Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * trace_hwlat.c - A simple Hardware Latency detector.
  4 *
  5 * Use this tracer to detect large system latencies induced by the behavior of
  6 * certain underlying system hardware or firmware, independent of Linux itself.
  7 * The code was developed originally to detect the presence of SMIs on Intel
  8 * and AMD systems, although there is no dependency upon x86 herein.
  9 *
 10 * The classical example usage of this tracer is in detecting the presence of
 11 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
 12 * somewhat special form of hardware interrupt spawned from earlier CPU debug
 13 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
 14 * LPC (or other device) to generate a special interrupt under certain
 15 * circumstances, for example, upon expiration of a special SMI timer device,
 16 * due to certain external thermal readings, on certain I/O address accesses,
 17 * and other situations. An SMI hits a special CPU pin, triggers a special
 18 * SMI mode (complete with special memory map), and the OS is unaware.
 19 *
 20 * Although certain hardware-inducing latencies are necessary (for example,
 21 * a modern system often requires an SMI handler for correct thermal control
 22 * and remote management) they can wreak havoc upon any OS-level performance
 23 * guarantees toward low-latency, especially when the OS is not even made
 24 * aware of the presence of these interrupts. For this reason, we need a
 25 * somewhat brute force mechanism to detect these interrupts. In this case,
 26 * we do it by hogging all of the CPU(s) for configurable timer intervals,
 27 * sampling the built-in CPU timer, looking for discontiguous readings.
 28 *
 29 * WARNING: This implementation necessarily introduces latencies. Therefore,
 30 *          you should NEVER use this tracer while running in a production
 31 *          environment requiring any kind of low-latency performance
 32 *          guarantee(s).
 33 *
 34 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
 35 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
 36 *
 37 * Includes useful feedback from Clark Williams <williams@redhat.com>
 38 *
 
 
 
 39 */
 40#include <linux/kthread.h>
 41#include <linux/tracefs.h>
 42#include <linux/uaccess.h>
 43#include <linux/cpumask.h>
 44#include <linux/delay.h>
 45#include <linux/sched/clock.h>
 46#include "trace.h"
 47
 48static struct trace_array	*hwlat_trace;
 49
 50#define U64STR_SIZE		22			/* 20 digits max */
 51
 52#define BANNER			"hwlat_detector: "
 53#define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
 54#define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
 55#define DEFAULT_LAT_THRESHOLD	10			/* 10us */
 56
 
 
 
 57static struct dentry *hwlat_sample_width;	/* sample width us */
 58static struct dentry *hwlat_sample_window;	/* sample window us */
 59static struct dentry *hwlat_thread_mode;	/* hwlat thread mode */
 60
 61enum {
 62	MODE_NONE = 0,
 63	MODE_ROUND_ROBIN,
 64	MODE_PER_CPU,
 65	MODE_MAX
 66};
 67static char *thread_mode_str[] = { "none", "round-robin", "per-cpu" };
 68
 69/* Save the previous tracing_thresh value */
 70static unsigned long save_tracing_thresh;
 71
 72/* runtime kthread data */
 73struct hwlat_kthread_data {
 74	struct task_struct	*kthread;
 75	/* NMI timestamp counters */
 76	u64			nmi_ts_start;
 77	u64			nmi_total_ts;
 78	int			nmi_count;
 79	int			nmi_cpu;
 80};
 81
 82static struct hwlat_kthread_data hwlat_single_cpu_data;
 83static DEFINE_PER_CPU(struct hwlat_kthread_data, hwlat_per_cpu_data);
 84
 85/* Tells NMIs to call back to the hwlat tracer to record timestamps */
 86bool trace_hwlat_callback_enabled;
 87
 88/* If the user changed threshold, remember it */
 89static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
 90
 91/* Individual latency samples are stored here when detected. */
 92struct hwlat_sample {
 93	u64			seqnum;		/* unique sequence */
 94	u64			duration;	/* delta */
 95	u64			outer_duration;	/* delta (outer loop) */
 96	u64			nmi_total_ts;	/* Total time spent in NMIs */
 97	struct timespec64	timestamp;	/* wall time */
 98	int			nmi_count;	/* # NMIs during this sample */
 99	int			count;		/* # of iterations over thresh */
100};
101
102/* keep the global state somewhere. */
103static struct hwlat_data {
104
105	struct mutex lock;		/* protect changes */
106
107	u64	count;			/* total since reset */
108
109	u64	sample_window;		/* total sampling window (on+off) */
110	u64	sample_width;		/* active sampling portion of window */
111
112	int	thread_mode;		/* thread mode */
113
114} hwlat_data = {
115	.sample_window		= DEFAULT_SAMPLE_WINDOW,
116	.sample_width		= DEFAULT_SAMPLE_WIDTH,
117	.thread_mode		= MODE_ROUND_ROBIN
118};
119
120static struct hwlat_kthread_data *get_cpu_data(void)
121{
122	if (hwlat_data.thread_mode == MODE_PER_CPU)
123		return this_cpu_ptr(&hwlat_per_cpu_data);
124	else
125		return &hwlat_single_cpu_data;
126}
127
128static bool hwlat_busy;
129
130static void trace_hwlat_sample(struct hwlat_sample *sample)
131{
132	struct trace_array *tr = hwlat_trace;
133	struct trace_event_call *call = &event_hwlat;
134	struct trace_buffer *buffer = tr->array_buffer.buffer;
135	struct ring_buffer_event *event;
136	struct hwlat_entry *entry;
 
 
 
 
 
137
138	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
139					  tracing_gen_ctx());
140	if (!event)
141		return;
142	entry	= ring_buffer_event_data(event);
143	entry->seqnum			= sample->seqnum;
144	entry->duration			= sample->duration;
145	entry->outer_duration		= sample->outer_duration;
146	entry->timestamp		= sample->timestamp;
147	entry->nmi_total_ts		= sample->nmi_total_ts;
148	entry->nmi_count		= sample->nmi_count;
149	entry->count			= sample->count;
150
151	if (!call_filter_check_discard(call, entry, buffer, event))
152		trace_buffer_unlock_commit_nostack(buffer, event);
153}
154
155/* Macros to encapsulate the time capturing infrastructure */
156#define time_type	u64
157#define time_get()	trace_clock_local()
158#define time_to_us(x)	div_u64(x, 1000)
159#define time_sub(a, b)	((a) - (b))
160#define init_time(a, b)	(a = b)
161#define time_u64(a)	a
162
163void trace_hwlat_callback(bool enter)
164{
165	struct hwlat_kthread_data *kdata = get_cpu_data();
166
167	if (!kdata->kthread)
168		return;
169
170	/*
171	 * Currently trace_clock_local() calls sched_clock() and the
172	 * generic version is not NMI safe.
173	 */
174	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
175		if (enter)
176			kdata->nmi_ts_start = time_get();
177		else
178			kdata->nmi_total_ts += time_get() - kdata->nmi_ts_start;
179	}
180
181	if (enter)
182		kdata->nmi_count++;
183}
184
185/*
186 * hwlat_err - report a hwlat error.
187 */
188#define hwlat_err(msg) ({							\
189	struct trace_array *tr = hwlat_trace;					\
190										\
191	trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg);	\
192})
193
194/**
195 * get_sample - sample the CPU TSC and look for likely hardware latencies
196 *
197 * Used to repeatedly capture the CPU TSC (or similar), looking for potential
198 * hardware-induced latency. Called with interrupts disabled and with
199 * hwlat_data.lock held.
200 */
201static int get_sample(void)
202{
203	struct hwlat_kthread_data *kdata = get_cpu_data();
204	struct trace_array *tr = hwlat_trace;
205	struct hwlat_sample s;
206	time_type start, t1, t2, last_t2;
207	s64 diff, outer_diff, total, last_total = 0;
208	u64 sample = 0;
209	u64 thresh = tracing_thresh;
210	u64 outer_sample = 0;
211	int ret = -1;
212	unsigned int count = 0;
213
214	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
215
216	kdata->nmi_total_ts = 0;
217	kdata->nmi_count = 0;
 
218	/* Make sure NMIs see this first */
219	barrier();
220
221	trace_hwlat_callback_enabled = true;
222
223	init_time(last_t2, 0);
224	start = time_get(); /* start timestamp */
225	outer_diff = 0;
226
227	do {
228
229		t1 = time_get();	/* we'll look for a discontinuity */
230		t2 = time_get();
231
232		if (time_u64(last_t2)) {
233			/* Check the delta from outer loop (t2 to next t1) */
234			outer_diff = time_to_us(time_sub(t1, last_t2));
235			/* This shouldn't happen */
236			if (outer_diff < 0) {
237				hwlat_err(BANNER "time running backwards\n");
238				goto out;
239			}
240			if (outer_diff > outer_sample)
241				outer_sample = outer_diff;
242		}
243		last_t2 = t2;
244
245		total = time_to_us(time_sub(t2, start)); /* sample width */
246
247		/* Check for possible overflows */
248		if (total < last_total) {
249			hwlat_err("Time total overflowed\n");
250			break;
251		}
252		last_total = total;
253
254		/* This checks the inner loop (t1 to t2) */
255		diff = time_to_us(time_sub(t2, t1));     /* current diff */
256
257		if (diff > thresh || outer_diff > thresh) {
258			if (!count)
259				ktime_get_real_ts64(&s.timestamp);
260			count++;
261		}
262
263		/* This shouldn't happen */
264		if (diff < 0) {
265			hwlat_err(BANNER "time running backwards\n");
266			goto out;
267		}
268
269		if (diff > sample)
270			sample = diff; /* only want highest value */
271
272	} while (total <= hwlat_data.sample_width);
273
274	barrier(); /* finish the above in the view for NMIs */
275	trace_hwlat_callback_enabled = false;
276	barrier(); /* Make sure nmi_total_ts is no longer updated */
277
278	ret = 0;
279
280	/* If we exceed the threshold value, we have found a hardware latency */
281	if (sample > thresh || outer_sample > thresh) {
282		u64 latency;
283
284		ret = 1;
285
286		/* We read in microseconds */
287		if (kdata->nmi_total_ts)
288			do_div(kdata->nmi_total_ts, NSEC_PER_USEC);
289
290		hwlat_data.count++;
291		s.seqnum = hwlat_data.count;
292		s.duration = sample;
293		s.outer_duration = outer_sample;
294		s.nmi_total_ts = kdata->nmi_total_ts;
295		s.nmi_count = kdata->nmi_count;
296		s.count = count;
297		trace_hwlat_sample(&s);
298
299		latency = max(sample, outer_sample);
300
301		/* Keep a running maximum ever recorded hardware latency */
302		if (latency > tr->max_latency) {
303			tr->max_latency = latency;
304			latency_fsnotify(tr);
305		}
306	}
307
308out:
309	return ret;
310}
311
312static struct cpumask save_cpumask;
 
313
314static void move_to_next_cpu(void)
315{
316	struct cpumask *current_mask = &save_cpumask;
317	struct trace_array *tr = hwlat_trace;
318	int next_cpu;
319
 
 
 
 
 
 
 
 
 
 
 
 
 
320	/*
321	 * If for some reason the user modifies the CPU affinity
322	 * of this thread, then stop migrating for the duration
323	 * of the current test.
324	 */
325	if (!cpumask_equal(current_mask, current->cpus_ptr))
326		goto change_mode;
327
328	cpus_read_lock();
329	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
330	next_cpu = cpumask_next(raw_smp_processor_id(), current_mask);
331	cpus_read_unlock();
332
333	if (next_cpu >= nr_cpu_ids)
334		next_cpu = cpumask_first(current_mask);
335
 
336	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
337		goto change_mode;
338
339	cpumask_clear(current_mask);
340	cpumask_set_cpu(next_cpu, current_mask);
341
342	set_cpus_allowed_ptr(current, current_mask);
343	return;
344
345 change_mode:
346	hwlat_data.thread_mode = MODE_NONE;
347	pr_info(BANNER "cpumask changed while in round-robin mode, switching to mode none\n");
348}
349
350/*
351 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
352 *
353 * Used to periodically sample the CPU TSC via a call to get_sample. We
354 * disable interrupts, which does (intentionally) introduce latency since we
355 * need to ensure nothing else might be running (and thus preempting).
356 * Obviously this should never be used in production environments.
357 *
358 * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
 
 
 
359 */
360static int kthread_fn(void *data)
361{
362	u64 interval;
 
363
364	while (!kthread_should_stop()) {
365
366		if (hwlat_data.thread_mode == MODE_ROUND_ROBIN)
367			move_to_next_cpu();
368
369		local_irq_disable();
370		get_sample();
371		local_irq_enable();
372
373		mutex_lock(&hwlat_data.lock);
374		interval = hwlat_data.sample_window - hwlat_data.sample_width;
375		mutex_unlock(&hwlat_data.lock);
376
377		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
378
379		/* Always sleep for at least 1ms */
380		if (interval < 1)
381			interval = 1;
382
383		if (msleep_interruptible(interval))
384			break;
385	}
386
387	return 0;
388}
389
390/*
391 * stop_stop_kthread - Inform the hardware latency sampling/detector kthread to stop
392 *
393 * This kicks the running hardware latency sampling/detector kernel thread and
394 * tells it to stop sampling now. Use this on unload and at system shutdown.
395 */
396static void stop_single_kthread(void)
397{
398	struct hwlat_kthread_data *kdata = get_cpu_data();
399	struct task_struct *kthread;
400
401	cpus_read_lock();
402	kthread = kdata->kthread;
403
404	if (!kthread)
405		goto out_put_cpus;
406
407	kthread_stop(kthread);
408	kdata->kthread = NULL;
409
410out_put_cpus:
411	cpus_read_unlock();
412}
413
414
415/*
416 * start_single_kthread - Kick off the hardware latency sampling/detector kthread
417 *
418 * This starts the kernel thread that will sit and sample the CPU timestamp
419 * counter (TSC or similar) and look for potential hardware latencies.
420 */
421static int start_single_kthread(struct trace_array *tr)
422{
423	struct hwlat_kthread_data *kdata = get_cpu_data();
424	struct cpumask *current_mask = &save_cpumask;
425	struct task_struct *kthread;
426	int next_cpu;
427
428	cpus_read_lock();
429	if (kdata->kthread)
430		goto out_put_cpus;
431
432	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
433	if (IS_ERR(kthread)) {
434		pr_err(BANNER "could not start sampling thread\n");
435		cpus_read_unlock();
436		return -ENOMEM;
437	}
438
439	/* Just pick the first CPU on first iteration */
440	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
441
442	if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) {
443		next_cpu = cpumask_first(current_mask);
444		cpumask_clear(current_mask);
445		cpumask_set_cpu(next_cpu, current_mask);
446
447	}
448
449	set_cpus_allowed_ptr(kthread, current_mask);
450
451	kdata->kthread = kthread;
452	wake_up_process(kthread);
453
454out_put_cpus:
455	cpus_read_unlock();
456	return 0;
457}
458
459/*
460 * stop_cpu_kthread - Stop a hwlat cpu kthread
461 */
462static void stop_cpu_kthread(unsigned int cpu)
463{
464	struct task_struct *kthread;
465
466	kthread = per_cpu(hwlat_per_cpu_data, cpu).kthread;
467	if (kthread)
468		kthread_stop(kthread);
469	per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL;
470}
471
472/*
473 * stop_per_cpu_kthreads - Inform the hardware latency sampling/detector kthread to stop
474 *
475 * This kicks the running hardware latency sampling/detector kernel threads and
476 * tells it to stop sampling now. Use this on unload and at system shutdown.
477 */
478static void stop_per_cpu_kthreads(void)
479{
480	unsigned int cpu;
481
482	cpus_read_lock();
483	for_each_online_cpu(cpu)
484		stop_cpu_kthread(cpu);
485	cpus_read_unlock();
486}
487
488/*
489 * start_cpu_kthread - Start a hwlat cpu kthread
490 */
491static int start_cpu_kthread(unsigned int cpu)
492{
493	struct task_struct *kthread;
494
495	/* Do not start a new hwlatd thread if it is already running */
496	if (per_cpu(hwlat_per_cpu_data, cpu).kthread)
497		return 0;
498
499	kthread = kthread_run_on_cpu(kthread_fn, NULL, cpu, "hwlatd/%u");
500	if (IS_ERR(kthread)) {
501		pr_err(BANNER "could not start sampling thread\n");
502		return -ENOMEM;
503	}
504
505	per_cpu(hwlat_per_cpu_data, cpu).kthread = kthread;
506
507	return 0;
508}
509
510#ifdef CONFIG_HOTPLUG_CPU
511static void hwlat_hotplug_workfn(struct work_struct *dummy)
512{
513	struct trace_array *tr = hwlat_trace;
514	unsigned int cpu = smp_processor_id();
515
516	mutex_lock(&trace_types_lock);
517	mutex_lock(&hwlat_data.lock);
518	cpus_read_lock();
519
520	if (!hwlat_busy || hwlat_data.thread_mode != MODE_PER_CPU)
521		goto out_unlock;
522
523	if (!cpumask_test_cpu(cpu, tr->tracing_cpumask))
524		goto out_unlock;
525
526	start_cpu_kthread(cpu);
527
528out_unlock:
529	cpus_read_unlock();
530	mutex_unlock(&hwlat_data.lock);
531	mutex_unlock(&trace_types_lock);
532}
533
534static DECLARE_WORK(hwlat_hotplug_work, hwlat_hotplug_workfn);
535
536/*
537 * hwlat_cpu_init - CPU hotplug online callback function
538 */
539static int hwlat_cpu_init(unsigned int cpu)
540{
541	schedule_work_on(cpu, &hwlat_hotplug_work);
542	return 0;
543}
544
545/*
546 * hwlat_cpu_die - CPU hotplug offline callback function
547 */
548static int hwlat_cpu_die(unsigned int cpu)
549{
550	stop_cpu_kthread(cpu);
551	return 0;
552}
553
554static void hwlat_init_hotplug_support(void)
555{
556	int ret;
557
558	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/hwlat:online",
559				hwlat_cpu_init, hwlat_cpu_die);
560	if (ret < 0)
561		pr_warn(BANNER "Error to init cpu hotplug support\n");
562
563	return;
564}
565#else /* CONFIG_HOTPLUG_CPU */
566static void hwlat_init_hotplug_support(void)
567{
568	return;
569}
570#endif /* CONFIG_HOTPLUG_CPU */
571
572/*
573 * start_per_cpu_kthreads - Kick off the hardware latency sampling/detector kthreads
 
 
 
 
574 *
575 * This starts the kernel threads that will sit on potentially all cpus and
576 * sample the CPU timestamp counter (TSC or similar) and look for potential
577 * hardware latencies.
578 */
579static int start_per_cpu_kthreads(struct trace_array *tr)
 
 
 
 
 
 
580{
581	struct cpumask *current_mask = &save_cpumask;
582	unsigned int cpu;
583	int retval;
584
585	cpus_read_lock();
586	/*
587	 * Run only on CPUs in which hwlat is allowed to run.
588	 */
589	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
590
591	for_each_cpu(cpu, current_mask) {
592		retval = start_cpu_kthread(cpu);
593		if (retval)
594			goto out_error;
595	}
596	cpus_read_unlock();
597
598	return 0;
599
600out_error:
601	cpus_read_unlock();
602	stop_per_cpu_kthreads();
603	return retval;
604}
605
606static void *s_mode_start(struct seq_file *s, loff_t *pos)
607{
608	int mode = *pos;
609
610	mutex_lock(&hwlat_data.lock);
611
612	if (mode >= MODE_MAX)
613		return NULL;
614
615	return pos;
616}
617
618static void *s_mode_next(struct seq_file *s, void *v, loff_t *pos)
619{
620	int mode = ++(*pos);
621
622	if (mode >= MODE_MAX)
623		return NULL;
624
625	return pos;
626}
627
628static int s_mode_show(struct seq_file *s, void *v)
629{
630	loff_t *pos = v;
631	int mode = *pos;
632
633	if (mode == hwlat_data.thread_mode)
634		seq_printf(s, "[%s]", thread_mode_str[mode]);
635	else
636		seq_printf(s, "%s", thread_mode_str[mode]);
637
638	if (mode < MODE_MAX - 1) /* if mode is any but last */
639		seq_puts(s, " ");
640
641	return 0;
642}
643
644static void s_mode_stop(struct seq_file *s, void *v)
645{
646	seq_puts(s, "\n");
647	mutex_unlock(&hwlat_data.lock);
648}
649
650static const struct seq_operations thread_mode_seq_ops = {
651	.start		= s_mode_start,
652	.next		= s_mode_next,
653	.show		= s_mode_show,
654	.stop		= s_mode_stop
655};
656
657static int hwlat_mode_open(struct inode *inode, struct file *file)
658{
659	return seq_open(file, &thread_mode_seq_ops);
660};
661
662static void hwlat_tracer_start(struct trace_array *tr);
663static void hwlat_tracer_stop(struct trace_array *tr);
664
665/**
666 * hwlat_mode_write - Write function for "mode" entry
667 * @filp: The active open file structure
668 * @ubuf: The user buffer that contains the value to write
669 * @cnt: The maximum number of bytes to write to "file"
670 * @ppos: The current position in @file
671 *
672 * This function provides a write implementation for the "mode" interface
673 * to the hardware latency detector. hwlatd has different operation modes.
674 * The "none" sets the allowed cpumask for a single hwlatd thread at the
675 * startup and lets the scheduler handle the migration. The default mode is
676 * the "round-robin" one, in which a single hwlatd thread runs, migrating
677 * among the allowed CPUs in a round-robin fashion. The "per-cpu" mode
678 * creates one hwlatd thread per allowed CPU.
679 */
680static ssize_t hwlat_mode_write(struct file *filp, const char __user *ubuf,
681				 size_t cnt, loff_t *ppos)
 
682{
683	struct trace_array *tr = hwlat_trace;
684	const char *mode;
685	char buf[64];
686	int ret, i;
687
688	if (cnt >= sizeof(buf))
689		return -EINVAL;
690
691	if (copy_from_user(buf, ubuf, cnt))
692		return -EFAULT;
693
694	buf[cnt] = 0;
695
696	mode = strstrip(buf);
697
698	ret = -EINVAL;
699
700	/*
701	 * trace_types_lock is taken to avoid concurrency on start/stop
702	 * and hwlat_busy.
703	 */
704	mutex_lock(&trace_types_lock);
705	if (hwlat_busy)
706		hwlat_tracer_stop(tr);
707
708	mutex_lock(&hwlat_data.lock);
709
710	for (i = 0; i < MODE_MAX; i++) {
711		if (strcmp(mode, thread_mode_str[i]) == 0) {
712			hwlat_data.thread_mode = i;
713			ret = cnt;
714		}
715	}
716
717	mutex_unlock(&hwlat_data.lock);
718
719	if (hwlat_busy)
720		hwlat_tracer_start(tr);
721	mutex_unlock(&trace_types_lock);
722
723	*ppos += cnt;
724
725
726
727	return ret;
728}
729
730/*
731 * The width parameter is read/write using the generic trace_min_max_param
732 * method. The *val is protected by the hwlat_data lock and is upper
733 * bounded by the window parameter.
734 */
735static struct trace_min_max_param hwlat_width = {
736	.lock		= &hwlat_data.lock,
737	.val		= &hwlat_data.sample_width,
738	.max		= &hwlat_data.sample_window,
739	.min		= NULL,
740};
741
742/*
743 * The window parameter is read/write using the generic trace_min_max_param
744 * method. The *val is protected by the hwlat_data lock and is lower
745 * bounded by the width parameter.
746 */
747static struct trace_min_max_param hwlat_window = {
748	.lock		= &hwlat_data.lock,
749	.val		= &hwlat_data.sample_window,
750	.max		= NULL,
751	.min		= &hwlat_data.sample_width,
752};
753
754static const struct file_operations thread_mode_fops = {
755	.open		= hwlat_mode_open,
756	.read		= seq_read,
757	.llseek		= seq_lseek,
758	.release	= seq_release,
759	.write		= hwlat_mode_write
760};
761/**
762 * init_tracefs - A function to initialize the tracefs interface files
763 *
764 * This function creates entries in tracefs for "hwlat_detector".
765 * It creates the hwlat_detector directory in the tracing directory,
766 * and within that directory is the count, width and window files to
767 * change and view those values.
768 */
769static int init_tracefs(void)
770{
771	int ret;
772	struct dentry *top_dir;
773
774	ret = tracing_init_dentry();
775	if (ret)
776		return -ENOMEM;
777
778	top_dir = tracefs_create_dir("hwlat_detector", NULL);
779	if (!top_dir)
780		return -ENOMEM;
781
782	hwlat_sample_window = tracefs_create_file("window", TRACE_MODE_WRITE,
783						  top_dir,
784						  &hwlat_window,
785						  &trace_min_max_fops);
786	if (!hwlat_sample_window)
787		goto err;
788
789	hwlat_sample_width = tracefs_create_file("width", TRACE_MODE_WRITE,
790						 top_dir,
791						 &hwlat_width,
792						 &trace_min_max_fops);
793	if (!hwlat_sample_width)
794		goto err;
795
796	hwlat_thread_mode = trace_create_file("mode", TRACE_MODE_WRITE,
797					      top_dir,
798					      NULL,
799					      &thread_mode_fops);
800	if (!hwlat_thread_mode)
801		goto err;
802
803	return 0;
804
805 err:
806	tracefs_remove(top_dir);
807	return -ENOMEM;
808}
809
810static void hwlat_tracer_start(struct trace_array *tr)
811{
812	int err;
813
814	if (hwlat_data.thread_mode == MODE_PER_CPU)
815		err = start_per_cpu_kthreads(tr);
816	else
817		err = start_single_kthread(tr);
818	if (err)
819		pr_err(BANNER "Cannot start hwlat kthread\n");
820}
821
822static void hwlat_tracer_stop(struct trace_array *tr)
823{
824	if (hwlat_data.thread_mode == MODE_PER_CPU)
825		stop_per_cpu_kthreads();
826	else
827		stop_single_kthread();
828}
829
 
 
830static int hwlat_tracer_init(struct trace_array *tr)
831{
832	/* Only allow one instance to enable this */
833	if (hwlat_busy)
834		return -EBUSY;
835
836	hwlat_trace = tr;
837
 
838	hwlat_data.count = 0;
839	tr->max_latency = 0;
840	save_tracing_thresh = tracing_thresh;
841
842	/* tracing_thresh is in nsecs, we speak in usecs */
843	if (!tracing_thresh)
844		tracing_thresh = last_tracing_thresh;
845
846	if (tracer_tracing_is_on(tr))
847		hwlat_tracer_start(tr);
848
849	hwlat_busy = true;
850
851	return 0;
852}
853
854static void hwlat_tracer_reset(struct trace_array *tr)
855{
856	hwlat_tracer_stop(tr);
857
858	/* the tracing threshold is static between runs */
859	last_tracing_thresh = tracing_thresh;
860
861	tracing_thresh = save_tracing_thresh;
862	hwlat_busy = false;
863}
864
865static struct tracer hwlat_tracer __read_mostly =
866{
867	.name		= "hwlat",
868	.init		= hwlat_tracer_init,
869	.reset		= hwlat_tracer_reset,
870	.start		= hwlat_tracer_start,
871	.stop		= hwlat_tracer_stop,
872	.allow_instances = true,
873};
874
875__init static int init_hwlat_tracer(void)
876{
877	int ret;
878
879	mutex_init(&hwlat_data.lock);
880
881	ret = register_tracer(&hwlat_tracer);
882	if (ret)
883		return ret;
884
885	hwlat_init_hotplug_support();
886
887	init_tracefs();
888
889	return 0;
890}
891late_initcall(init_hwlat_tracer);
v4.10.11
 
  1/*
  2 * trace_hwlatdetect.c - A simple Hardware Latency detector.
  3 *
  4 * Use this tracer to detect large system latencies induced by the behavior of
  5 * certain underlying system hardware or firmware, independent of Linux itself.
  6 * The code was developed originally to detect the presence of SMIs on Intel
  7 * and AMD systems, although there is no dependency upon x86 herein.
  8 *
  9 * The classical example usage of this tracer is in detecting the presence of
 10 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
 11 * somewhat special form of hardware interrupt spawned from earlier CPU debug
 12 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
 13 * LPC (or other device) to generate a special interrupt under certain
 14 * circumstances, for example, upon expiration of a special SMI timer device,
 15 * due to certain external thermal readings, on certain I/O address accesses,
 16 * and other situations. An SMI hits a special CPU pin, triggers a special
 17 * SMI mode (complete with special memory map), and the OS is unaware.
 18 *
 19 * Although certain hardware-inducing latencies are necessary (for example,
 20 * a modern system often requires an SMI handler for correct thermal control
 21 * and remote management) they can wreak havoc upon any OS-level performance
 22 * guarantees toward low-latency, especially when the OS is not even made
 23 * aware of the presence of these interrupts. For this reason, we need a
 24 * somewhat brute force mechanism to detect these interrupts. In this case,
 25 * we do it by hogging all of the CPU(s) for configurable timer intervals,
 26 * sampling the built-in CPU timer, looking for discontiguous readings.
 27 *
 28 * WARNING: This implementation necessarily introduces latencies. Therefore,
 29 *          you should NEVER use this tracer while running in a production
 30 *          environment requiring any kind of low-latency performance
 31 *          guarantee(s).
 32 *
 33 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
 34 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
 35 *
 36 * Includes useful feedback from Clark Williams <clark@redhat.com>
 37 *
 38 * This file is licensed under the terms of the GNU General Public
 39 * License version 2. This program is licensed "as is" without any
 40 * warranty of any kind, whether express or implied.
 41 */
 42#include <linux/kthread.h>
 43#include <linux/tracefs.h>
 44#include <linux/uaccess.h>
 45#include <linux/cpumask.h>
 46#include <linux/delay.h>
 
 47#include "trace.h"
 48
 49static struct trace_array	*hwlat_trace;
 50
 51#define U64STR_SIZE		22			/* 20 digits max */
 52
 53#define BANNER			"hwlat_detector: "
 54#define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
 55#define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
 56#define DEFAULT_LAT_THRESHOLD	10			/* 10us */
 57
 58/* sampling thread*/
 59static struct task_struct *hwlat_kthread;
 60
 61static struct dentry *hwlat_sample_width;	/* sample width us */
 62static struct dentry *hwlat_sample_window;	/* sample window us */
 
 
 
 
 
 
 
 
 
 63
 64/* Save the previous tracing_thresh value */
 65static unsigned long save_tracing_thresh;
 66
 67/* NMI timestamp counters */
 68static u64 nmi_ts_start;
 69static u64 nmi_total_ts;
 70static int nmi_count;
 71static int nmi_cpu;
 
 
 
 
 
 
 
 72
 73/* Tells NMIs to call back to the hwlat tracer to record timestamps */
 74bool trace_hwlat_callback_enabled;
 75
 76/* If the user changed threshold, remember it */
 77static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
 78
 79/* Individual latency samples are stored here when detected. */
 80struct hwlat_sample {
 81	u64		seqnum;		/* unique sequence */
 82	u64		duration;	/* delta */
 83	u64		outer_duration;	/* delta (outer loop) */
 84	u64		nmi_total_ts;	/* Total time spent in NMIs */
 85	struct timespec	timestamp;	/* wall time */
 86	int		nmi_count;	/* # NMIs during this sample */
 
 87};
 88
 89/* keep the global state somewhere. */
 90static struct hwlat_data {
 91
 92	struct mutex lock;		/* protect changes */
 93
 94	u64	count;			/* total since reset */
 95
 96	u64	sample_window;		/* total sampling window (on+off) */
 97	u64	sample_width;		/* active sampling portion of window */
 98
 
 
 99} hwlat_data = {
100	.sample_window		= DEFAULT_SAMPLE_WINDOW,
101	.sample_width		= DEFAULT_SAMPLE_WIDTH,
 
102};
103
 
 
 
 
 
 
 
 
 
 
104static void trace_hwlat_sample(struct hwlat_sample *sample)
105{
106	struct trace_array *tr = hwlat_trace;
107	struct trace_event_call *call = &event_hwlat;
108	struct ring_buffer *buffer = tr->trace_buffer.buffer;
109	struct ring_buffer_event *event;
110	struct hwlat_entry *entry;
111	unsigned long flags;
112	int pc;
113
114	pc = preempt_count();
115	local_save_flags(flags);
116
117	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
118					  flags, pc);
119	if (!event)
120		return;
121	entry	= ring_buffer_event_data(event);
122	entry->seqnum			= sample->seqnum;
123	entry->duration			= sample->duration;
124	entry->outer_duration		= sample->outer_duration;
125	entry->timestamp		= sample->timestamp;
126	entry->nmi_total_ts		= sample->nmi_total_ts;
127	entry->nmi_count		= sample->nmi_count;
 
128
129	if (!call_filter_check_discard(call, entry, buffer, event))
130		trace_buffer_unlock_commit_nostack(buffer, event);
131}
132
133/* Macros to encapsulate the time capturing infrastructure */
134#define time_type	u64
135#define time_get()	trace_clock_local()
136#define time_to_us(x)	div_u64(x, 1000)
137#define time_sub(a, b)	((a) - (b))
138#define init_time(a, b)	(a = b)
139#define time_u64(a)	a
140
141void trace_hwlat_callback(bool enter)
142{
143	if (smp_processor_id() != nmi_cpu)
 
 
144		return;
145
146	/*
147	 * Currently trace_clock_local() calls sched_clock() and the
148	 * generic version is not NMI safe.
149	 */
150	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
151		if (enter)
152			nmi_ts_start = time_get();
153		else
154			nmi_total_ts = time_get() - nmi_ts_start;
155	}
156
157	if (enter)
158		nmi_count++;
159}
160
 
 
 
 
 
 
 
 
 
161/**
162 * get_sample - sample the CPU TSC and look for likely hardware latencies
163 *
164 * Used to repeatedly capture the CPU TSC (or similar), looking for potential
165 * hardware-induced latency. Called with interrupts disabled and with
166 * hwlat_data.lock held.
167 */
168static int get_sample(void)
169{
 
170	struct trace_array *tr = hwlat_trace;
 
171	time_type start, t1, t2, last_t2;
172	s64 diff, total, last_total = 0;
173	u64 sample = 0;
174	u64 thresh = tracing_thresh;
175	u64 outer_sample = 0;
176	int ret = -1;
 
177
178	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
179
180	nmi_cpu = smp_processor_id();
181	nmi_total_ts = 0;
182	nmi_count = 0;
183	/* Make sure NMIs see this first */
184	barrier();
185
186	trace_hwlat_callback_enabled = true;
187
188	init_time(last_t2, 0);
189	start = time_get(); /* start timestamp */
 
190
191	do {
192
193		t1 = time_get();	/* we'll look for a discontinuity */
194		t2 = time_get();
195
196		if (time_u64(last_t2)) {
197			/* Check the delta from outer loop (t2 to next t1) */
198			diff = time_to_us(time_sub(t1, last_t2));
199			/* This shouldn't happen */
200			if (diff < 0) {
201				pr_err(BANNER "time running backwards\n");
202				goto out;
203			}
204			if (diff > outer_sample)
205				outer_sample = diff;
206		}
207		last_t2 = t2;
208
209		total = time_to_us(time_sub(t2, start)); /* sample width */
210
211		/* Check for possible overflows */
212		if (total < last_total) {
213			pr_err("Time total overflowed\n");
214			break;
215		}
216		last_total = total;
217
218		/* This checks the inner loop (t1 to t2) */
219		diff = time_to_us(time_sub(t2, t1));     /* current diff */
220
 
 
 
 
 
 
221		/* This shouldn't happen */
222		if (diff < 0) {
223			pr_err(BANNER "time running backwards\n");
224			goto out;
225		}
226
227		if (diff > sample)
228			sample = diff; /* only want highest value */
229
230	} while (total <= hwlat_data.sample_width);
231
232	barrier(); /* finish the above in the view for NMIs */
233	trace_hwlat_callback_enabled = false;
234	barrier(); /* Make sure nmi_total_ts is no longer updated */
235
236	ret = 0;
237
238	/* If we exceed the threshold value, we have found a hardware latency */
239	if (sample > thresh || outer_sample > thresh) {
240		struct hwlat_sample s;
241
242		ret = 1;
243
244		/* We read in microseconds */
245		if (nmi_total_ts)
246			do_div(nmi_total_ts, NSEC_PER_USEC);
247
248		hwlat_data.count++;
249		s.seqnum = hwlat_data.count;
250		s.duration = sample;
251		s.outer_duration = outer_sample;
252		s.timestamp = CURRENT_TIME;
253		s.nmi_total_ts = nmi_total_ts;
254		s.nmi_count = nmi_count;
255		trace_hwlat_sample(&s);
256
 
 
257		/* Keep a running maximum ever recorded hardware latency */
258		if (sample > tr->max_latency)
259			tr->max_latency = sample;
 
 
260	}
261
262out:
263	return ret;
264}
265
266static struct cpumask save_cpumask;
267static bool disable_migrate;
268
269static void move_to_next_cpu(bool initmask)
270{
271	static struct cpumask *current_mask;
 
272	int next_cpu;
273
274	if (disable_migrate)
275		return;
276
277	/* Just pick the first CPU on first iteration */
278	if (initmask) {
279		current_mask = &save_cpumask;
280		get_online_cpus();
281		cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
282		put_online_cpus();
283		next_cpu = cpumask_first(current_mask);
284		goto set_affinity;
285	}
286
287	/*
288	 * If for some reason the user modifies the CPU affinity
289	 * of this thread, than stop migrating for the duration
290	 * of the current test.
291	 */
292	if (!cpumask_equal(current_mask, &current->cpus_allowed))
293		goto disable;
294
295	get_online_cpus();
296	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
297	next_cpu = cpumask_next(smp_processor_id(), current_mask);
298	put_online_cpus();
299
300	if (next_cpu >= nr_cpu_ids)
301		next_cpu = cpumask_first(current_mask);
302
303 set_affinity:
304	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
305		goto disable;
306
307	cpumask_clear(current_mask);
308	cpumask_set_cpu(next_cpu, current_mask);
309
310	sched_setaffinity(0, current_mask);
311	return;
312
313 disable:
314	disable_migrate = true;
 
315}
316
317/*
318 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
319 *
320 * Used to periodically sample the CPU TSC via a call to get_sample. We
321 * disable interrupts, which does (intentionally) introduce latency since we
322 * need to ensure nothing else might be running (and thus preempting).
323 * Obviously this should never be used in production environments.
324 *
325 * Currently this runs on which ever CPU it was scheduled on, but most
326 * real-world hardware latency situations occur across several CPUs,
327 * but we might later generalize this if we find there are any actualy
328 * systems with alternate SMI delivery or other hardware latencies.
329 */
330static int kthread_fn(void *data)
331{
332	u64 interval;
333	bool initmask = true;
334
335	while (!kthread_should_stop()) {
336
337		move_to_next_cpu(initmask);
338		initmask = false;
339
340		local_irq_disable();
341		get_sample();
342		local_irq_enable();
343
344		mutex_lock(&hwlat_data.lock);
345		interval = hwlat_data.sample_window - hwlat_data.sample_width;
346		mutex_unlock(&hwlat_data.lock);
347
348		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
349
350		/* Always sleep for at least 1ms */
351		if (interval < 1)
352			interval = 1;
353
354		if (msleep_interruptible(interval))
355			break;
356	}
357
358	return 0;
359}
360
361/**
362 * start_kthread - Kick off the hardware latency sampling/detector kthread
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363 *
364 * This starts the kernel thread that will sit and sample the CPU timestamp
365 * counter (TSC or similar) and look for potential hardware latencies.
366 */
367static int start_kthread(struct trace_array *tr)
368{
 
 
369	struct task_struct *kthread;
 
 
 
 
 
370
371	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
372	if (IS_ERR(kthread)) {
373		pr_err(BANNER "could not start sampling thread\n");
 
374		return -ENOMEM;
375	}
376	hwlat_kthread = kthread;
 
 
 
 
 
 
 
 
 
 
 
 
 
377	wake_up_process(kthread);
378
 
 
379	return 0;
380}
381
382/**
383 * stop_kthread - Inform the hardware latency samping/detector kthread to stop
 
 
 
 
 
 
 
 
 
 
 
 
 
384 *
385 * This kicks the running hardware latency sampling/detector kernel thread and
386 * tells it to stop sampling now. Use this on unload and at system shutdown.
387 */
388static void stop_kthread(void)
389{
390	if (!hwlat_kthread)
391		return;
392	kthread_stop(hwlat_kthread);
393	hwlat_kthread = NULL;
 
 
394}
395
396/*
397 * hwlat_read - Wrapper read function for reading both window and width
398 * @filp: The active open file structure
399 * @ubuf: The userspace provided buffer to read value into
400 * @cnt: The maximum number of bytes to read
401 * @ppos: The current "file" position
402 *
403 * This function provides a generic read implementation for the global state
404 * "hwlat_data" structure filesystem entries.
405 */
406static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
407			  size_t cnt, loff_t *ppos)
408{
409	char buf[U64STR_SIZE];
410	u64 *entry = filp->private_data;
411	u64 val;
412	int len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413
414	if (!entry)
415		return -EFAULT;
 
 
 
 
 
 
416
417	if (cnt > sizeof(buf))
418		cnt = sizeof(buf);
 
 
 
 
 
 
419
420	val = *entry;
 
 
421
422	len = snprintf(buf, sizeof(buf), "%llu\n", val);
 
 
 
423
424	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
 
 
 
 
 
425}
 
426
427/**
428 * hwlat_width_write - Write function for "width" entry
429 * @filp: The active open file structure
430 * @ubuf: The user buffer that contains the value to write
431 * @cnt: The maximum number of bytes to write to "file"
432 * @ppos: The current position in @file
433 *
434 * This function provides a write implementation for the "width" interface
435 * to the hardware latency detector. It can be used to configure
436 * for how many us of the total window us we will actively sample for any
437 * hardware-induced latency periods. Obviously, it is not possible to
438 * sample constantly and have the system respond to a sample reader, or,
439 * worse, without having the system appear to have gone out to lunch. It
440 * is enforced that width is less that the total window size.
441 */
442static ssize_t
443hwlat_width_write(struct file *filp, const char __user *ubuf,
444		  size_t cnt, loff_t *ppos)
445{
446	u64 val;
447	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448
449	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
450	if (err)
451		return err;
452
453	mutex_lock(&hwlat_data.lock);
454	if (val < hwlat_data.sample_window)
455		hwlat_data.sample_width = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456	else
457		err = -EINVAL;
 
 
 
 
 
 
 
 
 
 
458	mutex_unlock(&hwlat_data.lock);
 
 
 
 
 
 
 
 
459
460	if (err)
461		return err;
 
 
462
463	return cnt;
464}
465
466/**
467 * hwlat_window_write - Write function for "window" entry
468 * @filp: The active open file structure
469 * @ubuf: The user buffer that contains the value to write
470 * @cnt: The maximum number of bytes to write to "file"
471 * @ppos: The current position in @file
472 *
473 * This function provides a write implementation for the "window" interface
474 * to the hardware latency detetector. The window is the total time
475 * in us that will be considered one sample period. Conceptually, windows
476 * occur back-to-back and contain a sample width period during which
477 * actual sampling occurs. Can be used to write a new total window size. It
478 * is enfoced that any value written must be greater than the sample width
479 * size, or an error results.
480 */
481static ssize_t
482hwlat_window_write(struct file *filp, const char __user *ubuf,
483		   size_t cnt, loff_t *ppos)
484{
485	u64 val;
486	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
488	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
489	if (err)
490		return err;
 
 
 
 
491
492	mutex_lock(&hwlat_data.lock);
493	if (hwlat_data.sample_width < val)
494		hwlat_data.sample_window = val;
495	else
496		err = -EINVAL;
 
 
 
 
497	mutex_unlock(&hwlat_data.lock);
498
499	if (err)
500		return err;
 
 
 
 
 
501
502	return cnt;
503}
504
505static const struct file_operations width_fops = {
506	.open		= tracing_open_generic,
507	.read		= hwlat_read,
508	.write		= hwlat_width_write,
 
 
 
 
 
 
509};
510
511static const struct file_operations window_fops = {
512	.open		= tracing_open_generic,
513	.read		= hwlat_read,
514	.write		= hwlat_window_write,
 
 
 
 
 
 
515};
516
 
 
 
 
 
 
 
517/**
518 * init_tracefs - A function to initialize the tracefs interface files
519 *
520 * This function creates entries in tracefs for "hwlat_detector".
521 * It creates the hwlat_detector directory in the tracing directory,
522 * and within that directory is the count, width and window files to
523 * change and view those values.
524 */
525static int init_tracefs(void)
526{
527	struct dentry *d_tracer;
528	struct dentry *top_dir;
529
530	d_tracer = tracing_init_dentry();
531	if (IS_ERR(d_tracer))
532		return -ENOMEM;
533
534	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
535	if (!top_dir)
536		return -ENOMEM;
537
538	hwlat_sample_window = tracefs_create_file("window", 0640,
539						  top_dir,
540						  &hwlat_data.sample_window,
541						  &window_fops);
542	if (!hwlat_sample_window)
543		goto err;
544
545	hwlat_sample_width = tracefs_create_file("width", 0644,
546						 top_dir,
547						 &hwlat_data.sample_width,
548						 &width_fops);
549	if (!hwlat_sample_width)
550		goto err;
551
 
 
 
 
 
 
 
552	return 0;
553
554 err:
555	tracefs_remove_recursive(top_dir);
556	return -ENOMEM;
557}
558
559static void hwlat_tracer_start(struct trace_array *tr)
560{
561	int err;
562
563	err = start_kthread(tr);
 
 
 
564	if (err)
565		pr_err(BANNER "Cannot start hwlat kthread\n");
566}
567
568static void hwlat_tracer_stop(struct trace_array *tr)
569{
570	stop_kthread();
 
 
 
571}
572
573static bool hwlat_busy;
574
575static int hwlat_tracer_init(struct trace_array *tr)
576{
577	/* Only allow one instance to enable this */
578	if (hwlat_busy)
579		return -EBUSY;
580
581	hwlat_trace = tr;
582
583	disable_migrate = false;
584	hwlat_data.count = 0;
585	tr->max_latency = 0;
586	save_tracing_thresh = tracing_thresh;
587
588	/* tracing_thresh is in nsecs, we speak in usecs */
589	if (!tracing_thresh)
590		tracing_thresh = last_tracing_thresh;
591
592	if (tracer_tracing_is_on(tr))
593		hwlat_tracer_start(tr);
594
595	hwlat_busy = true;
596
597	return 0;
598}
599
600static void hwlat_tracer_reset(struct trace_array *tr)
601{
602	stop_kthread();
603
604	/* the tracing threshold is static between runs */
605	last_tracing_thresh = tracing_thresh;
606
607	tracing_thresh = save_tracing_thresh;
608	hwlat_busy = false;
609}
610
611static struct tracer hwlat_tracer __read_mostly =
612{
613	.name		= "hwlat",
614	.init		= hwlat_tracer_init,
615	.reset		= hwlat_tracer_reset,
616	.start		= hwlat_tracer_start,
617	.stop		= hwlat_tracer_stop,
618	.allow_instances = true,
619};
620
621__init static int init_hwlat_tracer(void)
622{
623	int ret;
624
625	mutex_init(&hwlat_data.lock);
626
627	ret = register_tracer(&hwlat_tracer);
628	if (ret)
629		return ret;
 
 
630
631	init_tracefs();
632
633	return 0;
634}
635late_initcall(init_hwlat_tracer);