (j = 0; j < obj->nr_programs; j++) {
6631 struct bpf_program *subprog = &obj->programs[j];
6632
6633 if (!prog_is_subprog(obj, subprog))
6634 continue;
6635 if (strcmp(name, subprog->name) != 0)
6636 continue;
6637 /* Enforce non-hidden, as from verifier point of
6638 * view it expects global functions, whereas the
6639 * mark_btf_static fixes up linkage as static.
6640 */
6641 if (!subprog->sym_global || subprog->mark_btf_static) {
6642 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6643 prog->name, subprog->name);
6644 return -EINVAL;
6645 }
6646 /* Let's see if we already saw a static exception callback with the same name */
6647 if (prog->exception_cb_idx >= 0) {
6648 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6649 prog->name, subprog->name);
6650 return -EINVAL;
6651 }
6652 prog->exception_cb_idx = j;
6653 break;
6654 }
6655
6656 if (prog->exception_cb_idx >= 0)
6657 continue;
6658
6659 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6660 return -ENOENT;
6661 }
6662
6663 return 0;
6664}
6665
6666static struct {
6667 enum bpf_prog_type prog_type;
6668 const char *ctx_name;
6669} global_ctx_map[] = {
6670 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" },
6671 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" },
6672 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" },
6673 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" },
6674 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" },
6675 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" },
6676 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" },
6677 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" },
6678 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" },
6679 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" },
6680 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" },
6681 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" },
6682 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" },
6683 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" },
6684 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" },
6685 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6686 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" },
6687 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" },
6688 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" },
6689 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" },
6690 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" },
6691 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" },
6692 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" },
6693 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" },
6694 { BPF_PROG_TYPE_XDP, "xdp_md" },
6695 /* all other program types don't have "named" context structs */
6696};
6697
6698static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6699 const char *subprog_name, int arg_idx,
6700 int arg_type_id, const char *ctx_name)
6701{
6702 const struct btf_type *t;
6703 const char *tname;
6704
6705 /* check if existing parameter already matches verifier expectations */
6706 t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6707 if (!btf_is_ptr(t))
6708 goto out_warn;
6709
6710 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6711 * and perf_event programs, so check this case early on and forget
6712 * about it for subsequent checks
6713 */
6714 while (btf_is_mod(t))
6715 t = btf__type_by_id(btf, t->type);
6716 if (btf_is_typedef(t) &&
6717 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6718 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6719 if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6720 return false; /* canonical type for kprobe/perf_event */
6721 }
6722
6723 /* now we can ignore typedefs moving forward */
6724 t = skip_mods_and_typedefs(btf, t->type, NULL);
6725
6726 /* if it's `void *`, definitely fix up BTF info */
6727 if (btf_is_void(t))
6728 return true;
6729
6730 /* if it's already proper canonical type, no need to fix up */
6731 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6732 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6733 return false;
6734
6735 /* special cases */
6736 switch (prog->type) {
6737 case BPF_PROG_TYPE_KPROBE:
6738 case BPF_PROG_TYPE_PERF_EVENT:
6739 /* `struct pt_regs *` is expected, but we need to fix up */
6740 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6741 return true;
6742 break;
6743 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6744 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6745 /* allow u64* as ctx */
6746 if (btf_is_int(t) && t->size == 8)
6747 return true;
6748 break;
6749 default:
6750 break;
6751 }
6752
6753out_warn:
6754 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6755 prog->name, subprog_name, arg_idx, ctx_name);
6756 return false;
6757}
6758
6759static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6760{
6761 int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6762 int i, err, arg_cnt, fn_name_off, linkage;
6763 struct btf_type *fn_t, *fn_proto_t, *t;
6764 struct btf_param *p;
6765
6766 /* caller already validated FUNC -> FUNC_PROTO validity */
6767 fn_t = btf_type_by_id(btf, orig_fn_id);
6768 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6769
6770 /* Note that each btf__add_xxx() operation invalidates
6771 * all btf_type and string pointers, so we need to be
6772 * very careful when cloning BTF types. BTF type
6773 * pointers have to be always refetched. And to avoid
6774 * problems with invalidated string pointers, we
6775 * add empty strings initially, then just fix up
6776 * name_off offsets in place. Offsets are stable for
6777 * existing strings, so that works out.
6778 */
6779 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6780 linkage = btf_func_linkage(fn_t);
6781 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6782 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6783 arg_cnt = btf_vlen(fn_proto_t);
6784
6785 /* clone FUNC_PROTO and its params */
6786 fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6787 if (fn_proto_id < 0)
6788 return -EINVAL;
6789
6790 for (i = 0; i < arg_cnt; i++) {
6791 int name_off;
6792
6793 /* copy original parameter data */
6794 t = btf_type_by_id(btf, orig_proto_id);
6795 p = &btf_params(t)[i];
6796 name_off = p->name_off;
6797
6798 err = btf__add_func_param(btf, "", p->type);
6799 if (err)
6800 return err;
6801
6802 fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6803 p = &btf_params(fn_proto_t)[i];
6804 p->name_off = name_off; /* use remembered str offset */
6805 }
6806
6807 /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6808 * entry program's name as a placeholder, which we replace immediately
6809 * with original name_off
6810 */
6811 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6812 if (fn_id < 0)
6813 return -EINVAL;
6814
6815 fn_t = btf_type_by_id(btf, fn_id);
6816 fn_t->name_off = fn_name_off; /* reuse original string */
6817
6818 return fn_id;
6819}
6820
6821static int probe_kern_arg_ctx_tag(void)
6822{
6823 /* To minimize merge conflicts with BPF token series that refactors
6824 * feature detection code a lot, we don't integrate
6825 * probe_kern_arg_ctx_tag() into kernel_supports() feature-detection
6826 * framework yet, doing our own caching internally.
6827 * This will be cleaned up a bit later when bpf/bpf-next trees settle.
6828 */
6829 static int cached_result = -1;
6830 static const char strs[] = "\0a\0b\0arg:ctx\0";
6831 const __u32 types[] = {
6832 /* [1] INT */
6833 BTF_TYPE_INT_ENC(1 /* "a" */, BTF_INT_SIGNED, 0, 32, 4),
6834 /* [2] PTR -> VOID */
6835 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 0),
6836 /* [3] FUNC_PROTO `int(void *a)` */
6837 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1),
6838 BTF_PARAM_ENC(1 /* "a" */, 2),
6839 /* [4] FUNC 'a' -> FUNC_PROTO (main prog) */
6840 BTF_TYPE_ENC(1 /* "a" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 3),
6841 /* [5] FUNC_PROTO `int(void *b __arg_ctx)` */
6842 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1),
6843 BTF_PARAM_ENC(3 /* "b" */, 2),
6844 /* [6] FUNC 'b' -> FUNC_PROTO (subprog) */
6845 BTF_TYPE_ENC(3 /* "b" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 5),
6846 /* [7] DECL_TAG 'arg:ctx' -> func 'b' arg 'b' */
6847 BTF_TYPE_DECL_TAG_ENC(5 /* "arg:ctx" */, 6, 0),
6848 };
6849 const struct bpf_insn insns[] = {
6850 /* main prog */
6851 BPF_CALL_REL(+1),
6852 BPF_EXIT_INSN(),
6853 /* global subprog */
6854 BPF_EMIT_CALL(BPF_FUNC_get_func_ip), /* needs PTR_TO_CTX */
6855 BPF_EXIT_INSN(),
6856 };
6857 const struct bpf_func_info_min func_infos[] = {
6858 { 0, 4 }, /* main prog -> FUNC 'a' */
6859 { 2, 6 }, /* subprog -> FUNC 'b' */
6860 };
6861 LIBBPF_OPTS(bpf_prog_load_opts, opts);
6862 int prog_fd, btf_fd, insn_cnt = ARRAY_SIZE(insns);
6863
6864 if (cached_result >= 0)
6865 return cached_result;
6866
6867 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
6868 if (btf_fd < 0)
6869 return 0;
6870
6871 opts.prog_btf_fd = btf_fd;
6872 opts.func_info = &func_infos;
6873 opts.func_info_cnt = ARRAY_SIZE(func_infos);
6874 opts.func_info_rec_size = sizeof(func_infos[0]);
6875
6876 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, "det_arg_ctx",
6877 "GPL", insns, insn_cnt, &opts);
6878 close(btf_fd);
6879
6880 cached_result = probe_fd(prog_fd);
6881 return cached_result;
6882}
6883
6884/* Check if main program or global subprog's function prototype has `arg:ctx`
6885 * argument tags, and, if necessary, substitute correct type to match what BPF
6886 * verifier would expect, taking into account specific program type. This
6887 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6888 * have a native support for it in the verifier, making user's life much
6889 * easier.
6890 */
6891static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6892{
6893 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6894 struct bpf_func_info_min *func_rec;
6895 struct btf_type *fn_t, *fn_proto_t;
6896 struct btf *btf = obj->btf;
6897 const struct btf_type *t;
6898 struct btf_param *p;
6899 int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6900 int i, n, arg_idx, arg_cnt, err, rec_idx;
6901 int *orig_ids;
6902
6903 /* no .BTF.ext, no problem */
6904 if (!obj->btf_ext || !prog->func_info)
6905 return 0;
6906
6907 /* don't do any fix ups if kernel natively supports __arg_ctx */
6908 if (probe_kern_arg_ctx_tag() > 0)
6909 return 0;
6910
6911 /* some BPF program types just don't have named context structs, so
6912 * this fallback mechanism doesn't work for them
6913 */
6914 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6915 if (global_ctx_map[i].prog_type != prog->type)
6916 continue;
6917 ctx_name = global_ctx_map[i].ctx_name;
6918 break;
6919 }
6920 if (!ctx_name)
6921 return 0;
6922
6923 /* remember original func BTF IDs to detect if we already cloned them */
6924 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6925 if (!orig_ids)
6926 return -ENOMEM;
6927 for (i = 0; i < prog->func_info_cnt; i++) {
6928 func_rec = prog->func_info + prog->func_info_rec_size * i;
6929 orig_ids[i] = func_rec->type_id;
6930 }
6931
6932 /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6933 * of our subprogs; if yes and subprog is global and needs adjustment,
6934 * clone and adjust FUNC -> FUNC_PROTO combo
6935 */
6936 for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6937 /* only DECL_TAG with "arg:ctx" value are interesting */
6938 t = btf__type_by_id(btf, i);
6939 if (!btf_is_decl_tag(t))
6940 continue;
6941 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6942 continue;
6943
6944 /* only global funcs need adjustment, if at all */
6945 orig_fn_id = t->type;
6946 fn_t = btf_type_by_id(btf, orig_fn_id);
6947 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6948 continue;
6949
6950 /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6951 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6952 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6953 continue;
6954
6955 /* find corresponding func_info record */
6956 func_rec = NULL;
6957 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6958 if (orig_ids[rec_idx] == t->type) {
6959 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6960 break;
6961 }
6962 }
6963 /* current main program doesn't call into this subprog */
6964 if (!func_rec)
6965 continue;
6966
6967 /* some more sanity checking of DECL_TAG */
6968 arg_cnt = btf_vlen(fn_proto_t);
6969 arg_idx = btf_decl_tag(t)->component_idx;
6970 if (arg_idx < 0 || arg_idx >= arg_cnt)
6971 continue;
6972
6973 /* check if we should fix up argument type */
6974 p = &btf_params(fn_proto_t)[arg_idx];
6975 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6976 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6977 continue;
6978
6979 /* clone fn/fn_proto, unless we already did it for another arg */
6980 if (func_rec->type_id == orig_fn_id) {
6981 int fn_id;
6982
6983 fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6984 if (fn_id < 0) {
6985 err = fn_id;
6986 goto err_out;
6987 }
6988
6989 /* point func_info record to a cloned FUNC type */
6990 func_rec->type_id = fn_id;
6991 }
6992
6993 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6994 * we do it just once per main BPF program, as all global
6995 * funcs share the same program type, so need only PTR ->
6996 * STRUCT type chain
6997 */
6998 if (ptr_id == 0) {
6999 struct_id = btf__add_struct(btf, ctx_name, 0);
7000 ptr_id = btf__add_ptr(btf, struct_id);
7001 if (ptr_id < 0 || struct_id < 0) {
7002 err = -EINVAL;
7003 goto err_out;
7004 }
7005 }
7006
7007 /* for completeness, clone DECL_TAG and point it to cloned param */
7008 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7009 if (tag_id < 0) {
7010 err = -EINVAL;
7011 goto err_out;
7012 }
7013
7014 /* all the BTF manipulations invalidated pointers, refetch them */
7015 fn_t = btf_type_by_id(btf, func_rec->type_id);
7016 fn_proto_t = btf_type_by_id(btf, fn_t->type);
7017
7018 /* fix up type ID pointed to by param */
7019 p = &btf_params(fn_proto_t)[arg_idx];
7020 p->type = ptr_id;
7021 }
7022
7023 free(orig_ids);
7024 return 0;
7025err_out:
7026 free(orig_ids);
7027 return err;
7028}
7029
7030static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7031{
7032 struct bpf_program *prog;
7033 size_t i, j;
7034 int err;
7035
7036 if (obj->btf_ext) {
7037 err = bpf_object__relocate_core(obj, targ_btf_path);
7038 if (err) {
7039 pr_warn("failed to perform CO-RE relocations: %d\n",
7040 err);
7041 return err;
7042 }
7043 bpf_object__sort_relos(obj);
7044 }
7045
7046 /* Before relocating calls pre-process relocations and mark
7047 * few ld_imm64 instructions that points to subprogs.
7048 * Otherwise bpf_object__reloc_code() later would have to consider
7049 * all ld_imm64 insns as relocation candidates. That would
7050 * reduce relocation speed, since amount of find_prog_insn_relo()
7051 * would increase and most of them will fail to find a relo.
7052 */
7053 for (i = 0; i < obj->nr_programs; i++) {
7054 prog = &obj->programs[i];
7055 for (j = 0; j < prog->nr_reloc; j++) {
7056 struct reloc_desc *relo = &prog->reloc_desc[j];
7057 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7058
7059 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
7060 if (relo->type == RELO_SUBPROG_ADDR)
7061 insn[0].src_reg = BPF_PSEUDO_FUNC;
7062 }
7063 }
7064
7065 /* relocate subprogram calls and append used subprograms to main
7066 * programs; each copy of subprogram code needs to be relocated
7067 * differently for each main program, because its code location might
7068 * have changed.
7069 * Append subprog relos to main programs to allow data relos to be
7070 * processed after text is completely relocated.
7071 */
7072 for (i = 0; i < obj->nr_programs; i++) {
7073 prog = &obj->programs[i];
7074 /* sub-program's sub-calls are relocated within the context of
7075 * its main program only
7076 */
7077 if (prog_is_subprog(obj, prog))
7078 continue;
7079 if (!prog->autoload)
7080 continue;
7081
7082 err = bpf_object__relocate_calls(obj, prog);
7083 if (err) {
7084 pr_warn("prog '%s': failed to relocate calls: %d\n",
7085 prog->name, err);
7086 return err;
7087 }
7088
7089 err = bpf_prog_assign_exc_cb(obj, prog);
7090 if (err)
7091 return err;
7092 /* Now, also append exception callback if it has not been done already. */
7093 if (prog->exception_cb_idx >= 0) {
7094 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7095
7096 /* Calling exception callback directly is disallowed, which the
7097 * verifier will reject later. In case it was processed already,
7098 * we can skip this step, otherwise for all other valid cases we
7099 * have to append exception callback now.
7100 */
7101 if (subprog->sub_insn_off == 0) {
7102 err = bpf_object__append_subprog_code(obj, prog, subprog);
7103 if (err)
7104 return err;
7105 err = bpf_object__reloc_code(obj, prog, subprog);
7106 if (err)
7107 return err;
7108 }
7109 }
7110 }
7111 for (i = 0; i < obj->nr_programs; i++) {
7112 prog = &obj->programs[i];
7113 if (prog_is_subprog(obj, prog))
7114 continue;
7115 if (!prog->autoload)
7116 continue;
7117
7118 /* Process data relos for main programs */
7119 err = bpf_object__relocate_data(obj, prog);
7120 if (err) {
7121 pr_warn("prog '%s': failed to relocate data references: %d\n",
7122 prog->name, err);
7123 return err;
7124 }
7125
7126 /* Fix up .BTF.ext information, if necessary */
7127 err = bpf_program_fixup_func_info(obj, prog);
7128 if (err) {
7129 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7130 prog->name, err);
7131 return err;
7132 }
7133 }
7134
7135 return 0;
7136}
7137
7138static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7139 Elf64_Shdr *shdr, Elf_Data *data);
7140
7141static int bpf_object__collect_map_relos(struct bpf_object *obj,
7142 Elf64_Shdr *shdr, Elf_Data *data)
7143{
7144 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7145 int i, j, nrels, new_sz;
7146 const struct btf_var_secinfo *vi = NULL;
7147 const struct btf_type *sec, *var, *def;
7148 struct bpf_map *map = NULL, *targ_map = NULL;
7149 struct bpf_program *targ_prog = NULL;
7150 bool is_prog_array, is_map_in_map;
7151 const struct btf_member *member;
7152 const char *name, *mname, *type;
7153 unsigned int moff;
7154 Elf64_Sym *sym;
7155 Elf64_Rel *rel;
7156 void *tmp;
7157
7158 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7159 return -EINVAL;
7160 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7161 if (!sec)
7162 return -EINVAL;
7163
7164 nrels = shdr->sh_size / shdr->sh_entsize;
7165 for (i = 0; i < nrels; i++) {
7166 rel = elf_rel_by_idx(data, i);
7167 if (!rel) {
7168 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7169 return -LIBBPF_ERRNO__FORMAT;
7170 }
7171
7172 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7173 if (!sym) {
7174 pr_warn(".maps relo #%d: symbol %zx not found\n",
7175 i, (size_t)ELF64_R_SYM(rel->r_info));
7176 return -LIBBPF_ERRNO__FORMAT;
7177 }
7178 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7179
7180 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7181 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7182 (size_t)rel->r_offset, sym->st_name, name);
7183
7184 for (j = 0; j < obj->nr_maps; j++) {
7185 map = &obj->maps[j];
7186 if (map->sec_idx != obj->efile.btf_maps_shndx)
7187 continue;
7188
7189 vi = btf_var_secinfos(sec) + map->btf_var_idx;
7190 if (vi->offset <= rel->r_offset &&
7191 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7192 break;
7193 }
7194 if (j == obj->nr_maps) {
7195 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7196 i, name, (size_t)rel->r_offset);
7197 return -EINVAL;
7198 }
7199
7200 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7201 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7202 type = is_map_in_map ? "map" : "prog";
7203 if (is_map_in_map) {
7204 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7205 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7206 i, name);
7207 return -LIBBPF_ERRNO__RELOC;
7208 }
7209 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7210 map->def.key_size != sizeof(int)) {
7211 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7212 i, map->name, sizeof(int));
7213 return -EINVAL;
7214 }
7215 targ_map = bpf_object__find_map_by_name(obj, name);
7216 if (!targ_map) {
7217 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7218 i, name);
7219 return -ESRCH;
7220 }
7221 } else if (is_prog_array) {
7222 targ_prog = bpf_object__find_program_by_name(obj, name);
7223 if (!targ_prog) {
7224 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7225 i, name);
7226 return -ESRCH;
7227 }
7228 if (targ_prog->sec_idx != sym->st_shndx ||
7229 targ_prog->sec_insn_off * 8 != sym->st_value ||
7230 prog_is_subprog(obj, targ_prog)) {
7231 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7232 i, name);
7233 return -LIBBPF_ERRNO__RELOC;
7234 }
7235 } else {
7236 return -EINVAL;
7237 }
7238
7239 var = btf__type_by_id(obj->btf, vi->type);
7240 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7241 if (btf_vlen(def) == 0)
7242 return -EINVAL;
7243 member = btf_members(def) + btf_vlen(def) - 1;
7244 mname = btf__name_by_offset(obj->btf, member->name_off);
7245 if (strcmp(mname, "values"))
7246 return -EINVAL;
7247
7248 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7249 if (rel->r_offset - vi->offset < moff)
7250 return -EINVAL;
7251
7252 moff = rel->r_offset - vi->offset - moff;
7253 /* here we use BPF pointer size, which is always 64 bit, as we
7254 * are parsing ELF that was built for BPF target
7255 */
7256 if (moff % bpf_ptr_sz)
7257 return -EINVAL;
7258 moff /= bpf_ptr_sz;
7259 if (moff >= map->init_slots_sz) {
7260 new_sz = moff + 1;
7261 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7262 if (!tmp)
7263 return -ENOMEM;
7264 map->init_slots = tmp;
7265 memset(map->init_slots + map->init_slots_sz, 0,
7266 (new_sz - map->init_slots_sz) * host_ptr_sz);
7267 map->init_slots_sz = new_sz;
7268 }
7269 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7270
7271 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7272 i, map->name, moff, type, name);
7273 }
7274
7275 return 0;
7276}
7277
7278static int bpf_object__collect_relos(struct bpf_object *obj)
7279{
7280 int i, err;
7281
7282 for (i = 0; i < obj->efile.sec_cnt; i++) {
7283 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7284 Elf64_Shdr *shdr;
7285 Elf_Data *data;
7286 int idx;
7287
7288 if (sec_desc->sec_type != SEC_RELO)
7289 continue;
7290
7291 shdr = sec_desc->shdr;
7292 data = sec_desc->data;
7293 idx = shdr->sh_info;
7294
7295 if (shdr->sh_type != SHT_REL) {
7296 pr_warn("internal error at %d\n", __LINE__);
7297 return -LIBBPF_ERRNO__INTERNAL;
7298 }
7299
7300 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
7301 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7302 else if (idx == obj->efile.btf_maps_shndx)
7303 err = bpf_object__collect_map_relos(obj, shdr, data);
7304 else
7305 err = bpf_object__collect_prog_relos(obj, shdr, data);
7306 if (err)
7307 return err;
7308 }
7309
7310 bpf_object__sort_relos(obj);
7311 return 0;
7312}
7313
7314static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7315{
7316 if (BPF_CLASS(insn->code) == BPF_JMP &&
7317 BPF_OP(insn->code) == BPF_CALL &&
7318 BPF_SRC(insn->code) == BPF_K &&
7319 insn->src_reg == 0 &&
7320 insn->dst_reg == 0) {
7321 *func_id = insn->imm;
7322 return true;
7323 }
7324 return false;
7325}
7326
7327static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7328{
7329 struct bpf_insn *insn = prog->insns;
7330 enum bpf_func_id func_id;
7331 int i;
7332
7333 if (obj->gen_loader)
7334 return 0;
7335
7336 for (i = 0; i < prog->insns_cnt; i++, insn++) {
7337 if (!insn_is_helper_call(insn, &func_id))
7338 continue;
7339
7340 /* on kernels that don't yet support
7341 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7342 * to bpf_probe_read() which works well for old kernels
7343 */
7344 switch (func_id) {
7345 case BPF_FUNC_probe_read_kernel:
7346 case BPF_FUNC_probe_read_user:
7347 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7348 insn->imm = BPF_FUNC_probe_read;
7349 break;
7350 case BPF_FUNC_probe_read_kernel_str:
7351 case BPF_FUNC_probe_read_user_str:
7352 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7353 insn->imm = BPF_FUNC_probe_read_str;
7354 break;
7355 default:
7356 break;
7357 }
7358 }
7359 return 0;
7360}
7361
7362static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7363 int *btf_obj_fd, int *btf_type_id);
7364
7365/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7366static int libbpf_prepare_prog_load(struct bpf_program *prog,
7367 struct bpf_prog_load_opts *opts, long cookie)
7368{
7369 enum sec_def_flags def = cookie;
7370
7371 /* old kernels might not support specifying expected_attach_type */
7372 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7373 opts->expected_attach_type = 0;
7374
7375 if (def & SEC_SLEEPABLE)
7376 opts->prog_flags |= BPF_F_SLEEPABLE;
7377
7378 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7379 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7380
7381 /* special check for usdt to use uprobe_multi link */
7382 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7383 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7384
7385 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7386 int btf_obj_fd = 0, btf_type_id = 0, err;
7387 const char *attach_name;
7388
7389 attach_name = strchr(prog->sec_name, '/');
7390 if (!attach_name) {
7391 /* if BPF program is annotated with just SEC("fentry")
7392 * (or similar) without declaratively specifying
7393 * target, then it is expected that target will be
7394 * specified with bpf_program__set_attach_target() at
7395 * runtime before BPF object load step. If not, then
7396 * there is nothing to load into the kernel as BPF
7397 * verifier won't be able to validate BPF program
7398 * correctness anyways.
7399 */
7400 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7401 prog->name);
7402 return -EINVAL;
7403 }
7404 attach_name++; /* skip over / */
7405
7406 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7407 if (err)
7408 return err;
7409
7410 /* cache resolved BTF FD and BTF type ID in the prog */
7411 prog->attach_btf_obj_fd = btf_obj_fd;
7412 prog->attach_btf_id = btf_type_id;
7413
7414 /* but by now libbpf common logic is not utilizing
7415 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7416 * this callback is called after opts were populated by
7417 * libbpf, so this callback has to update opts explicitly here
7418 */
7419 opts->attach_btf_obj_fd = btf_obj_fd;
7420 opts->attach_btf_id = btf_type_id;
7421 }
7422 return 0;
7423}
7424
7425static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7426
7427static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7428 struct bpf_insn *insns, int insns_cnt,
7429 const char *license, __u32 kern_version, int *prog_fd)
7430{
7431 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7432 const char *prog_name = NULL;
7433 char *cp, errmsg[STRERR_BUFSIZE];
7434 size_t log_buf_size = 0;
7435 char *log_buf = NULL, *tmp;
7436 int btf_fd, ret, err;
7437 bool own_log_buf = true;
7438 __u32 log_level = prog->log_level;
7439
7440 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7441 /*
7442 * The program type must be set. Most likely we couldn't find a proper
7443 * section definition at load time, and thus we didn't infer the type.
7444 */
7445 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7446 prog->name, prog->sec_name);
7447 return -EINVAL;
7448 }
7449
7450 if (!insns || !insns_cnt)
7451 return -EINVAL;
7452
7453 if (kernel_supports(obj, FEAT_PROG_NAME))
7454 prog_name = prog->name;
7455 load_attr.attach_prog_fd = prog->attach_prog_fd;
7456 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7457 load_attr.attach_btf_id = prog->attach_btf_id;
7458 load_attr.kern_version = kern_version;
7459 load_attr.prog_ifindex = prog->prog_ifindex;
7460
7461 /* specify func_info/line_info only if kernel supports them */
7462 btf_fd = btf__fd(obj->btf);
7463 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7464 load_attr.prog_btf_fd = btf_fd;
7465 load_attr.func_info = prog->func_info;
7466 load_attr.func_info_rec_size = prog->func_info_rec_size;
7467 load_attr.func_info_cnt = prog->func_info_cnt;
7468 load_attr.line_info = prog->line_info;
7469 load_attr.line_info_rec_size = prog->line_info_rec_size;
7470 load_attr.line_info_cnt = prog->line_info_cnt;
7471 }
7472 load_attr.log_level = log_level;
7473 load_attr.prog_flags = prog->prog_flags;
7474 load_attr.fd_array = obj->fd_array;
7475
7476 /* adjust load_attr if sec_def provides custom preload callback */
7477 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7478 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7479 if (err < 0) {
7480 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7481 prog->name, err);
7482 return err;
7483 }
7484 insns = prog->insns;
7485 insns_cnt = prog->insns_cnt;
7486 }
7487
7488 /* allow prog_prepare_load_fn to change expected_attach_type */
7489 load_attr.expected_attach_type = prog->expected_attach_type;
7490
7491 if (obj->gen_loader) {
7492 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7493 license, insns, insns_cnt, &load_attr,
7494 prog - obj->programs);
7495 *prog_fd = -1;
7496 return 0;
7497 }
7498
7499retry_load:
7500 /* if log_level is zero, we don't request logs initially even if
7501 * custom log_buf is specified; if the program load fails, then we'll
7502 * bump log_level to 1 and use either custom log_buf or we'll allocate
7503 * our own and retry the load to get details on what failed
7504 */
7505 if (log_level) {
7506 if (prog->log_buf) {
7507 log_buf = prog->log_buf;
7508 log_buf_size = prog->log_size;
7509 own_log_buf = false;
7510 } else if (obj->log_buf) {
7511 log_buf = obj->log_buf;
7512 log_buf_size = obj->log_size;
7513 own_log_buf = false;
7514 } else {
7515 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7516 tmp = realloc(log_buf, log_buf_size);
7517 if (!tmp) {
7518 ret = -ENOMEM;
7519 goto out;
7520 }
7521 log_buf = tmp;
7522 log_buf[0] = '\0';
7523 own_log_buf = true;
7524 }
7525 }
7526
7527 load_attr.log_buf = log_buf;
7528 load_attr.log_size = log_buf_size;
7529 load_attr.log_level = log_level;
7530
7531 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7532 if (ret >= 0) {
7533 if (log_level && own_log_buf) {
7534 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7535 prog->name, log_buf);
7536 }
7537
7538 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7539 struct bpf_map *map;
7540 int i;
7541
7542 for (i = 0; i < obj->nr_maps; i++) {
7543 map = &prog->obj->maps[i];
7544 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7545 continue;
7546
7547 if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7548 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7549 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7550 prog->name, map->real_name, cp);
7551 /* Don't fail hard if can't bind rodata. */
7552 }
7553 }
7554 }
7555
7556 *prog_fd = ret;
7557 ret = 0;
7558 goto out;
7559 }
7560
7561 if (log_level == 0) {
7562 log_level = 1;
7563 goto retry_load;
7564 }
7565 /* On ENOSPC, increase log buffer size and retry, unless custom
7566 * log_buf is specified.
7567 * Be careful to not overflow u32, though. Kernel's log buf size limit
7568 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7569 * multiply by 2 unless we are sure we'll fit within 32 bits.
7570 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7571 */
7572 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7573 goto retry_load;
7574
7575 ret = -errno;
7576
7577 /* post-process verifier log to improve error descriptions */
7578 fixup_verifier_log(prog, log_buf, log_buf_size);
7579
7580 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7581 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7582 pr_perm_msg(ret);
7583
7584 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7585 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7586 prog->name, log_buf);
7587 }
7588
7589out:
7590 if (own_log_buf)
7591 free(log_buf);
7592 return ret;
7593}
7594
7595static char *find_prev_line(char *buf, char *cur)
7596{
7597 char *p;
7598
7599 if (cur == buf) /* end of a log buf */
7600 return NULL;
7601
7602 p = cur - 1;
7603 while (p - 1 >= buf && *(p - 1) != '\n')
7604 p--;
7605
7606 return p;
7607}
7608
7609static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7610 char *orig, size_t orig_sz, const char *patch)
7611{
7612 /* size of the remaining log content to the right from the to-be-replaced part */
7613 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7614 size_t patch_sz = strlen(patch);
7615
7616 if (patch_sz != orig_sz) {
7617 /* If patch line(s) are longer than original piece of verifier log,
7618 * shift log contents by (patch_sz - orig_sz) bytes to the right
7619 * starting from after to-be-replaced part of the log.
7620 *
7621 * If patch line(s) are shorter than original piece of verifier log,
7622 * shift log contents by (orig_sz - patch_sz) bytes to the left
7623 * starting from after to-be-replaced part of the log
7624 *
7625 * We need to be careful about not overflowing available
7626 * buf_sz capacity. If that's the case, we'll truncate the end
7627 * of the original log, as necessary.
7628 */
7629 if (patch_sz > orig_sz) {
7630 if (orig + patch_sz >= buf + buf_sz) {
7631 /* patch is big enough to cover remaining space completely */
7632 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7633 rem_sz = 0;
7634 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7635 /* patch causes part of remaining log to be truncated */
7636 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7637 }
7638 }
7639 /* shift remaining log to the right by calculated amount */
7640 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7641 }
7642
7643 memcpy(orig, patch, patch_sz);
7644}
7645
7646static void fixup_log_failed_core_relo(struct bpf_program *prog,
7647 char *buf, size_t buf_sz, size_t log_sz,
7648 char *line1, char *line2, char *line3)
7649{
7650 /* Expected log for failed and not properly guarded CO-RE relocation:
7651 * line1 -> 123: (85) call unknown#195896080
7652 * line2 -> invalid func unknown#195896080
7653 * line3 -> <anything else or end of buffer>
7654 *
7655 * "123" is the index of the instruction that was poisoned. We extract
7656 * instruction index to find corresponding CO-RE relocation and
7657 * replace this part of the log with more relevant information about
7658 * failed CO-RE relocation.
7659 */
7660 const struct bpf_core_relo *relo;
7661 struct bpf_core_spec spec;
7662 char patch[512], spec_buf[256];
7663 int insn_idx, err, spec_len;
7664
7665 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7666 return;
7667
7668 relo = find_relo_core(prog, insn_idx);
7669 if (!relo)
7670 return;
7671
7672 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7673 if (err)
7674 return;
7675
7676 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7677 snprintf(patch, sizeof(patch),
7678 "%d: <invalid CO-RE relocation>\n"
7679 "failed to resolve CO-RE relocation %s%s\n",
7680 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7681
7682 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7683}
7684
7685static void fixup_log_missing_map_load(struct bpf_program *prog,
7686 char *buf, size_t buf_sz, size_t log_sz,
7687 char *line1, char *line2, char *line3)
7688{
7689 /* Expected log for failed and not properly guarded map reference:
7690 * line1 -> 123: (85) call unknown#2001000345
7691 * line2 -> invalid func unknown#2001000345
7692 * line3 -> <anything else or end of buffer>
7693 *
7694 * "123" is the index of the instruction that was poisoned.
7695 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7696 */
7697 struct bpf_object *obj = prog->obj;
7698 const struct bpf_map *map;
7699 int insn_idx, map_idx;
7700 char patch[128];
7701
7702 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7703 return;
7704
7705 map_idx -= POISON_LDIMM64_MAP_BASE;
7706 if (map_idx < 0 || map_idx >= obj->nr_maps)
7707 return;
7708 map = &obj->maps[map_idx];
7709
7710 snprintf(patch, sizeof(patch),
7711 "%d: <invalid BPF map reference>\n"
7712 "BPF map '%s' is referenced but wasn't created\n",
7713 insn_idx, map->name);
7714
7715 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7716}
7717
7718static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7719 char *buf, size_t buf_sz, size_t log_sz,
7720 char *line1, char *line2, char *line3)
7721{
7722 /* Expected log for failed and not properly guarded kfunc call:
7723 * line1 -> 123: (85) call unknown#2002000345
7724 * line2 -> invalid func unknown#2002000345
7725 * line3 -> <anything else or end of buffer>
7726 *
7727 * "123" is the index of the instruction that was poisoned.
7728 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7729 */
7730 struct bpf_object *obj = prog->obj;
7731 const struct extern_desc *ext;
7732 int insn_idx, ext_idx;
7733 char patch[128];
7734
7735 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7736 return;
7737
7738 ext_idx -= POISON_CALL_KFUNC_BASE;
7739 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7740 return;
7741 ext = &obj->externs[ext_idx];
7742
7743 snprintf(patch, sizeof(patch),
7744 "%d: <invalid kfunc call>\n"
7745 "kfunc '%s' is referenced but wasn't resolved\n",
7746 insn_idx, ext->name);
7747
7748 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7749}
7750
7751static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7752{
7753 /* look for familiar error patterns in last N lines of the log */
7754 const size_t max_last_line_cnt = 10;
7755 char *prev_line, *cur_line, *next_line;
7756 size_t log_sz;
7757 int i;
7758
7759 if (!buf)
7760 return;
7761
7762 log_sz = strlen(buf) + 1;
7763 next_line = buf + log_sz - 1;
7764
7765 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7766 cur_line = find_prev_line(buf, next_line);
7767 if (!cur_line)
7768 return;
7769
7770 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7771 prev_line = find_prev_line(buf, cur_line);
7772 if (!prev_line)
7773 continue;
7774
7775 /* failed CO-RE relocation case */
7776 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7777 prev_line, cur_line, next_line);
7778 return;
7779 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7780 prev_line = find_prev_line(buf, cur_line);
7781 if (!prev_line)
7782 continue;
7783
7784 /* reference to uncreated BPF map */
7785 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7786 prev_line, cur_line, next_line);
7787 return;
7788 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7789 prev_line = find_prev_line(buf, cur_line);
7790 if (!prev_line)
7791 continue;
7792
7793 /* reference to unresolved kfunc */
7794 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7795 prev_line, cur_line, next_line);
7796 return;
7797 }
7798 }
7799}
7800
7801static int bpf_program_record_relos(struct bpf_program *prog)
7802{
7803 struct bpf_object *obj = prog->obj;
7804 int i;
7805
7806 for (i = 0; i < prog->nr_reloc; i++) {
7807 struct reloc_desc *relo = &prog->reloc_desc[i];
7808 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7809 int kind;
7810
7811 switch (relo->type) {
7812 case RELO_EXTERN_LD64:
7813 if (ext->type != EXT_KSYM)
7814 continue;
7815 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7816 BTF_KIND_VAR : BTF_KIND_FUNC;
7817 bpf_gen__record_extern(obj->gen_loader, ext->name,
7818 ext->is_weak, !ext->ksym.type_id,
7819 true, kind, relo->insn_idx);
7820 break;
7821 case RELO_EXTERN_CALL:
7822 bpf_gen__record_extern(obj->gen_loader, ext->name,
7823 ext->is_weak, false, false, BTF_KIND_FUNC,
7824 relo->insn_idx);
7825 break;
7826 case RELO_CORE: {
7827 struct bpf_core_relo cr = {
7828 .insn_off = relo->insn_idx * 8,
7829 .type_id = relo->core_relo->type_id,
7830 .access_str_off = relo->core_relo->access_str_off,
7831 .kind = relo->core_relo->kind,
7832 };
7833
7834 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7835 break;
7836 }
7837 default:
7838 continue;
7839 }
7840 }
7841 return 0;
7842}
7843
7844static int
7845bpf_object__load_progs(struct bpf_object *obj, int log_level)
7846{
7847 struct bpf_program *prog;
7848 size_t i;
7849 int err;
7850
7851 for (i = 0; i < obj->nr_programs; i++) {
7852 prog = &obj->programs[i];
7853 err = bpf_object__sanitize_prog(obj, prog);
7854 if (err)
7855 return err;
7856 }
7857
7858 for (i = 0; i < obj->nr_programs; i++) {
7859 prog = &obj->programs[i];
7860 if (prog_is_subprog(obj, prog))
7861 continue;
7862 if (!prog->autoload) {
7863 pr_debug("prog '%s': skipped loading\n", prog->name);
7864 continue;
7865 }
7866 prog->log_level |= log_level;
7867
7868 if (obj->gen_loader)
7869 bpf_program_record_relos(prog);
7870
7871 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7872 obj->license, obj->kern_version, &prog->fd);
7873 if (err) {
7874 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7875 return err;
7876 }
7877 }
7878
7879 bpf_object__free_relocs(obj);
7880 return 0;
7881}
7882
7883static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7884
7885static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7886{
7887 struct bpf_program *prog;
7888 int err;
7889
7890 bpf_object__for_each_program(prog, obj) {
7891 prog->sec_def = find_sec_def(prog->sec_name);
7892 if (!prog->sec_def) {
7893 /* couldn't guess, but user might manually specify */
7894 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7895 prog->name, prog->sec_name);
7896 continue;
7897 }
7898
7899 prog->type = prog->sec_def->prog_type;
7900 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7901
7902 /* sec_def can have custom callback which should be called
7903 * after bpf_program is initialized to adjust its properties
7904 */
7905 if (prog->sec_def->prog_setup_fn) {
7906 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7907 if (err < 0) {
7908 pr_warn("prog '%s': failed to initialize: %d\n",
7909 prog->name, err);
7910 return err;
7911 }
7912 }
7913 }
7914
7915 return 0;
7916}
7917
7918static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7919 const struct bpf_object_open_opts *opts)
7920{
7921 const char *obj_name, *kconfig, *btf_tmp_path;
7922 struct bpf_object *obj;
7923 char tmp_name[64];
7924 int err;
7925 char *log_buf;
7926 size_t log_size;
7927 __u32 log_level;
7928
7929 if (elf_version(EV_CURRENT) == EV_NONE) {
7930 pr_warn("failed to init libelf for %s\n",
7931 path ? : "(mem buf)");
7932 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7933 }
7934
7935 if (!OPTS_VALID(opts, bpf_object_open_opts))
7936 return ERR_PTR(-EINVAL);
7937
7938 obj_name = OPTS_GET(opts, object_name, NULL);
7939 if (obj_buf) {
7940 if (!obj_name) {
7941 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7942 (unsigned long)obj_buf,
7943 (unsigned long)obj_buf_sz);
7944 obj_name = tmp_name;
7945 }
7946 path = obj_name;
7947 pr_debug("loading object '%s' from buffer\n", obj_name);
7948 }
7949
7950 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7951 log_size = OPTS_GET(opts, kernel_log_size, 0);
7952 log_level = OPTS_GET(opts, kernel_log_level, 0);
7953 if (log_size > UINT_MAX)
7954 return ERR_PTR(-EINVAL);
7955 if (log_size && !log_buf)
7956 return ERR_PTR(-EINVAL);
7957
7958 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7959 if (IS_ERR(obj))
7960 return obj;
7961
7962 obj->log_buf = log_buf;
7963 obj->log_size = log_size;
7964 obj->log_level = log_level;
7965
7966 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7967 if (btf_tmp_path) {
7968 if (strlen(btf_tmp_path) >= PATH_MAX) {
7969 err = -ENAMETOOLONG;
7970 goto out;
7971 }
7972 obj->btf_custom_path = strdup(btf_tmp_path);
7973 if (!obj->btf_custom_path) {
7974 err = -ENOMEM;
7975 goto out;
7976 }
7977 }
7978
7979 kconfig = OPTS_GET(opts, kconfig, NULL);
7980 if (kconfig) {
7981 obj->kconfig = strdup(kconfig);
7982 if (!obj->kconfig) {
7983 err = -ENOMEM;
7984 goto out;
7985 }
7986 }
7987
7988 err = bpf_object__elf_init(obj);
7989 err = err ? : bpf_object__check_endianness(obj);
7990 err = err ? : bpf_object__elf_collect(obj);
7991 err = err ? : bpf_object__collect_externs(obj);
7992 err = err ? : bpf_object_fixup_btf(obj);
7993 err = err ? : bpf_object__init_maps(obj, opts);
7994 err = err ? : bpf_object_init_progs(obj, opts);
7995 err = err ? : bpf_object__collect_relos(obj);
7996 if (err)
7997 goto out;
7998
7999 bpf_object__elf_finish(obj);
8000
8001 return obj;
8002out:
8003 bpf_object__close(obj);
8004 return ERR_PTR(err);
8005}
8006
8007struct bpf_object *
8008bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8009{
8010 if (!path)
8011 return libbpf_err_ptr(-EINVAL);
8012
8013 pr_debug("loading %s\n", path);
8014
8015 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
8016}
8017
8018struct bpf_object *bpf_object__open(const char *path)
8019{
8020 return bpf_object__open_file(path, NULL);
8021}
8022
8023struct bpf_object *
8024bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8025 const struct bpf_object_open_opts *opts)
8026{
8027 if (!obj_buf || obj_buf_sz == 0)
8028 return libbpf_err_ptr(-EINVAL);
8029
8030 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
8031}
8032
8033static int bpf_object_unload(struct bpf_object *obj)
8034{
8035 size_t i;
8036
8037 if (!obj)
8038 return libbpf_err(-EINVAL);
8039
8040 for (i = 0; i < obj->nr_maps; i++) {
8041 zclose(obj->maps[i].fd);
8042 if (obj->maps[i].st_ops)
8043 zfree(&obj->maps[i].st_ops->kern_vdata);
8044 }
8045
8046 for (i = 0; i < obj->nr_programs; i++)
8047 bpf_program__unload(&obj->programs[i]);
8048
8049 return 0;
8050}
8051
8052static int bpf_object__sanitize_maps(struct bpf_object *obj)
8053{
8054 struct bpf_map *m;
8055
8056 bpf_object__for_each_map(m, obj) {
8057 if (!bpf_map__is_internal(m))
8058 continue;
8059 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8060 m->def.map_flags &= ~BPF_F_MMAPABLE;
8061 }
8062
8063 return 0;
8064}
8065
8066int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8067{
8068 char sym_type, sym_name[500];
8069 unsigned long long sym_addr;
8070 int ret, err = 0;
8071 FILE *f;
8072
8073 f = fopen("/proc/kallsyms", "re");
8074 if (!f) {
8075 err = -errno;
8076 pr_warn("failed to open /proc/kallsyms: %d\n", err);
8077 return err;
8078 }
8079
8080 while (true) {
8081 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8082 &sym_addr, &sym_type, sym_name);
8083 if (ret == EOF && feof(f))
8084 break;
8085 if (ret != 3) {
8086 pr_warn("failed to read kallsyms entry: %d\n", ret);
8087 err = -EINVAL;
8088 break;
8089 }
8090
8091 err = cb(sym_addr, sym_type, sym_name, ctx);
8092 if (err)
8093 break;
8094 }
8095
8096 fclose(f);
8097 return err;
8098}
8099
8100static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8101 const char *sym_name, void *ctx)
8102{
8103 struct bpf_object *obj = ctx;
8104 const struct btf_type *t;
8105 struct extern_desc *ext;
8106
8107 ext = find_extern_by_name(obj, sym_name);
8108 if (!ext || ext->type != EXT_KSYM)
8109 return 0;
8110
8111 t = btf__type_by_id(obj->btf, ext->btf_id);
8112 if (!btf_is_var(t))
8113 return 0;
8114
8115 if (ext->is_set && ext->ksym.addr != sym_addr) {
8116 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8117 sym_name, ext->ksym.addr, sym_addr);
8118 return -EINVAL;
8119 }
8120 if (!ext->is_set) {
8121 ext->is_set = true;
8122 ext->ksym.addr = sym_addr;
8123 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8124 }
8125 return 0;
8126}
8127
8128static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8129{
8130 return libbpf_kallsyms_parse(kallsyms_cb, obj);
8131}
8132
8133static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8134 __u16 kind, struct btf **res_btf,
8135 struct module_btf **res_mod_btf)
8136{
8137 struct module_btf *mod_btf;
8138 struct btf *btf;
8139 int i, id, err;
8140
8141 btf = obj->btf_vmlinux;
8142 mod_btf = NULL;
8143 id = btf__find_by_name_kind(btf, ksym_name, kind);
8144
8145 if (id == -ENOENT) {
8146 err = load_module_btfs(obj);
8147 if (err)
8148 return err;
8149
8150 for (i = 0; i < obj->btf_module_cnt; i++) {
8151 /* we assume module_btf's BTF FD is always >0 */
8152 mod_btf = &obj->btf_modules[i];
8153 btf = mod_btf->btf;
8154 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8155 if (id != -ENOENT)
8156 break;
8157 }
8158 }
8159 if (id <= 0)
8160 return -ESRCH;
8161
8162 *res_btf = btf;
8163 *res_mod_btf = mod_btf;
8164 return id;
8165}
8166
8167static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8168 struct extern_desc *ext)
8169{
8170 const struct btf_type *targ_var, *targ_type;
8171 __u32 targ_type_id, local_type_id;
8172 struct module_btf *mod_btf = NULL;
8173 const char *targ_var_name;
8174 struct btf *btf = NULL;
8175 int id, err;
8176
8177 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8178 if (id < 0) {
8179 if (id == -ESRCH && ext->is_weak)
8180 return 0;
8181 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8182 ext->name);
8183 return id;
8184 }
8185
8186 /* find local type_id */
8187 local_type_id = ext->ksym.type_id;
8188
8189 /* find target type_id */
8190 targ_var = btf__type_by_id(btf, id);
8191 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8192 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8193
8194 err = bpf_core_types_are_compat(obj->btf, local_type_id,
8195 btf, targ_type_id);
8196 if (err <= 0) {
8197 const struct btf_type *local_type;
8198 const char *targ_name, *local_name;
8199
8200 local_type = btf__type_by_id(obj->btf, local_type_id);
8201 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8202 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8203
8204 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8205 ext->name, local_type_id,
8206 btf_kind_str(local_type), local_name, targ_type_id,
8207 btf_kind_str(targ_type), targ_name);
8208 return -EINVAL;
8209 }
8210
8211 ext->is_set = true;
8212 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8213 ext->ksym.kernel_btf_id = id;
8214 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8215 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8216
8217 return 0;
8218}
8219
8220static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8221 struct extern_desc *ext)
8222{
8223 int local_func_proto_id, kfunc_proto_id, kfunc_id;
8224 struct module_btf *mod_btf = NULL;
8225 const struct btf_type *kern_func;
8226 struct btf *kern_btf = NULL;
8227 int ret;
8228
8229 local_func_proto_id = ext->ksym.type_id;
8230
8231 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8232 &mod_btf);
8233 if (kfunc_id < 0) {
8234 if (kfunc_id == -ESRCH && ext->is_weak)
8235 return 0;
8236 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8237 ext->name);
8238 return kfunc_id;
8239 }
8240
8241 kern_func = btf__type_by_id(kern_btf, kfunc_id);
8242 kfunc_proto_id = kern_func->type;
8243
8244 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8245 kern_btf, kfunc_proto_id);
8246 if (ret <= 0) {
8247 if (ext->is_weak)
8248 return 0;
8249
8250 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8251 ext->name, local_func_proto_id,
8252 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8253 return -EINVAL;
8254 }
8255
8256 /* set index for module BTF fd in fd_array, if unset */
8257 if (mod_btf && !mod_btf->fd_array_idx) {
8258 /* insn->off is s16 */
8259 if (obj->fd_array_cnt == INT16_MAX) {
8260 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8261 ext->name, mod_btf->fd_array_idx);
8262 return -E2BIG;
8263 }
8264 /* Cannot use index 0 for module BTF fd */
8265 if (!obj->fd_array_cnt)
8266 obj->fd_array_cnt = 1;
8267
8268 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8269 obj->fd_array_cnt + 1);
8270 if (ret)
8271 return ret;
8272 mod_btf->fd_array_idx = obj->fd_array_cnt;
8273 /* we assume module BTF FD is always >0 */
8274 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8275 }
8276
8277 ext->is_set = true;
8278 ext->ksym.kernel_btf_id = kfunc_id;
8279 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8280 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8281 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8282 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8283 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8284 */
8285 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8286 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8287 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8288
8289 return 0;
8290}
8291
8292static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8293{
8294 const struct btf_type *t;
8295 struct extern_desc *ext;
8296 int i, err;
8297
8298 for (i = 0; i < obj->nr_extern; i++) {
8299 ext = &obj->externs[i];
8300 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8301 continue;
8302
8303 if (obj->gen_loader) {
8304 ext->is_set = true;
8305 ext->ksym.kernel_btf_obj_fd = 0;
8306 ext->ksym.kernel_btf_id = 0;
8307 continue;
8308 }
8309 t = btf__type_by_id(obj->btf, ext->btf_id);
8310 if (btf_is_var(t))
8311 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8312 else
8313 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8314 if (err)
8315 return err;
8316 }
8317 return 0;
8318}
8319
8320static int bpf_object__resolve_externs(struct bpf_object *obj,
8321 const char *extra_kconfig)
8322{
8323 bool need_config = false, need_kallsyms = false;
8324 bool need_vmlinux_btf = false;
8325 struct extern_desc *ext;
8326 void *kcfg_data = NULL;
8327 int err, i;
8328
8329 if (obj->nr_extern == 0)
8330 return 0;
8331
8332 if (obj->kconfig_map_idx >= 0)
8333 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8334
8335 for (i = 0; i < obj->nr_extern; i++) {
8336 ext = &obj->externs[i];
8337
8338 if (ext->type == EXT_KSYM) {
8339 if (ext->ksym.type_id)
8340 need_vmlinux_btf = true;
8341 else
8342 need_kallsyms = true;
8343 continue;
8344 } else if (ext->type == EXT_KCFG) {
8345 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8346 __u64 value = 0;
8347
8348 /* Kconfig externs need actual /proc/config.gz */
8349 if (str_has_pfx(ext->name, "CONFIG_")) {
8350 need_config = true;
8351 continue;
8352 }
8353
8354 /* Virtual kcfg externs are customly handled by libbpf */
8355 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8356 value = get_kernel_version();
8357 if (!value) {
8358 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8359 return -EINVAL;
8360 }
8361 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8362 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8363 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8364 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8365 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8366 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8367 * __kconfig externs, where LINUX_ ones are virtual and filled out
8368 * customly by libbpf (their values don't come from Kconfig).
8369 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8370 * __weak, it defaults to zero value, just like for CONFIG_xxx
8371 * externs.
8372 */
8373 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8374 return -EINVAL;
8375 }
8376
8377 err = set_kcfg_value_num(ext, ext_ptr, value);
8378 if (err)
8379 return err;
8380 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8381 ext->name, (long long)value);
8382 } else {
8383 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8384 return -EINVAL;
8385 }
8386 }
8387 if (need_config && extra_kconfig) {
8388 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8389 if (err)
8390 return -EINVAL;
8391 need_config = false;
8392 for (i = 0; i < obj->nr_extern; i++) {
8393 ext = &obj->externs[i];
8394 if (ext->type == EXT_KCFG && !ext->is_set) {
8395 need_config = true;
8396 break;
8397 }
8398 }
8399 }
8400 if (need_config) {
8401 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8402 if (err)
8403 return -EINVAL;
8404 }
8405 if (need_kallsyms) {
8406 err = bpf_object__read_kallsyms_file(obj);
8407 if (err)
8408 return -EINVAL;
8409 }
8410 if (need_vmlinux_btf) {
8411 err = bpf_object__resolve_ksyms_btf_id(obj);
8412 if (err)
8413 return -EINVAL;
8414 }
8415 for (i = 0; i < obj->nr_extern; i++) {
8416 ext = &obj->externs[i];
8417
8418 if (!ext->is_set && !ext->is_weak) {
8419 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8420 return -ESRCH;
8421 } else if (!ext->is_set) {
8422 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8423 ext->name);
8424 }
8425 }
8426
8427 return 0;
8428}
8429
8430static void bpf_map_prepare_vdata(const struct bpf_map *map)
8431{
8432 struct bpf_struct_ops *st_ops;
8433 __u32 i;
8434
8435 st_ops = map->st_ops;
8436 for (i = 0; i < btf_vlen(st_ops->type); i++) {
8437 struct bpf_program *prog = st_ops->progs[i];
8438 void *kern_data;
8439 int prog_fd;
8440
8441 if (!prog)
8442 continue;
8443
8444 prog_fd = bpf_program__fd(prog);
8445 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8446 *(unsigned long *)kern_data = prog_fd;
8447 }
8448}
8449
8450static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8451{
8452 int i;
8453
8454 for (i = 0; i < obj->nr_maps; i++)
8455 if (bpf_map__is_struct_ops(&obj->maps[i]))
8456 bpf_map_prepare_vdata(&obj->maps[i]);
8457
8458 return 0;
8459}
8460
8461static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8462{
8463 int err, i;
8464
8465 if (!obj)
8466 return libbpf_err(-EINVAL);
8467
8468 if (obj->loaded) {
8469 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8470 return libbpf_err(-EINVAL);
8471 }
8472
8473 if (obj->gen_loader)
8474 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8475
8476 err = bpf_object__probe_loading(obj);
8477 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8478 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8479 err = err ? : bpf_object__sanitize_maps(obj);
8480 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8481 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8482 err = err ? : bpf_object__sanitize_and_load_btf(obj);
8483 err = err ? : bpf_object__create_maps(obj);
8484 err = err ? : bpf_object__load_progs(obj, extra_log_level);
8485 err = err ? : bpf_object_init_prog_arrays(obj);
8486 err = err ? : bpf_object_prepare_struct_ops(obj);
8487
8488 if (obj->gen_loader) {
8489 /* reset FDs */
8490 if (obj->btf)
8491 btf__set_fd(obj->btf, -1);
8492 if (!err)
8493 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8494 }
8495
8496 /* clean up fd_array */
8497 zfree(&obj->fd_array);
8498
8499 /* clean up module BTFs */
8500 for (i = 0; i < obj->btf_module_cnt; i++) {
8501 close(obj->btf_modules[i].fd);
8502 btf__free(obj->btf_modules[i].btf);
8503 free(obj->btf_modules[i].name);
8504 }
8505 free(obj->btf_modules);
8506
8507 /* clean up vmlinux BTF */
8508 btf__free(obj->btf_vmlinux);
8509 obj->btf_vmlinux = NULL;
8510
8511 obj->loaded = true; /* doesn't matter if successfully or not */
8512
8513 if (err)
8514 goto out;
8515
8516 return 0;
8517out:
8518 /* unpin any maps that were auto-pinned during load */
8519 for (i = 0; i < obj->nr_maps; i++)
8520 if (obj->maps[i].pinned && !obj->maps[i].reused)
8521 bpf_map__unpin(&obj->maps[i], NULL);
8522
8523 bpf_object_unload(obj);
8524 pr_warn("failed to load object '%s'\n", obj->path);
8525 return libbpf_err(err);
8526}
8527
8528int bpf_object__load(struct bpf_object *obj)
8529{
8530 return bpf_object_load(obj, 0, NULL);
8531}
8532
8533static int make_parent_dir(const char *path)
8534{
8535 char *cp, errmsg[STRERR_BUFSIZE];
8536 char *dname, *dir;
8537 int err = 0;
8538
8539 dname = strdup(path);
8540 if (dname == NULL)
8541 return -ENOMEM;
8542
8543 dir = dirname(dname);
8544 if (mkdir(dir, 0700) && errno != EEXIST)
8545 err = -errno;
8546
8547 free(dname);
8548 if (err) {
8549 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8550 pr_warn("failed to mkdir %s: %s\n", path, cp);
8551 }
8552 return err;
8553}
8554
8555static int check_path(const char *path)
8556{
8557 char *cp, errmsg[STRERR_BUFSIZE];
8558 struct statfs st_fs;
8559 char *dname, *dir;
8560 int err = 0;
8561
8562 if (path == NULL)
8563 return -EINVAL;
8564
8565 dname = strdup(path);
8566 if (dname == NULL)
8567 return -ENOMEM;
8568
8569 dir = dirname(dname);
8570 if (statfs(dir, &st_fs)) {
8571 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8572 pr_warn("failed to statfs %s: %s\n", dir, cp);
8573 err = -errno;
8574 }
8575 free(dname);
8576
8577 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8578 pr_warn("specified path %s is not on BPF FS\n", path);
8579 err = -EINVAL;
8580 }
8581
8582 return err;
8583}
8584
8585int bpf_program__pin(struct bpf_program *prog, const char *path)
8586{
8587 char *cp, errmsg[STRERR_BUFSIZE];
8588 int err;
8589
8590 if (prog->fd < 0) {
8591 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8592 return libbpf_err(-EINVAL);
8593 }
8594
8595 err = make_parent_dir(path);
8596 if (err)
8597 return libbpf_err(err);
8598
8599 err = check_path(path);
8600 if (err)
8601 return libbpf_err(err);
8602
8603 if (bpf_obj_pin(prog->fd, path)) {
8604 err = -errno;
8605 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8606 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8607 return libbpf_err(err);
8608 }
8609
8610 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8611 return 0;
8612}
8613
8614int bpf_program__unpin(struct bpf_program *prog, const char *path)
8615{
8616 int err;
8617
8618 if (prog->fd < 0) {
8619 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8620 return libbpf_err(-EINVAL);
8621 }
8622
8623 err = check_path(path);
8624 if (err)
8625 return libbpf_err(err);
8626
8627 err = unlink(path);
8628 if (err)
8629 return libbpf_err(-errno);
8630
8631 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8632 return 0;
8633}
8634
8635int bpf_map__pin(struct bpf_map *map, const char *path)
8636{
8637 char *cp, errmsg[STRERR_BUFSIZE];
8638 int err;
8639
8640 if (map == NULL) {
8641 pr_warn("invalid map pointer\n");
8642 return libbpf_err(-EINVAL);
8643 }
8644
8645 if (map->pin_path) {
8646 if (path && strcmp(path, map->pin_path)) {
8647 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8648 bpf_map__name(map), map->pin_path, path);
8649 return libbpf_err(-EINVAL);
8650 } else if (map->pinned) {
8651 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8652 bpf_map__name(map), map->pin_path);
8653 return 0;
8654 }
8655 } else {
8656 if (!path) {
8657 pr_warn("missing a path to pin map '%s' at\n",
8658 bpf_map__name(map));
8659 return libbpf_err(-EINVAL);
8660 } else if (map->pinned) {
8661 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8662 return libbpf_err(-EEXIST);
8663 }
8664
8665 map->pin_path = strdup(path);
8666 if (!map->pin_path) {
8667 err = -errno;
8668 goto out_err;
8669 }
8670 }
8671
8672 err = make_parent_dir(map->pin_path);
8673 if (err)
8674 return libbpf_err(err);
8675
8676 err = check_path(map->pin_path);
8677 if (err)
8678 return libbpf_err(err);
8679
8680 if (bpf_obj_pin(map->fd, map->pin_path)) {
8681 err = -errno;
8682 goto out_err;
8683 }
8684
8685 map->pinned = true;
8686 pr_debug("pinned map '%s'\n", map->pin_path);
8687
8688 return 0;
8689
8690out_err:
8691 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8692 pr_warn("failed to pin map: %s\n", cp);
8693 return libbpf_err(err);
8694}
8695
8696int bpf_map__unpin(struct bpf_map *map, const char *path)
8697{
8698 int err;
8699
8700 if (map == NULL) {
8701 pr_warn("invalid map pointer\n");
8702 return libbpf_err(-EINVAL);
8703 }
8704
8705 if (map->pin_path) {
8706 if (path && strcmp(path, map->pin_path)) {
8707 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8708 bpf_map__name(map), map->pin_path, path);
8709 return libbpf_err(-EINVAL);
8710 }
8711 path = map->pin_path;
8712 } else if (!path) {
8713 pr_warn("no path to unpin map '%s' from\n",
8714 bpf_map__name(map));
8715 return libbpf_err(-EINVAL);
8716 }
8717
8718 err = check_path(path);
8719 if (err)
8720 return libbpf_err(err);
8721
8722 err = unlink(path);
8723 if (err != 0)
8724 return libbpf_err(-errno);
8725
8726 map->pinned = false;
8727 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8728
8729 return 0;
8730}
8731
8732int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8733{
8734 char *new = NULL;
8735
8736 if (path) {
8737 new = strdup(path);
8738 if (!new)
8739 return libbpf_err(-errno);
8740 }
8741
8742 free(map->pin_path);
8743 map->pin_path = new;
8744 return 0;
8745}
8746
8747__alias(bpf_map__pin_path)
8748const char *bpf_map__get_pin_path(const struct bpf_map *map);
8749
8750const char *bpf_map__pin_path(const struct bpf_map *map)
8751{
8752 return map->pin_path;
8753}
8754
8755bool bpf_map__is_pinned(const struct bpf_map *map)
8756{
8757 return map->pinned;
8758}
8759
8760static void sanitize_pin_path(char *s)
8761{
8762 /* bpffs disallows periods in path names */
8763 while (*s) {
8764 if (*s == '.')
8765 *s = '_';
8766 s++;
8767 }
8768}
8769
8770int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8771{
8772 struct bpf_map *map;
8773 int err;
8774
8775 if (!obj)
8776 return libbpf_err(-ENOENT);
8777
8778 if (!obj->loaded) {
8779 pr_warn("object not yet loaded; load it first\n");
8780 return libbpf_err(-ENOENT);
8781 }
8782
8783 bpf_object__for_each_map(map, obj) {
8784 char *pin_path = NULL;
8785 char buf[PATH_MAX];
8786
8787 if (!map->autocreate)
8788 continue;
8789
8790 if (path) {
8791 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8792 if (err)
8793 goto err_unpin_maps;
8794 sanitize_pin_path(buf);
8795 pin_path = buf;
8796 } else if (!map->pin_path) {
8797 continue;
8798 }
8799
8800 err = bpf_map__pin(map, pin_path);
8801 if (err)
8802 goto err_unpin_maps;
8803 }
8804
8805 return 0;
8806
8807err_unpin_maps:
8808 while ((map = bpf_object__prev_map(obj, map))) {
8809 if (!map->pin_path)
8810 continue;
8811
8812 bpf_map__unpin(map, NULL);
8813 }
8814
8815 return libbpf_err(err);
8816}
8817
8818int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8819{
8820 struct bpf_map *map;
8821 int err;
8822
8823 if (!obj)
8824 return libbpf_err(-ENOENT);
8825
8826 bpf_object__for_each_map(map, obj) {
8827 char *pin_path = NULL;
8828 char buf[PATH_MAX];
8829
8830 if (path) {
8831 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8832 if (err)
8833 return libbpf_err(err);
8834 sanitize_pin_path(buf);
8835 pin_path = buf;
8836 } else if (!map->pin_path) {
8837 continue;
8838 }
8839
8840 err = bpf_map__unpin(map, pin_path);
8841 if (err)
8842 return libbpf_err(err);
8843 }
8844
8845 return 0;
8846}
8847
8848int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8849{
8850 struct bpf_program *prog;
8851 char buf[PATH_MAX];
8852 int err;
8853
8854 if (!obj)
8855 return libbpf_err(-ENOENT);
8856
8857 if (!obj->loaded) {
8858 pr_warn("object not yet loaded; load it first\n");
8859 return libbpf_err(-ENOENT);
8860 }
8861
8862 bpf_object__for_each_program(prog, obj) {
8863 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8864 if (err)
8865 goto err_unpin_programs;
8866
8867 err = bpf_program__pin(prog, buf);
8868 if (err)
8869 goto err_unpin_programs;
8870 }
8871
8872 return 0;
8873
8874err_unpin_programs:
8875 while ((prog = bpf_object__prev_program(obj, prog))) {
8876 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8877 continue;
8878
8879 bpf_program__unpin(prog, buf);
8880 }
8881
8882 return libbpf_err(err);
8883}
8884
8885int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8886{
8887 struct bpf_program *prog;
8888 int err;
8889
8890 if (!obj)
8891 return libbpf_err(-ENOENT);
8892
8893 bpf_object__for_each_program(prog, obj) {
8894 char buf[PATH_MAX];
8895
8896 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8897 if (err)
8898 return libbpf_err(err);
8899
8900 err = bpf_program__unpin(prog, buf);
8901 if (err)
8902 return libbpf_err(err);
8903 }
8904
8905 return 0;
8906}
8907
8908int bpf_object__pin(struct bpf_object *obj, const char *path)
8909{
8910 int err;
8911
8912 err = bpf_object__pin_maps(obj, path);
8913 if (err)
8914 return libbpf_err(err);
8915
8916 err = bpf_object__pin_programs(obj, path);
8917 if (err) {
8918 bpf_object__unpin_maps(obj, path);
8919 return libbpf_err(err);
8920 }
8921
8922 return 0;
8923}
8924
8925int bpf_object__unpin(struct bpf_object *obj, const char *path)
8926{
8927 int err;
8928
8929 err = bpf_object__unpin_programs(obj, path);
8930 if (err)
8931 return libbpf_err(err);
8932
8933 err = bpf_object__unpin_maps(obj, path);
8934 if (err)
8935 return libbpf_err(err);
8936
8937 return 0;
8938}
8939
8940static void bpf_map__destroy(struct bpf_map *map)
8941{
8942 if (map->inner_map) {
8943 bpf_map__destroy(map->inner_map);
8944 zfree(&map->inner_map);
8945 }
8946
8947 zfree(&map->init_slots);
8948 map->init_slots_sz = 0;
8949
8950 if (map->mmaped) {
8951 size_t mmap_sz;
8952
8953 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8954 munmap(map->mmaped, mmap_sz);
8955 map->mmaped = NULL;
8956 }
8957
8958 if (map->st_ops) {
8959 zfree(&map->st_ops->data);
8960 zfree(&map->st_ops->progs);
8961 zfree(&map->st_ops->kern_func_off);
8962 zfree(&map->st_ops);
8963 }
8964
8965 zfree(&map->name);
8966 zfree(&map->real_name);
8967 zfree(&map->pin_path);
8968
8969 if (map->fd >= 0)
8970 zclose(map->fd);
8971}
8972
8973void bpf_object__close(struct bpf_object *obj)
8974{
8975 size_t i;
8976
8977 if (IS_ERR_OR_NULL(obj))
8978 return;
8979
8980 usdt_manager_free(obj->usdt_man);
8981 obj->usdt_man = NULL;
8982
8983 bpf_gen__free(obj->gen_loader);
8984 bpf_object__elf_finish(obj);
8985 bpf_object_unload(obj);
8986 btf__free(obj->btf);
8987 btf__free(obj->btf_vmlinux);
8988 btf_ext__free(obj->btf_ext);
8989
8990 for (i = 0; i < obj->nr_maps; i++)
8991 bpf_map__destroy(&obj->maps[i]);
8992
8993 zfree(&obj->btf_custom_path);
8994 zfree(&obj->kconfig);
8995
8996 for (i = 0; i < obj->nr_extern; i++)
8997 zfree(&obj->externs[i].essent_name);
8998
8999 zfree(&obj->externs);
9000 obj->nr_extern = 0;
9001
9002 zfree(&obj->maps);
9003 obj->nr_maps = 0;
9004
9005 if (obj->programs && obj->nr_programs) {
9006 for (i = 0; i < obj->nr_programs; i++)
9007 bpf_program__exit(&obj->programs[i]);
9008 }
9009 zfree(&obj->programs);
9010
9011 free(obj);
9012}
9013
9014const char *bpf_object__name(const struct bpf_object *obj)
9015{
9016 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9017}
9018
9019unsigned int bpf_object__kversion(const struct bpf_object *obj)
9020{
9021 return obj ? obj->kern_version : 0;
9022}
9023
9024struct btf *bpf_object__btf(const struct bpf_object *obj)
9025{
9026 return obj ? obj->btf : NULL;
9027}
9028
9029int bpf_object__btf_fd(const struct bpf_object *obj)
9030{
9031 return obj->btf ? btf__fd(obj->btf) : -1;
9032}
9033
9034int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9035{
9036 if (obj->loaded)
9037 return libbpf_err(-EINVAL);
9038
9039 obj->kern_version = kern_version;
9040
9041 return 0;
9042}
9043
9044int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9045{
9046 struct bpf_gen *gen;
9047
9048 if (!opts)
9049 return -EFAULT;
9050 if (!OPTS_VALID(opts, gen_loader_opts))
9051 return -EINVAL;
9052 gen = calloc(sizeof(*gen), 1);
9053 if (!gen)
9054 return -ENOMEM;
9055 gen->opts = opts;
9056 obj->gen_loader = gen;
9057 return 0;
9058}
9059
9060static struct bpf_program *
9061__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9062 bool forward)
9063{
9064 size_t nr_programs = obj->nr_programs;
9065 ssize_t idx;
9066
9067 if (!nr_programs)
9068 return NULL;
9069
9070 if (!p)
9071 /* Iter from the beginning */
9072 return forward ? &obj->programs[0] :
9073 &obj->programs[nr_programs - 1];
9074
9075 if (p->obj != obj) {
9076 pr_warn("error: program handler doesn't match object\n");
9077 return errno = EINVAL, NULL;
9078 }
9079
9080 idx = (p - obj->programs) + (forward ? 1 : -1);
9081 if (idx >= obj->nr_programs || idx < 0)
9082 return NULL;
9083 return &obj->programs[idx];
9084}
9085
9086struct bpf_program *
9087bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9088{
9089 struct bpf_program *prog = prev;
9090
9091 do {
9092 prog = __bpf_program__iter(prog, obj, true);
9093 } while (prog && prog_is_subprog(obj, prog));
9094
9095 return prog;
9096}
9097
9098struct bpf_program *
9099bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9100{
9101 struct bpf_program *prog = next;
9102
9103 do {
9104 prog = __bpf_program__iter(prog, obj, false);
9105 } while (prog && prog_is_subprog(obj, prog));
9106
9107 return prog;
9108}
9109
9110void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9111{
9112 prog->prog_ifindex = ifindex;
9113}
9114
9115const char *bpf_program__name(const struct bpf_program *prog)
9116{
9117 return prog->name;
9118}
9119
9120const char *bpf_program__section_name(const struct bpf_program *prog)
9121{
9122 return prog->sec_name;
9123}
9124
9125bool bpf_program__autoload(const struct bpf_program *prog)
9126{
9127 return prog->autoload;
9128}
9129
9130int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9131{
9132 if (prog->obj->loaded)
9133 return libbpf_err(-EINVAL);
9134
9135 prog->autoload = autoload;
9136 return 0;
9137}
9138
9139bool bpf_program__autoattach(const struct bpf_program *prog)
9140{
9141 return prog->autoattach;
9142}
9143
9144void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9145{
9146 prog->autoattach = autoattach;
9147}
9148
9149const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9150{
9151 return prog->insns;
9152}
9153
9154size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9155{
9156 return prog->insns_cnt;
9157}
9158
9159int bpf_program__set_insns(struct bpf_program *prog,
9160 struct bpf_insn *new_insns, size_t new_insn_cnt)
9161{
9162 struct bpf_insn *insns;
9163
9164 if (prog->obj->loaded)
9165 return -EBUSY;
9166
9167 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9168 /* NULL is a valid return from reallocarray if the new count is zero */
9169 if (!insns && new_insn_cnt) {
9170 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9171 return -ENOMEM;
9172 }
9173 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9174
9175 prog->insns = insns;
9176 prog->insns_cnt = new_insn_cnt;
9177 return 0;
9178}
9179
9180int bpf_program__fd(const struct bpf_program *prog)
9181{
9182 if (!prog)
9183 return libbpf_err(-EINVAL);
9184
9185 if (prog->fd < 0)
9186 return libbpf_err(-ENOENT);
9187
9188 return prog->fd;
9189}
9190
9191__alias(bpf_program__type)
9192enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9193
9194enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9195{
9196 return prog->type;
9197}
9198
9199static size_t custom_sec_def_cnt;
9200static struct bpf_sec_def *custom_sec_defs;
9201static struct bpf_sec_def custom_fallback_def;
9202static bool has_custom_fallback_def;
9203static int last_custom_sec_def_handler_id;
9204
9205int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9206{
9207 if (prog->obj->loaded)
9208 return libbpf_err(-EBUSY);
9209
9210 /* if type is not changed, do nothing */
9211 if (prog->type == type)
9212 return 0;
9213
9214 prog->type = type;
9215
9216 /* If a program type was changed, we need to reset associated SEC()
9217 * handler, as it will be invalid now. The only exception is a generic
9218 * fallback handler, which by definition is program type-agnostic and
9219 * is a catch-all custom handler, optionally set by the application,
9220 * so should be able to handle any type of BPF program.
9221 */
9222 if (prog->sec_def != &custom_fallback_def)
9223 prog->sec_def = NULL;
9224 return 0;
9225}
9226
9227__alias(bpf_program__expected_attach_type)
9228enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9229
9230enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9231{
9232 return prog->expected_attach_type;
9233}
9234
9235int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9236 enum bpf_attach_type type)
9237{
9238 if (prog->obj->loaded)
9239 return libbpf_err(-EBUSY);
9240
9241 prog->expected_attach_type = type;
9242 return 0;
9243}
9244
9245__u32 bpf_program__flags(const struct bpf_program *prog)
9246{
9247 return prog->prog_flags;
9248}
9249
9250int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9251{
9252 if (prog->obj->loaded)
9253 return libbpf_err(-EBUSY);
9254
9255 prog->prog_flags = flags;
9256 return 0;
9257}
9258
9259__u32 bpf_program__log_level(const struct bpf_program *prog)
9260{
9261 return prog->log_level;
9262}
9263
9264int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9265{
9266 if (prog->obj->loaded)
9267 return libbpf_err(-EBUSY);
9268
9269 prog->log_level = log_level;
9270 return 0;
9271}
9272
9273const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9274{
9275 *log_size = prog->log_size;
9276 return prog->log_buf;
9277}
9278
9279int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9280{
9281 if (log_size && !log_buf)
9282 return -EINVAL;
9283 if (prog->log_size > UINT_MAX)
9284 return -EINVAL;
9285 if (prog->obj->loaded)
9286 return -EBUSY;
9287
9288 prog->log_buf = log_buf;
9289 prog->log_size = log_size;
9290 return 0;
9291}
9292
9293#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9294 .sec = (char *)sec_pfx, \
9295 .prog_type = BPF_PROG_TYPE_##ptype, \
9296 .expected_attach_type = atype, \
9297 .cookie = (long)(flags), \
9298 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
9299 __VA_ARGS__ \
9300}
9301
9302static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9303static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9304static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9305static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9306static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9307static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9308static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9309static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9310static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9311static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9312static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9313
9314static const struct bpf_sec_def section_defs[] = {
9315 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9316 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9317 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9318 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9319 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9320 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9321 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9322 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9323 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9324 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9325 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9326 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9327 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9328 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9329 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9330 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9331 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9332 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
9333 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9334 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9335 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9336 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9337 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9338 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9339 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9340 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9341 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9342 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9343 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9344 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9345 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9346 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9347 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9348 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9349 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9350 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9351 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9352 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9353 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9354 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9355 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9356 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9357 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9358 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9359 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9360 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9361 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9362 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9363 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9364 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9365 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9366 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9367 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9368 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9369 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9370 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9371 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9372 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9373 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9374 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9375 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9376 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9377 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9378 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9379 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9380 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9381 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9382 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9383 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9384 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9385 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9386 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9387 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9388 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9389 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9390 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9391 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9392 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9393 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9394 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9395 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9396 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9397 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9398 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9399 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9400 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9401 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9402 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9403 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9404 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9405 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9406 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9407 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9408 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9409 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9410 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9411 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9412 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9413 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9414};
9415
9416int libbpf_register_prog_handler(const char *sec,
9417 enum bpf_prog_type prog_type,
9418 enum bpf_attach_type exp_attach_type,
9419 const struct libbpf_prog_handler_opts *opts)
9420{
9421 struct bpf_sec_def *sec_def;
9422
9423 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9424 return libbpf_err(-EINVAL);
9425
9426 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9427 return libbpf_err(-E2BIG);
9428
9429 if (sec) {
9430 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9431 sizeof(*sec_def));
9432 if (!sec_def)
9433 return libbpf_err(-ENOMEM);
9434
9435 custom_sec_defs = sec_def;
9436 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9437 } else {
9438 if (has_custom_fallback_def)
9439 return libbpf_err(-EBUSY);
9440
9441 sec_def = &custom_fallback_def;
9442 }
9443
9444 sec_def->sec = sec ? strdup(sec) : NULL;
9445 if (sec && !sec_def->sec)
9446 return libbpf_err(-ENOMEM);
9447
9448 sec_def->prog_type = prog_type;
9449 sec_def->expected_attach_type = exp_attach_type;
9450 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9451
9452 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9453 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9454 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9455
9456 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9457
9458 if (sec)
9459 custom_sec_def_cnt++;
9460 else
9461 has_custom_fallback_def = true;
9462
9463 return sec_def->handler_id;
9464}
9465
9466int libbpf_unregister_prog_handler(int handler_id)
9467{
9468 struct bpf_sec_def *sec_defs;
9469 int i;
9470
9471 if (handler_id <= 0)
9472 return libbpf_err(-EINVAL);
9473
9474 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9475 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9476 has_custom_fallback_def = false;
9477 return 0;
9478 }
9479
9480 for (i = 0; i < custom_sec_def_cnt; i++) {
9481 if (custom_sec_defs[i].handler_id == handler_id)
9482 break;
9483 }
9484
9485 if (i == custom_sec_def_cnt)
9486 return libbpf_err(-ENOENT);
9487
9488 free(custom_sec_defs[i].sec);
9489 for (i = i + 1; i < custom_sec_def_cnt; i++)
9490 custom_sec_defs[i - 1] = custom_sec_defs[i];
9491 custom_sec_def_cnt--;
9492
9493 /* try to shrink the array, but it's ok if we couldn't */
9494 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9495 /* if new count is zero, reallocarray can return a valid NULL result;
9496 * in this case the previous pointer will be freed, so we *have to*
9497 * reassign old pointer to the new value (even if it's NULL)
9498 */
9499 if (sec_defs || custom_sec_def_cnt == 0)
9500 custom_sec_defs = sec_defs;
9501
9502 return 0;
9503}
9504
9505static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9506{
9507 size_t len = strlen(sec_def->sec);
9508
9509 /* "type/" always has to have proper SEC("type/extras") form */
9510 if (sec_def->sec[len - 1] == '/') {
9511 if (str_has_pfx(sec_name, sec_def->sec))
9512 return true;
9513 return false;
9514 }
9515
9516 /* "type+" means it can be either exact SEC("type") or
9517 * well-formed SEC("type/extras") with proper '/' separator
9518 */
9519 if (sec_def->sec[len - 1] == '+') {
9520 len--;
9521 /* not even a prefix */
9522 if (strncmp(sec_name, sec_def->sec, len) != 0)
9523 return false;
9524 /* exact match or has '/' separator */
9525 if (sec_name[len] == '\0' || sec_name[len] == '/')
9526 return true;
9527 return false;
9528 }
9529
9530 return strcmp(sec_name, sec_def->sec) == 0;
9531}
9532
9533static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9534{
9535 const struct bpf_sec_def *sec_def;
9536 int i, n;
9537
9538 n = custom_sec_def_cnt;
9539 for (i = 0; i < n; i++) {
9540 sec_def = &custom_sec_defs[i];
9541 if (sec_def_matches(sec_def, sec_name))
9542 return sec_def;
9543 }
9544
9545 n = ARRAY_SIZE(section_defs);
9546 for (i = 0; i < n; i++) {
9547 sec_def = §ion_defs[i];
9548 if (sec_def_matches(sec_def, sec_name))
9549 return sec_def;
9550 }
9551
9552 if (has_custom_fallback_def)
9553 return &custom_fallback_def;
9554
9555 return NULL;
9556}
9557
9558#define MAX_TYPE_NAME_SIZE 32
9559
9560static char *libbpf_get_type_names(bool attach_type)
9561{
9562 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9563 char *buf;
9564
9565 buf = malloc(len);
9566 if (!buf)
9567 return NULL;
9568
9569 buf[0] = '\0';
9570 /* Forge string buf with all available names */
9571 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9572 const struct bpf_sec_def *sec_def = §ion_defs[i];
9573
9574 if (attach_type) {
9575 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9576 continue;
9577
9578 if (!(sec_def->cookie & SEC_ATTACHABLE))
9579 continue;
9580 }
9581
9582 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9583 free(buf);
9584 return NULL;
9585 }
9586 strcat(buf, " ");
9587 strcat(buf, section_defs[i].sec);
9588 }
9589
9590 return buf;
9591}
9592
9593int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9594 enum bpf_attach_type *expected_attach_type)
9595{
9596 const struct bpf_sec_def *sec_def;
9597 char *type_names;
9598
9599 if (!name)
9600 return libbpf_err(-EINVAL);
9601
9602 sec_def = find_sec_def(name);
9603 if (sec_def) {
9604 *prog_type = sec_def->prog_type;
9605 *expected_attach_type = sec_def->expected_attach_type;
9606 return 0;
9607 }
9608
9609 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9610 type_names = libbpf_get_type_names(false);
9611 if (type_names != NULL) {
9612 pr_debug("supported section(type) names are:%s\n", type_names);
9613 free(type_names);
9614 }
9615
9616 return libbpf_err(-ESRCH);
9617}
9618
9619const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9620{
9621 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9622 return NULL;
9623
9624 return attach_type_name[t];
9625}
9626
9627const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9628{
9629 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9630 return NULL;
9631
9632 return link_type_name[t];
9633}
9634
9635const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9636{
9637 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9638 return NULL;
9639
9640 return map_type_name[t];
9641}
9642
9643const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9644{
9645 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9646 return NULL;
9647
9648 return prog_type_name[t];
9649}
9650
9651static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9652 int sec_idx,
9653 size_t offset)
9654{
9655 struct bpf_map *map;
9656 size_t i;
9657
9658 for (i = 0; i < obj->nr_maps; i++) {
9659 map = &obj->maps[i];
9660 if (!bpf_map__is_struct_ops(map))
9661 continue;
9662 if (map->sec_idx == sec_idx &&
9663 map->sec_offset <= offset &&
9664 offset - map->sec_offset < map->def.value_size)
9665 return map;
9666 }
9667
9668 return NULL;
9669}
9670
9671/* Collect the reloc from ELF and populate the st_ops->progs[] */
9672static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9673 Elf64_Shdr *shdr, Elf_Data *data)
9674{
9675 const struct btf_member *member;
9676 struct bpf_struct_ops *st_ops;
9677 struct bpf_program *prog;
9678 unsigned int shdr_idx;
9679 const struct btf *btf;
9680 struct bpf_map *map;
9681 unsigned int moff, insn_idx;
9682 const char *name;
9683 __u32 member_idx;
9684 Elf64_Sym *sym;
9685 Elf64_Rel *rel;
9686 int i, nrels;
9687
9688 btf = obj->btf;
9689 nrels = shdr->sh_size / shdr->sh_entsize;
9690 for (i = 0; i < nrels; i++) {
9691 rel = elf_rel_by_idx(data, i);
9692 if (!rel) {
9693 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9694 return -LIBBPF_ERRNO__FORMAT;
9695 }
9696
9697 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9698 if (!sym) {
9699 pr_warn("struct_ops reloc: symbol %zx not found\n",
9700 (size_t)ELF64_R_SYM(rel->r_info));
9701 return -LIBBPF_ERRNO__FORMAT;
9702 }
9703
9704 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9705 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9706 if (!map) {
9707 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9708 (size_t)rel->r_offset);
9709 return -EINVAL;
9710 }
9711
9712 moff = rel->r_offset - map->sec_offset;
9713 shdr_idx = sym->st_shndx;
9714 st_ops = map->st_ops;
9715 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9716 map->name,
9717 (long long)(rel->r_info >> 32),
9718 (long long)sym->st_value,
9719 shdr_idx, (size_t)rel->r_offset,
9720 map->sec_offset, sym->st_name, name);
9721
9722 if (shdr_idx >= SHN_LORESERVE) {
9723 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9724 map->name, (size_t)rel->r_offset, shdr_idx);
9725 return -LIBBPF_ERRNO__RELOC;
9726 }
9727 if (sym->st_value % BPF_INSN_SZ) {
9728 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9729 map->name, (unsigned long long)sym->st_value);
9730 return -LIBBPF_ERRNO__FORMAT;
9731 }
9732 insn_idx = sym->st_value / BPF_INSN_SZ;
9733
9734 member = find_member_by_offset(st_ops->type, moff * 8);
9735 if (!member) {
9736 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9737 map->name, moff);
9738 return -EINVAL;
9739 }
9740 member_idx = member - btf_members(st_ops->type);
9741 name = btf__name_by_offset(btf, member->name_off);
9742
9743 if (!resolve_func_ptr(btf, member->type, NULL)) {
9744 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9745 map->name, name);
9746 return -EINVAL;
9747 }
9748
9749 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9750 if (!prog) {
9751 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9752 map->name, shdr_idx, name);
9753 return -EINVAL;
9754 }
9755
9756 /* prevent the use of BPF prog with invalid type */
9757 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9758 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9759 map->name, prog->name);
9760 return -EINVAL;
9761 }
9762
9763 /* if we haven't yet processed this BPF program, record proper
9764 * attach_btf_id and member_idx
9765 */
9766 if (!prog->attach_btf_id) {
9767 prog->attach_btf_id = st_ops->type_id;
9768 prog->expected_attach_type = member_idx;
9769 }
9770
9771 /* struct_ops BPF prog can be re-used between multiple
9772 * .struct_ops & .struct_ops.link as long as it's the
9773 * same struct_ops struct definition and the same
9774 * function pointer field
9775 */
9776 if (prog->attach_btf_id != st_ops->type_id ||
9777 prog->expected_attach_type != member_idx) {
9778 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9779 map->name, prog->name, prog->sec_name, prog->type,
9780 prog->attach_btf_id, prog->expected_attach_type, name);
9781 return -EINVAL;
9782 }
9783
9784 st_ops->progs[member_idx] = prog;
9785 }
9786
9787 return 0;
9788}
9789
9790#define BTF_TRACE_PREFIX "btf_trace_"
9791#define BTF_LSM_PREFIX "bpf_lsm_"
9792#define BTF_ITER_PREFIX "bpf_iter_"
9793#define BTF_MAX_NAME_SIZE 128
9794
9795void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9796 const char **prefix, int *kind)
9797{
9798 switch (attach_type) {
9799 case BPF_TRACE_RAW_TP:
9800 *prefix = BTF_TRACE_PREFIX;
9801 *kind = BTF_KIND_TYPEDEF;
9802 break;
9803 case BPF_LSM_MAC:
9804 case BPF_LSM_CGROUP:
9805 *prefix = BTF_LSM_PREFIX;
9806 *kind = BTF_KIND_FUNC;
9807 break;
9808 case BPF_TRACE_ITER:
9809 *prefix = BTF_ITER_PREFIX;
9810 *kind = BTF_KIND_FUNC;
9811 break;
9812 default:
9813 *prefix = "";
9814 *kind = BTF_KIND_FUNC;
9815 }
9816}
9817
9818static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9819 const char *name, __u32 kind)
9820{
9821 char btf_type_name[BTF_MAX_NAME_SIZE];
9822 int ret;
9823
9824 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9825 "%s%s", prefix, name);
9826 /* snprintf returns the number of characters written excluding the
9827 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9828 * indicates truncation.
9829 */
9830 if (ret < 0 || ret >= sizeof(btf_type_name))
9831 return -ENAMETOOLONG;
9832 return btf__find_by_name_kind(btf, btf_type_name, kind);
9833}
9834
9835static inline int find_attach_btf_id(struct btf *btf, const char *name,
9836 enum bpf_attach_type attach_type)
9837{
9838 const char *prefix;
9839 int kind;
9840
9841 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9842 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9843}
9844
9845int libbpf_find_vmlinux_btf_id(const char *name,
9846 enum bpf_attach_type attach_type)
9847{
9848 struct btf *btf;
9849 int err;
9850
9851 btf = btf__load_vmlinux_btf();
9852 err = libbpf_get_error(btf);
9853 if (err) {
9854 pr_warn("vmlinux BTF is not found\n");
9855 return libbpf_err(err);
9856 }
9857
9858 err = find_attach_btf_id(btf, name, attach_type);
9859 if (err <= 0)
9860 pr_warn("%s is not found in vmlinux BTF\n", name);
9861
9862 btf__free(btf);
9863 return libbpf_err(err);
9864}
9865
9866static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9867{
9868 struct bpf_prog_info info;
9869 __u32 info_len = sizeof(info);
9870 struct btf *btf;
9871 int err;
9872
9873 memset(&info, 0, info_len);
9874 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9875 if (err) {
9876 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9877 attach_prog_fd, err);
9878 return err;
9879 }
9880
9881 err = -EINVAL;
9882 if (!info.btf_id) {
9883 pr_warn("The target program doesn't have BTF\n");
9884 goto out;
9885 }
9886 btf = btf__load_from_kernel_by_id(info.btf_id);
9887 err = libbpf_get_error(btf);
9888 if (err) {
9889 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9890 goto out;
9891 }
9892 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9893 btf__free(btf);
9894 if (err <= 0) {
9895 pr_warn("%s is not found in prog's BTF\n", name);
9896 goto out;
9897 }
9898out:
9899 return err;
9900}
9901
9902static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9903 enum bpf_attach_type attach_type,
9904 int *btf_obj_fd, int *btf_type_id)
9905{
9906 int ret, i;
9907
9908 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9909 if (ret > 0) {
9910 *btf_obj_fd = 0; /* vmlinux BTF */
9911 *btf_type_id = ret;
9912 return 0;
9913 }
9914 if (ret != -ENOENT)
9915 return ret;
9916
9917 ret = load_module_btfs(obj);
9918 if (ret)
9919 return ret;
9920
9921 for (i = 0; i < obj->btf_module_cnt; i++) {
9922 const struct module_btf *mod = &obj->btf_modules[i];
9923
9924 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9925 if (ret > 0) {
9926 *btf_obj_fd = mod->fd;
9927 *btf_type_id = ret;
9928 return 0;
9929 }
9930 if (ret == -ENOENT)
9931 continue;
9932
9933 return ret;
9934 }
9935
9936 return -ESRCH;
9937}
9938
9939static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9940 int *btf_obj_fd, int *btf_type_id)
9941{
9942 enum bpf_attach_type attach_type = prog->expected_attach_type;
9943 __u32 attach_prog_fd = prog->attach_prog_fd;
9944 int err = 0;
9945
9946 /* BPF program's BTF ID */
9947 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9948 if (!attach_prog_fd) {
9949 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9950 return -EINVAL;
9951 }
9952 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9953 if (err < 0) {
9954 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9955 prog->name, attach_prog_fd, attach_name, err);
9956 return err;
9957 }
9958 *btf_obj_fd = 0;
9959 *btf_type_id = err;
9960 return 0;
9961 }
9962
9963 /* kernel/module BTF ID */
9964 if (prog->obj->gen_loader) {
9965 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9966 *btf_obj_fd = 0;
9967 *btf_type_id = 1;
9968 } else {
9969 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9970 }
9971 if (err) {
9972 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9973 prog->name, attach_name, err);
9974 return err;
9975 }
9976 return 0;
9977}
9978
9979int libbpf_attach_type_by_name(const char *name,
9980 enum bpf_attach_type *attach_type)
9981{
9982 char *type_names;
9983 const struct bpf_sec_def *sec_def;
9984
9985 if (!name)
9986 return libbpf_err(-EINVAL);
9987
9988 sec_def = find_sec_def(name);
9989 if (!sec_def) {
9990 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9991 type_names = libbpf_get_type_names(true);
9992 if (type_names != NULL) {
9993 pr_debug("attachable section(type) names are:%s\n", type_names);
9994 free(type_names);
9995 }
9996
9997 return libbpf_err(-EINVAL);
9998 }
9999
10000 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10001 return libbpf_err(-EINVAL);
10002 if (!(sec_def->cookie & SEC_ATTACHABLE))
10003 return libbpf_err(-EINVAL);
10004
10005 *attach_type = sec_def->expected_attach_type;
10006 return 0;
10007}
10008
10009int bpf_map__fd(const struct bpf_map *map)
10010{
10011 if (!map)
10012 return libbpf_err(-EINVAL);
10013 if (!map_is_created(map))
10014 return -1;
10015 return map->fd;
10016}
10017
10018static bool map_uses_real_name(const struct bpf_map *map)
10019{
10020 /* Since libbpf started to support custom .data.* and .rodata.* maps,
10021 * their user-visible name differs from kernel-visible name. Users see
10022 * such map's corresponding ELF section name as a map name.
10023 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10024 * maps to know which name has to be returned to the user.
10025 */
10026 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10027 return true;
10028 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10029 return true;
10030 return false;
10031}
10032
10033const char *bpf_map__name(const struct bpf_map *map)
10034{
10035 if (!map)
10036 return NULL;
10037
10038 if (map_uses_real_name(map))
10039 return map->real_name;
10040
10041 return map->name;
10042}
10043
10044enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10045{
10046 return map->def.type;
10047}
10048
10049int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10050{
10051 if (map_is_created(map))
10052 return libbpf_err(-EBUSY);
10053 map->def.type = type;
10054 return 0;
10055}
10056
10057__u32 bpf_map__map_flags(const struct bpf_map *map)
10058{
10059 return map->def.map_flags;
10060}
10061
10062int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10063{
10064 if (map_is_created(map))
10065 return libbpf_err(-EBUSY);
10066 map->def.map_flags = flags;
10067 return 0;
10068}
10069
10070__u64 bpf_map__map_extra(const struct bpf_map *map)
10071{
10072 return map->map_extra;
10073}
10074
10075int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10076{
10077 if (map_is_created(map))
10078 return libbpf_err(-EBUSY);
10079 map->map_extra = map_extra;
10080 return 0;
10081}
10082
10083__u32 bpf_map__numa_node(const struct bpf_map *map)
10084{
10085 return map->numa_node;
10086}
10087
10088int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10089{
10090 if (map_is_created(map))
10091 return libbpf_err(-EBUSY);
10092 map->numa_node = numa_node;
10093 return 0;
10094}
10095
10096__u32 bpf_map__key_size(const struct bpf_map *map)
10097{
10098 return map->def.key_size;
10099}
10100
10101int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10102{
10103 if (map_is_created(map))
10104 return libbpf_err(-EBUSY);
10105 map->def.key_size = size;
10106 return 0;
10107}
10108
10109__u32 bpf_map__value_size(const struct bpf_map *map)
10110{
10111 return map->def.value_size;
10112}
10113
10114static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10115{
10116 struct btf *btf;
10117 struct btf_type *datasec_type, *var_type;
10118 struct btf_var_secinfo *var;
10119 const struct btf_type *array_type;
10120 const struct btf_array *array;
10121 int vlen, element_sz, new_array_id;
10122 __u32 nr_elements;
10123
10124 /* check btf existence */
10125 btf = bpf_object__btf(map->obj);
10126 if (!btf)
10127 return -ENOENT;
10128
10129 /* verify map is datasec */
10130 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10131 if (!btf_is_datasec(datasec_type)) {
10132 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10133 bpf_map__name(map));
10134 return -EINVAL;
10135 }
10136
10137 /* verify datasec has at least one var */
10138 vlen = btf_vlen(datasec_type);
10139 if (vlen == 0) {
10140 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10141 bpf_map__name(map));
10142 return -EINVAL;
10143 }
10144
10145 /* verify last var in the datasec is an array */
10146 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10147 var_type = btf_type_by_id(btf, var->type);
10148 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10149 if (!btf_is_array(array_type)) {
10150 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10151 bpf_map__name(map));
10152 return -EINVAL;
10153 }
10154
10155 /* verify request size aligns with array */
10156 array = btf_array(array_type);
10157 element_sz = btf__resolve_size(btf, array->type);
10158 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10159 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10160 bpf_map__name(map), element_sz, size);
10161 return -EINVAL;
10162 }
10163
10164 /* create a new array based on the existing array, but with new length */
10165 nr_elements = (size - var->offset) / element_sz;
10166 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10167 if (new_array_id < 0)
10168 return new_array_id;
10169
10170 /* adding a new btf type invalidates existing pointers to btf objects,
10171 * so refresh pointers before proceeding
10172 */
10173 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10174 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10175 var_type = btf_type_by_id(btf, var->type);
10176
10177 /* finally update btf info */
10178 datasec_type->size = size;
10179 var->size = size - var->offset;
10180 var_type->type = new_array_id;
10181
10182 return 0;
10183}
10184
10185int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10186{
10187 if (map->obj->loaded || map->reused)
10188 return libbpf_err(-EBUSY);
10189
10190 if (map->mmaped) {
10191 int err;
10192 size_t mmap_old_sz, mmap_new_sz;
10193
10194 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
10195 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
10196 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10197 if (err) {
10198 pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10199 bpf_map__name(map), err);
10200 return err;
10201 }
10202 err = map_btf_datasec_resize(map, size);
10203 if (err && err != -ENOENT) {
10204 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10205 bpf_map__name(map), err);
10206 map->btf_value_type_id = 0;
10207 map->btf_key_type_id = 0;
10208 }
10209 }
10210
10211 map->def.value_size = size;
10212 return 0;
10213}
10214
10215__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10216{
10217 return map ? map->btf_key_type_id : 0;
10218}
10219
10220__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10221{
10222 return map ? map->btf_value_type_id : 0;
10223}
10224
10225int bpf_map__set_initial_value(struct bpf_map *map,
10226 const void *data, size_t size)
10227{
10228 if (map->obj->loaded || map->reused)
10229 return libbpf_err(-EBUSY);
10230
10231 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
10232 size != map->def.value_size)
10233 return libbpf_err(-EINVAL);
10234
10235 memcpy(map->mmaped, data, size);
10236 return 0;
10237}
10238
10239void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
10240{
10241 if (!map->mmaped)
10242 return NULL;
10243 *psize = map->def.value_size;
10244 return map->mmaped;
10245}
10246
10247bool bpf_map__is_internal(const struct bpf_map *map)
10248{
10249 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10250}
10251
10252__u32 bpf_map__ifindex(const struct bpf_map *map)
10253{
10254 return map->map_ifindex;
10255}
10256
10257int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10258{
10259 if (map_is_created(map))
10260 return libbpf_err(-EBUSY);
10261 map->map_ifindex = ifindex;
10262 return 0;
10263}
10264
10265int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10266{
10267 if (!bpf_map_type__is_map_in_map(map->def.type)) {
10268 pr_warn("error: unsupported map type\n");
10269 return libbpf_err(-EINVAL);
10270 }
10271 if (map->inner_map_fd != -1) {
10272 pr_warn("error: inner_map_fd already specified\n");
10273 return libbpf_err(-EINVAL);
10274 }
10275 if (map->inner_map) {
10276 bpf_map__destroy(map->inner_map);
10277 zfree(&map->inner_map);
10278 }
10279 map->inner_map_fd = fd;
10280 return 0;
10281}
10282
10283static struct bpf_map *
10284__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10285{
10286 ssize_t idx;
10287 struct bpf_map *s, *e;
10288
10289 if (!obj || !obj->maps)
10290 return errno = EINVAL, NULL;
10291
10292 s = obj->maps;
10293 e = obj->maps + obj->nr_maps;
10294
10295 if ((m < s) || (m >= e)) {
10296 pr_warn("error in %s: map handler doesn't belong to object\n",
10297 __func__);
10298 return errno = EINVAL, NULL;
10299 }
10300
10301 idx = (m - obj->maps) + i;
10302 if (idx >= obj->nr_maps || idx < 0)
10303 return NULL;
10304 return &obj->maps[idx];
10305}
10306
10307struct bpf_map *
10308bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10309{
10310 if (prev == NULL)
10311 return obj->maps;
10312
10313 return __bpf_map__iter(prev, obj, 1);
10314}
10315
10316struct bpf_map *
10317bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10318{
10319 if (next == NULL) {
10320 if (!obj->nr_maps)
10321 return NULL;
10322 return obj->maps + obj->nr_maps - 1;
10323 }
10324
10325 return __bpf_map__iter(next, obj, -1);
10326}
10327
10328struct bpf_map *
10329bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10330{
10331 struct bpf_map *pos;
10332
10333 bpf_object__for_each_map(pos, obj) {
10334 /* if it's a special internal map name (which always starts
10335 * with dot) then check if that special name matches the
10336 * real map name (ELF section name)
10337 */
10338 if (name[0] == '.') {
10339 if (pos->real_name && strcmp(pos->real_name, name) == 0)
10340 return pos;
10341 continue;
10342 }
10343 /* otherwise map name has to be an exact match */
10344 if (map_uses_real_name(pos)) {
10345 if (strcmp(pos->real_name, name) == 0)
10346 return pos;
10347 continue;
10348 }
10349 if (strcmp(pos->name, name) == 0)
10350 return pos;
10351 }
10352 return errno = ENOENT, NULL;
10353}
10354
10355int
10356bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10357{
10358 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10359}
10360
10361static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10362 size_t value_sz, bool check_value_sz)
10363{
10364 if (!map_is_created(map)) /* map is not yet created */
10365 return -ENOENT;
10366
10367 if (map->def.key_size != key_sz) {
10368 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10369 map->name, key_sz, map->def.key_size);
10370 return -EINVAL;
10371 }
10372
10373 if (!check_value_sz)
10374 return 0;
10375
10376 switch (map->def.type) {
10377 case BPF_MAP_TYPE_PERCPU_ARRAY:
10378 case BPF_MAP_TYPE_PERCPU_HASH:
10379 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10380 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10381 int num_cpu = libbpf_num_possible_cpus();
10382 size_t elem_sz = roundup(map->def.value_size, 8);
10383
10384 if (value_sz != num_cpu * elem_sz) {
10385 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10386 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10387 return -EINVAL;
10388 }
10389 break;
10390 }
10391 default:
10392 if (map->def.value_size != value_sz) {
10393 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10394 map->name, value_sz, map->def.value_size);
10395 return -EINVAL;
10396 }
10397 break;
10398 }
10399 return 0;
10400}
10401
10402int bpf_map__lookup_elem(const struct bpf_map *map,
10403 const void *key, size_t key_sz,
10404 void *value, size_t value_sz, __u64 flags)
10405{
10406 int err;
10407
10408 err = validate_map_op(map, key_sz, value_sz, true);
10409 if (err)
10410 return libbpf_err(err);
10411
10412 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10413}
10414
10415int bpf_map__update_elem(const struct bpf_map *map,
10416 const void *key, size_t key_sz,
10417 const void *value, size_t value_sz, __u64 flags)
10418{
10419 int err;
10420
10421 err = validate_map_op(map, key_sz, value_sz, true);
10422 if (err)
10423 return libbpf_err(err);
10424
10425 return bpf_map_update_elem(map->fd, key, value, flags);
10426}
10427
10428int bpf_map__delete_elem(const struct bpf_map *map,
10429 const void *key, size_t key_sz, __u64 flags)
10430{
10431 int err;
10432
10433 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10434 if (err)
10435 return libbpf_err(err);
10436
10437 return bpf_map_delete_elem_flags(map->fd, key, flags);
10438}
10439
10440int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10441 const void *key, size_t key_sz,
10442 void *value, size_t value_sz, __u64 flags)
10443{
10444 int err;
10445
10446 err = validate_map_op(map, key_sz, value_sz, true);
10447 if (err)
10448 return libbpf_err(err);
10449
10450 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10451}
10452
10453int bpf_map__get_next_key(const struct bpf_map *map,
10454 const void *cur_key, void *next_key, size_t key_sz)
10455{
10456 int err;
10457
10458 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10459 if (err)
10460 return libbpf_err(err);
10461
10462 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10463}
10464
10465long libbpf_get_error(const void *ptr)
10466{
10467 if (!IS_ERR_OR_NULL(ptr))
10468 return 0;
10469
10470 if (IS_ERR(ptr))
10471 errno = -PTR_ERR(ptr);
10472
10473 /* If ptr == NULL, then errno should be already set by the failing
10474 * API, because libbpf never returns NULL on success and it now always
10475 * sets errno on error. So no extra errno handling for ptr == NULL
10476 * case.
10477 */
10478 return -errno;
10479}
10480
10481/* Replace link's underlying BPF program with the new one */
10482int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10483{
10484 int ret;
10485
10486 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10487 return libbpf_err_errno(ret);
10488}
10489
10490/* Release "ownership" of underlying BPF resource (typically, BPF program
10491 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10492 * link, when destructed through bpf_link__destroy() call won't attempt to
10493 * detach/unregisted that BPF resource. This is useful in situations where,
10494 * say, attached BPF program has to outlive userspace program that attached it
10495 * in the system. Depending on type of BPF program, though, there might be
10496 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10497 * exit of userspace program doesn't trigger automatic detachment and clean up
10498 * inside the kernel.
10499 */
10500void bpf_link__disconnect(struct bpf_link *link)
10501{
10502 link->disconnected = true;
10503}
10504
10505int bpf_link__destroy(struct bpf_link *link)
10506{
10507 int err = 0;
10508
10509 if (IS_ERR_OR_NULL(link))
10510 return 0;
10511
10512 if (!link->disconnected && link->detach)
10513 err = link->detach(link);
10514 if (link->pin_path)
10515 free(link->pin_path);
10516 if (link->dealloc)
10517 link->dealloc(link);
10518 else
10519 free(link);
10520
10521 return libbpf_err(err);
10522}
10523
10524int bpf_link__fd(const struct bpf_link *link)
10525{
10526 return link->fd;
10527}
10528
10529const char *bpf_link__pin_path(const struct bpf_link *link)
10530{
10531 return link->pin_path;
10532}
10533
10534static int bpf_link__detach_fd(struct bpf_link *link)
10535{
10536 return libbpf_err_errno(close(link->fd));
10537}
10538
10539struct bpf_link *bpf_link__open(const char *path)
10540{
10541 struct bpf_link *link;
10542 int fd;
10543
10544 fd = bpf_obj_get(path);
10545 if (fd < 0) {
10546 fd = -errno;
10547 pr_warn("failed to open link at %s: %d\n", path, fd);
10548 return libbpf_err_ptr(fd);
10549 }
10550
10551 link = calloc(1, sizeof(*link));
10552 if (!link) {
10553 close(fd);
10554 return libbpf_err_ptr(-ENOMEM);
10555 }
10556 link->detach = &bpf_link__detach_fd;
10557 link->fd = fd;
10558
10559 link->pin_path = strdup(path);
10560 if (!link->pin_path) {
10561 bpf_link__destroy(link);
10562 return libbpf_err_ptr(-ENOMEM);
10563 }
10564
10565 return link;
10566}
10567
10568int bpf_link__detach(struct bpf_link *link)
10569{
10570 return bpf_link_detach(link->fd) ? -errno : 0;
10571}
10572
10573int bpf_link__pin(struct bpf_link *link, const char *path)
10574{
10575 int err;
10576
10577 if (link->pin_path)
10578 return libbpf_err(-EBUSY);
10579 err = make_parent_dir(path);
10580 if (err)
10581 return libbpf_err(err);
10582 err = check_path(path);
10583 if (err)
10584 return libbpf_err(err);
10585
10586 link->pin_path = strdup(path);
10587 if (!link->pin_path)
10588 return libbpf_err(-ENOMEM);
10589
10590 if (bpf_obj_pin(link->fd, link->pin_path)) {
10591 err = -errno;
10592 zfree(&link->pin_path);
10593 return libbpf_err(err);
10594 }
10595
10596 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10597 return 0;
10598}
10599
10600int bpf_link__unpin(struct bpf_link *link)
10601{
10602 int err;
10603
10604 if (!link->pin_path)
10605 return libbpf_err(-EINVAL);
10606
10607 err = unlink(link->pin_path);
10608 if (err != 0)
10609 return -errno;
10610
10611 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10612 zfree(&link->pin_path);
10613 return 0;
10614}
10615
10616struct bpf_link_perf {
10617 struct bpf_link link;
10618 int perf_event_fd;
10619 /* legacy kprobe support: keep track of probe identifier and type */
10620 char *legacy_probe_name;
10621 bool legacy_is_kprobe;
10622 bool legacy_is_retprobe;
10623};
10624
10625static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10626static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10627
10628static int bpf_link_perf_detach(struct bpf_link *link)
10629{
10630 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10631 int err = 0;
10632
10633 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10634 err = -errno;
10635
10636 if (perf_link->perf_event_fd != link->fd)
10637 close(perf_link->perf_event_fd);
10638 close(link->fd);
10639
10640 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10641 if (perf_link->legacy_probe_name) {
10642 if (perf_link->legacy_is_kprobe) {
10643 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10644 perf_link->legacy_is_retprobe);
10645 } else {
10646 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10647 perf_link->legacy_is_retprobe);
10648 }
10649 }
10650
10651 return err;
10652}
10653
10654static void bpf_link_perf_dealloc(struct bpf_link *link)
10655{
10656 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10657
10658 free(perf_link->legacy_probe_name);
10659 free(perf_link);
10660}
10661
10662struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10663 const struct bpf_perf_event_opts *opts)
10664{
10665 char errmsg[STRERR_BUFSIZE];
10666 struct bpf_link_perf *link;
10667 int prog_fd, link_fd = -1, err;
10668 bool force_ioctl_attach;
10669
10670 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10671 return libbpf_err_ptr(-EINVAL);
10672
10673 if (pfd < 0) {
10674 pr_warn("prog '%s': invalid perf event FD %d\n",
10675 prog->name, pfd);
10676 return libbpf_err_ptr(-EINVAL);
10677 }
10678 prog_fd = bpf_program__fd(prog);
10679 if (prog_fd < 0) {
10680 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10681 prog->name);
10682 return libbpf_err_ptr(-EINVAL);
10683 }
10684
10685 link = calloc(1, sizeof(*link));
10686 if (!link)
10687 return libbpf_err_ptr(-ENOMEM);
10688 link->link.detach = &bpf_link_perf_detach;
10689 link->link.dealloc = &bpf_link_perf_dealloc;
10690 link->perf_event_fd = pfd;
10691
10692 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10693 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10694 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10695 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10696
10697 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10698 if (link_fd < 0) {
10699 err = -errno;
10700 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10701 prog->name, pfd,
10702 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10703 goto err_out;
10704 }
10705 link->link.fd = link_fd;
10706 } else {
10707 if (OPTS_GET(opts, bpf_cookie, 0)) {
10708 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10709 err = -EOPNOTSUPP;
10710 goto err_out;
10711 }
10712
10713 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10714 err = -errno;
10715 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10716 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10717 if (err == -EPROTO)
10718 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10719 prog->name, pfd);
10720 goto err_out;
10721 }
10722 link->link.fd = pfd;
10723 }
10724 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10725 err = -errno;
10726 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10727 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10728 goto err_out;
10729 }
10730
10731 return &link->link;
10732err_out:
10733 if (link_fd >= 0)
10734 close(link_fd);
10735 free(link);
10736 return libbpf_err_ptr(err);
10737}
10738
10739struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10740{
10741 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10742}
10743
10744/*
10745 * this function is expected to parse integer in the range of [0, 2^31-1] from
10746 * given file using scanf format string fmt. If actual parsed value is
10747 * negative, the result might be indistinguishable from error
10748 */
10749static int parse_uint_from_file(const char *file, const char *fmt)
10750{
10751 char buf[STRERR_BUFSIZE];
10752 int err, ret;
10753 FILE *f;
10754
10755 f = fopen(file, "re");
10756 if (!f) {
10757 err = -errno;
10758 pr_debug("failed to open '%s': %s\n", file,
10759 libbpf_strerror_r(err, buf, sizeof(buf)));
10760 return err;
10761 }
10762 err = fscanf(f, fmt, &ret);
10763 if (err != 1) {
10764 err = err == EOF ? -EIO : -errno;
10765 pr_debug("failed to parse '%s': %s\n", file,
10766 libbpf_strerror_r(err, buf, sizeof(buf)));
10767 fclose(f);
10768 return err;
10769 }
10770 fclose(f);
10771 return ret;
10772}
10773
10774static int determine_kprobe_perf_type(void)
10775{
10776 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10777
10778 return parse_uint_from_file(file, "%d\n");
10779}
10780
10781static int determine_uprobe_perf_type(void)
10782{
10783 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10784
10785 return parse_uint_from_file(file, "%d\n");
10786}
10787
10788static int determine_kprobe_retprobe_bit(void)
10789{
10790 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10791
10792 return parse_uint_from_file(file, "config:%d\n");
10793}
10794
10795static int determine_uprobe_retprobe_bit(void)
10796{
10797 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10798
10799 return parse_uint_from_file(file, "config:%d\n");
10800}
10801
10802#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10803#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10804
10805static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10806 uint64_t offset, int pid, size_t ref_ctr_off)
10807{
10808 const size_t attr_sz = sizeof(struct perf_event_attr);
10809 struct perf_event_attr attr;
10810 char errmsg[STRERR_BUFSIZE];
10811 int type, pfd;
10812
10813 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10814 return -EINVAL;
10815
10816 memset(&attr, 0, attr_sz);
10817
10818 type = uprobe ? determine_uprobe_perf_type()
10819 : determine_kprobe_perf_type();
10820 if (type < 0) {
10821 pr_warn("failed to determine %s perf type: %s\n",
10822 uprobe ? "uprobe" : "kprobe",
10823 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10824 return type;
10825 }
10826 if (retprobe) {
10827 int bit = uprobe ? determine_uprobe_retprobe_bit()
10828 : determine_kprobe_retprobe_bit();
10829
10830 if (bit < 0) {
10831 pr_warn("failed to determine %s retprobe bit: %s\n",
10832 uprobe ? "uprobe" : "kprobe",
10833 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10834 return bit;
10835 }
10836 attr.config |= 1 << bit;
10837 }
10838 attr.size = attr_sz;
10839 attr.type = type;
10840 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10841 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10842 attr.config2 = offset; /* kprobe_addr or probe_offset */
10843
10844 /* pid filter is meaningful only for uprobes */
10845 pfd = syscall(__NR_perf_event_open, &attr,
10846 pid < 0 ? -1 : pid /* pid */,
10847 pid == -1 ? 0 : -1 /* cpu */,
10848 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10849 return pfd >= 0 ? pfd : -errno;
10850}
10851
10852static int append_to_file(const char *file, const char *fmt, ...)
10853{
10854 int fd, n, err = 0;
10855 va_list ap;
10856 char buf[1024];
10857
10858 va_start(ap, fmt);
10859 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10860 va_end(ap);
10861
10862 if (n < 0 || n >= sizeof(buf))
10863 return -EINVAL;
10864
10865 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10866 if (fd < 0)
10867 return -errno;
10868
10869 if (write(fd, buf, n) < 0)
10870 err = -errno;
10871
10872 close(fd);
10873 return err;
10874}
10875
10876#define DEBUGFS "/sys/kernel/debug/tracing"
10877#define TRACEFS "/sys/kernel/tracing"
10878
10879static bool use_debugfs(void)
10880{
10881 static int has_debugfs = -1;
10882
10883 if (has_debugfs < 0)
10884 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10885
10886 return has_debugfs == 1;
10887}
10888
10889static const char *tracefs_path(void)
10890{
10891 return use_debugfs() ? DEBUGFS : TRACEFS;
10892}
10893
10894static const char *tracefs_kprobe_events(void)
10895{
10896 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10897}
10898
10899static const char *tracefs_uprobe_events(void)
10900{
10901 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10902}
10903
10904static const char *tracefs_available_filter_functions(void)
10905{
10906 return use_debugfs() ? DEBUGFS"/available_filter_functions"
10907 : TRACEFS"/available_filter_functions";
10908}
10909
10910static const char *tracefs_available_filter_functions_addrs(void)
10911{
10912 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10913 : TRACEFS"/available_filter_functions_addrs";
10914}
10915
10916static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10917 const char *kfunc_name, size_t offset)
10918{
10919 static int index = 0;
10920 int i;
10921
10922 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10923 __sync_fetch_and_add(&index, 1));
10924
10925 /* sanitize binary_path in the probe name */
10926 for (i = 0; buf[i]; i++) {
10927 if (!isalnum(buf[i]))
10928 buf[i] = '_';
10929 }
10930}
10931
10932static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10933 const char *kfunc_name, size_t offset)
10934{
10935 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10936 retprobe ? 'r' : 'p',
10937 retprobe ? "kretprobes" : "kprobes",
10938 probe_name, kfunc_name, offset);
10939}
10940
10941static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10942{
10943 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10944 retprobe ? "kretprobes" : "kprobes", probe_name);
10945}
10946
10947static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10948{
10949 char file[256];
10950
10951 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10952 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10953
10954 return parse_uint_from_file(file, "%d\n");
10955}
10956
10957static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10958 const char *kfunc_name, size_t offset, int pid)
10959{
10960 const size_t attr_sz = sizeof(struct perf_event_attr);
10961 struct perf_event_attr attr;
10962 char errmsg[STRERR_BUFSIZE];
10963 int type, pfd, err;
10964
10965 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10966 if (err < 0) {
10967 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10968 kfunc_name, offset,
10969 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10970 return err;
10971 }
10972 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10973 if (type < 0) {
10974 err = type;
10975 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10976 kfunc_name, offset,
10977 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10978 goto err_clean_legacy;
10979 }
10980
10981 memset(&attr, 0, attr_sz);
10982 attr.size = attr_sz;
10983 attr.config = type;
10984 attr.type = PERF_TYPE_TRACEPOINT;
10985
10986 pfd = syscall(__NR_perf_event_open, &attr,
10987 pid < 0 ? -1 : pid, /* pid */
10988 pid == -1 ? 0 : -1, /* cpu */
10989 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10990 if (pfd < 0) {
10991 err = -errno;
10992 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10993 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10994 goto err_clean_legacy;
10995 }
10996 return pfd;
10997
10998err_clean_legacy:
10999 /* Clear the newly added legacy kprobe_event */
11000 remove_kprobe_event_legacy(probe_name, retprobe);
11001 return err;
11002}
11003
11004static const char *arch_specific_syscall_pfx(void)
11005{
11006#if defined(__x86_64__)
11007 return "x64";
11008#elif defined(__i386__)
11009 return "ia32";
11010#elif defined(__s390x__)
11011 return "s390x";
11012#elif defined(__s390__)
11013 return "s390";
11014#elif defined(__arm__)
11015 return "arm";
11016#elif defined(__aarch64__)
11017 return "arm64";
11018#elif defined(__mips__)
11019 return "mips";
11020#elif defined(__riscv)
11021 return "riscv";
11022#elif defined(__powerpc__)
11023 return "powerpc";
11024#elif defined(__powerpc64__)
11025 return "powerpc64";
11026#else
11027 return NULL;
11028#endif
11029}
11030
11031static int probe_kern_syscall_wrapper(void)
11032{
11033 char syscall_name[64];
11034 const char *ksys_pfx;
11035
11036 ksys_pfx = arch_specific_syscall_pfx();
11037 if (!ksys_pfx)
11038 return 0;
11039
11040 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11041
11042 if (determine_kprobe_perf_type() >= 0) {
11043 int pfd;
11044
11045 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11046 if (pfd >= 0)
11047 close(pfd);
11048
11049 return pfd >= 0 ? 1 : 0;
11050 } else { /* legacy mode */
11051 char probe_name[128];
11052
11053 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11054 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11055 return 0;
11056
11057 (void)remove_kprobe_event_legacy(probe_name, false);
11058 return 1;
11059 }
11060}
11061
11062struct bpf_link *
11063bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11064 const char *func_name,
11065 const struct bpf_kprobe_opts *opts)
11066{
11067 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11068 enum probe_attach_mode attach_mode;
11069 char errmsg[STRERR_BUFSIZE];
11070 char *legacy_probe = NULL;
11071 struct bpf_link *link;
11072 size_t offset;
11073 bool retprobe, legacy;
11074 int pfd, err;
11075
11076 if (!OPTS_VALID(opts, bpf_kprobe_opts))
11077 return libbpf_err_ptr(-EINVAL);
11078
11079 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11080 retprobe = OPTS_GET(opts, retprobe, false);
11081 offset = OPTS_GET(opts, offset, 0);
11082 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11083
11084 legacy = determine_kprobe_perf_type() < 0;
11085 switch (attach_mode) {
11086 case PROBE_ATTACH_MODE_LEGACY:
11087 legacy = true;
11088 pe_opts.force_ioctl_attach = true;
11089 break;
11090 case PROBE_ATTACH_MODE_PERF:
11091 if (legacy)
11092 return libbpf_err_ptr(-ENOTSUP);
11093 pe_opts.force_ioctl_attach = true;
11094 break;
11095 case PROBE_ATTACH_MODE_LINK:
11096 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11097 return libbpf_err_ptr(-ENOTSUP);
11098 break;
11099 case PROBE_ATTACH_MODE_DEFAULT:
11100 break;
11101 default:
11102 return libbpf_err_ptr(-EINVAL);
11103 }
11104
11105 if (!legacy) {
11106 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11107 func_name, offset,
11108 -1 /* pid */, 0 /* ref_ctr_off */);
11109 } else {
11110 char probe_name[256];
11111
11112 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11113 func_name, offset);
11114
11115 legacy_probe = strdup(probe_name);
11116 if (!legacy_probe)
11117 return libbpf_err_ptr(-ENOMEM);
11118
11119 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11120 offset, -1 /* pid */);
11121 }
11122 if (pfd < 0) {
11123 err = -errno;
11124 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11125 prog->name, retprobe ? "kretprobe" : "kprobe",
11126 func_name, offset,
11127 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11128 goto err_out;
11129 }
11130 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11131 err = libbpf_get_error(link);
11132 if (err) {
11133 close(pfd);
11134 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11135 prog->name, retprobe ? "kretprobe" : "kprobe",
11136 func_name, offset,
11137 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11138 goto err_clean_legacy;
11139 }
11140 if (legacy) {
11141 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11142
11143 perf_link->legacy_probe_name = legacy_probe;
11144 perf_link->legacy_is_kprobe = true;
11145 perf_link->legacy_is_retprobe = retprobe;
11146 }
11147
11148 return link;
11149
11150err_clean_legacy:
11151 if (legacy)
11152 remove_kprobe_event_legacy(legacy_probe, retprobe);
11153err_out:
11154 free(legacy_probe);
11155 return libbpf_err_ptr(err);
11156}
11157
11158struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11159 bool retprobe,
11160 const char *func_name)
11161{
11162 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11163 .retprobe = retprobe,
11164 );
11165
11166 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11167}
11168
11169struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11170 const char *syscall_name,
11171 const struct bpf_ksyscall_opts *opts)
11172{
11173 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11174 char func_name[128];
11175
11176 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11177 return libbpf_err_ptr(-EINVAL);
11178
11179 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11180 /* arch_specific_syscall_pfx() should never return NULL here
11181 * because it is guarded by kernel_supports(). However, since
11182 * compiler does not know that we have an explicit conditional
11183 * as well.
11184 */
11185 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11186 arch_specific_syscall_pfx() ? : "", syscall_name);
11187 } else {
11188 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11189 }
11190
11191 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11192 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11193
11194 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11195}
11196
11197/* Adapted from perf/util/string.c */
11198bool glob_match(const char *str, const char *pat)
11199{
11200 while (*str && *pat && *pat != '*') {
11201 if (*pat == '?') { /* Matches any single character */
11202 str++;
11203 pat++;
11204 continue;
11205 }
11206 if (*str != *pat)
11207 return false;
11208 str++;
11209 pat++;
11210 }
11211 /* Check wild card */
11212 if (*pat == '*') {
11213 while (*pat == '*')
11214 pat++;
11215 if (!*pat) /* Tail wild card matches all */
11216 return true;
11217 while (*str)
11218 if (glob_match(str++, pat))
11219 return true;
11220 }
11221 return !*str && !*pat;
11222}
11223
11224struct kprobe_multi_resolve {
11225 const char *pattern;
11226 unsigned long *addrs;
11227 size_t cap;
11228 size_t cnt;
11229};
11230
11231struct avail_kallsyms_data {
11232 char **syms;
11233 size_t cnt;
11234 struct kprobe_multi_resolve *res;
11235};
11236
11237static int avail_func_cmp(const void *a, const void *b)
11238{
11239 return strcmp(*(const char **)a, *(const char **)b);
11240}
11241
11242static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11243 const char *sym_name, void *ctx)
11244{
11245 struct avail_kallsyms_data *data = ctx;
11246 struct kprobe_multi_resolve *res = data->res;
11247 int err;
11248
11249 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11250 return 0;
11251
11252 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11253 if (err)
11254 return err;
11255
11256 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11257 return 0;
11258}
11259
11260static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11261{
11262 const char *available_functions_file = tracefs_available_filter_functions();
11263 struct avail_kallsyms_data data;
11264 char sym_name[500];
11265 FILE *f;
11266 int err = 0, ret, i;
11267 char **syms = NULL;
11268 size_t cap = 0, cnt = 0;
11269
11270 f = fopen(available_functions_file, "re");
11271 if (!f) {
11272 err = -errno;
11273 pr_warn("failed to open %s: %d\n", available_functions_file, err);
11274 return err;
11275 }
11276
11277 while (true) {
11278 char *name;
11279
11280 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11281 if (ret == EOF && feof(f))
11282 break;
11283
11284 if (ret != 1) {
11285 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11286 err = -EINVAL;
11287 goto cleanup;
11288 }
11289
11290 if (!glob_match(sym_name, res->pattern))
11291 continue;
11292
11293 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11294 if (err)
11295 goto cleanup;
11296
11297 name = strdup(sym_name);
11298 if (!name) {
11299 err = -errno;
11300 goto cleanup;
11301 }
11302
11303 syms[cnt++] = name;
11304 }
11305
11306 /* no entries found, bail out */
11307 if (cnt == 0) {
11308 err = -ENOENT;
11309 goto cleanup;
11310 }
11311
11312 /* sort available functions */
11313 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11314
11315 data.syms = syms;
11316 data.res = res;
11317 data.cnt = cnt;
11318 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11319
11320 if (res->cnt == 0)
11321 err = -ENOENT;
11322
11323cleanup:
11324 for (i = 0; i < cnt; i++)
11325 free((char *)syms[i]);
11326 free(syms);
11327
11328 fclose(f);
11329 return err;
11330}
11331
11332static bool has_available_filter_functions_addrs(void)
11333{
11334 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11335}
11336
11337static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11338{
11339 const char *available_path = tracefs_available_filter_functions_addrs();
11340 char sym_name[500];
11341 FILE *f;
11342 int ret, err = 0;
11343 unsigned long long sym_addr;
11344
11345 f = fopen(available_path, "re");
11346 if (!f) {
11347 err = -errno;
11348 pr_warn("failed to open %s: %d\n", available_path, err);
11349 return err;
11350 }
11351
11352 while (true) {
11353 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11354 if (ret == EOF && feof(f))
11355 break;
11356
11357 if (ret != 2) {
11358 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11359 ret);
11360 err = -EINVAL;
11361 goto cleanup;
11362 }
11363
11364 if (!glob_match(sym_name, res->pattern))
11365 continue;
11366
11367 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11368 sizeof(*res->addrs), res->cnt + 1);
11369 if (err)
11370 goto cleanup;
11371
11372 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11373 }
11374
11375 if (res->cnt == 0)
11376 err = -ENOENT;
11377
11378cleanup:
11379 fclose(f);
11380 return err;
11381}
11382
11383struct bpf_link *
11384bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11385 const char *pattern,
11386 const struct bpf_kprobe_multi_opts *opts)
11387{
11388 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11389 struct kprobe_multi_resolve res = {
11390 .pattern = pattern,
11391 };
11392 struct bpf_link *link = NULL;
11393 char errmsg[STRERR_BUFSIZE];
11394 const unsigned long *addrs;
11395 int err, link_fd, prog_fd;
11396 const __u64 *cookies;
11397 const char **syms;
11398 bool retprobe;
11399 size_t cnt;
11400
11401 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11402 return libbpf_err_ptr(-EINVAL);
11403
11404 syms = OPTS_GET(opts, syms, false);
11405 addrs = OPTS_GET(opts, addrs, false);
11406 cnt = OPTS_GET(opts, cnt, false);
11407 cookies = OPTS_GET(opts, cookies, false);
11408
11409 if (!pattern && !addrs && !syms)
11410 return libbpf_err_ptr(-EINVAL);
11411 if (pattern && (addrs || syms || cookies || cnt))
11412 return libbpf_err_ptr(-EINVAL);
11413 if (!pattern && !cnt)
11414 return libbpf_err_ptr(-EINVAL);
11415 if (addrs && syms)
11416 return libbpf_err_ptr(-EINVAL);
11417
11418 if (pattern) {
11419 if (has_available_filter_functions_addrs())
11420 err = libbpf_available_kprobes_parse(&res);
11421 else
11422 err = libbpf_available_kallsyms_parse(&res);
11423 if (err)
11424 goto error;
11425 addrs = res.addrs;
11426 cnt = res.cnt;
11427 }
11428
11429 retprobe = OPTS_GET(opts, retprobe, false);
11430
11431 lopts.kprobe_multi.syms = syms;
11432 lopts.kprobe_multi.addrs = addrs;
11433 lopts.kprobe_multi.cookies = cookies;
11434 lopts.kprobe_multi.cnt = cnt;
11435 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11436
11437 link = calloc(1, sizeof(*link));
11438 if (!link) {
11439 err = -ENOMEM;
11440 goto error;
11441 }
11442 link->detach = &bpf_link__detach_fd;
11443
11444 prog_fd = bpf_program__fd(prog);
11445 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11446 if (link_fd < 0) {
11447 err = -errno;
11448 pr_warn("prog '%s': failed to attach: %s\n",
11449 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11450 goto error;
11451 }
11452 link->fd = link_fd;
11453 free(res.addrs);
11454 return link;
11455
11456error:
11457 free(link);
11458 free(res.addrs);
11459 return libbpf_err_ptr(err);
11460}
11461
11462static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11463{
11464 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11465 unsigned long offset = 0;
11466 const char *func_name;
11467 char *func;
11468 int n;
11469
11470 *link = NULL;
11471
11472 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11473 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11474 return 0;
11475
11476 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11477 if (opts.retprobe)
11478 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11479 else
11480 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11481
11482 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11483 if (n < 1) {
11484 pr_warn("kprobe name is invalid: %s\n", func_name);
11485 return -EINVAL;
11486 }
11487 if (opts.retprobe && offset != 0) {
11488 free(func);
11489 pr_warn("kretprobes do not support offset specification\n");
11490 return -EINVAL;
11491 }
11492
11493 opts.offset = offset;
11494 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11495 free(func);
11496 return libbpf_get_error(*link);
11497}
11498
11499static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11500{
11501 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11502 const char *syscall_name;
11503
11504 *link = NULL;
11505
11506 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11507 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11508 return 0;
11509
11510 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11511 if (opts.retprobe)
11512 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11513 else
11514 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11515
11516 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11517 return *link ? 0 : -errno;
11518}
11519
11520static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11521{
11522 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11523 const char *spec;
11524 char *pattern;
11525 int n;
11526
11527 *link = NULL;
11528
11529 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11530 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11531 strcmp(prog->sec_name, "kretprobe.multi") == 0)
11532 return 0;
11533
11534 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11535 if (opts.retprobe)
11536 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11537 else
11538 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11539
11540 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11541 if (n < 1) {
11542 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11543 return -EINVAL;
11544 }
11545
11546 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11547 free(pattern);
11548 return libbpf_get_error(*link);
11549}
11550
11551static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11552{
11553 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11554 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11555 int n, ret = -EINVAL;
11556
11557 *link = NULL;
11558
11559 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11560 &probe_type, &binary_path, &func_name);
11561 switch (n) {
11562 case 1:
11563 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11564 ret = 0;
11565 break;
11566 case 3:
11567 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11568 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11569 ret = libbpf_get_error(*link);
11570 break;
11571 default:
11572 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11573 prog->sec_name);
11574 break;
11575 }
11576 free(probe_type);
11577 free(binary_path);
11578 free(func_name);
11579 return ret;
11580}
11581
11582static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11583 const char *binary_path, uint64_t offset)
11584{
11585 int i;
11586
11587 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11588
11589 /* sanitize binary_path in the probe name */
11590 for (i = 0; buf[i]; i++) {
11591 if (!isalnum(buf[i]))
11592 buf[i] = '_';
11593 }
11594}
11595
11596static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11597 const char *binary_path, size_t offset)
11598{
11599 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11600 retprobe ? 'r' : 'p',
11601 retprobe ? "uretprobes" : "uprobes",
11602 probe_name, binary_path, offset);
11603}
11604
11605static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11606{
11607 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11608 retprobe ? "uretprobes" : "uprobes", probe_name);
11609}
11610
11611static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11612{
11613 char file[512];
11614
11615 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11616 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11617
11618 return parse_uint_from_file(file, "%d\n");
11619}
11620
11621static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11622 const char *binary_path, size_t offset, int pid)
11623{
11624 const size_t attr_sz = sizeof(struct perf_event_attr);
11625 struct perf_event_attr attr;
11626 int type, pfd, err;
11627
11628 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11629 if (err < 0) {
11630 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11631 binary_path, (size_t)offset, err);
11632 return err;
11633 }
11634 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11635 if (type < 0) {
11636 err = type;
11637 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11638 binary_path, offset, err);
11639 goto err_clean_legacy;
11640 }
11641
11642 memset(&attr, 0, attr_sz);
11643 attr.size = attr_sz;
11644 attr.config = type;
11645 attr.type = PERF_TYPE_TRACEPOINT;
11646
11647 pfd = syscall(__NR_perf_event_open, &attr,
11648 pid < 0 ? -1 : pid, /* pid */
11649 pid == -1 ? 0 : -1, /* cpu */
11650 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11651 if (pfd < 0) {
11652 err = -errno;
11653 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11654 goto err_clean_legacy;
11655 }
11656 return pfd;
11657
11658err_clean_legacy:
11659 /* Clear the newly added legacy uprobe_event */
11660 remove_uprobe_event_legacy(probe_name, retprobe);
11661 return err;
11662}
11663
11664/* Find offset of function name in archive specified by path. Currently
11665 * supported are .zip files that do not compress their contents, as used on
11666 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11667 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11668 * library functions.
11669 *
11670 * An overview of the APK format specifically provided here:
11671 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11672 */
11673static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11674 const char *func_name)
11675{
11676 struct zip_archive *archive;
11677 struct zip_entry entry;
11678 long ret;
11679 Elf *elf;
11680
11681 archive = zip_archive_open(archive_path);
11682 if (IS_ERR(archive)) {
11683 ret = PTR_ERR(archive);
11684 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11685 return ret;
11686 }
11687
11688 ret = zip_archive_find_entry(archive, file_name, &entry);
11689 if (ret) {
11690 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11691 archive_path, ret);
11692 goto out;
11693 }
11694 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11695 (unsigned long)entry.data_offset);
11696
11697 if (entry.compression) {
11698 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11699 archive_path);
11700 ret = -LIBBPF_ERRNO__FORMAT;
11701 goto out;
11702 }
11703
11704 elf = elf_memory((void *)entry.data, entry.data_length);
11705 if (!elf) {
11706 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11707 elf_errmsg(-1));
11708 ret = -LIBBPF_ERRNO__LIBELF;
11709 goto out;
11710 }
11711
11712 ret = elf_find_func_offset(elf, file_name, func_name);
11713 if (ret > 0) {
11714 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11715 func_name, file_name, archive_path, entry.data_offset, ret,
11716 ret + entry.data_offset);
11717 ret += entry.data_offset;
11718 }
11719 elf_end(elf);
11720
11721out:
11722 zip_archive_close(archive);
11723 return ret;
11724}
11725
11726static const char *arch_specific_lib_paths(void)
11727{
11728 /*
11729 * Based on https://packages.debian.org/sid/libc6.
11730 *
11731 * Assume that the traced program is built for the same architecture
11732 * as libbpf, which should cover the vast majority of cases.
11733 */
11734#if defined(__x86_64__)
11735 return "/lib/x86_64-linux-gnu";
11736#elif defined(__i386__)
11737 return "/lib/i386-linux-gnu";
11738#elif defined(__s390x__)
11739 return "/lib/s390x-linux-gnu";
11740#elif defined(__s390__)
11741 return "/lib/s390-linux-gnu";
11742#elif defined(__arm__) && defined(__SOFTFP__)
11743 return "/lib/arm-linux-gnueabi";
11744#elif defined(__arm__) && !defined(__SOFTFP__)
11745 return "/lib/arm-linux-gnueabihf";
11746#elif defined(__aarch64__)
11747 return "/lib/aarch64-linux-gnu";
11748#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11749 return "/lib/mips64el-linux-gnuabi64";
11750#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11751 return "/lib/mipsel-linux-gnu";
11752#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11753 return "/lib/powerpc64le-linux-gnu";
11754#elif defined(__sparc__) && defined(__arch64__)
11755 return "/lib/sparc64-linux-gnu";
11756#elif defined(__riscv) && __riscv_xlen == 64
11757 return "/lib/riscv64-linux-gnu";
11758#else
11759 return NULL;
11760#endif
11761}
11762
11763/* Get full path to program/shared library. */
11764static int resolve_full_path(const char *file, char *result, size_t result_sz)
11765{
11766 const char *search_paths[3] = {};
11767 int i, perm;
11768
11769 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11770 search_paths[0] = getenv("LD_LIBRARY_PATH");
11771 search_paths[1] = "/usr/lib64:/usr/lib";
11772 search_paths[2] = arch_specific_lib_paths();
11773 perm = R_OK;
11774 } else {
11775 search_paths[0] = getenv("PATH");
11776 search_paths[1] = "/usr/bin:/usr/sbin";
11777 perm = R_OK | X_OK;
11778 }
11779
11780 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11781 const char *s;
11782
11783 if (!search_paths[i])
11784 continue;
11785 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11786 char *next_path;
11787 int seg_len;
11788
11789 if (s[0] == ':')
11790 s++;
11791 next_path = strchr(s, ':');
11792 seg_len = next_path ? next_path - s : strlen(s);
11793 if (!seg_len)
11794 continue;
11795 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11796 /* ensure it has required permissions */
11797 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11798 continue;
11799 pr_debug("resolved '%s' to '%s'\n", file, result);
11800 return 0;
11801 }
11802 }
11803 return -ENOENT;
11804}
11805
11806struct bpf_link *
11807bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11808 pid_t pid,
11809 const char *path,
11810 const char *func_pattern,
11811 const struct bpf_uprobe_multi_opts *opts)
11812{
11813 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11814 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11815 unsigned long *resolved_offsets = NULL;
11816 int err = 0, link_fd, prog_fd;
11817 struct bpf_link *link = NULL;
11818 char errmsg[STRERR_BUFSIZE];
11819 char full_path[PATH_MAX];
11820 const __u64 *cookies;
11821 const char **syms;
11822 size_t cnt;
11823
11824 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11825 return libbpf_err_ptr(-EINVAL);
11826
11827 syms = OPTS_GET(opts, syms, NULL);
11828 offsets = OPTS_GET(opts, offsets, NULL);
11829 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11830 cookies = OPTS_GET(opts, cookies, NULL);
11831 cnt = OPTS_GET(opts, cnt, 0);
11832
11833 /*
11834 * User can specify 2 mutually exclusive set of inputs:
11835 *
11836 * 1) use only path/func_pattern/pid arguments
11837 *
11838 * 2) use path/pid with allowed combinations of:
11839 * syms/offsets/ref_ctr_offsets/cookies/cnt
11840 *
11841 * - syms and offsets are mutually exclusive
11842 * - ref_ctr_offsets and cookies are optional
11843 *
11844 * Any other usage results in error.
11845 */
11846
11847 if (!path)
11848 return libbpf_err_ptr(-EINVAL);
11849 if (!func_pattern && cnt == 0)
11850 return libbpf_err_ptr(-EINVAL);
11851
11852 if (func_pattern) {
11853 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11854 return libbpf_err_ptr(-EINVAL);
11855 } else {
11856 if (!!syms == !!offsets)
11857 return libbpf_err_ptr(-EINVAL);
11858 }
11859
11860 if (func_pattern) {
11861 if (!strchr(path, '/')) {
11862 err = resolve_full_path(path, full_path, sizeof(full_path));
11863 if (err) {
11864 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11865 prog->name, path, err);
11866 return libbpf_err_ptr(err);
11867 }
11868 path = full_path;
11869 }
11870
11871 err = elf_resolve_pattern_offsets(path, func_pattern,
11872 &resolved_offsets, &cnt);
11873 if (err < 0)
11874 return libbpf_err_ptr(err);
11875 offsets = resolved_offsets;
11876 } else if (syms) {
11877 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11878 if (err < 0)
11879 return libbpf_err_ptr(err);
11880 offsets = resolved_offsets;
11881 }
11882
11883 lopts.uprobe_multi.path = path;
11884 lopts.uprobe_multi.offsets = offsets;
11885 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11886 lopts.uprobe_multi.cookies = cookies;
11887 lopts.uprobe_multi.cnt = cnt;
11888 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11889
11890 if (pid == 0)
11891 pid = getpid();
11892 if (pid > 0)
11893 lopts.uprobe_multi.pid = pid;
11894
11895 link = calloc(1, sizeof(*link));
11896 if (!link) {
11897 err = -ENOMEM;
11898 goto error;
11899 }
11900 link->detach = &bpf_link__detach_fd;
11901
11902 prog_fd = bpf_program__fd(prog);
11903 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11904 if (link_fd < 0) {
11905 err = -errno;
11906 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11907 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11908 goto error;
11909 }
11910 link->fd = link_fd;
11911 free(resolved_offsets);
11912 return link;
11913
11914error:
11915 free(resolved_offsets);
11916 free(link);
11917 return libbpf_err_ptr(err);
11918}
11919
11920LIBBPF_API struct bpf_link *
11921bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11922 const char *binary_path, size_t func_offset,
11923 const struct bpf_uprobe_opts *opts)
11924{
11925 const char *archive_path = NULL, *archive_sep = NULL;
11926 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11927 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11928 enum probe_attach_mode attach_mode;
11929 char full_path[PATH_MAX];
11930 struct bpf_link *link;
11931 size_t ref_ctr_off;
11932 int pfd, err;
11933 bool retprobe, legacy;
11934 const char *func_name;
11935
11936 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11937 return libbpf_err_ptr(-EINVAL);
11938
11939 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11940 retprobe = OPTS_GET(opts, retprobe, false);
11941 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11942 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11943
11944 if (!binary_path)
11945 return libbpf_err_ptr(-EINVAL);
11946
11947 /* Check if "binary_path" refers to an archive. */
11948 archive_sep = strstr(binary_path, "!/");
11949 if (archive_sep) {
11950 full_path[0] = '\0';
11951 libbpf_strlcpy(full_path, binary_path,
11952 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11953 archive_path = full_path;
11954 binary_path = archive_sep + 2;
11955 } else if (!strchr(binary_path, '/')) {
11956 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11957 if (err) {
11958 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11959 prog->name, binary_path, err);
11960 return libbpf_err_ptr(err);
11961 }
11962 binary_path = full_path;
11963 }
11964 func_name = OPTS_GET(opts, func_name, NULL);
11965 if (func_name) {
11966 long sym_off;
11967
11968 if (archive_path) {
11969 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11970 func_name);
11971 binary_path = archive_path;
11972 } else {
11973 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11974 }
11975 if (sym_off < 0)
11976 return libbpf_err_ptr(sym_off);
11977 func_offset += sym_off;
11978 }
11979
11980 legacy = determine_uprobe_perf_type() < 0;
11981 switch (attach_mode) {
11982 case PROBE_ATTACH_MODE_LEGACY:
11983 legacy = true;
11984 pe_opts.force_ioctl_attach = true;
11985 break;
11986 case PROBE_ATTACH_MODE_PERF:
11987 if (legacy)
11988 return libbpf_err_ptr(-ENOTSUP);
11989 pe_opts.force_ioctl_attach = true;
11990 break;
11991 case PROBE_ATTACH_MODE_LINK:
11992 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11993 return libbpf_err_ptr(-ENOTSUP);
11994 break;
11995 case PROBE_ATTACH_MODE_DEFAULT:
11996 break;
11997 default:
11998 return libbpf_err_ptr(-EINVAL);
11999 }
12000
12001 if (!legacy) {
12002 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12003 func_offset, pid, ref_ctr_off);
12004 } else {
12005 char probe_name[PATH_MAX + 64];
12006
12007 if (ref_ctr_off)
12008 return libbpf_err_ptr(-EINVAL);
12009
12010 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12011 binary_path, func_offset);
12012
12013 legacy_probe = strdup(probe_name);
12014 if (!legacy_probe)
12015 return libbpf_err_ptr(-ENOMEM);
12016
12017 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12018 binary_path, func_offset, pid);
12019 }
12020 if (pfd < 0) {
12021 err = -errno;
12022 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12023 prog->name, retprobe ? "uretprobe" : "uprobe",
12024 binary_path, func_offset,
12025 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12026 goto err_out;
12027 }
12028
12029 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12030 err = libbpf_get_error(link);
12031 if (err) {
12032 close(pfd);
12033 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12034 prog->name, retprobe ? "uretprobe" : "uprobe",
12035 binary_path, func_offset,
12036 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12037 goto err_clean_legacy;
12038 }
12039 if (legacy) {
12040 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12041
12042 perf_link->legacy_probe_name = legacy_probe;
12043 perf_link->legacy_is_kprobe = false;
12044 perf_link->legacy_is_retprobe = retprobe;
12045 }
12046 return link;
12047
12048err_clean_legacy:
12049 if (legacy)
12050 remove_uprobe_event_legacy(legacy_probe, retprobe);
12051err_out:
12052 free(legacy_probe);
12053 return libbpf_err_ptr(err);
12054}
12055
12056/* Format of u[ret]probe section definition supporting auto-attach:
12057 * u[ret]probe/binary:function[+offset]
12058 *
12059 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12060 * full binary path via bpf_program__attach_uprobe_opts.
12061 *
12062 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12063 * specified (and auto-attach is not possible) or the above format is specified for
12064 * auto-attach.
12065 */
12066static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12067{
12068 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12069 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12070 int n, c, ret = -EINVAL;
12071 long offset = 0;
12072
12073 *link = NULL;
12074
12075 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12076 &probe_type, &binary_path, &func_name);
12077 switch (n) {
12078 case 1:
12079 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12080 ret = 0;
12081 break;
12082 case 2:
12083 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12084 prog->name, prog->sec_name);
12085 break;
12086 case 3:
12087 /* check if user specifies `+offset`, if yes, this should be
12088 * the last part of the string, make sure sscanf read to EOL
12089 */
12090 func_off = strrchr(func_name, '+');
12091 if (func_off) {
12092 n = sscanf(func_off, "+%li%n", &offset, &c);
12093 if (n == 1 && *(func_off + c) == '\0')
12094 func_off[0] = '\0';
12095 else
12096 offset = 0;
12097 }
12098 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12099 strcmp(probe_type, "uretprobe.s") == 0;
12100 if (opts.retprobe && offset != 0) {
12101 pr_warn("prog '%s': uretprobes do not support offset specification\n",
12102 prog->name);
12103 break;
12104 }
12105 opts.func_name = func_name;
12106 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12107 ret = libbpf_get_error(*link);
12108 break;
12109 default:
12110 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12111 prog->sec_name);
12112 break;
12113 }
12114 free(probe_type);
12115 free(binary_path);
12116 free(func_name);
12117
12118 return ret;
12119}
12120
12121struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12122 bool retprobe, pid_t pid,
12123 const char *binary_path,
12124 size_t func_offset)
12125{
12126 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12127
12128 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12129}
12130
12131struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12132 pid_t pid, const char *binary_path,
12133 const char *usdt_provider, const char *usdt_name,
12134 const struct bpf_usdt_opts *opts)
12135{
12136 char resolved_path[512];
12137 struct bpf_object *obj = prog->obj;
12138 struct bpf_link *link;
12139 __u64 usdt_cookie;
12140 int err;
12141
12142 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12143 return libbpf_err_ptr(-EINVAL);
12144
12145 if (bpf_program__fd(prog) < 0) {
12146 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12147 prog->name);
12148 return libbpf_err_ptr(-EINVAL);
12149 }
12150
12151 if (!binary_path)
12152 return libbpf_err_ptr(-EINVAL);
12153
12154 if (!strchr(binary_path, '/')) {
12155 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12156 if (err) {
12157 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12158 prog->name, binary_path, err);
12159 return libbpf_err_ptr(err);
12160 }
12161 binary_path = resolved_path;
12162 }
12163
12164 /* USDT manager is instantiated lazily on first USDT attach. It will
12165 * be destroyed together with BPF object in bpf_object__close().
12166 */
12167 if (IS_ERR(obj->usdt_man))
12168 return libbpf_ptr(obj->usdt_man);
12169 if (!obj->usdt_man) {
12170 obj->usdt_man = usdt_manager_new(obj);
12171 if (IS_ERR(obj->usdt_man))
12172 return libbpf_ptr(obj->usdt_man);
12173 }
12174
12175 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12176 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12177 usdt_provider, usdt_name, usdt_cookie);
12178 err = libbpf_get_error(link);
12179 if (err)
12180 return libbpf_err_ptr(err);
12181 return link;
12182}
12183
12184static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12185{
12186 char *path = NULL, *provider = NULL, *name = NULL;
12187 const char *sec_name;
12188 int n, err;
12189
12190 sec_name = bpf_program__section_name(prog);
12191 if (strcmp(sec_name, "usdt") == 0) {
12192 /* no auto-attach for just SEC("usdt") */
12193 *link = NULL;
12194 return 0;
12195 }
12196
12197 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12198 if (n != 3) {
12199 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12200 sec_name);
12201 err = -EINVAL;
12202 } else {
12203 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12204 provider, name, NULL);
12205 err = libbpf_get_error(*link);
12206 }
12207 free(path);
12208 free(provider);
12209 free(name);
12210 return err;
12211}
12212
12213static int determine_tracepoint_id(const char *tp_category,
12214 const char *tp_name)
12215{
12216 char file[PATH_MAX];
12217 int ret;
12218
12219 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12220 tracefs_path(), tp_category, tp_name);
12221 if (ret < 0)
12222 return -errno;
12223 if (ret >= sizeof(file)) {
12224 pr_debug("tracepoint %s/%s path is too long\n",
12225 tp_category, tp_name);
12226 return -E2BIG;
12227 }
12228 return parse_uint_from_file(file, "%d\n");
12229}
12230
12231static int perf_event_open_tracepoint(const char *tp_category,
12232 const char *tp_name)
12233{
12234 const size_t attr_sz = sizeof(struct perf_event_attr);
12235 struct perf_event_attr attr;
12236 char errmsg[STRERR_BUFSIZE];
12237 int tp_id, pfd, err;
12238
12239 tp_id = determine_tracepoint_id(tp_category, tp_name);
12240 if (tp_id < 0) {
12241 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12242 tp_category, tp_name,
12243 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12244 return tp_id;
12245 }
12246
12247 memset(&attr, 0, attr_sz);
12248 attr.type = PERF_TYPE_TRACEPOINT;
12249 attr.size = attr_sz;
12250 attr.config = tp_id;
12251
12252 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12253 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12254 if (pfd < 0) {
12255 err = -errno;
12256 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12257 tp_category, tp_name,
12258 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12259 return err;
12260 }
12261 return pfd;
12262}
12263
12264struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12265 const char *tp_category,
12266 const char *tp_name,
12267 const struct bpf_tracepoint_opts *opts)
12268{
12269 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12270 char errmsg[STRERR_BUFSIZE];
12271 struct bpf_link *link;
12272 int pfd, err;
12273
12274 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12275 return libbpf_err_ptr(-EINVAL);
12276
12277 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12278
12279 pfd = perf_event_open_tracepoint(tp_category, tp_name);
12280 if (pfd < 0) {
12281 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12282 prog->name, tp_category, tp_name,
12283 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12284 return libbpf_err_ptr(pfd);
12285 }
12286 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12287 err = libbpf_get_error(link);
12288 if (err) {
12289 close(pfd);
12290 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12291 prog->name, tp_category, tp_name,
12292 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12293 return libbpf_err_ptr(err);
12294 }
12295 return link;
12296}
12297
12298struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12299 const char *tp_category,
12300 const char *tp_name)
12301{
12302 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12303}
12304
12305static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12306{
12307 char *sec_name, *tp_cat, *tp_name;
12308
12309 *link = NULL;
12310
12311 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12312 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12313 return 0;
12314
12315 sec_name = strdup(prog->sec_name);
12316 if (!sec_name)
12317 return -ENOMEM;
12318
12319 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12320 if (str_has_pfx(prog->sec_name, "tp/"))
12321 tp_cat = sec_name + sizeof("tp/") - 1;
12322 else
12323 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12324 tp_name = strchr(tp_cat, '/');
12325 if (!tp_name) {
12326 free(sec_name);
12327 return -EINVAL;
12328 }
12329 *tp_name = '\0';
12330 tp_name++;
12331
12332 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12333 free(sec_name);
12334 return libbpf_get_error(*link);
12335}
12336
12337struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12338 const char *tp_name)
12339{
12340 char errmsg[STRERR_BUFSIZE];
12341 struct bpf_link *link;
12342 int prog_fd, pfd;
12343
12344 prog_fd = bpf_program__fd(prog);
12345 if (prog_fd < 0) {
12346 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12347 return libbpf_err_ptr(-EINVAL);
12348 }
12349
12350 link = calloc(1, sizeof(*link));
12351 if (!link)
12352 return libbpf_err_ptr(-ENOMEM);
12353 link->detach = &bpf_link__detach_fd;
12354
12355 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12356 if (pfd < 0) {
12357 pfd = -errno;
12358 free(link);
12359 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12360 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12361 return libbpf_err_ptr(pfd);
12362 }
12363 link->fd = pfd;
12364 return link;
12365}
12366
12367static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12368{
12369 static const char *const prefixes[] = {
12370 "raw_tp",
12371 "raw_tracepoint",
12372 "raw_tp.w",
12373 "raw_tracepoint.w",
12374 };
12375 size_t i;
12376 const char *tp_name = NULL;
12377
12378 *link = NULL;
12379
12380 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12381 size_t pfx_len;
12382
12383 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12384 continue;
12385
12386 pfx_len = strlen(prefixes[i]);
12387 /* no auto-attach case of, e.g., SEC("raw_tp") */
12388 if (prog->sec_name[pfx_len] == '\0')
12389 return 0;
12390
12391 if (prog->sec_name[pfx_len] != '/')
12392 continue;
12393
12394 tp_name = prog->sec_name + pfx_len + 1;
12395 break;
12396 }
12397
12398 if (!tp_name) {
12399 pr_warn("prog '%s': invalid section name '%s'\n",
12400 prog->name, prog->sec_name);
12401 return -EINVAL;
12402 }
12403
12404 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12405 return libbpf_get_error(*link);
12406}
12407
12408/* Common logic for all BPF program types that attach to a btf_id */
12409static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12410 const struct bpf_trace_opts *opts)
12411{
12412 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12413 char errmsg[STRERR_BUFSIZE];
12414 struct bpf_link *link;
12415 int prog_fd, pfd;
12416
12417 if (!OPTS_VALID(opts, bpf_trace_opts))
12418 return libbpf_err_ptr(-EINVAL);
12419
12420 prog_fd = bpf_program__fd(prog);
12421 if (prog_fd < 0) {
12422 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12423 return libbpf_err_ptr(-EINVAL);
12424 }
12425
12426 link = calloc(1, sizeof(*link));
12427 if (!link)
12428 return libbpf_err_ptr(-ENOMEM);
12429 link->detach = &bpf_link__detach_fd;
12430
12431 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12432 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12433 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12434 if (pfd < 0) {
12435 pfd = -errno;
12436 free(link);
12437 pr_warn("prog '%s': failed to attach: %s\n",
12438 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12439 return libbpf_err_ptr(pfd);
12440 }
12441 link->fd = pfd;
12442 return link;
12443}
12444
12445struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12446{
12447 return bpf_program__attach_btf_id(prog, NULL);
12448}
12449
12450struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12451 const struct bpf_trace_opts *opts)
12452{
12453 return bpf_program__attach_btf_id(prog, opts);
12454}
12455
12456struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12457{
12458 return bpf_program__attach_btf_id(prog, NULL);
12459}
12460
12461static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12462{
12463 *link = bpf_program__attach_trace(prog);
12464 return libbpf_get_error(*link);
12465}
12466
12467static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12468{
12469 *link = bpf_program__attach_lsm(prog);
12470 return libbpf_get_error(*link);
12471}
12472
12473static struct bpf_link *
12474bpf_program_attach_fd(const struct bpf_program *prog,
12475 int target_fd, const char *target_name,
12476 const struct bpf_link_create_opts *opts)
12477{
12478 enum bpf_attach_type attach_type;
12479 char errmsg[STRERR_BUFSIZE];
12480 struct bpf_link *link;
12481 int prog_fd, link_fd;
12482
12483 prog_fd = bpf_program__fd(prog);
12484 if (prog_fd < 0) {
12485 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12486 return libbpf_err_ptr(-EINVAL);
12487 }
12488
12489 link = calloc(1, sizeof(*link));
12490 if (!link)
12491 return libbpf_err_ptr(-ENOMEM);
12492 link->detach = &bpf_link__detach_fd;
12493
12494 attach_type = bpf_program__expected_attach_type(prog);
12495 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12496 if (link_fd < 0) {
12497 link_fd = -errno;
12498 free(link);
12499 pr_warn("prog '%s': failed to attach to %s: %s\n",
12500 prog->name, target_name,
12501 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12502 return libbpf_err_ptr(link_fd);
12503 }
12504 link->fd = link_fd;
12505 return link;
12506}
12507
12508struct bpf_link *
12509bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12510{
12511 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12512}
12513
12514struct bpf_link *
12515bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12516{
12517 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12518}
12519
12520struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12521{
12522 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12523 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12524}
12525
12526struct bpf_link *
12527bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12528 const struct bpf_tcx_opts *opts)
12529{
12530 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12531 __u32 relative_id;
12532 int relative_fd;
12533
12534 if (!OPTS_VALID(opts, bpf_tcx_opts))
12535 return libbpf_err_ptr(-EINVAL);
12536
12537 relative_id = OPTS_GET(opts, relative_id, 0);
12538 relative_fd = OPTS_GET(opts, relative_fd, 0);
12539
12540 /* validate we don't have unexpected combinations of non-zero fields */
12541 if (!ifindex) {
12542 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12543 prog->name);
12544 return libbpf_err_ptr(-EINVAL);
12545 }
12546 if (relative_fd && relative_id) {
12547 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12548 prog->name);
12549 return libbpf_err_ptr(-EINVAL);
12550 }
12551
12552 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12553 link_create_opts.tcx.relative_fd = relative_fd;
12554 link_create_opts.tcx.relative_id = relative_id;
12555 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12556
12557 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12558 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12559}
12560
12561struct bpf_link *
12562bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12563 const struct bpf_netkit_opts *opts)
12564{
12565 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12566 __u32 relative_id;
12567 int relative_fd;
12568
12569 if (!OPTS_VALID(opts, bpf_netkit_opts))
12570 return libbpf_err_ptr(-EINVAL);
12571
12572 relative_id = OPTS_GET(opts, relative_id, 0);
12573 relative_fd = OPTS_GET(opts, relative_fd, 0);
12574
12575 /* validate we don't have unexpected combinations of non-zero fields */
12576 if (!ifindex) {
12577 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12578 prog->name);
12579 return libbpf_err_ptr(-EINVAL);
12580 }
12581 if (relative_fd && relative_id) {
12582 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12583 prog->name);
12584 return libbpf_err_ptr(-EINVAL);
12585 }
12586
12587 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12588 link_create_opts.netkit.relative_fd = relative_fd;
12589 link_create_opts.netkit.relative_id = relative_id;
12590 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12591
12592 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12593}
12594
12595struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12596 int target_fd,
12597 const char *attach_func_name)
12598{
12599 int btf_id;
12600
12601 if (!!target_fd != !!attach_func_name) {
12602 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12603 prog->name);
12604 return libbpf_err_ptr(-EINVAL);
12605 }
12606
12607 if (prog->type != BPF_PROG_TYPE_EXT) {
12608 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12609 prog->name);
12610 return libbpf_err_ptr(-EINVAL);
12611 }
12612
12613 if (target_fd) {
12614 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12615
12616 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12617 if (btf_id < 0)
12618 return libbpf_err_ptr(btf_id);
12619
12620 target_opts.target_btf_id = btf_id;
12621
12622 return bpf_program_attach_fd(prog, target_fd, "freplace",
12623 &target_opts);
12624 } else {
12625 /* no target, so use raw_tracepoint_open for compatibility
12626 * with old kernels
12627 */
12628 return bpf_program__attach_trace(prog);
12629 }
12630}
12631
12632struct bpf_link *
12633bpf_program__attach_iter(const struct bpf_program *prog,
12634 const struct bpf_iter_attach_opts *opts)
12635{
12636 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12637 char errmsg[STRERR_BUFSIZE];
12638 struct bpf_link *link;
12639 int prog_fd, link_fd;
12640 __u32 target_fd = 0;
12641
12642 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12643 return libbpf_err_ptr(-EINVAL);
12644
12645 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12646 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12647
12648 prog_fd = bpf_program__fd(prog);
12649 if (prog_fd < 0) {
12650 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12651 return libbpf_err_ptr(-EINVAL);
12652 }
12653
12654 link = calloc(1, sizeof(*link));
12655 if (!link)
12656 return libbpf_err_ptr(-ENOMEM);
12657 link->detach = &bpf_link__detach_fd;
12658
12659 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12660 &link_create_opts);
12661 if (link_fd < 0) {
12662 link_fd = -errno;
12663 free(link);
12664 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12665 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12666 return libbpf_err_ptr(link_fd);
12667 }
12668 link->fd = link_fd;
12669 return link;
12670}
12671
12672static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12673{
12674 *link = bpf_program__attach_iter(prog, NULL);
12675 return libbpf_get_error(*link);
12676}
12677
12678struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12679 const struct bpf_netfilter_opts *opts)
12680{
12681 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12682 struct bpf_link *link;
12683 int prog_fd, link_fd;
12684
12685 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12686 return libbpf_err_ptr(-EINVAL);
12687
12688 prog_fd = bpf_program__fd(prog);
12689 if (prog_fd < 0) {
12690 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12691 return libbpf_err_ptr(-EINVAL);
12692 }
12693
12694 link = calloc(1, sizeof(*link));
12695 if (!link)
12696 return libbpf_err_ptr(-ENOMEM);
12697
12698 link->detach = &bpf_link__detach_fd;
12699
12700 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12701 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12702 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12703 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12704
12705 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12706 if (link_fd < 0) {
12707 char errmsg[STRERR_BUFSIZE];
12708
12709 link_fd = -errno;
12710 free(link);
12711 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12712 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12713 return libbpf_err_ptr(link_fd);
12714 }
12715 link->fd = link_fd;
12716
12717 return link;
12718}
12719
12720struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12721{
12722 struct bpf_link *link = NULL;
12723 int err;
12724
12725 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12726 return libbpf_err_ptr(-EOPNOTSUPP);
12727
12728 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12729 if (err)
12730 return libbpf_err_ptr(err);
12731
12732 /* When calling bpf_program__attach() explicitly, auto-attach support
12733 * is expected to work, so NULL returned link is considered an error.
12734 * This is different for skeleton's attach, see comment in
12735 * bpf_object__attach_skeleton().
12736 */
12737 if (!link)
12738 return libbpf_err_ptr(-EOPNOTSUPP);
12739
12740 return link;
12741}
12742
12743struct bpf_link_struct_ops {
12744 struct bpf_link link;
12745 int map_fd;
12746};
12747
12748static int bpf_link__detach_struct_ops(struct bpf_link *link)
12749{
12750 struct bpf_link_struct_ops *st_link;
12751 __u32 zero = 0;
12752
12753 st_link = container_of(link, struct bpf_link_struct_ops, link);
12754
12755 if (st_link->map_fd < 0)
12756 /* w/o a real link */
12757 return bpf_map_delete_elem(link->fd, &zero);
12758
12759 return close(link->fd);
12760}
12761
12762struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12763{
12764 struct bpf_link_struct_ops *link;
12765 __u32 zero = 0;
12766 int err, fd;
12767
12768 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12769 return libbpf_err_ptr(-EINVAL);
12770
12771 link = calloc(1, sizeof(*link));
12772 if (!link)
12773 return libbpf_err_ptr(-EINVAL);
12774
12775 /* kern_vdata should be prepared during the loading phase. */
12776 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12777 /* It can be EBUSY if the map has been used to create or
12778 * update a link before. We don't allow updating the value of
12779 * a struct_ops once it is set. That ensures that the value
12780 * never changed. So, it is safe to skip EBUSY.
12781 */
12782 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12783 free(link);
12784 return libbpf_err_ptr(err);
12785 }
12786
12787 link->link.detach = bpf_link__detach_struct_ops;
12788
12789 if (!(map->def.map_flags & BPF_F_LINK)) {
12790 /* w/o a real link */
12791 link->link.fd = map->fd;
12792 link->map_fd = -1;
12793 return &link->link;
12794 }
12795
12796 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12797 if (fd < 0) {
12798 free(link);
12799 return libbpf_err_ptr(fd);
12800 }
12801
12802 link->link.fd = fd;
12803 link->map_fd = map->fd;
12804
12805 return &link->link;
12806}
12807
12808/*
12809 * Swap the back struct_ops of a link with a new struct_ops map.
12810 */
12811int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12812{
12813 struct bpf_link_struct_ops *st_ops_link;
12814 __u32 zero = 0;
12815 int err;
12816
12817 if (!bpf_map__is_struct_ops(map) || !map_is_created(map))
12818 return -EINVAL;
12819
12820 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12821 /* Ensure the type of a link is correct */
12822 if (st_ops_link->map_fd < 0)
12823 return -EINVAL;
12824
12825 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12826 /* It can be EBUSY if the map has been used to create or
12827 * update a link before. We don't allow updating the value of
12828 * a struct_ops once it is set. That ensures that the value
12829 * never changed. So, it is safe to skip EBUSY.
12830 */
12831 if (err && err != -EBUSY)
12832 return err;
12833
12834 err = bpf_link_update(link->fd, map->fd, NULL);
12835 if (err < 0)
12836 return err;
12837
12838 st_ops_link->map_fd = map->fd;
12839
12840 return 0;
12841}
12842
12843typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12844 void *private_data);
12845
12846static enum bpf_perf_event_ret
12847perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12848 void **copy_mem, size_t *copy_size,
12849 bpf_perf_event_print_t fn, void *private_data)
12850{
12851 struct perf_event_mmap_page *header = mmap_mem;
12852 __u64 data_head = ring_buffer_read_head(header);
12853 __u64 data_tail = header->data_tail;
12854 void *base = ((__u8 *)header) + page_size;
12855 int ret = LIBBPF_PERF_EVENT_CONT;
12856 struct perf_event_header *ehdr;
12857 size_t ehdr_size;
12858
12859 while (data_head != data_tail) {
12860 ehdr = base + (data_tail & (mmap_size - 1));
12861 ehdr_size = ehdr->size;
12862
12863 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12864 void *copy_start = ehdr;
12865 size_t len_first = base + mmap_size - copy_start;
12866 size_t len_secnd = ehdr_size - len_first;
12867
12868 if (*copy_size < ehdr_size) {
12869 free(*copy_mem);
12870 *copy_mem = malloc(ehdr_size);
12871 if (!*copy_mem) {
12872 *copy_size = 0;
12873 ret = LIBBPF_PERF_EVENT_ERROR;
12874 break;
12875 }
12876 *copy_size = ehdr_size;
12877 }
12878
12879 memcpy(*copy_mem, copy_start, len_first);
12880 memcpy(*copy_mem + len_first, base, len_secnd);
12881 ehdr = *copy_mem;
12882 }
12883
12884 ret = fn(ehdr, private_data);
12885 data_tail += ehdr_size;
12886 if (ret != LIBBPF_PERF_EVENT_CONT)
12887 break;
12888 }
12889
12890 ring_buffer_write_tail(header, data_tail);
12891 return libbpf_err(ret);
12892}
12893
12894struct perf_buffer;
12895
12896struct perf_buffer_params {
12897 struct perf_event_attr *attr;
12898 /* if event_cb is specified, it takes precendence */
12899 perf_buffer_event_fn event_cb;
12900 /* sample_cb and lost_cb are higher-level common-case callbacks */
12901 perf_buffer_sample_fn sample_cb;
12902 perf_buffer_lost_fn lost_cb;
12903 void *ctx;
12904 int cpu_cnt;
12905 int *cpus;
12906 int *map_keys;
12907};
12908
12909struct perf_cpu_buf {
12910 struct perf_buffer *pb;
12911 void *base; /* mmap()'ed memory */
12912 void *buf; /* for reconstructing segmented data */
12913 size_t buf_size;
12914 int fd;
12915 int cpu;
12916 int map_key;
12917};
12918
12919struct perf_buffer {
12920 perf_buffer_event_fn event_cb;
12921 perf_buffer_sample_fn sample_cb;
12922 perf_buffer_lost_fn lost_cb;
12923 void *ctx; /* passed into callbacks */
12924
12925 size_t page_size;
12926 size_t mmap_size;
12927 struct perf_cpu_buf **cpu_bufs;
12928 struct epoll_event *events;
12929 int cpu_cnt; /* number of allocated CPU buffers */
12930 int epoll_fd; /* perf event FD */
12931 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12932};
12933
12934static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12935 struct perf_cpu_buf *cpu_buf)
12936{
12937 if (!cpu_buf)
12938 return;
12939 if (cpu_buf->base &&
12940 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12941 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12942 if (cpu_buf->fd >= 0) {
12943 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12944 close(cpu_buf->fd);
12945 }
12946 free(cpu_buf->buf);
12947 free(cpu_buf);
12948}
12949
12950void perf_buffer__free(struct perf_buffer *pb)
12951{
12952 int i;
12953
12954 if (IS_ERR_OR_NULL(pb))
12955 return;
12956 if (pb->cpu_bufs) {
12957 for (i = 0; i < pb->cpu_cnt; i++) {
12958 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12959
12960 if (!cpu_buf)
12961 continue;
12962
12963 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12964 perf_buffer__free_cpu_buf(pb, cpu_buf);
12965 }
12966 free(pb->cpu_bufs);
12967 }
12968 if (pb->epoll_fd >= 0)
12969 close(pb->epoll_fd);
12970 free(pb->events);
12971 free(pb);
12972}
12973
12974static struct perf_cpu_buf *
12975perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12976 int cpu, int map_key)
12977{
12978 struct perf_cpu_buf *cpu_buf;
12979 char msg[STRERR_BUFSIZE];
12980 int err;
12981
12982 cpu_buf = calloc(1, sizeof(*cpu_buf));
12983 if (!cpu_buf)
12984 return ERR_PTR(-ENOMEM);
12985
12986 cpu_buf->pb = pb;
12987 cpu_buf->cpu = cpu;
12988 cpu_buf->map_key = map_key;
12989
12990 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12991 -1, PERF_FLAG_FD_CLOEXEC);
12992 if (cpu_buf->fd < 0) {
12993 err = -errno;
12994 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12995 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12996 goto error;
12997 }
12998
12999 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13000 PROT_READ | PROT_WRITE, MAP_SHARED,
13001 cpu_buf->fd, 0);
13002 if (cpu_buf->base == MAP_FAILED) {
13003 cpu_buf->base = NULL;
13004 err = -errno;
13005 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13006 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13007 goto error;
13008 }
13009
13010 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13011 err = -errno;
13012 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13013 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13014 goto error;
13015 }
13016
13017 return cpu_buf;
13018
13019error:
13020 perf_buffer__free_cpu_buf(pb, cpu_buf);
13021 return (struct perf_cpu_buf *)ERR_PTR(err);
13022}
13023
13024static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13025 struct perf_buffer_params *p);
13026
13027struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13028 perf_buffer_sample_fn sample_cb,
13029 perf_buffer_lost_fn lost_cb,
13030 void *ctx,
13031 const struct perf_buffer_opts *opts)
13032{
13033 const size_t attr_sz = sizeof(struct perf_event_attr);
13034 struct perf_buffer_params p = {};
13035 struct perf_event_attr attr;
13036 __u32 sample_period;
13037
13038 if (!OPTS_VALID(opts, perf_buffer_opts))
13039 return libbpf_err_ptr(-EINVAL);
13040
13041 sample_period = OPTS_GET(opts, sample_period, 1);
13042 if (!sample_period)
13043 sample_period = 1;
13044
13045 memset(&attr, 0, attr_sz);
13046 attr.size = attr_sz;
13047 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13048 attr.type = PERF_TYPE_SOFTWARE;
13049 attr.sample_type = PERF_SAMPLE_RAW;
13050 attr.sample_period = sample_period;
13051 attr.wakeup_events = sample_period;
13052
13053 p.attr = &attr;
13054 p.sample_cb = sample_cb;
13055 p.lost_cb = lost_cb;
13056 p.ctx = ctx;
13057
13058 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13059}
13060
13061struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13062 struct perf_event_attr *attr,
13063 perf_buffer_event_fn event_cb, void *ctx,
13064 const struct perf_buffer_raw_opts *opts)
13065{
13066 struct perf_buffer_params p = {};
13067
13068 if (!attr)
13069 return libbpf_err_ptr(-EINVAL);
13070
13071 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13072 return libbpf_err_ptr(-EINVAL);
13073
13074 p.attr = attr;
13075 p.event_cb = event_cb;
13076 p.ctx = ctx;
13077 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13078 p.cpus = OPTS_GET(opts, cpus, NULL);
13079 p.map_keys = OPTS_GET(opts, map_keys, NULL);
13080
13081 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13082}
13083
13084static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13085 struct perf_buffer_params *p)
13086{
13087 const char *online_cpus_file = "/sys/devices/system/cpu/online";
13088 struct bpf_map_info map;
13089 char msg[STRERR_BUFSIZE];
13090 struct perf_buffer *pb;
13091 bool *online = NULL;
13092 __u32 map_info_len;
13093 int err, i, j, n;
13094
13095 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13096 pr_warn("page count should be power of two, but is %zu\n",
13097 page_cnt);
13098 return ERR_PTR(-EINVAL);
13099 }
13100
13101 /* best-effort sanity checks */
13102 memset(&map, 0, sizeof(map));
13103 map_info_len = sizeof(map);
13104 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13105 if (err) {
13106 err = -errno;
13107 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13108 * -EBADFD, -EFAULT, or -E2BIG on real error
13109 */
13110 if (err != -EINVAL) {
13111 pr_warn("failed to get map info for map FD %d: %s\n",
13112 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13113 return ERR_PTR(err);
13114 }
13115 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13116 map_fd);
13117 } else {
13118 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13119 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13120 map.name);
13121 return ERR_PTR(-EINVAL);
13122 }
13123 }
13124
13125 pb = calloc(1, sizeof(*pb));
13126 if (!pb)
13127 return ERR_PTR(-ENOMEM);
13128
13129 pb->event_cb = p->event_cb;
13130 pb->sample_cb = p->sample_cb;
13131 pb->lost_cb = p->lost_cb;
13132 pb->ctx = p->ctx;
13133
13134 pb->page_size = getpagesize();
13135 pb->mmap_size = pb->page_size * page_cnt;
13136 pb->map_fd = map_fd;
13137
13138 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13139 if (pb->epoll_fd < 0) {
13140 err = -errno;
13141 pr_warn("failed to create epoll instance: %s\n",
13142 libbpf_strerror_r(err, msg, sizeof(msg)));
13143 goto error;
13144 }
13145
13146 if (p->cpu_cnt > 0) {
13147 pb->cpu_cnt = p->cpu_cnt;
13148 } else {
13149 pb->cpu_cnt = libbpf_num_possible_cpus();
13150 if (pb->cpu_cnt < 0) {
13151 err = pb->cpu_cnt;
13152 goto error;
13153 }
13154 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13155 pb->cpu_cnt = map.max_entries;
13156 }
13157
13158 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13159 if (!pb->events) {
13160 err = -ENOMEM;
13161 pr_warn("failed to allocate events: out of memory\n");
13162 goto error;
13163 }
13164 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13165 if (!pb->cpu_bufs) {
13166 err = -ENOMEM;
13167 pr_warn("failed to allocate buffers: out of memory\n");
13168 goto error;
13169 }
13170
13171 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13172 if (err) {
13173 pr_warn("failed to get online CPU mask: %d\n", err);
13174 goto error;
13175 }
13176
13177 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13178 struct perf_cpu_buf *cpu_buf;
13179 int cpu, map_key;
13180
13181 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13182 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13183
13184 /* in case user didn't explicitly requested particular CPUs to
13185 * be attached to, skip offline/not present CPUs
13186 */
13187 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13188 continue;
13189
13190 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13191 if (IS_ERR(cpu_buf)) {
13192 err = PTR_ERR(cpu_buf);
13193 goto error;
13194 }
13195
13196 pb->cpu_bufs[j] = cpu_buf;
13197
13198 err = bpf_map_update_elem(pb->map_fd, &map_key,
13199 &cpu_buf->fd, 0);
13200 if (err) {
13201 err = -errno;
13202 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13203 cpu, map_key, cpu_buf->fd,
13204 libbpf_strerror_r(err, msg, sizeof(msg)));
13205 goto error;
13206 }
13207
13208 pb->events[j].events = EPOLLIN;
13209 pb->events[j].data.ptr = cpu_buf;
13210 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13211 &pb->events[j]) < 0) {
13212 err = -errno;
13213 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13214 cpu, cpu_buf->fd,
13215 libbpf_strerror_r(err, msg, sizeof(msg)));
13216 goto error;
13217 }
13218 j++;
13219 }
13220 pb->cpu_cnt = j;
13221 free(online);
13222
13223 return pb;
13224
13225error:
13226 free(online);
13227 if (pb)
13228 perf_buffer__free(pb);
13229 return ERR_PTR(err);
13230}
13231
13232struct perf_sample_raw {
13233 struct perf_event_header header;
13234 uint32_t size;
13235 char data[];
13236};
13237
13238struct perf_sample_lost {
13239 struct perf_event_header header;
13240 uint64_t id;
13241 uint64_t lost;
13242 uint64_t sample_id;
13243};
13244
13245static enum bpf_perf_event_ret
13246perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13247{
13248 struct perf_cpu_buf *cpu_buf = ctx;
13249 struct perf_buffer *pb = cpu_buf->pb;
13250 void *data = e;
13251
13252 /* user wants full control over parsing perf event */
13253 if (pb->event_cb)
13254 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13255
13256 switch (e->type) {
13257 case PERF_RECORD_SAMPLE: {
13258 struct perf_sample_raw *s = data;
13259
13260 if (pb->sample_cb)
13261 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13262 break;
13263 }
13264 case PERF_RECORD_LOST: {
13265 struct perf_sample_lost *s = data;
13266
13267 if (pb->lost_cb)
13268 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13269 break;
13270 }
13271 default:
13272 pr_warn("unknown perf sample type %d\n", e->type);
13273 return LIBBPF_PERF_EVENT_ERROR;
13274 }
13275 return LIBBPF_PERF_EVENT_CONT;
13276}
13277
13278static int perf_buffer__process_records(struct perf_buffer *pb,
13279 struct perf_cpu_buf *cpu_buf)
13280{
13281 enum bpf_perf_event_ret ret;
13282
13283 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13284 pb->page_size, &cpu_buf->buf,
13285 &cpu_buf->buf_size,
13286 perf_buffer__process_record, cpu_buf);
13287 if (ret != LIBBPF_PERF_EVENT_CONT)
13288 return ret;
13289 return 0;
13290}
13291
13292int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13293{
13294 return pb->epoll_fd;
13295}
13296
13297int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13298{
13299 int i, cnt, err;
13300
13301 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13302 if (cnt < 0)
13303 return -errno;
13304
13305 for (i = 0; i < cnt; i++) {
13306 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13307
13308 err = perf_buffer__process_records(pb, cpu_buf);
13309 if (err) {
13310 pr_warn("error while processing records: %d\n", err);
13311 return libbpf_err(err);
13312 }
13313 }
13314 return cnt;
13315}
13316
13317/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13318 * manager.
13319 */
13320size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13321{
13322 return pb->cpu_cnt;
13323}
13324
13325/*
13326 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13327 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13328 * select()/poll()/epoll() Linux syscalls.
13329 */
13330int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13331{
13332 struct perf_cpu_buf *cpu_buf;
13333
13334 if (buf_idx >= pb->cpu_cnt)
13335 return libbpf_err(-EINVAL);
13336
13337 cpu_buf = pb->cpu_bufs[buf_idx];
13338 if (!cpu_buf)
13339 return libbpf_err(-ENOENT);
13340
13341 return cpu_buf->fd;
13342}
13343
13344int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13345{
13346 struct perf_cpu_buf *cpu_buf;
13347
13348 if (buf_idx >= pb->cpu_cnt)
13349 return libbpf_err(-EINVAL);
13350
13351 cpu_buf = pb->cpu_bufs[buf_idx];
13352 if (!cpu_buf)
13353 return libbpf_err(-ENOENT);
13354
13355 *buf = cpu_buf->base;
13356 *buf_size = pb->mmap_size;
13357 return 0;
13358}
13359
13360/*
13361 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13362 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13363 * consume, do nothing and return success.
13364 * Returns:
13365 * - 0 on success;
13366 * - <0 on failure.
13367 */
13368int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13369{
13370 struct perf_cpu_buf *cpu_buf;
13371
13372 if (buf_idx >= pb->cpu_cnt)
13373 return libbpf_err(-EINVAL);
13374
13375 cpu_buf = pb->cpu_bufs[buf_idx];
13376 if (!cpu_buf)
13377 return libbpf_err(-ENOENT);
13378
13379 return perf_buffer__process_records(pb, cpu_buf);
13380}
13381
13382int perf_buffer__consume(struct perf_buffer *pb)
13383{
13384 int i, err;
13385
13386 for (i = 0; i < pb->cpu_cnt; i++) {
13387 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13388
13389 if (!cpu_buf)
13390 continue;
13391
13392 err = perf_buffer__process_records(pb, cpu_buf);
13393 if (err) {
13394 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13395 return libbpf_err(err);
13396 }
13397 }
13398 return 0;
13399}
13400
13401int bpf_program__set_attach_target(struct bpf_program *prog,
13402 int attach_prog_fd,
13403 const char *attach_func_name)
13404{
13405 int btf_obj_fd = 0, btf_id = 0, err;
13406
13407 if (!prog || attach_prog_fd < 0)
13408 return libbpf_err(-EINVAL);
13409
13410 if (prog->obj->loaded)
13411 return libbpf_err(-EINVAL);
13412
13413 if (attach_prog_fd && !attach_func_name) {
13414 /* remember attach_prog_fd and let bpf_program__load() find
13415 * BTF ID during the program load
13416 */
13417 prog->attach_prog_fd = attach_prog_fd;
13418 return 0;
13419 }
13420
13421 if (attach_prog_fd) {
13422 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13423 attach_prog_fd);
13424 if (btf_id < 0)
13425 return libbpf_err(btf_id);
13426 } else {
13427 if (!attach_func_name)
13428 return libbpf_err(-EINVAL);
13429
13430 /* load btf_vmlinux, if not yet */
13431 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13432 if (err)
13433 return libbpf_err(err);
13434 err = find_kernel_btf_id(prog->obj, attach_func_name,
13435 prog->expected_attach_type,
13436 &btf_obj_fd, &btf_id);
13437 if (err)
13438 return libbpf_err(err);
13439 }
13440
13441 prog->attach_btf_id = btf_id;
13442 prog->attach_btf_obj_fd = btf_obj_fd;
13443 prog->attach_prog_fd = attach_prog_fd;
13444 return 0;
13445}
13446
13447int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13448{
13449 int err = 0, n, len, start, end = -1;
13450 bool *tmp;
13451
13452 *mask = NULL;
13453 *mask_sz = 0;
13454
13455 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13456 while (*s) {
13457 if (*s == ',' || *s == '\n') {
13458 s++;
13459 continue;
13460 }
13461 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13462 if (n <= 0 || n > 2) {
13463 pr_warn("Failed to get CPU range %s: %d\n", s, n);
13464 err = -EINVAL;
13465 goto cleanup;
13466 } else if (n == 1) {
13467 end = start;
13468 }
13469 if (start < 0 || start > end) {
13470 pr_warn("Invalid CPU range [%d,%d] in %s\n",
13471 start, end, s);
13472 err = -EINVAL;
13473 goto cleanup;
13474 }
13475 tmp = realloc(*mask, end + 1);
13476 if (!tmp) {
13477 err = -ENOMEM;
13478 goto cleanup;
13479 }
13480 *mask = tmp;
13481 memset(tmp + *mask_sz, 0, start - *mask_sz);
13482 memset(tmp + start, 1, end - start + 1);
13483 *mask_sz = end + 1;
13484 s += len;
13485 }
13486 if (!*mask_sz) {
13487 pr_warn("Empty CPU range\n");
13488 return -EINVAL;
13489 }
13490 return 0;
13491cleanup:
13492 free(*mask);
13493 *mask = NULL;
13494 return err;
13495}
13496
13497int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13498{
13499 int fd, err = 0, len;
13500 char buf[128];
13501
13502 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13503 if (fd < 0) {
13504 err = -errno;
13505 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13506 return err;
13507 }
13508 len = read(fd, buf, sizeof(buf));
13509 close(fd);
13510 if (len <= 0) {
13511 err = len ? -errno : -EINVAL;
13512 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13513 return err;
13514 }
13515 if (len >= sizeof(buf)) {
13516 pr_warn("CPU mask is too big in file %s\n", fcpu);
13517 return -E2BIG;
13518 }
13519 buf[len] = '\0';
13520
13521 return parse_cpu_mask_str(buf, mask, mask_sz);
13522}
13523
13524int libbpf_num_possible_cpus(void)
13525{
13526 static const char *fcpu = "/sys/devices/system/cpu/possible";
13527 static int cpus;
13528 int err, n, i, tmp_cpus;
13529 bool *mask;
13530
13531 tmp_cpus = READ_ONCE(cpus);
13532 if (tmp_cpus > 0)
13533 return tmp_cpus;
13534
13535 err = parse_cpu_mask_file(fcpu, &mask, &n);
13536 if (err)
13537 return libbpf_err(err);
13538
13539 tmp_cpus = 0;
13540 for (i = 0; i < n; i++) {
13541 if (mask[i])
13542 tmp_cpus++;
13543 }
13544 free(mask);
13545
13546 WRITE_ONCE(cpus, tmp_cpus);
13547 return tmp_cpus;
13548}
13549
13550static int populate_skeleton_maps(const struct bpf_object *obj,
13551 struct bpf_map_skeleton *maps,
13552 size_t map_cnt)
13553{
13554 int i;
13555
13556 for (i = 0; i < map_cnt; i++) {
13557 struct bpf_map **map = maps[i].map;
13558 const char *name = maps[i].name;
13559 void **mmaped = maps[i].mmaped;
13560
13561 *map = bpf_object__find_map_by_name(obj, name);
13562 if (!*map) {
13563 pr_warn("failed to find skeleton map '%s'\n", name);
13564 return -ESRCH;
13565 }
13566
13567 /* externs shouldn't be pre-setup from user code */
13568 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13569 *mmaped = (*map)->mmaped;
13570 }
13571 return 0;
13572}
13573
13574static int populate_skeleton_progs(const struct bpf_object *obj,
13575 struct bpf_prog_skeleton *progs,
13576 size_t prog_cnt)
13577{
13578 int i;
13579
13580 for (i = 0; i < prog_cnt; i++) {
13581 struct bpf_program **prog = progs[i].prog;
13582 const char *name = progs[i].name;
13583
13584 *prog = bpf_object__find_program_by_name(obj, name);
13585 if (!*prog) {
13586 pr_warn("failed to find skeleton program '%s'\n", name);
13587 return -ESRCH;
13588 }
13589 }
13590 return 0;
13591}
13592
13593int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13594 const struct bpf_object_open_opts *opts)
13595{
13596 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13597 .object_name = s->name,
13598 );
13599 struct bpf_object *obj;
13600 int err;
13601
13602 /* Attempt to preserve opts->object_name, unless overriden by user
13603 * explicitly. Overwriting object name for skeletons is discouraged,
13604 * as it breaks global data maps, because they contain object name
13605 * prefix as their own map name prefix. When skeleton is generated,
13606 * bpftool is making an assumption that this name will stay the same.
13607 */
13608 if (opts) {
13609 memcpy(&skel_opts, opts, sizeof(*opts));
13610 if (!opts->object_name)
13611 skel_opts.object_name = s->name;
13612 }
13613
13614 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13615 err = libbpf_get_error(obj);
13616 if (err) {
13617 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13618 s->name, err);
13619 return libbpf_err(err);
13620 }
13621
13622 *s->obj = obj;
13623 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13624 if (err) {
13625 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13626 return libbpf_err(err);
13627 }
13628
13629 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13630 if (err) {
13631 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13632 return libbpf_err(err);
13633 }
13634
13635 return 0;
13636}
13637
13638int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13639{
13640 int err, len, var_idx, i;
13641 const char *var_name;
13642 const struct bpf_map *map;
13643 struct btf *btf;
13644 __u32 map_type_id;
13645 const struct btf_type *map_type, *var_type;
13646 const struct bpf_var_skeleton *var_skel;
13647 struct btf_var_secinfo *var;
13648
13649 if (!s->obj)
13650 return libbpf_err(-EINVAL);
13651
13652 btf = bpf_object__btf(s->obj);
13653 if (!btf) {
13654 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13655 bpf_object__name(s->obj));
13656 return libbpf_err(-errno);
13657 }
13658
13659 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13660 if (err) {
13661 pr_warn("failed to populate subskeleton maps: %d\n", err);
13662 return libbpf_err(err);
13663 }
13664
13665 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13666 if (err) {
13667 pr_warn("failed to populate subskeleton maps: %d\n", err);
13668 return libbpf_err(err);
13669 }
13670
13671 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13672 var_skel = &s->vars[var_idx];
13673 map = *var_skel->map;
13674 map_type_id = bpf_map__btf_value_type_id(map);
13675 map_type = btf__type_by_id(btf, map_type_id);
13676
13677 if (!btf_is_datasec(map_type)) {
13678 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13679 bpf_map__name(map),
13680 __btf_kind_str(btf_kind(map_type)));
13681 return libbpf_err(-EINVAL);
13682 }
13683
13684 len = btf_vlen(map_type);
13685 var = btf_var_secinfos(map_type);
13686 for (i = 0; i < len; i++, var++) {
13687 var_type = btf__type_by_id(btf, var->type);
13688 var_name = btf__name_by_offset(btf, var_type->name_off);
13689 if (strcmp(var_name, var_skel->name) == 0) {
13690 *var_skel->addr = map->mmaped + var->offset;
13691 break;
13692 }
13693 }
13694 }
13695 return 0;
13696}
13697
13698void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13699{
13700 if (!s)
13701 return;
13702 free(s->maps);
13703 free(s->progs);
13704 free(s->vars);
13705 free(s);
13706}
13707
13708int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13709{
13710 int i, err;
13711
13712 err = bpf_object__load(*s->obj);
13713 if (err) {
13714 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13715 return libbpf_err(err);
13716 }
13717
13718 for (i = 0; i < s->map_cnt; i++) {
13719 struct bpf_map *map = *s->maps[i].map;
13720 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13721 int prot, map_fd = map->fd;
13722 void **mmaped = s->maps[i].mmaped;
13723
13724 if (!mmaped)
13725 continue;
13726
13727 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13728 *mmaped = NULL;
13729 continue;
13730 }
13731
13732 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13733 prot = PROT_READ;
13734 else
13735 prot = PROT_READ | PROT_WRITE;
13736
13737 /* Remap anonymous mmap()-ed "map initialization image" as
13738 * a BPF map-backed mmap()-ed memory, but preserving the same
13739 * memory address. This will cause kernel to change process'
13740 * page table to point to a different piece of kernel memory,
13741 * but from userspace point of view memory address (and its
13742 * contents, being identical at this point) will stay the
13743 * same. This mapping will be released by bpf_object__close()
13744 * as per normal clean up procedure, so we don't need to worry
13745 * about it from skeleton's clean up perspective.
13746 */
13747 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13748 if (*mmaped == MAP_FAILED) {
13749 err = -errno;
13750 *mmaped = NULL;
13751 pr_warn("failed to re-mmap() map '%s': %d\n",
13752 bpf_map__name(map), err);
13753 return libbpf_err(err);
13754 }
13755 }
13756
13757 return 0;
13758}
13759
13760int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13761{
13762 int i, err;
13763
13764 for (i = 0; i < s->prog_cnt; i++) {
13765 struct bpf_program *prog = *s->progs[i].prog;
13766 struct bpf_link **link = s->progs[i].link;
13767
13768 if (!prog->autoload || !prog->autoattach)
13769 continue;
13770
13771 /* auto-attaching not supported for this program */
13772 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13773 continue;
13774
13775 /* if user already set the link manually, don't attempt auto-attach */
13776 if (*link)
13777 continue;
13778
13779 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13780 if (err) {
13781 pr_warn("prog '%s': failed to auto-attach: %d\n",
13782 bpf_program__name(prog), err);
13783 return libbpf_err(err);
13784 }
13785
13786 /* It's possible that for some SEC() definitions auto-attach
13787 * is supported in some cases (e.g., if definition completely
13788 * specifies target information), but is not in other cases.
13789 * SEC("uprobe") is one such case. If user specified target
13790 * binary and function name, such BPF program can be
13791 * auto-attached. But if not, it shouldn't trigger skeleton's
13792 * attach to fail. It should just be skipped.
13793 * attach_fn signals such case with returning 0 (no error) and
13794 * setting link to NULL.
13795 */
13796 }
13797
13798 return 0;
13799}
13800
13801void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13802{
13803 int i;
13804
13805 for (i = 0; i < s->prog_cnt; i++) {
13806 struct bpf_link **link = s->progs[i].link;
13807
13808 bpf_link__destroy(*link);
13809 *link = NULL;
13810 }
13811}
13812
13813void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13814{
13815 if (!s)
13816 return;
13817
13818 if (s->progs)
13819 bpf_object__detach_skeleton(s);
13820 if (s->obj)
13821 bpf_object__close(*s->obj);
13822 free(s->maps);
13823 free(s->progs);
13824 free(s);
13825}
1/*
2 * Common eBPF ELF object loading operations.
3 *
4 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
5 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
6 * Copyright (C) 2015 Huawei Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation;
11 * version 2.1 of the License (not later!)
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this program; if not, see <http://www.gnu.org/licenses>
20 */
21
22#include <stdlib.h>
23#include <stdio.h>
24#include <stdarg.h>
25#include <inttypes.h>
26#include <string.h>
27#include <unistd.h>
28#include <fcntl.h>
29#include <errno.h>
30#include <asm/unistd.h>
31#include <linux/kernel.h>
32#include <linux/bpf.h>
33#include <linux/list.h>
34#include <libelf.h>
35#include <gelf.h>
36
37#include "libbpf.h"
38#include "bpf.h"
39
40#ifndef EM_BPF
41#define EM_BPF 247
42#endif
43
44#define __printf(a, b) __attribute__((format(printf, a, b)))
45
46__printf(1, 2)
47static int __base_pr(const char *format, ...)
48{
49 va_list args;
50 int err;
51
52 va_start(args, format);
53 err = vfprintf(stderr, format, args);
54 va_end(args);
55 return err;
56}
57
58static __printf(1, 2) libbpf_print_fn_t __pr_warning = __base_pr;
59static __printf(1, 2) libbpf_print_fn_t __pr_info = __base_pr;
60static __printf(1, 2) libbpf_print_fn_t __pr_debug;
61
62#define __pr(func, fmt, ...) \
63do { \
64 if ((func)) \
65 (func)("libbpf: " fmt, ##__VA_ARGS__); \
66} while (0)
67
68#define pr_warning(fmt, ...) __pr(__pr_warning, fmt, ##__VA_ARGS__)
69#define pr_info(fmt, ...) __pr(__pr_info, fmt, ##__VA_ARGS__)
70#define pr_debug(fmt, ...) __pr(__pr_debug, fmt, ##__VA_ARGS__)
71
72void libbpf_set_print(libbpf_print_fn_t warn,
73 libbpf_print_fn_t info,
74 libbpf_print_fn_t debug)
75{
76 __pr_warning = warn;
77 __pr_info = info;
78 __pr_debug = debug;
79}
80
81#define STRERR_BUFSIZE 128
82
83#define ERRNO_OFFSET(e) ((e) - __LIBBPF_ERRNO__START)
84#define ERRCODE_OFFSET(c) ERRNO_OFFSET(LIBBPF_ERRNO__##c)
85#define NR_ERRNO (__LIBBPF_ERRNO__END - __LIBBPF_ERRNO__START)
86
87static const char *libbpf_strerror_table[NR_ERRNO] = {
88 [ERRCODE_OFFSET(LIBELF)] = "Something wrong in libelf",
89 [ERRCODE_OFFSET(FORMAT)] = "BPF object format invalid",
90 [ERRCODE_OFFSET(KVERSION)] = "'version' section incorrect or lost",
91 [ERRCODE_OFFSET(ENDIAN)] = "Endian mismatch",
92 [ERRCODE_OFFSET(INTERNAL)] = "Internal error in libbpf",
93 [ERRCODE_OFFSET(RELOC)] = "Relocation failed",
94 [ERRCODE_OFFSET(VERIFY)] = "Kernel verifier blocks program loading",
95 [ERRCODE_OFFSET(PROG2BIG)] = "Program too big",
96 [ERRCODE_OFFSET(KVER)] = "Incorrect kernel version",
97 [ERRCODE_OFFSET(PROGTYPE)] = "Kernel doesn't support this program type",
98};
99
100int libbpf_strerror(int err, char *buf, size_t size)
101{
102 if (!buf || !size)
103 return -1;
104
105 err = err > 0 ? err : -err;
106
107 if (err < __LIBBPF_ERRNO__START) {
108 int ret;
109
110 ret = strerror_r(err, buf, size);
111 buf[size - 1] = '\0';
112 return ret;
113 }
114
115 if (err < __LIBBPF_ERRNO__END) {
116 const char *msg;
117
118 msg = libbpf_strerror_table[ERRNO_OFFSET(err)];
119 snprintf(buf, size, "%s", msg);
120 buf[size - 1] = '\0';
121 return 0;
122 }
123
124 snprintf(buf, size, "Unknown libbpf error %d", err);
125 buf[size - 1] = '\0';
126 return -1;
127}
128
129#define CHECK_ERR(action, err, out) do { \
130 err = action; \
131 if (err) \
132 goto out; \
133} while(0)
134
135
136/* Copied from tools/perf/util/util.h */
137#ifndef zfree
138# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
139#endif
140
141#ifndef zclose
142# define zclose(fd) ({ \
143 int ___err = 0; \
144 if ((fd) >= 0) \
145 ___err = close((fd)); \
146 fd = -1; \
147 ___err; })
148#endif
149
150#ifdef HAVE_LIBELF_MMAP_SUPPORT
151# define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP
152#else
153# define LIBBPF_ELF_C_READ_MMAP ELF_C_READ
154#endif
155
156/*
157 * bpf_prog should be a better name but it has been used in
158 * linux/filter.h.
159 */
160struct bpf_program {
161 /* Index in elf obj file, for relocation use. */
162 int idx;
163 char *section_name;
164 struct bpf_insn *insns;
165 size_t insns_cnt;
166 enum bpf_prog_type type;
167
168 struct {
169 int insn_idx;
170 int map_idx;
171 } *reloc_desc;
172 int nr_reloc;
173
174 struct {
175 int nr;
176 int *fds;
177 } instances;
178 bpf_program_prep_t preprocessor;
179
180 struct bpf_object *obj;
181 void *priv;
182 bpf_program_clear_priv_t clear_priv;
183};
184
185struct bpf_map {
186 int fd;
187 char *name;
188 size_t offset;
189 struct bpf_map_def def;
190 void *priv;
191 bpf_map_clear_priv_t clear_priv;
192};
193
194static LIST_HEAD(bpf_objects_list);
195
196struct bpf_object {
197 char license[64];
198 u32 kern_version;
199
200 struct bpf_program *programs;
201 size_t nr_programs;
202 struct bpf_map *maps;
203 size_t nr_maps;
204
205 bool loaded;
206
207 /*
208 * Information when doing elf related work. Only valid if fd
209 * is valid.
210 */
211 struct {
212 int fd;
213 void *obj_buf;
214 size_t obj_buf_sz;
215 Elf *elf;
216 GElf_Ehdr ehdr;
217 Elf_Data *symbols;
218 size_t strtabidx;
219 struct {
220 GElf_Shdr shdr;
221 Elf_Data *data;
222 } *reloc;
223 int nr_reloc;
224 int maps_shndx;
225 } efile;
226 /*
227 * All loaded bpf_object is linked in a list, which is
228 * hidden to caller. bpf_objects__<func> handlers deal with
229 * all objects.
230 */
231 struct list_head list;
232
233 void *priv;
234 bpf_object_clear_priv_t clear_priv;
235
236 char path[];
237};
238#define obj_elf_valid(o) ((o)->efile.elf)
239
240static void bpf_program__unload(struct bpf_program *prog)
241{
242 int i;
243
244 if (!prog)
245 return;
246
247 /*
248 * If the object is opened but the program was never loaded,
249 * it is possible that prog->instances.nr == -1.
250 */
251 if (prog->instances.nr > 0) {
252 for (i = 0; i < prog->instances.nr; i++)
253 zclose(prog->instances.fds[i]);
254 } else if (prog->instances.nr != -1) {
255 pr_warning("Internal error: instances.nr is %d\n",
256 prog->instances.nr);
257 }
258
259 prog->instances.nr = -1;
260 zfree(&prog->instances.fds);
261}
262
263static void bpf_program__exit(struct bpf_program *prog)
264{
265 if (!prog)
266 return;
267
268 if (prog->clear_priv)
269 prog->clear_priv(prog, prog->priv);
270
271 prog->priv = NULL;
272 prog->clear_priv = NULL;
273
274 bpf_program__unload(prog);
275 zfree(&prog->section_name);
276 zfree(&prog->insns);
277 zfree(&prog->reloc_desc);
278
279 prog->nr_reloc = 0;
280 prog->insns_cnt = 0;
281 prog->idx = -1;
282}
283
284static int
285bpf_program__init(void *data, size_t size, char *name, int idx,
286 struct bpf_program *prog)
287{
288 if (size < sizeof(struct bpf_insn)) {
289 pr_warning("corrupted section '%s'\n", name);
290 return -EINVAL;
291 }
292
293 bzero(prog, sizeof(*prog));
294
295 prog->section_name = strdup(name);
296 if (!prog->section_name) {
297 pr_warning("failed to alloc name for prog %s\n",
298 name);
299 goto errout;
300 }
301
302 prog->insns = malloc(size);
303 if (!prog->insns) {
304 pr_warning("failed to alloc insns for %s\n", name);
305 goto errout;
306 }
307 prog->insns_cnt = size / sizeof(struct bpf_insn);
308 memcpy(prog->insns, data,
309 prog->insns_cnt * sizeof(struct bpf_insn));
310 prog->idx = idx;
311 prog->instances.fds = NULL;
312 prog->instances.nr = -1;
313 prog->type = BPF_PROG_TYPE_KPROBE;
314
315 return 0;
316errout:
317 bpf_program__exit(prog);
318 return -ENOMEM;
319}
320
321static int
322bpf_object__add_program(struct bpf_object *obj, void *data, size_t size,
323 char *name, int idx)
324{
325 struct bpf_program prog, *progs;
326 int nr_progs, err;
327
328 err = bpf_program__init(data, size, name, idx, &prog);
329 if (err)
330 return err;
331
332 progs = obj->programs;
333 nr_progs = obj->nr_programs;
334
335 progs = realloc(progs, sizeof(progs[0]) * (nr_progs + 1));
336 if (!progs) {
337 /*
338 * In this case the original obj->programs
339 * is still valid, so don't need special treat for
340 * bpf_close_object().
341 */
342 pr_warning("failed to alloc a new program '%s'\n",
343 name);
344 bpf_program__exit(&prog);
345 return -ENOMEM;
346 }
347
348 pr_debug("found program %s\n", prog.section_name);
349 obj->programs = progs;
350 obj->nr_programs = nr_progs + 1;
351 prog.obj = obj;
352 progs[nr_progs] = prog;
353 return 0;
354}
355
356static struct bpf_object *bpf_object__new(const char *path,
357 void *obj_buf,
358 size_t obj_buf_sz)
359{
360 struct bpf_object *obj;
361
362 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
363 if (!obj) {
364 pr_warning("alloc memory failed for %s\n", path);
365 return ERR_PTR(-ENOMEM);
366 }
367
368 strcpy(obj->path, path);
369 obj->efile.fd = -1;
370
371 /*
372 * Caller of this function should also calls
373 * bpf_object__elf_finish() after data collection to return
374 * obj_buf to user. If not, we should duplicate the buffer to
375 * avoid user freeing them before elf finish.
376 */
377 obj->efile.obj_buf = obj_buf;
378 obj->efile.obj_buf_sz = obj_buf_sz;
379 obj->efile.maps_shndx = -1;
380
381 obj->loaded = false;
382
383 INIT_LIST_HEAD(&obj->list);
384 list_add(&obj->list, &bpf_objects_list);
385 return obj;
386}
387
388static void bpf_object__elf_finish(struct bpf_object *obj)
389{
390 if (!obj_elf_valid(obj))
391 return;
392
393 if (obj->efile.elf) {
394 elf_end(obj->efile.elf);
395 obj->efile.elf = NULL;
396 }
397 obj->efile.symbols = NULL;
398
399 zfree(&obj->efile.reloc);
400 obj->efile.nr_reloc = 0;
401 zclose(obj->efile.fd);
402 obj->efile.obj_buf = NULL;
403 obj->efile.obj_buf_sz = 0;
404}
405
406static int bpf_object__elf_init(struct bpf_object *obj)
407{
408 int err = 0;
409 GElf_Ehdr *ep;
410
411 if (obj_elf_valid(obj)) {
412 pr_warning("elf init: internal error\n");
413 return -LIBBPF_ERRNO__LIBELF;
414 }
415
416 if (obj->efile.obj_buf_sz > 0) {
417 /*
418 * obj_buf should have been validated by
419 * bpf_object__open_buffer().
420 */
421 obj->efile.elf = elf_memory(obj->efile.obj_buf,
422 obj->efile.obj_buf_sz);
423 } else {
424 obj->efile.fd = open(obj->path, O_RDONLY);
425 if (obj->efile.fd < 0) {
426 pr_warning("failed to open %s: %s\n", obj->path,
427 strerror(errno));
428 return -errno;
429 }
430
431 obj->efile.elf = elf_begin(obj->efile.fd,
432 LIBBPF_ELF_C_READ_MMAP,
433 NULL);
434 }
435
436 if (!obj->efile.elf) {
437 pr_warning("failed to open %s as ELF file\n",
438 obj->path);
439 err = -LIBBPF_ERRNO__LIBELF;
440 goto errout;
441 }
442
443 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
444 pr_warning("failed to get EHDR from %s\n",
445 obj->path);
446 err = -LIBBPF_ERRNO__FORMAT;
447 goto errout;
448 }
449 ep = &obj->efile.ehdr;
450
451 /* Old LLVM set e_machine to EM_NONE */
452 if ((ep->e_type != ET_REL) || (ep->e_machine && (ep->e_machine != EM_BPF))) {
453 pr_warning("%s is not an eBPF object file\n",
454 obj->path);
455 err = -LIBBPF_ERRNO__FORMAT;
456 goto errout;
457 }
458
459 return 0;
460errout:
461 bpf_object__elf_finish(obj);
462 return err;
463}
464
465static int
466bpf_object__check_endianness(struct bpf_object *obj)
467{
468 static unsigned int const endian = 1;
469
470 switch (obj->efile.ehdr.e_ident[EI_DATA]) {
471 case ELFDATA2LSB:
472 /* We are big endian, BPF obj is little endian. */
473 if (*(unsigned char const *)&endian != 1)
474 goto mismatch;
475 break;
476
477 case ELFDATA2MSB:
478 /* We are little endian, BPF obj is big endian. */
479 if (*(unsigned char const *)&endian != 0)
480 goto mismatch;
481 break;
482 default:
483 return -LIBBPF_ERRNO__ENDIAN;
484 }
485
486 return 0;
487
488mismatch:
489 pr_warning("Error: endianness mismatch.\n");
490 return -LIBBPF_ERRNO__ENDIAN;
491}
492
493static int
494bpf_object__init_license(struct bpf_object *obj,
495 void *data, size_t size)
496{
497 memcpy(obj->license, data,
498 min(size, sizeof(obj->license) - 1));
499 pr_debug("license of %s is %s\n", obj->path, obj->license);
500 return 0;
501}
502
503static int
504bpf_object__init_kversion(struct bpf_object *obj,
505 void *data, size_t size)
506{
507 u32 kver;
508
509 if (size != sizeof(kver)) {
510 pr_warning("invalid kver section in %s\n", obj->path);
511 return -LIBBPF_ERRNO__FORMAT;
512 }
513 memcpy(&kver, data, sizeof(kver));
514 obj->kern_version = kver;
515 pr_debug("kernel version of %s is %x\n", obj->path,
516 obj->kern_version);
517 return 0;
518}
519
520static int
521bpf_object__validate_maps(struct bpf_object *obj)
522{
523 int i;
524
525 /*
526 * If there's only 1 map, the only error case should have been
527 * catched in bpf_object__init_maps().
528 */
529 if (!obj->maps || !obj->nr_maps || (obj->nr_maps == 1))
530 return 0;
531
532 for (i = 1; i < obj->nr_maps; i++) {
533 const struct bpf_map *a = &obj->maps[i - 1];
534 const struct bpf_map *b = &obj->maps[i];
535
536 if (b->offset - a->offset < sizeof(struct bpf_map_def)) {
537 pr_warning("corrupted map section in %s: map \"%s\" too small\n",
538 obj->path, a->name);
539 return -EINVAL;
540 }
541 }
542 return 0;
543}
544
545static int compare_bpf_map(const void *_a, const void *_b)
546{
547 const struct bpf_map *a = _a;
548 const struct bpf_map *b = _b;
549
550 return a->offset - b->offset;
551}
552
553static int
554bpf_object__init_maps(struct bpf_object *obj)
555{
556 int i, map_idx, nr_maps = 0;
557 Elf_Scn *scn;
558 Elf_Data *data;
559 Elf_Data *symbols = obj->efile.symbols;
560
561 if (obj->efile.maps_shndx < 0)
562 return -EINVAL;
563 if (!symbols)
564 return -EINVAL;
565
566 scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx);
567 if (scn)
568 data = elf_getdata(scn, NULL);
569 if (!scn || !data) {
570 pr_warning("failed to get Elf_Data from map section %d\n",
571 obj->efile.maps_shndx);
572 return -EINVAL;
573 }
574
575 /*
576 * Count number of maps. Each map has a name.
577 * Array of maps is not supported: only the first element is
578 * considered.
579 *
580 * TODO: Detect array of map and report error.
581 */
582 for (i = 0; i < symbols->d_size / sizeof(GElf_Sym); i++) {
583 GElf_Sym sym;
584
585 if (!gelf_getsym(symbols, i, &sym))
586 continue;
587 if (sym.st_shndx != obj->efile.maps_shndx)
588 continue;
589 nr_maps++;
590 }
591
592 /* Alloc obj->maps and fill nr_maps. */
593 pr_debug("maps in %s: %d maps in %zd bytes\n", obj->path,
594 nr_maps, data->d_size);
595
596 if (!nr_maps)
597 return 0;
598
599 obj->maps = calloc(nr_maps, sizeof(obj->maps[0]));
600 if (!obj->maps) {
601 pr_warning("alloc maps for object failed\n");
602 return -ENOMEM;
603 }
604 obj->nr_maps = nr_maps;
605
606 /*
607 * fill all fd with -1 so won't close incorrect
608 * fd (fd=0 is stdin) when failure (zclose won't close
609 * negative fd)).
610 */
611 for (i = 0; i < nr_maps; i++)
612 obj->maps[i].fd = -1;
613
614 /*
615 * Fill obj->maps using data in "maps" section.
616 */
617 for (i = 0, map_idx = 0; i < symbols->d_size / sizeof(GElf_Sym); i++) {
618 GElf_Sym sym;
619 const char *map_name;
620 struct bpf_map_def *def;
621
622 if (!gelf_getsym(symbols, i, &sym))
623 continue;
624 if (sym.st_shndx != obj->efile.maps_shndx)
625 continue;
626
627 map_name = elf_strptr(obj->efile.elf,
628 obj->efile.strtabidx,
629 sym.st_name);
630 obj->maps[map_idx].offset = sym.st_value;
631 if (sym.st_value + sizeof(struct bpf_map_def) > data->d_size) {
632 pr_warning("corrupted maps section in %s: last map \"%s\" too small\n",
633 obj->path, map_name);
634 return -EINVAL;
635 }
636
637 obj->maps[map_idx].name = strdup(map_name);
638 if (!obj->maps[map_idx].name) {
639 pr_warning("failed to alloc map name\n");
640 return -ENOMEM;
641 }
642 pr_debug("map %d is \"%s\"\n", map_idx,
643 obj->maps[map_idx].name);
644 def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
645 obj->maps[map_idx].def = *def;
646 map_idx++;
647 }
648
649 qsort(obj->maps, obj->nr_maps, sizeof(obj->maps[0]), compare_bpf_map);
650 return bpf_object__validate_maps(obj);
651}
652
653static int bpf_object__elf_collect(struct bpf_object *obj)
654{
655 Elf *elf = obj->efile.elf;
656 GElf_Ehdr *ep = &obj->efile.ehdr;
657 Elf_Scn *scn = NULL;
658 int idx = 0, err = 0;
659
660 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
661 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) {
662 pr_warning("failed to get e_shstrndx from %s\n",
663 obj->path);
664 return -LIBBPF_ERRNO__FORMAT;
665 }
666
667 while ((scn = elf_nextscn(elf, scn)) != NULL) {
668 char *name;
669 GElf_Shdr sh;
670 Elf_Data *data;
671
672 idx++;
673 if (gelf_getshdr(scn, &sh) != &sh) {
674 pr_warning("failed to get section header from %s\n",
675 obj->path);
676 err = -LIBBPF_ERRNO__FORMAT;
677 goto out;
678 }
679
680 name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name);
681 if (!name) {
682 pr_warning("failed to get section name from %s\n",
683 obj->path);
684 err = -LIBBPF_ERRNO__FORMAT;
685 goto out;
686 }
687
688 data = elf_getdata(scn, 0);
689 if (!data) {
690 pr_warning("failed to get section data from %s(%s)\n",
691 name, obj->path);
692 err = -LIBBPF_ERRNO__FORMAT;
693 goto out;
694 }
695 pr_debug("section %s, size %ld, link %d, flags %lx, type=%d\n",
696 name, (unsigned long)data->d_size,
697 (int)sh.sh_link, (unsigned long)sh.sh_flags,
698 (int)sh.sh_type);
699
700 if (strcmp(name, "license") == 0)
701 err = bpf_object__init_license(obj,
702 data->d_buf,
703 data->d_size);
704 else if (strcmp(name, "version") == 0)
705 err = bpf_object__init_kversion(obj,
706 data->d_buf,
707 data->d_size);
708 else if (strcmp(name, "maps") == 0)
709 obj->efile.maps_shndx = idx;
710 else if (sh.sh_type == SHT_SYMTAB) {
711 if (obj->efile.symbols) {
712 pr_warning("bpf: multiple SYMTAB in %s\n",
713 obj->path);
714 err = -LIBBPF_ERRNO__FORMAT;
715 } else {
716 obj->efile.symbols = data;
717 obj->efile.strtabidx = sh.sh_link;
718 }
719 } else if ((sh.sh_type == SHT_PROGBITS) &&
720 (sh.sh_flags & SHF_EXECINSTR) &&
721 (data->d_size > 0)) {
722 err = bpf_object__add_program(obj, data->d_buf,
723 data->d_size, name, idx);
724 if (err) {
725 char errmsg[STRERR_BUFSIZE];
726
727 strerror_r(-err, errmsg, sizeof(errmsg));
728 pr_warning("failed to alloc program %s (%s): %s",
729 name, obj->path, errmsg);
730 }
731 } else if (sh.sh_type == SHT_REL) {
732 void *reloc = obj->efile.reloc;
733 int nr_reloc = obj->efile.nr_reloc + 1;
734
735 reloc = realloc(reloc,
736 sizeof(*obj->efile.reloc) * nr_reloc);
737 if (!reloc) {
738 pr_warning("realloc failed\n");
739 err = -ENOMEM;
740 } else {
741 int n = nr_reloc - 1;
742
743 obj->efile.reloc = reloc;
744 obj->efile.nr_reloc = nr_reloc;
745
746 obj->efile.reloc[n].shdr = sh;
747 obj->efile.reloc[n].data = data;
748 }
749 }
750 if (err)
751 goto out;
752 }
753
754 if (!obj->efile.strtabidx || obj->efile.strtabidx >= idx) {
755 pr_warning("Corrupted ELF file: index of strtab invalid\n");
756 return LIBBPF_ERRNO__FORMAT;
757 }
758 if (obj->efile.maps_shndx >= 0)
759 err = bpf_object__init_maps(obj);
760out:
761 return err;
762}
763
764static struct bpf_program *
765bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx)
766{
767 struct bpf_program *prog;
768 size_t i;
769
770 for (i = 0; i < obj->nr_programs; i++) {
771 prog = &obj->programs[i];
772 if (prog->idx == idx)
773 return prog;
774 }
775 return NULL;
776}
777
778static int
779bpf_program__collect_reloc(struct bpf_program *prog,
780 size_t nr_maps, GElf_Shdr *shdr,
781 Elf_Data *data, Elf_Data *symbols,
782 int maps_shndx)
783{
784 int i, nrels;
785
786 pr_debug("collecting relocating info for: '%s'\n",
787 prog->section_name);
788 nrels = shdr->sh_size / shdr->sh_entsize;
789
790 prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels);
791 if (!prog->reloc_desc) {
792 pr_warning("failed to alloc memory in relocation\n");
793 return -ENOMEM;
794 }
795 prog->nr_reloc = nrels;
796
797 for (i = 0; i < nrels; i++) {
798 GElf_Sym sym;
799 GElf_Rel rel;
800 unsigned int insn_idx;
801 struct bpf_insn *insns = prog->insns;
802 size_t map_idx;
803
804 if (!gelf_getrel(data, i, &rel)) {
805 pr_warning("relocation: failed to get %d reloc\n", i);
806 return -LIBBPF_ERRNO__FORMAT;
807 }
808
809 if (!gelf_getsym(symbols,
810 GELF_R_SYM(rel.r_info),
811 &sym)) {
812 pr_warning("relocation: symbol %"PRIx64" not found\n",
813 GELF_R_SYM(rel.r_info));
814 return -LIBBPF_ERRNO__FORMAT;
815 }
816
817 if (sym.st_shndx != maps_shndx) {
818 pr_warning("Program '%s' contains non-map related relo data pointing to section %u\n",
819 prog->section_name, sym.st_shndx);
820 return -LIBBPF_ERRNO__RELOC;
821 }
822
823 insn_idx = rel.r_offset / sizeof(struct bpf_insn);
824 pr_debug("relocation: insn_idx=%u\n", insn_idx);
825
826 if (insns[insn_idx].code != (BPF_LD | BPF_IMM | BPF_DW)) {
827 pr_warning("bpf: relocation: invalid relo for insns[%d].code 0x%x\n",
828 insn_idx, insns[insn_idx].code);
829 return -LIBBPF_ERRNO__RELOC;
830 }
831
832 map_idx = sym.st_value / sizeof(struct bpf_map_def);
833 if (map_idx >= nr_maps) {
834 pr_warning("bpf relocation: map_idx %d large than %d\n",
835 (int)map_idx, (int)nr_maps - 1);
836 return -LIBBPF_ERRNO__RELOC;
837 }
838
839 prog->reloc_desc[i].insn_idx = insn_idx;
840 prog->reloc_desc[i].map_idx = map_idx;
841 }
842 return 0;
843}
844
845static int
846bpf_object__create_maps(struct bpf_object *obj)
847{
848 unsigned int i;
849
850 for (i = 0; i < obj->nr_maps; i++) {
851 struct bpf_map_def *def = &obj->maps[i].def;
852 int *pfd = &obj->maps[i].fd;
853
854 *pfd = bpf_create_map(def->type,
855 def->key_size,
856 def->value_size,
857 def->max_entries,
858 0);
859 if (*pfd < 0) {
860 size_t j;
861 int err = *pfd;
862
863 pr_warning("failed to create map: %s\n",
864 strerror(errno));
865 for (j = 0; j < i; j++)
866 zclose(obj->maps[j].fd);
867 return err;
868 }
869 pr_debug("create map %s: fd=%d\n", obj->maps[i].name, *pfd);
870 }
871
872 return 0;
873}
874
875static int
876bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj)
877{
878 int i;
879
880 if (!prog || !prog->reloc_desc)
881 return 0;
882
883 for (i = 0; i < prog->nr_reloc; i++) {
884 int insn_idx, map_idx;
885 struct bpf_insn *insns = prog->insns;
886
887 insn_idx = prog->reloc_desc[i].insn_idx;
888 map_idx = prog->reloc_desc[i].map_idx;
889
890 if (insn_idx >= (int)prog->insns_cnt) {
891 pr_warning("relocation out of range: '%s'\n",
892 prog->section_name);
893 return -LIBBPF_ERRNO__RELOC;
894 }
895 insns[insn_idx].src_reg = BPF_PSEUDO_MAP_FD;
896 insns[insn_idx].imm = obj->maps[map_idx].fd;
897 }
898
899 zfree(&prog->reloc_desc);
900 prog->nr_reloc = 0;
901 return 0;
902}
903
904
905static int
906bpf_object__relocate(struct bpf_object *obj)
907{
908 struct bpf_program *prog;
909 size_t i;
910 int err;
911
912 for (i = 0; i < obj->nr_programs; i++) {
913 prog = &obj->programs[i];
914
915 err = bpf_program__relocate(prog, obj);
916 if (err) {
917 pr_warning("failed to relocate '%s'\n",
918 prog->section_name);
919 return err;
920 }
921 }
922 return 0;
923}
924
925static int bpf_object__collect_reloc(struct bpf_object *obj)
926{
927 int i, err;
928
929 if (!obj_elf_valid(obj)) {
930 pr_warning("Internal error: elf object is closed\n");
931 return -LIBBPF_ERRNO__INTERNAL;
932 }
933
934 for (i = 0; i < obj->efile.nr_reloc; i++) {
935 GElf_Shdr *shdr = &obj->efile.reloc[i].shdr;
936 Elf_Data *data = obj->efile.reloc[i].data;
937 int idx = shdr->sh_info;
938 struct bpf_program *prog;
939 size_t nr_maps = obj->nr_maps;
940
941 if (shdr->sh_type != SHT_REL) {
942 pr_warning("internal error at %d\n", __LINE__);
943 return -LIBBPF_ERRNO__INTERNAL;
944 }
945
946 prog = bpf_object__find_prog_by_idx(obj, idx);
947 if (!prog) {
948 pr_warning("relocation failed: no %d section\n",
949 idx);
950 return -LIBBPF_ERRNO__RELOC;
951 }
952
953 err = bpf_program__collect_reloc(prog, nr_maps,
954 shdr, data,
955 obj->efile.symbols,
956 obj->efile.maps_shndx);
957 if (err)
958 return err;
959 }
960 return 0;
961}
962
963static int
964load_program(enum bpf_prog_type type, struct bpf_insn *insns,
965 int insns_cnt, char *license, u32 kern_version, int *pfd)
966{
967 int ret;
968 char *log_buf;
969
970 if (!insns || !insns_cnt)
971 return -EINVAL;
972
973 log_buf = malloc(BPF_LOG_BUF_SIZE);
974 if (!log_buf)
975 pr_warning("Alloc log buffer for bpf loader error, continue without log\n");
976
977 ret = bpf_load_program(type, insns, insns_cnt, license,
978 kern_version, log_buf, BPF_LOG_BUF_SIZE);
979
980 if (ret >= 0) {
981 *pfd = ret;
982 ret = 0;
983 goto out;
984 }
985
986 ret = -LIBBPF_ERRNO__LOAD;
987 pr_warning("load bpf program failed: %s\n", strerror(errno));
988
989 if (log_buf && log_buf[0] != '\0') {
990 ret = -LIBBPF_ERRNO__VERIFY;
991 pr_warning("-- BEGIN DUMP LOG ---\n");
992 pr_warning("\n%s\n", log_buf);
993 pr_warning("-- END LOG --\n");
994 } else if (insns_cnt >= BPF_MAXINSNS) {
995 pr_warning("Program too large (%d insns), at most %d insns\n",
996 insns_cnt, BPF_MAXINSNS);
997 ret = -LIBBPF_ERRNO__PROG2BIG;
998 } else {
999 /* Wrong program type? */
1000 if (type != BPF_PROG_TYPE_KPROBE) {
1001 int fd;
1002
1003 fd = bpf_load_program(BPF_PROG_TYPE_KPROBE, insns,
1004 insns_cnt, license, kern_version,
1005 NULL, 0);
1006 if (fd >= 0) {
1007 close(fd);
1008 ret = -LIBBPF_ERRNO__PROGTYPE;
1009 goto out;
1010 }
1011 }
1012
1013 if (log_buf)
1014 ret = -LIBBPF_ERRNO__KVER;
1015 }
1016
1017out:
1018 free(log_buf);
1019 return ret;
1020}
1021
1022static int
1023bpf_program__load(struct bpf_program *prog,
1024 char *license, u32 kern_version)
1025{
1026 int err = 0, fd, i;
1027
1028 if (prog->instances.nr < 0 || !prog->instances.fds) {
1029 if (prog->preprocessor) {
1030 pr_warning("Internal error: can't load program '%s'\n",
1031 prog->section_name);
1032 return -LIBBPF_ERRNO__INTERNAL;
1033 }
1034
1035 prog->instances.fds = malloc(sizeof(int));
1036 if (!prog->instances.fds) {
1037 pr_warning("Not enough memory for BPF fds\n");
1038 return -ENOMEM;
1039 }
1040 prog->instances.nr = 1;
1041 prog->instances.fds[0] = -1;
1042 }
1043
1044 if (!prog->preprocessor) {
1045 if (prog->instances.nr != 1) {
1046 pr_warning("Program '%s' is inconsistent: nr(%d) != 1\n",
1047 prog->section_name, prog->instances.nr);
1048 }
1049 err = load_program(prog->type, prog->insns, prog->insns_cnt,
1050 license, kern_version, &fd);
1051 if (!err)
1052 prog->instances.fds[0] = fd;
1053 goto out;
1054 }
1055
1056 for (i = 0; i < prog->instances.nr; i++) {
1057 struct bpf_prog_prep_result result;
1058 bpf_program_prep_t preprocessor = prog->preprocessor;
1059
1060 bzero(&result, sizeof(result));
1061 err = preprocessor(prog, i, prog->insns,
1062 prog->insns_cnt, &result);
1063 if (err) {
1064 pr_warning("Preprocessing the %dth instance of program '%s' failed\n",
1065 i, prog->section_name);
1066 goto out;
1067 }
1068
1069 if (!result.new_insn_ptr || !result.new_insn_cnt) {
1070 pr_debug("Skip loading the %dth instance of program '%s'\n",
1071 i, prog->section_name);
1072 prog->instances.fds[i] = -1;
1073 if (result.pfd)
1074 *result.pfd = -1;
1075 continue;
1076 }
1077
1078 err = load_program(prog->type, result.new_insn_ptr,
1079 result.new_insn_cnt,
1080 license, kern_version, &fd);
1081
1082 if (err) {
1083 pr_warning("Loading the %dth instance of program '%s' failed\n",
1084 i, prog->section_name);
1085 goto out;
1086 }
1087
1088 if (result.pfd)
1089 *result.pfd = fd;
1090 prog->instances.fds[i] = fd;
1091 }
1092out:
1093 if (err)
1094 pr_warning("failed to load program '%s'\n",
1095 prog->section_name);
1096 zfree(&prog->insns);
1097 prog->insns_cnt = 0;
1098 return err;
1099}
1100
1101static int
1102bpf_object__load_progs(struct bpf_object *obj)
1103{
1104 size_t i;
1105 int err;
1106
1107 for (i = 0; i < obj->nr_programs; i++) {
1108 err = bpf_program__load(&obj->programs[i],
1109 obj->license,
1110 obj->kern_version);
1111 if (err)
1112 return err;
1113 }
1114 return 0;
1115}
1116
1117static int bpf_object__validate(struct bpf_object *obj)
1118{
1119 if (obj->kern_version == 0) {
1120 pr_warning("%s doesn't provide kernel version\n",
1121 obj->path);
1122 return -LIBBPF_ERRNO__KVERSION;
1123 }
1124 return 0;
1125}
1126
1127static struct bpf_object *
1128__bpf_object__open(const char *path, void *obj_buf, size_t obj_buf_sz)
1129{
1130 struct bpf_object *obj;
1131 int err;
1132
1133 if (elf_version(EV_CURRENT) == EV_NONE) {
1134 pr_warning("failed to init libelf for %s\n", path);
1135 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1136 }
1137
1138 obj = bpf_object__new(path, obj_buf, obj_buf_sz);
1139 if (IS_ERR(obj))
1140 return obj;
1141
1142 CHECK_ERR(bpf_object__elf_init(obj), err, out);
1143 CHECK_ERR(bpf_object__check_endianness(obj), err, out);
1144 CHECK_ERR(bpf_object__elf_collect(obj), err, out);
1145 CHECK_ERR(bpf_object__collect_reloc(obj), err, out);
1146 CHECK_ERR(bpf_object__validate(obj), err, out);
1147
1148 bpf_object__elf_finish(obj);
1149 return obj;
1150out:
1151 bpf_object__close(obj);
1152 return ERR_PTR(err);
1153}
1154
1155struct bpf_object *bpf_object__open(const char *path)
1156{
1157 /* param validation */
1158 if (!path)
1159 return NULL;
1160
1161 pr_debug("loading %s\n", path);
1162
1163 return __bpf_object__open(path, NULL, 0);
1164}
1165
1166struct bpf_object *bpf_object__open_buffer(void *obj_buf,
1167 size_t obj_buf_sz,
1168 const char *name)
1169{
1170 char tmp_name[64];
1171
1172 /* param validation */
1173 if (!obj_buf || obj_buf_sz <= 0)
1174 return NULL;
1175
1176 if (!name) {
1177 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
1178 (unsigned long)obj_buf,
1179 (unsigned long)obj_buf_sz);
1180 tmp_name[sizeof(tmp_name) - 1] = '\0';
1181 name = tmp_name;
1182 }
1183 pr_debug("loading object '%s' from buffer\n",
1184 name);
1185
1186 return __bpf_object__open(name, obj_buf, obj_buf_sz);
1187}
1188
1189int bpf_object__unload(struct bpf_object *obj)
1190{
1191 size_t i;
1192
1193 if (!obj)
1194 return -EINVAL;
1195
1196 for (i = 0; i < obj->nr_maps; i++)
1197 zclose(obj->maps[i].fd);
1198
1199 for (i = 0; i < obj->nr_programs; i++)
1200 bpf_program__unload(&obj->programs[i]);
1201
1202 return 0;
1203}
1204
1205int bpf_object__load(struct bpf_object *obj)
1206{
1207 int err;
1208
1209 if (!obj)
1210 return -EINVAL;
1211
1212 if (obj->loaded) {
1213 pr_warning("object should not be loaded twice\n");
1214 return -EINVAL;
1215 }
1216
1217 obj->loaded = true;
1218
1219 CHECK_ERR(bpf_object__create_maps(obj), err, out);
1220 CHECK_ERR(bpf_object__relocate(obj), err, out);
1221 CHECK_ERR(bpf_object__load_progs(obj), err, out);
1222
1223 return 0;
1224out:
1225 bpf_object__unload(obj);
1226 pr_warning("failed to load object '%s'\n", obj->path);
1227 return err;
1228}
1229
1230void bpf_object__close(struct bpf_object *obj)
1231{
1232 size_t i;
1233
1234 if (!obj)
1235 return;
1236
1237 if (obj->clear_priv)
1238 obj->clear_priv(obj, obj->priv);
1239
1240 bpf_object__elf_finish(obj);
1241 bpf_object__unload(obj);
1242
1243 for (i = 0; i < obj->nr_maps; i++) {
1244 zfree(&obj->maps[i].name);
1245 if (obj->maps[i].clear_priv)
1246 obj->maps[i].clear_priv(&obj->maps[i],
1247 obj->maps[i].priv);
1248 obj->maps[i].priv = NULL;
1249 obj->maps[i].clear_priv = NULL;
1250 }
1251 zfree(&obj->maps);
1252 obj->nr_maps = 0;
1253
1254 if (obj->programs && obj->nr_programs) {
1255 for (i = 0; i < obj->nr_programs; i++)
1256 bpf_program__exit(&obj->programs[i]);
1257 }
1258 zfree(&obj->programs);
1259
1260 list_del(&obj->list);
1261 free(obj);
1262}
1263
1264struct bpf_object *
1265bpf_object__next(struct bpf_object *prev)
1266{
1267 struct bpf_object *next;
1268
1269 if (!prev)
1270 next = list_first_entry(&bpf_objects_list,
1271 struct bpf_object,
1272 list);
1273 else
1274 next = list_next_entry(prev, list);
1275
1276 /* Empty list is noticed here so don't need checking on entry. */
1277 if (&next->list == &bpf_objects_list)
1278 return NULL;
1279
1280 return next;
1281}
1282
1283const char *bpf_object__name(struct bpf_object *obj)
1284{
1285 return obj ? obj->path : ERR_PTR(-EINVAL);
1286}
1287
1288unsigned int bpf_object__kversion(struct bpf_object *obj)
1289{
1290 return obj ? obj->kern_version : 0;
1291}
1292
1293int bpf_object__set_priv(struct bpf_object *obj, void *priv,
1294 bpf_object_clear_priv_t clear_priv)
1295{
1296 if (obj->priv && obj->clear_priv)
1297 obj->clear_priv(obj, obj->priv);
1298
1299 obj->priv = priv;
1300 obj->clear_priv = clear_priv;
1301 return 0;
1302}
1303
1304void *bpf_object__priv(struct bpf_object *obj)
1305{
1306 return obj ? obj->priv : ERR_PTR(-EINVAL);
1307}
1308
1309struct bpf_program *
1310bpf_program__next(struct bpf_program *prev, struct bpf_object *obj)
1311{
1312 size_t idx;
1313
1314 if (!obj->programs)
1315 return NULL;
1316 /* First handler */
1317 if (prev == NULL)
1318 return &obj->programs[0];
1319
1320 if (prev->obj != obj) {
1321 pr_warning("error: program handler doesn't match object\n");
1322 return NULL;
1323 }
1324
1325 idx = (prev - obj->programs) + 1;
1326 if (idx >= obj->nr_programs)
1327 return NULL;
1328 return &obj->programs[idx];
1329}
1330
1331int bpf_program__set_priv(struct bpf_program *prog, void *priv,
1332 bpf_program_clear_priv_t clear_priv)
1333{
1334 if (prog->priv && prog->clear_priv)
1335 prog->clear_priv(prog, prog->priv);
1336
1337 prog->priv = priv;
1338 prog->clear_priv = clear_priv;
1339 return 0;
1340}
1341
1342void *bpf_program__priv(struct bpf_program *prog)
1343{
1344 return prog ? prog->priv : ERR_PTR(-EINVAL);
1345}
1346
1347const char *bpf_program__title(struct bpf_program *prog, bool needs_copy)
1348{
1349 const char *title;
1350
1351 title = prog->section_name;
1352 if (needs_copy) {
1353 title = strdup(title);
1354 if (!title) {
1355 pr_warning("failed to strdup program title\n");
1356 return ERR_PTR(-ENOMEM);
1357 }
1358 }
1359
1360 return title;
1361}
1362
1363int bpf_program__fd(struct bpf_program *prog)
1364{
1365 return bpf_program__nth_fd(prog, 0);
1366}
1367
1368int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
1369 bpf_program_prep_t prep)
1370{
1371 int *instances_fds;
1372
1373 if (nr_instances <= 0 || !prep)
1374 return -EINVAL;
1375
1376 if (prog->instances.nr > 0 || prog->instances.fds) {
1377 pr_warning("Can't set pre-processor after loading\n");
1378 return -EINVAL;
1379 }
1380
1381 instances_fds = malloc(sizeof(int) * nr_instances);
1382 if (!instances_fds) {
1383 pr_warning("alloc memory failed for fds\n");
1384 return -ENOMEM;
1385 }
1386
1387 /* fill all fd with -1 */
1388 memset(instances_fds, -1, sizeof(int) * nr_instances);
1389
1390 prog->instances.nr = nr_instances;
1391 prog->instances.fds = instances_fds;
1392 prog->preprocessor = prep;
1393 return 0;
1394}
1395
1396int bpf_program__nth_fd(struct bpf_program *prog, int n)
1397{
1398 int fd;
1399
1400 if (n >= prog->instances.nr || n < 0) {
1401 pr_warning("Can't get the %dth fd from program %s: only %d instances\n",
1402 n, prog->section_name, prog->instances.nr);
1403 return -EINVAL;
1404 }
1405
1406 fd = prog->instances.fds[n];
1407 if (fd < 0) {
1408 pr_warning("%dth instance of program '%s' is invalid\n",
1409 n, prog->section_name);
1410 return -ENOENT;
1411 }
1412
1413 return fd;
1414}
1415
1416static void bpf_program__set_type(struct bpf_program *prog,
1417 enum bpf_prog_type type)
1418{
1419 prog->type = type;
1420}
1421
1422int bpf_program__set_tracepoint(struct bpf_program *prog)
1423{
1424 if (!prog)
1425 return -EINVAL;
1426 bpf_program__set_type(prog, BPF_PROG_TYPE_TRACEPOINT);
1427 return 0;
1428}
1429
1430int bpf_program__set_kprobe(struct bpf_program *prog)
1431{
1432 if (!prog)
1433 return -EINVAL;
1434 bpf_program__set_type(prog, BPF_PROG_TYPE_KPROBE);
1435 return 0;
1436}
1437
1438static bool bpf_program__is_type(struct bpf_program *prog,
1439 enum bpf_prog_type type)
1440{
1441 return prog ? (prog->type == type) : false;
1442}
1443
1444bool bpf_program__is_tracepoint(struct bpf_program *prog)
1445{
1446 return bpf_program__is_type(prog, BPF_PROG_TYPE_TRACEPOINT);
1447}
1448
1449bool bpf_program__is_kprobe(struct bpf_program *prog)
1450{
1451 return bpf_program__is_type(prog, BPF_PROG_TYPE_KPROBE);
1452}
1453
1454int bpf_map__fd(struct bpf_map *map)
1455{
1456 return map ? map->fd : -EINVAL;
1457}
1458
1459const struct bpf_map_def *bpf_map__def(struct bpf_map *map)
1460{
1461 return map ? &map->def : ERR_PTR(-EINVAL);
1462}
1463
1464const char *bpf_map__name(struct bpf_map *map)
1465{
1466 return map ? map->name : NULL;
1467}
1468
1469int bpf_map__set_priv(struct bpf_map *map, void *priv,
1470 bpf_map_clear_priv_t clear_priv)
1471{
1472 if (!map)
1473 return -EINVAL;
1474
1475 if (map->priv) {
1476 if (map->clear_priv)
1477 map->clear_priv(map, map->priv);
1478 }
1479
1480 map->priv = priv;
1481 map->clear_priv = clear_priv;
1482 return 0;
1483}
1484
1485void *bpf_map__priv(struct bpf_map *map)
1486{
1487 return map ? map->priv : ERR_PTR(-EINVAL);
1488}
1489
1490struct bpf_map *
1491bpf_map__next(struct bpf_map *prev, struct bpf_object *obj)
1492{
1493 size_t idx;
1494 struct bpf_map *s, *e;
1495
1496 if (!obj || !obj->maps)
1497 return NULL;
1498
1499 s = obj->maps;
1500 e = obj->maps + obj->nr_maps;
1501
1502 if (prev == NULL)
1503 return s;
1504
1505 if ((prev < s) || (prev >= e)) {
1506 pr_warning("error in %s: map handler doesn't belong to object\n",
1507 __func__);
1508 return NULL;
1509 }
1510
1511 idx = (prev - obj->maps) + 1;
1512 if (idx >= obj->nr_maps)
1513 return NULL;
1514 return &obj->maps[idx];
1515}
1516
1517struct bpf_map *
1518bpf_object__find_map_by_name(struct bpf_object *obj, const char *name)
1519{
1520 struct bpf_map *pos;
1521
1522 bpf_map__for_each(pos, obj) {
1523 if (pos->name && !strcmp(pos->name, name))
1524 return pos;
1525 }
1526 return NULL;
1527}
1528
1529struct bpf_map *
1530bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
1531{
1532 int i;
1533
1534 for (i = 0; i < obj->nr_maps; i++) {
1535 if (obj->maps[i].offset == offset)
1536 return &obj->maps[i];
1537 }
1538 return ERR_PTR(-ENOENT);
1539}