Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
 
 
  19#include "xfs_trace.h"
 
 
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24struct kmem_cache	*xfs_log_ticket_cache;
  25
  26/* Local miscellaneous function prototypes */
 
 
 
 
 
 
 
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC int
  34xlog_space_left(
  35	struct xlog		*log,
  36	atomic64_t		*head);
 
 
 
 
  37STATIC void
  38xlog_dealloc_log(
  39	struct xlog		*log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
 
 
 
 
  43	struct xlog_in_core	*iclog);
  44STATIC void xlog_state_do_callback(
  45	struct xlog		*log);
  46STATIC int
  47xlog_state_get_iclog_space(
  48	struct xlog		*log,
  49	int			len,
  50	struct xlog_in_core	**iclog,
  51	struct xlog_ticket	*ticket,
 
  52	int			*logoffsetp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53STATIC void
  54xlog_grant_push_ail(
  55	struct xlog		*log,
  56	int			need_bytes);
  57STATIC void
  58xlog_sync(
  59	struct xlog		*log,
  60	struct xlog_in_core	*iclog,
  61	struct xlog_ticket	*ticket);
 
 
 
 
 
  62#if defined(DEBUG)
  63STATIC void
 
 
 
 
  64xlog_verify_grant_tail(
  65	struct xlog *log);
  66STATIC void
  67xlog_verify_iclog(
  68	struct xlog		*log,
  69	struct xlog_in_core	*iclog,
  70	int			count);
 
  71STATIC void
  72xlog_verify_tail_lsn(
  73	struct xlog		*log,
  74	struct xlog_in_core	*iclog);
 
  75#else
 
  76#define xlog_verify_grant_tail(a)
  77#define xlog_verify_iclog(a,b,c)
  78#define xlog_verify_tail_lsn(a,b)
  79#endif
  80
  81STATIC int
  82xlog_iclogs_empty(
  83	struct xlog		*log);
  84
  85static int
  86xfs_log_cover(struct xfs_mount *);
  87
  88/*
  89 * We need to make sure the buffer pointer returned is naturally aligned for the
  90 * biggest basic data type we put into it. We have already accounted for this
  91 * padding when sizing the buffer.
  92 *
  93 * However, this padding does not get written into the log, and hence we have to
  94 * track the space used by the log vectors separately to prevent log space hangs
  95 * due to inaccurate accounting (i.e. a leak) of the used log space through the
  96 * CIL context ticket.
  97 *
  98 * We also add space for the xlog_op_header that describes this region in the
  99 * log. This prepends the data region we return to the caller to copy their data
 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr
 101 * is not 8 byte aligned, we have to be careful to ensure that we align the
 102 * start of the buffer such that the region we return to the call is 8 byte
 103 * aligned and packed against the tail of the ophdr.
 104 */
 105void *
 106xlog_prepare_iovec(
 107	struct xfs_log_vec	*lv,
 108	struct xfs_log_iovec	**vecp,
 109	uint			type)
 110{
 111	struct xfs_log_iovec	*vec = *vecp;
 112	struct xlog_op_header	*oph;
 113	uint32_t		len;
 114	void			*buf;
 115
 116	if (vec) {
 117		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
 118		vec++;
 119	} else {
 120		vec = &lv->lv_iovecp[0];
 121	}
 122
 123	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
 124	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
 125		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
 126					sizeof(struct xlog_op_header);
 127	}
 128
 129	vec->i_type = type;
 130	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
 131
 132	oph = vec->i_addr;
 133	oph->oh_clientid = XFS_TRANSACTION;
 134	oph->oh_res2 = 0;
 135	oph->oh_flags = 0;
 136
 137	buf = vec->i_addr + sizeof(struct xlog_op_header);
 138	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
 139
 140	*vecp = vec;
 141	return buf;
 142}
 143
 144static void
 145xlog_grant_sub_space(
 146	struct xlog		*log,
 147	atomic64_t		*head,
 148	int			bytes)
 149{
 150	int64_t	head_val = atomic64_read(head);
 151	int64_t new, old;
 152
 153	do {
 154		int	cycle, space;
 155
 156		xlog_crack_grant_head_val(head_val, &cycle, &space);
 157
 158		space -= bytes;
 159		if (space < 0) {
 160			space += log->l_logsize;
 161			cycle--;
 162		}
 163
 164		old = head_val;
 165		new = xlog_assign_grant_head_val(cycle, space);
 166		head_val = atomic64_cmpxchg(head, old, new);
 167	} while (head_val != old);
 168}
 169
 170static void
 171xlog_grant_add_space(
 172	struct xlog		*log,
 173	atomic64_t		*head,
 174	int			bytes)
 175{
 176	int64_t	head_val = atomic64_read(head);
 177	int64_t new, old;
 178
 179	do {
 180		int		tmp;
 181		int		cycle, space;
 182
 183		xlog_crack_grant_head_val(head_val, &cycle, &space);
 184
 185		tmp = log->l_logsize - space;
 186		if (tmp > bytes)
 187			space += bytes;
 188		else {
 189			space = bytes - tmp;
 190			cycle++;
 191		}
 192
 193		old = head_val;
 194		new = xlog_assign_grant_head_val(cycle, space);
 195		head_val = atomic64_cmpxchg(head, old, new);
 196	} while (head_val != old);
 197}
 198
 199STATIC void
 200xlog_grant_head_init(
 201	struct xlog_grant_head	*head)
 202{
 203	xlog_assign_grant_head(&head->grant, 1, 0);
 204	INIT_LIST_HEAD(&head->waiters);
 205	spin_lock_init(&head->lock);
 206}
 207
 208STATIC void
 209xlog_grant_head_wake_all(
 210	struct xlog_grant_head	*head)
 211{
 212	struct xlog_ticket	*tic;
 213
 214	spin_lock(&head->lock);
 215	list_for_each_entry(tic, &head->waiters, t_queue)
 216		wake_up_process(tic->t_task);
 217	spin_unlock(&head->lock);
 218}
 219
 220static inline int
 221xlog_ticket_reservation(
 222	struct xlog		*log,
 223	struct xlog_grant_head	*head,
 224	struct xlog_ticket	*tic)
 225{
 226	if (head == &log->l_write_head) {
 227		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 228		return tic->t_unit_res;
 
 
 
 
 
 229	}
 230
 231	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 232		return tic->t_unit_res * tic->t_cnt;
 233
 234	return tic->t_unit_res;
 235}
 236
 237STATIC bool
 238xlog_grant_head_wake(
 239	struct xlog		*log,
 240	struct xlog_grant_head	*head,
 241	int			*free_bytes)
 242{
 243	struct xlog_ticket	*tic;
 244	int			need_bytes;
 245	bool			woken_task = false;
 246
 247	list_for_each_entry(tic, &head->waiters, t_queue) {
 248
 249		/*
 250		 * There is a chance that the size of the CIL checkpoints in
 251		 * progress at the last AIL push target calculation resulted in
 252		 * limiting the target to the log head (l_last_sync_lsn) at the
 253		 * time. This may not reflect where the log head is now as the
 254		 * CIL checkpoints may have completed.
 255		 *
 256		 * Hence when we are woken here, it may be that the head of the
 257		 * log that has moved rather than the tail. As the tail didn't
 258		 * move, there still won't be space available for the
 259		 * reservation we require.  However, if the AIL has already
 260		 * pushed to the target defined by the old log head location, we
 261		 * will hang here waiting for something else to update the AIL
 262		 * push target.
 263		 *
 264		 * Therefore, if there isn't space to wake the first waiter on
 265		 * the grant head, we need to push the AIL again to ensure the
 266		 * target reflects both the current log tail and log head
 267		 * position before we wait for the tail to move again.
 268		 */
 269
 270		need_bytes = xlog_ticket_reservation(log, head, tic);
 271		if (*free_bytes < need_bytes) {
 272			if (!woken_task)
 273				xlog_grant_push_ail(log, need_bytes);
 274			return false;
 275		}
 276
 277		*free_bytes -= need_bytes;
 278		trace_xfs_log_grant_wake_up(log, tic);
 279		wake_up_process(tic->t_task);
 280		woken_task = true;
 281	}
 282
 283	return true;
 284}
 285
 286STATIC int
 287xlog_grant_head_wait(
 288	struct xlog		*log,
 289	struct xlog_grant_head	*head,
 290	struct xlog_ticket	*tic,
 291	int			need_bytes) __releases(&head->lock)
 292					    __acquires(&head->lock)
 293{
 294	list_add_tail(&tic->t_queue, &head->waiters);
 295
 296	do {
 297		if (xlog_is_shutdown(log))
 298			goto shutdown;
 299		xlog_grant_push_ail(log, need_bytes);
 300
 301		__set_current_state(TASK_UNINTERRUPTIBLE);
 302		spin_unlock(&head->lock);
 303
 304		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 305
 306		trace_xfs_log_grant_sleep(log, tic);
 307		schedule();
 308		trace_xfs_log_grant_wake(log, tic);
 309
 310		spin_lock(&head->lock);
 311		if (xlog_is_shutdown(log))
 312			goto shutdown;
 313	} while (xlog_space_left(log, &head->grant) < need_bytes);
 314
 315	list_del_init(&tic->t_queue);
 316	return 0;
 317shutdown:
 318	list_del_init(&tic->t_queue);
 319	return -EIO;
 320}
 321
 322/*
 323 * Atomically get the log space required for a log ticket.
 324 *
 325 * Once a ticket gets put onto head->waiters, it will only return after the
 326 * needed reservation is satisfied.
 327 *
 328 * This function is structured so that it has a lock free fast path. This is
 329 * necessary because every new transaction reservation will come through this
 330 * path. Hence any lock will be globally hot if we take it unconditionally on
 331 * every pass.
 332 *
 333 * As tickets are only ever moved on and off head->waiters under head->lock, we
 334 * only need to take that lock if we are going to add the ticket to the queue
 335 * and sleep. We can avoid taking the lock if the ticket was never added to
 336 * head->waiters because the t_queue list head will be empty and we hold the
 337 * only reference to it so it can safely be checked unlocked.
 338 */
 339STATIC int
 340xlog_grant_head_check(
 341	struct xlog		*log,
 342	struct xlog_grant_head	*head,
 343	struct xlog_ticket	*tic,
 344	int			*need_bytes)
 345{
 346	int			free_bytes;
 347	int			error = 0;
 348
 349	ASSERT(!xlog_in_recovery(log));
 350
 351	/*
 352	 * If there are other waiters on the queue then give them a chance at
 353	 * logspace before us.  Wake up the first waiters, if we do not wake
 354	 * up all the waiters then go to sleep waiting for more free space,
 355	 * otherwise try to get some space for this transaction.
 356	 */
 357	*need_bytes = xlog_ticket_reservation(log, head, tic);
 358	free_bytes = xlog_space_left(log, &head->grant);
 359	if (!list_empty_careful(&head->waiters)) {
 360		spin_lock(&head->lock);
 361		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 362		    free_bytes < *need_bytes) {
 363			error = xlog_grant_head_wait(log, head, tic,
 364						     *need_bytes);
 365		}
 366		spin_unlock(&head->lock);
 367	} else if (free_bytes < *need_bytes) {
 368		spin_lock(&head->lock);
 369		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 370		spin_unlock(&head->lock);
 371	}
 372
 373	return error;
 374}
 375
 376bool
 377xfs_log_writable(
 378	struct xfs_mount	*mp)
 379{
 380	/*
 381	 * Do not write to the log on norecovery mounts, if the data or log
 382	 * devices are read-only, or if the filesystem is shutdown. Read-only
 383	 * mounts allow internal writes for log recovery and unmount purposes,
 384	 * so don't restrict that case.
 385	 */
 386	if (xfs_has_norecovery(mp))
 387		return false;
 388	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 389		return false;
 390	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 391		return false;
 392	if (xlog_is_shutdown(mp->m_log))
 393		return false;
 394	return true;
 
 
 
 
 395}
 396
 397/*
 398 * Replenish the byte reservation required by moving the grant write head.
 399 */
 400int
 401xfs_log_regrant(
 402	struct xfs_mount	*mp,
 403	struct xlog_ticket	*tic)
 404{
 405	struct xlog		*log = mp->m_log;
 406	int			need_bytes;
 407	int			error = 0;
 408
 409	if (xlog_is_shutdown(log))
 410		return -EIO;
 411
 412	XFS_STATS_INC(mp, xs_try_logspace);
 413
 414	/*
 415	 * This is a new transaction on the ticket, so we need to change the
 416	 * transaction ID so that the next transaction has a different TID in
 417	 * the log. Just add one to the existing tid so that we can see chains
 418	 * of rolling transactions in the log easily.
 419	 */
 420	tic->t_tid++;
 421
 422	xlog_grant_push_ail(log, tic->t_unit_res);
 423
 424	tic->t_curr_res = tic->t_unit_res;
 
 
 425	if (tic->t_cnt > 0)
 426		return 0;
 427
 428	trace_xfs_log_regrant(log, tic);
 429
 430	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 431				      &need_bytes);
 432	if (error)
 433		goto out_error;
 434
 435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 436	trace_xfs_log_regrant_exit(log, tic);
 437	xlog_verify_grant_tail(log);
 438	return 0;
 439
 440out_error:
 441	/*
 442	 * If we are failing, make sure the ticket doesn't have any current
 443	 * reservations.  We don't want to add this back when the ticket/
 444	 * transaction gets cancelled.
 445	 */
 446	tic->t_curr_res = 0;
 447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 448	return error;
 449}
 450
 451/*
 452 * Reserve log space and return a ticket corresponding to the reservation.
 453 *
 454 * Each reservation is going to reserve extra space for a log record header.
 455 * When writes happen to the on-disk log, we don't subtract the length of the
 456 * log record header from any reservation.  By wasting space in each
 457 * reservation, we prevent over allocation problems.
 458 */
 459int
 460xfs_log_reserve(
 461	struct xfs_mount	*mp,
 462	int			unit_bytes,
 463	int			cnt,
 464	struct xlog_ticket	**ticp,
 
 465	bool			permanent)
 466{
 467	struct xlog		*log = mp->m_log;
 468	struct xlog_ticket	*tic;
 469	int			need_bytes;
 470	int			error = 0;
 471
 472	if (xlog_is_shutdown(log))
 
 
 473		return -EIO;
 474
 475	XFS_STATS_INC(mp, xs_try_logspace);
 476
 477	ASSERT(*ticp == NULL);
 478	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
 
 
 
 
 479	*ticp = tic;
 480
 481	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 482					    : tic->t_unit_res);
 483
 484	trace_xfs_log_reserve(log, tic);
 485
 486	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 487				      &need_bytes);
 488	if (error)
 489		goto out_error;
 490
 491	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 492	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 493	trace_xfs_log_reserve_exit(log, tic);
 494	xlog_verify_grant_tail(log);
 495	return 0;
 496
 497out_error:
 498	/*
 499	 * If we are failing, make sure the ticket doesn't have any current
 500	 * reservations.  We don't want to add this back when the ticket/
 501	 * transaction gets cancelled.
 502	 */
 503	tic->t_curr_res = 0;
 504	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 505	return error;
 506}
 507
 
 
 
 
 
 
 
 
 508/*
 509 * Run all the pending iclog callbacks and wake log force waiters and iclog
 510 * space waiters so they can process the newly set shutdown state. We really
 511 * don't care what order we process callbacks here because the log is shut down
 512 * and so state cannot change on disk anymore. However, we cannot wake waiters
 513 * until the callbacks have been processed because we may be in unmount and
 514 * we must ensure that all AIL operations the callbacks perform have completed
 515 * before we tear down the AIL.
 516 *
 517 * We avoid processing actively referenced iclogs so that we don't run callbacks
 518 * while the iclog owner might still be preparing the iclog for IO submssion.
 519 * These will be caught by xlog_state_iclog_release() and call this function
 520 * again to process any callbacks that may have been added to that iclog.
 521 */
 522static void
 523xlog_state_shutdown_callbacks(
 524	struct xlog		*log)
 
 
 
 525{
 526	struct xlog_in_core	*iclog;
 527	LIST_HEAD(cb_list);
 528
 529	iclog = log->l_iclog;
 530	do {
 531		if (atomic_read(&iclog->ic_refcnt)) {
 532			/* Reference holder will re-run iclog callbacks. */
 533			continue;
 534		}
 535		list_splice_init(&iclog->ic_callbacks, &cb_list);
 536		spin_unlock(&log->l_icloglock);
 
 
 537
 538		xlog_cil_process_committed(&cb_list);
 539
 540		spin_lock(&log->l_icloglock);
 541		wake_up_all(&iclog->ic_write_wait);
 542		wake_up_all(&iclog->ic_force_wait);
 543	} while ((iclog = iclog->ic_next) != log->l_iclog);
 544
 545	wake_up_all(&log->l_flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546}
 547
 548/*
 549 * Flush iclog to disk if this is the last reference to the given iclog and the
 550 * it is in the WANT_SYNC state.
 551 *
 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 554 * written to stable storage, and implies that a commit record is contained
 555 * within the iclog. We need to ensure that the log tail does not move beyond
 556 * the tail that the first commit record in the iclog ordered against, otherwise
 557 * correct recovery of that checkpoint becomes dependent on future operations
 558 * performed on this iclog.
 559 *
 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 561 * current tail into iclog. Once the iclog tail is set, future operations must
 562 * not modify it, otherwise they potentially violate ordering constraints for
 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 564 * the iclog will get zeroed on activation of the iclog after sync, so we
 565 * always capture the tail lsn on the iclog on the first NEED_FUA release
 566 * regardless of the number of active reference counts on this iclog.
 567 */
 568int
 569xlog_state_release_iclog(
 570	struct xlog		*log,
 571	struct xlog_in_core	*iclog,
 572	struct xlog_ticket	*ticket)
 573{
 574	xfs_lsn_t		tail_lsn;
 575	bool			last_ref;
 576
 577	lockdep_assert_held(&log->l_icloglock);
 578
 579	trace_xlog_iclog_release(iclog, _RET_IP_);
 580	/*
 581	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 582	 * of the tail LSN into the iclog so we guarantee that the log tail does
 583	 * not move between the first time we know that the iclog needs to be
 584	 * made stable and when we eventually submit it.
 585	 */
 586	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 587	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
 588	    !iclog->ic_header.h_tail_lsn) {
 589		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 590		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 591	}
 
 
 
 592
 593	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 594
 595	if (xlog_is_shutdown(log)) {
 596		/*
 597		 * If there are no more references to this iclog, process the
 598		 * pending iclog callbacks that were waiting on the release of
 599		 * this iclog.
 600		 */
 601		if (last_ref)
 602			xlog_state_shutdown_callbacks(log);
 603		return -EIO;
 604	}
 605
 606	if (!last_ref)
 607		return 0;
 608
 609	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 610		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 611		return 0;
 612	}
 613
 614	iclog->ic_state = XLOG_STATE_SYNCING;
 615	xlog_verify_tail_lsn(log, iclog);
 616	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 617
 618	spin_unlock(&log->l_icloglock);
 619	xlog_sync(log, iclog, ticket);
 620	spin_lock(&log->l_icloglock);
 621	return 0;
 622}
 623
 624/*
 625 * Mount a log filesystem
 626 *
 627 * mp		- ubiquitous xfs mount point structure
 628 * log_target	- buftarg of on-disk log device
 629 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 630 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 631 *
 632 * Return error or zero.
 633 */
 634int
 635xfs_log_mount(
 636	xfs_mount_t	*mp,
 637	xfs_buftarg_t	*log_target,
 638	xfs_daddr_t	blk_offset,
 639	int		num_bblks)
 640{
 641	struct xlog	*log;
 642	int		error = 0;
 643	int		min_logfsbs;
 644
 645	if (!xfs_has_norecovery(mp)) {
 646		xfs_notice(mp, "Mounting V%d Filesystem %pU",
 647			   XFS_SB_VERSION_NUM(&mp->m_sb),
 648			   &mp->m_sb.sb_uuid);
 649	} else {
 650		xfs_notice(mp,
 651"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
 652			   XFS_SB_VERSION_NUM(&mp->m_sb),
 653			   &mp->m_sb.sb_uuid);
 654		ASSERT(xfs_is_readonly(mp));
 655	}
 656
 657	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 658	if (IS_ERR(log)) {
 659		error = PTR_ERR(log);
 660		goto out;
 661	}
 662	mp->m_log = log;
 663
 664	/*
 665	 * Now that we have set up the log and it's internal geometry
 666	 * parameters, we can validate the given log space and drop a critical
 667	 * message via syslog if the log size is too small. A log that is too
 668	 * small can lead to unexpected situations in transaction log space
 669	 * reservation stage. The superblock verifier has already validated all
 670	 * the other log geometry constraints, so we don't have to check those
 671	 * here.
 672	 *
 673	 * Note: For v4 filesystems, we can't just reject the mount if the
 674	 * validation fails.  This would mean that people would have to
 675	 * downgrade their kernel just to remedy the situation as there is no
 676	 * way to grow the log (short of black magic surgery with xfs_db).
 677	 *
 678	 * We can, however, reject mounts for V5 format filesystems, as the
 679	 * mkfs binary being used to make the filesystem should never create a
 680	 * filesystem with a log that is too small.
 681	 */
 682	min_logfsbs = xfs_log_calc_minimum_size(mp);
 
 683	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 684		xfs_warn(mp,
 685		"Log size %d blocks too small, minimum size is %d blocks",
 686			 mp->m_sb.sb_logblocks, min_logfsbs);
 687
 688		/*
 689		 * Log check errors are always fatal on v5; or whenever bad
 690		 * metadata leads to a crash.
 691		 */
 692		if (xfs_has_crc(mp)) {
 
 
 
 
 
 
 
 
 
 693			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 694			ASSERT(0);
 695			error = -EINVAL;
 696			goto out_free_log;
 697		}
 698		xfs_crit(mp, "Log size out of supported range.");
 699		xfs_crit(mp,
 700"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 701	}
 702
 703	/*
 704	 * Initialize the AIL now we have a log.
 705	 */
 706	error = xfs_trans_ail_init(mp);
 707	if (error) {
 708		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 709		goto out_free_log;
 710	}
 711	log->l_ailp = mp->m_ail;
 712
 713	/*
 714	 * skip log recovery on a norecovery mount.  pretend it all
 715	 * just worked.
 716	 */
 717	if (!xfs_has_norecovery(mp)) {
 718		error = xlog_recover(log);
 
 
 
 
 
 
 
 
 719		if (error) {
 720			xfs_warn(mp, "log mount/recovery failed: error %d",
 721				error);
 722			xlog_recover_cancel(log);
 723			goto out_destroy_ail;
 724		}
 725	}
 726
 727	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 728			       "log");
 729	if (error)
 730		goto out_destroy_ail;
 731
 732	/* Normal transactions can now occur */
 733	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 734
 735	/*
 736	 * Now the log has been fully initialised and we know were our
 737	 * space grant counters are, we can initialise the permanent ticket
 738	 * needed for delayed logging to work.
 739	 */
 740	xlog_cil_init_post_recovery(log);
 741
 742	return 0;
 743
 744out_destroy_ail:
 745	xfs_trans_ail_destroy(mp);
 746out_free_log:
 747	xlog_dealloc_log(log);
 748out:
 749	return error;
 750}
 751
 752/*
 753 * Finish the recovery of the file system.  This is separate from the
 754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 756 * here.
 757 *
 758 * If we finish recovery successfully, start the background log work. If we are
 759 * not doing recovery, then we have a RO filesystem and we don't need to start
 760 * it.
 761 */
 762int
 763xfs_log_mount_finish(
 764	struct xfs_mount	*mp)
 765{
 766	struct xlog		*log = mp->m_log;
 767	int			error = 0;
 768
 769	if (xfs_has_norecovery(mp)) {
 770		ASSERT(xfs_is_readonly(mp));
 771		return 0;
 772	}
 773
 774	/*
 775	 * During the second phase of log recovery, we need iget and
 776	 * iput to behave like they do for an active filesystem.
 777	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 778	 * of inodes before we're done replaying log items on those
 779	 * inodes.  Turn it off immediately after recovery finishes
 780	 * so that we don't leak the quota inodes if subsequent mount
 781	 * activities fail.
 782	 *
 783	 * We let all inodes involved in redo item processing end up on
 784	 * the LRU instead of being evicted immediately so that if we do
 785	 * something to an unlinked inode, the irele won't cause
 786	 * premature truncation and freeing of the inode, which results
 787	 * in log recovery failure.  We have to evict the unreferenced
 788	 * lru inodes after clearing SB_ACTIVE because we don't
 789	 * otherwise clean up the lru if there's a subsequent failure in
 790	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 791	 * else (e.g. quotacheck) references the inodes before the
 792	 * mount failure occurs.
 793	 */
 794	mp->m_super->s_flags |= SB_ACTIVE;
 795	xfs_log_work_queue(mp);
 796	if (xlog_recovery_needed(log))
 797		error = xlog_recover_finish(log);
 798	mp->m_super->s_flags &= ~SB_ACTIVE;
 799	evict_inodes(mp->m_super);
 800
 801	/*
 802	 * Drain the buffer LRU after log recovery. This is required for v4
 803	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 804	 * but we do it unconditionally to make sure we're always in a clean
 805	 * cache state after mount.
 806	 *
 807	 * Don't push in the error case because the AIL may have pending intents
 808	 * that aren't removed until recovery is cancelled.
 809	 */
 810	if (xlog_recovery_needed(log)) {
 811		if (!error) {
 812			xfs_log_force(mp, XFS_LOG_SYNC);
 813			xfs_ail_push_all_sync(mp->m_ail);
 814		}
 815		xfs_notice(mp, "Ending recovery (logdev: %s)",
 816				mp->m_logname ? mp->m_logname : "internal");
 817	} else {
 818		xfs_info(mp, "Ending clean mount");
 819	}
 820	xfs_buftarg_drain(mp->m_ddev_targp);
 821
 822	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 823
 824	/* Make sure the log is dead if we're returning failure. */
 825	ASSERT(!error || xlog_is_shutdown(log));
 826
 827	return error;
 828}
 829
 830/*
 831 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 832 * the log.
 833 */
 834void
 835xfs_log_mount_cancel(
 836	struct xfs_mount	*mp)
 837{
 838	xlog_recover_cancel(mp->m_log);
 
 
 839	xfs_log_unmount(mp);
 840}
 841
 842/*
 843 * Flush out the iclog to disk ensuring that device caches are flushed and
 844 * the iclog hits stable storage before any completion waiters are woken.
 845 */
 846static inline int
 847xlog_force_iclog(
 848	struct xlog_in_core	*iclog)
 849{
 850	atomic_inc(&iclog->ic_refcnt);
 851	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 852	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 853		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 854	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
 855}
 856
 857/*
 858 * Cycle all the iclogbuf locks to make sure all log IO completion
 859 * is done before we tear down these buffers.
 
 
 
 860 */
 861static void
 862xlog_wait_iclog_completion(struct xlog *log)
 863{
 864	int		i;
 865	struct xlog_in_core	*iclog = log->l_iclog;
 866
 867	for (i = 0; i < log->l_iclog_bufs; i++) {
 868		down(&iclog->ic_sema);
 869		up(&iclog->ic_sema);
 870		iclog = iclog->ic_next;
 871	}
 872}
 873
 874/*
 875 * Wait for the iclog and all prior iclogs to be written disk as required by the
 876 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 877 * have been ordered and callbacks run before we are woken here, hence
 878 * guaranteeing that all the iclogs up to this one are on stable storage.
 
 879 */
 880int
 881xlog_wait_on_iclog(
 882	struct xlog_in_core	*iclog)
 883		__releases(iclog->ic_log->l_icloglock)
 884{
 885	struct xlog		*log = iclog->ic_log;
 886
 887	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 888	if (!xlog_is_shutdown(log) &&
 889	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 890	    iclog->ic_state != XLOG_STATE_DIRTY) {
 891		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 892		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 893	} else {
 894		spin_unlock(&log->l_icloglock);
 895	}
 896
 897	if (xlog_is_shutdown(log))
 898		return -EIO;
 899	return 0;
 900}
 901
 902/*
 903 * Write out an unmount record using the ticket provided. We have to account for
 904 * the data space used in the unmount ticket as this write is not done from a
 905 * transaction context that has already done the accounting for us.
 906 */
 907static int
 908xlog_write_unmount_record(
 909	struct xlog		*log,
 910	struct xlog_ticket	*ticket)
 911{
 912	struct  {
 913		struct xlog_op_header ophdr;
 914		struct xfs_unmount_log_format ulf;
 915	} unmount_rec = {
 916		.ophdr = {
 917			.oh_clientid = XFS_LOG,
 918			.oh_tid = cpu_to_be32(ticket->t_tid),
 919			.oh_flags = XLOG_UNMOUNT_TRANS,
 920		},
 921		.ulf = {
 922			.magic = XLOG_UNMOUNT_TYPE,
 923		},
 924	};
 925	struct xfs_log_iovec reg = {
 926		.i_addr = &unmount_rec,
 927		.i_len = sizeof(unmount_rec),
 928		.i_type = XLOG_REG_TYPE_UNMOUNT,
 929	};
 930	struct xfs_log_vec vec = {
 931		.lv_niovecs = 1,
 932		.lv_iovecp = &reg,
 933	};
 934	LIST_HEAD(lv_chain);
 935	list_add(&vec.lv_list, &lv_chain);
 936
 937	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
 938		      sizeof(struct xfs_unmount_log_format)) !=
 939							sizeof(unmount_rec));
 940
 941	/* account for space used by record data */
 942	ticket->t_curr_res -= sizeof(unmount_rec);
 943
 944	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
 945}
 946
 947/*
 948 * Mark the filesystem clean by writing an unmount record to the head of the
 949 * log.
 950 */
 951static void
 952xlog_unmount_write(
 953	struct xlog		*log)
 954{
 955	struct xfs_mount	*mp = log->l_mp;
 956	struct xlog_in_core	*iclog;
 957	struct xlog_ticket	*tic = NULL;
 958	int			error;
 959
 960	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
 961	if (error)
 962		goto out_err;
 963
 964	error = xlog_write_unmount_record(log, tic);
 965	/*
 966	 * At this point, we're umounting anyway, so there's no point in
 967	 * transitioning log state to shutdown. Just continue...
 968	 */
 969out_err:
 970	if (error)
 971		xfs_alert(mp, "%s: unmount record failed", __func__);
 972
 973	spin_lock(&log->l_icloglock);
 974	iclog = log->l_iclog;
 975	error = xlog_force_iclog(iclog);
 976	xlog_wait_on_iclog(iclog);
 977
 978	if (tic) {
 979		trace_xfs_log_umount_write(log, tic);
 980		xfs_log_ticket_ungrant(log, tic);
 981	}
 982}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983
 984static void
 985xfs_log_unmount_verify_iclog(
 986	struct xlog		*log)
 987{
 988	struct xlog_in_core	*iclog = log->l_iclog;
 989
 990	do {
 991		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 992		ASSERT(iclog->ic_offset == 0);
 993	} while ((iclog = iclog->ic_next) != log->l_iclog);
 994}
 995
 996/*
 997 * Unmount record used to have a string "Unmount filesystem--" in the
 998 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 999 * We just write the magic number now since that particular field isn't
1000 * currently architecture converted and "Unmount" is a bit foo.
1001 * As far as I know, there weren't any dependencies on the old behaviour.
1002 */
1003static void
1004xfs_log_unmount_write(
1005	struct xfs_mount	*mp)
1006{
1007	struct xlog		*log = mp->m_log;
1008
1009	if (!xfs_log_writable(mp))
1010		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012	xfs_log_force(mp, XFS_LOG_SYNC);
 
 
1013
1014	if (xlog_is_shutdown(log))
1015		return;
1016
1017	/*
1018	 * If we think the summary counters are bad, avoid writing the unmount
1019	 * record to force log recovery at next mount, after which the summary
1020	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1021	 * more details.
1022	 */
1023	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1024			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1025		xfs_alert(mp, "%s: will fix summary counters at next mount",
1026				__func__);
1027		return;
1028	}
1029
1030	xfs_log_unmount_verify_iclog(log);
1031	xlog_unmount_write(log);
1032}
1033
1034/*
1035 * Empty the log for unmount/freeze.
1036 *
1037 * To do this, we first need to shut down the background log work so it is not
1038 * trying to cover the log as we clean up. We then need to unpin all objects in
1039 * the log so we can then flush them out. Once they have completed their IO and
1040 * run the callbacks removing themselves from the AIL, we can cover the log.
 
1041 */
1042int
1043xfs_log_quiesce(
1044	struct xfs_mount	*mp)
1045{
1046	/*
1047	 * Clear log incompat features since we're quiescing the log.  Report
1048	 * failures, though it's not fatal to have a higher log feature
1049	 * protection level than the log contents actually require.
1050	 */
1051	if (xfs_clear_incompat_log_features(mp)) {
1052		int error;
1053
1054		error = xfs_sync_sb(mp, false);
1055		if (error)
1056			xfs_warn(mp,
1057	"Failed to clear log incompat features on quiesce");
1058	}
1059
1060	cancel_delayed_work_sync(&mp->m_log->l_work);
1061	xfs_log_force(mp, XFS_LOG_SYNC);
1062
1063	/*
1064	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1065	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1066	 * xfs_buf_iowait() cannot be used because it was pushed with the
1067	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1068	 * the IO to complete.
1069	 */
1070	xfs_ail_push_all_sync(mp->m_ail);
1071	xfs_buftarg_wait(mp->m_ddev_targp);
1072	xfs_buf_lock(mp->m_sb_bp);
1073	xfs_buf_unlock(mp->m_sb_bp);
1074
1075	return xfs_log_cover(mp);
1076}
1077
1078void
1079xfs_log_clean(
1080	struct xfs_mount	*mp)
1081{
1082	xfs_log_quiesce(mp);
1083	xfs_log_unmount_write(mp);
1084}
1085
1086/*
1087 * Shut down and release the AIL and Log.
1088 *
1089 * During unmount, we need to ensure we flush all the dirty metadata objects
1090 * from the AIL so that the log is empty before we write the unmount record to
1091 * the log. Once this is done, we can tear down the AIL and the log.
1092 */
1093void
1094xfs_log_unmount(
1095	struct xfs_mount	*mp)
1096{
1097	xfs_log_clean(mp);
1098
1099	/*
1100	 * If shutdown has come from iclog IO context, the log
1101	 * cleaning will have been skipped and so we need to wait
1102	 * for the iclog to complete shutdown processing before we
1103	 * tear anything down.
1104	 */
1105	xlog_wait_iclog_completion(mp->m_log);
1106
1107	xfs_buftarg_drain(mp->m_ddev_targp);
1108
1109	xfs_trans_ail_destroy(mp);
1110
1111	xfs_sysfs_del(&mp->m_log->l_kobj);
1112
1113	xlog_dealloc_log(mp->m_log);
1114}
1115
1116void
1117xfs_log_item_init(
1118	struct xfs_mount	*mp,
1119	struct xfs_log_item	*item,
1120	int			type,
1121	const struct xfs_item_ops *ops)
1122{
1123	item->li_log = mp->m_log;
1124	item->li_ailp = mp->m_ail;
1125	item->li_type = type;
1126	item->li_ops = ops;
1127	item->li_lv = NULL;
1128
1129	INIT_LIST_HEAD(&item->li_ail);
1130	INIT_LIST_HEAD(&item->li_cil);
1131	INIT_LIST_HEAD(&item->li_bio_list);
1132	INIT_LIST_HEAD(&item->li_trans);
1133}
1134
1135/*
1136 * Wake up processes waiting for log space after we have moved the log tail.
1137 */
1138void
1139xfs_log_space_wake(
1140	struct xfs_mount	*mp)
1141{
1142	struct xlog		*log = mp->m_log;
1143	int			free_bytes;
1144
1145	if (xlog_is_shutdown(log))
1146		return;
1147
1148	if (!list_empty_careful(&log->l_write_head.waiters)) {
1149		ASSERT(!xlog_in_recovery(log));
1150
1151		spin_lock(&log->l_write_head.lock);
1152		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1153		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1154		spin_unlock(&log->l_write_head.lock);
1155	}
1156
1157	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1158		ASSERT(!xlog_in_recovery(log));
1159
1160		spin_lock(&log->l_reserve_head.lock);
1161		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1162		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1163		spin_unlock(&log->l_reserve_head.lock);
1164	}
1165}
1166
1167/*
1168 * Determine if we have a transaction that has gone to disk that needs to be
1169 * covered. To begin the transition to the idle state firstly the log needs to
1170 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1171 * we start attempting to cover the log.
1172 *
1173 * Only if we are then in a state where covering is needed, the caller is
1174 * informed that dummy transactions are required to move the log into the idle
1175 * state.
1176 *
1177 * If there are any items in the AIl or CIL, then we do not want to attempt to
1178 * cover the log as we may be in a situation where there isn't log space
1179 * available to run a dummy transaction and this can lead to deadlocks when the
1180 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1181 * there's no point in running a dummy transaction at this point because we
1182 * can't start trying to idle the log until both the CIL and AIL are empty.
1183 */
1184static bool
1185xfs_log_need_covered(
1186	struct xfs_mount	*mp)
1187{
1188	struct xlog		*log = mp->m_log;
1189	bool			needed = false;
 
 
 
1190
1191	if (!xlog_cil_empty(log))
1192		return false;
1193
1194	spin_lock(&log->l_icloglock);
1195	switch (log->l_covered_state) {
1196	case XLOG_STATE_COVER_DONE:
1197	case XLOG_STATE_COVER_DONE2:
1198	case XLOG_STATE_COVER_IDLE:
1199		break;
1200	case XLOG_STATE_COVER_NEED:
1201	case XLOG_STATE_COVER_NEED2:
1202		if (xfs_ail_min_lsn(log->l_ailp))
1203			break;
1204		if (!xlog_iclogs_empty(log))
1205			break;
1206
1207		needed = true;
1208		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1209			log->l_covered_state = XLOG_STATE_COVER_DONE;
1210		else
1211			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1212		break;
1213	default:
1214		needed = true;
1215		break;
1216	}
1217	spin_unlock(&log->l_icloglock);
1218	return needed;
1219}
1220
1221/*
1222 * Explicitly cover the log. This is similar to background log covering but
1223 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1224 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1225 * must all be empty.
1226 */
1227static int
1228xfs_log_cover(
1229	struct xfs_mount	*mp)
1230{
1231	int			error = 0;
1232	bool			need_covered;
1233
1234	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1235	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1236		xlog_is_shutdown(mp->m_log));
1237
1238	if (!xfs_log_writable(mp))
1239		return 0;
1240
1241	/*
1242	 * xfs_log_need_covered() is not idempotent because it progresses the
1243	 * state machine if the log requires covering. Therefore, we must call
1244	 * this function once and use the result until we've issued an sb sync.
1245	 * Do so first to make that abundantly clear.
1246	 *
1247	 * Fall into the covering sequence if the log needs covering or the
1248	 * mount has lazy superblock accounting to sync to disk. The sb sync
1249	 * used for covering accumulates the in-core counters, so covering
1250	 * handles this for us.
1251	 */
1252	need_covered = xfs_log_need_covered(mp);
1253	if (!need_covered && !xfs_has_lazysbcount(mp))
1254		return 0;
1255
1256	/*
1257	 * To cover the log, commit the superblock twice (at most) in
1258	 * independent checkpoints. The first serves as a reference for the
1259	 * tail pointer. The sync transaction and AIL push empties the AIL and
1260	 * updates the in-core tail to the LSN of the first checkpoint. The
1261	 * second commit updates the on-disk tail with the in-core LSN,
1262	 * covering the log. Push the AIL one more time to leave it empty, as
1263	 * we found it.
1264	 */
1265	do {
1266		error = xfs_sync_sb(mp, true);
1267		if (error)
1268			break;
1269		xfs_ail_push_all_sync(mp->m_ail);
1270	} while (xfs_log_need_covered(mp));
1271
1272	return error;
1273}
1274
1275/*
1276 * We may be holding the log iclog lock upon entering this routine.
1277 */
1278xfs_lsn_t
1279xlog_assign_tail_lsn_locked(
1280	struct xfs_mount	*mp)
1281{
1282	struct xlog		*log = mp->m_log;
1283	struct xfs_log_item	*lip;
1284	xfs_lsn_t		tail_lsn;
1285
1286	assert_spin_locked(&mp->m_ail->ail_lock);
1287
1288	/*
1289	 * To make sure we always have a valid LSN for the log tail we keep
1290	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1291	 * and use that when the AIL was empty.
1292	 */
1293	lip = xfs_ail_min(mp->m_ail);
1294	if (lip)
1295		tail_lsn = lip->li_lsn;
1296	else
1297		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1298	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1299	atomic64_set(&log->l_tail_lsn, tail_lsn);
1300	return tail_lsn;
1301}
1302
1303xfs_lsn_t
1304xlog_assign_tail_lsn(
1305	struct xfs_mount	*mp)
1306{
1307	xfs_lsn_t		tail_lsn;
1308
1309	spin_lock(&mp->m_ail->ail_lock);
1310	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1311	spin_unlock(&mp->m_ail->ail_lock);
1312
1313	return tail_lsn;
1314}
1315
1316/*
1317 * Return the space in the log between the tail and the head.  The head
1318 * is passed in the cycle/bytes formal parms.  In the special case where
1319 * the reserve head has wrapped passed the tail, this calculation is no
1320 * longer valid.  In this case, just return 0 which means there is no space
1321 * in the log.  This works for all places where this function is called
1322 * with the reserve head.  Of course, if the write head were to ever
1323 * wrap the tail, we should blow up.  Rather than catch this case here,
1324 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1325 *
1326 * If reservation head is behind the tail, we have a problem. Warn about it,
1327 * but then treat it as if the log is empty.
1328 *
1329 * If the log is shut down, the head and tail may be invalid or out of whack, so
1330 * shortcut invalidity asserts in this case so that we don't trigger them
1331 * falsely.
1332 */
1333STATIC int
1334xlog_space_left(
1335	struct xlog	*log,
1336	atomic64_t	*head)
1337{
 
1338	int		tail_bytes;
1339	int		tail_cycle;
1340	int		head_cycle;
1341	int		head_bytes;
1342
1343	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1344	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1345	tail_bytes = BBTOB(tail_bytes);
1346	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1347		return log->l_logsize - (head_bytes - tail_bytes);
1348	if (tail_cycle + 1 < head_cycle)
1349		return 0;
1350
1351	/* Ignore potential inconsistency when shutdown. */
1352	if (xlog_is_shutdown(log))
1353		return log->l_logsize;
1354
1355	if (tail_cycle < head_cycle) {
1356		ASSERT(tail_cycle == (head_cycle - 1));
1357		return tail_bytes - head_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358	}
1359
1360	/*
1361	 * The reservation head is behind the tail. In this case we just want to
1362	 * return the size of the log as the amount of space left.
1363	 */
1364	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1365	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1366		  tail_cycle, tail_bytes);
1367	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1368		  head_cycle, head_bytes);
1369	ASSERT(0);
1370	return log->l_logsize;
1371}
1372
1373
 
 
 
 
 
 
1374static void
1375xlog_ioend_work(
1376	struct work_struct	*work)
1377{
1378	struct xlog_in_core     *iclog =
1379		container_of(work, struct xlog_in_core, ic_end_io_work);
1380	struct xlog		*log = iclog->ic_log;
1381	int			error;
1382
1383	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1384#ifdef DEBUG
1385	/* treat writes with injected CRC errors as failed */
1386	if (iclog->ic_fail_crc)
1387		error = -EIO;
1388#endif
1389
1390	/*
1391	 * Race to shutdown the filesystem if we see an error.
1392	 */
1393	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1394		xfs_alert(log->l_mp, "log I/O error %d", error);
1395		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
 
 
 
 
 
 
 
 
1396	}
1397
1398	xlog_state_done_syncing(iclog);
1399	bio_uninit(&iclog->ic_bio);
 
1400
1401	/*
1402	 * Drop the lock to signal that we are done. Nothing references the
1403	 * iclog after this, so an unmount waiting on this lock can now tear it
1404	 * down safely. As such, it is unsafe to reference the iclog after the
1405	 * unlock as we could race with it being freed.
1406	 */
1407	up(&iclog->ic_sema);
1408}
1409
1410/*
1411 * Return size of each in-core log record buffer.
1412 *
1413 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1414 *
1415 * If the filesystem blocksize is too large, we may need to choose a
1416 * larger size since the directory code currently logs entire blocks.
1417 */
 
1418STATIC void
1419xlog_get_iclog_buffer_size(
1420	struct xfs_mount	*mp,
1421	struct xlog		*log)
1422{
1423	if (mp->m_logbufs <= 0)
1424		mp->m_logbufs = XLOG_MAX_ICLOGS;
1425	if (mp->m_logbsize <= 0)
1426		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1427
1428	log->l_iclog_bufs = mp->m_logbufs;
1429	log->l_iclog_size = mp->m_logbsize;
 
 
1430
1431	/*
1432	 * # headers = size / 32k - one header holds cycles from 32k of data.
1433	 */
1434	log->l_iclog_heads =
1435		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1436	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1437}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438
1439void
1440xfs_log_work_queue(
1441	struct xfs_mount        *mp)
1442{
1443	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1444				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1445}
1446
1447/*
1448 * Clear the log incompat flags if we have the opportunity.
1449 *
1450 * This only happens if we're about to log the second dummy transaction as part
1451 * of covering the log and we can get the log incompat feature usage lock.
1452 */
1453static inline void
1454xlog_clear_incompat(
1455	struct xlog		*log)
1456{
1457	struct xfs_mount	*mp = log->l_mp;
1458
1459	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1460				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1461		return;
1462
1463	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1464		return;
1465
1466	if (!down_write_trylock(&log->l_incompat_users))
1467		return;
1468
1469	xfs_clear_incompat_log_features(mp);
1470	up_write(&log->l_incompat_users);
1471}
1472
1473/*
1474 * Every sync period we need to unpin all items in the AIL and push them to
1475 * disk. If there is nothing dirty, then we might need to cover the log to
1476 * indicate that the filesystem is idle.
1477 */
1478static void
1479xfs_log_worker(
1480	struct work_struct	*work)
1481{
1482	struct xlog		*log = container_of(to_delayed_work(work),
1483						struct xlog, l_work);
1484	struct xfs_mount	*mp = log->l_mp;
1485
1486	/* dgc: errors ignored - not fatal and nowhere to report them */
1487	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1488		/*
1489		 * Dump a transaction into the log that contains no real change.
1490		 * This is needed to stamp the current tail LSN into the log
1491		 * during the covering operation.
1492		 *
1493		 * We cannot use an inode here for this - that will push dirty
1494		 * state back up into the VFS and then periodic inode flushing
1495		 * will prevent log covering from making progress. Hence we
1496		 * synchronously log the superblock instead to ensure the
1497		 * superblock is immediately unpinned and can be written back.
1498		 */
1499		xlog_clear_incompat(log);
1500		xfs_sync_sb(mp, true);
1501	} else
1502		xfs_log_force(mp, 0);
1503
1504	/* start pushing all the metadata that is currently dirty */
1505	xfs_ail_push_all(mp->m_ail);
1506
1507	/* queue us up again */
1508	xfs_log_work_queue(mp);
1509}
1510
1511/*
1512 * This routine initializes some of the log structure for a given mount point.
1513 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1514 * some other stuff may be filled in too.
1515 */
1516STATIC struct xlog *
1517xlog_alloc_log(
1518	struct xfs_mount	*mp,
1519	struct xfs_buftarg	*log_target,
1520	xfs_daddr_t		blk_offset,
1521	int			num_bblks)
1522{
1523	struct xlog		*log;
1524	xlog_rec_header_t	*head;
1525	xlog_in_core_t		**iclogp;
1526	xlog_in_core_t		*iclog, *prev_iclog=NULL;
 
1527	int			i;
1528	int			error = -ENOMEM;
1529	uint			log2_size = 0;
1530
1531	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1532	if (!log) {
1533		xfs_warn(mp, "Log allocation failed: No memory!");
1534		goto out;
1535	}
1536
1537	log->l_mp	   = mp;
1538	log->l_targ	   = log_target;
1539	log->l_logsize     = BBTOB(num_bblks);
1540	log->l_logBBstart  = blk_offset;
1541	log->l_logBBsize   = num_bblks;
1542	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1543	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1544	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1545	INIT_LIST_HEAD(&log->r_dfops);
1546
1547	log->l_prev_block  = -1;
1548	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1549	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1550	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1551	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1552
1553	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1554		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1555	else
1556		log->l_iclog_roundoff = BBSIZE;
1557
1558	xlog_grant_head_init(&log->l_reserve_head);
1559	xlog_grant_head_init(&log->l_write_head);
1560
1561	error = -EFSCORRUPTED;
1562	if (xfs_has_sector(mp)) {
1563	        log2_size = mp->m_sb.sb_logsectlog;
1564		if (log2_size < BBSHIFT) {
1565			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1566				log2_size, BBSHIFT);
1567			goto out_free_log;
1568		}
1569
1570	        log2_size -= BBSHIFT;
1571		if (log2_size > mp->m_sectbb_log) {
1572			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1573				log2_size, mp->m_sectbb_log);
1574			goto out_free_log;
1575		}
1576
1577		/* for larger sector sizes, must have v2 or external log */
1578		if (log2_size && log->l_logBBstart > 0 &&
1579			    !xfs_has_logv2(mp)) {
1580			xfs_warn(mp,
1581		"log sector size (0x%x) invalid for configuration.",
1582				log2_size);
1583			goto out_free_log;
1584		}
1585	}
1586	log->l_sectBBsize = 1 << log2_size;
1587
1588	init_rwsem(&log->l_incompat_users);
1589
1590	xlog_get_iclog_buffer_size(mp, log);
1591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592	spin_lock_init(&log->l_icloglock);
1593	init_waitqueue_head(&log->l_flush_wait);
1594
1595	iclogp = &log->l_iclog;
1596	/*
1597	 * The amount of memory to allocate for the iclog structure is
1598	 * rather funky due to the way the structure is defined.  It is
1599	 * done this way so that we can use different sizes for machines
1600	 * with different amounts of memory.  See the definition of
1601	 * xlog_in_core_t in xfs_log_priv.h for details.
1602	 */
1603	ASSERT(log->l_iclog_size >= 4096);
1604	for (i = 0; i < log->l_iclog_bufs; i++) {
1605		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1606				sizeof(struct bio_vec);
1607
1608		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1609		if (!iclog)
1610			goto out_free_iclog;
1611
1612		*iclogp = iclog;
1613		iclog->ic_prev = prev_iclog;
1614		prev_iclog = iclog;
1615
1616		iclog->ic_data = kvzalloc(log->l_iclog_size,
1617				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1618		if (!iclog->ic_data)
 
1619			goto out_free_iclog;
 
 
 
 
 
 
 
 
 
 
 
 
1620		head = &iclog->ic_header;
1621		memset(head, 0, sizeof(xlog_rec_header_t));
1622		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1623		head->h_version = cpu_to_be32(
1624			xfs_has_logv2(log->l_mp) ? 2 : 1);
1625		head->h_size = cpu_to_be32(log->l_iclog_size);
1626		/* new fields */
1627		head->h_fmt = cpu_to_be32(XLOG_FMT);
1628		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1629
1630		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1631		iclog->ic_state = XLOG_STATE_ACTIVE;
1632		iclog->ic_log = log;
1633		atomic_set(&iclog->ic_refcnt, 0);
1634		INIT_LIST_HEAD(&iclog->ic_callbacks);
1635		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
 
1636
1637		init_waitqueue_head(&iclog->ic_force_wait);
1638		init_waitqueue_head(&iclog->ic_write_wait);
1639		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1640		sema_init(&iclog->ic_sema, 1);
1641
1642		iclogp = &iclog->ic_next;
1643	}
1644	*iclogp = log->l_iclog;			/* complete ring */
1645	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1646
1647	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1648			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1649				    WQ_HIGHPRI),
1650			0, mp->m_super->s_id);
1651	if (!log->l_ioend_workqueue)
1652		goto out_free_iclog;
1653
1654	error = xlog_cil_init(log);
1655	if (error)
1656		goto out_destroy_workqueue;
1657	return log;
1658
1659out_destroy_workqueue:
1660	destroy_workqueue(log->l_ioend_workqueue);
1661out_free_iclog:
1662	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1663		prev_iclog = iclog->ic_next;
1664		kmem_free(iclog->ic_data);
 
1665		kmem_free(iclog);
1666		if (prev_iclog == log->l_iclog)
1667			break;
1668	}
 
 
1669out_free_log:
1670	kmem_free(log);
1671out:
1672	return ERR_PTR(error);
1673}	/* xlog_alloc_log */
1674
 
1675/*
1676 * Compute the LSN that we'd need to push the log tail towards in order to have
1677 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1678 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1679 * log free space already meets all three thresholds, this function returns
1680 * NULLCOMMITLSN.
1681 */
1682xfs_lsn_t
1683xlog_grant_push_threshold(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684	struct xlog	*log,
1685	int		need_bytes)
1686{
1687	xfs_lsn_t	threshold_lsn = 0;
1688	xfs_lsn_t	last_sync_lsn;
1689	int		free_blocks;
1690	int		free_bytes;
1691	int		threshold_block;
1692	int		threshold_cycle;
1693	int		free_threshold;
1694
1695	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1696
1697	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1698	free_blocks = BTOBBT(free_bytes);
1699
1700	/*
1701	 * Set the threshold for the minimum number of free blocks in the
1702	 * log to the maximum of what the caller needs, one quarter of the
1703	 * log, and 256 blocks.
1704	 */
1705	free_threshold = BTOBB(need_bytes);
1706	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1707	free_threshold = max(free_threshold, 256);
1708	if (free_blocks >= free_threshold)
1709		return NULLCOMMITLSN;
1710
1711	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1712						&threshold_block);
1713	threshold_block += free_threshold;
1714	if (threshold_block >= log->l_logBBsize) {
1715		threshold_block -= log->l_logBBsize;
1716		threshold_cycle += 1;
1717	}
1718	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1719					threshold_block);
1720	/*
1721	 * Don't pass in an lsn greater than the lsn of the last
1722	 * log record known to be on disk. Use a snapshot of the last sync lsn
1723	 * so that it doesn't change between the compare and the set.
1724	 */
1725	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1726	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1727		threshold_lsn = last_sync_lsn;
1728
1729	return threshold_lsn;
1730}
1731
1732/*
1733 * Push the tail of the log if we need to do so to maintain the free log space
1734 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1735 * policy which pushes on an lsn which is further along in the log once we
1736 * reach the high water mark.  In this manner, we would be creating a low water
1737 * mark.
1738 */
1739STATIC void
1740xlog_grant_push_ail(
1741	struct xlog	*log,
1742	int		need_bytes)
1743{
1744	xfs_lsn_t	threshold_lsn;
1745
1746	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1747	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1748		return;
1749
1750	/*
1751	 * Get the transaction layer to kick the dirty buffers out to
1752	 * disk asynchronously. No point in trying to do this if
1753	 * the filesystem is shutting down.
1754	 */
1755	xfs_ail_push(log->l_ailp, threshold_lsn);
 
1756}
1757
1758/*
1759 * Stamp cycle number in every block
1760 */
1761STATIC void
1762xlog_pack_data(
1763	struct xlog		*log,
1764	struct xlog_in_core	*iclog,
1765	int			roundoff)
1766{
1767	int			i, j, k;
1768	int			size = iclog->ic_offset + roundoff;
1769	__be32			cycle_lsn;
1770	char			*dp;
1771
1772	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1773
1774	dp = iclog->ic_datap;
1775	for (i = 0; i < BTOBB(size); i++) {
1776		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1777			break;
1778		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1779		*(__be32 *)dp = cycle_lsn;
1780		dp += BBSIZE;
1781	}
1782
1783	if (xfs_has_logv2(log->l_mp)) {
1784		xlog_in_core_2_t *xhdr = iclog->ic_data;
1785
1786		for ( ; i < BTOBB(size); i++) {
1787			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1788			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1789			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1790			*(__be32 *)dp = cycle_lsn;
1791			dp += BBSIZE;
1792		}
1793
1794		for (i = 1; i < log->l_iclog_heads; i++)
1795			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1796	}
1797}
1798
1799/*
1800 * Calculate the checksum for a log buffer.
1801 *
1802 * This is a little more complicated than it should be because the various
1803 * headers and the actual data are non-contiguous.
1804 */
1805__le32
1806xlog_cksum(
1807	struct xlog		*log,
1808	struct xlog_rec_header	*rhead,
1809	char			*dp,
1810	int			size)
1811{
1812	uint32_t		crc;
1813
1814	/* first generate the crc for the record header ... */
1815	crc = xfs_start_cksum_update((char *)rhead,
1816			      sizeof(struct xlog_rec_header),
1817			      offsetof(struct xlog_rec_header, h_crc));
1818
1819	/* ... then for additional cycle data for v2 logs ... */
1820	if (xfs_has_logv2(log->l_mp)) {
1821		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1822		int		i;
1823		int		xheads;
1824
1825		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
 
 
1826
1827		for (i = 1; i < xheads; i++) {
1828			crc = crc32c(crc, &xhdr[i].hic_xheader,
1829				     sizeof(struct xlog_rec_ext_header));
1830		}
1831	}
1832
1833	/* ... and finally for the payload */
1834	crc = crc32c(crc, dp, size);
1835
1836	return xfs_end_cksum(crc);
1837}
1838
1839static void
1840xlog_bio_end_io(
1841	struct bio		*bio)
1842{
1843	struct xlog_in_core	*iclog = bio->bi_private;
1844
1845	queue_work(iclog->ic_log->l_ioend_workqueue,
1846		   &iclog->ic_end_io_work);
1847}
1848
1849static int
1850xlog_map_iclog_data(
1851	struct bio		*bio,
1852	void			*data,
1853	size_t			count)
1854{
1855	do {
1856		struct page	*page = kmem_to_page(data);
1857		unsigned int	off = offset_in_page(data);
1858		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1859
1860		if (bio_add_page(bio, page, len, off) != len)
1861			return -EIO;
1862
1863		data += len;
1864		count -= len;
1865	} while (count);
1866
1867	return 0;
1868}
1869
1870STATIC void
1871xlog_write_iclog(
1872	struct xlog		*log,
1873	struct xlog_in_core	*iclog,
1874	uint64_t		bno,
1875	unsigned int		count)
1876{
1877	ASSERT(bno < log->l_logBBsize);
1878	trace_xlog_iclog_write(iclog, _RET_IP_);
1879
1880	/*
1881	 * We lock the iclogbufs here so that we can serialise against I/O
1882	 * completion during unmount.  We might be processing a shutdown
1883	 * triggered during unmount, and that can occur asynchronously to the
1884	 * unmount thread, and hence we need to ensure that completes before
1885	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1886	 * across the log IO to archieve that.
1887	 */
1888	down(&iclog->ic_sema);
1889	if (xlog_is_shutdown(log)) {
1890		/*
1891		 * It would seem logical to return EIO here, but we rely on
1892		 * the log state machine to propagate I/O errors instead of
1893		 * doing it here.  We kick of the state machine and unlock
1894		 * the buffer manually, the code needs to be kept in sync
1895		 * with the I/O completion path.
1896		 */
1897		goto sync;
1898	}
1899
1900	/*
1901	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1902	 * IOs coming immediately after this one. This prevents the block layer
1903	 * writeback throttle from throttling log writes behind background
1904	 * metadata writeback and causing priority inversions.
1905	 */
1906	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1907		 howmany(count, PAGE_SIZE),
1908		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1909	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1910	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1911	iclog->ic_bio.bi_private = iclog;
1912
1913	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1914		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1915		/*
1916		 * For external log devices, we also need to flush the data
1917		 * device cache first to ensure all metadata writeback covered
1918		 * by the LSN in this iclog is on stable storage. This is slow,
1919		 * but it *must* complete before we issue the external log IO.
1920		 *
1921		 * If the flush fails, we cannot conclude that past metadata
1922		 * writeback from the log succeeded.  Repeating the flush is
1923		 * not possible, hence we must shut down with log IO error to
1924		 * avoid shutdown re-entering this path and erroring out again.
1925		 */
1926		if (log->l_targ != log->l_mp->m_ddev_targp &&
1927		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1928			goto shutdown;
1929	}
1930	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1931		iclog->ic_bio.bi_opf |= REQ_FUA;
1932
1933	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1934
1935	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1936		goto shutdown;
1937
1938	if (is_vmalloc_addr(iclog->ic_data))
1939		flush_kernel_vmap_range(iclog->ic_data, count);
1940
1941	/*
1942	 * If this log buffer would straddle the end of the log we will have
1943	 * to split it up into two bios, so that we can continue at the start.
1944	 */
1945	if (bno + BTOBB(count) > log->l_logBBsize) {
1946		struct bio *split;
1947
1948		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1949				  GFP_NOIO, &fs_bio_set);
1950		bio_chain(split, &iclog->ic_bio);
1951		submit_bio(split);
1952
1953		/* restart at logical offset zero for the remainder */
1954		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1955	}
1956
1957	submit_bio(&iclog->ic_bio);
1958	return;
1959shutdown:
1960	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1961sync:
1962	xlog_state_done_syncing(iclog);
1963	up(&iclog->ic_sema);
1964}
1965
1966/*
1967 * We need to bump cycle number for the part of the iclog that is
1968 * written to the start of the log. Watch out for the header magic
1969 * number case, though.
1970 */
1971static void
1972xlog_split_iclog(
1973	struct xlog		*log,
1974	void			*data,
1975	uint64_t		bno,
1976	unsigned int		count)
1977{
1978	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1979	unsigned int		i;
1980
1981	for (i = split_offset; i < count; i += BBSIZE) {
1982		uint32_t cycle = get_unaligned_be32(data + i);
1983
1984		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1985			cycle++;
1986		put_unaligned_be32(cycle, data + i);
1987	}
1988}
1989
1990static int
1991xlog_calc_iclog_size(
1992	struct xlog		*log,
1993	struct xlog_in_core	*iclog,
1994	uint32_t		*roundoff)
1995{
1996	uint32_t		count_init, count;
1997
1998	/* Add for LR header */
1999	count_init = log->l_iclog_hsize + iclog->ic_offset;
2000	count = roundup(count_init, log->l_iclog_roundoff);
2001
2002	*roundoff = count - count_init;
2003
2004	ASSERT(count >= count_init);
2005	ASSERT(*roundoff < log->l_iclog_roundoff);
2006	return count;
2007}
2008
2009/*
2010 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2011 * fashion.  Previously, we should have moved the current iclog
2012 * ptr in the log to point to the next available iclog.  This allows further
2013 * write to continue while this code syncs out an iclog ready to go.
2014 * Before an in-core log can be written out, the data section must be scanned
2015 * to save away the 1st word of each BBSIZE block into the header.  We replace
2016 * it with the current cycle count.  Each BBSIZE block is tagged with the
2017 * cycle count because there in an implicit assumption that drives will
2018 * guarantee that entire 512 byte blocks get written at once.  In other words,
2019 * we can't have part of a 512 byte block written and part not written.  By
2020 * tagging each block, we will know which blocks are valid when recovering
2021 * after an unclean shutdown.
2022 *
2023 * This routine is single threaded on the iclog.  No other thread can be in
2024 * this routine with the same iclog.  Changing contents of iclog can there-
2025 * fore be done without grabbing the state machine lock.  Updating the global
2026 * log will require grabbing the lock though.
2027 *
2028 * The entire log manager uses a logical block numbering scheme.  Only
2029 * xlog_write_iclog knows about the fact that the log may not start with
2030 * block zero on a given device.
 
2031 */
2032STATIC void
 
2033xlog_sync(
2034	struct xlog		*log,
2035	struct xlog_in_core	*iclog,
2036	struct xlog_ticket	*ticket)
2037{
2038	unsigned int		count;		/* byte count of bwrite */
2039	unsigned int		roundoff;       /* roundoff to BB or stripe */
2040	uint64_t		bno;
2041	unsigned int		size;
 
 
 
 
 
2042
 
2043	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2044	trace_xlog_iclog_sync(iclog, _RET_IP_);
2045
2046	count = xlog_calc_iclog_size(log, iclog, &roundoff);
 
2047
2048	/*
2049	 * If we have a ticket, account for the roundoff via the ticket
2050	 * reservation to avoid touching the hot grant heads needlessly.
2051	 * Otherwise, we have to move grant heads directly.
2052	 */
2053	if (ticket) {
2054		ticket->t_curr_res -= roundoff;
2055	} else {
2056		xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2057		xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2058	}
 
 
 
 
 
 
 
 
 
 
 
2059
2060	/* put cycle number in every block */
2061	xlog_pack_data(log, iclog, roundoff);
2062
2063	/* real byte length */
2064	size = iclog->ic_offset;
2065	if (xfs_has_logv2(log->l_mp))
2066		size += roundoff;
2067	iclog->ic_header.h_len = cpu_to_be32(size);
2068
2069	XFS_STATS_INC(log->l_mp, xs_log_writes);
2070	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2071
2072	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2073
2074	/* Do we need to split this write into 2 parts? */
2075	if (bno + BTOBB(count) > log->l_logBBsize)
2076		xlog_split_iclog(log, &iclog->ic_header, bno, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2077
2078	/* calculcate the checksum */
2079	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2080					    iclog->ic_datap, size);
 
2081	/*
2082	 * Intentionally corrupt the log record CRC based on the error injection
2083	 * frequency, if defined. This facilitates testing log recovery in the
2084	 * event of torn writes. Hence, set the IOABORT state to abort the log
2085	 * write on I/O completion and shutdown the fs. The subsequent mount
2086	 * detects the bad CRC and attempts to recover.
2087	 */
2088#ifdef DEBUG
2089	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2090		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2091		iclog->ic_fail_crc = true;
2092		xfs_warn(log->l_mp,
2093	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2094			 be64_to_cpu(iclog->ic_header.h_lsn));
2095	}
2096#endif
2097	xlog_verify_iclog(log, iclog, count);
2098	xlog_write_iclog(log, iclog, bno, count);
2099}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100
2101/*
2102 * Deallocate a log structure
2103 */
2104STATIC void
2105xlog_dealloc_log(
2106	struct xlog	*log)
2107{
2108	xlog_in_core_t	*iclog, *next_iclog;
2109	int		i;
2110
 
 
2111	/*
2112	 * Destroy the CIL after waiting for iclog IO completion because an
2113	 * iclog EIO error will try to shut down the log, which accesses the
2114	 * CIL to wake up the waiters.
2115	 */
2116	xlog_cil_destroy(log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2117
2118	iclog = log->l_iclog;
2119	for (i = 0; i < log->l_iclog_bufs; i++) {
 
2120		next_iclog = iclog->ic_next;
2121		kmem_free(iclog->ic_data);
2122		kmem_free(iclog);
2123		iclog = next_iclog;
2124	}
 
2125
2126	log->l_mp->m_log = NULL;
2127	destroy_workqueue(log->l_ioend_workqueue);
2128	kmem_free(log);
2129}
2130
2131/*
2132 * Update counters atomically now that memcpy is done.
2133 */
 
2134static inline void
2135xlog_state_finish_copy(
2136	struct xlog		*log,
2137	struct xlog_in_core	*iclog,
2138	int			record_cnt,
2139	int			copy_bytes)
2140{
2141	lockdep_assert_held(&log->l_icloglock);
2142
2143	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2144	iclog->ic_offset += copy_bytes;
2145}
 
 
 
 
 
2146
2147/*
2148 * print out info relating to regions written which consume
2149 * the reservation
2150 */
2151void
2152xlog_print_tic_res(
2153	struct xfs_mount	*mp,
2154	struct xlog_ticket	*ticket)
2155{
2156	xfs_warn(mp, "ticket reservation summary:");
2157	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2158	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2159	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2160	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161}
2162
2163/*
2164 * Print a summary of the transaction.
 
2165 */
2166void
2167xlog_print_trans(
2168	struct xfs_trans	*tp)
 
2169{
2170	struct xfs_mount	*mp = tp->t_mountp;
2171	struct xfs_log_item	*lip;
 
 
2172
2173	/* dump core transaction and ticket info */
2174	xfs_warn(mp, "transaction summary:");
2175	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2176	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2177	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2178
2179	xlog_print_tic_res(mp, tp->t_ticket);
2180
2181	/* dump each log item */
2182	list_for_each_entry(lip, &tp->t_items, li_trans) {
2183		struct xfs_log_vec	*lv = lip->li_lv;
2184		struct xfs_log_iovec	*vec;
2185		int			i;
2186
2187		xfs_warn(mp, "log item: ");
2188		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2189		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2190		if (!lv)
2191			continue;
2192		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2193		xfs_warn(mp, "  size	= %d", lv->lv_size);
2194		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2195		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2196
2197		/* dump each iovec for the log item */
2198		vec = lv->lv_iovecp;
2199		for (i = 0; i < lv->lv_niovecs; i++) {
2200			int dumplen = min(vec->i_len, 32);
2201
2202			xfs_warn(mp, "  iovec[%d]", i);
2203			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2204			xfs_warn(mp, "    len	= %d", vec->i_len);
2205			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2206			xfs_hex_dump(vec->i_addr, dumplen);
2207
2208			vec++;
 
2209		}
2210	}
2211}
2212
2213static inline void
2214xlog_write_iovec(
2215	struct xlog_in_core	*iclog,
2216	uint32_t		*log_offset,
2217	void			*data,
2218	uint32_t		write_len,
2219	int			*bytes_left,
2220	uint32_t		*record_cnt,
2221	uint32_t		*data_cnt)
2222{
2223	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2224	ASSERT(*log_offset % sizeof(int32_t) == 0);
2225	ASSERT(write_len % sizeof(int32_t) == 0);
2226
2227	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2228	*log_offset += write_len;
2229	*bytes_left -= write_len;
2230	(*record_cnt)++;
2231	*data_cnt += write_len;
2232}
2233
2234/*
2235 * Write log vectors into a single iclog which is guaranteed by the caller
2236 * to have enough space to write the entire log vector into.
2237 */
2238static void
2239xlog_write_full(
2240	struct xfs_log_vec	*lv,
2241	struct xlog_ticket	*ticket,
2242	struct xlog_in_core	*iclog,
2243	uint32_t		*log_offset,
2244	uint32_t		*len,
2245	uint32_t		*record_cnt,
2246	uint32_t		*data_cnt)
2247{
2248	int			index;
 
2249
2250	ASSERT(*log_offset + *len <= iclog->ic_size ||
2251		iclog->ic_state == XLOG_STATE_WANT_SYNC);
 
 
 
2252
2253	/*
2254	 * Ordered log vectors have no regions to write so this
2255	 * loop will naturally skip them.
2256	 */
2257	for (index = 0; index < lv->lv_niovecs; index++) {
2258		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2259		struct xlog_op_header	*ophdr = reg->i_addr;
2260
2261		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2262		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2263				reg->i_len, len, record_cnt, data_cnt);
2264	}
2265}
2266
2267static int
2268xlog_write_get_more_iclog_space(
 
 
2269	struct xlog_ticket	*ticket,
2270	struct xlog_in_core	**iclogp,
2271	uint32_t		*log_offset,
2272	uint32_t		len,
2273	uint32_t		*record_cnt,
2274	uint32_t		*data_cnt)
2275{
2276	struct xlog_in_core	*iclog = *iclogp;
2277	struct xlog		*log = iclog->ic_log;
2278	int			error;
2279
2280	spin_lock(&log->l_icloglock);
2281	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2282	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2283	error = xlog_state_release_iclog(log, iclog, ticket);
2284	spin_unlock(&log->l_icloglock);
2285	if (error)
2286		return error;
 
 
 
 
 
 
 
 
 
 
 
 
2287
2288	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2289					log_offset);
2290	if (error)
2291		return error;
2292	*record_cnt = 0;
2293	*data_cnt = 0;
2294	*iclogp = iclog;
2295	return 0;
2296}
2297
2298/*
2299 * Write log vectors into a single iclog which is smaller than the current chain
2300 * length. We write until we cannot fit a full record into the remaining space
2301 * and then stop. We return the log vector that is to be written that cannot
2302 * wholly fit in the iclog.
2303 */
2304static int
2305xlog_write_partial(
2306	struct xfs_log_vec	*lv,
2307	struct xlog_ticket	*ticket,
2308	struct xlog_in_core	**iclogp,
2309	uint32_t		*log_offset,
2310	uint32_t		*len,
2311	uint32_t		*record_cnt,
2312	uint32_t		*data_cnt)
2313{
2314	struct xlog_in_core	*iclog = *iclogp;
2315	struct xlog_op_header	*ophdr;
2316	int			index = 0;
2317	uint32_t		rlen;
2318	int			error;
2319
2320	/* walk the logvec, copying until we run out of space in the iclog */
2321	for (index = 0; index < lv->lv_niovecs; index++) {
2322		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2323		uint32_t		reg_offset = 0;
2324
2325		/*
2326		 * The first region of a continuation must have a non-zero
2327		 * length otherwise log recovery will just skip over it and
2328		 * start recovering from the next opheader it finds. Because we
2329		 * mark the next opheader as a continuation, recovery will then
2330		 * incorrectly add the continuation to the previous region and
2331		 * that breaks stuff.
2332		 *
2333		 * Hence if there isn't space for region data after the
2334		 * opheader, then we need to start afresh with a new iclog.
2335		 */
2336		if (iclog->ic_size - *log_offset <=
2337					sizeof(struct xlog_op_header)) {
2338			error = xlog_write_get_more_iclog_space(ticket,
2339					&iclog, log_offset, *len, record_cnt,
2340					data_cnt);
2341			if (error)
2342				return error;
2343		}
2344
2345		ophdr = reg->i_addr;
2346		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2347
2348		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2349		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2350		if (rlen != reg->i_len)
2351			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2352
2353		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2354				rlen, len, record_cnt, data_cnt);
 
 
 
 
 
 
 
 
 
 
2355
2356		/* If we wrote the whole region, move to the next. */
2357		if (rlen == reg->i_len)
2358			continue;
2359
 
 
 
 
 
 
 
 
 
 
 
 
 
2360		/*
2361		 * We now have a partially written iovec, but it can span
2362		 * multiple iclogs so we loop here. First we release the iclog
2363		 * we currently have, then we get a new iclog and add a new
2364		 * opheader. Then we continue copying from where we were until
2365		 * we either complete the iovec or fill the iclog. If we
2366		 * complete the iovec, then we increment the index and go right
2367		 * back to the top of the outer loop. if we fill the iclog, we
2368		 * run the inner loop again.
2369		 *
2370		 * This is complicated by the tail of a region using all the
2371		 * space in an iclog and hence requiring us to release the iclog
2372		 * and get a new one before returning to the outer loop. We must
2373		 * always guarantee that we exit this inner loop with at least
2374		 * space for log transaction opheaders left in the current
2375		 * iclog, hence we cannot just terminate the loop at the end
2376		 * of the of the continuation. So we loop while there is no
2377		 * space left in the current iclog, and check for the end of the
2378		 * continuation after getting a new iclog.
2379		 */
2380		do {
2381			/*
2382			 * Ensure we include the continuation opheader in the
2383			 * space we need in the new iclog by adding that size
2384			 * to the length we require. This continuation opheader
2385			 * needs to be accounted to the ticket as the space it
2386			 * consumes hasn't been accounted to the lv we are
2387			 * writing.
2388			 */
2389			error = xlog_write_get_more_iclog_space(ticket,
2390					&iclog, log_offset,
2391					*len + sizeof(struct xlog_op_header),
2392					record_cnt, data_cnt);
2393			if (error)
2394				return error;
2395
2396			ophdr = iclog->ic_datap + *log_offset;
2397			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2398			ophdr->oh_clientid = XFS_TRANSACTION;
2399			ophdr->oh_res2 = 0;
2400			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2401
2402			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2403			*log_offset += sizeof(struct xlog_op_header);
2404			*data_cnt += sizeof(struct xlog_op_header);
2405
2406			/*
2407			 * If rlen fits in the iclog, then end the region
2408			 * continuation. Otherwise we're going around again.
2409			 */
2410			reg_offset += rlen;
2411			rlen = reg->i_len - reg_offset;
2412			if (rlen <= iclog->ic_size - *log_offset)
2413				ophdr->oh_flags |= XLOG_END_TRANS;
2414			else
2415				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2416
2417			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2418			ophdr->oh_len = cpu_to_be32(rlen);
2419
2420			xlog_write_iovec(iclog, log_offset,
2421					reg->i_addr + reg_offset,
2422					rlen, len, record_cnt, data_cnt);
2423
2424		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
 
 
 
2425	}
2426
2427	/*
2428	 * No more iovecs remain in this logvec so return the next log vec to
2429	 * the caller so it can go back to fast path copying.
2430	 */
2431	*iclogp = iclog;
2432	return 0;
2433}
2434
2435/*
2436 * Write some region out to in-core log
2437 *
2438 * This will be called when writing externally provided regions or when
2439 * writing out a commit record for a given transaction.
2440 *
2441 * General algorithm:
2442 *	1. Find total length of this write.  This may include adding to the
2443 *		lengths passed in.
2444 *	2. Check whether we violate the tickets reservation.
2445 *	3. While writing to this iclog
2446 *	    A. Reserve as much space in this iclog as can get
2447 *	    B. If this is first write, save away start lsn
2448 *	    C. While writing this region:
2449 *		1. If first write of transaction, write start record
2450 *		2. Write log operation header (header per region)
2451 *		3. Find out if we can fit entire region into this iclog
2452 *		4. Potentially, verify destination memcpy ptr
2453 *		5. Memcpy (partial) region
2454 *		6. If partial copy, release iclog; otherwise, continue
2455 *			copying more regions into current iclog
2456 *	4. Mark want sync bit (in simulation mode)
2457 *	5. Release iclog for potential flush to on-disk log.
2458 *
2459 * ERRORS:
2460 * 1.	Panic if reservation is overrun.  This should never happen since
2461 *	reservation amounts are generated internal to the filesystem.
2462 * NOTES:
2463 * 1. Tickets are single threaded data structures.
2464 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2465 *	syncing routine.  When a single log_write region needs to span
2466 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2467 *	on all log operation writes which don't contain the end of the
2468 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2469 *	operation which contains the end of the continued log_write region.
2470 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2471 *	we don't really know exactly how much space will be used.  As a result,
2472 *	we don't update ic_offset until the end when we know exactly how many
2473 *	bytes have been written out.
2474 */
2475int
2476xlog_write(
2477	struct xlog		*log,
2478	struct xfs_cil_ctx	*ctx,
2479	struct list_head	*lv_chain,
2480	struct xlog_ticket	*ticket,
2481	uint32_t		len)
2482
 
2483{
2484	struct xlog_in_core	*iclog = NULL;
 
2485	struct xfs_log_vec	*lv;
2486	uint32_t		record_cnt = 0;
2487	uint32_t		data_cnt = 0;
2488	int			error = 0;
2489	int			log_offset;
 
 
 
 
2490
2491	if (ticket->t_curr_res < 0) {
2492		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2493		     "ctx ticket reservation ran out. Need to up reservation");
2494		xlog_print_tic_res(log->l_mp, ticket);
2495		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2496	}
2497
2498	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2499					   &log_offset);
2500	if (error)
2501		return error;
2502
2503	ASSERT(log_offset <= iclog->ic_size - 1);
 
 
 
 
 
 
2504
2505	/*
2506	 * If we have a context pointer, pass it the first iclog we are
2507	 * writing to so it can record state needed for iclog write
2508	 * ordering.
2509	 */
2510	if (ctx)
2511		xlog_cil_set_ctx_write_state(ctx, iclog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512
2513	list_for_each_entry(lv, lv_chain, lv_list) {
2514		/*
2515		 * If the entire log vec does not fit in the iclog, punt it to
2516		 * the partial copy loop which can handle this case.
2517		 */
2518		if (lv->lv_niovecs &&
2519		    lv->lv_bytes > iclog->ic_size - log_offset) {
2520			error = xlog_write_partial(lv, ticket, &iclog,
2521					&log_offset, &len, &record_cnt,
2522					&data_cnt);
2523			if (error) {
2524				/*
2525				 * We have no iclog to release, so just return
2526				 * the error immediately.
2527				 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528				return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2529			}
2530		} else {
2531			xlog_write_full(lv, ticket, iclog, &log_offset,
2532					 &len, &record_cnt, &data_cnt);
2533		}
2534	}
 
2535	ASSERT(len == 0);
2536
2537	/*
2538	 * We've already been guaranteed that the last writes will fit inside
2539	 * the current iclog, and hence it will already have the space used by
2540	 * those writes accounted to it. Hence we do not need to update the
2541	 * iclog with the number of bytes written here.
2542	 */
2543	spin_lock(&log->l_icloglock);
2544	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2545	error = xlog_state_release_iclog(log, iclog, ticket);
2546	spin_unlock(&log->l_icloglock);
2547
2548	return error;
 
 
2549}
2550
2551static void
2552xlog_state_activate_iclog(
2553	struct xlog_in_core	*iclog,
2554	int			*iclogs_changed)
2555{
2556	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2557	trace_xlog_iclog_activate(iclog, _RET_IP_);
2558
2559	/*
2560	 * If the number of ops in this iclog indicate it just contains the
2561	 * dummy transaction, we can change state into IDLE (the second time
2562	 * around). Otherwise we should change the state into NEED a dummy.
2563	 * We don't need to cover the dummy.
2564	 */
2565	if (*iclogs_changed == 0 &&
2566	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2567		*iclogs_changed = 1;
2568	} else {
2569		/*
2570		 * We have two dirty iclogs so start over.  This could also be
2571		 * num of ops indicating this is not the dummy going out.
2572		 */
2573		*iclogs_changed = 2;
2574	}
2575
2576	iclog->ic_state	= XLOG_STATE_ACTIVE;
2577	iclog->ic_offset = 0;
2578	iclog->ic_header.h_num_logops = 0;
2579	memset(iclog->ic_header.h_cycle_data, 0,
2580		sizeof(iclog->ic_header.h_cycle_data));
2581	iclog->ic_header.h_lsn = 0;
2582	iclog->ic_header.h_tail_lsn = 0;
2583}
2584
2585/*
2586 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2587 * ACTIVE after iclog I/O has completed.
 
 
 
 
2588 */
2589static void
2590xlog_state_activate_iclogs(
2591	struct xlog		*log,
2592	int			*iclogs_changed)
2593{
2594	struct xlog_in_core	*iclog = log->l_iclog;
 
2595
 
2596	do {
2597		if (iclog->ic_state == XLOG_STATE_DIRTY)
2598			xlog_state_activate_iclog(iclog, iclogs_changed);
2599		/*
2600		 * The ordering of marking iclogs ACTIVE must be maintained, so
2601		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2602		 */
2603		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2604			break;
2605	} while ((iclog = iclog->ic_next) != log->l_iclog);
2606}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607
2608static int
2609xlog_covered_state(
2610	int			prev_state,
2611	int			iclogs_changed)
2612{
2613	/*
2614	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2615	 * wrote the first covering record (DONE). We go to IDLE if we just
2616	 * wrote the second covering record (DONE2) and remain in IDLE until a
2617	 * non-covering write occurs.
2618	 */
2619	switch (prev_state) {
2620	case XLOG_STATE_COVER_IDLE:
2621		if (iclogs_changed == 1)
2622			return XLOG_STATE_COVER_IDLE;
2623		fallthrough;
2624	case XLOG_STATE_COVER_NEED:
2625	case XLOG_STATE_COVER_NEED2:
2626		break;
2627	case XLOG_STATE_COVER_DONE:
2628		if (iclogs_changed == 1)
2629			return XLOG_STATE_COVER_NEED2;
2630		break;
2631	case XLOG_STATE_COVER_DONE2:
2632		if (iclogs_changed == 1)
2633			return XLOG_STATE_COVER_IDLE;
2634		break;
2635	default:
2636		ASSERT(0);
2637	}
2638
2639	return XLOG_STATE_COVER_NEED;
2640}
2641
2642STATIC void
2643xlog_state_clean_iclog(
2644	struct xlog		*log,
2645	struct xlog_in_core	*dirty_iclog)
2646{
2647	int			iclogs_changed = 0;
2648
2649	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2650
2651	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
 
 
 
 
 
2652
2653	xlog_state_activate_iclogs(log, &iclogs_changed);
2654	wake_up_all(&dirty_iclog->ic_force_wait);
 
 
 
 
2655
2656	if (iclogs_changed) {
2657		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2658				iclogs_changed);
2659	}
2660}
2661
2662STATIC xfs_lsn_t
2663xlog_get_lowest_lsn(
2664	struct xlog		*log)
2665{
2666	struct xlog_in_core	*iclog = log->l_iclog;
2667	xfs_lsn_t		lowest_lsn = 0, lsn;
2668
 
 
2669	do {
2670		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2671		    iclog->ic_state == XLOG_STATE_DIRTY)
2672			continue;
2673
2674		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2675		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2676			lowest_lsn = lsn;
2677	} while ((iclog = iclog->ic_next) != log->l_iclog);
2678
 
 
2679	return lowest_lsn;
2680}
2681
2682/*
2683 * Completion of a iclog IO does not imply that a transaction has completed, as
2684 * transactions can be large enough to span many iclogs. We cannot change the
2685 * tail of the log half way through a transaction as this may be the only
2686 * transaction in the log and moving the tail to point to the middle of it
2687 * will prevent recovery from finding the start of the transaction. Hence we
2688 * should only update the last_sync_lsn if this iclog contains transaction
2689 * completion callbacks on it.
2690 *
2691 * We have to do this before we drop the icloglock to ensure we are the only one
2692 * that can update it.
2693 *
2694 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2695 * the reservation grant head pushing. This is due to the fact that the push
2696 * target is bound by the current last_sync_lsn value. Hence if we have a large
2697 * amount of log space bound up in this committing transaction then the
2698 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2699 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2700 * should push the AIL to ensure the push target (and hence the grant head) is
2701 * no longer bound by the old log head location and can move forwards and make
2702 * progress again.
2703 */
2704static void
2705xlog_state_set_callback(
2706	struct xlog		*log,
2707	struct xlog_in_core	*iclog,
2708	xfs_lsn_t		header_lsn)
2709{
2710	trace_xlog_iclog_callback(iclog, _RET_IP_);
2711	iclog->ic_state = XLOG_STATE_CALLBACK;
 
 
 
 
 
 
 
 
 
 
2712
2713	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2714			   header_lsn) <= 0);
 
 
 
2715
2716	if (list_empty_careful(&iclog->ic_callbacks))
2717		return;
 
 
 
 
 
 
 
 
 
 
 
2718
2719	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2720	xlog_grant_push_ail(log, 0);
2721}
2722
2723/*
2724 * Return true if we need to stop processing, false to continue to the next
2725 * iclog. The caller will need to run callbacks if the iclog is returned in the
2726 * XLOG_STATE_CALLBACK state.
2727 */
2728static bool
2729xlog_state_iodone_process_iclog(
2730	struct xlog		*log,
2731	struct xlog_in_core	*iclog)
2732{
2733	xfs_lsn_t		lowest_lsn;
2734	xfs_lsn_t		header_lsn;
2735
2736	switch (iclog->ic_state) {
2737	case XLOG_STATE_ACTIVE:
2738	case XLOG_STATE_DIRTY:
2739		/*
2740		 * Skip all iclogs in the ACTIVE & DIRTY states:
2741		 */
2742		return false;
2743	case XLOG_STATE_DONE_SYNC:
2744		/*
2745		 * Now that we have an iclog that is in the DONE_SYNC state, do
2746		 * one more check here to see if we have chased our tail around.
2747		 * If this is not the lowest lsn iclog, then we will leave it
2748		 * for another completion to process.
2749		 */
2750		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2751		lowest_lsn = xlog_get_lowest_lsn(log);
2752		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2753			return false;
2754		xlog_state_set_callback(log, iclog, header_lsn);
2755		return false;
2756	default:
2757		/*
2758		 * Can only perform callbacks in order.  Since this iclog is not
2759		 * in the DONE_SYNC state, we skip the rest and just try to
2760		 * clean up.
2761		 */
2762		return true;
2763	}
2764}
 
 
 
 
 
 
2765
2766/*
2767 * Loop over all the iclogs, running attached callbacks on them. Return true if
2768 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2769 * to handle transient shutdown state here at all because
2770 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2771 * cleanup of the callbacks.
2772 */
2773static bool
2774xlog_state_do_iclog_callbacks(
2775	struct xlog		*log)
2776		__releases(&log->l_icloglock)
2777		__acquires(&log->l_icloglock)
2778{
2779	struct xlog_in_core	*first_iclog = log->l_iclog;
2780	struct xlog_in_core	*iclog = first_iclog;
2781	bool			ran_callback = false;
2782
2783	do {
2784		LIST_HEAD(cb_list);
 
 
 
 
 
 
2785
2786		if (xlog_state_iodone_process_iclog(log, iclog))
2787			break;
2788		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2789			iclog = iclog->ic_next;
2790			continue;
2791		}
2792		list_splice_init(&iclog->ic_callbacks, &cb_list);
2793		spin_unlock(&log->l_icloglock);
2794
2795		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2796		xlog_cil_process_committed(&cb_list);
2797		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2798		ran_callback = true;
2799
2800		spin_lock(&log->l_icloglock);
2801		xlog_state_clean_iclog(log, iclog);
2802		iclog = iclog->ic_next;
2803	} while (iclog != first_iclog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2804
2805	return ran_callback;
2806}
2807
 
2808
2809/*
2810 * Loop running iclog completion callbacks until there are no more iclogs in a
2811 * state that can run callbacks.
2812 */
2813STATIC void
2814xlog_state_do_callback(
2815	struct xlog		*log)
2816{
2817	int			flushcnt = 0;
2818	int			repeats = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2819
2820	spin_lock(&log->l_icloglock);
2821	while (xlog_state_do_iclog_callbacks(log)) {
2822		if (xlog_is_shutdown(log))
2823			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824
2825		if (++repeats > 5000) {
2826			flushcnt += repeats;
2827			repeats = 0;
2828			xfs_warn(log->l_mp,
2829				"%s: possible infinite loop (%d iterations)",
2830				__func__, flushcnt);
2831		}
2832	}
2833
2834	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2835		wake_up_all(&log->l_flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836
 
 
2837	spin_unlock(&log->l_icloglock);
 
 
 
2838}
2839
2840
2841/*
2842 * Finish transitioning this iclog to the dirty state.
2843 *
 
 
 
 
 
 
 
2844 * Callbacks could take time, so they are done outside the scope of the
2845 * global state machine log lock.
2846 */
2847STATIC void
2848xlog_state_done_syncing(
2849	struct xlog_in_core	*iclog)
 
2850{
2851	struct xlog		*log = iclog->ic_log;
2852
2853	spin_lock(&log->l_icloglock);
 
 
 
2854	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2855	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
 
2856
2857	/*
2858	 * If we got an error, either on the first buffer, or in the case of
2859	 * split log writes, on the second, we shut down the file system and
2860	 * no iclogs should ever be attempted to be written to disk again.
2861	 */
2862	if (!xlog_is_shutdown(log)) {
2863		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
 
 
 
 
2864		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2865	}
2866
2867	/*
2868	 * Someone could be sleeping prior to writing out the next
2869	 * iclog buffer, we wake them all, one will get to do the
2870	 * I/O, the others get to wait for the result.
2871	 */
2872	wake_up_all(&iclog->ic_write_wait);
2873	spin_unlock(&log->l_icloglock);
2874	xlog_state_do_callback(log);
2875}
 
2876
2877/*
2878 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2879 * sleep.  We wait on the flush queue on the head iclog as that should be
2880 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2881 * we will wait here and all new writes will sleep until a sync completes.
2882 *
2883 * The in-core logs are used in a circular fashion. They are not used
2884 * out-of-order even when an iclog past the head is free.
2885 *
2886 * return:
2887 *	* log_offset where xlog_write() can start writing into the in-core
2888 *		log's data space.
2889 *	* in-core log pointer to which xlog_write() should write.
2890 *	* boolean indicating this is a continued write to an in-core log.
2891 *		If this is the last write, then the in-core log's offset field
2892 *		needs to be incremented, depending on the amount of data which
2893 *		is copied.
2894 */
2895STATIC int
2896xlog_state_get_iclog_space(
2897	struct xlog		*log,
2898	int			len,
2899	struct xlog_in_core	**iclogp,
2900	struct xlog_ticket	*ticket,
 
2901	int			*logoffsetp)
2902{
2903	int		  log_offset;
2904	xlog_rec_header_t *head;
2905	xlog_in_core_t	  *iclog;
 
2906
2907restart:
2908	spin_lock(&log->l_icloglock);
2909	if (xlog_is_shutdown(log)) {
2910		spin_unlock(&log->l_icloglock);
2911		return -EIO;
2912	}
2913
2914	iclog = log->l_iclog;
2915	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2916		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2917
2918		/* Wait for log writes to have flushed */
2919		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2920		goto restart;
2921	}
2922
2923	head = &iclog->ic_header;
2924
2925	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2926	log_offset = iclog->ic_offset;
2927
2928	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2929
2930	/* On the 1st write to an iclog, figure out lsn.  This works
2931	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2932	 * committing to.  If the offset is set, that's how many blocks
2933	 * must be written.
2934	 */
2935	if (log_offset == 0) {
2936		ticket->t_curr_res -= log->l_iclog_hsize;
 
 
 
2937		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2938		head->h_lsn = cpu_to_be64(
2939			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2940		ASSERT(log->l_curr_block >= 0);
2941	}
2942
2943	/* If there is enough room to write everything, then do it.  Otherwise,
2944	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2945	 * bit is on, so this will get flushed out.  Don't update ic_offset
2946	 * until you know exactly how many bytes get copied.  Therefore, wait
2947	 * until later to update ic_offset.
2948	 *
2949	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2950	 * can fit into remaining data section.
2951	 */
2952	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2953		int		error = 0;
2954
2955		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2956
2957		/*
2958		 * If we are the only one writing to this iclog, sync it to
2959		 * disk.  We need to do an atomic compare and decrement here to
2960		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2961		 * xlog_state_release_iclog() when there is more than one
2962		 * reference to the iclog.
2963		 */
2964		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2965			error = xlog_state_release_iclog(log, iclog, ticket);
2966		spin_unlock(&log->l_icloglock);
2967		if (error)
2968			return error;
 
 
 
 
2969		goto restart;
2970	}
2971
2972	/* Do we have enough room to write the full amount in the remainder
2973	 * of this iclog?  Or must we continue a write on the next iclog and
2974	 * mark this iclog as completely taken?  In the case where we switch
2975	 * iclogs (to mark it taken), this particular iclog will release/sync
2976	 * to disk in xlog_write().
2977	 */
2978	if (len <= iclog->ic_size - iclog->ic_offset)
 
2979		iclog->ic_offset += len;
2980	else
 
2981		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
 
2982	*iclogp = iclog;
2983
2984	ASSERT(iclog->ic_offset <= iclog->ic_size);
2985	spin_unlock(&log->l_icloglock);
2986
2987	*logoffsetp = log_offset;
2988	return 0;
2989}
2990
2991/*
2992 * The first cnt-1 times a ticket goes through here we don't need to move the
2993 * grant write head because the permanent reservation has reserved cnt times the
2994 * unit amount.  Release part of current permanent unit reservation and reset
2995 * current reservation to be one units worth.  Also move grant reservation head
2996 * forward.
2997 */
2998void
2999xfs_log_ticket_regrant(
3000	struct xlog		*log,
3001	struct xlog_ticket	*ticket)
3002{
3003	trace_xfs_log_ticket_regrant(log, ticket);
3004
3005	if (ticket->t_cnt > 0)
3006		ticket->t_cnt--;
3007
3008	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3009					ticket->t_curr_res);
3010	xlog_grant_sub_space(log, &log->l_write_head.grant,
3011					ticket->t_curr_res);
3012	ticket->t_curr_res = ticket->t_unit_res;
 
3013
3014	trace_xfs_log_ticket_regrant_sub(log, ticket);
3015
3016	/* just return if we still have some of the pre-reserved space */
3017	if (!ticket->t_cnt) {
3018		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3019				     ticket->t_unit_res);
3020		trace_xfs_log_ticket_regrant_exit(log, ticket);
3021
3022		ticket->t_curr_res = ticket->t_unit_res;
3023	}
 
 
 
 
 
 
3024
3025	xfs_log_ticket_put(ticket);
3026}
3027
3028/*
3029 * Give back the space left from a reservation.
3030 *
3031 * All the information we need to make a correct determination of space left
3032 * is present.  For non-permanent reservations, things are quite easy.  The
3033 * count should have been decremented to zero.  We only need to deal with the
3034 * space remaining in the current reservation part of the ticket.  If the
3035 * ticket contains a permanent reservation, there may be left over space which
3036 * needs to be released.  A count of N means that N-1 refills of the current
3037 * reservation can be done before we need to ask for more space.  The first
3038 * one goes to fill up the first current reservation.  Once we run out of
3039 * space, the count will stay at zero and the only space remaining will be
3040 * in the current reservation field.
3041 */
3042void
3043xfs_log_ticket_ungrant(
3044	struct xlog		*log,
3045	struct xlog_ticket	*ticket)
3046{
3047	int			bytes;
3048
3049	trace_xfs_log_ticket_ungrant(log, ticket);
3050
3051	if (ticket->t_cnt > 0)
3052		ticket->t_cnt--;
3053
3054	trace_xfs_log_ticket_ungrant_sub(log, ticket);
 
3055
3056	/*
3057	 * If this is a permanent reservation ticket, we may be able to free
3058	 * up more space based on the remaining count.
3059	 */
3060	bytes = ticket->t_curr_res;
3061	if (ticket->t_cnt > 0) {
3062		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3063		bytes += ticket->t_unit_res*ticket->t_cnt;
3064	}
3065
3066	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3067	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3068
3069	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3070
3071	xfs_log_space_wake(log->l_mp);
3072	xfs_log_ticket_put(ticket);
3073}
3074
3075/*
3076 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3077 * the current iclog pointer to the next iclog in the ring.
 
 
 
 
 
3078 */
3079void
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080xlog_state_switch_iclogs(
3081	struct xlog		*log,
3082	struct xlog_in_core	*iclog,
3083	int			eventual_size)
3084{
3085	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3086	assert_spin_locked(&log->l_icloglock);
3087	trace_xlog_iclog_switch(iclog, _RET_IP_);
3088
3089	if (!eventual_size)
3090		eventual_size = iclog->ic_offset;
3091	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3092	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3093	log->l_prev_block = log->l_curr_block;
3094	log->l_prev_cycle = log->l_curr_cycle;
3095
3096	/* roll log?: ic_offset changed later */
3097	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3098
3099	/* Round up to next log-sunit */
3100	if (log->l_iclog_roundoff > BBSIZE) {
3101		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
 
3102		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3103	}
3104
3105	if (log->l_curr_block >= log->l_logBBsize) {
3106		/*
3107		 * Rewind the current block before the cycle is bumped to make
3108		 * sure that the combined LSN never transiently moves forward
3109		 * when the log wraps to the next cycle. This is to support the
3110		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3111		 * other cases should acquire l_icloglock.
3112		 */
3113		log->l_curr_block -= log->l_logBBsize;
3114		ASSERT(log->l_curr_block >= 0);
3115		smp_wmb();
3116		log->l_curr_cycle++;
3117		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3118			log->l_curr_cycle++;
3119	}
3120	ASSERT(iclog == log->l_iclog);
3121	log->l_iclog = iclog->ic_next;
3122}
3123
3124/*
3125 * Force the iclog to disk and check if the iclog has been completed before
3126 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3127 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3128 * If completion has already occurred, tell the caller so that it can avoid an
3129 * unnecessary wait on the iclog.
3130 */
3131static int
3132xlog_force_and_check_iclog(
3133	struct xlog_in_core	*iclog,
3134	bool			*completed)
3135{
3136	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3137	int			error;
3138
3139	*completed = false;
3140	error = xlog_force_iclog(iclog);
3141	if (error)
3142		return error;
3143
3144	/*
3145	 * If the iclog has already been completed and reused the header LSN
3146	 * will have been rewritten by completion
3147	 */
3148	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3149		*completed = true;
3150	return 0;
3151}
3152
3153/*
3154 * Write out all data in the in-core log as of this exact moment in time.
3155 *
3156 * Data may be written to the in-core log during this call.  However,
3157 * we don't guarantee this data will be written out.  A change from past
3158 * implementation means this routine will *not* write out zero length LRs.
3159 *
3160 * Basically, we try and perform an intelligent scan of the in-core logs.
3161 * If we determine there is no flushable data, we just return.  There is no
3162 * flushable data if:
3163 *
3164 *	1. the current iclog is active and has no data; the previous iclog
3165 *		is in the active or dirty state.
3166 *	2. the current iclog is drity, and the previous iclog is in the
3167 *		active or dirty state.
3168 *
3169 * We may sleep if:
3170 *
3171 *	1. the current iclog is not in the active nor dirty state.
3172 *	2. the current iclog dirty, and the previous iclog is not in the
3173 *		active nor dirty state.
3174 *	3. the current iclog is active, and there is another thread writing
3175 *		to this particular iclog.
3176 *	4. a) the current iclog is active and has no other writers
3177 *	   b) when we return from flushing out this iclog, it is still
3178 *		not in the active nor dirty state.
3179 */
3180int
3181xfs_log_force(
3182	struct xfs_mount	*mp,
3183	uint			flags)
 
3184{
3185	struct xlog		*log = mp->m_log;
3186	struct xlog_in_core	*iclog;
 
3187
3188	XFS_STATS_INC(mp, xs_log_force);
3189	trace_xfs_log_force(mp, 0, _RET_IP_);
3190
3191	xlog_cil_force(log);
3192
3193	spin_lock(&log->l_icloglock);
3194	if (xlog_is_shutdown(log))
3195		goto out_error;
3196
3197	iclog = log->l_iclog;
3198	trace_xlog_iclog_force(iclog, _RET_IP_);
 
 
 
3199
3200	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3201	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3202	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
 
 
3203		/*
3204		 * If the head is dirty or (active and empty), then we need to
3205		 * look at the previous iclog.
3206		 *
3207		 * If the previous iclog is active or dirty we are done.  There
3208		 * is nothing to sync out. Otherwise, we attach ourselves to the
3209		 * previous iclog and go to sleep.
3210		 */
3211		iclog = iclog->ic_prev;
3212	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3213		if (atomic_read(&iclog->ic_refcnt) == 0) {
3214			/* We have exclusive access to this iclog. */
3215			bool	completed;
3216
3217			if (xlog_force_and_check_iclog(iclog, &completed))
3218				goto out_error;
3219
3220			if (completed)
3221				goto out_unlock;
3222		} else {
3223			/*
3224			 * Someone else is still writing to this iclog, so we
3225			 * need to ensure that when they release the iclog it
3226			 * gets synced immediately as we may be waiting on it.
3227			 */
3228			xlog_state_switch_iclogs(log, iclog, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229		}
3230	}
3231
3232	/*
3233	 * The iclog we are about to wait on may contain the checkpoint pushed
3234	 * by the above xlog_cil_force() call, but it may not have been pushed
3235	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3236	 * are flushed when this iclog is written.
3237	 */
3238	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3239		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3240
3241	if (flags & XFS_LOG_SYNC)
3242		return xlog_wait_on_iclog(iclog);
3243out_unlock:
3244	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245	return 0;
3246out_error:
3247	spin_unlock(&log->l_icloglock);
3248	return -EIO;
3249}
3250
3251/*
3252 * Force the log to a specific LSN.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3253 *
3254 * If an iclog with that lsn can be found:
3255 *	If it is in the DIRTY state, just return.
3256 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3257 *		state and go to sleep or return.
3258 *	If it is in any other state, go to sleep or return.
3259 *
3260 * Synchronous forces are implemented with a wait queue.  All callers trying
3261 * to force a given lsn to disk must wait on the queue attached to the
3262 * specific in-core log.  When given in-core log finally completes its write
3263 * to disk, that thread will wake up all threads waiting on the queue.
 
3264 */
3265static int
3266xlog_force_lsn(
3267	struct xlog		*log,
3268	xfs_lsn_t		lsn,
3269	uint			flags,
3270	int			*log_flushed,
3271	bool			already_slept)
3272{
 
3273	struct xlog_in_core	*iclog;
3274	bool			completed;
3275
3276	spin_lock(&log->l_icloglock);
3277	if (xlog_is_shutdown(log))
3278		goto out_error;
3279
 
 
 
 
 
 
3280	iclog = log->l_iclog;
3281	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3282		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3283		iclog = iclog->ic_next;
3284		if (iclog == log->l_iclog)
3285			goto out_unlock;
3286	}
3287
3288	switch (iclog->ic_state) {
3289	case XLOG_STATE_ACTIVE:
3290		/*
3291		 * We sleep here if we haven't already slept (e.g. this is the
3292		 * first time we've looked at the correct iclog buf) and the
3293		 * buffer before us is going to be sync'ed.  The reason for this
3294		 * is that if we are doing sync transactions here, by waiting
3295		 * for the previous I/O to complete, we can allow a few more
3296		 * transactions into this iclog before we close it down.
3297		 *
3298		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3299		 * refcnt so we can release the log (which drops the ref count).
3300		 * The state switch keeps new transaction commits from using
3301		 * this buffer.  When the current commits finish writing into
3302		 * the buffer, the refcount will drop to zero and the buffer
3303		 * will go out then.
3304		 */
3305		if (!already_slept &&
3306		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3307		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3308			xlog_wait(&iclog->ic_prev->ic_write_wait,
3309					&log->l_icloglock);
3310			return -EAGAIN;
3311		}
3312		if (xlog_force_and_check_iclog(iclog, &completed))
3313			goto out_error;
3314		if (log_flushed)
3315			*log_flushed = 1;
3316		if (completed)
3317			goto out_unlock;
3318		break;
3319	case XLOG_STATE_WANT_SYNC:
3320		/*
3321		 * This iclog may contain the checkpoint pushed by the
3322		 * xlog_cil_force_seq() call, but there are other writers still
3323		 * accessing it so it hasn't been pushed to disk yet. Like the
3324		 * ACTIVE case above, we need to make sure caches are flushed
3325		 * when this iclog is written.
3326		 */
3327		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3328		break;
3329	default:
3330		/*
3331		 * The entire checkpoint was written by the CIL force and is on
3332		 * its way to disk already. It will be stable when it
3333		 * completes, so we don't need to manipulate caches here at all.
3334		 * We just need to wait for completion if necessary.
3335		 */
3336		break;
3337	}
3338
3339	if (flags & XFS_LOG_SYNC)
3340		return xlog_wait_on_iclog(iclog);
3341out_unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3342	spin_unlock(&log->l_icloglock);
3343	return 0;
3344out_error:
3345	spin_unlock(&log->l_icloglock);
3346	return -EIO;
3347}
3348
3349/*
3350 * Force the log to a specific checkpoint sequence.
3351 *
3352 * First force the CIL so that all the required changes have been flushed to the
3353 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3354 * the iclog that needs to be flushed to stable storage. If the caller needs
3355 * a synchronous log force, we will wait on the iclog with the LSN returned by
3356 * xlog_cil_force_seq() to be completed.
3357 */
3358int
3359xfs_log_force_seq(
3360	struct xfs_mount	*mp,
3361	xfs_csn_t		seq,
3362	uint			flags,
3363	int			*log_flushed)
3364{
3365	struct xlog		*log = mp->m_log;
3366	xfs_lsn_t		lsn;
3367	int			ret;
3368	ASSERT(seq != 0);
3369
3370	XFS_STATS_INC(mp, xs_log_force);
3371	trace_xfs_log_force(mp, seq, _RET_IP_);
3372
3373	lsn = xlog_cil_force_seq(log, seq);
3374	if (lsn == NULLCOMMITLSN)
3375		return 0;
 
 
 
 
 
 
 
3376
3377	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3378	if (ret == -EAGAIN) {
3379		XFS_STATS_INC(mp, xs_log_force_sleep);
3380		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
 
3381	}
3382	return ret;
3383}
3384
 
 
 
 
 
 
 
 
3385/*
3386 * Free a used ticket when its refcount falls to zero.
3387 */
3388void
3389xfs_log_ticket_put(
3390	xlog_ticket_t	*ticket)
3391{
3392	ASSERT(atomic_read(&ticket->t_ref) > 0);
3393	if (atomic_dec_and_test(&ticket->t_ref))
3394		kmem_cache_free(xfs_log_ticket_cache, ticket);
3395}
3396
3397xlog_ticket_t *
3398xfs_log_ticket_get(
3399	xlog_ticket_t	*ticket)
3400{
3401	ASSERT(atomic_read(&ticket->t_ref) > 0);
3402	atomic_inc(&ticket->t_ref);
3403	return ticket;
3404}
3405
3406/*
3407 * Figure out the total log space unit (in bytes) that would be
3408 * required for a log ticket.
3409 */
3410static int
3411xlog_calc_unit_res(
3412	struct xlog		*log,
3413	int			unit_bytes,
3414	int			*niclogs)
3415{
 
3416	int			iclog_space;
3417	uint			num_headers;
3418
3419	/*
3420	 * Permanent reservations have up to 'cnt'-1 active log operations
3421	 * in the log.  A unit in this case is the amount of space for one
3422	 * of these log operations.  Normal reservations have a cnt of 1
3423	 * and their unit amount is the total amount of space required.
3424	 *
3425	 * The following lines of code account for non-transaction data
3426	 * which occupy space in the on-disk log.
3427	 *
3428	 * Normal form of a transaction is:
3429	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3430	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3431	 *
3432	 * We need to account for all the leadup data and trailer data
3433	 * around the transaction data.
3434	 * And then we need to account for the worst case in terms of using
3435	 * more space.
3436	 * The worst case will happen if:
3437	 * - the placement of the transaction happens to be such that the
3438	 *   roundoff is at its maximum
3439	 * - the transaction data is synced before the commit record is synced
3440	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3441	 *   Therefore the commit record is in its own Log Record.
3442	 *   This can happen as the commit record is called with its
3443	 *   own region to xlog_write().
3444	 *   This then means that in the worst case, roundoff can happen for
3445	 *   the commit-rec as well.
3446	 *   The commit-rec is smaller than padding in this scenario and so it is
3447	 *   not added separately.
3448	 */
3449
3450	/* for trans header */
3451	unit_bytes += sizeof(xlog_op_header_t);
3452	unit_bytes += sizeof(xfs_trans_header_t);
3453
3454	/* for start-rec */
3455	unit_bytes += sizeof(xlog_op_header_t);
3456
3457	/*
3458	 * for LR headers - the space for data in an iclog is the size minus
3459	 * the space used for the headers. If we use the iclog size, then we
3460	 * undercalculate the number of headers required.
3461	 *
3462	 * Furthermore - the addition of op headers for split-recs might
3463	 * increase the space required enough to require more log and op
3464	 * headers, so take that into account too.
3465	 *
3466	 * IMPORTANT: This reservation makes the assumption that if this
3467	 * transaction is the first in an iclog and hence has the LR headers
3468	 * accounted to it, then the remaining space in the iclog is
3469	 * exclusively for this transaction.  i.e. if the transaction is larger
3470	 * than the iclog, it will be the only thing in that iclog.
3471	 * Fundamentally, this means we must pass the entire log vector to
3472	 * xlog_write to guarantee this.
3473	 */
3474	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3475	num_headers = howmany(unit_bytes, iclog_space);
3476
3477	/* for split-recs - ophdrs added when data split over LRs */
3478	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3479
3480	/* add extra header reservations if we overrun */
3481	while (!num_headers ||
3482	       howmany(unit_bytes, iclog_space) > num_headers) {
3483		unit_bytes += sizeof(xlog_op_header_t);
3484		num_headers++;
3485	}
3486	unit_bytes += log->l_iclog_hsize * num_headers;
3487
3488	/* for commit-rec LR header - note: padding will subsume the ophdr */
3489	unit_bytes += log->l_iclog_hsize;
3490
3491	/* roundoff padding for transaction data and one for commit record */
3492	unit_bytes += 2 * log->l_iclog_roundoff;
 
 
 
 
 
 
3493
3494	if (niclogs)
3495		*niclogs = num_headers;
3496	return unit_bytes;
3497}
3498
3499int
3500xfs_log_calc_unit_res(
3501	struct xfs_mount	*mp,
3502	int			unit_bytes)
3503{
3504	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3505}
3506
3507/*
3508 * Allocate and initialise a new log ticket.
3509 */
3510struct xlog_ticket *
3511xlog_ticket_alloc(
3512	struct xlog		*log,
3513	int			unit_bytes,
3514	int			cnt,
3515	bool			permanent)
 
 
3516{
3517	struct xlog_ticket	*tic;
3518	int			unit_res;
3519
3520	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
 
 
3521
3522	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3523
3524	atomic_set(&tic->t_ref, 1);
3525	tic->t_task		= current;
3526	INIT_LIST_HEAD(&tic->t_queue);
3527	tic->t_unit_res		= unit_res;
3528	tic->t_curr_res		= unit_res;
3529	tic->t_cnt		= cnt;
3530	tic->t_ocnt		= cnt;
3531	tic->t_tid		= get_random_u32();
 
 
3532	if (permanent)
3533		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3534
 
 
3535	return tic;
3536}
3537
 
 
 
 
 
 
 
3538#if defined(DEBUG)
3539/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3540 * Check to make sure the grant write head didn't just over lap the tail.  If
3541 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3542 * the cycles differ by exactly one and check the byte count.
3543 *
3544 * This check is run unlocked, so can give false positives. Rather than assert
3545 * on failures, use a warn-once flag and a panic tag to allow the admin to
3546 * determine if they want to panic the machine when such an error occurs. For
3547 * debug kernels this will have the same effect as using an assert but, unlinke
3548 * an assert, it can be turned off at runtime.
3549 */
3550STATIC void
3551xlog_verify_grant_tail(
3552	struct xlog	*log)
3553{
3554	int		tail_cycle, tail_blocks;
3555	int		cycle, space;
3556
3557	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3558	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3559	if (tail_cycle != cycle) {
3560		if (cycle - 1 != tail_cycle &&
3561		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3562			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3563				"%s: cycle - 1 != tail_cycle", __func__);
 
3564		}
3565
3566		if (space > BBTOB(tail_blocks) &&
3567		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3568			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3569				"%s: space > BBTOB(tail_blocks)", __func__);
 
3570		}
3571	}
3572}
3573
3574/* check if it will fit */
3575STATIC void
3576xlog_verify_tail_lsn(
3577	struct xlog		*log,
3578	struct xlog_in_core	*iclog)
 
3579{
3580	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3581	int		blocks;
3582
3583    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3584	blocks =
3585	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3586	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3587		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3588    } else {
3589	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3590
3591	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3592		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3593
3594	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3595	if (blocks < BTOBB(iclog->ic_offset) + 1)
3596		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3597    }
3598}
3599
3600/*
3601 * Perform a number of checks on the iclog before writing to disk.
3602 *
3603 * 1. Make sure the iclogs are still circular
3604 * 2. Make sure we have a good magic number
3605 * 3. Make sure we don't have magic numbers in the data
3606 * 4. Check fields of each log operation header for:
3607 *	A. Valid client identifier
3608 *	B. tid ptr value falls in valid ptr space (user space code)
3609 *	C. Length in log record header is correct according to the
3610 *		individual operation headers within record.
3611 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3612 *	log, check the preceding blocks of the physical log to make sure all
3613 *	the cycle numbers agree with the current cycle number.
3614 */
3615STATIC void
3616xlog_verify_iclog(
3617	struct xlog		*log,
3618	struct xlog_in_core	*iclog,
3619	int			count)
 
3620{
3621	xlog_op_header_t	*ophead;
3622	xlog_in_core_t		*icptr;
3623	xlog_in_core_2_t	*xhdr;
3624	void			*base_ptr, *ptr, *p;
3625	ptrdiff_t		field_offset;
3626	uint8_t			clientid;
3627	int			len, i, j, k, op_len;
3628	int			idx;
3629
3630	/* check validity of iclog pointers */
3631	spin_lock(&log->l_icloglock);
3632	icptr = log->l_iclog;
3633	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3634		ASSERT(icptr);
3635
3636	if (icptr != log->l_iclog)
3637		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3638	spin_unlock(&log->l_icloglock);
3639
3640	/* check log magic numbers */
3641	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3642		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3643
3644	base_ptr = ptr = &iclog->ic_header;
3645	p = &iclog->ic_header;
3646	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3647		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3648			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3649				__func__);
3650	}
3651
3652	/* check fields */
3653	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3654	base_ptr = ptr = iclog->ic_datap;
3655	ophead = ptr;
3656	xhdr = iclog->ic_data;
3657	for (i = 0; i < len; i++) {
3658		ophead = ptr;
3659
3660		/* clientid is only 1 byte */
3661		p = &ophead->oh_clientid;
3662		field_offset = p - base_ptr;
3663		if (field_offset & 0x1ff) {
3664			clientid = ophead->oh_clientid;
3665		} else {
3666			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3667			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3668				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3669				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3670				clientid = xlog_get_client_id(
3671					xhdr[j].hic_xheader.xh_cycle_data[k]);
3672			} else {
3673				clientid = xlog_get_client_id(
3674					iclog->ic_header.h_cycle_data[idx]);
3675			}
3676		}
3677		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3678			xfs_warn(log->l_mp,
3679				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3680				__func__, i, clientid, ophead,
3681				(unsigned long)field_offset);
3682		}
3683
3684		/* check length */
3685		p = &ophead->oh_len;
3686		field_offset = p - base_ptr;
3687		if (field_offset & 0x1ff) {
3688			op_len = be32_to_cpu(ophead->oh_len);
3689		} else {
3690			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
 
3691			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3692				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3693				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3694				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3695			} else {
3696				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3697			}
3698		}
3699		ptr += sizeof(xlog_op_header_t) + op_len;
3700	}
3701}
3702#endif
3703
3704/*
3705 * Perform a forced shutdown on the log.
3706 *
3707 * This can be called from low level log code to trigger a shutdown, or from the
3708 * high level mount shutdown code when the mount shuts down.
3709 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710 * Our main objectives here are to make sure that:
3711 *	a. if the shutdown was not due to a log IO error, flush the logs to
3712 *	   disk. Anything modified after this is ignored.
3713 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3714 *	   parties to find out. Nothing new gets queued after this is done.
3715 *	c. Tasks sleeping on log reservations, pinned objects and
3716 *	   other resources get woken up.
3717 *	d. The mount is also marked as shut down so that log triggered shutdowns
3718 *	   still behave the same as if they called xfs_forced_shutdown().
3719 *
3720 * Return true if the shutdown cause was a log IO error and we actually shut the
3721 * log down.
3722 */
3723bool
3724xlog_force_shutdown(
3725	struct xlog	*log,
3726	uint32_t	shutdown_flags)
3727{
3728	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
 
3729
3730	if (!log)
3731		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732
3733	/*
3734	 * Flush all the completed transactions to disk before marking the log
3735	 * being shut down. We need to do this first as shutting down the log
3736	 * before the force will prevent the log force from flushing the iclogs
3737	 * to disk.
3738	 *
3739	 * When we are in recovery, there are no transactions to flush, and
3740	 * we don't want to touch the log because we don't want to perturb the
3741	 * current head/tail for future recovery attempts. Hence we need to
3742	 * avoid a log force in this case.
3743	 *
3744	 * If we are shutting down due to a log IO error, then we must avoid
3745	 * trying to write the log as that may just result in more IO errors and
3746	 * an endless shutdown/force loop.
3747	 */
3748	if (!log_error && !xlog_in_recovery(log))
3749		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3750
3751	/*
3752	 * Atomically set the shutdown state. If the shutdown state is already
3753	 * set, there someone else is performing the shutdown and so we are done
3754	 * here. This should never happen because we should only ever get called
3755	 * once by the first shutdown caller.
3756	 *
3757	 * Much of the log state machine transitions assume that shutdown state
3758	 * cannot change once they hold the log->l_icloglock. Hence we need to
3759	 * hold that lock here, even though we use the atomic test_and_set_bit()
3760	 * operation to set the shutdown state.
3761	 */
3762	spin_lock(&log->l_icloglock);
3763	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3764		spin_unlock(&log->l_icloglock);
3765		return false;
3766	}
3767	spin_unlock(&log->l_icloglock);
3768
3769	/*
3770	 * If this log shutdown also sets the mount shutdown state, issue a
3771	 * shutdown warning message.
3772	 */
3773	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3774		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3775"Filesystem has been shut down due to log error (0x%x).",
3776				shutdown_flags);
3777		xfs_alert(log->l_mp,
3778"Please unmount the filesystem and rectify the problem(s).");
3779		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3780			xfs_stack_trace();
3781	}
3782
3783	/*
3784	 * We don't want anybody waiting for log reservations after this. That
3785	 * means we have to wake up everybody queued up on reserveq as well as
3786	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3787	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3788	 * action is protected by the grant locks.
3789	 */
3790	xlog_grant_head_wake_all(&log->l_reserve_head);
3791	xlog_grant_head_wake_all(&log->l_write_head);
3792
3793	/*
3794	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3795	 * as if the log writes were completed. The abort handling in the log
3796	 * item committed callback functions will do this again under lock to
3797	 * avoid races.
3798	 */
3799	spin_lock(&log->l_cilp->xc_push_lock);
3800	wake_up_all(&log->l_cilp->xc_start_wait);
3801	wake_up_all(&log->l_cilp->xc_commit_wait);
3802	spin_unlock(&log->l_cilp->xc_push_lock);
3803
3804	spin_lock(&log->l_icloglock);
3805	xlog_state_shutdown_callbacks(log);
3806	spin_unlock(&log->l_icloglock);
3807
3808	wake_up_var(&log->l_opstate);
3809	return log_error;
 
 
 
 
 
 
 
 
 
3810}
3811
3812STATIC int
3813xlog_iclogs_empty(
3814	struct xlog	*log)
3815{
3816	xlog_in_core_t	*iclog;
3817
3818	iclog = log->l_iclog;
3819	do {
3820		/* endianness does not matter here, zero is zero in
3821		 * any language.
3822		 */
3823		if (iclog->ic_header.h_num_logops)
3824			return 0;
3825		iclog = iclog->ic_next;
3826	} while (iclog != log->l_iclog);
3827	return 1;
3828}
3829
3830/*
3831 * Verify that an LSN stamped into a piece of metadata is valid. This is
3832 * intended for use in read verifiers on v5 superblocks.
3833 */
3834bool
3835xfs_log_check_lsn(
3836	struct xfs_mount	*mp,
3837	xfs_lsn_t		lsn)
3838{
3839	struct xlog		*log = mp->m_log;
3840	bool			valid;
3841
3842	/*
3843	 * norecovery mode skips mount-time log processing and unconditionally
3844	 * resets the in-core LSN. We can't validate in this mode, but
3845	 * modifications are not allowed anyways so just return true.
3846	 */
3847	if (xfs_has_norecovery(mp))
3848		return true;
3849
3850	/*
3851	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3852	 * handled by recovery and thus safe to ignore here.
3853	 */
3854	if (lsn == NULLCOMMITLSN)
3855		return true;
3856
3857	valid = xlog_valid_lsn(mp->m_log, lsn);
3858
3859	/* warn the user about what's gone wrong before verifier failure */
3860	if (!valid) {
3861		spin_lock(&log->l_icloglock);
3862		xfs_warn(mp,
3863"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3864"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3865			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3866			 log->l_curr_cycle, log->l_curr_block);
3867		spin_unlock(&log->l_icloglock);
3868	}
3869
3870	return valid;
3871}
3872
3873/*
3874 * Notify the log that we're about to start using a feature that is protected
3875 * by a log incompat feature flag.  This will prevent log covering from
3876 * clearing those flags.
3877 */
3878void
3879xlog_use_incompat_feat(
3880	struct xlog		*log)
3881{
3882	down_read(&log->l_incompat_users);
3883}
3884
3885/* Notify the log that we've finished using log incompat features. */
3886void
3887xlog_drop_incompat_feat(
3888	struct xlog		*log)
3889{
3890	up_read(&log->l_incompat_users);
3891}
v4.10.11
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
 
  25#include "xfs_error.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_log.h"
  29#include "xfs_log_priv.h"
  30#include "xfs_log_recover.h"
  31#include "xfs_inode.h"
  32#include "xfs_trace.h"
  33#include "xfs_fsops.h"
  34#include "xfs_cksum.h"
  35#include "xfs_sysfs.h"
  36#include "xfs_sb.h"
 
  37
  38kmem_zone_t	*xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43	struct xlog		*log,
  44	struct xlog_ticket	*ticket,
  45	struct xlog_in_core	**iclog,
  46	xfs_lsn_t		*commitlsnp);
  47
  48STATIC struct xlog *
  49xlog_alloc_log(
  50	struct xfs_mount	*mp,
  51	struct xfs_buftarg	*log_target,
  52	xfs_daddr_t		blk_offset,
  53	int			num_bblks);
  54STATIC int
  55xlog_space_left(
  56	struct xlog		*log,
  57	atomic64_t		*head);
  58STATIC int
  59xlog_sync(
  60	struct xlog		*log,
  61	struct xlog_in_core	*iclog);
  62STATIC void
  63xlog_dealloc_log(
  64	struct xlog		*log);
  65
  66/* local state machine functions */
  67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  68STATIC void
  69xlog_state_do_callback(
  70	struct xlog		*log,
  71	int			aborted,
  72	struct xlog_in_core	*iclog);
 
 
  73STATIC int
  74xlog_state_get_iclog_space(
  75	struct xlog		*log,
  76	int			len,
  77	struct xlog_in_core	**iclog,
  78	struct xlog_ticket	*ticket,
  79	int			*continued_write,
  80	int			*logoffsetp);
  81STATIC int
  82xlog_state_release_iclog(
  83	struct xlog		*log,
  84	struct xlog_in_core	*iclog);
  85STATIC void
  86xlog_state_switch_iclogs(
  87	struct xlog		*log,
  88	struct xlog_in_core	*iclog,
  89	int			eventual_size);
  90STATIC void
  91xlog_state_want_sync(
  92	struct xlog		*log,
  93	struct xlog_in_core	*iclog);
  94
  95STATIC void
  96xlog_grant_push_ail(
  97	struct xlog		*log,
  98	int			need_bytes);
  99STATIC void
 100xlog_regrant_reserve_log_space(
 101	struct xlog		*log,
 
 102	struct xlog_ticket	*ticket);
 103STATIC void
 104xlog_ungrant_log_space(
 105	struct xlog		*log,
 106	struct xlog_ticket	*ticket);
 107
 108#if defined(DEBUG)
 109STATIC void
 110xlog_verify_dest_ptr(
 111	struct xlog		*log,
 112	void			*ptr);
 113STATIC void
 114xlog_verify_grant_tail(
 115	struct xlog *log);
 116STATIC void
 117xlog_verify_iclog(
 118	struct xlog		*log,
 119	struct xlog_in_core	*iclog,
 120	int			count,
 121	bool                    syncing);
 122STATIC void
 123xlog_verify_tail_lsn(
 124	struct xlog		*log,
 125	struct xlog_in_core	*iclog,
 126	xfs_lsn_t		tail_lsn);
 127#else
 128#define xlog_verify_dest_ptr(a,b)
 129#define xlog_verify_grant_tail(a)
 130#define xlog_verify_iclog(a,b,c,d)
 131#define xlog_verify_tail_lsn(a,b,c)
 132#endif
 133
 134STATIC int
 135xlog_iclogs_empty(
 136	struct xlog		*log);
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138static void
 139xlog_grant_sub_space(
 140	struct xlog		*log,
 141	atomic64_t		*head,
 142	int			bytes)
 143{
 144	int64_t	head_val = atomic64_read(head);
 145	int64_t new, old;
 146
 147	do {
 148		int	cycle, space;
 149
 150		xlog_crack_grant_head_val(head_val, &cycle, &space);
 151
 152		space -= bytes;
 153		if (space < 0) {
 154			space += log->l_logsize;
 155			cycle--;
 156		}
 157
 158		old = head_val;
 159		new = xlog_assign_grant_head_val(cycle, space);
 160		head_val = atomic64_cmpxchg(head, old, new);
 161	} while (head_val != old);
 162}
 163
 164static void
 165xlog_grant_add_space(
 166	struct xlog		*log,
 167	atomic64_t		*head,
 168	int			bytes)
 169{
 170	int64_t	head_val = atomic64_read(head);
 171	int64_t new, old;
 172
 173	do {
 174		int		tmp;
 175		int		cycle, space;
 176
 177		xlog_crack_grant_head_val(head_val, &cycle, &space);
 178
 179		tmp = log->l_logsize - space;
 180		if (tmp > bytes)
 181			space += bytes;
 182		else {
 183			space = bytes - tmp;
 184			cycle++;
 185		}
 186
 187		old = head_val;
 188		new = xlog_assign_grant_head_val(cycle, space);
 189		head_val = atomic64_cmpxchg(head, old, new);
 190	} while (head_val != old);
 191}
 192
 193STATIC void
 194xlog_grant_head_init(
 195	struct xlog_grant_head	*head)
 196{
 197	xlog_assign_grant_head(&head->grant, 1, 0);
 198	INIT_LIST_HEAD(&head->waiters);
 199	spin_lock_init(&head->lock);
 200}
 201
 202STATIC void
 203xlog_grant_head_wake_all(
 204	struct xlog_grant_head	*head)
 205{
 206	struct xlog_ticket	*tic;
 207
 208	spin_lock(&head->lock);
 209	list_for_each_entry(tic, &head->waiters, t_queue)
 210		wake_up_process(tic->t_task);
 211	spin_unlock(&head->lock);
 212}
 213
 214static inline int
 215xlog_ticket_reservation(
 216	struct xlog		*log,
 217	struct xlog_grant_head	*head,
 218	struct xlog_ticket	*tic)
 219{
 220	if (head == &log->l_write_head) {
 221		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 222		return tic->t_unit_res;
 223	} else {
 224		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 225			return tic->t_unit_res * tic->t_cnt;
 226		else
 227			return tic->t_unit_res;
 228	}
 
 
 
 
 
 229}
 230
 231STATIC bool
 232xlog_grant_head_wake(
 233	struct xlog		*log,
 234	struct xlog_grant_head	*head,
 235	int			*free_bytes)
 236{
 237	struct xlog_ticket	*tic;
 238	int			need_bytes;
 
 239
 240	list_for_each_entry(tic, &head->waiters, t_queue) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241		need_bytes = xlog_ticket_reservation(log, head, tic);
 242		if (*free_bytes < need_bytes)
 
 
 243			return false;
 
 244
 245		*free_bytes -= need_bytes;
 246		trace_xfs_log_grant_wake_up(log, tic);
 247		wake_up_process(tic->t_task);
 
 248	}
 249
 250	return true;
 251}
 252
 253STATIC int
 254xlog_grant_head_wait(
 255	struct xlog		*log,
 256	struct xlog_grant_head	*head,
 257	struct xlog_ticket	*tic,
 258	int			need_bytes) __releases(&head->lock)
 259					    __acquires(&head->lock)
 260{
 261	list_add_tail(&tic->t_queue, &head->waiters);
 262
 263	do {
 264		if (XLOG_FORCED_SHUTDOWN(log))
 265			goto shutdown;
 266		xlog_grant_push_ail(log, need_bytes);
 267
 268		__set_current_state(TASK_UNINTERRUPTIBLE);
 269		spin_unlock(&head->lock);
 270
 271		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 272
 273		trace_xfs_log_grant_sleep(log, tic);
 274		schedule();
 275		trace_xfs_log_grant_wake(log, tic);
 276
 277		spin_lock(&head->lock);
 278		if (XLOG_FORCED_SHUTDOWN(log))
 279			goto shutdown;
 280	} while (xlog_space_left(log, &head->grant) < need_bytes);
 281
 282	list_del_init(&tic->t_queue);
 283	return 0;
 284shutdown:
 285	list_del_init(&tic->t_queue);
 286	return -EIO;
 287}
 288
 289/*
 290 * Atomically get the log space required for a log ticket.
 291 *
 292 * Once a ticket gets put onto head->waiters, it will only return after the
 293 * needed reservation is satisfied.
 294 *
 295 * This function is structured so that it has a lock free fast path. This is
 296 * necessary because every new transaction reservation will come through this
 297 * path. Hence any lock will be globally hot if we take it unconditionally on
 298 * every pass.
 299 *
 300 * As tickets are only ever moved on and off head->waiters under head->lock, we
 301 * only need to take that lock if we are going to add the ticket to the queue
 302 * and sleep. We can avoid taking the lock if the ticket was never added to
 303 * head->waiters because the t_queue list head will be empty and we hold the
 304 * only reference to it so it can safely be checked unlocked.
 305 */
 306STATIC int
 307xlog_grant_head_check(
 308	struct xlog		*log,
 309	struct xlog_grant_head	*head,
 310	struct xlog_ticket	*tic,
 311	int			*need_bytes)
 312{
 313	int			free_bytes;
 314	int			error = 0;
 315
 316	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 317
 318	/*
 319	 * If there are other waiters on the queue then give them a chance at
 320	 * logspace before us.  Wake up the first waiters, if we do not wake
 321	 * up all the waiters then go to sleep waiting for more free space,
 322	 * otherwise try to get some space for this transaction.
 323	 */
 324	*need_bytes = xlog_ticket_reservation(log, head, tic);
 325	free_bytes = xlog_space_left(log, &head->grant);
 326	if (!list_empty_careful(&head->waiters)) {
 327		spin_lock(&head->lock);
 328		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 329		    free_bytes < *need_bytes) {
 330			error = xlog_grant_head_wait(log, head, tic,
 331						     *need_bytes);
 332		}
 333		spin_unlock(&head->lock);
 334	} else if (free_bytes < *need_bytes) {
 335		spin_lock(&head->lock);
 336		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 337		spin_unlock(&head->lock);
 338	}
 339
 340	return error;
 341}
 342
 343static void
 344xlog_tic_reset_res(xlog_ticket_t *tic)
 
 345{
 346	tic->t_res_num = 0;
 347	tic->t_res_arr_sum = 0;
 348	tic->t_res_num_ophdrs = 0;
 349}
 350
 351static void
 352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 353{
 354	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 355		/* add to overflow and start again */
 356		tic->t_res_o_flow += tic->t_res_arr_sum;
 357		tic->t_res_num = 0;
 358		tic->t_res_arr_sum = 0;
 359	}
 360
 361	tic->t_res_arr[tic->t_res_num].r_len = len;
 362	tic->t_res_arr[tic->t_res_num].r_type = type;
 363	tic->t_res_arr_sum += len;
 364	tic->t_res_num++;
 365}
 366
 367/*
 368 * Replenish the byte reservation required by moving the grant write head.
 369 */
 370int
 371xfs_log_regrant(
 372	struct xfs_mount	*mp,
 373	struct xlog_ticket	*tic)
 374{
 375	struct xlog		*log = mp->m_log;
 376	int			need_bytes;
 377	int			error = 0;
 378
 379	if (XLOG_FORCED_SHUTDOWN(log))
 380		return -EIO;
 381
 382	XFS_STATS_INC(mp, xs_try_logspace);
 383
 384	/*
 385	 * This is a new transaction on the ticket, so we need to change the
 386	 * transaction ID so that the next transaction has a different TID in
 387	 * the log. Just add one to the existing tid so that we can see chains
 388	 * of rolling transactions in the log easily.
 389	 */
 390	tic->t_tid++;
 391
 392	xlog_grant_push_ail(log, tic->t_unit_res);
 393
 394	tic->t_curr_res = tic->t_unit_res;
 395	xlog_tic_reset_res(tic);
 396
 397	if (tic->t_cnt > 0)
 398		return 0;
 399
 400	trace_xfs_log_regrant(log, tic);
 401
 402	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 403				      &need_bytes);
 404	if (error)
 405		goto out_error;
 406
 407	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 408	trace_xfs_log_regrant_exit(log, tic);
 409	xlog_verify_grant_tail(log);
 410	return 0;
 411
 412out_error:
 413	/*
 414	 * If we are failing, make sure the ticket doesn't have any current
 415	 * reservations.  We don't want to add this back when the ticket/
 416	 * transaction gets cancelled.
 417	 */
 418	tic->t_curr_res = 0;
 419	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 420	return error;
 421}
 422
 423/*
 424 * Reserve log space and return a ticket corresponding the reservation.
 425 *
 426 * Each reservation is going to reserve extra space for a log record header.
 427 * When writes happen to the on-disk log, we don't subtract the length of the
 428 * log record header from any reservation.  By wasting space in each
 429 * reservation, we prevent over allocation problems.
 430 */
 431int
 432xfs_log_reserve(
 433	struct xfs_mount	*mp,
 434	int		 	unit_bytes,
 435	int		 	cnt,
 436	struct xlog_ticket	**ticp,
 437	__uint8_t	 	client,
 438	bool			permanent)
 439{
 440	struct xlog		*log = mp->m_log;
 441	struct xlog_ticket	*tic;
 442	int			need_bytes;
 443	int			error = 0;
 444
 445	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 446
 447	if (XLOG_FORCED_SHUTDOWN(log))
 448		return -EIO;
 449
 450	XFS_STATS_INC(mp, xs_try_logspace);
 451
 452	ASSERT(*ticp == NULL);
 453	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 454				KM_SLEEP | KM_MAYFAIL);
 455	if (!tic)
 456		return -ENOMEM;
 457
 458	*ticp = tic;
 459
 460	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 461					    : tic->t_unit_res);
 462
 463	trace_xfs_log_reserve(log, tic);
 464
 465	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 466				      &need_bytes);
 467	if (error)
 468		goto out_error;
 469
 470	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 471	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 472	trace_xfs_log_reserve_exit(log, tic);
 473	xlog_verify_grant_tail(log);
 474	return 0;
 475
 476out_error:
 477	/*
 478	 * If we are failing, make sure the ticket doesn't have any current
 479	 * reservations.  We don't want to add this back when the ticket/
 480	 * transaction gets cancelled.
 481	 */
 482	tic->t_curr_res = 0;
 483	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 484	return error;
 485}
 486
 487
 488/*
 489 * NOTES:
 490 *
 491 *	1. currblock field gets updated at startup and after in-core logs
 492 *		marked as with WANT_SYNC.
 493 */
 494
 495/*
 496 * This routine is called when a user of a log manager ticket is done with
 497 * the reservation.  If the ticket was ever used, then a commit record for
 498 * the associated transaction is written out as a log operation header with
 499 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 500 * a given ticket.  If the ticket was one with a permanent reservation, then
 501 * a few operations are done differently.  Permanent reservation tickets by
 502 * default don't release the reservation.  They just commit the current
 503 * transaction with the belief that the reservation is still needed.  A flag
 504 * must be passed in before permanent reservations are actually released.
 505 * When these type of tickets are not released, they need to be set into
 506 * the inited state again.  By doing this, a start record will be written
 507 * out when the next write occurs.
 508 */
 509xfs_lsn_t
 510xfs_log_done(
 511	struct xfs_mount	*mp,
 512	struct xlog_ticket	*ticket,
 513	struct xlog_in_core	**iclog,
 514	bool			regrant)
 515{
 516	struct xlog		*log = mp->m_log;
 517	xfs_lsn_t		lsn = 0;
 518
 519	if (XLOG_FORCED_SHUTDOWN(log) ||
 520	    /*
 521	     * If nothing was ever written, don't write out commit record.
 522	     * If we get an error, just continue and give back the log ticket.
 523	     */
 524	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 525	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 526		lsn = (xfs_lsn_t) -1;
 527		regrant = false;
 528	}
 529
 
 530
 531	if (!regrant) {
 532		trace_xfs_log_done_nonperm(log, ticket);
 533
 534		/*
 535		 * Release ticket if not permanent reservation or a specific
 536		 * request has been made to release a permanent reservation.
 537		 */
 538		xlog_ungrant_log_space(log, ticket);
 539	} else {
 540		trace_xfs_log_done_perm(log, ticket);
 541
 542		xlog_regrant_reserve_log_space(log, ticket);
 543		/* If this ticket was a permanent reservation and we aren't
 544		 * trying to release it, reset the inited flags; so next time
 545		 * we write, a start record will be written out.
 546		 */
 547		ticket->t_flags |= XLOG_TIC_INITED;
 548	}
 549
 550	xfs_log_ticket_put(ticket);
 551	return lsn;
 552}
 553
 554/*
 555 * Attaches a new iclog I/O completion callback routine during
 556 * transaction commit.  If the log is in error state, a non-zero
 557 * return code is handed back and the caller is responsible for
 558 * executing the callback at an appropriate time.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559 */
 560int
 561xfs_log_notify(
 562	struct xfs_mount	*mp,
 563	struct xlog_in_core	*iclog,
 564	xfs_log_callback_t	*cb)
 565{
 566	int	abortflg;
 
 567
 568	spin_lock(&iclog->ic_callback_lock);
 569	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 570	if (!abortflg) {
 571		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 572			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 573		cb->cb_next = NULL;
 574		*(iclog->ic_callback_tail) = cb;
 575		iclog->ic_callback_tail = &(cb->cb_next);
 
 
 
 
 
 
 576	}
 577	spin_unlock(&iclog->ic_callback_lock);
 578	return abortflg;
 579}
 580
 581int
 582xfs_log_release_iclog(
 583	struct xfs_mount	*mp,
 584	struct xlog_in_core	*iclog)
 585{
 586	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 587		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 
 
 
 588		return -EIO;
 589	}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	return 0;
 592}
 593
 594/*
 595 * Mount a log filesystem
 596 *
 597 * mp		- ubiquitous xfs mount point structure
 598 * log_target	- buftarg of on-disk log device
 599 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 600 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 601 *
 602 * Return error or zero.
 603 */
 604int
 605xfs_log_mount(
 606	xfs_mount_t	*mp,
 607	xfs_buftarg_t	*log_target,
 608	xfs_daddr_t	blk_offset,
 609	int		num_bblks)
 610{
 
 611	int		error = 0;
 612	int		min_logfsbs;
 613
 614	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 615		xfs_notice(mp, "Mounting V%d Filesystem",
 616			   XFS_SB_VERSION_NUM(&mp->m_sb));
 
 617	} else {
 618		xfs_notice(mp,
 619"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 620			   XFS_SB_VERSION_NUM(&mp->m_sb));
 621		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 622	}
 623
 624	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 625	if (IS_ERR(mp->m_log)) {
 626		error = PTR_ERR(mp->m_log);
 627		goto out;
 628	}
 
 629
 630	/*
 631	 * Validate the given log space and drop a critical message via syslog
 632	 * if the log size is too small that would lead to some unexpected
 633	 * situations in transaction log space reservation stage.
 
 
 
 
 634	 *
 635	 * Note: we can't just reject the mount if the validation fails.  This
 636	 * would mean that people would have to downgrade their kernel just to
 637	 * remedy the situation as there is no way to grow the log (short of
 638	 * black magic surgery with xfs_db).
 639	 *
 640	 * We can, however, reject mounts for CRC format filesystems, as the
 641	 * mkfs binary being used to make the filesystem should never create a
 642	 * filesystem with a log that is too small.
 643	 */
 644	min_logfsbs = xfs_log_calc_minimum_size(mp);
 645
 646	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 647		xfs_warn(mp,
 648		"Log size %d blocks too small, minimum size is %d blocks",
 649			 mp->m_sb.sb_logblocks, min_logfsbs);
 650		error = -EINVAL;
 651	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 652		xfs_warn(mp,
 653		"Log size %d blocks too large, maximum size is %lld blocks",
 654			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 655		error = -EINVAL;
 656	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 657		xfs_warn(mp,
 658		"log size %lld bytes too large, maximum size is %lld bytes",
 659			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 660			 XFS_MAX_LOG_BYTES);
 661		error = -EINVAL;
 662	}
 663	if (error) {
 664		if (xfs_sb_version_hascrc(&mp->m_sb)) {
 665			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 666			ASSERT(0);
 
 667			goto out_free_log;
 668		}
 669		xfs_crit(mp, "Log size out of supported range.");
 670		xfs_crit(mp,
 671"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 672	}
 673
 674	/*
 675	 * Initialize the AIL now we have a log.
 676	 */
 677	error = xfs_trans_ail_init(mp);
 678	if (error) {
 679		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 680		goto out_free_log;
 681	}
 682	mp->m_log->l_ailp = mp->m_ail;
 683
 684	/*
 685	 * skip log recovery on a norecovery mount.  pretend it all
 686	 * just worked.
 687	 */
 688	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 689		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 690
 691		if (readonly)
 692			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 693
 694		error = xlog_recover(mp->m_log);
 695
 696		if (readonly)
 697			mp->m_flags |= XFS_MOUNT_RDONLY;
 698		if (error) {
 699			xfs_warn(mp, "log mount/recovery failed: error %d",
 700				error);
 701			xlog_recover_cancel(mp->m_log);
 702			goto out_destroy_ail;
 703		}
 704	}
 705
 706	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 707			       "log");
 708	if (error)
 709		goto out_destroy_ail;
 710
 711	/* Normal transactions can now occur */
 712	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 713
 714	/*
 715	 * Now the log has been fully initialised and we know were our
 716	 * space grant counters are, we can initialise the permanent ticket
 717	 * needed for delayed logging to work.
 718	 */
 719	xlog_cil_init_post_recovery(mp->m_log);
 720
 721	return 0;
 722
 723out_destroy_ail:
 724	xfs_trans_ail_destroy(mp);
 725out_free_log:
 726	xlog_dealloc_log(mp->m_log);
 727out:
 728	return error;
 729}
 730
 731/*
 732 * Finish the recovery of the file system.  This is separate from the
 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 735 * here.
 736 *
 737 * If we finish recovery successfully, start the background log work. If we are
 738 * not doing recovery, then we have a RO filesystem and we don't need to start
 739 * it.
 740 */
 741int
 742xfs_log_mount_finish(
 743	struct xfs_mount	*mp)
 744{
 745	int	error = 0;
 
 746
 747	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 748		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 749		return 0;
 750	}
 751
 752	error = xlog_recover_finish(mp->m_log);
 753	if (!error)
 754		xfs_log_work_queue(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755
 756	return error;
 757}
 758
 759/*
 760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 761 * the log.
 762 */
 763int
 764xfs_log_mount_cancel(
 765	struct xfs_mount	*mp)
 766{
 767	int			error;
 768
 769	error = xlog_recover_cancel(mp->m_log);
 770	xfs_log_unmount(mp);
 
 771
 772	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 773}
 774
 775/*
 776 * Final log writes as part of unmount.
 777 *
 778 * Mark the filesystem clean as unmount happens.  Note that during relocation
 779 * this routine needs to be executed as part of source-bag while the
 780 * deallocation must not be done until source-end.
 781 */
 
 
 
 
 
 
 
 
 
 
 
 
 782
 783/*
 784 * Unmount record used to have a string "Unmount filesystem--" in the
 785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 786 * We just write the magic number now since that particular field isn't
 787 * currently architecture converted and "Unmount" is a bit foo.
 788 * As far as I know, there weren't any dependencies on the old behaviour.
 789 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 
 
 
 
 
 
 
 
 
 
 791static int
 792xfs_log_unmount_write(xfs_mount_t *mp)
 
 
 793{
 794	struct xlog	 *log = mp->m_log;
 795	xlog_in_core_t	 *iclog;
 796#ifdef DEBUG
 797	xlog_in_core_t	 *first_iclog;
 798#endif
 799	xlog_ticket_t	*tic = NULL;
 800	xfs_lsn_t	 lsn;
 801	int		 error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 
 803	/*
 804	 * Don't write out unmount record on read-only mounts.
 805	 * Or, if we are doing a forced umount (typically because of IO errors).
 806	 */
 807	if (mp->m_flags & XFS_MOUNT_RDONLY)
 808		return 0;
 
 809
 810	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 811	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 
 
 812
 813#ifdef DEBUG
 814	first_iclog = iclog = log->l_iclog;
 815	do {
 816		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 817			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 818			ASSERT(iclog->ic_offset == 0);
 819		}
 820		iclog = iclog->ic_next;
 821	} while (iclog != first_iclog);
 822#endif
 823	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 824		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 825		if (!error) {
 826			/* the data section must be 32 bit size aligned */
 827			struct {
 828			    __uint16_t magic;
 829			    __uint16_t pad1;
 830			    __uint32_t pad2; /* may as well make it 64 bits */
 831			} magic = {
 832				.magic = XLOG_UNMOUNT_TYPE,
 833			};
 834			struct xfs_log_iovec reg = {
 835				.i_addr = &magic,
 836				.i_len = sizeof(magic),
 837				.i_type = XLOG_REG_TYPE_UNMOUNT,
 838			};
 839			struct xfs_log_vec vec = {
 840				.lv_niovecs = 1,
 841				.lv_iovecp = &reg,
 842			};
 843
 844			/* remove inited flag, and account for space used */
 845			tic->t_flags = 0;
 846			tic->t_curr_res -= sizeof(magic);
 847			error = xlog_write(log, &vec, tic, &lsn,
 848					   NULL, XLOG_UNMOUNT_TRANS);
 849			/*
 850			 * At this point, we're umounting anyway,
 851			 * so there's no point in transitioning log state
 852			 * to IOERROR. Just continue...
 853			 */
 854		}
 855
 856		if (error)
 857			xfs_alert(mp, "%s: unmount record failed", __func__);
 
 
 
 858
 
 
 
 
 
 859
 860		spin_lock(&log->l_icloglock);
 861		iclog = log->l_iclog;
 862		atomic_inc(&iclog->ic_refcnt);
 863		xlog_state_want_sync(log, iclog);
 864		spin_unlock(&log->l_icloglock);
 865		error = xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 866
 867		spin_lock(&log->l_icloglock);
 868		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 869		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 870			if (!XLOG_FORCED_SHUTDOWN(log)) {
 871				xlog_wait(&iclog->ic_force_wait,
 872							&log->l_icloglock);
 873			} else {
 874				spin_unlock(&log->l_icloglock);
 875			}
 876		} else {
 877			spin_unlock(&log->l_icloglock);
 878		}
 879		if (tic) {
 880			trace_xfs_log_umount_write(log, tic);
 881			xlog_ungrant_log_space(log, tic);
 882			xfs_log_ticket_put(tic);
 883		}
 884	} else {
 885		/*
 886		 * We're already in forced_shutdown mode, couldn't
 887		 * even attempt to write out the unmount transaction.
 888		 *
 889		 * Go through the motions of sync'ing and releasing
 890		 * the iclog, even though no I/O will actually happen,
 891		 * we need to wait for other log I/Os that may already
 892		 * be in progress.  Do this as a separate section of
 893		 * code so we'll know if we ever get stuck here that
 894		 * we're in this odd situation of trying to unmount
 895		 * a file system that went into forced_shutdown as
 896		 * the result of an unmount..
 897		 */
 898		spin_lock(&log->l_icloglock);
 899		iclog = log->l_iclog;
 900		atomic_inc(&iclog->ic_refcnt);
 901
 902		xlog_state_want_sync(log, iclog);
 903		spin_unlock(&log->l_icloglock);
 904		error =  xlog_state_release_iclog(log, iclog);
 905
 906		spin_lock(&log->l_icloglock);
 
 907
 908		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 909			|| iclog->ic_state == XLOG_STATE_DIRTY
 910			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 911
 912				xlog_wait(&iclog->ic_force_wait,
 913							&log->l_icloglock);
 914		} else {
 915			spin_unlock(&log->l_icloglock);
 916		}
 
 
 917	}
 918
 919	return error;
 920}	/* xfs_log_unmount_write */
 
 921
 922/*
 923 * Empty the log for unmount/freeze.
 924 *
 925 * To do this, we first need to shut down the background log work so it is not
 926 * trying to cover the log as we clean up. We then need to unpin all objects in
 927 * the log so we can then flush them out. Once they have completed their IO and
 928 * run the callbacks removing themselves from the AIL, we can write the unmount
 929 * record.
 930 */
 931void
 932xfs_log_quiesce(
 933	struct xfs_mount	*mp)
 934{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935	cancel_delayed_work_sync(&mp->m_log->l_work);
 936	xfs_log_force(mp, XFS_LOG_SYNC);
 937
 938	/*
 939	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 940	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
 941	 * xfs_buf_iowait() cannot be used because it was pushed with the
 942	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 943	 * the IO to complete.
 944	 */
 945	xfs_ail_push_all_sync(mp->m_ail);
 946	xfs_wait_buftarg(mp->m_ddev_targp);
 947	xfs_buf_lock(mp->m_sb_bp);
 948	xfs_buf_unlock(mp->m_sb_bp);
 949
 
 
 
 
 
 
 
 
 950	xfs_log_unmount_write(mp);
 951}
 952
 953/*
 954 * Shut down and release the AIL and Log.
 955 *
 956 * During unmount, we need to ensure we flush all the dirty metadata objects
 957 * from the AIL so that the log is empty before we write the unmount record to
 958 * the log. Once this is done, we can tear down the AIL and the log.
 959 */
 960void
 961xfs_log_unmount(
 962	struct xfs_mount	*mp)
 963{
 964	xfs_log_quiesce(mp);
 
 
 
 
 
 
 
 
 
 
 965
 966	xfs_trans_ail_destroy(mp);
 967
 968	xfs_sysfs_del(&mp->m_log->l_kobj);
 969
 970	xlog_dealloc_log(mp->m_log);
 971}
 972
 973void
 974xfs_log_item_init(
 975	struct xfs_mount	*mp,
 976	struct xfs_log_item	*item,
 977	int			type,
 978	const struct xfs_item_ops *ops)
 979{
 980	item->li_mountp = mp;
 981	item->li_ailp = mp->m_ail;
 982	item->li_type = type;
 983	item->li_ops = ops;
 984	item->li_lv = NULL;
 985
 986	INIT_LIST_HEAD(&item->li_ail);
 987	INIT_LIST_HEAD(&item->li_cil);
 
 
 988}
 989
 990/*
 991 * Wake up processes waiting for log space after we have moved the log tail.
 992 */
 993void
 994xfs_log_space_wake(
 995	struct xfs_mount	*mp)
 996{
 997	struct xlog		*log = mp->m_log;
 998	int			free_bytes;
 999
1000	if (XLOG_FORCED_SHUTDOWN(log))
1001		return;
1002
1003	if (!list_empty_careful(&log->l_write_head.waiters)) {
1004		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005
1006		spin_lock(&log->l_write_head.lock);
1007		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009		spin_unlock(&log->l_write_head.lock);
1010	}
1011
1012	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014
1015		spin_lock(&log->l_reserve_head.lock);
1016		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018		spin_unlock(&log->l_reserve_head.lock);
1019	}
1020}
1021
1022/*
1023 * Determine if we have a transaction that has gone to disk that needs to be
1024 * covered. To begin the transition to the idle state firstly the log needs to
1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026 * we start attempting to cover the log.
1027 *
1028 * Only if we are then in a state where covering is needed, the caller is
1029 * informed that dummy transactions are required to move the log into the idle
1030 * state.
1031 *
1032 * If there are any items in the AIl or CIL, then we do not want to attempt to
1033 * cover the log as we may be in a situation where there isn't log space
1034 * available to run a dummy transaction and this can lead to deadlocks when the
1035 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1036 * there's no point in running a dummy transaction at this point because we
1037 * can't start trying to idle the log until both the CIL and AIL are empty.
1038 */
1039static int
1040xfs_log_need_covered(xfs_mount_t *mp)
 
1041{
1042	struct xlog	*log = mp->m_log;
1043	int		needed = 0;
1044
1045	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046		return 0;
1047
1048	if (!xlog_cil_empty(log))
1049		return 0;
1050
1051	spin_lock(&log->l_icloglock);
1052	switch (log->l_covered_state) {
1053	case XLOG_STATE_COVER_DONE:
1054	case XLOG_STATE_COVER_DONE2:
1055	case XLOG_STATE_COVER_IDLE:
1056		break;
1057	case XLOG_STATE_COVER_NEED:
1058	case XLOG_STATE_COVER_NEED2:
1059		if (xfs_ail_min_lsn(log->l_ailp))
1060			break;
1061		if (!xlog_iclogs_empty(log))
1062			break;
1063
1064		needed = 1;
1065		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066			log->l_covered_state = XLOG_STATE_COVER_DONE;
1067		else
1068			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069		break;
1070	default:
1071		needed = 1;
1072		break;
1073	}
1074	spin_unlock(&log->l_icloglock);
1075	return needed;
1076}
1077
1078/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079 * We may be holding the log iclog lock upon entering this routine.
1080 */
1081xfs_lsn_t
1082xlog_assign_tail_lsn_locked(
1083	struct xfs_mount	*mp)
1084{
1085	struct xlog		*log = mp->m_log;
1086	struct xfs_log_item	*lip;
1087	xfs_lsn_t		tail_lsn;
1088
1089	assert_spin_locked(&mp->m_ail->xa_lock);
1090
1091	/*
1092	 * To make sure we always have a valid LSN for the log tail we keep
1093	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1094	 * and use that when the AIL was empty.
1095	 */
1096	lip = xfs_ail_min(mp->m_ail);
1097	if (lip)
1098		tail_lsn = lip->li_lsn;
1099	else
1100		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102	atomic64_set(&log->l_tail_lsn, tail_lsn);
1103	return tail_lsn;
1104}
1105
1106xfs_lsn_t
1107xlog_assign_tail_lsn(
1108	struct xfs_mount	*mp)
1109{
1110	xfs_lsn_t		tail_lsn;
1111
1112	spin_lock(&mp->m_ail->xa_lock);
1113	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114	spin_unlock(&mp->m_ail->xa_lock);
1115
1116	return tail_lsn;
1117}
1118
1119/*
1120 * Return the space in the log between the tail and the head.  The head
1121 * is passed in the cycle/bytes formal parms.  In the special case where
1122 * the reserve head has wrapped passed the tail, this calculation is no
1123 * longer valid.  In this case, just return 0 which means there is no space
1124 * in the log.  This works for all places where this function is called
1125 * with the reserve head.  Of course, if the write head were to ever
1126 * wrap the tail, we should blow up.  Rather than catch this case here,
1127 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1128 *
1129 * This code also handles the case where the reservation head is behind
1130 * the tail.  The details of this case are described below, but the end
1131 * result is that we return the size of the log as the amount of space left.
 
 
 
1132 */
1133STATIC int
1134xlog_space_left(
1135	struct xlog	*log,
1136	atomic64_t	*head)
1137{
1138	int		free_bytes;
1139	int		tail_bytes;
1140	int		tail_cycle;
1141	int		head_cycle;
1142	int		head_bytes;
1143
1144	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146	tail_bytes = BBTOB(tail_bytes);
1147	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149	else if (tail_cycle + 1 < head_cycle)
1150		return 0;
1151	else if (tail_cycle < head_cycle) {
 
 
 
 
 
1152		ASSERT(tail_cycle == (head_cycle - 1));
1153		free_bytes = tail_bytes - head_bytes;
1154	} else {
1155		/*
1156		 * The reservation head is behind the tail.
1157		 * In this case we just want to return the size of the
1158		 * log as the amount of space left.
1159		 */
1160		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161		xfs_alert(log->l_mp,
1162			  "  tail_cycle = %d, tail_bytes = %d",
1163			  tail_cycle, tail_bytes);
1164		xfs_alert(log->l_mp,
1165			  "  GH   cycle = %d, GH   bytes = %d",
1166			  head_cycle, head_bytes);
1167		ASSERT(0);
1168		free_bytes = log->l_logsize;
1169	}
1170	return free_bytes;
 
 
 
 
 
 
 
 
 
 
 
1171}
1172
1173
1174/*
1175 * Log function which is called when an io completes.
1176 *
1177 * The log manager needs its own routine, in order to control what
1178 * happens with the buffer after the write completes.
1179 */
1180static void
1181xlog_iodone(xfs_buf_t *bp)
 
1182{
1183	struct xlog_in_core	*iclog = bp->b_fspriv;
1184	struct xlog		*l = iclog->ic_log;
1185	int			aborted = 0;
1186
1187	/*
1188	 * Race to shutdown the filesystem if we see an error or the iclog is in
1189	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190	 * CRC errors into log recovery.
1191	 */
1192	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1193			   XFS_RANDOM_IODONE_IOERR) ||
1194	    iclog->ic_state & XLOG_STATE_IOABORT) {
1195		if (iclog->ic_state & XLOG_STATE_IOABORT)
1196			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1197
1198		xfs_buf_ioerror_alert(bp, __func__);
1199		xfs_buf_stale(bp);
1200		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1201		/*
1202		 * This flag will be propagated to the trans-committed
1203		 * callback routines to let them know that the log-commit
1204		 * didn't succeed.
1205		 */
1206		aborted = XFS_LI_ABORTED;
1207	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1208		aborted = XFS_LI_ABORTED;
1209	}
1210
1211	/* log I/O is always issued ASYNC */
1212	ASSERT(bp->b_flags & XBF_ASYNC);
1213	xlog_state_done_syncing(iclog, aborted);
1214
1215	/*
1216	 * drop the buffer lock now that we are done. Nothing references
1217	 * the buffer after this, so an unmount waiting on this lock can now
1218	 * tear it down safely. As such, it is unsafe to reference the buffer
1219	 * (bp) after the unlock as we could race with it being freed.
1220	 */
1221	xfs_buf_unlock(bp);
1222}
1223
1224/*
1225 * Return size of each in-core log record buffer.
1226 *
1227 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1228 *
1229 * If the filesystem blocksize is too large, we may need to choose a
1230 * larger size since the directory code currently logs entire blocks.
1231 */
1232
1233STATIC void
1234xlog_get_iclog_buffer_size(
1235	struct xfs_mount	*mp,
1236	struct xlog		*log)
1237{
1238	int size;
1239	int xhdrs;
 
 
1240
1241	if (mp->m_logbufs <= 0)
1242		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1243	else
1244		log->l_iclog_bufs = mp->m_logbufs;
1245
1246	/*
1247	 * Buffer size passed in from mount system call.
1248	 */
1249	if (mp->m_logbsize > 0) {
1250		size = log->l_iclog_size = mp->m_logbsize;
1251		log->l_iclog_size_log = 0;
1252		while (size != 1) {
1253			log->l_iclog_size_log++;
1254			size >>= 1;
1255		}
1256
1257		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1258			/* # headers = size / 32k
1259			 * one header holds cycles from 32k of data
1260			 */
1261
1262			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1263			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1264				xhdrs++;
1265			log->l_iclog_hsize = xhdrs << BBSHIFT;
1266			log->l_iclog_heads = xhdrs;
1267		} else {
1268			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1269			log->l_iclog_hsize = BBSIZE;
1270			log->l_iclog_heads = 1;
1271		}
1272		goto done;
1273	}
1274
1275	/* All machines use 32kB buffers by default. */
1276	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1277	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1278
1279	/* the default log size is 16k or 32k which is one header sector */
1280	log->l_iclog_hsize = BBSIZE;
1281	log->l_iclog_heads = 1;
1282
1283done:
1284	/* are we being asked to make the sizes selected above visible? */
1285	if (mp->m_logbufs == 0)
1286		mp->m_logbufs = log->l_iclog_bufs;
1287	if (mp->m_logbsize == 0)
1288		mp->m_logbsize = log->l_iclog_size;
1289}	/* xlog_get_iclog_buffer_size */
1290
1291
1292void
1293xfs_log_work_queue(
1294	struct xfs_mount        *mp)
1295{
1296	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1297				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298}
1299
1300/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301 * Every sync period we need to unpin all items in the AIL and push them to
1302 * disk. If there is nothing dirty, then we might need to cover the log to
1303 * indicate that the filesystem is idle.
1304 */
1305static void
1306xfs_log_worker(
1307	struct work_struct	*work)
1308{
1309	struct xlog		*log = container_of(to_delayed_work(work),
1310						struct xlog, l_work);
1311	struct xfs_mount	*mp = log->l_mp;
1312
1313	/* dgc: errors ignored - not fatal and nowhere to report them */
1314	if (xfs_log_need_covered(mp)) {
1315		/*
1316		 * Dump a transaction into the log that contains no real change.
1317		 * This is needed to stamp the current tail LSN into the log
1318		 * during the covering operation.
1319		 *
1320		 * We cannot use an inode here for this - that will push dirty
1321		 * state back up into the VFS and then periodic inode flushing
1322		 * will prevent log covering from making progress. Hence we
1323		 * synchronously log the superblock instead to ensure the
1324		 * superblock is immediately unpinned and can be written back.
1325		 */
 
1326		xfs_sync_sb(mp, true);
1327	} else
1328		xfs_log_force(mp, 0);
1329
1330	/* start pushing all the metadata that is currently dirty */
1331	xfs_ail_push_all(mp->m_ail);
1332
1333	/* queue us up again */
1334	xfs_log_work_queue(mp);
1335}
1336
1337/*
1338 * This routine initializes some of the log structure for a given mount point.
1339 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1340 * some other stuff may be filled in too.
1341 */
1342STATIC struct xlog *
1343xlog_alloc_log(
1344	struct xfs_mount	*mp,
1345	struct xfs_buftarg	*log_target,
1346	xfs_daddr_t		blk_offset,
1347	int			num_bblks)
1348{
1349	struct xlog		*log;
1350	xlog_rec_header_t	*head;
1351	xlog_in_core_t		**iclogp;
1352	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1353	xfs_buf_t		*bp;
1354	int			i;
1355	int			error = -ENOMEM;
1356	uint			log2_size = 0;
1357
1358	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1359	if (!log) {
1360		xfs_warn(mp, "Log allocation failed: No memory!");
1361		goto out;
1362	}
1363
1364	log->l_mp	   = mp;
1365	log->l_targ	   = log_target;
1366	log->l_logsize     = BBTOB(num_bblks);
1367	log->l_logBBstart  = blk_offset;
1368	log->l_logBBsize   = num_bblks;
1369	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1370	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1371	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
 
1372
1373	log->l_prev_block  = -1;
1374	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1375	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1376	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1377	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1378
 
 
 
 
 
1379	xlog_grant_head_init(&log->l_reserve_head);
1380	xlog_grant_head_init(&log->l_write_head);
1381
1382	error = -EFSCORRUPTED;
1383	if (xfs_sb_version_hassector(&mp->m_sb)) {
1384	        log2_size = mp->m_sb.sb_logsectlog;
1385		if (log2_size < BBSHIFT) {
1386			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1387				log2_size, BBSHIFT);
1388			goto out_free_log;
1389		}
1390
1391	        log2_size -= BBSHIFT;
1392		if (log2_size > mp->m_sectbb_log) {
1393			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1394				log2_size, mp->m_sectbb_log);
1395			goto out_free_log;
1396		}
1397
1398		/* for larger sector sizes, must have v2 or external log */
1399		if (log2_size && log->l_logBBstart > 0 &&
1400			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1401			xfs_warn(mp,
1402		"log sector size (0x%x) invalid for configuration.",
1403				log2_size);
1404			goto out_free_log;
1405		}
1406	}
1407	log->l_sectBBsize = 1 << log2_size;
1408
 
 
1409	xlog_get_iclog_buffer_size(mp, log);
1410
1411	/*
1412	 * Use a NULL block for the extra log buffer used during splits so that
1413	 * it will trigger errors if we ever try to do IO on it without first
1414	 * having set it up properly.
1415	 */
1416	error = -ENOMEM;
1417	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1418			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1419	if (!bp)
1420		goto out_free_log;
1421
1422	/*
1423	 * The iclogbuf buffer locks are held over IO but we are not going to do
1424	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1425	 * when appropriately.
1426	 */
1427	ASSERT(xfs_buf_islocked(bp));
1428	xfs_buf_unlock(bp);
1429
1430	/* use high priority wq for log I/O completion */
1431	bp->b_ioend_wq = mp->m_log_workqueue;
1432	bp->b_iodone = xlog_iodone;
1433	log->l_xbuf = bp;
1434
1435	spin_lock_init(&log->l_icloglock);
1436	init_waitqueue_head(&log->l_flush_wait);
1437
1438	iclogp = &log->l_iclog;
1439	/*
1440	 * The amount of memory to allocate for the iclog structure is
1441	 * rather funky due to the way the structure is defined.  It is
1442	 * done this way so that we can use different sizes for machines
1443	 * with different amounts of memory.  See the definition of
1444	 * xlog_in_core_t in xfs_log_priv.h for details.
1445	 */
1446	ASSERT(log->l_iclog_size >= 4096);
1447	for (i=0; i < log->l_iclog_bufs; i++) {
1448		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1449		if (!*iclogp)
 
 
 
1450			goto out_free_iclog;
1451
1452		iclog = *iclogp;
1453		iclog->ic_prev = prev_iclog;
1454		prev_iclog = iclog;
1455
1456		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1457					  BTOBB(log->l_iclog_size),
1458					  XBF_NO_IOACCT);
1459		if (!bp)
1460			goto out_free_iclog;
1461
1462		ASSERT(xfs_buf_islocked(bp));
1463		xfs_buf_unlock(bp);
1464
1465		/* use high priority wq for log I/O completion */
1466		bp->b_ioend_wq = mp->m_log_workqueue;
1467		bp->b_iodone = xlog_iodone;
1468		iclog->ic_bp = bp;
1469		iclog->ic_data = bp->b_addr;
1470#ifdef DEBUG
1471		log->l_iclog_bak[i] = &iclog->ic_header;
1472#endif
1473		head = &iclog->ic_header;
1474		memset(head, 0, sizeof(xlog_rec_header_t));
1475		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1476		head->h_version = cpu_to_be32(
1477			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1478		head->h_size = cpu_to_be32(log->l_iclog_size);
1479		/* new fields */
1480		head->h_fmt = cpu_to_be32(XLOG_FMT);
1481		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1482
1483		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1484		iclog->ic_state = XLOG_STATE_ACTIVE;
1485		iclog->ic_log = log;
1486		atomic_set(&iclog->ic_refcnt, 0);
1487		spin_lock_init(&iclog->ic_callback_lock);
1488		iclog->ic_callback_tail = &(iclog->ic_callback);
1489		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1490
1491		init_waitqueue_head(&iclog->ic_force_wait);
1492		init_waitqueue_head(&iclog->ic_write_wait);
 
 
1493
1494		iclogp = &iclog->ic_next;
1495	}
1496	*iclogp = log->l_iclog;			/* complete ring */
1497	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1498
 
 
 
 
 
 
 
1499	error = xlog_cil_init(log);
1500	if (error)
1501		goto out_free_iclog;
1502	return log;
1503
 
 
1504out_free_iclog:
1505	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506		prev_iclog = iclog->ic_next;
1507		if (iclog->ic_bp)
1508			xfs_buf_free(iclog->ic_bp);
1509		kmem_free(iclog);
 
 
1510	}
1511	spinlock_destroy(&log->l_icloglock);
1512	xfs_buf_free(log->l_xbuf);
1513out_free_log:
1514	kmem_free(log);
1515out:
1516	return ERR_PTR(error);
1517}	/* xlog_alloc_log */
1518
1519
1520/*
1521 * Write out the commit record of a transaction associated with the given
1522 * ticket.  Return the lsn of the commit record.
 
 
 
1523 */
1524STATIC int
1525xlog_commit_record(
1526	struct xlog		*log,
1527	struct xlog_ticket	*ticket,
1528	struct xlog_in_core	**iclog,
1529	xfs_lsn_t		*commitlsnp)
1530{
1531	struct xfs_mount *mp = log->l_mp;
1532	int	error;
1533	struct xfs_log_iovec reg = {
1534		.i_addr = NULL,
1535		.i_len = 0,
1536		.i_type = XLOG_REG_TYPE_COMMIT,
1537	};
1538	struct xfs_log_vec vec = {
1539		.lv_niovecs = 1,
1540		.lv_iovecp = &reg,
1541	};
1542
1543	ASSERT_ALWAYS(iclog);
1544	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1545					XLOG_COMMIT_TRANS);
1546	if (error)
1547		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1548	return error;
1549}
1550
1551/*
1552 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1553 * log space.  This code pushes on the lsn which would supposedly free up
1554 * the 25% which we want to leave free.  We may need to adopt a policy which
1555 * pushes on an lsn which is further along in the log once we reach the high
1556 * water mark.  In this manner, we would be creating a low water mark.
1557 */
1558STATIC void
1559xlog_grant_push_ail(
1560	struct xlog	*log,
1561	int		need_bytes)
1562{
1563	xfs_lsn_t	threshold_lsn = 0;
1564	xfs_lsn_t	last_sync_lsn;
1565	int		free_blocks;
1566	int		free_bytes;
1567	int		threshold_block;
1568	int		threshold_cycle;
1569	int		free_threshold;
1570
1571	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1572
1573	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1574	free_blocks = BTOBBT(free_bytes);
1575
1576	/*
1577	 * Set the threshold for the minimum number of free blocks in the
1578	 * log to the maximum of what the caller needs, one quarter of the
1579	 * log, and 256 blocks.
1580	 */
1581	free_threshold = BTOBB(need_bytes);
1582	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1583	free_threshold = MAX(free_threshold, 256);
1584	if (free_blocks >= free_threshold)
1585		return;
1586
1587	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1588						&threshold_block);
1589	threshold_block += free_threshold;
1590	if (threshold_block >= log->l_logBBsize) {
1591		threshold_block -= log->l_logBBsize;
1592		threshold_cycle += 1;
1593	}
1594	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1595					threshold_block);
1596	/*
1597	 * Don't pass in an lsn greater than the lsn of the last
1598	 * log record known to be on disk. Use a snapshot of the last sync lsn
1599	 * so that it doesn't change between the compare and the set.
1600	 */
1601	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1602	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1603		threshold_lsn = last_sync_lsn;
1604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605	/*
1606	 * Get the transaction layer to kick the dirty buffers out to
1607	 * disk asynchronously. No point in trying to do this if
1608	 * the filesystem is shutting down.
1609	 */
1610	if (!XLOG_FORCED_SHUTDOWN(log))
1611		xfs_ail_push(log->l_ailp, threshold_lsn);
1612}
1613
1614/*
1615 * Stamp cycle number in every block
1616 */
1617STATIC void
1618xlog_pack_data(
1619	struct xlog		*log,
1620	struct xlog_in_core	*iclog,
1621	int			roundoff)
1622{
1623	int			i, j, k;
1624	int			size = iclog->ic_offset + roundoff;
1625	__be32			cycle_lsn;
1626	char			*dp;
1627
1628	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1629
1630	dp = iclog->ic_datap;
1631	for (i = 0; i < BTOBB(size); i++) {
1632		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1633			break;
1634		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1635		*(__be32 *)dp = cycle_lsn;
1636		dp += BBSIZE;
1637	}
1638
1639	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640		xlog_in_core_2_t *xhdr = iclog->ic_data;
1641
1642		for ( ; i < BTOBB(size); i++) {
1643			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1645			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1646			*(__be32 *)dp = cycle_lsn;
1647			dp += BBSIZE;
1648		}
1649
1650		for (i = 1; i < log->l_iclog_heads; i++)
1651			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1652	}
1653}
1654
1655/*
1656 * Calculate the checksum for a log buffer.
1657 *
1658 * This is a little more complicated than it should be because the various
1659 * headers and the actual data are non-contiguous.
1660 */
1661__le32
1662xlog_cksum(
1663	struct xlog		*log,
1664	struct xlog_rec_header	*rhead,
1665	char			*dp,
1666	int			size)
1667{
1668	__uint32_t		crc;
1669
1670	/* first generate the crc for the record header ... */
1671	crc = xfs_start_cksum_update((char *)rhead,
1672			      sizeof(struct xlog_rec_header),
1673			      offsetof(struct xlog_rec_header, h_crc));
1674
1675	/* ... then for additional cycle data for v2 logs ... */
1676	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1677		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1678		int		i;
1679		int		xheads;
1680
1681		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1682		if (size % XLOG_HEADER_CYCLE_SIZE)
1683			xheads++;
1684
1685		for (i = 1; i < xheads; i++) {
1686			crc = crc32c(crc, &xhdr[i].hic_xheader,
1687				     sizeof(struct xlog_rec_ext_header));
1688		}
1689	}
1690
1691	/* ... and finally for the payload */
1692	crc = crc32c(crc, dp, size);
1693
1694	return xfs_end_cksum(crc);
1695}
1696
1697/*
1698 * The bdstrat callback function for log bufs. This gives us a central
1699 * place to trap bufs in case we get hit by a log I/O error and need to
1700 * shutdown. Actually, in practice, even when we didn't get a log error,
1701 * we transition the iclogs to IOERROR state *after* flushing all existing
1702 * iclogs to disk. This is because we don't want anymore new transactions to be
1703 * started or completed afterwards.
1704 *
1705 * We lock the iclogbufs here so that we can serialise against IO completion
1706 * during unmount. We might be processing a shutdown triggered during unmount,
1707 * and that can occur asynchronously to the unmount thread, and hence we need to
1708 * ensure that completes before tearing down the iclogbufs. Hence we need to
1709 * hold the buffer lock across the log IO to acheive that.
1710 */
1711STATIC int
1712xlog_bdstrat(
1713	struct xfs_buf		*bp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714{
1715	struct xlog_in_core	*iclog = bp->b_fspriv;
 
1716
1717	xfs_buf_lock(bp);
1718	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1719		xfs_buf_ioerror(bp, -EIO);
1720		xfs_buf_stale(bp);
1721		xfs_buf_ioend(bp);
 
 
 
 
 
1722		/*
1723		 * It would seem logical to return EIO here, but we rely on
1724		 * the log state machine to propagate I/O errors instead of
1725		 * doing it here. Similarly, IO completion will unlock the
1726		 * buffer, so we don't do it here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1727		 */
1728		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729	}
 
1730
1731	xfs_buf_submit(bp);
1732	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733}
1734
1735/*
1736 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1737 * fashion.  Previously, we should have moved the current iclog
1738 * ptr in the log to point to the next available iclog.  This allows further
1739 * write to continue while this code syncs out an iclog ready to go.
1740 * Before an in-core log can be written out, the data section must be scanned
1741 * to save away the 1st word of each BBSIZE block into the header.  We replace
1742 * it with the current cycle count.  Each BBSIZE block is tagged with the
1743 * cycle count because there in an implicit assumption that drives will
1744 * guarantee that entire 512 byte blocks get written at once.  In other words,
1745 * we can't have part of a 512 byte block written and part not written.  By
1746 * tagging each block, we will know which blocks are valid when recovering
1747 * after an unclean shutdown.
1748 *
1749 * This routine is single threaded on the iclog.  No other thread can be in
1750 * this routine with the same iclog.  Changing contents of iclog can there-
1751 * fore be done without grabbing the state machine lock.  Updating the global
1752 * log will require grabbing the lock though.
1753 *
1754 * The entire log manager uses a logical block numbering scheme.  Only
1755 * log_sync (and then only bwrite()) know about the fact that the log may
1756 * not start with block zero on a given device.  The log block start offset
1757 * is added immediately before calling bwrite().
1758 */
1759
1760STATIC int
1761xlog_sync(
1762	struct xlog		*log,
1763	struct xlog_in_core	*iclog)
 
1764{
1765	xfs_buf_t	*bp;
1766	int		i;
1767	uint		count;		/* byte count of bwrite */
1768	uint		count_init;	/* initial count before roundup */
1769	int		roundoff;       /* roundoff to BB or stripe */
1770	int		split = 0;	/* split write into two regions */
1771	int		error;
1772	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1773	int		size;
1774
1775	XFS_STATS_INC(log->l_mp, xs_log_writes);
1776	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
 
1777
1778	/* Add for LR header */
1779	count_init = log->l_iclog_hsize + iclog->ic_offset;
1780
1781	/* Round out the log write size */
1782	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1783		/* we have a v2 stripe unit to use */
1784		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
 
 
 
1785	} else {
1786		count = BBTOB(BTOBB(count_init));
 
1787	}
1788	roundoff = count - count_init;
1789	ASSERT(roundoff >= 0);
1790	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1791                roundoff < log->l_mp->m_sb.sb_logsunit)
1792		|| 
1793		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1794		 roundoff < BBTOB(1)));
1795
1796	/* move grant heads by roundoff in sync */
1797	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1798	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1799
1800	/* put cycle number in every block */
1801	xlog_pack_data(log, iclog, roundoff); 
1802
1803	/* real byte length */
1804	size = iclog->ic_offset;
1805	if (v2)
1806		size += roundoff;
1807	iclog->ic_header.h_len = cpu_to_be32(size);
1808
1809	bp = iclog->ic_bp;
1810	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1811
1812	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1813
1814	/* Do we need to split this write into 2 parts? */
1815	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1816		char		*dptr;
1817
1818		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1819		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1820		iclog->ic_bwritecnt = 2;
1821
1822		/*
1823		 * Bump the cycle numbers at the start of each block in the
1824		 * part of the iclog that ends up in the buffer that gets
1825		 * written to the start of the log.
1826		 *
1827		 * Watch out for the header magic number case, though.
1828		 */
1829		dptr = (char *)&iclog->ic_header + count;
1830		for (i = 0; i < split; i += BBSIZE) {
1831			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1832			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1833				cycle++;
1834			*(__be32 *)dptr = cpu_to_be32(cycle);
1835
1836			dptr += BBSIZE;
1837		}
1838	} else {
1839		iclog->ic_bwritecnt = 1;
1840	}
1841
1842	/* calculcate the checksum */
1843	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1844					    iclog->ic_datap, size);
1845#ifdef DEBUG
1846	/*
1847	 * Intentionally corrupt the log record CRC based on the error injection
1848	 * frequency, if defined. This facilitates testing log recovery in the
1849	 * event of torn writes. Hence, set the IOABORT state to abort the log
1850	 * write on I/O completion and shutdown the fs. The subsequent mount
1851	 * detects the bad CRC and attempts to recover.
1852	 */
1853	if (log->l_badcrc_factor &&
1854	    (prandom_u32() % log->l_badcrc_factor == 0)) {
1855		iclog->ic_header.h_crc &= 0xAAAAAAAA;
1856		iclog->ic_state |= XLOG_STATE_IOABORT;
1857		xfs_warn(log->l_mp,
1858	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1859			 be64_to_cpu(iclog->ic_header.h_lsn));
1860	}
1861#endif
1862
1863	bp->b_io_length = BTOBB(count);
1864	bp->b_fspriv = iclog;
1865	bp->b_flags &= ~XBF_FLUSH;
1866	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1867
1868	/*
1869	 * Flush the data device before flushing the log to make sure all meta
1870	 * data written back from the AIL actually made it to disk before
1871	 * stamping the new log tail LSN into the log buffer.  For an external
1872	 * log we need to issue the flush explicitly, and unfortunately
1873	 * synchronously here; for an internal log we can simply use the block
1874	 * layer state machine for preflushes.
1875	 */
1876	if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1877		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1878	else
1879		bp->b_flags |= XBF_FLUSH;
1880
1881	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1882	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1883
1884	xlog_verify_iclog(log, iclog, count, true);
1885
1886	/* account for log which doesn't start at block #0 */
1887	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1888
1889	/*
1890	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1891	 * is shutting down.
1892	 */
1893	error = xlog_bdstrat(bp);
1894	if (error) {
1895		xfs_buf_ioerror_alert(bp, "xlog_sync");
1896		return error;
1897	}
1898	if (split) {
1899		bp = iclog->ic_log->l_xbuf;
1900		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1901		xfs_buf_associate_memory(bp,
1902				(char *)&iclog->ic_header + count, split);
1903		bp->b_fspriv = iclog;
1904		bp->b_flags &= ~XBF_FLUSH;
1905		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1906
1907		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1908		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1909
1910		/* account for internal log which doesn't start at block #0 */
1911		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1912		error = xlog_bdstrat(bp);
1913		if (error) {
1914			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1915			return error;
1916		}
1917	}
1918	return 0;
1919}	/* xlog_sync */
1920
1921/*
1922 * Deallocate a log structure
1923 */
1924STATIC void
1925xlog_dealloc_log(
1926	struct xlog	*log)
1927{
1928	xlog_in_core_t	*iclog, *next_iclog;
1929	int		i;
1930
1931	xlog_cil_destroy(log);
1932
1933	/*
1934	 * Cycle all the iclogbuf locks to make sure all log IO completion
1935	 * is done before we tear down these buffers.
 
1936	 */
1937	iclog = log->l_iclog;
1938	for (i = 0; i < log->l_iclog_bufs; i++) {
1939		xfs_buf_lock(iclog->ic_bp);
1940		xfs_buf_unlock(iclog->ic_bp);
1941		iclog = iclog->ic_next;
1942	}
1943
1944	/*
1945	 * Always need to ensure that the extra buffer does not point to memory
1946	 * owned by another log buffer before we free it. Also, cycle the lock
1947	 * first to ensure we've completed IO on it.
1948	 */
1949	xfs_buf_lock(log->l_xbuf);
1950	xfs_buf_unlock(log->l_xbuf);
1951	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1952	xfs_buf_free(log->l_xbuf);
1953
1954	iclog = log->l_iclog;
1955	for (i = 0; i < log->l_iclog_bufs; i++) {
1956		xfs_buf_free(iclog->ic_bp);
1957		next_iclog = iclog->ic_next;
 
1958		kmem_free(iclog);
1959		iclog = next_iclog;
1960	}
1961	spinlock_destroy(&log->l_icloglock);
1962
1963	log->l_mp->m_log = NULL;
 
1964	kmem_free(log);
1965}	/* xlog_dealloc_log */
1966
1967/*
1968 * Update counters atomically now that memcpy is done.
1969 */
1970/* ARGSUSED */
1971static inline void
1972xlog_state_finish_copy(
1973	struct xlog		*log,
1974	struct xlog_in_core	*iclog,
1975	int			record_cnt,
1976	int			copy_bytes)
1977{
1978	spin_lock(&log->l_icloglock);
1979
1980	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1981	iclog->ic_offset += copy_bytes;
1982
1983	spin_unlock(&log->l_icloglock);
1984}	/* xlog_state_finish_copy */
1985
1986
1987
1988
1989/*
1990 * print out info relating to regions written which consume
1991 * the reservation
1992 */
1993void
1994xlog_print_tic_res(
1995	struct xfs_mount	*mp,
1996	struct xlog_ticket	*ticket)
1997{
1998	uint i;
1999	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2000
2001	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2002#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2003	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2004	    REG_TYPE_STR(BFORMAT, "bformat"),
2005	    REG_TYPE_STR(BCHUNK, "bchunk"),
2006	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2007	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2008	    REG_TYPE_STR(IFORMAT, "iformat"),
2009	    REG_TYPE_STR(ICORE, "icore"),
2010	    REG_TYPE_STR(IEXT, "iext"),
2011	    REG_TYPE_STR(IBROOT, "ibroot"),
2012	    REG_TYPE_STR(ILOCAL, "ilocal"),
2013	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2014	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2015	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2016	    REG_TYPE_STR(QFORMAT, "qformat"),
2017	    REG_TYPE_STR(DQUOT, "dquot"),
2018	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2019	    REG_TYPE_STR(LRHEADER, "LR header"),
2020	    REG_TYPE_STR(UNMOUNT, "unmount"),
2021	    REG_TYPE_STR(COMMIT, "commit"),
2022	    REG_TYPE_STR(TRANSHDR, "trans header"),
2023	    REG_TYPE_STR(ICREATE, "inode create")
2024	};
2025#undef REG_TYPE_STR
2026
2027	xfs_warn(mp, "xlog_write: reservation summary:");
2028	xfs_warn(mp, "  unit res    = %d bytes",
2029		 ticket->t_unit_res);
2030	xfs_warn(mp, "  current res = %d bytes",
2031		 ticket->t_curr_res);
2032	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2033		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2034	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2035		 ticket->t_res_num_ophdrs, ophdr_spc);
2036	xfs_warn(mp, "  ophdr + reg = %u bytes",
2037		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2038	xfs_warn(mp, "  num regions = %u",
2039		 ticket->t_res_num);
2040
2041	for (i = 0; i < ticket->t_res_num; i++) {
2042		uint r_type = ticket->t_res_arr[i].r_type;
2043		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2044			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2045			    "bad-rtype" : res_type_str[r_type]),
2046			    ticket->t_res_arr[i].r_len);
2047	}
2048
2049	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2050		"xlog_write: reservation ran out. Need to up reservation");
2051	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2052}
2053
2054/*
2055 * Calculate the potential space needed by the log vector.  Each region gets
2056 * its own xlog_op_header_t and may need to be double word aligned.
2057 */
2058static int
2059xlog_write_calc_vec_length(
2060	struct xlog_ticket	*ticket,
2061	struct xfs_log_vec	*log_vector)
2062{
2063	struct xfs_log_vec	*lv;
2064	int			headers = 0;
2065	int			len = 0;
2066	int			i;
2067
2068	/* acct for start rec of xact */
2069	if (ticket->t_flags & XLOG_TIC_INITED)
2070		headers++;
2071
2072	for (lv = log_vector; lv; lv = lv->lv_next) {
2073		/* we don't write ordered log vectors */
2074		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
 
 
 
 
 
 
 
 
 
 
 
2075			continue;
 
 
 
 
2076
2077		headers += lv->lv_niovecs;
 
 
 
2078
2079		for (i = 0; i < lv->lv_niovecs; i++) {
2080			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
 
 
 
2081
2082			len += vecp->i_len;
2083			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2084		}
2085	}
 
2086
2087	ticket->t_res_num_ophdrs += headers;
2088	len += headers * sizeof(struct xlog_op_header);
2089
2090	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091}
2092
2093/*
2094 * If first write for transaction, insert start record  We can't be trying to
2095 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2096 */
2097static int
2098xlog_write_start_rec(
2099	struct xlog_op_header	*ophdr,
2100	struct xlog_ticket	*ticket)
 
 
 
 
 
2101{
2102	if (!(ticket->t_flags & XLOG_TIC_INITED))
2103		return 0;
2104
2105	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2106	ophdr->oh_clientid = ticket->t_clientid;
2107	ophdr->oh_len = 0;
2108	ophdr->oh_flags = XLOG_START_TRANS;
2109	ophdr->oh_res2 = 0;
2110
2111	ticket->t_flags &= ~XLOG_TIC_INITED;
 
 
 
 
 
 
2112
2113	return sizeof(struct xlog_op_header);
 
 
 
2114}
2115
2116static xlog_op_header_t *
2117xlog_write_setup_ophdr(
2118	struct xlog		*log,
2119	struct xlog_op_header	*ophdr,
2120	struct xlog_ticket	*ticket,
2121	uint			flags)
 
 
 
 
2122{
2123	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2124	ophdr->oh_clientid = ticket->t_clientid;
2125	ophdr->oh_res2 = 0;
2126
2127	/* are we copying a commit or unmount record? */
2128	ophdr->oh_flags = flags;
2129
2130	/*
2131	 * We've seen logs corrupted with bad transaction client ids.  This
2132	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2133	 * and shut down the filesystem.
2134	 */
2135	switch (ophdr->oh_clientid)  {
2136	case XFS_TRANSACTION:
2137	case XFS_VOLUME:
2138	case XFS_LOG:
2139		break;
2140	default:
2141		xfs_warn(log->l_mp,
2142			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2143			ophdr->oh_clientid, ticket);
2144		return NULL;
2145	}
2146
2147	return ophdr;
 
 
 
 
 
 
 
2148}
2149
2150/*
2151 * Set up the parameters of the region copy into the log. This has
2152 * to handle region write split across multiple log buffers - this
2153 * state is kept external to this function so that this code can
2154 * be written in an obvious, self documenting manner.
2155 */
2156static int
2157xlog_write_setup_copy(
 
2158	struct xlog_ticket	*ticket,
2159	struct xlog_op_header	*ophdr,
2160	int			space_available,
2161	int			space_required,
2162	int			*copy_off,
2163	int			*copy_len,
2164	int			*last_was_partial_copy,
2165	int			*bytes_consumed)
2166{
2167	int			still_to_copy;
2168
2169	still_to_copy = space_required - *bytes_consumed;
2170	*copy_off = *bytes_consumed;
2171
2172	if (still_to_copy <= space_available) {
2173		/* write of region completes here */
2174		*copy_len = still_to_copy;
2175		ophdr->oh_len = cpu_to_be32(*copy_len);
2176		if (*last_was_partial_copy)
2177			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2178		*last_was_partial_copy = 0;
2179		*bytes_consumed = 0;
2180		return 0;
2181	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182
2183	/* partial write of region, needs extra log op header reservation */
2184	*copy_len = space_available;
2185	ophdr->oh_len = cpu_to_be32(*copy_len);
2186	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2187	if (*last_was_partial_copy)
2188		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2189	*bytes_consumed += *copy_len;
2190	(*last_was_partial_copy)++;
2191
2192	/* account for new log op header */
2193	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2194	ticket->t_res_num_ophdrs++;
2195
2196	return sizeof(struct xlog_op_header);
2197}
 
2198
2199static int
2200xlog_write_copy_finish(
2201	struct xlog		*log,
2202	struct xlog_in_core	*iclog,
2203	uint			flags,
2204	int			*record_cnt,
2205	int			*data_cnt,
2206	int			*partial_copy,
2207	int			*partial_copy_len,
2208	int			log_offset,
2209	struct xlog_in_core	**commit_iclog)
2210{
2211	if (*partial_copy) {
2212		/*
2213		 * This iclog has already been marked WANT_SYNC by
2214		 * xlog_state_get_iclog_space.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2215		 */
2216		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2217		*record_cnt = 0;
2218		*data_cnt = 0;
2219		return xlog_state_release_iclog(log, iclog);
2220	}
2221
2222	*partial_copy = 0;
2223	*partial_copy_len = 0;
2224
2225	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2226		/* no more space in this iclog - push it. */
2227		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2228		*record_cnt = 0;
2229		*data_cnt = 0;
 
2230
2231		spin_lock(&log->l_icloglock);
2232		xlog_state_want_sync(log, iclog);
2233		spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234
2235		if (!commit_iclog)
2236			return xlog_state_release_iclog(log, iclog);
2237		ASSERT(flags & XLOG_COMMIT_TRANS);
2238		*commit_iclog = iclog;
2239	}
2240
 
 
 
 
 
2241	return 0;
2242}
2243
2244/*
2245 * Write some region out to in-core log
2246 *
2247 * This will be called when writing externally provided regions or when
2248 * writing out a commit record for a given transaction.
2249 *
2250 * General algorithm:
2251 *	1. Find total length of this write.  This may include adding to the
2252 *		lengths passed in.
2253 *	2. Check whether we violate the tickets reservation.
2254 *	3. While writing to this iclog
2255 *	    A. Reserve as much space in this iclog as can get
2256 *	    B. If this is first write, save away start lsn
2257 *	    C. While writing this region:
2258 *		1. If first write of transaction, write start record
2259 *		2. Write log operation header (header per region)
2260 *		3. Find out if we can fit entire region into this iclog
2261 *		4. Potentially, verify destination memcpy ptr
2262 *		5. Memcpy (partial) region
2263 *		6. If partial copy, release iclog; otherwise, continue
2264 *			copying more regions into current iclog
2265 *	4. Mark want sync bit (in simulation mode)
2266 *	5. Release iclog for potential flush to on-disk log.
2267 *
2268 * ERRORS:
2269 * 1.	Panic if reservation is overrun.  This should never happen since
2270 *	reservation amounts are generated internal to the filesystem.
2271 * NOTES:
2272 * 1. Tickets are single threaded data structures.
2273 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2274 *	syncing routine.  When a single log_write region needs to span
2275 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2276 *	on all log operation writes which don't contain the end of the
2277 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2278 *	operation which contains the end of the continued log_write region.
2279 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2280 *	we don't really know exactly how much space will be used.  As a result,
2281 *	we don't update ic_offset until the end when we know exactly how many
2282 *	bytes have been written out.
2283 */
2284int
2285xlog_write(
2286	struct xlog		*log,
2287	struct xfs_log_vec	*log_vector,
 
2288	struct xlog_ticket	*ticket,
2289	xfs_lsn_t		*start_lsn,
2290	struct xlog_in_core	**commit_iclog,
2291	uint			flags)
2292{
2293	struct xlog_in_core	*iclog = NULL;
2294	struct xfs_log_iovec	*vecp;
2295	struct xfs_log_vec	*lv;
2296	int			len;
2297	int			index;
2298	int			partial_copy = 0;
2299	int			partial_copy_len = 0;
2300	int			contwr = 0;
2301	int			record_cnt = 0;
2302	int			data_cnt = 0;
2303	int			error;
2304
2305	*start_lsn = 0;
 
 
 
 
 
2306
2307	len = xlog_write_calc_vec_length(ticket, log_vector);
 
 
 
2308
2309	/*
2310	 * Region headers and bytes are already accounted for.
2311	 * We only need to take into account start records and
2312	 * split regions in this function.
2313	 */
2314	if (ticket->t_flags & XLOG_TIC_INITED)
2315		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2316
2317	/*
2318	 * Commit record headers need to be accounted for. These
2319	 * come in as separate writes so are easy to detect.
 
2320	 */
2321	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2322		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2323
2324	if (ticket->t_curr_res < 0)
2325		xlog_print_tic_res(log->l_mp, ticket);
2326
2327	index = 0;
2328	lv = log_vector;
2329	vecp = lv->lv_iovecp;
2330	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2331		void		*ptr;
2332		int		log_offset;
2333
2334		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2335						   &contwr, &log_offset);
2336		if (error)
2337			return error;
2338
2339		ASSERT(log_offset <= iclog->ic_size - 1);
2340		ptr = iclog->ic_datap + log_offset;
2341
2342		/* start_lsn is the first lsn written to. That's all we need. */
2343		if (!*start_lsn)
2344			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2345
 
2346		/*
2347		 * This loop writes out as many regions as can fit in the amount
2348		 * of space which was allocated by xlog_state_get_iclog_space().
2349		 */
2350		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2351			struct xfs_log_iovec	*reg;
2352			struct xlog_op_header	*ophdr;
2353			int			start_rec_copy;
2354			int			copy_len;
2355			int			copy_off;
2356			bool			ordered = false;
2357
2358			/* ordered log vectors have no regions to write */
2359			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2360				ASSERT(lv->lv_niovecs == 0);
2361				ordered = true;
2362				goto next_lv;
2363			}
2364
2365			reg = &vecp[index];
2366			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2367			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2368
2369			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2370			if (start_rec_copy) {
2371				record_cnt++;
2372				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2373						   start_rec_copy);
2374			}
2375
2376			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2377			if (!ophdr)
2378				return -EIO;
2379
2380			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2381					   sizeof(struct xlog_op_header));
2382
2383			len += xlog_write_setup_copy(ticket, ophdr,
2384						     iclog->ic_size-log_offset,
2385						     reg->i_len,
2386						     &copy_off, &copy_len,
2387						     &partial_copy,
2388						     &partial_copy_len);
2389			xlog_verify_dest_ptr(log, ptr);
2390
2391			/*
2392			 * Copy region.
2393			 *
2394			 * Unmount records just log an opheader, so can have
2395			 * empty payloads with no data region to copy. Hence we
2396			 * only copy the payload if the vector says it has data
2397			 * to copy.
2398			 */
2399			ASSERT(copy_len >= 0);
2400			if (copy_len > 0) {
2401				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2402				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2403						   copy_len);
2404			}
2405			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2406			record_cnt++;
2407			data_cnt += contwr ? copy_len : 0;
2408
2409			error = xlog_write_copy_finish(log, iclog, flags,
2410						       &record_cnt, &data_cnt,
2411						       &partial_copy,
2412						       &partial_copy_len,
2413						       log_offset,
2414						       commit_iclog);
2415			if (error)
2416				return error;
2417
2418			/*
2419			 * if we had a partial copy, we need to get more iclog
2420			 * space but we don't want to increment the region
2421			 * index because there is still more is this region to
2422			 * write.
2423			 *
2424			 * If we completed writing this region, and we flushed
2425			 * the iclog (indicated by resetting of the record
2426			 * count), then we also need to get more log space. If
2427			 * this was the last record, though, we are done and
2428			 * can just return.
2429			 */
2430			if (partial_copy)
2431				break;
2432
2433			if (++index == lv->lv_niovecs) {
2434next_lv:
2435				lv = lv->lv_next;
2436				index = 0;
2437				if (lv)
2438					vecp = lv->lv_iovecp;
2439			}
2440			if (record_cnt == 0 && ordered == false) {
2441				if (!lv)
2442					return 0;
2443				break;
2444			}
 
 
 
2445		}
2446	}
2447
2448	ASSERT(len == 0);
2449
2450	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2451	if (!commit_iclog)
2452		return xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 
2453
2454	ASSERT(flags & XLOG_COMMIT_TRANS);
2455	*commit_iclog = iclog;
2456	return 0;
2457}
2458
 
 
 
 
 
 
 
2459
2460/*****************************************************************************
2461 *
2462 *		State Machine functions
2463 *
2464 *****************************************************************************
2465 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466
2467/* Clean iclogs starting from the head.  This ordering must be
2468 * maintained, so an iclog doesn't become ACTIVE beyond one that
2469 * is SYNCING.  This is also required to maintain the notion that we use
2470 * a ordered wait queue to hold off would be writers to the log when every
2471 * iclog is trying to sync to disk.
2472 *
2473 * State Change: DIRTY -> ACTIVE
2474 */
2475STATIC void
2476xlog_state_clean_log(
2477	struct xlog *log)
 
2478{
2479	xlog_in_core_t	*iclog;
2480	int changed = 0;
2481
2482	iclog = log->l_iclog;
2483	do {
2484		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2485			iclog->ic_state	= XLOG_STATE_ACTIVE;
2486			iclog->ic_offset       = 0;
2487			ASSERT(iclog->ic_callback == NULL);
2488			/*
2489			 * If the number of ops in this iclog indicate it just
2490			 * contains the dummy transaction, we can
2491			 * change state into IDLE (the second time around).
2492			 * Otherwise we should change the state into
2493			 * NEED a dummy.
2494			 * We don't need to cover the dummy.
2495			 */
2496			if (!changed &&
2497			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2498			   		XLOG_COVER_OPS)) {
2499				changed = 1;
2500			} else {
2501				/*
2502				 * We have two dirty iclogs so start over
2503				 * This could also be num of ops indicates
2504				 * this is not the dummy going out.
2505				 */
2506				changed = 2;
2507			}
2508			iclog->ic_header.h_num_logops = 0;
2509			memset(iclog->ic_header.h_cycle_data, 0,
2510			      sizeof(iclog->ic_header.h_cycle_data));
2511			iclog->ic_header.h_lsn = 0;
2512		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2513			/* do nothing */;
2514		else
2515			break;	/* stop cleaning */
2516		iclog = iclog->ic_next;
2517	} while (iclog != log->l_iclog);
2518
2519	/* log is locked when we are called */
 
 
 
 
2520	/*
2521	 * Change state for the dummy log recording.
2522	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2523	 * we are done writing the dummy record.
2524	 * If we are done with the second dummy recored (DONE2), then
2525	 * we go to IDLE.
2526	 */
2527	if (changed) {
2528		switch (log->l_covered_state) {
2529		case XLOG_STATE_COVER_IDLE:
2530		case XLOG_STATE_COVER_NEED:
2531		case XLOG_STATE_COVER_NEED2:
2532			log->l_covered_state = XLOG_STATE_COVER_NEED;
2533			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534
2535		case XLOG_STATE_COVER_DONE:
2536			if (changed == 1)
2537				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2538			else
2539				log->l_covered_state = XLOG_STATE_COVER_NEED;
2540			break;
2541
2542		case XLOG_STATE_COVER_DONE2:
2543			if (changed == 1)
2544				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2545			else
2546				log->l_covered_state = XLOG_STATE_COVER_NEED;
2547			break;
2548
2549		default:
2550			ASSERT(0);
2551		}
2552	}
2553}	/* xlog_state_clean_log */
2554
2555STATIC xfs_lsn_t
2556xlog_get_lowest_lsn(
2557	struct xlog	*log)
2558{
2559	xlog_in_core_t  *lsn_log;
2560	xfs_lsn_t	lowest_lsn, lsn;
2561
2562	lsn_log = log->l_iclog;
2563	lowest_lsn = 0;
2564	do {
2565	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2566		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2567		if ((lsn && !lowest_lsn) ||
2568		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
 
 
2569			lowest_lsn = lsn;
2570		}
2571	    }
2572	    lsn_log = lsn_log->ic_next;
2573	} while (lsn_log != log->l_iclog);
2574	return lowest_lsn;
2575}
2576
2577
2578STATIC void
2579xlog_state_do_callback(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2580	struct xlog		*log,
2581	int			aborted,
2582	struct xlog_in_core	*ciclog)
2583{
2584	xlog_in_core_t	   *iclog;
2585	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2586						 * processed all iclogs once */
2587	xfs_log_callback_t *cb, *cb_next;
2588	int		   flushcnt = 0;
2589	xfs_lsn_t	   lowest_lsn;
2590	int		   ioerrors;	/* counter: iclogs with errors */
2591	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2592	int		   funcdidcallbacks; /* flag: function did callbacks */
2593	int		   repeats;	/* for issuing console warnings if
2594					 * looping too many times */
2595	int		   wake = 0;
2596
2597	spin_lock(&log->l_icloglock);
2598	first_iclog = iclog = log->l_iclog;
2599	ioerrors = 0;
2600	funcdidcallbacks = 0;
2601	repeats = 0;
2602
2603	do {
2604		/*
2605		 * Scan all iclogs starting with the one pointed to by the
2606		 * log.  Reset this starting point each time the log is
2607		 * unlocked (during callbacks).
2608		 *
2609		 * Keep looping through iclogs until one full pass is made
2610		 * without running any callbacks.
2611		 */
2612		first_iclog = log->l_iclog;
2613		iclog = log->l_iclog;
2614		loopdidcallbacks = 0;
2615		repeats++;
2616
2617		do {
 
 
2618
2619			/* skip all iclogs in the ACTIVE & DIRTY states */
2620			if (iclog->ic_state &
2621			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2622				iclog = iclog->ic_next;
2623				continue;
2624			}
 
 
 
 
 
 
2625
2626			/*
2627			 * Between marking a filesystem SHUTDOWN and stopping
2628			 * the log, we do flush all iclogs to disk (if there
2629			 * wasn't a log I/O error). So, we do want things to
2630			 * go smoothly in case of just a SHUTDOWN  w/o a
2631			 * LOG_IO_ERROR.
2632			 */
2633			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2634				/*
2635				 * Can only perform callbacks in order.  Since
2636				 * this iclog is not in the DONE_SYNC/
2637				 * DO_CALLBACK state, we skip the rest and
2638				 * just try to clean up.  If we set our iclog
2639				 * to DO_CALLBACK, we will not process it when
2640				 * we retry since a previous iclog is in the
2641				 * CALLBACK and the state cannot change since
2642				 * we are holding the l_icloglock.
2643				 */
2644				if (!(iclog->ic_state &
2645					(XLOG_STATE_DONE_SYNC |
2646						 XLOG_STATE_DO_CALLBACK))) {
2647					if (ciclog && (ciclog->ic_state ==
2648							XLOG_STATE_DONE_SYNC)) {
2649						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2650					}
2651					break;
2652				}
2653				/*
2654				 * We now have an iclog that is in either the
2655				 * DO_CALLBACK or DONE_SYNC states. The other
2656				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2657				 * caught by the above if and are going to
2658				 * clean (i.e. we aren't doing their callbacks)
2659				 * see the above if.
2660				 */
2661
2662				/*
2663				 * We will do one more check here to see if we
2664				 * have chased our tail around.
2665				 */
 
 
 
 
 
 
 
 
 
 
 
 
2666
2667				lowest_lsn = xlog_get_lowest_lsn(log);
2668				if (lowest_lsn &&
2669				    XFS_LSN_CMP(lowest_lsn,
2670						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2671					iclog = iclog->ic_next;
2672					continue; /* Leave this iclog for
2673						   * another thread */
2674				}
2675
2676				iclog->ic_state = XLOG_STATE_CALLBACK;
 
 
 
 
 
 
 
2677
 
 
 
 
2678
2679				/*
2680				 * Completion of a iclog IO does not imply that
2681				 * a transaction has completed, as transactions
2682				 * can be large enough to span many iclogs. We
2683				 * cannot change the tail of the log half way
2684				 * through a transaction as this may be the only
2685				 * transaction in the log and moving th etail to
2686				 * point to the middle of it will prevent
2687				 * recovery from finding the start of the
2688				 * transaction. Hence we should only update the
2689				 * last_sync_lsn if this iclog contains
2690				 * transaction completion callbacks on it.
2691				 *
2692				 * We have to do this before we drop the
2693				 * icloglock to ensure we are the only one that
2694				 * can update it.
2695				 */
2696				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2697					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2698				if (iclog->ic_callback)
2699					atomic64_set(&log->l_last_sync_lsn,
2700						be64_to_cpu(iclog->ic_header.h_lsn));
2701
2702			} else
2703				ioerrors++;
2704
2705			spin_unlock(&log->l_icloglock);
2706
2707			/*
2708			 * Keep processing entries in the callback list until
2709			 * we come around and it is empty.  We need to
2710			 * atomically see that the list is empty and change the
2711			 * state to DIRTY so that we don't miss any more
2712			 * callbacks being added.
2713			 */
2714			spin_lock(&iclog->ic_callback_lock);
2715			cb = iclog->ic_callback;
2716			while (cb) {
2717				iclog->ic_callback_tail = &(iclog->ic_callback);
2718				iclog->ic_callback = NULL;
2719				spin_unlock(&iclog->ic_callback_lock);
2720
2721				/* perform callbacks in the order given */
2722				for (; cb; cb = cb_next) {
2723					cb_next = cb->cb_next;
2724					cb->cb_func(cb->cb_arg, aborted);
2725				}
2726				spin_lock(&iclog->ic_callback_lock);
2727				cb = iclog->ic_callback;
2728			}
2729
2730			loopdidcallbacks++;
2731			funcdidcallbacks++;
2732
2733			spin_lock(&log->l_icloglock);
2734			ASSERT(iclog->ic_callback == NULL);
2735			spin_unlock(&iclog->ic_callback_lock);
2736			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2737				iclog->ic_state = XLOG_STATE_DIRTY;
2738
2739			/*
2740			 * Transition from DIRTY to ACTIVE if applicable.
2741			 * NOP if STATE_IOERROR.
2742			 */
2743			xlog_state_clean_log(log);
2744
2745			/* wake up threads waiting in xfs_log_force() */
2746			wake_up_all(&iclog->ic_force_wait);
2747
2748			iclog = iclog->ic_next;
2749		} while (first_iclog != iclog);
2750
2751		if (repeats > 5000) {
2752			flushcnt += repeats;
2753			repeats = 0;
2754			xfs_warn(log->l_mp,
2755				"%s: possible infinite loop (%d iterations)",
2756				__func__, flushcnt);
2757		}
2758	} while (!ioerrors && loopdidcallbacks);
2759
2760#ifdef DEBUG
2761	/*
2762	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2763	 * If the above loop finds an iclog earlier than the current iclog and
2764	 * in one of the syncing states, the current iclog is put into
2765	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2766	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2767	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2768	 * states.
2769	 *
2770	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2771	 * for ic_state == SYNCING.
2772	 */
2773	if (funcdidcallbacks) {
2774		first_iclog = iclog = log->l_iclog;
2775		do {
2776			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2777			/*
2778			 * Terminate the loop if iclogs are found in states
2779			 * which will cause other threads to clean up iclogs.
2780			 *
2781			 * SYNCING - i/o completion will go through logs
2782			 * DONE_SYNC - interrupt thread should be waiting for
2783			 *              l_icloglock
2784			 * IOERROR - give up hope all ye who enter here
2785			 */
2786			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2787			    iclog->ic_state & XLOG_STATE_SYNCING ||
2788			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2789			    iclog->ic_state == XLOG_STATE_IOERROR )
2790				break;
2791			iclog = iclog->ic_next;
2792		} while (first_iclog != iclog);
2793	}
2794#endif
2795
2796	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2797		wake = 1;
2798	spin_unlock(&log->l_icloglock);
2799
2800	if (wake)
2801		wake_up_all(&log->l_flush_wait);
2802}
2803
2804
2805/*
2806 * Finish transitioning this iclog to the dirty state.
2807 *
2808 * Make sure that we completely execute this routine only when this is
2809 * the last call to the iclog.  There is a good chance that iclog flushes,
2810 * when we reach the end of the physical log, get turned into 2 separate
2811 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2812 * routine.  By using the reference count bwritecnt, we guarantee that only
2813 * the second completion goes through.
2814 *
2815 * Callbacks could take time, so they are done outside the scope of the
2816 * global state machine log lock.
2817 */
2818STATIC void
2819xlog_state_done_syncing(
2820	xlog_in_core_t	*iclog,
2821	int		aborted)
2822{
2823	struct xlog	   *log = iclog->ic_log;
2824
2825	spin_lock(&log->l_icloglock);
2826
2827	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2828	       iclog->ic_state == XLOG_STATE_IOERROR);
2829	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2830	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2831
2832
2833	/*
2834	 * If we got an error, either on the first buffer, or in the case of
2835	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2836	 * and none should ever be attempted to be written to disk
2837	 * again.
2838	 */
2839	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2840		if (--iclog->ic_bwritecnt == 1) {
2841			spin_unlock(&log->l_icloglock);
2842			return;
2843		}
2844		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2845	}
2846
2847	/*
2848	 * Someone could be sleeping prior to writing out the next
2849	 * iclog buffer, we wake them all, one will get to do the
2850	 * I/O, the others get to wait for the result.
2851	 */
2852	wake_up_all(&iclog->ic_write_wait);
2853	spin_unlock(&log->l_icloglock);
2854	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2855}	/* xlog_state_done_syncing */
2856
2857
2858/*
2859 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2860 * sleep.  We wait on the flush queue on the head iclog as that should be
2861 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2862 * we will wait here and all new writes will sleep until a sync completes.
2863 *
2864 * The in-core logs are used in a circular fashion. They are not used
2865 * out-of-order even when an iclog past the head is free.
2866 *
2867 * return:
2868 *	* log_offset where xlog_write() can start writing into the in-core
2869 *		log's data space.
2870 *	* in-core log pointer to which xlog_write() should write.
2871 *	* boolean indicating this is a continued write to an in-core log.
2872 *		If this is the last write, then the in-core log's offset field
2873 *		needs to be incremented, depending on the amount of data which
2874 *		is copied.
2875 */
2876STATIC int
2877xlog_state_get_iclog_space(
2878	struct xlog		*log,
2879	int			len,
2880	struct xlog_in_core	**iclogp,
2881	struct xlog_ticket	*ticket,
2882	int			*continued_write,
2883	int			*logoffsetp)
2884{
2885	int		  log_offset;
2886	xlog_rec_header_t *head;
2887	xlog_in_core_t	  *iclog;
2888	int		  error;
2889
2890restart:
2891	spin_lock(&log->l_icloglock);
2892	if (XLOG_FORCED_SHUTDOWN(log)) {
2893		spin_unlock(&log->l_icloglock);
2894		return -EIO;
2895	}
2896
2897	iclog = log->l_iclog;
2898	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2899		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2900
2901		/* Wait for log writes to have flushed */
2902		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2903		goto restart;
2904	}
2905
2906	head = &iclog->ic_header;
2907
2908	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2909	log_offset = iclog->ic_offset;
2910
 
 
2911	/* On the 1st write to an iclog, figure out lsn.  This works
2912	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2913	 * committing to.  If the offset is set, that's how many blocks
2914	 * must be written.
2915	 */
2916	if (log_offset == 0) {
2917		ticket->t_curr_res -= log->l_iclog_hsize;
2918		xlog_tic_add_region(ticket,
2919				    log->l_iclog_hsize,
2920				    XLOG_REG_TYPE_LRHEADER);
2921		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2922		head->h_lsn = cpu_to_be64(
2923			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2924		ASSERT(log->l_curr_block >= 0);
2925	}
2926
2927	/* If there is enough room to write everything, then do it.  Otherwise,
2928	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2929	 * bit is on, so this will get flushed out.  Don't update ic_offset
2930	 * until you know exactly how many bytes get copied.  Therefore, wait
2931	 * until later to update ic_offset.
2932	 *
2933	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2934	 * can fit into remaining data section.
2935	 */
2936	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
 
 
2937		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2938
2939		/*
2940		 * If I'm the only one writing to this iclog, sync it to disk.
2941		 * We need to do an atomic compare and decrement here to avoid
2942		 * racing with concurrent atomic_dec_and_lock() calls in
2943		 * xlog_state_release_iclog() when there is more than one
2944		 * reference to the iclog.
2945		 */
2946		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2947			/* we are the only one */
2948			spin_unlock(&log->l_icloglock);
2949			error = xlog_state_release_iclog(log, iclog);
2950			if (error)
2951				return error;
2952		} else {
2953			spin_unlock(&log->l_icloglock);
2954		}
2955		goto restart;
2956	}
2957
2958	/* Do we have enough room to write the full amount in the remainder
2959	 * of this iclog?  Or must we continue a write on the next iclog and
2960	 * mark this iclog as completely taken?  In the case where we switch
2961	 * iclogs (to mark it taken), this particular iclog will release/sync
2962	 * to disk in xlog_write().
2963	 */
2964	if (len <= iclog->ic_size - iclog->ic_offset) {
2965		*continued_write = 0;
2966		iclog->ic_offset += len;
2967	} else {
2968		*continued_write = 1;
2969		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2970	}
2971	*iclogp = iclog;
2972
2973	ASSERT(iclog->ic_offset <= iclog->ic_size);
2974	spin_unlock(&log->l_icloglock);
2975
2976	*logoffsetp = log_offset;
2977	return 0;
2978}	/* xlog_state_get_iclog_space */
2979
2980/* The first cnt-1 times through here we don't need to
2981 * move the grant write head because the permanent
2982 * reservation has reserved cnt times the unit amount.
2983 * Release part of current permanent unit reservation and
2984 * reset current reservation to be one units worth.  Also
2985 * move grant reservation head forward.
2986 */
2987STATIC void
2988xlog_regrant_reserve_log_space(
2989	struct xlog		*log,
2990	struct xlog_ticket	*ticket)
2991{
2992	trace_xfs_log_regrant_reserve_enter(log, ticket);
2993
2994	if (ticket->t_cnt > 0)
2995		ticket->t_cnt--;
2996
2997	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2998					ticket->t_curr_res);
2999	xlog_grant_sub_space(log, &log->l_write_head.grant,
3000					ticket->t_curr_res);
3001	ticket->t_curr_res = ticket->t_unit_res;
3002	xlog_tic_reset_res(ticket);
3003
3004	trace_xfs_log_regrant_reserve_sub(log, ticket);
3005
3006	/* just return if we still have some of the pre-reserved space */
3007	if (ticket->t_cnt > 0)
3008		return;
 
 
3009
3010	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3011					ticket->t_unit_res);
3012
3013	trace_xfs_log_regrant_reserve_exit(log, ticket);
3014
3015	ticket->t_curr_res = ticket->t_unit_res;
3016	xlog_tic_reset_res(ticket);
3017}	/* xlog_regrant_reserve_log_space */
3018
 
 
3019
3020/*
3021 * Give back the space left from a reservation.
3022 *
3023 * All the information we need to make a correct determination of space left
3024 * is present.  For non-permanent reservations, things are quite easy.  The
3025 * count should have been decremented to zero.  We only need to deal with the
3026 * space remaining in the current reservation part of the ticket.  If the
3027 * ticket contains a permanent reservation, there may be left over space which
3028 * needs to be released.  A count of N means that N-1 refills of the current
3029 * reservation can be done before we need to ask for more space.  The first
3030 * one goes to fill up the first current reservation.  Once we run out of
3031 * space, the count will stay at zero and the only space remaining will be
3032 * in the current reservation field.
3033 */
3034STATIC void
3035xlog_ungrant_log_space(
3036	struct xlog		*log,
3037	struct xlog_ticket	*ticket)
3038{
3039	int	bytes;
 
 
3040
3041	if (ticket->t_cnt > 0)
3042		ticket->t_cnt--;
3043
3044	trace_xfs_log_ungrant_enter(log, ticket);
3045	trace_xfs_log_ungrant_sub(log, ticket);
3046
3047	/*
3048	 * If this is a permanent reservation ticket, we may be able to free
3049	 * up more space based on the remaining count.
3050	 */
3051	bytes = ticket->t_curr_res;
3052	if (ticket->t_cnt > 0) {
3053		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3054		bytes += ticket->t_unit_res*ticket->t_cnt;
3055	}
3056
3057	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3058	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3059
3060	trace_xfs_log_ungrant_exit(log, ticket);
3061
3062	xfs_log_space_wake(log->l_mp);
 
3063}
3064
3065/*
3066 * Flush iclog to disk if this is the last reference to the given iclog and
3067 * the WANT_SYNC bit is set.
3068 *
3069 * When this function is entered, the iclog is not necessarily in the
3070 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3071 *
3072 *
3073 */
3074STATIC int
3075xlog_state_release_iclog(
3076	struct xlog		*log,
3077	struct xlog_in_core	*iclog)
3078{
3079	int		sync = 0;	/* do we sync? */
3080
3081	if (iclog->ic_state & XLOG_STATE_IOERROR)
3082		return -EIO;
3083
3084	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3085	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3086		return 0;
3087
3088	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3089		spin_unlock(&log->l_icloglock);
3090		return -EIO;
3091	}
3092	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3093	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3094
3095	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3096		/* update tail before writing to iclog */
3097		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3098		sync++;
3099		iclog->ic_state = XLOG_STATE_SYNCING;
3100		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3101		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3102		/* cycle incremented when incrementing curr_block */
3103	}
3104	spin_unlock(&log->l_icloglock);
3105
3106	/*
3107	 * We let the log lock go, so it's possible that we hit a log I/O
3108	 * error or some other SHUTDOWN condition that marks the iclog
3109	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3110	 * this iclog has consistent data, so we ignore IOERROR
3111	 * flags after this point.
3112	 */
3113	if (sync)
3114		return xlog_sync(log, iclog);
3115	return 0;
3116}	/* xlog_state_release_iclog */
3117
3118
3119/*
3120 * This routine will mark the current iclog in the ring as WANT_SYNC
3121 * and move the current iclog pointer to the next iclog in the ring.
3122 * When this routine is called from xlog_state_get_iclog_space(), the
3123 * exact size of the iclog has not yet been determined.  All we know is
3124 * that every data block.  We have run out of space in this log record.
3125 */
3126STATIC void
3127xlog_state_switch_iclogs(
3128	struct xlog		*log,
3129	struct xlog_in_core	*iclog,
3130	int			eventual_size)
3131{
3132	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 
 
 
3133	if (!eventual_size)
3134		eventual_size = iclog->ic_offset;
3135	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3136	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3137	log->l_prev_block = log->l_curr_block;
3138	log->l_prev_cycle = log->l_curr_cycle;
3139
3140	/* roll log?: ic_offset changed later */
3141	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3142
3143	/* Round up to next log-sunit */
3144	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3145	    log->l_mp->m_sb.sb_logsunit > 1) {
3146		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3147		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3148	}
3149
3150	if (log->l_curr_block >= log->l_logBBsize) {
3151		/*
3152		 * Rewind the current block before the cycle is bumped to make
3153		 * sure that the combined LSN never transiently moves forward
3154		 * when the log wraps to the next cycle. This is to support the
3155		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3156		 * other cases should acquire l_icloglock.
3157		 */
3158		log->l_curr_block -= log->l_logBBsize;
3159		ASSERT(log->l_curr_block >= 0);
3160		smp_wmb();
3161		log->l_curr_cycle++;
3162		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3163			log->l_curr_cycle++;
3164	}
3165	ASSERT(iclog == log->l_iclog);
3166	log->l_iclog = iclog->ic_next;
3167}	/* xlog_state_switch_iclogs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168
3169/*
3170 * Write out all data in the in-core log as of this exact moment in time.
3171 *
3172 * Data may be written to the in-core log during this call.  However,
3173 * we don't guarantee this data will be written out.  A change from past
3174 * implementation means this routine will *not* write out zero length LRs.
3175 *
3176 * Basically, we try and perform an intelligent scan of the in-core logs.
3177 * If we determine there is no flushable data, we just return.  There is no
3178 * flushable data if:
3179 *
3180 *	1. the current iclog is active and has no data; the previous iclog
3181 *		is in the active or dirty state.
3182 *	2. the current iclog is drity, and the previous iclog is in the
3183 *		active or dirty state.
3184 *
3185 * We may sleep if:
3186 *
3187 *	1. the current iclog is not in the active nor dirty state.
3188 *	2. the current iclog dirty, and the previous iclog is not in the
3189 *		active nor dirty state.
3190 *	3. the current iclog is active, and there is another thread writing
3191 *		to this particular iclog.
3192 *	4. a) the current iclog is active and has no other writers
3193 *	   b) when we return from flushing out this iclog, it is still
3194 *		not in the active nor dirty state.
3195 */
3196int
3197_xfs_log_force(
3198	struct xfs_mount	*mp,
3199	uint			flags,
3200	int			*log_flushed)
3201{
3202	struct xlog		*log = mp->m_log;
3203	struct xlog_in_core	*iclog;
3204	xfs_lsn_t		lsn;
3205
3206	XFS_STATS_INC(mp, xs_log_force);
 
3207
3208	xlog_cil_force(log);
3209
3210	spin_lock(&log->l_icloglock);
 
 
3211
3212	iclog = log->l_iclog;
3213	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3214		spin_unlock(&log->l_icloglock);
3215		return -EIO;
3216	}
3217
3218	/* If the head iclog is not active nor dirty, we just attach
3219	 * ourselves to the head and go to sleep.
3220	 */
3221	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3222	    iclog->ic_state == XLOG_STATE_DIRTY) {
3223		/*
3224		 * If the head is dirty or (active and empty), then
3225		 * we need to look at the previous iclog.  If the previous
3226		 * iclog is active or dirty we are done.  There is nothing
3227		 * to sync out.  Otherwise, we attach ourselves to the
 
3228		 * previous iclog and go to sleep.
3229		 */
3230		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3231		    (atomic_read(&iclog->ic_refcnt) == 0
3232		     && iclog->ic_offset == 0)) {
3233			iclog = iclog->ic_prev;
3234			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3235			    iclog->ic_state == XLOG_STATE_DIRTY)
3236				goto no_sleep;
3237			else
3238				goto maybe_sleep;
 
 
3239		} else {
3240			if (atomic_read(&iclog->ic_refcnt) == 0) {
3241				/* We are the only one with access to this
3242				 * iclog.  Flush it out now.  There should
3243				 * be a roundoff of zero to show that someone
3244				 * has already taken care of the roundoff from
3245				 * the previous sync.
3246				 */
3247				atomic_inc(&iclog->ic_refcnt);
3248				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3249				xlog_state_switch_iclogs(log, iclog, 0);
3250				spin_unlock(&log->l_icloglock);
3251
3252				if (xlog_state_release_iclog(log, iclog))
3253					return -EIO;
3254
3255				if (log_flushed)
3256					*log_flushed = 1;
3257				spin_lock(&log->l_icloglock);
3258				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3259				    iclog->ic_state != XLOG_STATE_DIRTY)
3260					goto maybe_sleep;
3261				else
3262					goto no_sleep;
3263			} else {
3264				/* Someone else is writing to this iclog.
3265				 * Use its call to flush out the data.  However,
3266				 * the other thread may not force out this LR,
3267				 * so we mark it WANT_SYNC.
3268				 */
3269				xlog_state_switch_iclogs(log, iclog, 0);
3270				goto maybe_sleep;
3271			}
3272		}
3273	}
3274
3275	/* By the time we come around again, the iclog could've been filled
3276	 * which would give it another lsn.  If we have a new lsn, just
3277	 * return because the relevant data has been flushed.
3278	 */
3279maybe_sleep:
3280	if (flags & XFS_LOG_SYNC) {
3281		/*
3282		 * We must check if we're shutting down here, before
3283		 * we wait, while we're holding the l_icloglock.
3284		 * Then we check again after waking up, in case our
3285		 * sleep was disturbed by a bad news.
3286		 */
3287		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3288			spin_unlock(&log->l_icloglock);
3289			return -EIO;
3290		}
3291		XFS_STATS_INC(mp, xs_log_force_sleep);
3292		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3293		/*
3294		 * No need to grab the log lock here since we're
3295		 * only deciding whether or not to return EIO
3296		 * and the memory read should be atomic.
3297		 */
3298		if (iclog->ic_state & XLOG_STATE_IOERROR)
3299			return -EIO;
3300		if (log_flushed)
3301			*log_flushed = 1;
3302	} else {
3303
3304no_sleep:
3305		spin_unlock(&log->l_icloglock);
3306	}
3307	return 0;
 
 
 
3308}
3309
3310/*
3311 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3312 * about errors or whether the log was flushed or not. This is the normal
3313 * interface to use when trying to unpin items or move the log forward.
3314 */
3315void
3316xfs_log_force(
3317	xfs_mount_t	*mp,
3318	uint		flags)
3319{
3320	trace_xfs_log_force(mp, 0, _RET_IP_);
3321	_xfs_log_force(mp, flags, NULL);
3322}
3323
3324/*
3325 * Force the in-core log to disk for a specific LSN.
3326 *
3327 * Find in-core log with lsn.
3328 *	If it is in the DIRTY state, just return.
3329 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3330 *		state and go to sleep or return.
3331 *	If it is in any other state, go to sleep or return.
3332 *
3333 * Synchronous forces are implemented with a signal variable. All callers
3334 * to force a given lsn to disk will wait on a the sv attached to the
3335 * specific in-core log.  When given in-core log finally completes its
3336 * write to disk, that thread will wake up all threads waiting on the
3337 * sv.
3338 */
3339int
3340_xfs_log_force_lsn(
3341	struct xfs_mount	*mp,
3342	xfs_lsn_t		lsn,
3343	uint			flags,
3344	int			*log_flushed)
 
3345{
3346	struct xlog		*log = mp->m_log;
3347	struct xlog_in_core	*iclog;
3348	int			already_slept = 0;
3349
3350	ASSERT(lsn != 0);
3351
3352	XFS_STATS_INC(mp, xs_log_force);
3353
3354	lsn = xlog_cil_force_lsn(log, lsn);
3355	if (lsn == NULLCOMMITLSN)
3356		return 0;
3357
3358try_again:
3359	spin_lock(&log->l_icloglock);
3360	iclog = log->l_iclog;
3361	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3362		spin_unlock(&log->l_icloglock);
3363		return -EIO;
 
 
3364	}
3365
3366	do {
3367		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3368			iclog = iclog->ic_next;
3369			continue;
3370		}
3371
3372		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3373			spin_unlock(&log->l_icloglock);
3374			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376
3377		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3378			/*
3379			 * We sleep here if we haven't already slept (e.g.
3380			 * this is the first time we've looked at the correct
3381			 * iclog buf) and the buffer before us is going to
3382			 * be sync'ed. The reason for this is that if we
3383			 * are doing sync transactions here, by waiting for
3384			 * the previous I/O to complete, we can allow a few
3385			 * more transactions into this iclog before we close
3386			 * it down.
3387			 *
3388			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3389			 * up the refcnt so we can release the log (which
3390			 * drops the ref count).  The state switch keeps new
3391			 * transaction commits from using this buffer.  When
3392			 * the current commits finish writing into the buffer,
3393			 * the refcount will drop to zero and the buffer will
3394			 * go out then.
3395			 */
3396			if (!already_slept &&
3397			    (iclog->ic_prev->ic_state &
3398			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3399				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3400
3401				XFS_STATS_INC(mp, xs_log_force_sleep);
3402
3403				xlog_wait(&iclog->ic_prev->ic_write_wait,
3404							&log->l_icloglock);
3405				if (log_flushed)
3406					*log_flushed = 1;
3407				already_slept = 1;
3408				goto try_again;
3409			}
3410			atomic_inc(&iclog->ic_refcnt);
3411			xlog_state_switch_iclogs(log, iclog, 0);
3412			spin_unlock(&log->l_icloglock);
3413			if (xlog_state_release_iclog(log, iclog))
3414				return -EIO;
3415			if (log_flushed)
3416				*log_flushed = 1;
3417			spin_lock(&log->l_icloglock);
3418		}
3419
3420		if ((flags & XFS_LOG_SYNC) && /* sleep */
3421		    !(iclog->ic_state &
3422		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3423			/*
3424			 * Don't wait on completion if we know that we've
3425			 * gotten a log write error.
3426			 */
3427			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3428				spin_unlock(&log->l_icloglock);
3429				return -EIO;
3430			}
3431			XFS_STATS_INC(mp, xs_log_force_sleep);
3432			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3433			/*
3434			 * No need to grab the log lock here since we're
3435			 * only deciding whether or not to return EIO
3436			 * and the memory read should be atomic.
3437			 */
3438			if (iclog->ic_state & XLOG_STATE_IOERROR)
3439				return -EIO;
3440
3441			if (log_flushed)
3442				*log_flushed = 1;
3443		} else {		/* just return */
3444			spin_unlock(&log->l_icloglock);
3445		}
3446
3447		return 0;
3448	} while (iclog != log->l_iclog);
3449
3450	spin_unlock(&log->l_icloglock);
3451	return 0;
 
 
 
3452}
3453
3454/*
3455 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3456 * about errors or whether the log was flushed or not. This is the normal
3457 * interface to use when trying to unpin items or move the log forward.
 
 
 
 
3458 */
3459void
3460xfs_log_force_lsn(
3461	xfs_mount_t	*mp,
3462	xfs_lsn_t	lsn,
3463	uint		flags)
 
3464{
3465	trace_xfs_log_force(mp, lsn, _RET_IP_);
3466	_xfs_log_force_lsn(mp, lsn, flags, NULL);
3467}
 
 
 
 
3468
3469/*
3470 * Called when we want to mark the current iclog as being ready to sync to
3471 * disk.
3472 */
3473STATIC void
3474xlog_state_want_sync(
3475	struct xlog		*log,
3476	struct xlog_in_core	*iclog)
3477{
3478	assert_spin_locked(&log->l_icloglock);
3479
3480	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3481		xlog_state_switch_iclogs(log, iclog, 0);
3482	} else {
3483		ASSERT(iclog->ic_state &
3484			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3485	}
 
3486}
3487
3488
3489/*****************************************************************************
3490 *
3491 *		TICKET functions
3492 *
3493 *****************************************************************************
3494 */
3495
3496/*
3497 * Free a used ticket when its refcount falls to zero.
3498 */
3499void
3500xfs_log_ticket_put(
3501	xlog_ticket_t	*ticket)
3502{
3503	ASSERT(atomic_read(&ticket->t_ref) > 0);
3504	if (atomic_dec_and_test(&ticket->t_ref))
3505		kmem_zone_free(xfs_log_ticket_zone, ticket);
3506}
3507
3508xlog_ticket_t *
3509xfs_log_ticket_get(
3510	xlog_ticket_t	*ticket)
3511{
3512	ASSERT(atomic_read(&ticket->t_ref) > 0);
3513	atomic_inc(&ticket->t_ref);
3514	return ticket;
3515}
3516
3517/*
3518 * Figure out the total log space unit (in bytes) that would be
3519 * required for a log ticket.
3520 */
3521int
3522xfs_log_calc_unit_res(
3523	struct xfs_mount	*mp,
3524	int			unit_bytes)
 
3525{
3526	struct xlog		*log = mp->m_log;
3527	int			iclog_space;
3528	uint			num_headers;
3529
3530	/*
3531	 * Permanent reservations have up to 'cnt'-1 active log operations
3532	 * in the log.  A unit in this case is the amount of space for one
3533	 * of these log operations.  Normal reservations have a cnt of 1
3534	 * and their unit amount is the total amount of space required.
3535	 *
3536	 * The following lines of code account for non-transaction data
3537	 * which occupy space in the on-disk log.
3538	 *
3539	 * Normal form of a transaction is:
3540	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3541	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3542	 *
3543	 * We need to account for all the leadup data and trailer data
3544	 * around the transaction data.
3545	 * And then we need to account for the worst case in terms of using
3546	 * more space.
3547	 * The worst case will happen if:
3548	 * - the placement of the transaction happens to be such that the
3549	 *   roundoff is at its maximum
3550	 * - the transaction data is synced before the commit record is synced
3551	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3552	 *   Therefore the commit record is in its own Log Record.
3553	 *   This can happen as the commit record is called with its
3554	 *   own region to xlog_write().
3555	 *   This then means that in the worst case, roundoff can happen for
3556	 *   the commit-rec as well.
3557	 *   The commit-rec is smaller than padding in this scenario and so it is
3558	 *   not added separately.
3559	 */
3560
3561	/* for trans header */
3562	unit_bytes += sizeof(xlog_op_header_t);
3563	unit_bytes += sizeof(xfs_trans_header_t);
3564
3565	/* for start-rec */
3566	unit_bytes += sizeof(xlog_op_header_t);
3567
3568	/*
3569	 * for LR headers - the space for data in an iclog is the size minus
3570	 * the space used for the headers. If we use the iclog size, then we
3571	 * undercalculate the number of headers required.
3572	 *
3573	 * Furthermore - the addition of op headers for split-recs might
3574	 * increase the space required enough to require more log and op
3575	 * headers, so take that into account too.
3576	 *
3577	 * IMPORTANT: This reservation makes the assumption that if this
3578	 * transaction is the first in an iclog and hence has the LR headers
3579	 * accounted to it, then the remaining space in the iclog is
3580	 * exclusively for this transaction.  i.e. if the transaction is larger
3581	 * than the iclog, it will be the only thing in that iclog.
3582	 * Fundamentally, this means we must pass the entire log vector to
3583	 * xlog_write to guarantee this.
3584	 */
3585	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3586	num_headers = howmany(unit_bytes, iclog_space);
3587
3588	/* for split-recs - ophdrs added when data split over LRs */
3589	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3590
3591	/* add extra header reservations if we overrun */
3592	while (!num_headers ||
3593	       howmany(unit_bytes, iclog_space) > num_headers) {
3594		unit_bytes += sizeof(xlog_op_header_t);
3595		num_headers++;
3596	}
3597	unit_bytes += log->l_iclog_hsize * num_headers;
3598
3599	/* for commit-rec LR header - note: padding will subsume the ophdr */
3600	unit_bytes += log->l_iclog_hsize;
3601
3602	/* for roundoff padding for transaction data and one for commit record */
3603	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3604		/* log su roundoff */
3605		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3606	} else {
3607		/* BB roundoff */
3608		unit_bytes += 2 * BBSIZE;
3609        }
3610
 
 
3611	return unit_bytes;
3612}
3613
 
 
 
 
 
 
 
 
3614/*
3615 * Allocate and initialise a new log ticket.
3616 */
3617struct xlog_ticket *
3618xlog_ticket_alloc(
3619	struct xlog		*log,
3620	int			unit_bytes,
3621	int			cnt,
3622	char			client,
3623	bool			permanent,
3624	xfs_km_flags_t		alloc_flags)
3625{
3626	struct xlog_ticket	*tic;
3627	int			unit_res;
3628
3629	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3630	if (!tic)
3631		return NULL;
3632
3633	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3634
3635	atomic_set(&tic->t_ref, 1);
3636	tic->t_task		= current;
3637	INIT_LIST_HEAD(&tic->t_queue);
3638	tic->t_unit_res		= unit_res;
3639	tic->t_curr_res		= unit_res;
3640	tic->t_cnt		= cnt;
3641	tic->t_ocnt		= cnt;
3642	tic->t_tid		= prandom_u32();
3643	tic->t_clientid		= client;
3644	tic->t_flags		= XLOG_TIC_INITED;
3645	if (permanent)
3646		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3647
3648	xlog_tic_reset_res(tic);
3649
3650	return tic;
3651}
3652
3653
3654/******************************************************************************
3655 *
3656 *		Log debug routines
3657 *
3658 ******************************************************************************
3659 */
3660#if defined(DEBUG)
3661/*
3662 * Make sure that the destination ptr is within the valid data region of
3663 * one of the iclogs.  This uses backup pointers stored in a different
3664 * part of the log in case we trash the log structure.
3665 */
3666void
3667xlog_verify_dest_ptr(
3668	struct xlog	*log,
3669	void		*ptr)
3670{
3671	int i;
3672	int good_ptr = 0;
3673
3674	for (i = 0; i < log->l_iclog_bufs; i++) {
3675		if (ptr >= log->l_iclog_bak[i] &&
3676		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3677			good_ptr++;
3678	}
3679
3680	if (!good_ptr)
3681		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3682}
3683
3684/*
3685 * Check to make sure the grant write head didn't just over lap the tail.  If
3686 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3687 * the cycles differ by exactly one and check the byte count.
3688 *
3689 * This check is run unlocked, so can give false positives. Rather than assert
3690 * on failures, use a warn-once flag and a panic tag to allow the admin to
3691 * determine if they want to panic the machine when such an error occurs. For
3692 * debug kernels this will have the same effect as using an assert but, unlinke
3693 * an assert, it can be turned off at runtime.
3694 */
3695STATIC void
3696xlog_verify_grant_tail(
3697	struct xlog	*log)
3698{
3699	int		tail_cycle, tail_blocks;
3700	int		cycle, space;
3701
3702	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3703	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3704	if (tail_cycle != cycle) {
3705		if (cycle - 1 != tail_cycle &&
3706		    !(log->l_flags & XLOG_TAIL_WARN)) {
3707			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3708				"%s: cycle - 1 != tail_cycle", __func__);
3709			log->l_flags |= XLOG_TAIL_WARN;
3710		}
3711
3712		if (space > BBTOB(tail_blocks) &&
3713		    !(log->l_flags & XLOG_TAIL_WARN)) {
3714			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3715				"%s: space > BBTOB(tail_blocks)", __func__);
3716			log->l_flags |= XLOG_TAIL_WARN;
3717		}
3718	}
3719}
3720
3721/* check if it will fit */
3722STATIC void
3723xlog_verify_tail_lsn(
3724	struct xlog		*log,
3725	struct xlog_in_core	*iclog,
3726	xfs_lsn_t		tail_lsn)
3727{
3728    int blocks;
 
3729
3730    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3731	blocks =
3732	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3733	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3734		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3735    } else {
3736	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3737
3738	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3739		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3740
3741	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3742	if (blocks < BTOBB(iclog->ic_offset) + 1)
3743		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3744    }
3745}	/* xlog_verify_tail_lsn */
3746
3747/*
3748 * Perform a number of checks on the iclog before writing to disk.
3749 *
3750 * 1. Make sure the iclogs are still circular
3751 * 2. Make sure we have a good magic number
3752 * 3. Make sure we don't have magic numbers in the data
3753 * 4. Check fields of each log operation header for:
3754 *	A. Valid client identifier
3755 *	B. tid ptr value falls in valid ptr space (user space code)
3756 *	C. Length in log record header is correct according to the
3757 *		individual operation headers within record.
3758 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3759 *	log, check the preceding blocks of the physical log to make sure all
3760 *	the cycle numbers agree with the current cycle number.
3761 */
3762STATIC void
3763xlog_verify_iclog(
3764	struct xlog		*log,
3765	struct xlog_in_core	*iclog,
3766	int			count,
3767	bool                    syncing)
3768{
3769	xlog_op_header_t	*ophead;
3770	xlog_in_core_t		*icptr;
3771	xlog_in_core_2_t	*xhdr;
3772	void			*base_ptr, *ptr, *p;
3773	ptrdiff_t		field_offset;
3774	__uint8_t		clientid;
3775	int			len, i, j, k, op_len;
3776	int			idx;
3777
3778	/* check validity of iclog pointers */
3779	spin_lock(&log->l_icloglock);
3780	icptr = log->l_iclog;
3781	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3782		ASSERT(icptr);
3783
3784	if (icptr != log->l_iclog)
3785		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3786	spin_unlock(&log->l_icloglock);
3787
3788	/* check log magic numbers */
3789	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3790		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3791
3792	base_ptr = ptr = &iclog->ic_header;
3793	p = &iclog->ic_header;
3794	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3795		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3796			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3797				__func__);
3798	}
3799
3800	/* check fields */
3801	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3802	base_ptr = ptr = iclog->ic_datap;
3803	ophead = ptr;
3804	xhdr = iclog->ic_data;
3805	for (i = 0; i < len; i++) {
3806		ophead = ptr;
3807
3808		/* clientid is only 1 byte */
3809		p = &ophead->oh_clientid;
3810		field_offset = p - base_ptr;
3811		if (!syncing || (field_offset & 0x1ff)) {
3812			clientid = ophead->oh_clientid;
3813		} else {
3814			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3815			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3816				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3817				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3818				clientid = xlog_get_client_id(
3819					xhdr[j].hic_xheader.xh_cycle_data[k]);
3820			} else {
3821				clientid = xlog_get_client_id(
3822					iclog->ic_header.h_cycle_data[idx]);
3823			}
3824		}
3825		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3826			xfs_warn(log->l_mp,
3827				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3828				__func__, clientid, ophead,
3829				(unsigned long)field_offset);
 
3830
3831		/* check length */
3832		p = &ophead->oh_len;
3833		field_offset = p - base_ptr;
3834		if (!syncing || (field_offset & 0x1ff)) {
3835			op_len = be32_to_cpu(ophead->oh_len);
3836		} else {
3837			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3838				    (uintptr_t)iclog->ic_datap);
3839			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3840				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3841				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3842				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3843			} else {
3844				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3845			}
3846		}
3847		ptr += sizeof(xlog_op_header_t) + op_len;
3848	}
3849}	/* xlog_verify_iclog */
3850#endif
3851
3852/*
3853 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3854 */
3855STATIC int
3856xlog_state_ioerror(
3857	struct xlog	*log)
3858{
3859	xlog_in_core_t	*iclog, *ic;
3860
3861	iclog = log->l_iclog;
3862	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3863		/*
3864		 * Mark all the incore logs IOERROR.
3865		 * From now on, no log flushes will result.
3866		 */
3867		ic = iclog;
3868		do {
3869			ic->ic_state = XLOG_STATE_IOERROR;
3870			ic = ic->ic_next;
3871		} while (ic != iclog);
3872		return 0;
3873	}
3874	/*
3875	 * Return non-zero, if state transition has already happened.
3876	 */
3877	return 1;
3878}
3879
3880/*
3881 * This is called from xfs_force_shutdown, when we're forcibly
3882 * shutting down the filesystem, typically because of an IO error.
3883 * Our main objectives here are to make sure that:
3884 *	a. if !logerror, flush the logs to disk. Anything modified
3885 *	   after this is ignored.
3886 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3887 *	   parties to find out, 'atomically'.
3888 *	c. those who're sleeping on log reservations, pinned objects and
3889 *	    other resources get woken up, and be told the bad news.
3890 *	d. nothing new gets queued up after (b) and (c) are done.
3891 *
3892 * Note: for the !logerror case we need to flush the regions held in memory out
3893 * to disk first. This needs to be done before the log is marked as shutdown,
3894 * otherwise the iclog writes will fail.
3895 */
3896int
3897xfs_log_force_umount(
3898	struct xfs_mount	*mp,
3899	int			logerror)
3900{
3901	struct xlog	*log;
3902	int		retval;
3903
3904	log = mp->m_log;
3905
3906	/*
3907	 * If this happens during log recovery, don't worry about
3908	 * locking; the log isn't open for business yet.
3909	 */
3910	if (!log ||
3911	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3912		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913		if (mp->m_sb_bp)
3914			mp->m_sb_bp->b_flags |= XBF_DONE;
3915		return 0;
3916	}
3917
3918	/*
3919	 * Somebody could've already done the hard work for us.
3920	 * No need to get locks for this.
3921	 */
3922	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3923		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3924		return 1;
3925	}
3926
3927	/*
3928	 * Flush all the completed transactions to disk before marking the log
3929	 * being shut down. We need to do it in this order to ensure that
3930	 * completed operations are safely on disk before we shut down, and that
3931	 * we don't have to issue any buffer IO after the shutdown flags are set
3932	 * to guarantee this.
3933	 */
3934	if (!logerror)
3935		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 
 
 
 
 
 
 
 
3936
3937	/*
3938	 * mark the filesystem and the as in a shutdown state and wake
3939	 * everybody up to tell them the bad news.
 
 
 
 
 
 
 
3940	 */
3941	spin_lock(&log->l_icloglock);
3942	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943	if (mp->m_sb_bp)
3944		mp->m_sb_bp->b_flags |= XBF_DONE;
 
 
3945
3946	/*
3947	 * Mark the log and the iclogs with IO error flags to prevent any
3948	 * further log IO from being issued or completed.
3949	 */
3950	log->l_flags |= XLOG_IO_ERROR;
3951	retval = xlog_state_ioerror(log);
3952	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
3953
3954	/*
3955	 * We don't want anybody waiting for log reservations after this. That
3956	 * means we have to wake up everybody queued up on reserveq as well as
3957	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3958	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3959	 * action is protected by the grant locks.
3960	 */
3961	xlog_grant_head_wake_all(&log->l_reserve_head);
3962	xlog_grant_head_wake_all(&log->l_write_head);
3963
3964	/*
3965	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3966	 * as if the log writes were completed. The abort handling in the log
3967	 * item committed callback functions will do this again under lock to
3968	 * avoid races.
3969	 */
 
 
3970	wake_up_all(&log->l_cilp->xc_commit_wait);
3971	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3972
3973#ifdef XFSERRORDEBUG
3974	{
3975		xlog_in_core_t	*iclog;
3976
3977		spin_lock(&log->l_icloglock);
3978		iclog = log->l_iclog;
3979		do {
3980			ASSERT(iclog->ic_callback == 0);
3981			iclog = iclog->ic_next;
3982		} while (iclog != log->l_iclog);
3983		spin_unlock(&log->l_icloglock);
3984	}
3985#endif
3986	/* return non-zero if log IOERROR transition had already happened */
3987	return retval;
3988}
3989
3990STATIC int
3991xlog_iclogs_empty(
3992	struct xlog	*log)
3993{
3994	xlog_in_core_t	*iclog;
3995
3996	iclog = log->l_iclog;
3997	do {
3998		/* endianness does not matter here, zero is zero in
3999		 * any language.
4000		 */
4001		if (iclog->ic_header.h_num_logops)
4002			return 0;
4003		iclog = iclog->ic_next;
4004	} while (iclog != log->l_iclog);
4005	return 1;
4006}
4007
4008/*
4009 * Verify that an LSN stamped into a piece of metadata is valid. This is
4010 * intended for use in read verifiers on v5 superblocks.
4011 */
4012bool
4013xfs_log_check_lsn(
4014	struct xfs_mount	*mp,
4015	xfs_lsn_t		lsn)
4016{
4017	struct xlog		*log = mp->m_log;
4018	bool			valid;
4019
4020	/*
4021	 * norecovery mode skips mount-time log processing and unconditionally
4022	 * resets the in-core LSN. We can't validate in this mode, but
4023	 * modifications are not allowed anyways so just return true.
4024	 */
4025	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4026		return true;
4027
4028	/*
4029	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4030	 * handled by recovery and thus safe to ignore here.
4031	 */
4032	if (lsn == NULLCOMMITLSN)
4033		return true;
4034
4035	valid = xlog_valid_lsn(mp->m_log, lsn);
4036
4037	/* warn the user about what's gone wrong before verifier failure */
4038	if (!valid) {
4039		spin_lock(&log->l_icloglock);
4040		xfs_warn(mp,
4041"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4042"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4043			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4044			 log->l_curr_cycle, log->l_curr_block);
4045		spin_unlock(&log->l_icloglock);
4046	}
4047
4048	return valid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049}