Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38#include "raid-stripe-tree.h"
39
40#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
41 BTRFS_BLOCK_GROUP_RAID10 | \
42 BTRFS_BLOCK_GROUP_RAID56_MASK)
43
44struct btrfs_io_geometry {
45 u32 stripe_index;
46 u32 stripe_nr;
47 int mirror_num;
48 int num_stripes;
49 u64 stripe_offset;
50 u64 raid56_full_stripe_start;
51 int max_errors;
52 enum btrfs_map_op op;
53};
54
55const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
56 [BTRFS_RAID_RAID10] = {
57 .sub_stripes = 2,
58 .dev_stripes = 1,
59 .devs_max = 0, /* 0 == as many as possible */
60 .devs_min = 2,
61 .tolerated_failures = 1,
62 .devs_increment = 2,
63 .ncopies = 2,
64 .nparity = 0,
65 .raid_name = "raid10",
66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
68 },
69 [BTRFS_RAID_RAID1] = {
70 .sub_stripes = 1,
71 .dev_stripes = 1,
72 .devs_max = 2,
73 .devs_min = 2,
74 .tolerated_failures = 1,
75 .devs_increment = 2,
76 .ncopies = 2,
77 .nparity = 0,
78 .raid_name = "raid1",
79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
81 },
82 [BTRFS_RAID_RAID1C3] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 3,
86 .devs_min = 3,
87 .tolerated_failures = 2,
88 .devs_increment = 3,
89 .ncopies = 3,
90 .nparity = 0,
91 .raid_name = "raid1c3",
92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
94 },
95 [BTRFS_RAID_RAID1C4] = {
96 .sub_stripes = 1,
97 .dev_stripes = 1,
98 .devs_max = 4,
99 .devs_min = 4,
100 .tolerated_failures = 3,
101 .devs_increment = 4,
102 .ncopies = 4,
103 .nparity = 0,
104 .raid_name = "raid1c4",
105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
107 },
108 [BTRFS_RAID_DUP] = {
109 .sub_stripes = 1,
110 .dev_stripes = 2,
111 .devs_max = 1,
112 .devs_min = 1,
113 .tolerated_failures = 0,
114 .devs_increment = 1,
115 .ncopies = 2,
116 .nparity = 0,
117 .raid_name = "dup",
118 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
119 .mindev_error = 0,
120 },
121 [BTRFS_RAID_RAID0] = {
122 .sub_stripes = 1,
123 .dev_stripes = 1,
124 .devs_max = 0,
125 .devs_min = 1,
126 .tolerated_failures = 0,
127 .devs_increment = 1,
128 .ncopies = 1,
129 .nparity = 0,
130 .raid_name = "raid0",
131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
132 .mindev_error = 0,
133 },
134 [BTRFS_RAID_SINGLE] = {
135 .sub_stripes = 1,
136 .dev_stripes = 1,
137 .devs_max = 1,
138 .devs_min = 1,
139 .tolerated_failures = 0,
140 .devs_increment = 1,
141 .ncopies = 1,
142 .nparity = 0,
143 .raid_name = "single",
144 .bg_flag = 0,
145 .mindev_error = 0,
146 },
147 [BTRFS_RAID_RAID5] = {
148 .sub_stripes = 1,
149 .dev_stripes = 1,
150 .devs_max = 0,
151 .devs_min = 2,
152 .tolerated_failures = 1,
153 .devs_increment = 1,
154 .ncopies = 1,
155 .nparity = 1,
156 .raid_name = "raid5",
157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
159 },
160 [BTRFS_RAID_RAID6] = {
161 .sub_stripes = 1,
162 .dev_stripes = 1,
163 .devs_max = 0,
164 .devs_min = 3,
165 .tolerated_failures = 2,
166 .devs_increment = 1,
167 .ncopies = 1,
168 .nparity = 2,
169 .raid_name = "raid6",
170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
172 },
173};
174
175/*
176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
177 * can be used as index to access btrfs_raid_array[].
178 */
179enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
180{
181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
182
183 if (!profile)
184 return BTRFS_RAID_SINGLE;
185
186 return BTRFS_BG_FLAG_TO_INDEX(profile);
187}
188
189const char *btrfs_bg_type_to_raid_name(u64 flags)
190{
191 const int index = btrfs_bg_flags_to_raid_index(flags);
192
193 if (index >= BTRFS_NR_RAID_TYPES)
194 return NULL;
195
196 return btrfs_raid_array[index].raid_name;
197}
198
199int btrfs_nr_parity_stripes(u64 type)
200{
201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
202
203 return btrfs_raid_array[index].nparity;
204}
205
206/*
207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
208 * bytes including terminating null byte.
209 */
210void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
211{
212 int i;
213 int ret;
214 char *bp = buf;
215 u64 flags = bg_flags;
216 u32 size_bp = size_buf;
217
218 if (!flags) {
219 strcpy(bp, "NONE");
220 return;
221 }
222
223#define DESCRIBE_FLAG(flag, desc) \
224 do { \
225 if (flags & (flag)) { \
226 ret = snprintf(bp, size_bp, "%s|", (desc)); \
227 if (ret < 0 || ret >= size_bp) \
228 goto out_overflow; \
229 size_bp -= ret; \
230 bp += ret; \
231 flags &= ~(flag); \
232 } \
233 } while (0)
234
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
238
239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
242 btrfs_raid_array[i].raid_name);
243#undef DESCRIBE_FLAG
244
245 if (flags) {
246 ret = snprintf(bp, size_bp, "0x%llx|", flags);
247 size_bp -= ret;
248 }
249
250 if (size_bp < size_buf)
251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
252
253 /*
254 * The text is trimmed, it's up to the caller to provide sufficiently
255 * large buffer
256 */
257out_overflow:;
258}
259
260static int init_first_rw_device(struct btrfs_trans_handle *trans);
261static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
262static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
263
264/*
265 * Device locking
266 * ==============
267 *
268 * There are several mutexes that protect manipulation of devices and low-level
269 * structures like chunks but not block groups, extents or files
270 *
271 * uuid_mutex (global lock)
272 * ------------------------
273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
275 * device) or requested by the device= mount option
276 *
277 * the mutex can be very coarse and can cover long-running operations
278 *
279 * protects: updates to fs_devices counters like missing devices, rw devices,
280 * seeding, structure cloning, opening/closing devices at mount/umount time
281 *
282 * global::fs_devs - add, remove, updates to the global list
283 *
284 * does not protect: manipulation of the fs_devices::devices list in general
285 * but in mount context it could be used to exclude list modifications by eg.
286 * scan ioctl
287 *
288 * btrfs_device::name - renames (write side), read is RCU
289 *
290 * fs_devices::device_list_mutex (per-fs, with RCU)
291 * ------------------------------------------------
292 * protects updates to fs_devices::devices, ie. adding and deleting
293 *
294 * simple list traversal with read-only actions can be done with RCU protection
295 *
296 * may be used to exclude some operations from running concurrently without any
297 * modifications to the list (see write_all_supers)
298 *
299 * Is not required at mount and close times, because our device list is
300 * protected by the uuid_mutex at that point.
301 *
302 * balance_mutex
303 * -------------
304 * protects balance structures (status, state) and context accessed from
305 * several places (internally, ioctl)
306 *
307 * chunk_mutex
308 * -----------
309 * protects chunks, adding or removing during allocation, trim or when a new
310 * device is added/removed. Additionally it also protects post_commit_list of
311 * individual devices, since they can be added to the transaction's
312 * post_commit_list only with chunk_mutex held.
313 *
314 * cleaner_mutex
315 * -------------
316 * a big lock that is held by the cleaner thread and prevents running subvolume
317 * cleaning together with relocation or delayed iputs
318 *
319 *
320 * Lock nesting
321 * ============
322 *
323 * uuid_mutex
324 * device_list_mutex
325 * chunk_mutex
326 * balance_mutex
327 *
328 *
329 * Exclusive operations
330 * ====================
331 *
332 * Maintains the exclusivity of the following operations that apply to the
333 * whole filesystem and cannot run in parallel.
334 *
335 * - Balance (*)
336 * - Device add
337 * - Device remove
338 * - Device replace (*)
339 * - Resize
340 *
341 * The device operations (as above) can be in one of the following states:
342 *
343 * - Running state
344 * - Paused state
345 * - Completed state
346 *
347 * Only device operations marked with (*) can go into the Paused state for the
348 * following reasons:
349 *
350 * - ioctl (only Balance can be Paused through ioctl)
351 * - filesystem remounted as read-only
352 * - filesystem unmounted and mounted as read-only
353 * - system power-cycle and filesystem mounted as read-only
354 * - filesystem or device errors leading to forced read-only
355 *
356 * The status of exclusive operation is set and cleared atomically.
357 * During the course of Paused state, fs_info::exclusive_operation remains set.
358 * A device operation in Paused or Running state can be canceled or resumed
359 * either by ioctl (Balance only) or when remounted as read-write.
360 * The exclusive status is cleared when the device operation is canceled or
361 * completed.
362 */
363
364DEFINE_MUTEX(uuid_mutex);
365static LIST_HEAD(fs_uuids);
366struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
367{
368 return &fs_uuids;
369}
370
371/*
372 * Allocate new btrfs_fs_devices structure identified by a fsid.
373 *
374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
375 * fs_devices::metadata_fsid
376 *
377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
378 * The returned struct is not linked onto any lists and can be destroyed with
379 * kfree() right away.
380 */
381static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
382{
383 struct btrfs_fs_devices *fs_devs;
384
385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
386 if (!fs_devs)
387 return ERR_PTR(-ENOMEM);
388
389 mutex_init(&fs_devs->device_list_mutex);
390
391 INIT_LIST_HEAD(&fs_devs->devices);
392 INIT_LIST_HEAD(&fs_devs->alloc_list);
393 INIT_LIST_HEAD(&fs_devs->fs_list);
394 INIT_LIST_HEAD(&fs_devs->seed_list);
395
396 if (fsid) {
397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 }
400
401 return fs_devs;
402}
403
404static void btrfs_free_device(struct btrfs_device *device)
405{
406 WARN_ON(!list_empty(&device->post_commit_list));
407 rcu_string_free(device->name);
408 extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411}
412
413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414{
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 while (!list_empty(&fs_devices->devices)) {
419 device = list_entry(fs_devices->devices.next,
420 struct btrfs_device, dev_list);
421 list_del(&device->dev_list);
422 btrfs_free_device(device);
423 }
424 kfree(fs_devices);
425}
426
427void __exit btrfs_cleanup_fs_uuids(void)
428{
429 struct btrfs_fs_devices *fs_devices;
430
431 while (!list_empty(&fs_uuids)) {
432 fs_devices = list_entry(fs_uuids.next,
433 struct btrfs_fs_devices, fs_list);
434 list_del(&fs_devices->fs_list);
435 free_fs_devices(fs_devices);
436 }
437}
438
439static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
440 const u8 *fsid, const u8 *metadata_fsid)
441{
442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
443 return false;
444
445 if (!metadata_fsid)
446 return true;
447
448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
449 return false;
450
451 return true;
452}
453
454static noinline struct btrfs_fs_devices *find_fsid(
455 const u8 *fsid, const u8 *metadata_fsid)
456{
457 struct btrfs_fs_devices *fs_devices;
458
459 ASSERT(fsid);
460
461 /* Handle non-split brain cases */
462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
464 return fs_devices;
465 }
466 return NULL;
467}
468
469static int
470btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
471 int flush, struct bdev_handle **bdev_handle,
472 struct btrfs_super_block **disk_super)
473{
474 struct block_device *bdev;
475 int ret;
476
477 *bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
478
479 if (IS_ERR(*bdev_handle)) {
480 ret = PTR_ERR(*bdev_handle);
481 goto error;
482 }
483 bdev = (*bdev_handle)->bdev;
484
485 if (flush)
486 sync_blockdev(bdev);
487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
488 if (ret) {
489 bdev_release(*bdev_handle);
490 goto error;
491 }
492 invalidate_bdev(bdev);
493 *disk_super = btrfs_read_dev_super(bdev);
494 if (IS_ERR(*disk_super)) {
495 ret = PTR_ERR(*disk_super);
496 bdev_release(*bdev_handle);
497 goto error;
498 }
499
500 return 0;
501
502error:
503 *bdev_handle = NULL;
504 return ret;
505}
506
507/*
508 * Search and remove all stale devices (which are not mounted). When both
509 * inputs are NULL, it will search and release all stale devices.
510 *
511 * @devt: Optional. When provided will it release all unmounted devices
512 * matching this devt only.
513 * @skip_device: Optional. Will skip this device when searching for the stale
514 * devices.
515 *
516 * Return: 0 for success or if @devt is 0.
517 * -EBUSY if @devt is a mounted device.
518 * -ENOENT if @devt does not match any device in the list.
519 */
520static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
521{
522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
523 struct btrfs_device *device, *tmp_device;
524 int ret;
525 bool freed = false;
526
527 lockdep_assert_held(&uuid_mutex);
528
529 /* Return good status if there is no instance of devt. */
530 ret = 0;
531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
532
533 mutex_lock(&fs_devices->device_list_mutex);
534 list_for_each_entry_safe(device, tmp_device,
535 &fs_devices->devices, dev_list) {
536 if (skip_device && skip_device == device)
537 continue;
538 if (devt && devt != device->devt)
539 continue;
540 if (fs_devices->opened) {
541 if (devt)
542 ret = -EBUSY;
543 break;
544 }
545
546 /* delete the stale device */
547 fs_devices->num_devices--;
548 list_del(&device->dev_list);
549 btrfs_free_device(device);
550
551 freed = true;
552 }
553 mutex_unlock(&fs_devices->device_list_mutex);
554
555 if (fs_devices->num_devices == 0) {
556 btrfs_sysfs_remove_fsid(fs_devices);
557 list_del(&fs_devices->fs_list);
558 free_fs_devices(fs_devices);
559 }
560 }
561
562 /* If there is at least one freed device return 0. */
563 if (freed)
564 return 0;
565
566 return ret;
567}
568
569static struct btrfs_fs_devices *find_fsid_by_device(
570 struct btrfs_super_block *disk_super,
571 dev_t devt, bool *same_fsid_diff_dev)
572{
573 struct btrfs_fs_devices *fsid_fs_devices;
574 struct btrfs_fs_devices *devt_fs_devices;
575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
577 bool found_by_devt = false;
578
579 /* Find the fs_device by the usual method, if found use it. */
580 fsid_fs_devices = find_fsid(disk_super->fsid,
581 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
582
583 /* The temp_fsid feature is supported only with single device filesystem. */
584 if (btrfs_super_num_devices(disk_super) != 1)
585 return fsid_fs_devices;
586
587 /*
588 * A seed device is an integral component of the sprout device, which
589 * functions as a multi-device filesystem. So, temp-fsid feature is
590 * not supported.
591 */
592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
593 return fsid_fs_devices;
594
595 /* Try to find a fs_devices by matching devt. */
596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
597 struct btrfs_device *device;
598
599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
600 if (device->devt == devt) {
601 found_by_devt = true;
602 break;
603 }
604 }
605 if (found_by_devt)
606 break;
607 }
608
609 if (found_by_devt) {
610 /* Existing device. */
611 if (fsid_fs_devices == NULL) {
612 if (devt_fs_devices->opened == 0) {
613 /* Stale device. */
614 return NULL;
615 } else {
616 /* temp_fsid is mounting a subvol. */
617 return devt_fs_devices;
618 }
619 } else {
620 /* Regular or temp_fsid device mounting a subvol. */
621 return devt_fs_devices;
622 }
623 } else {
624 /* New device. */
625 if (fsid_fs_devices == NULL) {
626 return NULL;
627 } else {
628 /* sb::fsid is already used create a new temp_fsid. */
629 *same_fsid_diff_dev = true;
630 return NULL;
631 }
632 }
633
634 /* Not reached. */
635}
636
637/*
638 * This is only used on mount, and we are protected from competing things
639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
640 * fs_devices->device_list_mutex here.
641 */
642static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
643 struct btrfs_device *device, blk_mode_t flags,
644 void *holder)
645{
646 struct bdev_handle *bdev_handle;
647 struct btrfs_super_block *disk_super;
648 u64 devid;
649 int ret;
650
651 if (device->bdev)
652 return -EINVAL;
653 if (!device->name)
654 return -EINVAL;
655
656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
657 &bdev_handle, &disk_super);
658 if (ret)
659 return ret;
660
661 devid = btrfs_stack_device_id(&disk_super->dev_item);
662 if (devid != device->devid)
663 goto error_free_page;
664
665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
666 goto error_free_page;
667
668 device->generation = btrfs_super_generation(disk_super);
669
670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
671 if (btrfs_super_incompat_flags(disk_super) &
672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
673 pr_err(
674 "BTRFS: Invalid seeding and uuid-changed device detected\n");
675 goto error_free_page;
676 }
677
678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
679 fs_devices->seeding = true;
680 } else {
681 if (bdev_read_only(bdev_handle->bdev))
682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 else
684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 }
686
687 if (!bdev_nonrot(bdev_handle->bdev))
688 fs_devices->rotating = true;
689
690 if (bdev_max_discard_sectors(bdev_handle->bdev))
691 fs_devices->discardable = true;
692
693 device->bdev_handle = bdev_handle;
694 device->bdev = bdev_handle->bdev;
695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
696
697 fs_devices->open_devices++;
698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
699 device->devid != BTRFS_DEV_REPLACE_DEVID) {
700 fs_devices->rw_devices++;
701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
702 }
703 btrfs_release_disk_super(disk_super);
704
705 return 0;
706
707error_free_page:
708 btrfs_release_disk_super(disk_super);
709 bdev_release(bdev_handle);
710
711 return -EINVAL;
712}
713
714u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
715{
716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
718
719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
720}
721
722/*
723 * Add new device to list of registered devices
724 *
725 * Returns:
726 * device pointer which was just added or updated when successful
727 * error pointer when failed
728 */
729static noinline struct btrfs_device *device_list_add(const char *path,
730 struct btrfs_super_block *disk_super,
731 bool *new_device_added)
732{
733 struct btrfs_device *device;
734 struct btrfs_fs_devices *fs_devices = NULL;
735 struct rcu_string *name;
736 u64 found_transid = btrfs_super_generation(disk_super);
737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
738 dev_t path_devt;
739 int error;
740 bool same_fsid_diff_dev = false;
741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
743
744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
745 btrfs_err(NULL,
746"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
747 path);
748 return ERR_PTR(-EAGAIN);
749 }
750
751 error = lookup_bdev(path, &path_devt);
752 if (error) {
753 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
754 path, error);
755 return ERR_PTR(error);
756 }
757
758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
759
760 if (!fs_devices) {
761 fs_devices = alloc_fs_devices(disk_super->fsid);
762 if (IS_ERR(fs_devices))
763 return ERR_CAST(fs_devices);
764
765 if (has_metadata_uuid)
766 memcpy(fs_devices->metadata_uuid,
767 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
768
769 if (same_fsid_diff_dev) {
770 generate_random_uuid(fs_devices->fsid);
771 fs_devices->temp_fsid = true;
772 pr_info("BTRFS: device %s using temp-fsid %pU\n",
773 path, fs_devices->fsid);
774 }
775
776 mutex_lock(&fs_devices->device_list_mutex);
777 list_add(&fs_devices->fs_list, &fs_uuids);
778
779 device = NULL;
780 } else {
781 struct btrfs_dev_lookup_args args = {
782 .devid = devid,
783 .uuid = disk_super->dev_item.uuid,
784 };
785
786 mutex_lock(&fs_devices->device_list_mutex);
787 device = btrfs_find_device(fs_devices, &args);
788
789 if (found_transid > fs_devices->latest_generation) {
790 memcpy(fs_devices->fsid, disk_super->fsid,
791 BTRFS_FSID_SIZE);
792 memcpy(fs_devices->metadata_uuid,
793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
794 }
795 }
796
797 if (!device) {
798 unsigned int nofs_flag;
799
800 if (fs_devices->opened) {
801 btrfs_err(NULL,
802"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
803 path, fs_devices->fsid, current->comm,
804 task_pid_nr(current));
805 mutex_unlock(&fs_devices->device_list_mutex);
806 return ERR_PTR(-EBUSY);
807 }
808
809 nofs_flag = memalloc_nofs_save();
810 device = btrfs_alloc_device(NULL, &devid,
811 disk_super->dev_item.uuid, path);
812 memalloc_nofs_restore(nofs_flag);
813 if (IS_ERR(device)) {
814 mutex_unlock(&fs_devices->device_list_mutex);
815 /* we can safely leave the fs_devices entry around */
816 return device;
817 }
818
819 device->devt = path_devt;
820
821 list_add_rcu(&device->dev_list, &fs_devices->devices);
822 fs_devices->num_devices++;
823
824 device->fs_devices = fs_devices;
825 *new_device_added = true;
826
827 if (disk_super->label[0])
828 pr_info(
829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
830 disk_super->label, devid, found_transid, path,
831 current->comm, task_pid_nr(current));
832 else
833 pr_info(
834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
835 disk_super->fsid, devid, found_transid, path,
836 current->comm, task_pid_nr(current));
837
838 } else if (!device->name || strcmp(device->name->str, path)) {
839 /*
840 * When FS is already mounted.
841 * 1. If you are here and if the device->name is NULL that
842 * means this device was missing at time of FS mount.
843 * 2. If you are here and if the device->name is different
844 * from 'path' that means either
845 * a. The same device disappeared and reappeared with
846 * different name. or
847 * b. The missing-disk-which-was-replaced, has
848 * reappeared now.
849 *
850 * We must allow 1 and 2a above. But 2b would be a spurious
851 * and unintentional.
852 *
853 * Further in case of 1 and 2a above, the disk at 'path'
854 * would have missed some transaction when it was away and
855 * in case of 2a the stale bdev has to be updated as well.
856 * 2b must not be allowed at all time.
857 */
858
859 /*
860 * For now, we do allow update to btrfs_fs_device through the
861 * btrfs dev scan cli after FS has been mounted. We're still
862 * tracking a problem where systems fail mount by subvolume id
863 * when we reject replacement on a mounted FS.
864 */
865 if (!fs_devices->opened && found_transid < device->generation) {
866 /*
867 * That is if the FS is _not_ mounted and if you
868 * are here, that means there is more than one
869 * disk with same uuid and devid.We keep the one
870 * with larger generation number or the last-in if
871 * generation are equal.
872 */
873 mutex_unlock(&fs_devices->device_list_mutex);
874 btrfs_err(NULL,
875"device %s already registered with a higher generation, found %llu expect %llu",
876 path, found_transid, device->generation);
877 return ERR_PTR(-EEXIST);
878 }
879
880 /*
881 * We are going to replace the device path for a given devid,
882 * make sure it's the same device if the device is mounted
883 *
884 * NOTE: the device->fs_info may not be reliable here so pass
885 * in a NULL to message helpers instead. This avoids a possible
886 * use-after-free when the fs_info and fs_info->sb are already
887 * torn down.
888 */
889 if (device->bdev) {
890 if (device->devt != path_devt) {
891 mutex_unlock(&fs_devices->device_list_mutex);
892 btrfs_warn_in_rcu(NULL,
893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
894 path, devid, found_transid,
895 current->comm,
896 task_pid_nr(current));
897 return ERR_PTR(-EEXIST);
898 }
899 btrfs_info_in_rcu(NULL,
900 "devid %llu device path %s changed to %s scanned by %s (%d)",
901 devid, btrfs_dev_name(device),
902 path, current->comm,
903 task_pid_nr(current));
904 }
905
906 name = rcu_string_strdup(path, GFP_NOFS);
907 if (!name) {
908 mutex_unlock(&fs_devices->device_list_mutex);
909 return ERR_PTR(-ENOMEM);
910 }
911 rcu_string_free(device->name);
912 rcu_assign_pointer(device->name, name);
913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
914 fs_devices->missing_devices--;
915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
916 }
917 device->devt = path_devt;
918 }
919
920 /*
921 * Unmount does not free the btrfs_device struct but would zero
922 * generation along with most of the other members. So just update
923 * it back. We need it to pick the disk with largest generation
924 * (as above).
925 */
926 if (!fs_devices->opened) {
927 device->generation = found_transid;
928 fs_devices->latest_generation = max_t(u64, found_transid,
929 fs_devices->latest_generation);
930 }
931
932 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
933
934 mutex_unlock(&fs_devices->device_list_mutex);
935 return device;
936}
937
938static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
939{
940 struct btrfs_fs_devices *fs_devices;
941 struct btrfs_device *device;
942 struct btrfs_device *orig_dev;
943 int ret = 0;
944
945 lockdep_assert_held(&uuid_mutex);
946
947 fs_devices = alloc_fs_devices(orig->fsid);
948 if (IS_ERR(fs_devices))
949 return fs_devices;
950
951 fs_devices->total_devices = orig->total_devices;
952
953 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
954 const char *dev_path = NULL;
955
956 /*
957 * This is ok to do without RCU read locked because we hold the
958 * uuid mutex so nothing we touch in here is going to disappear.
959 */
960 if (orig_dev->name)
961 dev_path = orig_dev->name->str;
962
963 device = btrfs_alloc_device(NULL, &orig_dev->devid,
964 orig_dev->uuid, dev_path);
965 if (IS_ERR(device)) {
966 ret = PTR_ERR(device);
967 goto error;
968 }
969
970 if (orig_dev->zone_info) {
971 struct btrfs_zoned_device_info *zone_info;
972
973 zone_info = btrfs_clone_dev_zone_info(orig_dev);
974 if (!zone_info) {
975 btrfs_free_device(device);
976 ret = -ENOMEM;
977 goto error;
978 }
979 device->zone_info = zone_info;
980 }
981
982 list_add(&device->dev_list, &fs_devices->devices);
983 device->fs_devices = fs_devices;
984 fs_devices->num_devices++;
985 }
986 return fs_devices;
987error:
988 free_fs_devices(fs_devices);
989 return ERR_PTR(ret);
990}
991
992static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
993 struct btrfs_device **latest_dev)
994{
995 struct btrfs_device *device, *next;
996
997 /* This is the initialized path, it is safe to release the devices. */
998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001 &device->dev_state) &&
1002 !test_bit(BTRFS_DEV_STATE_MISSING,
1003 &device->dev_state) &&
1004 (!*latest_dev ||
1005 device->generation > (*latest_dev)->generation)) {
1006 *latest_dev = device;
1007 }
1008 continue;
1009 }
1010
1011 /*
1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013 * in btrfs_init_dev_replace() so just continue.
1014 */
1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016 continue;
1017
1018 if (device->bdev_handle) {
1019 bdev_release(device->bdev_handle);
1020 device->bdev = NULL;
1021 device->bdev_handle = NULL;
1022 fs_devices->open_devices--;
1023 }
1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025 list_del_init(&device->dev_alloc_list);
1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027 fs_devices->rw_devices--;
1028 }
1029 list_del_init(&device->dev_list);
1030 fs_devices->num_devices--;
1031 btrfs_free_device(device);
1032 }
1033
1034}
1035
1036/*
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1039 */
1040void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1041{
1042 struct btrfs_device *latest_dev = NULL;
1043 struct btrfs_fs_devices *seed_dev;
1044
1045 mutex_lock(&uuid_mutex);
1046 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1047
1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1050
1051 fs_devices->latest_dev = latest_dev;
1052
1053 mutex_unlock(&uuid_mutex);
1054}
1055
1056static void btrfs_close_bdev(struct btrfs_device *device)
1057{
1058 if (!device->bdev)
1059 return;
1060
1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062 sync_blockdev(device->bdev);
1063 invalidate_bdev(device->bdev);
1064 }
1065
1066 bdev_release(device->bdev_handle);
1067}
1068
1069static void btrfs_close_one_device(struct btrfs_device *device)
1070{
1071 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1072
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 list_del_init(&device->dev_alloc_list);
1076 fs_devices->rw_devices--;
1077 }
1078
1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081
1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084 fs_devices->missing_devices--;
1085 }
1086
1087 btrfs_close_bdev(device);
1088 if (device->bdev) {
1089 fs_devices->open_devices--;
1090 device->bdev = NULL;
1091 }
1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093 btrfs_destroy_dev_zone_info(device);
1094
1095 device->fs_info = NULL;
1096 atomic_set(&device->dev_stats_ccnt, 0);
1097 extent_io_tree_release(&device->alloc_state);
1098
1099 /*
1100 * Reset the flush error record. We might have a transient flush error
1101 * in this mount, and if so we aborted the current transaction and set
1102 * the fs to an error state, guaranteeing no super blocks can be further
1103 * committed. However that error might be transient and if we unmount the
1104 * filesystem and mount it again, we should allow the mount to succeed
1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106 * filesystem again we still get flush errors, then we will again abort
1107 * any transaction and set the error state, guaranteeing no commits of
1108 * unsafe super blocks.
1109 */
1110 device->last_flush_error = 0;
1111
1112 /* Verify the device is back in a pristine state */
1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115 WARN_ON(!list_empty(&device->dev_alloc_list));
1116 WARN_ON(!list_empty(&device->post_commit_list));
1117}
1118
1119static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1120{
1121 struct btrfs_device *device, *tmp;
1122
1123 lockdep_assert_held(&uuid_mutex);
1124
1125 if (--fs_devices->opened > 0)
1126 return;
1127
1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129 btrfs_close_one_device(device);
1130
1131 WARN_ON(fs_devices->open_devices);
1132 WARN_ON(fs_devices->rw_devices);
1133 fs_devices->opened = 0;
1134 fs_devices->seeding = false;
1135 fs_devices->fs_info = NULL;
1136}
1137
1138void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1139{
1140 LIST_HEAD(list);
1141 struct btrfs_fs_devices *tmp;
1142
1143 mutex_lock(&uuid_mutex);
1144 close_fs_devices(fs_devices);
1145 if (!fs_devices->opened) {
1146 list_splice_init(&fs_devices->seed_list, &list);
1147
1148 /*
1149 * If the struct btrfs_fs_devices is not assembled with any
1150 * other device, it can be re-initialized during the next mount
1151 * without the needing device-scan step. Therefore, it can be
1152 * fully freed.
1153 */
1154 if (fs_devices->num_devices == 1) {
1155 list_del(&fs_devices->fs_list);
1156 free_fs_devices(fs_devices);
1157 }
1158 }
1159
1160
1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162 close_fs_devices(fs_devices);
1163 list_del(&fs_devices->seed_list);
1164 free_fs_devices(fs_devices);
1165 }
1166 mutex_unlock(&uuid_mutex);
1167}
1168
1169static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170 blk_mode_t flags, void *holder)
1171{
1172 struct btrfs_device *device;
1173 struct btrfs_device *latest_dev = NULL;
1174 struct btrfs_device *tmp_device;
1175
1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177 dev_list) {
1178 int ret;
1179
1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181 if (ret == 0 &&
1182 (!latest_dev || device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 } else if (ret == -ENODATA) {
1185 fs_devices->num_devices--;
1186 list_del(&device->dev_list);
1187 btrfs_free_device(device);
1188 }
1189 }
1190 if (fs_devices->open_devices == 0)
1191 return -EINVAL;
1192
1193 fs_devices->opened = 1;
1194 fs_devices->latest_dev = latest_dev;
1195 fs_devices->total_rw_bytes = 0;
1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1198
1199 return 0;
1200}
1201
1202static int devid_cmp(void *priv, const struct list_head *a,
1203 const struct list_head *b)
1204{
1205 const struct btrfs_device *dev1, *dev2;
1206
1207 dev1 = list_entry(a, struct btrfs_device, dev_list);
1208 dev2 = list_entry(b, struct btrfs_device, dev_list);
1209
1210 if (dev1->devid < dev2->devid)
1211 return -1;
1212 else if (dev1->devid > dev2->devid)
1213 return 1;
1214 return 0;
1215}
1216
1217int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218 blk_mode_t flags, void *holder)
1219{
1220 int ret;
1221
1222 lockdep_assert_held(&uuid_mutex);
1223 /*
1224 * The device_list_mutex cannot be taken here in case opening the
1225 * underlying device takes further locks like open_mutex.
1226 *
1227 * We also don't need the lock here as this is called during mount and
1228 * exclusion is provided by uuid_mutex
1229 */
1230
1231 if (fs_devices->opened) {
1232 fs_devices->opened++;
1233 ret = 0;
1234 } else {
1235 list_sort(NULL, &fs_devices->devices, devid_cmp);
1236 ret = open_fs_devices(fs_devices, flags, holder);
1237 }
1238
1239 return ret;
1240}
1241
1242void btrfs_release_disk_super(struct btrfs_super_block *super)
1243{
1244 struct page *page = virt_to_page(super);
1245
1246 put_page(page);
1247}
1248
1249static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250 u64 bytenr, u64 bytenr_orig)
1251{
1252 struct btrfs_super_block *disk_super;
1253 struct page *page;
1254 void *p;
1255 pgoff_t index;
1256
1257 /* make sure our super fits in the device */
1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259 return ERR_PTR(-EINVAL);
1260
1261 /* make sure our super fits in the page */
1262 if (sizeof(*disk_super) > PAGE_SIZE)
1263 return ERR_PTR(-EINVAL);
1264
1265 /* make sure our super doesn't straddle pages on disk */
1266 index = bytenr >> PAGE_SHIFT;
1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268 return ERR_PTR(-EINVAL);
1269
1270 /* pull in the page with our super */
1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1272
1273 if (IS_ERR(page))
1274 return ERR_CAST(page);
1275
1276 p = page_address(page);
1277
1278 /* align our pointer to the offset of the super block */
1279 disk_super = p + offset_in_page(bytenr);
1280
1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283 btrfs_release_disk_super(p);
1284 return ERR_PTR(-EINVAL);
1285 }
1286
1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1289
1290 return disk_super;
1291}
1292
1293int btrfs_forget_devices(dev_t devt)
1294{
1295 int ret;
1296
1297 mutex_lock(&uuid_mutex);
1298 ret = btrfs_free_stale_devices(devt, NULL);
1299 mutex_unlock(&uuid_mutex);
1300
1301 return ret;
1302}
1303
1304/*
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
1307 * is read via pagecache.
1308 *
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1311 * in both cases.
1312 */
1313struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314 bool mount_arg_dev)
1315{
1316 struct btrfs_super_block *disk_super;
1317 bool new_device_added = false;
1318 struct btrfs_device *device = NULL;
1319 struct bdev_handle *bdev_handle;
1320 u64 bytenr, bytenr_orig;
1321 int ret;
1322
1323 lockdep_assert_held(&uuid_mutex);
1324
1325 /*
1326 * we would like to check all the supers, but that would make
1327 * a btrfs mount succeed after a mkfs from a different FS.
1328 * So, we need to add a special mount option to scan for
1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330 */
1331
1332 /*
1333 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334 * device scan which may race with the user's mount or mkfs command,
1335 * resulting in failure.
1336 * Since the device scan is solely for reading purposes, there is no
1337 * need for an exclusive open. Additionally, the devices are read again
1338 * during the mount process. It is ok to get some inconsistent
1339 * values temporarily, as the device paths of the fsid are the only
1340 * required information for assembling the volume.
1341 */
1342 bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1343 if (IS_ERR(bdev_handle))
1344 return ERR_CAST(bdev_handle);
1345
1346 bytenr_orig = btrfs_sb_offset(0);
1347 ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1348 if (ret) {
1349 device = ERR_PTR(ret);
1350 goto error_bdev_put;
1351 }
1352
1353 disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1354 bytenr_orig);
1355 if (IS_ERR(disk_super)) {
1356 device = ERR_CAST(disk_super);
1357 goto error_bdev_put;
1358 }
1359
1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362 dev_t devt;
1363
1364 ret = lookup_bdev(path, &devt);
1365 if (ret)
1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367 path, ret);
1368 else
1369 btrfs_free_stale_devices(devt, NULL);
1370
1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372 device = NULL;
1373 goto free_disk_super;
1374 }
1375
1376 device = device_list_add(path, disk_super, &new_device_added);
1377 if (!IS_ERR(device) && new_device_added)
1378 btrfs_free_stale_devices(device->devt, device);
1379
1380free_disk_super:
1381 btrfs_release_disk_super(disk_super);
1382
1383error_bdev_put:
1384 bdev_release(bdev_handle);
1385
1386 return device;
1387}
1388
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 u64 len)
1395{
1396 u64 physical_start, physical_end;
1397
1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
1399
1400 if (find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
1403
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1408 return true;
1409 }
1410 }
1411 return false;
1412}
1413
1414static u64 dev_extent_search_start(struct btrfs_device *device)
1415{
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
1418 return BTRFS_DEVICE_RANGE_RESERVED;
1419 case BTRFS_CHUNK_ALLOC_ZONED:
1420 /*
1421 * We don't care about the starting region like regular
1422 * allocator, because we anyway use/reserve the first two zones
1423 * for superblock logging.
1424 */
1425 return 0;
1426 default:
1427 BUG();
1428 }
1429}
1430
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 u64 *hole_start, u64 *hole_size,
1433 u64 num_bytes)
1434{
1435 u64 zone_size = device->zone_info->zone_size;
1436 u64 pos;
1437 int ret;
1438 bool changed = false;
1439
1440 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442 while (*hole_size > 0) {
1443 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 *hole_start + *hole_size,
1445 num_bytes);
1446 if (pos != *hole_start) {
1447 *hole_size = *hole_start + *hole_size - pos;
1448 *hole_start = pos;
1449 changed = true;
1450 if (*hole_size < num_bytes)
1451 break;
1452 }
1453
1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456 /* Range is ensured to be empty */
1457 if (!ret)
1458 return changed;
1459
1460 /* Given hole range was invalid (outside of device) */
1461 if (ret == -ERANGE) {
1462 *hole_start += *hole_size;
1463 *hole_size = 0;
1464 return true;
1465 }
1466
1467 *hole_start += zone_size;
1468 *hole_size -= zone_size;
1469 changed = true;
1470 }
1471
1472 return changed;
1473}
1474
1475/*
1476 * Check if specified hole is suitable for allocation.
1477 *
1478 * @device: the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size: the size of the hole
1481 * @num_bytes: the size of the free space that we need
1482 *
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
1486static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 u64 *hole_size, u64 num_bytes)
1488{
1489 bool changed = false;
1490 u64 hole_end = *hole_start + *hole_size;
1491
1492 for (;;) {
1493 /*
1494 * Check before we set max_hole_start, otherwise we could end up
1495 * sending back this offset anyway.
1496 */
1497 if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 if (hole_end >= *hole_start)
1499 *hole_size = hole_end - *hole_start;
1500 else
1501 *hole_size = 0;
1502 changed = true;
1503 }
1504
1505 switch (device->fs_devices->chunk_alloc_policy) {
1506 case BTRFS_CHUNK_ALLOC_REGULAR:
1507 /* No extra check */
1508 break;
1509 case BTRFS_CHUNK_ALLOC_ZONED:
1510 if (dev_extent_hole_check_zoned(device, hole_start,
1511 hole_size, num_bytes)) {
1512 changed = true;
1513 /*
1514 * The changed hole can contain pending extent.
1515 * Loop again to check that.
1516 */
1517 continue;
1518 }
1519 break;
1520 default:
1521 BUG();
1522 }
1523
1524 break;
1525 }
1526
1527 return changed;
1528}
1529
1530/*
1531 * Find free space in the specified device.
1532 *
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
1539 *
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1556 */
1557static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558 u64 *start, u64 *len)
1559{
1560 struct btrfs_fs_info *fs_info = device->fs_info;
1561 struct btrfs_root *root = fs_info->dev_root;
1562 struct btrfs_key key;
1563 struct btrfs_dev_extent *dev_extent;
1564 struct btrfs_path *path;
1565 u64 search_start;
1566 u64 hole_size;
1567 u64 max_hole_start;
1568 u64 max_hole_size = 0;
1569 u64 extent_end;
1570 u64 search_end = device->total_bytes;
1571 int ret;
1572 int slot;
1573 struct extent_buffer *l;
1574
1575 search_start = dev_extent_search_start(device);
1576 max_hole_start = search_start;
1577
1578 WARN_ON(device->zone_info &&
1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto out;
1585 }
1586again:
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 ret = -ENOSPC;
1590 goto out;
1591 }
1592
1593 path->reada = READA_FORWARD;
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
1596
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601 ret = btrfs_search_backwards(root, &key, path);
1602 if (ret < 0)
1603 goto out;
1604
1605 while (search_start < search_end) {
1606 l = path->nodes[0];
1607 slot = path->slots[0];
1608 if (slot >= btrfs_header_nritems(l)) {
1609 ret = btrfs_next_leaf(root, path);
1610 if (ret == 0)
1611 continue;
1612 if (ret < 0)
1613 goto out;
1614
1615 break;
1616 }
1617 btrfs_item_key_to_cpu(l, &key, slot);
1618
1619 if (key.objectid < device->devid)
1620 goto next;
1621
1622 if (key.objectid > device->devid)
1623 break;
1624
1625 if (key.type != BTRFS_DEV_EXTENT_KEY)
1626 goto next;
1627
1628 if (key.offset > search_end)
1629 break;
1630
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633 dev_extent_hole_check(device, &search_start, &hole_size,
1634 num_bytes);
1635
1636 if (hole_size > max_hole_size) {
1637 max_hole_start = search_start;
1638 max_hole_size = hole_size;
1639 }
1640
1641 /*
1642 * If this free space is greater than which we need,
1643 * it must be the max free space that we have found
1644 * until now, so max_hole_start must point to the start
1645 * of this free space and the length of this free space
1646 * is stored in max_hole_size. Thus, we return
1647 * max_hole_start and max_hole_size and go back to the
1648 * caller.
1649 */
1650 if (hole_size >= num_bytes) {
1651 ret = 0;
1652 goto out;
1653 }
1654 }
1655
1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657 extent_end = key.offset + btrfs_dev_extent_length(l,
1658 dev_extent);
1659 if (extent_end > search_start)
1660 search_start = extent_end;
1661next:
1662 path->slots[0]++;
1663 cond_resched();
1664 }
1665
1666 /*
1667 * At this point, search_start should be the end of
1668 * allocated dev extents, and when shrinking the device,
1669 * search_end may be smaller than search_start.
1670 */
1671 if (search_end > search_start) {
1672 hole_size = search_end - search_start;
1673 if (dev_extent_hole_check(device, &search_start, &hole_size,
1674 num_bytes)) {
1675 btrfs_release_path(path);
1676 goto again;
1677 }
1678
1679 if (hole_size > max_hole_size) {
1680 max_hole_start = search_start;
1681 max_hole_size = hole_size;
1682 }
1683 }
1684
1685 /* See above. */
1686 if (max_hole_size < num_bytes)
1687 ret = -ENOSPC;
1688 else
1689 ret = 0;
1690
1691 ASSERT(max_hole_start + max_hole_size <= search_end);
1692out:
1693 btrfs_free_path(path);
1694 *start = max_hole_start;
1695 if (len)
1696 *len = max_hole_size;
1697 return ret;
1698}
1699
1700static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device,
1702 u64 start, u64 *dev_extent_len)
1703{
1704 struct btrfs_fs_info *fs_info = device->fs_info;
1705 struct btrfs_root *root = fs_info->dev_root;
1706 int ret;
1707 struct btrfs_path *path;
1708 struct btrfs_key key;
1709 struct btrfs_key found_key;
1710 struct extent_buffer *leaf = NULL;
1711 struct btrfs_dev_extent *extent = NULL;
1712
1713 path = btrfs_alloc_path();
1714 if (!path)
1715 return -ENOMEM;
1716
1717 key.objectid = device->devid;
1718 key.offset = start;
1719 key.type = BTRFS_DEV_EXTENT_KEY;
1720again:
1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1722 if (ret > 0) {
1723 ret = btrfs_previous_item(root, path, key.objectid,
1724 BTRFS_DEV_EXTENT_KEY);
1725 if (ret)
1726 goto out;
1727 leaf = path->nodes[0];
1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729 extent = btrfs_item_ptr(leaf, path->slots[0],
1730 struct btrfs_dev_extent);
1731 BUG_ON(found_key.offset > start || found_key.offset +
1732 btrfs_dev_extent_length(leaf, extent) < start);
1733 key = found_key;
1734 btrfs_release_path(path);
1735 goto again;
1736 } else if (ret == 0) {
1737 leaf = path->nodes[0];
1738 extent = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_dev_extent);
1740 } else {
1741 goto out;
1742 }
1743
1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745
1746 ret = btrfs_del_item(trans, root, path);
1747 if (ret == 0)
1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1749out:
1750 btrfs_free_path(path);
1751 return ret;
1752}
1753
1754static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1755{
1756 struct rb_node *n;
1757 u64 ret = 0;
1758
1759 read_lock(&fs_info->mapping_tree_lock);
1760 n = rb_last(&fs_info->mapping_tree.rb_root);
1761 if (n) {
1762 struct btrfs_chunk_map *map;
1763
1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765 ret = map->start + map->chunk_len;
1766 }
1767 read_unlock(&fs_info->mapping_tree_lock);
1768
1769 return ret;
1770}
1771
1772static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773 u64 *devid_ret)
1774{
1775 int ret;
1776 struct btrfs_key key;
1777 struct btrfs_key found_key;
1778 struct btrfs_path *path;
1779
1780 path = btrfs_alloc_path();
1781 if (!path)
1782 return -ENOMEM;
1783
1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785 key.type = BTRFS_DEV_ITEM_KEY;
1786 key.offset = (u64)-1;
1787
1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1789 if (ret < 0)
1790 goto error;
1791
1792 if (ret == 0) {
1793 /* Corruption */
1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795 ret = -EUCLEAN;
1796 goto error;
1797 }
1798
1799 ret = btrfs_previous_item(fs_info->chunk_root, path,
1800 BTRFS_DEV_ITEMS_OBJECTID,
1801 BTRFS_DEV_ITEM_KEY);
1802 if (ret) {
1803 *devid_ret = 1;
1804 } else {
1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806 path->slots[0]);
1807 *devid_ret = found_key.offset + 1;
1808 }
1809 ret = 0;
1810error:
1811 btrfs_free_path(path);
1812 return ret;
1813}
1814
1815/*
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1818 */
1819static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_device *device)
1821{
1822 int ret;
1823 struct btrfs_path *path;
1824 struct btrfs_dev_item *dev_item;
1825 struct extent_buffer *leaf;
1826 struct btrfs_key key;
1827 unsigned long ptr;
1828
1829 path = btrfs_alloc_path();
1830 if (!path)
1831 return -ENOMEM;
1832
1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834 key.type = BTRFS_DEV_ITEM_KEY;
1835 key.offset = device->devid;
1836
1837 btrfs_reserve_chunk_metadata(trans, true);
1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839 &key, sizeof(*dev_item));
1840 btrfs_trans_release_chunk_metadata(trans);
1841 if (ret)
1842 goto out;
1843
1844 leaf = path->nodes[0];
1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846
1847 btrfs_set_device_id(leaf, dev_item, device->devid);
1848 btrfs_set_device_generation(leaf, dev_item, 0);
1849 btrfs_set_device_type(leaf, dev_item, device->type);
1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853 btrfs_set_device_total_bytes(leaf, dev_item,
1854 btrfs_device_get_disk_total_bytes(device));
1855 btrfs_set_device_bytes_used(leaf, dev_item,
1856 btrfs_device_get_bytes_used(device));
1857 btrfs_set_device_group(leaf, dev_item, 0);
1858 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860 btrfs_set_device_start_offset(leaf, dev_item, 0);
1861
1862 ptr = btrfs_device_uuid(dev_item);
1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864 ptr = btrfs_device_fsid(dev_item);
1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866 ptr, BTRFS_FSID_SIZE);
1867 btrfs_mark_buffer_dirty(trans, leaf);
1868
1869 ret = 0;
1870out:
1871 btrfs_free_path(path);
1872 return ret;
1873}
1874
1875/*
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
1878 *
1879 * We don't care about errors here, this is just to be kind to userspace.
1880 */
1881static void update_dev_time(const char *device_path)
1882{
1883 struct path path;
1884 int ret;
1885
1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887 if (ret)
1888 return;
1889
1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1891 path_put(&path);
1892}
1893
1894static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895 struct btrfs_device *device)
1896{
1897 struct btrfs_root *root = device->fs_info->chunk_root;
1898 int ret;
1899 struct btrfs_path *path;
1900 struct btrfs_key key;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = device->devid;
1909
1910 btrfs_reserve_chunk_metadata(trans, false);
1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912 btrfs_trans_release_chunk_metadata(trans);
1913 if (ret) {
1914 if (ret > 0)
1915 ret = -ENOENT;
1916 goto out;
1917 }
1918
1919 ret = btrfs_del_item(trans, root, path);
1920out:
1921 btrfs_free_path(path);
1922 return ret;
1923}
1924
1925/*
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1928 * replace.
1929 */
1930static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931 u64 num_devices)
1932{
1933 u64 all_avail;
1934 unsigned seq;
1935 int i;
1936
1937 do {
1938 seq = read_seqbegin(&fs_info->profiles_lock);
1939
1940 all_avail = fs_info->avail_data_alloc_bits |
1941 fs_info->avail_system_alloc_bits |
1942 fs_info->avail_metadata_alloc_bits;
1943 } while (read_seqretry(&fs_info->profiles_lock, seq));
1944
1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1947 continue;
1948
1949 if (num_devices < btrfs_raid_array[i].devs_min)
1950 return btrfs_raid_array[i].mindev_error;
1951 }
1952
1953 return 0;
1954}
1955
1956static struct btrfs_device * btrfs_find_next_active_device(
1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1958{
1959 struct btrfs_device *next_device;
1960
1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962 if (next_device != device &&
1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964 && next_device->bdev)
1965 return next_device;
1966 }
1967
1968 return NULL;
1969}
1970
1971/*
1972 * Helper function to check if the given device is part of s_bdev / latest_dev
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1976 */
1977void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978 struct btrfs_device *next_device)
1979{
1980 struct btrfs_fs_info *fs_info = device->fs_info;
1981
1982 if (!next_device)
1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1984 device);
1985 ASSERT(next_device);
1986
1987 if (fs_info->sb->s_bdev &&
1988 (fs_info->sb->s_bdev == device->bdev))
1989 fs_info->sb->s_bdev = next_device->bdev;
1990
1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992 fs_info->fs_devices->latest_dev = next_device;
1993}
1994
1995/*
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1998 */
1999static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000{
2001 u64 num_devices = fs_info->fs_devices->num_devices;
2002
2003 down_read(&fs_info->dev_replace.rwsem);
2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005 ASSERT(num_devices > 1);
2006 num_devices--;
2007 }
2008 up_read(&fs_info->dev_replace.rwsem);
2009
2010 return num_devices;
2011}
2012
2013static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014 struct block_device *bdev, int copy_num)
2015{
2016 struct btrfs_super_block *disk_super;
2017 const size_t len = sizeof(disk_super->magic);
2018 const u64 bytenr = btrfs_sb_offset(copy_num);
2019 int ret;
2020
2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022 if (IS_ERR(disk_super))
2023 return;
2024
2025 memset(&disk_super->magic, 0, len);
2026 folio_mark_dirty(virt_to_folio(disk_super));
2027 btrfs_release_disk_super(disk_super);
2028
2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2030 if (ret)
2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032 copy_num, ret);
2033}
2034
2035void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev,
2037 const char *device_path)
2038{
2039 int copy_num;
2040
2041 if (!bdev)
2042 return;
2043
2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045 if (bdev_is_zoned(bdev))
2046 btrfs_reset_sb_log_zones(bdev, copy_num);
2047 else
2048 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2049 }
2050
2051 /* Notify udev that device has changed */
2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053
2054 /* Update ctime/mtime for device path for libblkid */
2055 update_dev_time(device_path);
2056}
2057
2058int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059 struct btrfs_dev_lookup_args *args,
2060 struct bdev_handle **bdev_handle)
2061{
2062 struct btrfs_trans_handle *trans;
2063 struct btrfs_device *device;
2064 struct btrfs_fs_devices *cur_devices;
2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2066 u64 num_devices;
2067 int ret = 0;
2068
2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071 return -EINVAL;
2072 }
2073
2074 /*
2075 * The device list in fs_devices is accessed without locks (neither
2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077 * filesystem and another device rm cannot run.
2078 */
2079 num_devices = btrfs_num_devices(fs_info);
2080
2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2082 if (ret)
2083 return ret;
2084
2085 device = btrfs_find_device(fs_info->fs_devices, args);
2086 if (!device) {
2087 if (args->missing)
2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089 else
2090 ret = -ENOENT;
2091 return ret;
2092 }
2093
2094 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095 btrfs_warn_in_rcu(fs_info,
2096 "cannot remove device %s (devid %llu) due to active swapfile",
2097 btrfs_dev_name(device), device->devid);
2098 return -ETXTBSY;
2099 }
2100
2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102 return BTRFS_ERROR_DEV_TGT_REPLACE;
2103
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105 fs_info->fs_devices->rw_devices == 1)
2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2107
2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109 mutex_lock(&fs_info->chunk_mutex);
2110 list_del_init(&device->dev_alloc_list);
2111 device->fs_devices->rw_devices--;
2112 mutex_unlock(&fs_info->chunk_mutex);
2113 }
2114
2115 ret = btrfs_shrink_device(device, 0);
2116 if (ret)
2117 goto error_undo;
2118
2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120 if (IS_ERR(trans)) {
2121 ret = PTR_ERR(trans);
2122 goto error_undo;
2123 }
2124
2125 ret = btrfs_rm_dev_item(trans, device);
2126 if (ret) {
2127 /* Any error in dev item removal is critical */
2128 btrfs_crit(fs_info,
2129 "failed to remove device item for devid %llu: %d",
2130 device->devid, ret);
2131 btrfs_abort_transaction(trans, ret);
2132 btrfs_end_transaction(trans);
2133 return ret;
2134 }
2135
2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137 btrfs_scrub_cancel_dev(device);
2138
2139 /*
2140 * the device list mutex makes sure that we don't change
2141 * the device list while someone else is writing out all
2142 * the device supers. Whoever is writing all supers, should
2143 * lock the device list mutex before getting the number of
2144 * devices in the super block (super_copy). Conversely,
2145 * whoever updates the number of devices in the super block
2146 * (super_copy) should hold the device list mutex.
2147 */
2148
2149 /*
2150 * In normal cases the cur_devices == fs_devices. But in case
2151 * of deleting a seed device, the cur_devices should point to
2152 * its own fs_devices listed under the fs_devices->seed_list.
2153 */
2154 cur_devices = device->fs_devices;
2155 mutex_lock(&fs_devices->device_list_mutex);
2156 list_del_rcu(&device->dev_list);
2157
2158 cur_devices->num_devices--;
2159 cur_devices->total_devices--;
2160 /* Update total_devices of the parent fs_devices if it's seed */
2161 if (cur_devices != fs_devices)
2162 fs_devices->total_devices--;
2163
2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165 cur_devices->missing_devices--;
2166
2167 btrfs_assign_next_active_device(device, NULL);
2168
2169 if (device->bdev_handle) {
2170 cur_devices->open_devices--;
2171 /* remove sysfs entry */
2172 btrfs_sysfs_remove_device(device);
2173 }
2174
2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177 mutex_unlock(&fs_devices->device_list_mutex);
2178
2179 /*
2180 * At this point, the device is zero sized and detached from the
2181 * devices list. All that's left is to zero out the old supers and
2182 * free the device.
2183 *
2184 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185 * write lock, and bdev_release() will pull in the ->open_mutex on
2186 * the block device and it's dependencies. Instead just flush the
2187 * device and let the caller do the final bdev_release.
2188 */
2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190 btrfs_scratch_superblocks(fs_info, device->bdev,
2191 device->name->str);
2192 if (device->bdev) {
2193 sync_blockdev(device->bdev);
2194 invalidate_bdev(device->bdev);
2195 }
2196 }
2197
2198 *bdev_handle = device->bdev_handle;
2199 synchronize_rcu();
2200 btrfs_free_device(device);
2201
2202 /*
2203 * This can happen if cur_devices is the private seed devices list. We
2204 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205 * to be held, but in fact we don't need that for the private
2206 * seed_devices, we can simply decrement cur_devices->opened and then
2207 * remove it from our list and free the fs_devices.
2208 */
2209 if (cur_devices->num_devices == 0) {
2210 list_del_init(&cur_devices->seed_list);
2211 ASSERT(cur_devices->opened == 1);
2212 cur_devices->opened--;
2213 free_fs_devices(cur_devices);
2214 }
2215
2216 ret = btrfs_commit_transaction(trans);
2217
2218 return ret;
2219
2220error_undo:
2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222 mutex_lock(&fs_info->chunk_mutex);
2223 list_add(&device->dev_alloc_list,
2224 &fs_devices->alloc_list);
2225 device->fs_devices->rw_devices++;
2226 mutex_unlock(&fs_info->chunk_mutex);
2227 }
2228 return ret;
2229}
2230
2231void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2232{
2233 struct btrfs_fs_devices *fs_devices;
2234
2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2236
2237 /*
2238 * in case of fs with no seed, srcdev->fs_devices will point
2239 * to fs_devices of fs_info. However when the dev being replaced is
2240 * a seed dev it will point to the seed's local fs_devices. In short
2241 * srcdev will have its correct fs_devices in both the cases.
2242 */
2243 fs_devices = srcdev->fs_devices;
2244
2245 list_del_rcu(&srcdev->dev_list);
2246 list_del(&srcdev->dev_alloc_list);
2247 fs_devices->num_devices--;
2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249 fs_devices->missing_devices--;
2250
2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252 fs_devices->rw_devices--;
2253
2254 if (srcdev->bdev)
2255 fs_devices->open_devices--;
2256}
2257
2258void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2259{
2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2261
2262 mutex_lock(&uuid_mutex);
2263
2264 btrfs_close_bdev(srcdev);
2265 synchronize_rcu();
2266 btrfs_free_device(srcdev);
2267
2268 /* if this is no devs we rather delete the fs_devices */
2269 if (!fs_devices->num_devices) {
2270 /*
2271 * On a mounted FS, num_devices can't be zero unless it's a
2272 * seed. In case of a seed device being replaced, the replace
2273 * target added to the sprout FS, so there will be no more
2274 * device left under the seed FS.
2275 */
2276 ASSERT(fs_devices->seeding);
2277
2278 list_del_init(&fs_devices->seed_list);
2279 close_fs_devices(fs_devices);
2280 free_fs_devices(fs_devices);
2281 }
2282 mutex_unlock(&uuid_mutex);
2283}
2284
2285void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2286{
2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2288
2289 mutex_lock(&fs_devices->device_list_mutex);
2290
2291 btrfs_sysfs_remove_device(tgtdev);
2292
2293 if (tgtdev->bdev)
2294 fs_devices->open_devices--;
2295
2296 fs_devices->num_devices--;
2297
2298 btrfs_assign_next_active_device(tgtdev, NULL);
2299
2300 list_del_rcu(&tgtdev->dev_list);
2301
2302 mutex_unlock(&fs_devices->device_list_mutex);
2303
2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305 tgtdev->name->str);
2306
2307 btrfs_close_bdev(tgtdev);
2308 synchronize_rcu();
2309 btrfs_free_device(tgtdev);
2310}
2311
2312/*
2313 * Populate args from device at path.
2314 *
2315 * @fs_info: the filesystem
2316 * @args: the args to populate
2317 * @path: the path to the device
2318 *
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks. The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326 * uuid buffers.
2327 *
2328 * Return: 0 for success, -errno for failure
2329 */
2330int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 struct btrfs_dev_lookup_args *args,
2332 const char *path)
2333{
2334 struct btrfs_super_block *disk_super;
2335 struct bdev_handle *bdev_handle;
2336 int ret;
2337
2338 if (!path || !path[0])
2339 return -EINVAL;
2340 if (!strcmp(path, "missing")) {
2341 args->missing = true;
2342 return 0;
2343 }
2344
2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 if (!args->uuid || !args->fsid) {
2348 btrfs_put_dev_args_from_path(args);
2349 return -ENOMEM;
2350 }
2351
2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353 &bdev_handle, &disk_super);
2354 if (ret) {
2355 btrfs_put_dev_args_from_path(args);
2356 return ret;
2357 }
2358
2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363 else
2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365 btrfs_release_disk_super(disk_super);
2366 bdev_release(bdev_handle);
2367 return 0;
2368}
2369
2370/*
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
2374 */
2375void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376{
2377 kfree(args->uuid);
2378 kfree(args->fsid);
2379 args->uuid = NULL;
2380 args->fsid = NULL;
2381}
2382
2383struct btrfs_device *btrfs_find_device_by_devspec(
2384 struct btrfs_fs_info *fs_info, u64 devid,
2385 const char *device_path)
2386{
2387 BTRFS_DEV_LOOKUP_ARGS(args);
2388 struct btrfs_device *device;
2389 int ret;
2390
2391 if (devid) {
2392 args.devid = devid;
2393 device = btrfs_find_device(fs_info->fs_devices, &args);
2394 if (!device)
2395 return ERR_PTR(-ENOENT);
2396 return device;
2397 }
2398
2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400 if (ret)
2401 return ERR_PTR(ret);
2402 device = btrfs_find_device(fs_info->fs_devices, &args);
2403 btrfs_put_dev_args_from_path(&args);
2404 if (!device)
2405 return ERR_PTR(-ENOENT);
2406 return device;
2407}
2408
2409static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410{
2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 struct btrfs_fs_devices *old_devices;
2413 struct btrfs_fs_devices *seed_devices;
2414
2415 lockdep_assert_held(&uuid_mutex);
2416 if (!fs_devices->seeding)
2417 return ERR_PTR(-EINVAL);
2418
2419 /*
2420 * Private copy of the seed devices, anchored at
2421 * fs_info->fs_devices->seed_list
2422 */
2423 seed_devices = alloc_fs_devices(NULL);
2424 if (IS_ERR(seed_devices))
2425 return seed_devices;
2426
2427 /*
2428 * It's necessary to retain a copy of the original seed fs_devices in
2429 * fs_uuids so that filesystems which have been seeded can successfully
2430 * reference the seed device from open_seed_devices. This also supports
2431 * multiple fs seed.
2432 */
2433 old_devices = clone_fs_devices(fs_devices);
2434 if (IS_ERR(old_devices)) {
2435 kfree(seed_devices);
2436 return old_devices;
2437 }
2438
2439 list_add(&old_devices->fs_list, &fs_uuids);
2440
2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 seed_devices->opened = 1;
2443 INIT_LIST_HEAD(&seed_devices->devices);
2444 INIT_LIST_HEAD(&seed_devices->alloc_list);
2445 mutex_init(&seed_devices->device_list_mutex);
2446
2447 return seed_devices;
2448}
2449
2450/*
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2453 */
2454static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 struct btrfs_fs_devices *seed_devices)
2456{
2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 struct btrfs_device *device;
2460 u64 super_flags;
2461
2462 /*
2463 * We are updating the fsid, the thread leading to device_list_add()
2464 * could race, so uuid_mutex is needed.
2465 */
2466 lockdep_assert_held(&uuid_mutex);
2467
2468 /*
2469 * The threads listed below may traverse dev_list but can do that without
2470 * device_list_mutex:
2471 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 * - Various dev_list readers - are using RCU.
2473 * - btrfs_ioctl_fitrim() - is using RCU.
2474 *
2475 * For-read threads as below are using device_list_mutex:
2476 * - Readonly scrub btrfs_scrub_dev()
2477 * - Readonly scrub btrfs_scrub_progress()
2478 * - btrfs_get_dev_stats()
2479 */
2480 lockdep_assert_held(&fs_devices->device_list_mutex);
2481
2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 synchronize_rcu);
2484 list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 device->fs_devices = seed_devices;
2486
2487 fs_devices->seeding = false;
2488 fs_devices->num_devices = 0;
2489 fs_devices->open_devices = 0;
2490 fs_devices->missing_devices = 0;
2491 fs_devices->rotating = false;
2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493
2494 generate_random_uuid(fs_devices->fsid);
2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497
2498 super_flags = btrfs_super_flags(disk_super) &
2499 ~BTRFS_SUPER_FLAG_SEEDING;
2500 btrfs_set_super_flags(disk_super, super_flags);
2501}
2502
2503/*
2504 * Store the expected generation for seed devices in device items.
2505 */
2506static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507{
2508 BTRFS_DEV_LOOKUP_ARGS(args);
2509 struct btrfs_fs_info *fs_info = trans->fs_info;
2510 struct btrfs_root *root = fs_info->chunk_root;
2511 struct btrfs_path *path;
2512 struct extent_buffer *leaf;
2513 struct btrfs_dev_item *dev_item;
2514 struct btrfs_device *device;
2515 struct btrfs_key key;
2516 u8 fs_uuid[BTRFS_FSID_SIZE];
2517 u8 dev_uuid[BTRFS_UUID_SIZE];
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 key.offset = 0;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2527
2528 while (1) {
2529 btrfs_reserve_chunk_metadata(trans, false);
2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 btrfs_trans_release_chunk_metadata(trans);
2532 if (ret < 0)
2533 goto error;
2534
2535 leaf = path->nodes[0];
2536next_slot:
2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 ret = btrfs_next_leaf(root, path);
2539 if (ret > 0)
2540 break;
2541 if (ret < 0)
2542 goto error;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 btrfs_release_path(path);
2546 continue;
2547 }
2548
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 key.type != BTRFS_DEV_ITEM_KEY)
2552 break;
2553
2554 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 struct btrfs_dev_item);
2556 args.devid = btrfs_device_id(leaf, dev_item);
2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 BTRFS_UUID_SIZE);
2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 BTRFS_FSID_SIZE);
2561 args.uuid = dev_uuid;
2562 args.fsid = fs_uuid;
2563 device = btrfs_find_device(fs_info->fs_devices, &args);
2564 BUG_ON(!device); /* Logic error */
2565
2566 if (device->fs_devices->seeding) {
2567 btrfs_set_device_generation(leaf, dev_item,
2568 device->generation);
2569 btrfs_mark_buffer_dirty(trans, leaf);
2570 }
2571
2572 path->slots[0]++;
2573 goto next_slot;
2574 }
2575 ret = 0;
2576error:
2577 btrfs_free_path(path);
2578 return ret;
2579}
2580
2581int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582{
2583 struct btrfs_root *root = fs_info->dev_root;
2584 struct btrfs_trans_handle *trans;
2585 struct btrfs_device *device;
2586 struct bdev_handle *bdev_handle;
2587 struct super_block *sb = fs_info->sb;
2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 struct btrfs_fs_devices *seed_devices = NULL;
2590 u64 orig_super_total_bytes;
2591 u64 orig_super_num_devices;
2592 int ret = 0;
2593 bool seeding_dev = false;
2594 bool locked = false;
2595
2596 if (sb_rdonly(sb) && !fs_devices->seeding)
2597 return -EROFS;
2598
2599 bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2600 fs_info->bdev_holder, NULL);
2601 if (IS_ERR(bdev_handle))
2602 return PTR_ERR(bdev_handle);
2603
2604 if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2605 ret = -EINVAL;
2606 goto error;
2607 }
2608
2609 if (fs_devices->seeding) {
2610 seeding_dev = true;
2611 down_write(&sb->s_umount);
2612 mutex_lock(&uuid_mutex);
2613 locked = true;
2614 }
2615
2616 sync_blockdev(bdev_handle->bdev);
2617
2618 rcu_read_lock();
2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620 if (device->bdev == bdev_handle->bdev) {
2621 ret = -EEXIST;
2622 rcu_read_unlock();
2623 goto error;
2624 }
2625 }
2626 rcu_read_unlock();
2627
2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629 if (IS_ERR(device)) {
2630 /* we can safely leave the fs_devices entry around */
2631 ret = PTR_ERR(device);
2632 goto error;
2633 }
2634
2635 device->fs_info = fs_info;
2636 device->bdev_handle = bdev_handle;
2637 device->bdev = bdev_handle->bdev;
2638 ret = lookup_bdev(device_path, &device->devt);
2639 if (ret)
2640 goto error_free_device;
2641
2642 ret = btrfs_get_dev_zone_info(device, false);
2643 if (ret)
2644 goto error_free_device;
2645
2646 trans = btrfs_start_transaction(root, 0);
2647 if (IS_ERR(trans)) {
2648 ret = PTR_ERR(trans);
2649 goto error_free_zone;
2650 }
2651
2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653 device->generation = trans->transid;
2654 device->io_width = fs_info->sectorsize;
2655 device->io_align = fs_info->sectorsize;
2656 device->sector_size = fs_info->sectorsize;
2657 device->total_bytes =
2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659 device->disk_total_bytes = device->total_bytes;
2660 device->commit_total_bytes = device->total_bytes;
2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663 device->dev_stats_valid = 1;
2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665
2666 if (seeding_dev) {
2667 btrfs_clear_sb_rdonly(sb);
2668
2669 /* GFP_KERNEL allocation must not be under device_list_mutex */
2670 seed_devices = btrfs_init_sprout(fs_info);
2671 if (IS_ERR(seed_devices)) {
2672 ret = PTR_ERR(seed_devices);
2673 btrfs_abort_transaction(trans, ret);
2674 goto error_trans;
2675 }
2676 }
2677
2678 mutex_lock(&fs_devices->device_list_mutex);
2679 if (seeding_dev) {
2680 btrfs_setup_sprout(fs_info, seed_devices);
2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682 device);
2683 }
2684
2685 device->fs_devices = fs_devices;
2686
2687 mutex_lock(&fs_info->chunk_mutex);
2688 list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 fs_devices->num_devices++;
2691 fs_devices->open_devices++;
2692 fs_devices->rw_devices++;
2693 fs_devices->total_devices++;
2694 fs_devices->total_rw_bytes += device->total_bytes;
2695
2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697
2698 if (!bdev_nonrot(device->bdev))
2699 fs_devices->rotating = true;
2700
2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702 btrfs_set_super_total_bytes(fs_info->super_copy,
2703 round_down(orig_super_total_bytes + device->total_bytes,
2704 fs_info->sectorsize));
2705
2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 btrfs_set_super_num_devices(fs_info->super_copy,
2708 orig_super_num_devices + 1);
2709
2710 /*
2711 * we've got more storage, clear any full flags on the space
2712 * infos
2713 */
2714 btrfs_clear_space_info_full(fs_info);
2715
2716 mutex_unlock(&fs_info->chunk_mutex);
2717
2718 /* Add sysfs device entry */
2719 btrfs_sysfs_add_device(device);
2720
2721 mutex_unlock(&fs_devices->device_list_mutex);
2722
2723 if (seeding_dev) {
2724 mutex_lock(&fs_info->chunk_mutex);
2725 ret = init_first_rw_device(trans);
2726 mutex_unlock(&fs_info->chunk_mutex);
2727 if (ret) {
2728 btrfs_abort_transaction(trans, ret);
2729 goto error_sysfs;
2730 }
2731 }
2732
2733 ret = btrfs_add_dev_item(trans, device);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, ret);
2736 goto error_sysfs;
2737 }
2738
2739 if (seeding_dev) {
2740 ret = btrfs_finish_sprout(trans);
2741 if (ret) {
2742 btrfs_abort_transaction(trans, ret);
2743 goto error_sysfs;
2744 }
2745
2746 /*
2747 * fs_devices now represents the newly sprouted filesystem and
2748 * its fsid has been changed by btrfs_sprout_splice().
2749 */
2750 btrfs_sysfs_update_sprout_fsid(fs_devices);
2751 }
2752
2753 ret = btrfs_commit_transaction(trans);
2754
2755 if (seeding_dev) {
2756 mutex_unlock(&uuid_mutex);
2757 up_write(&sb->s_umount);
2758 locked = false;
2759
2760 if (ret) /* transaction commit */
2761 return ret;
2762
2763 ret = btrfs_relocate_sys_chunks(fs_info);
2764 if (ret < 0)
2765 btrfs_handle_fs_error(fs_info, ret,
2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767 trans = btrfs_attach_transaction(root);
2768 if (IS_ERR(trans)) {
2769 if (PTR_ERR(trans) == -ENOENT)
2770 return 0;
2771 ret = PTR_ERR(trans);
2772 trans = NULL;
2773 goto error_sysfs;
2774 }
2775 ret = btrfs_commit_transaction(trans);
2776 }
2777
2778 /*
2779 * Now that we have written a new super block to this device, check all
2780 * other fs_devices list if device_path alienates any other scanned
2781 * device.
2782 * We can ignore the return value as it typically returns -EINVAL and
2783 * only succeeds if the device was an alien.
2784 */
2785 btrfs_forget_devices(device->devt);
2786
2787 /* Update ctime/mtime for blkid or udev */
2788 update_dev_time(device_path);
2789
2790 return ret;
2791
2792error_sysfs:
2793 btrfs_sysfs_remove_device(device);
2794 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 mutex_lock(&fs_info->chunk_mutex);
2796 list_del_rcu(&device->dev_list);
2797 list_del(&device->dev_alloc_list);
2798 fs_info->fs_devices->num_devices--;
2799 fs_info->fs_devices->open_devices--;
2800 fs_info->fs_devices->rw_devices--;
2801 fs_info->fs_devices->total_devices--;
2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 btrfs_set_super_total_bytes(fs_info->super_copy,
2805 orig_super_total_bytes);
2806 btrfs_set_super_num_devices(fs_info->super_copy,
2807 orig_super_num_devices);
2808 mutex_unlock(&fs_info->chunk_mutex);
2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810error_trans:
2811 if (seeding_dev)
2812 btrfs_set_sb_rdonly(sb);
2813 if (trans)
2814 btrfs_end_transaction(trans);
2815error_free_zone:
2816 btrfs_destroy_dev_zone_info(device);
2817error_free_device:
2818 btrfs_free_device(device);
2819error:
2820 bdev_release(bdev_handle);
2821 if (locked) {
2822 mutex_unlock(&uuid_mutex);
2823 up_write(&sb->s_umount);
2824 }
2825 return ret;
2826}
2827
2828static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 struct btrfs_device *device)
2830{
2831 int ret;
2832 struct btrfs_path *path;
2833 struct btrfs_root *root = device->fs_info->chunk_root;
2834 struct btrfs_dev_item *dev_item;
2835 struct extent_buffer *leaf;
2836 struct btrfs_key key;
2837
2838 path = btrfs_alloc_path();
2839 if (!path)
2840 return -ENOMEM;
2841
2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 key.type = BTRFS_DEV_ITEM_KEY;
2844 key.offset = device->devid;
2845
2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847 if (ret < 0)
2848 goto out;
2849
2850 if (ret > 0) {
2851 ret = -ENOENT;
2852 goto out;
2853 }
2854
2855 leaf = path->nodes[0];
2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857
2858 btrfs_set_device_id(leaf, dev_item, device->devid);
2859 btrfs_set_device_type(leaf, dev_item, device->type);
2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863 btrfs_set_device_total_bytes(leaf, dev_item,
2864 btrfs_device_get_disk_total_bytes(device));
2865 btrfs_set_device_bytes_used(leaf, dev_item,
2866 btrfs_device_get_bytes_used(device));
2867 btrfs_mark_buffer_dirty(trans, leaf);
2868
2869out:
2870 btrfs_free_path(path);
2871 return ret;
2872}
2873
2874int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875 struct btrfs_device *device, u64 new_size)
2876{
2877 struct btrfs_fs_info *fs_info = device->fs_info;
2878 struct btrfs_super_block *super_copy = fs_info->super_copy;
2879 u64 old_total;
2880 u64 diff;
2881 int ret;
2882
2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884 return -EACCES;
2885
2886 new_size = round_down(new_size, fs_info->sectorsize);
2887
2888 mutex_lock(&fs_info->chunk_mutex);
2889 old_total = btrfs_super_total_bytes(super_copy);
2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891
2892 if (new_size <= device->total_bytes ||
2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894 mutex_unlock(&fs_info->chunk_mutex);
2895 return -EINVAL;
2896 }
2897
2898 btrfs_set_super_total_bytes(super_copy,
2899 round_down(old_total + diff, fs_info->sectorsize));
2900 device->fs_devices->total_rw_bytes += diff;
2901 atomic64_add(diff, &fs_info->free_chunk_space);
2902
2903 btrfs_device_set_total_bytes(device, new_size);
2904 btrfs_device_set_disk_total_bytes(device, new_size);
2905 btrfs_clear_space_info_full(device->fs_info);
2906 if (list_empty(&device->post_commit_list))
2907 list_add_tail(&device->post_commit_list,
2908 &trans->transaction->dev_update_list);
2909 mutex_unlock(&fs_info->chunk_mutex);
2910
2911 btrfs_reserve_chunk_metadata(trans, false);
2912 ret = btrfs_update_device(trans, device);
2913 btrfs_trans_release_chunk_metadata(trans);
2914
2915 return ret;
2916}
2917
2918static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2919{
2920 struct btrfs_fs_info *fs_info = trans->fs_info;
2921 struct btrfs_root *root = fs_info->chunk_root;
2922 int ret;
2923 struct btrfs_path *path;
2924 struct btrfs_key key;
2925
2926 path = btrfs_alloc_path();
2927 if (!path)
2928 return -ENOMEM;
2929
2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931 key.offset = chunk_offset;
2932 key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935 if (ret < 0)
2936 goto out;
2937 else if (ret > 0) { /* Logic error or corruption */
2938 btrfs_handle_fs_error(fs_info, -ENOENT,
2939 "Failed lookup while freeing chunk.");
2940 ret = -ENOENT;
2941 goto out;
2942 }
2943
2944 ret = btrfs_del_item(trans, root, path);
2945 if (ret < 0)
2946 btrfs_handle_fs_error(fs_info, ret,
2947 "Failed to delete chunk item.");
2948out:
2949 btrfs_free_path(path);
2950 return ret;
2951}
2952
2953static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2954{
2955 struct btrfs_super_block *super_copy = fs_info->super_copy;
2956 struct btrfs_disk_key *disk_key;
2957 struct btrfs_chunk *chunk;
2958 u8 *ptr;
2959 int ret = 0;
2960 u32 num_stripes;
2961 u32 array_size;
2962 u32 len = 0;
2963 u32 cur;
2964 struct btrfs_key key;
2965
2966 lockdep_assert_held(&fs_info->chunk_mutex);
2967 array_size = btrfs_super_sys_array_size(super_copy);
2968
2969 ptr = super_copy->sys_chunk_array;
2970 cur = 0;
2971
2972 while (cur < array_size) {
2973 disk_key = (struct btrfs_disk_key *)ptr;
2974 btrfs_disk_key_to_cpu(&key, disk_key);
2975
2976 len = sizeof(*disk_key);
2977
2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 chunk = (struct btrfs_chunk *)(ptr + len);
2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 len += btrfs_chunk_item_size(num_stripes);
2982 } else {
2983 ret = -EIO;
2984 break;
2985 }
2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987 key.offset == chunk_offset) {
2988 memmove(ptr, ptr + len, array_size - (cur + len));
2989 array_size -= len;
2990 btrfs_set_super_sys_array_size(super_copy, array_size);
2991 } else {
2992 ptr += len;
2993 cur += len;
2994 }
2995 }
2996 return ret;
2997}
2998
2999struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 u64 logical, u64 length)
3001{
3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 struct rb_node *prev = NULL;
3004 struct rb_node *orig_prev;
3005 struct btrfs_chunk_map *map;
3006 struct btrfs_chunk_map *prev_map = NULL;
3007
3008 while (node) {
3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010 prev = node;
3011 prev_map = map;
3012
3013 if (logical < map->start) {
3014 node = node->rb_left;
3015 } else if (logical >= map->start + map->chunk_len) {
3016 node = node->rb_right;
3017 } else {
3018 refcount_inc(&map->refs);
3019 return map;
3020 }
3021 }
3022
3023 if (!prev)
3024 return NULL;
3025
3026 orig_prev = prev;
3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 prev = rb_next(prev);
3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030 }
3031
3032 if (!prev) {
3033 prev = orig_prev;
3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 while (prev && logical < prev_map->start) {
3036 prev = rb_prev(prev);
3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038 }
3039 }
3040
3041 if (prev) {
3042 u64 end = logical + length;
3043
3044 /*
3045 * Caller can pass a U64_MAX length when it wants to get any
3046 * chunk starting at an offset of 'logical' or higher, so deal
3047 * with underflow by resetting the end offset to U64_MAX.
3048 */
3049 if (end < logical)
3050 end = U64_MAX;
3051
3052 if (end > prev_map->start &&
3053 logical < prev_map->start + prev_map->chunk_len) {
3054 refcount_inc(&prev_map->refs);
3055 return prev_map;
3056 }
3057 }
3058
3059 return NULL;
3060}
3061
3062struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 u64 logical, u64 length)
3064{
3065 struct btrfs_chunk_map *map;
3066
3067 read_lock(&fs_info->mapping_tree_lock);
3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 read_unlock(&fs_info->mapping_tree_lock);
3070
3071 return map;
3072}
3073
3074/*
3075 * Find the mapping containing the given logical extent.
3076 *
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3079 *
3080 * Return: Chunk mapping or ERR_PTR.
3081 */
3082struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 u64 logical, u64 length)
3084{
3085 struct btrfs_chunk_map *map;
3086
3087 map = btrfs_find_chunk_map(fs_info, logical, length);
3088
3089 if (unlikely(!map)) {
3090 btrfs_crit(fs_info,
3091 "unable to find chunk map for logical %llu length %llu",
3092 logical, length);
3093 return ERR_PTR(-EINVAL);
3094 }
3095
3096 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3097 btrfs_crit(fs_info,
3098 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099 logical, logical + length, map->start,
3100 map->start + map->chunk_len);
3101 btrfs_free_chunk_map(map);
3102 return ERR_PTR(-EINVAL);
3103 }
3104
3105 /* Callers are responsible for dropping the reference. */
3106 return map;
3107}
3108
3109static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110 struct btrfs_chunk_map *map, u64 chunk_offset)
3111{
3112 int i;
3113
3114 /*
3115 * Removing chunk items and updating the device items in the chunks btree
3116 * requires holding the chunk_mutex.
3117 * See the comment at btrfs_chunk_alloc() for the details.
3118 */
3119 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3120
3121 for (i = 0; i < map->num_stripes; i++) {
3122 int ret;
3123
3124 ret = btrfs_update_device(trans, map->stripes[i].dev);
3125 if (ret)
3126 return ret;
3127 }
3128
3129 return btrfs_free_chunk(trans, chunk_offset);
3130}
3131
3132int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3133{
3134 struct btrfs_fs_info *fs_info = trans->fs_info;
3135 struct btrfs_chunk_map *map;
3136 u64 dev_extent_len = 0;
3137 int i, ret = 0;
3138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3139
3140 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3141 if (IS_ERR(map)) {
3142 /*
3143 * This is a logic error, but we don't want to just rely on the
3144 * user having built with ASSERT enabled, so if ASSERT doesn't
3145 * do anything we still error out.
3146 */
3147 ASSERT(0);
3148 return PTR_ERR(map);
3149 }
3150
3151 /*
3152 * First delete the device extent items from the devices btree.
3153 * We take the device_list_mutex to avoid racing with the finishing phase
3154 * of a device replace operation. See the comment below before acquiring
3155 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156 * because that can result in a deadlock when deleting the device extent
3157 * items from the devices btree - COWing an extent buffer from the btree
3158 * may result in allocating a new metadata chunk, which would attempt to
3159 * lock again fs_info->chunk_mutex.
3160 */
3161 mutex_lock(&fs_devices->device_list_mutex);
3162 for (i = 0; i < map->num_stripes; i++) {
3163 struct btrfs_device *device = map->stripes[i].dev;
3164 ret = btrfs_free_dev_extent(trans, device,
3165 map->stripes[i].physical,
3166 &dev_extent_len);
3167 if (ret) {
3168 mutex_unlock(&fs_devices->device_list_mutex);
3169 btrfs_abort_transaction(trans, ret);
3170 goto out;
3171 }
3172
3173 if (device->bytes_used > 0) {
3174 mutex_lock(&fs_info->chunk_mutex);
3175 btrfs_device_set_bytes_used(device,
3176 device->bytes_used - dev_extent_len);
3177 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178 btrfs_clear_space_info_full(fs_info);
3179 mutex_unlock(&fs_info->chunk_mutex);
3180 }
3181 }
3182 mutex_unlock(&fs_devices->device_list_mutex);
3183
3184 /*
3185 * We acquire fs_info->chunk_mutex for 2 reasons:
3186 *
3187 * 1) Just like with the first phase of the chunk allocation, we must
3188 * reserve system space, do all chunk btree updates and deletions, and
3189 * update the system chunk array in the superblock while holding this
3190 * mutex. This is for similar reasons as explained on the comment at
3191 * the top of btrfs_chunk_alloc();
3192 *
3193 * 2) Prevent races with the final phase of a device replace operation
3194 * that replaces the device object associated with the map's stripes,
3195 * because the device object's id can change at any time during that
3196 * final phase of the device replace operation
3197 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198 * replaced device and then see it with an ID of
3199 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200 * the device item, which does not exists on the chunk btree.
3201 * The finishing phase of device replace acquires both the
3202 * device_list_mutex and the chunk_mutex, in that order, so we are
3203 * safe by just acquiring the chunk_mutex.
3204 */
3205 trans->removing_chunk = true;
3206 mutex_lock(&fs_info->chunk_mutex);
3207
3208 check_system_chunk(trans, map->type);
3209
3210 ret = remove_chunk_item(trans, map, chunk_offset);
3211 /*
3212 * Normally we should not get -ENOSPC since we reserved space before
3213 * through the call to check_system_chunk().
3214 *
3215 * Despite our system space_info having enough free space, we may not
3216 * be able to allocate extents from its block groups, because all have
3217 * an incompatible profile, which will force us to allocate a new system
3218 * block group with the right profile, or right after we called
3219 * check_system_space() above, a scrub turned the only system block group
3220 * with enough free space into RO mode.
3221 * This is explained with more detail at do_chunk_alloc().
3222 *
3223 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3224 */
3225 if (ret == -ENOSPC) {
3226 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227 struct btrfs_block_group *sys_bg;
3228
3229 sys_bg = btrfs_create_chunk(trans, sys_flags);
3230 if (IS_ERR(sys_bg)) {
3231 ret = PTR_ERR(sys_bg);
3232 btrfs_abort_transaction(trans, ret);
3233 goto out;
3234 }
3235
3236 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3237 if (ret) {
3238 btrfs_abort_transaction(trans, ret);
3239 goto out;
3240 }
3241
3242 ret = remove_chunk_item(trans, map, chunk_offset);
3243 if (ret) {
3244 btrfs_abort_transaction(trans, ret);
3245 goto out;
3246 }
3247 } else if (ret) {
3248 btrfs_abort_transaction(trans, ret);
3249 goto out;
3250 }
3251
3252 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3253
3254 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3256 if (ret) {
3257 btrfs_abort_transaction(trans, ret);
3258 goto out;
3259 }
3260 }
3261
3262 mutex_unlock(&fs_info->chunk_mutex);
3263 trans->removing_chunk = false;
3264
3265 /*
3266 * We are done with chunk btree updates and deletions, so release the
3267 * system space we previously reserved (with check_system_chunk()).
3268 */
3269 btrfs_trans_release_chunk_metadata(trans);
3270
3271 ret = btrfs_remove_block_group(trans, map);
3272 if (ret) {
3273 btrfs_abort_transaction(trans, ret);
3274 goto out;
3275 }
3276
3277out:
3278 if (trans->removing_chunk) {
3279 mutex_unlock(&fs_info->chunk_mutex);
3280 trans->removing_chunk = false;
3281 }
3282 /* once for us */
3283 btrfs_free_chunk_map(map);
3284 return ret;
3285}
3286
3287int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3288{
3289 struct btrfs_root *root = fs_info->chunk_root;
3290 struct btrfs_trans_handle *trans;
3291 struct btrfs_block_group *block_group;
3292 u64 length;
3293 int ret;
3294
3295 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3296 btrfs_err(fs_info,
3297 "relocate: not supported on extent tree v2 yet");
3298 return -EINVAL;
3299 }
3300
3301 /*
3302 * Prevent races with automatic removal of unused block groups.
3303 * After we relocate and before we remove the chunk with offset
3304 * chunk_offset, automatic removal of the block group can kick in,
3305 * resulting in a failure when calling btrfs_remove_chunk() below.
3306 *
3307 * Make sure to acquire this mutex before doing a tree search (dev
3308 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310 * we release the path used to search the chunk/dev tree and before
3311 * the current task acquires this mutex and calls us.
3312 */
3313 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3314
3315 /* step one, relocate all the extents inside this chunk */
3316 btrfs_scrub_pause(fs_info);
3317 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318 btrfs_scrub_continue(fs_info);
3319 if (ret) {
3320 /*
3321 * If we had a transaction abort, stop all running scrubs.
3322 * See transaction.c:cleanup_transaction() why we do it here.
3323 */
3324 if (BTRFS_FS_ERROR(fs_info))
3325 btrfs_scrub_cancel(fs_info);
3326 return ret;
3327 }
3328
3329 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3330 if (!block_group)
3331 return -ENOENT;
3332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333 length = block_group->length;
3334 btrfs_put_block_group(block_group);
3335
3336 /*
3337 * On a zoned file system, discard the whole block group, this will
3338 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339 * resetting the zone fails, don't treat it as a fatal problem from the
3340 * filesystem's point of view.
3341 */
3342 if (btrfs_is_zoned(fs_info)) {
3343 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3344 if (ret)
3345 btrfs_info(fs_info,
3346 "failed to reset zone %llu after relocation",
3347 chunk_offset);
3348 }
3349
3350 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3351 chunk_offset);
3352 if (IS_ERR(trans)) {
3353 ret = PTR_ERR(trans);
3354 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3355 return ret;
3356 }
3357
3358 /*
3359 * step two, delete the device extents and the
3360 * chunk tree entries
3361 */
3362 ret = btrfs_remove_chunk(trans, chunk_offset);
3363 btrfs_end_transaction(trans);
3364 return ret;
3365}
3366
3367static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3368{
3369 struct btrfs_root *chunk_root = fs_info->chunk_root;
3370 struct btrfs_path *path;
3371 struct extent_buffer *leaf;
3372 struct btrfs_chunk *chunk;
3373 struct btrfs_key key;
3374 struct btrfs_key found_key;
3375 u64 chunk_type;
3376 bool retried = false;
3377 int failed = 0;
3378 int ret;
3379
3380 path = btrfs_alloc_path();
3381 if (!path)
3382 return -ENOMEM;
3383
3384again:
3385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386 key.offset = (u64)-1;
3387 key.type = BTRFS_CHUNK_ITEM_KEY;
3388
3389 while (1) {
3390 mutex_lock(&fs_info->reclaim_bgs_lock);
3391 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3392 if (ret < 0) {
3393 mutex_unlock(&fs_info->reclaim_bgs_lock);
3394 goto error;
3395 }
3396 BUG_ON(ret == 0); /* Corruption */
3397
3398 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3399 key.type);
3400 if (ret)
3401 mutex_unlock(&fs_info->reclaim_bgs_lock);
3402 if (ret < 0)
3403 goto error;
3404 if (ret > 0)
3405 break;
3406
3407 leaf = path->nodes[0];
3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410 chunk = btrfs_item_ptr(leaf, path->slots[0],
3411 struct btrfs_chunk);
3412 chunk_type = btrfs_chunk_type(leaf, chunk);
3413 btrfs_release_path(path);
3414
3415 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3416 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3417 if (ret == -ENOSPC)
3418 failed++;
3419 else
3420 BUG_ON(ret);
3421 }
3422 mutex_unlock(&fs_info->reclaim_bgs_lock);
3423
3424 if (found_key.offset == 0)
3425 break;
3426 key.offset = found_key.offset - 1;
3427 }
3428 ret = 0;
3429 if (failed && !retried) {
3430 failed = 0;
3431 retried = true;
3432 goto again;
3433 } else if (WARN_ON(failed && retried)) {
3434 ret = -ENOSPC;
3435 }
3436error:
3437 btrfs_free_path(path);
3438 return ret;
3439}
3440
3441/*
3442 * return 1 : allocate a data chunk successfully,
3443 * return <0: errors during allocating a data chunk,
3444 * return 0 : no need to allocate a data chunk.
3445 */
3446static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3447 u64 chunk_offset)
3448{
3449 struct btrfs_block_group *cache;
3450 u64 bytes_used;
3451 u64 chunk_type;
3452
3453 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3454 ASSERT(cache);
3455 chunk_type = cache->flags;
3456 btrfs_put_block_group(cache);
3457
3458 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3459 return 0;
3460
3461 spin_lock(&fs_info->data_sinfo->lock);
3462 bytes_used = fs_info->data_sinfo->bytes_used;
3463 spin_unlock(&fs_info->data_sinfo->lock);
3464
3465 if (!bytes_used) {
3466 struct btrfs_trans_handle *trans;
3467 int ret;
3468
3469 trans = btrfs_join_transaction(fs_info->tree_root);
3470 if (IS_ERR(trans))
3471 return PTR_ERR(trans);
3472
3473 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3474 btrfs_end_transaction(trans);
3475 if (ret < 0)
3476 return ret;
3477 return 1;
3478 }
3479
3480 return 0;
3481}
3482
3483static int insert_balance_item(struct btrfs_fs_info *fs_info,
3484 struct btrfs_balance_control *bctl)
3485{
3486 struct btrfs_root *root = fs_info->tree_root;
3487 struct btrfs_trans_handle *trans;
3488 struct btrfs_balance_item *item;
3489 struct btrfs_disk_balance_args disk_bargs;
3490 struct btrfs_path *path;
3491 struct extent_buffer *leaf;
3492 struct btrfs_key key;
3493 int ret, err;
3494
3495 path = btrfs_alloc_path();
3496 if (!path)
3497 return -ENOMEM;
3498
3499 trans = btrfs_start_transaction(root, 0);
3500 if (IS_ERR(trans)) {
3501 btrfs_free_path(path);
3502 return PTR_ERR(trans);
3503 }
3504
3505 key.objectid = BTRFS_BALANCE_OBJECTID;
3506 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3507 key.offset = 0;
3508
3509 ret = btrfs_insert_empty_item(trans, root, path, &key,
3510 sizeof(*item));
3511 if (ret)
3512 goto out;
3513
3514 leaf = path->nodes[0];
3515 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3516
3517 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3518
3519 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3520 btrfs_set_balance_data(leaf, item, &disk_bargs);
3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3522 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3524 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3525
3526 btrfs_set_balance_flags(leaf, item, bctl->flags);
3527
3528 btrfs_mark_buffer_dirty(trans, leaf);
3529out:
3530 btrfs_free_path(path);
3531 err = btrfs_commit_transaction(trans);
3532 if (err && !ret)
3533 ret = err;
3534 return ret;
3535}
3536
3537static int del_balance_item(struct btrfs_fs_info *fs_info)
3538{
3539 struct btrfs_root *root = fs_info->tree_root;
3540 struct btrfs_trans_handle *trans;
3541 struct btrfs_path *path;
3542 struct btrfs_key key;
3543 int ret, err;
3544
3545 path = btrfs_alloc_path();
3546 if (!path)
3547 return -ENOMEM;
3548
3549 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3550 if (IS_ERR(trans)) {
3551 btrfs_free_path(path);
3552 return PTR_ERR(trans);
3553 }
3554
3555 key.objectid = BTRFS_BALANCE_OBJECTID;
3556 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3557 key.offset = 0;
3558
3559 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3560 if (ret < 0)
3561 goto out;
3562 if (ret > 0) {
3563 ret = -ENOENT;
3564 goto out;
3565 }
3566
3567 ret = btrfs_del_item(trans, root, path);
3568out:
3569 btrfs_free_path(path);
3570 err = btrfs_commit_transaction(trans);
3571 if (err && !ret)
3572 ret = err;
3573 return ret;
3574}
3575
3576/*
3577 * This is a heuristic used to reduce the number of chunks balanced on
3578 * resume after balance was interrupted.
3579 */
3580static void update_balance_args(struct btrfs_balance_control *bctl)
3581{
3582 /*
3583 * Turn on soft mode for chunk types that were being converted.
3584 */
3585 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3586 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591
3592 /*
3593 * Turn on usage filter if is not already used. The idea is
3594 * that chunks that we have already balanced should be
3595 * reasonably full. Don't do it for chunks that are being
3596 * converted - that will keep us from relocating unconverted
3597 * (albeit full) chunks.
3598 */
3599 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3600 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3601 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3602 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3603 bctl->data.usage = 90;
3604 }
3605 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3606 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3607 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3608 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3609 bctl->sys.usage = 90;
3610 }
3611 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3612 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3613 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3614 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3615 bctl->meta.usage = 90;
3616 }
3617}
3618
3619/*
3620 * Clear the balance status in fs_info and delete the balance item from disk.
3621 */
3622static void reset_balance_state(struct btrfs_fs_info *fs_info)
3623{
3624 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3625 int ret;
3626
3627 BUG_ON(!fs_info->balance_ctl);
3628
3629 spin_lock(&fs_info->balance_lock);
3630 fs_info->balance_ctl = NULL;
3631 spin_unlock(&fs_info->balance_lock);
3632
3633 kfree(bctl);
3634 ret = del_balance_item(fs_info);
3635 if (ret)
3636 btrfs_handle_fs_error(fs_info, ret, NULL);
3637}
3638
3639/*
3640 * Balance filters. Return 1 if chunk should be filtered out
3641 * (should not be balanced).
3642 */
3643static int chunk_profiles_filter(u64 chunk_type,
3644 struct btrfs_balance_args *bargs)
3645{
3646 chunk_type = chunk_to_extended(chunk_type) &
3647 BTRFS_EXTENDED_PROFILE_MASK;
3648
3649 if (bargs->profiles & chunk_type)
3650 return 0;
3651
3652 return 1;
3653}
3654
3655static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3656 struct btrfs_balance_args *bargs)
3657{
3658 struct btrfs_block_group *cache;
3659 u64 chunk_used;
3660 u64 user_thresh_min;
3661 u64 user_thresh_max;
3662 int ret = 1;
3663
3664 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3665 chunk_used = cache->used;
3666
3667 if (bargs->usage_min == 0)
3668 user_thresh_min = 0;
3669 else
3670 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3671
3672 if (bargs->usage_max == 0)
3673 user_thresh_max = 1;
3674 else if (bargs->usage_max > 100)
3675 user_thresh_max = cache->length;
3676 else
3677 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3678
3679 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3680 ret = 0;
3681
3682 btrfs_put_block_group(cache);
3683 return ret;
3684}
3685
3686static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3687 u64 chunk_offset, struct btrfs_balance_args *bargs)
3688{
3689 struct btrfs_block_group *cache;
3690 u64 chunk_used, user_thresh;
3691 int ret = 1;
3692
3693 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3694 chunk_used = cache->used;
3695
3696 if (bargs->usage_min == 0)
3697 user_thresh = 1;
3698 else if (bargs->usage > 100)
3699 user_thresh = cache->length;
3700 else
3701 user_thresh = mult_perc(cache->length, bargs->usage);
3702
3703 if (chunk_used < user_thresh)
3704 ret = 0;
3705
3706 btrfs_put_block_group(cache);
3707 return ret;
3708}
3709
3710static int chunk_devid_filter(struct extent_buffer *leaf,
3711 struct btrfs_chunk *chunk,
3712 struct btrfs_balance_args *bargs)
3713{
3714 struct btrfs_stripe *stripe;
3715 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716 int i;
3717
3718 for (i = 0; i < num_stripes; i++) {
3719 stripe = btrfs_stripe_nr(chunk, i);
3720 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3721 return 0;
3722 }
3723
3724 return 1;
3725}
3726
3727static u64 calc_data_stripes(u64 type, int num_stripes)
3728{
3729 const int index = btrfs_bg_flags_to_raid_index(type);
3730 const int ncopies = btrfs_raid_array[index].ncopies;
3731 const int nparity = btrfs_raid_array[index].nparity;
3732
3733 return (num_stripes - nparity) / ncopies;
3734}
3735
3736/* [pstart, pend) */
3737static int chunk_drange_filter(struct extent_buffer *leaf,
3738 struct btrfs_chunk *chunk,
3739 struct btrfs_balance_args *bargs)
3740{
3741 struct btrfs_stripe *stripe;
3742 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3743 u64 stripe_offset;
3744 u64 stripe_length;
3745 u64 type;
3746 int factor;
3747 int i;
3748
3749 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3750 return 0;
3751
3752 type = btrfs_chunk_type(leaf, chunk);
3753 factor = calc_data_stripes(type, num_stripes);
3754
3755 for (i = 0; i < num_stripes; i++) {
3756 stripe = btrfs_stripe_nr(chunk, i);
3757 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3758 continue;
3759
3760 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3761 stripe_length = btrfs_chunk_length(leaf, chunk);
3762 stripe_length = div_u64(stripe_length, factor);
3763
3764 if (stripe_offset < bargs->pend &&
3765 stripe_offset + stripe_length > bargs->pstart)
3766 return 0;
3767 }
3768
3769 return 1;
3770}
3771
3772/* [vstart, vend) */
3773static int chunk_vrange_filter(struct extent_buffer *leaf,
3774 struct btrfs_chunk *chunk,
3775 u64 chunk_offset,
3776 struct btrfs_balance_args *bargs)
3777{
3778 if (chunk_offset < bargs->vend &&
3779 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3780 /* at least part of the chunk is inside this vrange */
3781 return 0;
3782
3783 return 1;
3784}
3785
3786static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3787 struct btrfs_chunk *chunk,
3788 struct btrfs_balance_args *bargs)
3789{
3790 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3791
3792 if (bargs->stripes_min <= num_stripes
3793 && num_stripes <= bargs->stripes_max)
3794 return 0;
3795
3796 return 1;
3797}
3798
3799static int chunk_soft_convert_filter(u64 chunk_type,
3800 struct btrfs_balance_args *bargs)
3801{
3802 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3803 return 0;
3804
3805 chunk_type = chunk_to_extended(chunk_type) &
3806 BTRFS_EXTENDED_PROFILE_MASK;
3807
3808 if (bargs->target == chunk_type)
3809 return 1;
3810
3811 return 0;
3812}
3813
3814static int should_balance_chunk(struct extent_buffer *leaf,
3815 struct btrfs_chunk *chunk, u64 chunk_offset)
3816{
3817 struct btrfs_fs_info *fs_info = leaf->fs_info;
3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819 struct btrfs_balance_args *bargs = NULL;
3820 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3821
3822 /* type filter */
3823 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3824 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3825 return 0;
3826 }
3827
3828 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3829 bargs = &bctl->data;
3830 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3831 bargs = &bctl->sys;
3832 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3833 bargs = &bctl->meta;
3834
3835 /* profiles filter */
3836 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3837 chunk_profiles_filter(chunk_type, bargs)) {
3838 return 0;
3839 }
3840
3841 /* usage filter */
3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3843 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3844 return 0;
3845 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3846 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3847 return 0;
3848 }
3849
3850 /* devid filter */
3851 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3852 chunk_devid_filter(leaf, chunk, bargs)) {
3853 return 0;
3854 }
3855
3856 /* drange filter, makes sense only with devid filter */
3857 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3858 chunk_drange_filter(leaf, chunk, bargs)) {
3859 return 0;
3860 }
3861
3862 /* vrange filter */
3863 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3864 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3865 return 0;
3866 }
3867
3868 /* stripes filter */
3869 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3870 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3871 return 0;
3872 }
3873
3874 /* soft profile changing mode */
3875 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3876 chunk_soft_convert_filter(chunk_type, bargs)) {
3877 return 0;
3878 }
3879
3880 /*
3881 * limited by count, must be the last filter
3882 */
3883 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3884 if (bargs->limit == 0)
3885 return 0;
3886 else
3887 bargs->limit--;
3888 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3889 /*
3890 * Same logic as the 'limit' filter; the minimum cannot be
3891 * determined here because we do not have the global information
3892 * about the count of all chunks that satisfy the filters.
3893 */
3894 if (bargs->limit_max == 0)
3895 return 0;
3896 else
3897 bargs->limit_max--;
3898 }
3899
3900 return 1;
3901}
3902
3903static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3904{
3905 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3906 struct btrfs_root *chunk_root = fs_info->chunk_root;
3907 u64 chunk_type;
3908 struct btrfs_chunk *chunk;
3909 struct btrfs_path *path = NULL;
3910 struct btrfs_key key;
3911 struct btrfs_key found_key;
3912 struct extent_buffer *leaf;
3913 int slot;
3914 int ret;
3915 int enospc_errors = 0;
3916 bool counting = true;
3917 /* The single value limit and min/max limits use the same bytes in the */
3918 u64 limit_data = bctl->data.limit;
3919 u64 limit_meta = bctl->meta.limit;
3920 u64 limit_sys = bctl->sys.limit;
3921 u32 count_data = 0;
3922 u32 count_meta = 0;
3923 u32 count_sys = 0;
3924 int chunk_reserved = 0;
3925
3926 path = btrfs_alloc_path();
3927 if (!path) {
3928 ret = -ENOMEM;
3929 goto error;
3930 }
3931
3932 /* zero out stat counters */
3933 spin_lock(&fs_info->balance_lock);
3934 memset(&bctl->stat, 0, sizeof(bctl->stat));
3935 spin_unlock(&fs_info->balance_lock);
3936again:
3937 if (!counting) {
3938 /*
3939 * The single value limit and min/max limits use the same bytes
3940 * in the
3941 */
3942 bctl->data.limit = limit_data;
3943 bctl->meta.limit = limit_meta;
3944 bctl->sys.limit = limit_sys;
3945 }
3946 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3947 key.offset = (u64)-1;
3948 key.type = BTRFS_CHUNK_ITEM_KEY;
3949
3950 while (1) {
3951 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3952 atomic_read(&fs_info->balance_cancel_req)) {
3953 ret = -ECANCELED;
3954 goto error;
3955 }
3956
3957 mutex_lock(&fs_info->reclaim_bgs_lock);
3958 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3959 if (ret < 0) {
3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 goto error;
3962 }
3963
3964 /*
3965 * this shouldn't happen, it means the last relocate
3966 * failed
3967 */
3968 if (ret == 0)
3969 BUG(); /* FIXME break ? */
3970
3971 ret = btrfs_previous_item(chunk_root, path, 0,
3972 BTRFS_CHUNK_ITEM_KEY);
3973 if (ret) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 ret = 0;
3976 break;
3977 }
3978
3979 leaf = path->nodes[0];
3980 slot = path->slots[0];
3981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3982
3983 if (found_key.objectid != key.objectid) {
3984 mutex_unlock(&fs_info->reclaim_bgs_lock);
3985 break;
3986 }
3987
3988 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3989 chunk_type = btrfs_chunk_type(leaf, chunk);
3990
3991 if (!counting) {
3992 spin_lock(&fs_info->balance_lock);
3993 bctl->stat.considered++;
3994 spin_unlock(&fs_info->balance_lock);
3995 }
3996
3997 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3998
3999 btrfs_release_path(path);
4000 if (!ret) {
4001 mutex_unlock(&fs_info->reclaim_bgs_lock);
4002 goto loop;
4003 }
4004
4005 if (counting) {
4006 mutex_unlock(&fs_info->reclaim_bgs_lock);
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.expected++;
4009 spin_unlock(&fs_info->balance_lock);
4010
4011 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4012 count_data++;
4013 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4014 count_sys++;
4015 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4016 count_meta++;
4017
4018 goto loop;
4019 }
4020
4021 /*
4022 * Apply limit_min filter, no need to check if the LIMITS
4023 * filter is used, limit_min is 0 by default
4024 */
4025 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4026 count_data < bctl->data.limit_min)
4027 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4028 count_meta < bctl->meta.limit_min)
4029 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4030 count_sys < bctl->sys.limit_min)) {
4031 mutex_unlock(&fs_info->reclaim_bgs_lock);
4032 goto loop;
4033 }
4034
4035 if (!chunk_reserved) {
4036 /*
4037 * We may be relocating the only data chunk we have,
4038 * which could potentially end up with losing data's
4039 * raid profile, so lets allocate an empty one in
4040 * advance.
4041 */
4042 ret = btrfs_may_alloc_data_chunk(fs_info,
4043 found_key.offset);
4044 if (ret < 0) {
4045 mutex_unlock(&fs_info->reclaim_bgs_lock);
4046 goto error;
4047 } else if (ret == 1) {
4048 chunk_reserved = 1;
4049 }
4050 }
4051
4052 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4053 mutex_unlock(&fs_info->reclaim_bgs_lock);
4054 if (ret == -ENOSPC) {
4055 enospc_errors++;
4056 } else if (ret == -ETXTBSY) {
4057 btrfs_info(fs_info,
4058 "skipping relocation of block group %llu due to active swapfile",
4059 found_key.offset);
4060 ret = 0;
4061 } else if (ret) {
4062 goto error;
4063 } else {
4064 spin_lock(&fs_info->balance_lock);
4065 bctl->stat.completed++;
4066 spin_unlock(&fs_info->balance_lock);
4067 }
4068loop:
4069 if (found_key.offset == 0)
4070 break;
4071 key.offset = found_key.offset - 1;
4072 }
4073
4074 if (counting) {
4075 btrfs_release_path(path);
4076 counting = false;
4077 goto again;
4078 }
4079error:
4080 btrfs_free_path(path);
4081 if (enospc_errors) {
4082 btrfs_info(fs_info, "%d enospc errors during balance",
4083 enospc_errors);
4084 if (!ret)
4085 ret = -ENOSPC;
4086 }
4087
4088 return ret;
4089}
4090
4091/*
4092 * See if a given profile is valid and reduced.
4093 *
4094 * @flags: profile to validate
4095 * @extended: if true @flags is treated as an extended profile
4096 */
4097static int alloc_profile_is_valid(u64 flags, int extended)
4098{
4099 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4100 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4101
4102 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4103
4104 /* 1) check that all other bits are zeroed */
4105 if (flags & ~mask)
4106 return 0;
4107
4108 /* 2) see if profile is reduced */
4109 if (flags == 0)
4110 return !extended; /* "0" is valid for usual profiles */
4111
4112 return has_single_bit_set(flags);
4113}
4114
4115/*
4116 * Validate target profile against allowed profiles and return true if it's OK.
4117 * Otherwise print the error message and return false.
4118 */
4119static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4120 const struct btrfs_balance_args *bargs,
4121 u64 allowed, const char *type)
4122{
4123 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4124 return true;
4125
4126 /* Profile is valid and does not have bits outside of the allowed set */
4127 if (alloc_profile_is_valid(bargs->target, 1) &&
4128 (bargs->target & ~allowed) == 0)
4129 return true;
4130
4131 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4132 type, btrfs_bg_type_to_raid_name(bargs->target));
4133 return false;
4134}
4135
4136/*
4137 * Fill @buf with textual description of balance filter flags @bargs, up to
4138 * @size_buf including the terminating null. The output may be trimmed if it
4139 * does not fit into the provided buffer.
4140 */
4141static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4142 u32 size_buf)
4143{
4144 int ret;
4145 u32 size_bp = size_buf;
4146 char *bp = buf;
4147 u64 flags = bargs->flags;
4148 char tmp_buf[128] = {'\0'};
4149
4150 if (!flags)
4151 return;
4152
4153#define CHECK_APPEND_NOARG(a) \
4154 do { \
4155 ret = snprintf(bp, size_bp, (a)); \
4156 if (ret < 0 || ret >= size_bp) \
4157 goto out_overflow; \
4158 size_bp -= ret; \
4159 bp += ret; \
4160 } while (0)
4161
4162#define CHECK_APPEND_1ARG(a, v1) \
4163 do { \
4164 ret = snprintf(bp, size_bp, (a), (v1)); \
4165 if (ret < 0 || ret >= size_bp) \
4166 goto out_overflow; \
4167 size_bp -= ret; \
4168 bp += ret; \
4169 } while (0)
4170
4171#define CHECK_APPEND_2ARG(a, v1, v2) \
4172 do { \
4173 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4174 if (ret < 0 || ret >= size_bp) \
4175 goto out_overflow; \
4176 size_bp -= ret; \
4177 bp += ret; \
4178 } while (0)
4179
4180 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4181 CHECK_APPEND_1ARG("convert=%s,",
4182 btrfs_bg_type_to_raid_name(bargs->target));
4183
4184 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4185 CHECK_APPEND_NOARG("soft,");
4186
4187 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4188 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4189 sizeof(tmp_buf));
4190 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4191 }
4192
4193 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4194 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4195
4196 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4197 CHECK_APPEND_2ARG("usage=%u..%u,",
4198 bargs->usage_min, bargs->usage_max);
4199
4200 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4201 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4202
4203 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4204 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4205 bargs->pstart, bargs->pend);
4206
4207 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4208 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4209 bargs->vstart, bargs->vend);
4210
4211 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4212 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4213
4214 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4215 CHECK_APPEND_2ARG("limit=%u..%u,",
4216 bargs->limit_min, bargs->limit_max);
4217
4218 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4219 CHECK_APPEND_2ARG("stripes=%u..%u,",
4220 bargs->stripes_min, bargs->stripes_max);
4221
4222#undef CHECK_APPEND_2ARG
4223#undef CHECK_APPEND_1ARG
4224#undef CHECK_APPEND_NOARG
4225
4226out_overflow:
4227
4228 if (size_bp < size_buf)
4229 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4230 else
4231 buf[0] = '\0';
4232}
4233
4234static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4235{
4236 u32 size_buf = 1024;
4237 char tmp_buf[192] = {'\0'};
4238 char *buf;
4239 char *bp;
4240 u32 size_bp = size_buf;
4241 int ret;
4242 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4243
4244 buf = kzalloc(size_buf, GFP_KERNEL);
4245 if (!buf)
4246 return;
4247
4248 bp = buf;
4249
4250#define CHECK_APPEND_1ARG(a, v1) \
4251 do { \
4252 ret = snprintf(bp, size_bp, (a), (v1)); \
4253 if (ret < 0 || ret >= size_bp) \
4254 goto out_overflow; \
4255 size_bp -= ret; \
4256 bp += ret; \
4257 } while (0)
4258
4259 if (bctl->flags & BTRFS_BALANCE_FORCE)
4260 CHECK_APPEND_1ARG("%s", "-f ");
4261
4262 if (bctl->flags & BTRFS_BALANCE_DATA) {
4263 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4264 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4265 }
4266
4267 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4268 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4269 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4270 }
4271
4272 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4273 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4274 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4275 }
4276
4277#undef CHECK_APPEND_1ARG
4278
4279out_overflow:
4280
4281 if (size_bp < size_buf)
4282 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4283 btrfs_info(fs_info, "balance: %s %s",
4284 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4285 "resume" : "start", buf);
4286
4287 kfree(buf);
4288}
4289
4290/*
4291 * Should be called with balance mutexe held
4292 */
4293int btrfs_balance(struct btrfs_fs_info *fs_info,
4294 struct btrfs_balance_control *bctl,
4295 struct btrfs_ioctl_balance_args *bargs)
4296{
4297 u64 meta_target, data_target;
4298 u64 allowed;
4299 int mixed = 0;
4300 int ret;
4301 u64 num_devices;
4302 unsigned seq;
4303 bool reducing_redundancy;
4304 bool paused = false;
4305 int i;
4306
4307 if (btrfs_fs_closing(fs_info) ||
4308 atomic_read(&fs_info->balance_pause_req) ||
4309 btrfs_should_cancel_balance(fs_info)) {
4310 ret = -EINVAL;
4311 goto out;
4312 }
4313
4314 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4315 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4316 mixed = 1;
4317
4318 /*
4319 * In case of mixed groups both data and meta should be picked,
4320 * and identical options should be given for both of them.
4321 */
4322 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4323 if (mixed && (bctl->flags & allowed)) {
4324 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4325 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4326 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4327 btrfs_err(fs_info,
4328 "balance: mixed groups data and metadata options must be the same");
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332 }
4333
4334 /*
4335 * rw_devices will not change at the moment, device add/delete/replace
4336 * are exclusive
4337 */
4338 num_devices = fs_info->fs_devices->rw_devices;
4339
4340 /*
4341 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4342 * special bit for it, to make it easier to distinguish. Thus we need
4343 * to set it manually, or balance would refuse the profile.
4344 */
4345 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4346 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4347 if (num_devices >= btrfs_raid_array[i].devs_min)
4348 allowed |= btrfs_raid_array[i].bg_flag;
4349
4350 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4351 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4352 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4353 ret = -EINVAL;
4354 goto out;
4355 }
4356
4357 /*
4358 * Allow to reduce metadata or system integrity only if force set for
4359 * profiles with redundancy (copies, parity)
4360 */
4361 allowed = 0;
4362 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4363 if (btrfs_raid_array[i].ncopies >= 2 ||
4364 btrfs_raid_array[i].tolerated_failures >= 1)
4365 allowed |= btrfs_raid_array[i].bg_flag;
4366 }
4367 do {
4368 seq = read_seqbegin(&fs_info->profiles_lock);
4369
4370 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4371 (fs_info->avail_system_alloc_bits & allowed) &&
4372 !(bctl->sys.target & allowed)) ||
4373 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4374 (fs_info->avail_metadata_alloc_bits & allowed) &&
4375 !(bctl->meta.target & allowed)))
4376 reducing_redundancy = true;
4377 else
4378 reducing_redundancy = false;
4379
4380 /* if we're not converting, the target field is uninitialized */
4381 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4382 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4383 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384 bctl->data.target : fs_info->avail_data_alloc_bits;
4385 } while (read_seqretry(&fs_info->profiles_lock, seq));
4386
4387 if (reducing_redundancy) {
4388 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4389 btrfs_info(fs_info,
4390 "balance: force reducing metadata redundancy");
4391 } else {
4392 btrfs_err(fs_info,
4393 "balance: reduces metadata redundancy, use --force if you want this");
4394 ret = -EINVAL;
4395 goto out;
4396 }
4397 }
4398
4399 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4400 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4401 btrfs_warn(fs_info,
4402 "balance: metadata profile %s has lower redundancy than data profile %s",
4403 btrfs_bg_type_to_raid_name(meta_target),
4404 btrfs_bg_type_to_raid_name(data_target));
4405 }
4406
4407 ret = insert_balance_item(fs_info, bctl);
4408 if (ret && ret != -EEXIST)
4409 goto out;
4410
4411 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4412 BUG_ON(ret == -EEXIST);
4413 BUG_ON(fs_info->balance_ctl);
4414 spin_lock(&fs_info->balance_lock);
4415 fs_info->balance_ctl = bctl;
4416 spin_unlock(&fs_info->balance_lock);
4417 } else {
4418 BUG_ON(ret != -EEXIST);
4419 spin_lock(&fs_info->balance_lock);
4420 update_balance_args(bctl);
4421 spin_unlock(&fs_info->balance_lock);
4422 }
4423
4424 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4425 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426 describe_balance_start_or_resume(fs_info);
4427 mutex_unlock(&fs_info->balance_mutex);
4428
4429 ret = __btrfs_balance(fs_info);
4430
4431 mutex_lock(&fs_info->balance_mutex);
4432 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4433 btrfs_info(fs_info, "balance: paused");
4434 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4435 paused = true;
4436 }
4437 /*
4438 * Balance can be canceled by:
4439 *
4440 * - Regular cancel request
4441 * Then ret == -ECANCELED and balance_cancel_req > 0
4442 *
4443 * - Fatal signal to "btrfs" process
4444 * Either the signal caught by wait_reserve_ticket() and callers
4445 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4446 * got -ECANCELED.
4447 * Either way, in this case balance_cancel_req = 0, and
4448 * ret == -EINTR or ret == -ECANCELED.
4449 *
4450 * So here we only check the return value to catch canceled balance.
4451 */
4452 else if (ret == -ECANCELED || ret == -EINTR)
4453 btrfs_info(fs_info, "balance: canceled");
4454 else
4455 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4456
4457 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4458
4459 if (bargs) {
4460 memset(bargs, 0, sizeof(*bargs));
4461 btrfs_update_ioctl_balance_args(fs_info, bargs);
4462 }
4463
4464 /* We didn't pause, we can clean everything up. */
4465 if (!paused) {
4466 reset_balance_state(fs_info);
4467 btrfs_exclop_finish(fs_info);
4468 }
4469
4470 wake_up(&fs_info->balance_wait_q);
4471
4472 return ret;
4473out:
4474 if (bctl->flags & BTRFS_BALANCE_RESUME)
4475 reset_balance_state(fs_info);
4476 else
4477 kfree(bctl);
4478 btrfs_exclop_finish(fs_info);
4479
4480 return ret;
4481}
4482
4483static int balance_kthread(void *data)
4484{
4485 struct btrfs_fs_info *fs_info = data;
4486 int ret = 0;
4487
4488 sb_start_write(fs_info->sb);
4489 mutex_lock(&fs_info->balance_mutex);
4490 if (fs_info->balance_ctl)
4491 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4492 mutex_unlock(&fs_info->balance_mutex);
4493 sb_end_write(fs_info->sb);
4494
4495 return ret;
4496}
4497
4498int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4499{
4500 struct task_struct *tsk;
4501
4502 mutex_lock(&fs_info->balance_mutex);
4503 if (!fs_info->balance_ctl) {
4504 mutex_unlock(&fs_info->balance_mutex);
4505 return 0;
4506 }
4507 mutex_unlock(&fs_info->balance_mutex);
4508
4509 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4510 btrfs_info(fs_info, "balance: resume skipped");
4511 return 0;
4512 }
4513
4514 spin_lock(&fs_info->super_lock);
4515 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4516 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4517 spin_unlock(&fs_info->super_lock);
4518 /*
4519 * A ro->rw remount sequence should continue with the paused balance
4520 * regardless of who pauses it, system or the user as of now, so set
4521 * the resume flag.
4522 */
4523 spin_lock(&fs_info->balance_lock);
4524 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4525 spin_unlock(&fs_info->balance_lock);
4526
4527 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4528 return PTR_ERR_OR_ZERO(tsk);
4529}
4530
4531int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4532{
4533 struct btrfs_balance_control *bctl;
4534 struct btrfs_balance_item *item;
4535 struct btrfs_disk_balance_args disk_bargs;
4536 struct btrfs_path *path;
4537 struct extent_buffer *leaf;
4538 struct btrfs_key key;
4539 int ret;
4540
4541 path = btrfs_alloc_path();
4542 if (!path)
4543 return -ENOMEM;
4544
4545 key.objectid = BTRFS_BALANCE_OBJECTID;
4546 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4547 key.offset = 0;
4548
4549 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4550 if (ret < 0)
4551 goto out;
4552 if (ret > 0) { /* ret = -ENOENT; */
4553 ret = 0;
4554 goto out;
4555 }
4556
4557 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4558 if (!bctl) {
4559 ret = -ENOMEM;
4560 goto out;
4561 }
4562
4563 leaf = path->nodes[0];
4564 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4565
4566 bctl->flags = btrfs_balance_flags(leaf, item);
4567 bctl->flags |= BTRFS_BALANCE_RESUME;
4568
4569 btrfs_balance_data(leaf, item, &disk_bargs);
4570 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4571 btrfs_balance_meta(leaf, item, &disk_bargs);
4572 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4573 btrfs_balance_sys(leaf, item, &disk_bargs);
4574 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4575
4576 /*
4577 * This should never happen, as the paused balance state is recovered
4578 * during mount without any chance of other exclusive ops to collide.
4579 *
4580 * This gives the exclusive op status to balance and keeps in paused
4581 * state until user intervention (cancel or umount). If the ownership
4582 * cannot be assigned, show a message but do not fail. The balance
4583 * is in a paused state and must have fs_info::balance_ctl properly
4584 * set up.
4585 */
4586 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4587 btrfs_warn(fs_info,
4588 "balance: cannot set exclusive op status, resume manually");
4589
4590 btrfs_release_path(path);
4591
4592 mutex_lock(&fs_info->balance_mutex);
4593 BUG_ON(fs_info->balance_ctl);
4594 spin_lock(&fs_info->balance_lock);
4595 fs_info->balance_ctl = bctl;
4596 spin_unlock(&fs_info->balance_lock);
4597 mutex_unlock(&fs_info->balance_mutex);
4598out:
4599 btrfs_free_path(path);
4600 return ret;
4601}
4602
4603int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4604{
4605 int ret = 0;
4606
4607 mutex_lock(&fs_info->balance_mutex);
4608 if (!fs_info->balance_ctl) {
4609 mutex_unlock(&fs_info->balance_mutex);
4610 return -ENOTCONN;
4611 }
4612
4613 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 atomic_inc(&fs_info->balance_pause_req);
4615 mutex_unlock(&fs_info->balance_mutex);
4616
4617 wait_event(fs_info->balance_wait_q,
4618 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4619
4620 mutex_lock(&fs_info->balance_mutex);
4621 /* we are good with balance_ctl ripped off from under us */
4622 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623 atomic_dec(&fs_info->balance_pause_req);
4624 } else {
4625 ret = -ENOTCONN;
4626 }
4627
4628 mutex_unlock(&fs_info->balance_mutex);
4629 return ret;
4630}
4631
4632int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4633{
4634 mutex_lock(&fs_info->balance_mutex);
4635 if (!fs_info->balance_ctl) {
4636 mutex_unlock(&fs_info->balance_mutex);
4637 return -ENOTCONN;
4638 }
4639
4640 /*
4641 * A paused balance with the item stored on disk can be resumed at
4642 * mount time if the mount is read-write. Otherwise it's still paused
4643 * and we must not allow cancelling as it deletes the item.
4644 */
4645 if (sb_rdonly(fs_info->sb)) {
4646 mutex_unlock(&fs_info->balance_mutex);
4647 return -EROFS;
4648 }
4649
4650 atomic_inc(&fs_info->balance_cancel_req);
4651 /*
4652 * if we are running just wait and return, balance item is
4653 * deleted in btrfs_balance in this case
4654 */
4655 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4656 mutex_unlock(&fs_info->balance_mutex);
4657 wait_event(fs_info->balance_wait_q,
4658 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4659 mutex_lock(&fs_info->balance_mutex);
4660 } else {
4661 mutex_unlock(&fs_info->balance_mutex);
4662 /*
4663 * Lock released to allow other waiters to continue, we'll
4664 * reexamine the status again.
4665 */
4666 mutex_lock(&fs_info->balance_mutex);
4667
4668 if (fs_info->balance_ctl) {
4669 reset_balance_state(fs_info);
4670 btrfs_exclop_finish(fs_info);
4671 btrfs_info(fs_info, "balance: canceled");
4672 }
4673 }
4674
4675 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4676 atomic_dec(&fs_info->balance_cancel_req);
4677 mutex_unlock(&fs_info->balance_mutex);
4678 return 0;
4679}
4680
4681int btrfs_uuid_scan_kthread(void *data)
4682{
4683 struct btrfs_fs_info *fs_info = data;
4684 struct btrfs_root *root = fs_info->tree_root;
4685 struct btrfs_key key;
4686 struct btrfs_path *path = NULL;
4687 int ret = 0;
4688 struct extent_buffer *eb;
4689 int slot;
4690 struct btrfs_root_item root_item;
4691 u32 item_size;
4692 struct btrfs_trans_handle *trans = NULL;
4693 bool closing = false;
4694
4695 path = btrfs_alloc_path();
4696 if (!path) {
4697 ret = -ENOMEM;
4698 goto out;
4699 }
4700
4701 key.objectid = 0;
4702 key.type = BTRFS_ROOT_ITEM_KEY;
4703 key.offset = 0;
4704
4705 while (1) {
4706 if (btrfs_fs_closing(fs_info)) {
4707 closing = true;
4708 break;
4709 }
4710 ret = btrfs_search_forward(root, &key, path,
4711 BTRFS_OLDEST_GENERATION);
4712 if (ret) {
4713 if (ret > 0)
4714 ret = 0;
4715 break;
4716 }
4717
4718 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4719 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4720 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4721 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4722 goto skip;
4723
4724 eb = path->nodes[0];
4725 slot = path->slots[0];
4726 item_size = btrfs_item_size(eb, slot);
4727 if (item_size < sizeof(root_item))
4728 goto skip;
4729
4730 read_extent_buffer(eb, &root_item,
4731 btrfs_item_ptr_offset(eb, slot),
4732 (int)sizeof(root_item));
4733 if (btrfs_root_refs(&root_item) == 0)
4734 goto skip;
4735
4736 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4737 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4738 if (trans)
4739 goto update_tree;
4740
4741 btrfs_release_path(path);
4742 /*
4743 * 1 - subvol uuid item
4744 * 1 - received_subvol uuid item
4745 */
4746 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4747 if (IS_ERR(trans)) {
4748 ret = PTR_ERR(trans);
4749 break;
4750 }
4751 continue;
4752 } else {
4753 goto skip;
4754 }
4755update_tree:
4756 btrfs_release_path(path);
4757 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4758 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4759 BTRFS_UUID_KEY_SUBVOL,
4760 key.objectid);
4761 if (ret < 0) {
4762 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4763 ret);
4764 break;
4765 }
4766 }
4767
4768 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4769 ret = btrfs_uuid_tree_add(trans,
4770 root_item.received_uuid,
4771 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4772 key.objectid);
4773 if (ret < 0) {
4774 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4775 ret);
4776 break;
4777 }
4778 }
4779
4780skip:
4781 btrfs_release_path(path);
4782 if (trans) {
4783 ret = btrfs_end_transaction(trans);
4784 trans = NULL;
4785 if (ret)
4786 break;
4787 }
4788
4789 if (key.offset < (u64)-1) {
4790 key.offset++;
4791 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4792 key.offset = 0;
4793 key.type = BTRFS_ROOT_ITEM_KEY;
4794 } else if (key.objectid < (u64)-1) {
4795 key.offset = 0;
4796 key.type = BTRFS_ROOT_ITEM_KEY;
4797 key.objectid++;
4798 } else {
4799 break;
4800 }
4801 cond_resched();
4802 }
4803
4804out:
4805 btrfs_free_path(path);
4806 if (trans && !IS_ERR(trans))
4807 btrfs_end_transaction(trans);
4808 if (ret)
4809 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4810 else if (!closing)
4811 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4812 up(&fs_info->uuid_tree_rescan_sem);
4813 return 0;
4814}
4815
4816int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4817{
4818 struct btrfs_trans_handle *trans;
4819 struct btrfs_root *tree_root = fs_info->tree_root;
4820 struct btrfs_root *uuid_root;
4821 struct task_struct *task;
4822 int ret;
4823
4824 /*
4825 * 1 - root node
4826 * 1 - root item
4827 */
4828 trans = btrfs_start_transaction(tree_root, 2);
4829 if (IS_ERR(trans))
4830 return PTR_ERR(trans);
4831
4832 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4833 if (IS_ERR(uuid_root)) {
4834 ret = PTR_ERR(uuid_root);
4835 btrfs_abort_transaction(trans, ret);
4836 btrfs_end_transaction(trans);
4837 return ret;
4838 }
4839
4840 fs_info->uuid_root = uuid_root;
4841
4842 ret = btrfs_commit_transaction(trans);
4843 if (ret)
4844 return ret;
4845
4846 down(&fs_info->uuid_tree_rescan_sem);
4847 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4848 if (IS_ERR(task)) {
4849 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4850 btrfs_warn(fs_info, "failed to start uuid_scan task");
4851 up(&fs_info->uuid_tree_rescan_sem);
4852 return PTR_ERR(task);
4853 }
4854
4855 return 0;
4856}
4857
4858/*
4859 * shrinking a device means finding all of the device extents past
4860 * the new size, and then following the back refs to the chunks.
4861 * The chunk relocation code actually frees the device extent
4862 */
4863int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4864{
4865 struct btrfs_fs_info *fs_info = device->fs_info;
4866 struct btrfs_root *root = fs_info->dev_root;
4867 struct btrfs_trans_handle *trans;
4868 struct btrfs_dev_extent *dev_extent = NULL;
4869 struct btrfs_path *path;
4870 u64 length;
4871 u64 chunk_offset;
4872 int ret;
4873 int slot;
4874 int failed = 0;
4875 bool retried = false;
4876 struct extent_buffer *l;
4877 struct btrfs_key key;
4878 struct btrfs_super_block *super_copy = fs_info->super_copy;
4879 u64 old_total = btrfs_super_total_bytes(super_copy);
4880 u64 old_size = btrfs_device_get_total_bytes(device);
4881 u64 diff;
4882 u64 start;
4883 u64 free_diff = 0;
4884
4885 new_size = round_down(new_size, fs_info->sectorsize);
4886 start = new_size;
4887 diff = round_down(old_size - new_size, fs_info->sectorsize);
4888
4889 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4890 return -EINVAL;
4891
4892 path = btrfs_alloc_path();
4893 if (!path)
4894 return -ENOMEM;
4895
4896 path->reada = READA_BACK;
4897
4898 trans = btrfs_start_transaction(root, 0);
4899 if (IS_ERR(trans)) {
4900 btrfs_free_path(path);
4901 return PTR_ERR(trans);
4902 }
4903
4904 mutex_lock(&fs_info->chunk_mutex);
4905
4906 btrfs_device_set_total_bytes(device, new_size);
4907 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4908 device->fs_devices->total_rw_bytes -= diff;
4909
4910 /*
4911 * The new free_chunk_space is new_size - used, so we have to
4912 * subtract the delta of the old free_chunk_space which included
4913 * old_size - used. If used > new_size then just subtract this
4914 * entire device's free space.
4915 */
4916 if (device->bytes_used < new_size)
4917 free_diff = (old_size - device->bytes_used) -
4918 (new_size - device->bytes_used);
4919 else
4920 free_diff = old_size - device->bytes_used;
4921 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4922 }
4923
4924 /*
4925 * Once the device's size has been set to the new size, ensure all
4926 * in-memory chunks are synced to disk so that the loop below sees them
4927 * and relocates them accordingly.
4928 */
4929 if (contains_pending_extent(device, &start, diff)) {
4930 mutex_unlock(&fs_info->chunk_mutex);
4931 ret = btrfs_commit_transaction(trans);
4932 if (ret)
4933 goto done;
4934 } else {
4935 mutex_unlock(&fs_info->chunk_mutex);
4936 btrfs_end_transaction(trans);
4937 }
4938
4939again:
4940 key.objectid = device->devid;
4941 key.offset = (u64)-1;
4942 key.type = BTRFS_DEV_EXTENT_KEY;
4943
4944 do {
4945 mutex_lock(&fs_info->reclaim_bgs_lock);
4946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4947 if (ret < 0) {
4948 mutex_unlock(&fs_info->reclaim_bgs_lock);
4949 goto done;
4950 }
4951
4952 ret = btrfs_previous_item(root, path, 0, key.type);
4953 if (ret) {
4954 mutex_unlock(&fs_info->reclaim_bgs_lock);
4955 if (ret < 0)
4956 goto done;
4957 ret = 0;
4958 btrfs_release_path(path);
4959 break;
4960 }
4961
4962 l = path->nodes[0];
4963 slot = path->slots[0];
4964 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4965
4966 if (key.objectid != device->devid) {
4967 mutex_unlock(&fs_info->reclaim_bgs_lock);
4968 btrfs_release_path(path);
4969 break;
4970 }
4971
4972 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4973 length = btrfs_dev_extent_length(l, dev_extent);
4974
4975 if (key.offset + length <= new_size) {
4976 mutex_unlock(&fs_info->reclaim_bgs_lock);
4977 btrfs_release_path(path);
4978 break;
4979 }
4980
4981 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4982 btrfs_release_path(path);
4983
4984 /*
4985 * We may be relocating the only data chunk we have,
4986 * which could potentially end up with losing data's
4987 * raid profile, so lets allocate an empty one in
4988 * advance.
4989 */
4990 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4991 if (ret < 0) {
4992 mutex_unlock(&fs_info->reclaim_bgs_lock);
4993 goto done;
4994 }
4995
4996 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4997 mutex_unlock(&fs_info->reclaim_bgs_lock);
4998 if (ret == -ENOSPC) {
4999 failed++;
5000 } else if (ret) {
5001 if (ret == -ETXTBSY) {
5002 btrfs_warn(fs_info,
5003 "could not shrink block group %llu due to active swapfile",
5004 chunk_offset);
5005 }
5006 goto done;
5007 }
5008 } while (key.offset-- > 0);
5009
5010 if (failed && !retried) {
5011 failed = 0;
5012 retried = true;
5013 goto again;
5014 } else if (failed && retried) {
5015 ret = -ENOSPC;
5016 goto done;
5017 }
5018
5019 /* Shrinking succeeded, else we would be at "done". */
5020 trans = btrfs_start_transaction(root, 0);
5021 if (IS_ERR(trans)) {
5022 ret = PTR_ERR(trans);
5023 goto done;
5024 }
5025
5026 mutex_lock(&fs_info->chunk_mutex);
5027 /* Clear all state bits beyond the shrunk device size */
5028 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5029 CHUNK_STATE_MASK);
5030
5031 btrfs_device_set_disk_total_bytes(device, new_size);
5032 if (list_empty(&device->post_commit_list))
5033 list_add_tail(&device->post_commit_list,
5034 &trans->transaction->dev_update_list);
5035
5036 WARN_ON(diff > old_total);
5037 btrfs_set_super_total_bytes(super_copy,
5038 round_down(old_total - diff, fs_info->sectorsize));
5039 mutex_unlock(&fs_info->chunk_mutex);
5040
5041 btrfs_reserve_chunk_metadata(trans, false);
5042 /* Now btrfs_update_device() will change the on-disk size. */
5043 ret = btrfs_update_device(trans, device);
5044 btrfs_trans_release_chunk_metadata(trans);
5045 if (ret < 0) {
5046 btrfs_abort_transaction(trans, ret);
5047 btrfs_end_transaction(trans);
5048 } else {
5049 ret = btrfs_commit_transaction(trans);
5050 }
5051done:
5052 btrfs_free_path(path);
5053 if (ret) {
5054 mutex_lock(&fs_info->chunk_mutex);
5055 btrfs_device_set_total_bytes(device, old_size);
5056 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5057 device->fs_devices->total_rw_bytes += diff;
5058 atomic64_add(free_diff, &fs_info->free_chunk_space);
5059 }
5060 mutex_unlock(&fs_info->chunk_mutex);
5061 }
5062 return ret;
5063}
5064
5065static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5066 struct btrfs_key *key,
5067 struct btrfs_chunk *chunk, int item_size)
5068{
5069 struct btrfs_super_block *super_copy = fs_info->super_copy;
5070 struct btrfs_disk_key disk_key;
5071 u32 array_size;
5072 u8 *ptr;
5073
5074 lockdep_assert_held(&fs_info->chunk_mutex);
5075
5076 array_size = btrfs_super_sys_array_size(super_copy);
5077 if (array_size + item_size + sizeof(disk_key)
5078 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5079 return -EFBIG;
5080
5081 ptr = super_copy->sys_chunk_array + array_size;
5082 btrfs_cpu_key_to_disk(&disk_key, key);
5083 memcpy(ptr, &disk_key, sizeof(disk_key));
5084 ptr += sizeof(disk_key);
5085 memcpy(ptr, chunk, item_size);
5086 item_size += sizeof(disk_key);
5087 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5088
5089 return 0;
5090}
5091
5092/*
5093 * sort the devices in descending order by max_avail, total_avail
5094 */
5095static int btrfs_cmp_device_info(const void *a, const void *b)
5096{
5097 const struct btrfs_device_info *di_a = a;
5098 const struct btrfs_device_info *di_b = b;
5099
5100 if (di_a->max_avail > di_b->max_avail)
5101 return -1;
5102 if (di_a->max_avail < di_b->max_avail)
5103 return 1;
5104 if (di_a->total_avail > di_b->total_avail)
5105 return -1;
5106 if (di_a->total_avail < di_b->total_avail)
5107 return 1;
5108 return 0;
5109}
5110
5111static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5112{
5113 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5114 return;
5115
5116 btrfs_set_fs_incompat(info, RAID56);
5117}
5118
5119static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5120{
5121 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5122 return;
5123
5124 btrfs_set_fs_incompat(info, RAID1C34);
5125}
5126
5127/*
5128 * Structure used internally for btrfs_create_chunk() function.
5129 * Wraps needed parameters.
5130 */
5131struct alloc_chunk_ctl {
5132 u64 start;
5133 u64 type;
5134 /* Total number of stripes to allocate */
5135 int num_stripes;
5136 /* sub_stripes info for map */
5137 int sub_stripes;
5138 /* Stripes per device */
5139 int dev_stripes;
5140 /* Maximum number of devices to use */
5141 int devs_max;
5142 /* Minimum number of devices to use */
5143 int devs_min;
5144 /* ndevs has to be a multiple of this */
5145 int devs_increment;
5146 /* Number of copies */
5147 int ncopies;
5148 /* Number of stripes worth of bytes to store parity information */
5149 int nparity;
5150 u64 max_stripe_size;
5151 u64 max_chunk_size;
5152 u64 dev_extent_min;
5153 u64 stripe_size;
5154 u64 chunk_size;
5155 int ndevs;
5156};
5157
5158static void init_alloc_chunk_ctl_policy_regular(
5159 struct btrfs_fs_devices *fs_devices,
5160 struct alloc_chunk_ctl *ctl)
5161{
5162 struct btrfs_space_info *space_info;
5163
5164 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5165 ASSERT(space_info);
5166
5167 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5168 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5169
5170 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5171 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5172
5173 /* We don't want a chunk larger than 10% of writable space */
5174 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5175 ctl->max_chunk_size);
5176 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5177}
5178
5179static void init_alloc_chunk_ctl_policy_zoned(
5180 struct btrfs_fs_devices *fs_devices,
5181 struct alloc_chunk_ctl *ctl)
5182{
5183 u64 zone_size = fs_devices->fs_info->zone_size;
5184 u64 limit;
5185 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5186 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5187 u64 min_chunk_size = min_data_stripes * zone_size;
5188 u64 type = ctl->type;
5189
5190 ctl->max_stripe_size = zone_size;
5191 if (type & BTRFS_BLOCK_GROUP_DATA) {
5192 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5193 zone_size);
5194 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5195 ctl->max_chunk_size = ctl->max_stripe_size;
5196 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5197 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5198 ctl->devs_max = min_t(int, ctl->devs_max,
5199 BTRFS_MAX_DEVS_SYS_CHUNK);
5200 } else {
5201 BUG();
5202 }
5203
5204 /* We don't want a chunk larger than 10% of writable space */
5205 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5206 zone_size),
5207 min_chunk_size);
5208 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5209 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5210}
5211
5212static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5213 struct alloc_chunk_ctl *ctl)
5214{
5215 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5216
5217 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5218 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5219 ctl->devs_max = btrfs_raid_array[index].devs_max;
5220 if (!ctl->devs_max)
5221 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5222 ctl->devs_min = btrfs_raid_array[index].devs_min;
5223 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5224 ctl->ncopies = btrfs_raid_array[index].ncopies;
5225 ctl->nparity = btrfs_raid_array[index].nparity;
5226 ctl->ndevs = 0;
5227
5228 switch (fs_devices->chunk_alloc_policy) {
5229 case BTRFS_CHUNK_ALLOC_REGULAR:
5230 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5231 break;
5232 case BTRFS_CHUNK_ALLOC_ZONED:
5233 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5234 break;
5235 default:
5236 BUG();
5237 }
5238}
5239
5240static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5241 struct alloc_chunk_ctl *ctl,
5242 struct btrfs_device_info *devices_info)
5243{
5244 struct btrfs_fs_info *info = fs_devices->fs_info;
5245 struct btrfs_device *device;
5246 u64 total_avail;
5247 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5248 int ret;
5249 int ndevs = 0;
5250 u64 max_avail;
5251 u64 dev_offset;
5252
5253 /*
5254 * in the first pass through the devices list, we gather information
5255 * about the available holes on each device.
5256 */
5257 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5258 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5259 WARN(1, KERN_ERR
5260 "BTRFS: read-only device in alloc_list\n");
5261 continue;
5262 }
5263
5264 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5265 &device->dev_state) ||
5266 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5267 continue;
5268
5269 if (device->total_bytes > device->bytes_used)
5270 total_avail = device->total_bytes - device->bytes_used;
5271 else
5272 total_avail = 0;
5273
5274 /* If there is no space on this device, skip it. */
5275 if (total_avail < ctl->dev_extent_min)
5276 continue;
5277
5278 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5279 &max_avail);
5280 if (ret && ret != -ENOSPC)
5281 return ret;
5282
5283 if (ret == 0)
5284 max_avail = dev_extent_want;
5285
5286 if (max_avail < ctl->dev_extent_min) {
5287 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5288 btrfs_debug(info,
5289 "%s: devid %llu has no free space, have=%llu want=%llu",
5290 __func__, device->devid, max_avail,
5291 ctl->dev_extent_min);
5292 continue;
5293 }
5294
5295 if (ndevs == fs_devices->rw_devices) {
5296 WARN(1, "%s: found more than %llu devices\n",
5297 __func__, fs_devices->rw_devices);
5298 break;
5299 }
5300 devices_info[ndevs].dev_offset = dev_offset;
5301 devices_info[ndevs].max_avail = max_avail;
5302 devices_info[ndevs].total_avail = total_avail;
5303 devices_info[ndevs].dev = device;
5304 ++ndevs;
5305 }
5306 ctl->ndevs = ndevs;
5307
5308 /*
5309 * now sort the devices by hole size / available space
5310 */
5311 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5312 btrfs_cmp_device_info, NULL);
5313
5314 return 0;
5315}
5316
5317static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5318 struct btrfs_device_info *devices_info)
5319{
5320 /* Number of stripes that count for block group size */
5321 int data_stripes;
5322
5323 /*
5324 * The primary goal is to maximize the number of stripes, so use as
5325 * many devices as possible, even if the stripes are not maximum sized.
5326 *
5327 * The DUP profile stores more than one stripe per device, the
5328 * max_avail is the total size so we have to adjust.
5329 */
5330 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5331 ctl->dev_stripes);
5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333
5334 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5335 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5336
5337 /*
5338 * Use the number of data stripes to figure out how big this chunk is
5339 * really going to be in terms of logical address space, and compare
5340 * that answer with the max chunk size. If it's higher, we try to
5341 * reduce stripe_size.
5342 */
5343 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5344 /*
5345 * Reduce stripe_size, round it up to a 16MB boundary again and
5346 * then use it, unless it ends up being even bigger than the
5347 * previous value we had already.
5348 */
5349 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5350 data_stripes), SZ_16M),
5351 ctl->stripe_size);
5352 }
5353
5354 /* Stripe size should not go beyond 1G. */
5355 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5356
5357 /* Align to BTRFS_STRIPE_LEN */
5358 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5359 ctl->chunk_size = ctl->stripe_size * data_stripes;
5360
5361 return 0;
5362}
5363
5364static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5365 struct btrfs_device_info *devices_info)
5366{
5367 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5368 /* Number of stripes that count for block group size */
5369 int data_stripes;
5370
5371 /*
5372 * It should hold because:
5373 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5374 */
5375 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5376
5377 ctl->stripe_size = zone_size;
5378 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5379 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5380
5381 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5382 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5383 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5384 ctl->stripe_size) + ctl->nparity,
5385 ctl->dev_stripes);
5386 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5387 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5388 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5389 }
5390
5391 ctl->chunk_size = ctl->stripe_size * data_stripes;
5392
5393 return 0;
5394}
5395
5396static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5397 struct alloc_chunk_ctl *ctl,
5398 struct btrfs_device_info *devices_info)
5399{
5400 struct btrfs_fs_info *info = fs_devices->fs_info;
5401
5402 /*
5403 * Round down to number of usable stripes, devs_increment can be any
5404 * number so we can't use round_down() that requires power of 2, while
5405 * rounddown is safe.
5406 */
5407 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5408
5409 if (ctl->ndevs < ctl->devs_min) {
5410 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5411 btrfs_debug(info,
5412 "%s: not enough devices with free space: have=%d minimum required=%d",
5413 __func__, ctl->ndevs, ctl->devs_min);
5414 }
5415 return -ENOSPC;
5416 }
5417
5418 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5419
5420 switch (fs_devices->chunk_alloc_policy) {
5421 case BTRFS_CHUNK_ALLOC_REGULAR:
5422 return decide_stripe_size_regular(ctl, devices_info);
5423 case BTRFS_CHUNK_ALLOC_ZONED:
5424 return decide_stripe_size_zoned(ctl, devices_info);
5425 default:
5426 BUG();
5427 }
5428}
5429
5430static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5431{
5432 for (int i = 0; i < map->num_stripes; i++) {
5433 struct btrfs_io_stripe *stripe = &map->stripes[i];
5434 struct btrfs_device *device = stripe->dev;
5435
5436 set_extent_bit(&device->alloc_state, stripe->physical,
5437 stripe->physical + map->stripe_size - 1,
5438 bits | EXTENT_NOWAIT, NULL);
5439 }
5440}
5441
5442static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5443{
5444 for (int i = 0; i < map->num_stripes; i++) {
5445 struct btrfs_io_stripe *stripe = &map->stripes[i];
5446 struct btrfs_device *device = stripe->dev;
5447
5448 __clear_extent_bit(&device->alloc_state, stripe->physical,
5449 stripe->physical + map->stripe_size - 1,
5450 bits | EXTENT_NOWAIT,
5451 NULL, NULL);
5452 }
5453}
5454
5455void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5456{
5457 write_lock(&fs_info->mapping_tree_lock);
5458 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5459 RB_CLEAR_NODE(&map->rb_node);
5460 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5461 write_unlock(&fs_info->mapping_tree_lock);
5462
5463 /* Once for the tree reference. */
5464 btrfs_free_chunk_map(map);
5465}
5466
5467EXPORT_FOR_TESTS
5468int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5469{
5470 struct rb_node **p;
5471 struct rb_node *parent = NULL;
5472 bool leftmost = true;
5473
5474 write_lock(&fs_info->mapping_tree_lock);
5475 p = &fs_info->mapping_tree.rb_root.rb_node;
5476 while (*p) {
5477 struct btrfs_chunk_map *entry;
5478
5479 parent = *p;
5480 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5481
5482 if (map->start < entry->start) {
5483 p = &(*p)->rb_left;
5484 } else if (map->start > entry->start) {
5485 p = &(*p)->rb_right;
5486 leftmost = false;
5487 } else {
5488 write_unlock(&fs_info->mapping_tree_lock);
5489 return -EEXIST;
5490 }
5491 }
5492 rb_link_node(&map->rb_node, parent, p);
5493 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5494 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5495 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5496 write_unlock(&fs_info->mapping_tree_lock);
5497
5498 return 0;
5499}
5500
5501EXPORT_FOR_TESTS
5502struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5503{
5504 struct btrfs_chunk_map *map;
5505
5506 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5507 if (!map)
5508 return NULL;
5509
5510 refcount_set(&map->refs, 1);
5511 RB_CLEAR_NODE(&map->rb_node);
5512
5513 return map;
5514}
5515
5516struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5517{
5518 const int size = btrfs_chunk_map_size(map->num_stripes);
5519 struct btrfs_chunk_map *clone;
5520
5521 clone = kmemdup(map, size, gfp);
5522 if (!clone)
5523 return NULL;
5524
5525 refcount_set(&clone->refs, 1);
5526 RB_CLEAR_NODE(&clone->rb_node);
5527
5528 return clone;
5529}
5530
5531static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5532 struct alloc_chunk_ctl *ctl,
5533 struct btrfs_device_info *devices_info)
5534{
5535 struct btrfs_fs_info *info = trans->fs_info;
5536 struct btrfs_chunk_map *map;
5537 struct btrfs_block_group *block_group;
5538 u64 start = ctl->start;
5539 u64 type = ctl->type;
5540 int ret;
5541 int i;
5542 int j;
5543
5544 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5545 if (!map)
5546 return ERR_PTR(-ENOMEM);
5547
5548 map->start = start;
5549 map->chunk_len = ctl->chunk_size;
5550 map->stripe_size = ctl->stripe_size;
5551 map->type = type;
5552 map->io_align = BTRFS_STRIPE_LEN;
5553 map->io_width = BTRFS_STRIPE_LEN;
5554 map->sub_stripes = ctl->sub_stripes;
5555 map->num_stripes = ctl->num_stripes;
5556
5557 for (i = 0; i < ctl->ndevs; ++i) {
5558 for (j = 0; j < ctl->dev_stripes; ++j) {
5559 int s = i * ctl->dev_stripes + j;
5560 map->stripes[s].dev = devices_info[i].dev;
5561 map->stripes[s].physical = devices_info[i].dev_offset +
5562 j * ctl->stripe_size;
5563 }
5564 }
5565
5566 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5567
5568 ret = btrfs_add_chunk_map(info, map);
5569 if (ret) {
5570 btrfs_free_chunk_map(map);
5571 return ERR_PTR(ret);
5572 }
5573
5574 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5575 if (IS_ERR(block_group)) {
5576 btrfs_remove_chunk_map(info, map);
5577 return block_group;
5578 }
5579
5580 for (int i = 0; i < map->num_stripes; i++) {
5581 struct btrfs_device *dev = map->stripes[i].dev;
5582
5583 btrfs_device_set_bytes_used(dev,
5584 dev->bytes_used + ctl->stripe_size);
5585 if (list_empty(&dev->post_commit_list))
5586 list_add_tail(&dev->post_commit_list,
5587 &trans->transaction->dev_update_list);
5588 }
5589
5590 atomic64_sub(ctl->stripe_size * map->num_stripes,
5591 &info->free_chunk_space);
5592
5593 check_raid56_incompat_flag(info, type);
5594 check_raid1c34_incompat_flag(info, type);
5595
5596 return block_group;
5597}
5598
5599struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5600 u64 type)
5601{
5602 struct btrfs_fs_info *info = trans->fs_info;
5603 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5604 struct btrfs_device_info *devices_info = NULL;
5605 struct alloc_chunk_ctl ctl;
5606 struct btrfs_block_group *block_group;
5607 int ret;
5608
5609 lockdep_assert_held(&info->chunk_mutex);
5610
5611 if (!alloc_profile_is_valid(type, 0)) {
5612 ASSERT(0);
5613 return ERR_PTR(-EINVAL);
5614 }
5615
5616 if (list_empty(&fs_devices->alloc_list)) {
5617 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5618 btrfs_debug(info, "%s: no writable device", __func__);
5619 return ERR_PTR(-ENOSPC);
5620 }
5621
5622 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5623 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5624 ASSERT(0);
5625 return ERR_PTR(-EINVAL);
5626 }
5627
5628 ctl.start = find_next_chunk(info);
5629 ctl.type = type;
5630 init_alloc_chunk_ctl(fs_devices, &ctl);
5631
5632 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5633 GFP_NOFS);
5634 if (!devices_info)
5635 return ERR_PTR(-ENOMEM);
5636
5637 ret = gather_device_info(fs_devices, &ctl, devices_info);
5638 if (ret < 0) {
5639 block_group = ERR_PTR(ret);
5640 goto out;
5641 }
5642
5643 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5644 if (ret < 0) {
5645 block_group = ERR_PTR(ret);
5646 goto out;
5647 }
5648
5649 block_group = create_chunk(trans, &ctl, devices_info);
5650
5651out:
5652 kfree(devices_info);
5653 return block_group;
5654}
5655
5656/*
5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5659 * chunks.
5660 *
5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5662 * phases.
5663 */
5664int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5665 struct btrfs_block_group *bg)
5666{
5667 struct btrfs_fs_info *fs_info = trans->fs_info;
5668 struct btrfs_root *chunk_root = fs_info->chunk_root;
5669 struct btrfs_key key;
5670 struct btrfs_chunk *chunk;
5671 struct btrfs_stripe *stripe;
5672 struct btrfs_chunk_map *map;
5673 size_t item_size;
5674 int i;
5675 int ret;
5676
5677 /*
5678 * We take the chunk_mutex for 2 reasons:
5679 *
5680 * 1) Updates and insertions in the chunk btree must be done while holding
5681 * the chunk_mutex, as well as updating the system chunk array in the
5682 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5683 * details;
5684 *
5685 * 2) To prevent races with the final phase of a device replace operation
5686 * that replaces the device object associated with the map's stripes,
5687 * because the device object's id can change at any time during that
5688 * final phase of the device replace operation
5689 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5690 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5691 * which would cause a failure when updating the device item, which does
5692 * not exists, or persisting a stripe of the chunk item with such ID.
5693 * Here we can't use the device_list_mutex because our caller already
5694 * has locked the chunk_mutex, and the final phase of device replace
5695 * acquires both mutexes - first the device_list_mutex and then the
5696 * chunk_mutex. Using any of those two mutexes protects us from a
5697 * concurrent device replace.
5698 */
5699 lockdep_assert_held(&fs_info->chunk_mutex);
5700
5701 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5702 if (IS_ERR(map)) {
5703 ret = PTR_ERR(map);
5704 btrfs_abort_transaction(trans, ret);
5705 return ret;
5706 }
5707
5708 item_size = btrfs_chunk_item_size(map->num_stripes);
5709
5710 chunk = kzalloc(item_size, GFP_NOFS);
5711 if (!chunk) {
5712 ret = -ENOMEM;
5713 btrfs_abort_transaction(trans, ret);
5714 goto out;
5715 }
5716
5717 for (i = 0; i < map->num_stripes; i++) {
5718 struct btrfs_device *device = map->stripes[i].dev;
5719
5720 ret = btrfs_update_device(trans, device);
5721 if (ret)
5722 goto out;
5723 }
5724
5725 stripe = &chunk->stripe;
5726 for (i = 0; i < map->num_stripes; i++) {
5727 struct btrfs_device *device = map->stripes[i].dev;
5728 const u64 dev_offset = map->stripes[i].physical;
5729
5730 btrfs_set_stack_stripe_devid(stripe, device->devid);
5731 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5732 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5733 stripe++;
5734 }
5735
5736 btrfs_set_stack_chunk_length(chunk, bg->length);
5737 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5738 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5739 btrfs_set_stack_chunk_type(chunk, map->type);
5740 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5741 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5742 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5743 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5744 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5745
5746 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5747 key.type = BTRFS_CHUNK_ITEM_KEY;
5748 key.offset = bg->start;
5749
5750 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5751 if (ret)
5752 goto out;
5753
5754 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5755
5756 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5757 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5758 if (ret)
5759 goto out;
5760 }
5761
5762out:
5763 kfree(chunk);
5764 btrfs_free_chunk_map(map);
5765 return ret;
5766}
5767
5768static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5769{
5770 struct btrfs_fs_info *fs_info = trans->fs_info;
5771 u64 alloc_profile;
5772 struct btrfs_block_group *meta_bg;
5773 struct btrfs_block_group *sys_bg;
5774
5775 /*
5776 * When adding a new device for sprouting, the seed device is read-only
5777 * so we must first allocate a metadata and a system chunk. But before
5778 * adding the block group items to the extent, device and chunk btrees,
5779 * we must first:
5780 *
5781 * 1) Create both chunks without doing any changes to the btrees, as
5782 * otherwise we would get -ENOSPC since the block groups from the
5783 * seed device are read-only;
5784 *
5785 * 2) Add the device item for the new sprout device - finishing the setup
5786 * of a new block group requires updating the device item in the chunk
5787 * btree, so it must exist when we attempt to do it. The previous step
5788 * ensures this does not fail with -ENOSPC.
5789 *
5790 * After that we can add the block group items to their btrees:
5791 * update existing device item in the chunk btree, add a new block group
5792 * item to the extent btree, add a new chunk item to the chunk btree and
5793 * finally add the new device extent items to the devices btree.
5794 */
5795
5796 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5797 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5798 if (IS_ERR(meta_bg))
5799 return PTR_ERR(meta_bg);
5800
5801 alloc_profile = btrfs_system_alloc_profile(fs_info);
5802 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5803 if (IS_ERR(sys_bg))
5804 return PTR_ERR(sys_bg);
5805
5806 return 0;
5807}
5808
5809static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5810{
5811 const int index = btrfs_bg_flags_to_raid_index(map->type);
5812
5813 return btrfs_raid_array[index].tolerated_failures;
5814}
5815
5816bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5817{
5818 struct btrfs_chunk_map *map;
5819 int miss_ndevs = 0;
5820 int i;
5821 bool ret = true;
5822
5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5824 if (IS_ERR(map))
5825 return false;
5826
5827 for (i = 0; i < map->num_stripes; i++) {
5828 if (test_bit(BTRFS_DEV_STATE_MISSING,
5829 &map->stripes[i].dev->dev_state)) {
5830 miss_ndevs++;
5831 continue;
5832 }
5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834 &map->stripes[i].dev->dev_state)) {
5835 ret = false;
5836 goto end;
5837 }
5838 }
5839
5840 /*
5841 * If the number of missing devices is larger than max errors, we can
5842 * not write the data into that chunk successfully.
5843 */
5844 if (miss_ndevs > btrfs_chunk_max_errors(map))
5845 ret = false;
5846end:
5847 btrfs_free_chunk_map(map);
5848 return ret;
5849}
5850
5851void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5852{
5853 write_lock(&fs_info->mapping_tree_lock);
5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855 struct btrfs_chunk_map *map;
5856 struct rb_node *node;
5857
5858 node = rb_first_cached(&fs_info->mapping_tree);
5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861 RB_CLEAR_NODE(&map->rb_node);
5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863 /* Once for the tree ref. */
5864 btrfs_free_chunk_map(map);
5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5866 }
5867 write_unlock(&fs_info->mapping_tree_lock);
5868}
5869
5870int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5871{
5872 struct btrfs_chunk_map *map;
5873 enum btrfs_raid_types index;
5874 int ret = 1;
5875
5876 map = btrfs_get_chunk_map(fs_info, logical, len);
5877 if (IS_ERR(map))
5878 /*
5879 * We could return errors for these cases, but that could get
5880 * ugly and we'd probably do the same thing which is just not do
5881 * anything else and exit, so return 1 so the callers don't try
5882 * to use other copies.
5883 */
5884 return 1;
5885
5886 index = btrfs_bg_flags_to_raid_index(map->type);
5887
5888 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5889 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5890 ret = btrfs_raid_array[index].ncopies;
5891 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5892 ret = 2;
5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5894 /*
5895 * There could be two corrupted data stripes, we need
5896 * to loop retry in order to rebuild the correct data.
5897 *
5898 * Fail a stripe at a time on every retry except the
5899 * stripe under reconstruction.
5900 */
5901 ret = map->num_stripes;
5902 btrfs_free_chunk_map(map);
5903 return ret;
5904}
5905
5906unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5907 u64 logical)
5908{
5909 struct btrfs_chunk_map *map;
5910 unsigned long len = fs_info->sectorsize;
5911
5912 if (!btrfs_fs_incompat(fs_info, RAID56))
5913 return len;
5914
5915 map = btrfs_get_chunk_map(fs_info, logical, len);
5916
5917 if (!WARN_ON(IS_ERR(map))) {
5918 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5919 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5920 btrfs_free_chunk_map(map);
5921 }
5922 return len;
5923}
5924
5925int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5926{
5927 struct btrfs_chunk_map *map;
5928 int ret = 0;
5929
5930 if (!btrfs_fs_incompat(fs_info, RAID56))
5931 return 0;
5932
5933 map = btrfs_get_chunk_map(fs_info, logical, len);
5934
5935 if (!WARN_ON(IS_ERR(map))) {
5936 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5937 ret = 1;
5938 btrfs_free_chunk_map(map);
5939 }
5940 return ret;
5941}
5942
5943static int find_live_mirror(struct btrfs_fs_info *fs_info,
5944 struct btrfs_chunk_map *map, int first,
5945 int dev_replace_is_ongoing)
5946{
5947 int i;
5948 int num_stripes;
5949 int preferred_mirror;
5950 int tolerance;
5951 struct btrfs_device *srcdev;
5952
5953 ASSERT((map->type &
5954 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5955
5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5957 num_stripes = map->sub_stripes;
5958 else
5959 num_stripes = map->num_stripes;
5960
5961 switch (fs_info->fs_devices->read_policy) {
5962 default:
5963 /* Shouldn't happen, just warn and use pid instead of failing */
5964 btrfs_warn_rl(fs_info,
5965 "unknown read_policy type %u, reset to pid",
5966 fs_info->fs_devices->read_policy);
5967 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5968 fallthrough;
5969 case BTRFS_READ_POLICY_PID:
5970 preferred_mirror = first + (current->pid % num_stripes);
5971 break;
5972 }
5973
5974 if (dev_replace_is_ongoing &&
5975 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5976 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5977 srcdev = fs_info->dev_replace.srcdev;
5978 else
5979 srcdev = NULL;
5980
5981 /*
5982 * try to avoid the drive that is the source drive for a
5983 * dev-replace procedure, only choose it if no other non-missing
5984 * mirror is available
5985 */
5986 for (tolerance = 0; tolerance < 2; tolerance++) {
5987 if (map->stripes[preferred_mirror].dev->bdev &&
5988 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5989 return preferred_mirror;
5990 for (i = first; i < first + num_stripes; i++) {
5991 if (map->stripes[i].dev->bdev &&
5992 (tolerance || map->stripes[i].dev != srcdev))
5993 return i;
5994 }
5995 }
5996
5997 /* we couldn't find one that doesn't fail. Just return something
5998 * and the io error handling code will clean up eventually
5999 */
6000 return preferred_mirror;
6001}
6002
6003static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6004 u64 logical,
6005 u16 total_stripes)
6006{
6007 struct btrfs_io_context *bioc;
6008
6009 bioc = kzalloc(
6010 /* The size of btrfs_io_context */
6011 sizeof(struct btrfs_io_context) +
6012 /* Plus the variable array for the stripes */
6013 sizeof(struct btrfs_io_stripe) * (total_stripes),
6014 GFP_NOFS);
6015
6016 if (!bioc)
6017 return NULL;
6018
6019 refcount_set(&bioc->refs, 1);
6020
6021 bioc->fs_info = fs_info;
6022 bioc->replace_stripe_src = -1;
6023 bioc->full_stripe_logical = (u64)-1;
6024 bioc->logical = logical;
6025
6026 return bioc;
6027}
6028
6029void btrfs_get_bioc(struct btrfs_io_context *bioc)
6030{
6031 WARN_ON(!refcount_read(&bioc->refs));
6032 refcount_inc(&bioc->refs);
6033}
6034
6035void btrfs_put_bioc(struct btrfs_io_context *bioc)
6036{
6037 if (!bioc)
6038 return;
6039 if (refcount_dec_and_test(&bioc->refs))
6040 kfree(bioc);
6041}
6042
6043/*
6044 * Please note that, discard won't be sent to target device of device
6045 * replace.
6046 */
6047struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6048 u64 logical, u64 *length_ret,
6049 u32 *num_stripes)
6050{
6051 struct btrfs_chunk_map *map;
6052 struct btrfs_discard_stripe *stripes;
6053 u64 length = *length_ret;
6054 u64 offset;
6055 u32 stripe_nr;
6056 u32 stripe_nr_end;
6057 u32 stripe_cnt;
6058 u64 stripe_end_offset;
6059 u64 stripe_offset;
6060 u32 stripe_index;
6061 u32 factor = 0;
6062 u32 sub_stripes = 0;
6063 u32 stripes_per_dev = 0;
6064 u32 remaining_stripes = 0;
6065 u32 last_stripe = 0;
6066 int ret;
6067 int i;
6068
6069 map = btrfs_get_chunk_map(fs_info, logical, length);
6070 if (IS_ERR(map))
6071 return ERR_CAST(map);
6072
6073 /* we don't discard raid56 yet */
6074 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075 ret = -EOPNOTSUPP;
6076 goto out_free_map;
6077 }
6078
6079 offset = logical - map->start;
6080 length = min_t(u64, map->start + map->chunk_len - logical, length);
6081 *length_ret = length;
6082
6083 /*
6084 * stripe_nr counts the total number of stripes we have to stride
6085 * to get to this block
6086 */
6087 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6088
6089 /* stripe_offset is the offset of this block in its stripe */
6090 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6091
6092 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6093 BTRFS_STRIPE_LEN_SHIFT;
6094 stripe_cnt = stripe_nr_end - stripe_nr;
6095 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6096 (offset + length);
6097 /*
6098 * after this, stripe_nr is the number of stripes on this
6099 * device we have to walk to find the data, and stripe_index is
6100 * the number of our device in the stripe array
6101 */
6102 *num_stripes = 1;
6103 stripe_index = 0;
6104 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105 BTRFS_BLOCK_GROUP_RAID10)) {
6106 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6107 sub_stripes = 1;
6108 else
6109 sub_stripes = map->sub_stripes;
6110
6111 factor = map->num_stripes / sub_stripes;
6112 *num_stripes = min_t(u64, map->num_stripes,
6113 sub_stripes * stripe_cnt);
6114 stripe_index = stripe_nr % factor;
6115 stripe_nr /= factor;
6116 stripe_index *= sub_stripes;
6117
6118 remaining_stripes = stripe_cnt % factor;
6119 stripes_per_dev = stripe_cnt / factor;
6120 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6121 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6122 BTRFS_BLOCK_GROUP_DUP)) {
6123 *num_stripes = map->num_stripes;
6124 } else {
6125 stripe_index = stripe_nr % map->num_stripes;
6126 stripe_nr /= map->num_stripes;
6127 }
6128
6129 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6130 if (!stripes) {
6131 ret = -ENOMEM;
6132 goto out_free_map;
6133 }
6134
6135 for (i = 0; i < *num_stripes; i++) {
6136 stripes[i].physical =
6137 map->stripes[stripe_index].physical +
6138 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6139 stripes[i].dev = map->stripes[stripe_index].dev;
6140
6141 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6142 BTRFS_BLOCK_GROUP_RAID10)) {
6143 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6144
6145 if (i / sub_stripes < remaining_stripes)
6146 stripes[i].length += BTRFS_STRIPE_LEN;
6147
6148 /*
6149 * Special for the first stripe and
6150 * the last stripe:
6151 *
6152 * |-------|...|-------|
6153 * |----------|
6154 * off end_off
6155 */
6156 if (i < sub_stripes)
6157 stripes[i].length -= stripe_offset;
6158
6159 if (stripe_index >= last_stripe &&
6160 stripe_index <= (last_stripe +
6161 sub_stripes - 1))
6162 stripes[i].length -= stripe_end_offset;
6163
6164 if (i == sub_stripes - 1)
6165 stripe_offset = 0;
6166 } else {
6167 stripes[i].length = length;
6168 }
6169
6170 stripe_index++;
6171 if (stripe_index == map->num_stripes) {
6172 stripe_index = 0;
6173 stripe_nr++;
6174 }
6175 }
6176
6177 btrfs_free_chunk_map(map);
6178 return stripes;
6179out_free_map:
6180 btrfs_free_chunk_map(map);
6181 return ERR_PTR(ret);
6182}
6183
6184static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6185{
6186 struct btrfs_block_group *cache;
6187 bool ret;
6188
6189 /* Non zoned filesystem does not use "to_copy" flag */
6190 if (!btrfs_is_zoned(fs_info))
6191 return false;
6192
6193 cache = btrfs_lookup_block_group(fs_info, logical);
6194
6195 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6196
6197 btrfs_put_block_group(cache);
6198 return ret;
6199}
6200
6201static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6202 struct btrfs_io_context *bioc,
6203 struct btrfs_dev_replace *dev_replace,
6204 u64 logical,
6205 int *num_stripes_ret, int *max_errors_ret)
6206{
6207 u64 srcdev_devid = dev_replace->srcdev->devid;
6208 /*
6209 * At this stage, num_stripes is still the real number of stripes,
6210 * excluding the duplicated stripes.
6211 */
6212 int num_stripes = *num_stripes_ret;
6213 int nr_extra_stripes = 0;
6214 int max_errors = *max_errors_ret;
6215 int i;
6216
6217 /*
6218 * A block group which has "to_copy" set will eventually be copied by
6219 * the dev-replace process. We can avoid cloning IO here.
6220 */
6221 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6222 return;
6223
6224 /*
6225 * Duplicate the write operations while the dev-replace procedure is
6226 * running. Since the copying of the old disk to the new disk takes
6227 * place at run time while the filesystem is mounted writable, the
6228 * regular write operations to the old disk have to be duplicated to go
6229 * to the new disk as well.
6230 *
6231 * Note that device->missing is handled by the caller, and that the
6232 * write to the old disk is already set up in the stripes array.
6233 */
6234 for (i = 0; i < num_stripes; i++) {
6235 struct btrfs_io_stripe *old = &bioc->stripes[i];
6236 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6237
6238 if (old->dev->devid != srcdev_devid)
6239 continue;
6240
6241 new->physical = old->physical;
6242 new->dev = dev_replace->tgtdev;
6243 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6244 bioc->replace_stripe_src = i;
6245 nr_extra_stripes++;
6246 }
6247
6248 /* We can only have at most 2 extra nr_stripes (for DUP). */
6249 ASSERT(nr_extra_stripes <= 2);
6250 /*
6251 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6252 * replace.
6253 * If we have 2 extra stripes, only choose the one with smaller physical.
6254 */
6255 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6256 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6257 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6258
6259 /* Only DUP can have two extra stripes. */
6260 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6261
6262 /*
6263 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6264 * The extra stripe would still be there, but won't be accessed.
6265 */
6266 if (first->physical > second->physical) {
6267 swap(second->physical, first->physical);
6268 swap(second->dev, first->dev);
6269 nr_extra_stripes--;
6270 }
6271 }
6272
6273 *num_stripes_ret = num_stripes + nr_extra_stripes;
6274 *max_errors_ret = max_errors + nr_extra_stripes;
6275 bioc->replace_nr_stripes = nr_extra_stripes;
6276}
6277
6278static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6279 struct btrfs_io_geometry *io_geom)
6280{
6281 /*
6282 * Stripe_nr is the stripe where this block falls. stripe_offset is
6283 * the offset of this block in its stripe.
6284 */
6285 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6286 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6287 ASSERT(io_geom->stripe_offset < U32_MAX);
6288
6289 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6290 unsigned long full_stripe_len =
6291 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6292
6293 /*
6294 * For full stripe start, we use previously calculated
6295 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6296 * STRIPE_LEN.
6297 *
6298 * By this we can avoid u64 division completely. And we have
6299 * to go rounddown(), not round_down(), as nr_data_stripes is
6300 * not ensured to be power of 2.
6301 */
6302 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6303 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6304
6305 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6306 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6307 /*
6308 * For writes to RAID56, allow to write a full stripe set, but
6309 * no straddling of stripe sets.
6310 */
6311 if (io_geom->op == BTRFS_MAP_WRITE)
6312 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6313 }
6314
6315 /*
6316 * For other RAID types and for RAID56 reads, allow a single stripe (on
6317 * a single disk).
6318 */
6319 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6320 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6321 return U64_MAX;
6322}
6323
6324static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6325 u64 *length, struct btrfs_io_stripe *dst,
6326 struct btrfs_chunk_map *map,
6327 struct btrfs_io_geometry *io_geom)
6328{
6329 dst->dev = map->stripes[io_geom->stripe_index].dev;
6330
6331 if (io_geom->op == BTRFS_MAP_READ &&
6332 btrfs_need_stripe_tree_update(fs_info, map->type))
6333 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6334 map->type,
6335 io_geom->stripe_index, dst);
6336
6337 dst->physical = map->stripes[io_geom->stripe_index].physical +
6338 io_geom->stripe_offset +
6339 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6340 return 0;
6341}
6342
6343static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6344 const struct btrfs_io_stripe *smap,
6345 const struct btrfs_chunk_map *map,
6346 int num_alloc_stripes,
6347 enum btrfs_map_op op, int mirror_num)
6348{
6349 if (!smap)
6350 return false;
6351
6352 if (num_alloc_stripes != 1)
6353 return false;
6354
6355 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6356 return false;
6357
6358 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6359 return false;
6360
6361 return true;
6362}
6363
6364static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6365 struct btrfs_io_geometry *io_geom)
6366{
6367 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6368 io_geom->stripe_nr /= map->num_stripes;
6369 if (io_geom->op == BTRFS_MAP_READ)
6370 io_geom->mirror_num = 1;
6371}
6372
6373static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6374 struct btrfs_chunk_map *map,
6375 struct btrfs_io_geometry *io_geom,
6376 bool dev_replace_is_ongoing)
6377{
6378 if (io_geom->op != BTRFS_MAP_READ) {
6379 io_geom->num_stripes = map->num_stripes;
6380 return;
6381 }
6382
6383 if (io_geom->mirror_num) {
6384 io_geom->stripe_index = io_geom->mirror_num - 1;
6385 return;
6386 }
6387
6388 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6389 dev_replace_is_ongoing);
6390 io_geom->mirror_num = io_geom->stripe_index + 1;
6391}
6392
6393static void map_blocks_dup(const struct btrfs_chunk_map *map,
6394 struct btrfs_io_geometry *io_geom)
6395{
6396 if (io_geom->op != BTRFS_MAP_READ) {
6397 io_geom->num_stripes = map->num_stripes;
6398 return;
6399 }
6400
6401 if (io_geom->mirror_num) {
6402 io_geom->stripe_index = io_geom->mirror_num - 1;
6403 return;
6404 }
6405
6406 io_geom->mirror_num = 1;
6407}
6408
6409static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6410 struct btrfs_chunk_map *map,
6411 struct btrfs_io_geometry *io_geom,
6412 bool dev_replace_is_ongoing)
6413{
6414 u32 factor = map->num_stripes / map->sub_stripes;
6415 int old_stripe_index;
6416
6417 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6418 io_geom->stripe_nr /= factor;
6419
6420 if (io_geom->op != BTRFS_MAP_READ) {
6421 io_geom->num_stripes = map->sub_stripes;
6422 return;
6423 }
6424
6425 if (io_geom->mirror_num) {
6426 io_geom->stripe_index += io_geom->mirror_num - 1;
6427 return;
6428 }
6429
6430 old_stripe_index = io_geom->stripe_index;
6431 io_geom->stripe_index = find_live_mirror(fs_info, map,
6432 io_geom->stripe_index,
6433 dev_replace_is_ongoing);
6434 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6435}
6436
6437static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6438 struct btrfs_io_geometry *io_geom,
6439 u64 logical, u64 *length)
6440{
6441 int data_stripes = nr_data_stripes(map);
6442
6443 /*
6444 * Needs full stripe mapping.
6445 *
6446 * Push stripe_nr back to the start of the full stripe For those cases
6447 * needing a full stripe, @stripe_nr is the full stripe number.
6448 *
6449 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6450 * that can be expensive. Here we just divide @stripe_nr with
6451 * @data_stripes.
6452 */
6453 io_geom->stripe_nr /= data_stripes;
6454
6455 /* RAID[56] write or recovery. Return all stripes */
6456 io_geom->num_stripes = map->num_stripes;
6457 io_geom->max_errors = btrfs_chunk_max_errors(map);
6458
6459 /* Return the length to the full stripe end. */
6460 *length = min(logical + *length,
6461 io_geom->raid56_full_stripe_start + map->start +
6462 btrfs_stripe_nr_to_offset(data_stripes)) -
6463 logical;
6464 io_geom->stripe_index = 0;
6465 io_geom->stripe_offset = 0;
6466}
6467
6468static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6469 struct btrfs_io_geometry *io_geom)
6470{
6471 int data_stripes = nr_data_stripes(map);
6472
6473 ASSERT(io_geom->mirror_num <= 1);
6474 /* Just grab the data stripe directly. */
6475 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6476 io_geom->stripe_nr /= data_stripes;
6477
6478 /* We distribute the parity blocks across stripes. */
6479 io_geom->stripe_index =
6480 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6481
6482 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6483 io_geom->mirror_num = 1;
6484}
6485
6486static void map_blocks_single(const struct btrfs_chunk_map *map,
6487 struct btrfs_io_geometry *io_geom)
6488{
6489 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6490 io_geom->stripe_nr /= map->num_stripes;
6491 io_geom->mirror_num = io_geom->stripe_index + 1;
6492}
6493
6494/*
6495 * Map one logical range to one or more physical ranges.
6496 *
6497 * @length: (Mandatory) mapped length of this run.
6498 * One logical range can be split into different segments
6499 * due to factors like zones and RAID0/5/6/10 stripe
6500 * boundaries.
6501 *
6502 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6503 * which has one or more physical ranges (btrfs_io_stripe)
6504 * recorded inside.
6505 * Caller should call btrfs_put_bioc() to free it after use.
6506 *
6507 * @smap: (Optional) single physical range optimization.
6508 * If the map request can be fulfilled by one single
6509 * physical range, and this is parameter is not NULL,
6510 * then @bioc_ret would be NULL, and @smap would be
6511 * updated.
6512 *
6513 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6514 * value is 0.
6515 *
6516 * Mirror number 0 means to choose any live mirrors.
6517 *
6518 * For non-RAID56 profiles, non-zero mirror_num means
6519 * the Nth mirror. (e.g. mirror_num 1 means the first
6520 * copy).
6521 *
6522 * For RAID56 profile, mirror 1 means rebuild from P and
6523 * the remaining data stripes.
6524 *
6525 * For RAID6 profile, mirror > 2 means mark another
6526 * data/P stripe error and rebuild from the remaining
6527 * stripes..
6528 */
6529int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6530 u64 logical, u64 *length,
6531 struct btrfs_io_context **bioc_ret,
6532 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6533{
6534 struct btrfs_chunk_map *map;
6535 struct btrfs_io_geometry io_geom = { 0 };
6536 u64 map_offset;
6537 int i;
6538 int ret = 0;
6539 int num_copies;
6540 struct btrfs_io_context *bioc = NULL;
6541 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6542 int dev_replace_is_ongoing = 0;
6543 u16 num_alloc_stripes;
6544 u64 max_len;
6545
6546 ASSERT(bioc_ret);
6547
6548 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6549 io_geom.num_stripes = 1;
6550 io_geom.stripe_index = 0;
6551 io_geom.op = op;
6552
6553 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6554 if (io_geom.mirror_num > num_copies)
6555 return -EINVAL;
6556
6557 map = btrfs_get_chunk_map(fs_info, logical, *length);
6558 if (IS_ERR(map))
6559 return PTR_ERR(map);
6560
6561 map_offset = logical - map->start;
6562 io_geom.raid56_full_stripe_start = (u64)-1;
6563 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6564 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6565
6566 down_read(&dev_replace->rwsem);
6567 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6568 /*
6569 * Hold the semaphore for read during the whole operation, write is
6570 * requested at commit time but must wait.
6571 */
6572 if (!dev_replace_is_ongoing)
6573 up_read(&dev_replace->rwsem);
6574
6575 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6576 case BTRFS_BLOCK_GROUP_RAID0:
6577 map_blocks_raid0(map, &io_geom);
6578 break;
6579 case BTRFS_BLOCK_GROUP_RAID1:
6580 case BTRFS_BLOCK_GROUP_RAID1C3:
6581 case BTRFS_BLOCK_GROUP_RAID1C4:
6582 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6583 break;
6584 case BTRFS_BLOCK_GROUP_DUP:
6585 map_blocks_dup(map, &io_geom);
6586 break;
6587 case BTRFS_BLOCK_GROUP_RAID10:
6588 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6589 break;
6590 case BTRFS_BLOCK_GROUP_RAID5:
6591 case BTRFS_BLOCK_GROUP_RAID6:
6592 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6593 map_blocks_raid56_write(map, &io_geom, logical, length);
6594 else
6595 map_blocks_raid56_read(map, &io_geom);
6596 break;
6597 default:
6598 /*
6599 * After this, stripe_nr is the number of stripes on this
6600 * device we have to walk to find the data, and stripe_index is
6601 * the number of our device in the stripe array
6602 */
6603 map_blocks_single(map, &io_geom);
6604 break;
6605 }
6606 if (io_geom.stripe_index >= map->num_stripes) {
6607 btrfs_crit(fs_info,
6608 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6609 io_geom.stripe_index, map->num_stripes);
6610 ret = -EINVAL;
6611 goto out;
6612 }
6613
6614 num_alloc_stripes = io_geom.num_stripes;
6615 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6616 op != BTRFS_MAP_READ)
6617 /*
6618 * For replace case, we need to add extra stripes for extra
6619 * duplicated stripes.
6620 *
6621 * For both WRITE and GET_READ_MIRRORS, we may have at most
6622 * 2 more stripes (DUP types, otherwise 1).
6623 */
6624 num_alloc_stripes += 2;
6625
6626 /*
6627 * If this I/O maps to a single device, try to return the device and
6628 * physical block information on the stack instead of allocating an
6629 * I/O context structure.
6630 */
6631 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6632 io_geom.mirror_num)) {
6633 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6634 if (mirror_num_ret)
6635 *mirror_num_ret = io_geom.mirror_num;
6636 *bioc_ret = NULL;
6637 goto out;
6638 }
6639
6640 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6641 if (!bioc) {
6642 ret = -ENOMEM;
6643 goto out;
6644 }
6645 bioc->map_type = map->type;
6646
6647 /*
6648 * For RAID56 full map, we need to make sure the stripes[] follows the
6649 * rule that data stripes are all ordered, then followed with P and Q
6650 * (if we have).
6651 *
6652 * It's still mostly the same as other profiles, just with extra rotation.
6653 */
6654 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6655 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6656 /*
6657 * For RAID56 @stripe_nr is already the number of full stripes
6658 * before us, which is also the rotation value (needs to modulo
6659 * with num_stripes).
6660 *
6661 * In this case, we just add @stripe_nr with @i, then do the
6662 * modulo, to reduce one modulo call.
6663 */
6664 bioc->full_stripe_logical = map->start +
6665 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6666 nr_data_stripes(map));
6667 for (int i = 0; i < io_geom.num_stripes; i++) {
6668 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6669 u32 stripe_index;
6670
6671 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6672 dst->dev = map->stripes[stripe_index].dev;
6673 dst->physical =
6674 map->stripes[stripe_index].physical +
6675 io_geom.stripe_offset +
6676 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6677 }
6678 } else {
6679 /*
6680 * For all other non-RAID56 profiles, just copy the target
6681 * stripe into the bioc.
6682 */
6683 for (i = 0; i < io_geom.num_stripes; i++) {
6684 ret = set_io_stripe(fs_info, logical, length,
6685 &bioc->stripes[i], map, &io_geom);
6686 if (ret < 0)
6687 break;
6688 io_geom.stripe_index++;
6689 }
6690 }
6691
6692 if (ret) {
6693 *bioc_ret = NULL;
6694 btrfs_put_bioc(bioc);
6695 goto out;
6696 }
6697
6698 if (op != BTRFS_MAP_READ)
6699 io_geom.max_errors = btrfs_chunk_max_errors(map);
6700
6701 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6702 op != BTRFS_MAP_READ) {
6703 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6704 &io_geom.num_stripes, &io_geom.max_errors);
6705 }
6706
6707 *bioc_ret = bioc;
6708 bioc->num_stripes = io_geom.num_stripes;
6709 bioc->max_errors = io_geom.max_errors;
6710 bioc->mirror_num = io_geom.mirror_num;
6711
6712out:
6713 if (dev_replace_is_ongoing) {
6714 lockdep_assert_held(&dev_replace->rwsem);
6715 /* Unlock and let waiting writers proceed */
6716 up_read(&dev_replace->rwsem);
6717 }
6718 btrfs_free_chunk_map(map);
6719 return ret;
6720}
6721
6722static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6723 const struct btrfs_fs_devices *fs_devices)
6724{
6725 if (args->fsid == NULL)
6726 return true;
6727 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6728 return true;
6729 return false;
6730}
6731
6732static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6733 const struct btrfs_device *device)
6734{
6735 if (args->missing) {
6736 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6737 !device->bdev)
6738 return true;
6739 return false;
6740 }
6741
6742 if (device->devid != args->devid)
6743 return false;
6744 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6745 return false;
6746 return true;
6747}
6748
6749/*
6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6751 * return NULL.
6752 *
6753 * If devid and uuid are both specified, the match must be exact, otherwise
6754 * only devid is used.
6755 */
6756struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6757 const struct btrfs_dev_lookup_args *args)
6758{
6759 struct btrfs_device *device;
6760 struct btrfs_fs_devices *seed_devs;
6761
6762 if (dev_args_match_fs_devices(args, fs_devices)) {
6763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6764 if (dev_args_match_device(args, device))
6765 return device;
6766 }
6767 }
6768
6769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6770 if (!dev_args_match_fs_devices(args, seed_devs))
6771 continue;
6772 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6773 if (dev_args_match_device(args, device))
6774 return device;
6775 }
6776 }
6777
6778 return NULL;
6779}
6780
6781static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6782 u64 devid, u8 *dev_uuid)
6783{
6784 struct btrfs_device *device;
6785 unsigned int nofs_flag;
6786
6787 /*
6788 * We call this under the chunk_mutex, so we want to use NOFS for this
6789 * allocation, however we don't want to change btrfs_alloc_device() to
6790 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6791 * places.
6792 */
6793
6794 nofs_flag = memalloc_nofs_save();
6795 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6796 memalloc_nofs_restore(nofs_flag);
6797 if (IS_ERR(device))
6798 return device;
6799
6800 list_add(&device->dev_list, &fs_devices->devices);
6801 device->fs_devices = fs_devices;
6802 fs_devices->num_devices++;
6803
6804 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6805 fs_devices->missing_devices++;
6806
6807 return device;
6808}
6809
6810/*
6811 * Allocate new device struct, set up devid and UUID.
6812 *
6813 * @fs_info: used only for generating a new devid, can be NULL if
6814 * devid is provided (i.e. @devid != NULL).
6815 * @devid: a pointer to devid for this device. If NULL a new devid
6816 * is generated.
6817 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6818 * is generated.
6819 * @path: a pointer to device path if available, NULL otherwise.
6820 *
6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6822 * on error. Returned struct is not linked onto any lists and must be
6823 * destroyed with btrfs_free_device.
6824 */
6825struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6826 const u64 *devid, const u8 *uuid,
6827 const char *path)
6828{
6829 struct btrfs_device *dev;
6830 u64 tmp;
6831
6832 if (WARN_ON(!devid && !fs_info))
6833 return ERR_PTR(-EINVAL);
6834
6835 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6836 if (!dev)
6837 return ERR_PTR(-ENOMEM);
6838
6839 INIT_LIST_HEAD(&dev->dev_list);
6840 INIT_LIST_HEAD(&dev->dev_alloc_list);
6841 INIT_LIST_HEAD(&dev->post_commit_list);
6842
6843 atomic_set(&dev->dev_stats_ccnt, 0);
6844 btrfs_device_data_ordered_init(dev);
6845 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6846
6847 if (devid)
6848 tmp = *devid;
6849 else {
6850 int ret;
6851
6852 ret = find_next_devid(fs_info, &tmp);
6853 if (ret) {
6854 btrfs_free_device(dev);
6855 return ERR_PTR(ret);
6856 }
6857 }
6858 dev->devid = tmp;
6859
6860 if (uuid)
6861 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6862 else
6863 generate_random_uuid(dev->uuid);
6864
6865 if (path) {
6866 struct rcu_string *name;
6867
6868 name = rcu_string_strdup(path, GFP_KERNEL);
6869 if (!name) {
6870 btrfs_free_device(dev);
6871 return ERR_PTR(-ENOMEM);
6872 }
6873 rcu_assign_pointer(dev->name, name);
6874 }
6875
6876 return dev;
6877}
6878
6879static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6880 u64 devid, u8 *uuid, bool error)
6881{
6882 if (error)
6883 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6884 devid, uuid);
6885 else
6886 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6887 devid, uuid);
6888}
6889
6890u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6891{
6892 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6893
6894 return div_u64(map->chunk_len, data_stripes);
6895}
6896
6897#if BITS_PER_LONG == 32
6898/*
6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6900 * can't be accessed on 32bit systems.
6901 *
6902 * This function do mount time check to reject the fs if it already has
6903 * metadata chunk beyond that limit.
6904 */
6905static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6906 u64 logical, u64 length, u64 type)
6907{
6908 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6909 return 0;
6910
6911 if (logical + length < MAX_LFS_FILESIZE)
6912 return 0;
6913
6914 btrfs_err_32bit_limit(fs_info);
6915 return -EOVERFLOW;
6916}
6917
6918/*
6919 * This is to give early warning for any metadata chunk reaching
6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6921 * Although we can still access the metadata, it's not going to be possible
6922 * once the limit is reached.
6923 */
6924static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925 u64 logical, u64 length, u64 type)
6926{
6927 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6928 return;
6929
6930 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6931 return;
6932
6933 btrfs_warn_32bit_limit(fs_info);
6934}
6935#endif
6936
6937static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6938 u64 devid, u8 *uuid)
6939{
6940 struct btrfs_device *dev;
6941
6942 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943 btrfs_report_missing_device(fs_info, devid, uuid, true);
6944 return ERR_PTR(-ENOENT);
6945 }
6946
6947 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6948 if (IS_ERR(dev)) {
6949 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6950 devid, PTR_ERR(dev));
6951 return dev;
6952 }
6953 btrfs_report_missing_device(fs_info, devid, uuid, false);
6954
6955 return dev;
6956}
6957
6958static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6959 struct btrfs_chunk *chunk)
6960{
6961 BTRFS_DEV_LOOKUP_ARGS(args);
6962 struct btrfs_fs_info *fs_info = leaf->fs_info;
6963 struct btrfs_chunk_map *map;
6964 u64 logical;
6965 u64 length;
6966 u64 devid;
6967 u64 type;
6968 u8 uuid[BTRFS_UUID_SIZE];
6969 int index;
6970 int num_stripes;
6971 int ret;
6972 int i;
6973
6974 logical = key->offset;
6975 length = btrfs_chunk_length(leaf, chunk);
6976 type = btrfs_chunk_type(leaf, chunk);
6977 index = btrfs_bg_flags_to_raid_index(type);
6978 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6979
6980#if BITS_PER_LONG == 32
6981 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6982 if (ret < 0)
6983 return ret;
6984 warn_32bit_meta_chunk(fs_info, logical, length, type);
6985#endif
6986
6987 /*
6988 * Only need to verify chunk item if we're reading from sys chunk array,
6989 * as chunk item in tree block is already verified by tree-checker.
6990 */
6991 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6993 if (ret)
6994 return ret;
6995 }
6996
6997 map = btrfs_find_chunk_map(fs_info, logical, 1);
6998
6999 /* already mapped? */
7000 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7001 btrfs_free_chunk_map(map);
7002 return 0;
7003 } else if (map) {
7004 btrfs_free_chunk_map(map);
7005 }
7006
7007 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7008 if (!map)
7009 return -ENOMEM;
7010
7011 map->start = logical;
7012 map->chunk_len = length;
7013 map->num_stripes = num_stripes;
7014 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7015 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7016 map->type = type;
7017 /*
7018 * We can't use the sub_stripes value, as for profiles other than
7019 * RAID10, they may have 0 as sub_stripes for filesystems created by
7020 * older mkfs (<v5.4).
7021 * In that case, it can cause divide-by-zero errors later.
7022 * Since currently sub_stripes is fixed for each profile, let's
7023 * use the trusted value instead.
7024 */
7025 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7026 map->verified_stripes = 0;
7027 map->stripe_size = btrfs_calc_stripe_length(map);
7028 for (i = 0; i < num_stripes; i++) {
7029 map->stripes[i].physical =
7030 btrfs_stripe_offset_nr(leaf, chunk, i);
7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032 args.devid = devid;
7033 read_extent_buffer(leaf, uuid, (unsigned long)
7034 btrfs_stripe_dev_uuid_nr(chunk, i),
7035 BTRFS_UUID_SIZE);
7036 args.uuid = uuid;
7037 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7038 if (!map->stripes[i].dev) {
7039 map->stripes[i].dev = handle_missing_device(fs_info,
7040 devid, uuid);
7041 if (IS_ERR(map->stripes[i].dev)) {
7042 ret = PTR_ERR(map->stripes[i].dev);
7043 btrfs_free_chunk_map(map);
7044 return ret;
7045 }
7046 }
7047
7048 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7049 &(map->stripes[i].dev->dev_state));
7050 }
7051
7052 ret = btrfs_add_chunk_map(fs_info, map);
7053 if (ret < 0) {
7054 btrfs_err(fs_info,
7055 "failed to add chunk map, start=%llu len=%llu: %d",
7056 map->start, map->chunk_len, ret);
7057 }
7058
7059 return ret;
7060}
7061
7062static void fill_device_from_item(struct extent_buffer *leaf,
7063 struct btrfs_dev_item *dev_item,
7064 struct btrfs_device *device)
7065{
7066 unsigned long ptr;
7067
7068 device->devid = btrfs_device_id(leaf, dev_item);
7069 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7070 device->total_bytes = device->disk_total_bytes;
7071 device->commit_total_bytes = device->disk_total_bytes;
7072 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7073 device->commit_bytes_used = device->bytes_used;
7074 device->type = btrfs_device_type(leaf, dev_item);
7075 device->io_align = btrfs_device_io_align(leaf, dev_item);
7076 device->io_width = btrfs_device_io_width(leaf, dev_item);
7077 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7078 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7079 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7080
7081 ptr = btrfs_device_uuid(dev_item);
7082 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7083}
7084
7085static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7086 u8 *fsid)
7087{
7088 struct btrfs_fs_devices *fs_devices;
7089 int ret;
7090
7091 lockdep_assert_held(&uuid_mutex);
7092 ASSERT(fsid);
7093
7094 /* This will match only for multi-device seed fs */
7095 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7096 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7097 return fs_devices;
7098
7099
7100 fs_devices = find_fsid(fsid, NULL);
7101 if (!fs_devices) {
7102 if (!btrfs_test_opt(fs_info, DEGRADED))
7103 return ERR_PTR(-ENOENT);
7104
7105 fs_devices = alloc_fs_devices(fsid);
7106 if (IS_ERR(fs_devices))
7107 return fs_devices;
7108
7109 fs_devices->seeding = true;
7110 fs_devices->opened = 1;
7111 return fs_devices;
7112 }
7113
7114 /*
7115 * Upon first call for a seed fs fsid, just create a private copy of the
7116 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7117 */
7118 fs_devices = clone_fs_devices(fs_devices);
7119 if (IS_ERR(fs_devices))
7120 return fs_devices;
7121
7122 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7123 if (ret) {
7124 free_fs_devices(fs_devices);
7125 return ERR_PTR(ret);
7126 }
7127
7128 if (!fs_devices->seeding) {
7129 close_fs_devices(fs_devices);
7130 free_fs_devices(fs_devices);
7131 return ERR_PTR(-EINVAL);
7132 }
7133
7134 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7135
7136 return fs_devices;
7137}
7138
7139static int read_one_dev(struct extent_buffer *leaf,
7140 struct btrfs_dev_item *dev_item)
7141{
7142 BTRFS_DEV_LOOKUP_ARGS(args);
7143 struct btrfs_fs_info *fs_info = leaf->fs_info;
7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145 struct btrfs_device *device;
7146 u64 devid;
7147 int ret;
7148 u8 fs_uuid[BTRFS_FSID_SIZE];
7149 u8 dev_uuid[BTRFS_UUID_SIZE];
7150
7151 devid = btrfs_device_id(leaf, dev_item);
7152 args.devid = devid;
7153 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7154 BTRFS_UUID_SIZE);
7155 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7156 BTRFS_FSID_SIZE);
7157 args.uuid = dev_uuid;
7158 args.fsid = fs_uuid;
7159
7160 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7161 fs_devices = open_seed_devices(fs_info, fs_uuid);
7162 if (IS_ERR(fs_devices))
7163 return PTR_ERR(fs_devices);
7164 }
7165
7166 device = btrfs_find_device(fs_info->fs_devices, &args);
7167 if (!device) {
7168 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169 btrfs_report_missing_device(fs_info, devid,
7170 dev_uuid, true);
7171 return -ENOENT;
7172 }
7173
7174 device = add_missing_dev(fs_devices, devid, dev_uuid);
7175 if (IS_ERR(device)) {
7176 btrfs_err(fs_info,
7177 "failed to add missing dev %llu: %ld",
7178 devid, PTR_ERR(device));
7179 return PTR_ERR(device);
7180 }
7181 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7182 } else {
7183 if (!device->bdev) {
7184 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185 btrfs_report_missing_device(fs_info,
7186 devid, dev_uuid, true);
7187 return -ENOENT;
7188 }
7189 btrfs_report_missing_device(fs_info, devid,
7190 dev_uuid, false);
7191 }
7192
7193 if (!device->bdev &&
7194 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7195 /*
7196 * this happens when a device that was properly setup
7197 * in the device info lists suddenly goes bad.
7198 * device->bdev is NULL, and so we have to set
7199 * device->missing to one here
7200 */
7201 device->fs_devices->missing_devices++;
7202 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7203 }
7204
7205 /* Move the device to its own fs_devices */
7206 if (device->fs_devices != fs_devices) {
7207 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7208 &device->dev_state));
7209
7210 list_move(&device->dev_list, &fs_devices->devices);
7211 device->fs_devices->num_devices--;
7212 fs_devices->num_devices++;
7213
7214 device->fs_devices->missing_devices--;
7215 fs_devices->missing_devices++;
7216
7217 device->fs_devices = fs_devices;
7218 }
7219 }
7220
7221 if (device->fs_devices != fs_info->fs_devices) {
7222 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7223 if (device->generation !=
7224 btrfs_device_generation(leaf, dev_item))
7225 return -EINVAL;
7226 }
7227
7228 fill_device_from_item(leaf, dev_item, device);
7229 if (device->bdev) {
7230 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7231
7232 if (device->total_bytes > max_total_bytes) {
7233 btrfs_err(fs_info,
7234 "device total_bytes should be at most %llu but found %llu",
7235 max_total_bytes, device->total_bytes);
7236 return -EINVAL;
7237 }
7238 }
7239 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7241 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7242 device->fs_devices->total_rw_bytes += device->total_bytes;
7243 atomic64_add(device->total_bytes - device->bytes_used,
7244 &fs_info->free_chunk_space);
7245 }
7246 ret = 0;
7247 return ret;
7248}
7249
7250int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7251{
7252 struct btrfs_super_block *super_copy = fs_info->super_copy;
7253 struct extent_buffer *sb;
7254 struct btrfs_disk_key *disk_key;
7255 struct btrfs_chunk *chunk;
7256 u8 *array_ptr;
7257 unsigned long sb_array_offset;
7258 int ret = 0;
7259 u32 num_stripes;
7260 u32 array_size;
7261 u32 len = 0;
7262 u32 cur_offset;
7263 u64 type;
7264 struct btrfs_key key;
7265
7266 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7267
7268 /*
7269 * We allocated a dummy extent, just to use extent buffer accessors.
7270 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7271 * that's fine, we will not go beyond system chunk array anyway.
7272 */
7273 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7274 if (!sb)
7275 return -ENOMEM;
7276 set_extent_buffer_uptodate(sb);
7277
7278 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7279 array_size = btrfs_super_sys_array_size(super_copy);
7280
7281 array_ptr = super_copy->sys_chunk_array;
7282 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7283 cur_offset = 0;
7284
7285 while (cur_offset < array_size) {
7286 disk_key = (struct btrfs_disk_key *)array_ptr;
7287 len = sizeof(*disk_key);
7288 if (cur_offset + len > array_size)
7289 goto out_short_read;
7290
7291 btrfs_disk_key_to_cpu(&key, disk_key);
7292
7293 array_ptr += len;
7294 sb_array_offset += len;
7295 cur_offset += len;
7296
7297 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7298 btrfs_err(fs_info,
7299 "unexpected item type %u in sys_array at offset %u",
7300 (u32)key.type, cur_offset);
7301 ret = -EIO;
7302 break;
7303 }
7304
7305 chunk = (struct btrfs_chunk *)sb_array_offset;
7306 /*
7307 * At least one btrfs_chunk with one stripe must be present,
7308 * exact stripe count check comes afterwards
7309 */
7310 len = btrfs_chunk_item_size(1);
7311 if (cur_offset + len > array_size)
7312 goto out_short_read;
7313
7314 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7315 if (!num_stripes) {
7316 btrfs_err(fs_info,
7317 "invalid number of stripes %u in sys_array at offset %u",
7318 num_stripes, cur_offset);
7319 ret = -EIO;
7320 break;
7321 }
7322
7323 type = btrfs_chunk_type(sb, chunk);
7324 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7325 btrfs_err(fs_info,
7326 "invalid chunk type %llu in sys_array at offset %u",
7327 type, cur_offset);
7328 ret = -EIO;
7329 break;
7330 }
7331
7332 len = btrfs_chunk_item_size(num_stripes);
7333 if (cur_offset + len > array_size)
7334 goto out_short_read;
7335
7336 ret = read_one_chunk(&key, sb, chunk);
7337 if (ret)
7338 break;
7339
7340 array_ptr += len;
7341 sb_array_offset += len;
7342 cur_offset += len;
7343 }
7344 clear_extent_buffer_uptodate(sb);
7345 free_extent_buffer_stale(sb);
7346 return ret;
7347
7348out_short_read:
7349 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7350 len, cur_offset);
7351 clear_extent_buffer_uptodate(sb);
7352 free_extent_buffer_stale(sb);
7353 return -EIO;
7354}
7355
7356/*
7357 * Check if all chunks in the fs are OK for read-write degraded mount
7358 *
7359 * If the @failing_dev is specified, it's accounted as missing.
7360 *
7361 * Return true if all chunks meet the minimal RW mount requirements.
7362 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7363 */
7364bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7365 struct btrfs_device *failing_dev)
7366{
7367 struct btrfs_chunk_map *map;
7368 u64 next_start;
7369 bool ret = true;
7370
7371 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7372 /* No chunk at all? Return false anyway */
7373 if (!map) {
7374 ret = false;
7375 goto out;
7376 }
7377 while (map) {
7378 int missing = 0;
7379 int max_tolerated;
7380 int i;
7381
7382 max_tolerated =
7383 btrfs_get_num_tolerated_disk_barrier_failures(
7384 map->type);
7385 for (i = 0; i < map->num_stripes; i++) {
7386 struct btrfs_device *dev = map->stripes[i].dev;
7387
7388 if (!dev || !dev->bdev ||
7389 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7390 dev->last_flush_error)
7391 missing++;
7392 else if (failing_dev && failing_dev == dev)
7393 missing++;
7394 }
7395 if (missing > max_tolerated) {
7396 if (!failing_dev)
7397 btrfs_warn(fs_info,
7398 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7399 map->start, missing, max_tolerated);
7400 btrfs_free_chunk_map(map);
7401 ret = false;
7402 goto out;
7403 }
7404 next_start = map->start + map->chunk_len;
7405 btrfs_free_chunk_map(map);
7406
7407 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7408 }
7409out:
7410 return ret;
7411}
7412
7413static void readahead_tree_node_children(struct extent_buffer *node)
7414{
7415 int i;
7416 const int nr_items = btrfs_header_nritems(node);
7417
7418 for (i = 0; i < nr_items; i++)
7419 btrfs_readahead_node_child(node, i);
7420}
7421
7422int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7423{
7424 struct btrfs_root *root = fs_info->chunk_root;
7425 struct btrfs_path *path;
7426 struct extent_buffer *leaf;
7427 struct btrfs_key key;
7428 struct btrfs_key found_key;
7429 int ret;
7430 int slot;
7431 int iter_ret = 0;
7432 u64 total_dev = 0;
7433 u64 last_ra_node = 0;
7434
7435 path = btrfs_alloc_path();
7436 if (!path)
7437 return -ENOMEM;
7438
7439 /*
7440 * uuid_mutex is needed only if we are mounting a sprout FS
7441 * otherwise we don't need it.
7442 */
7443 mutex_lock(&uuid_mutex);
7444
7445 /*
7446 * It is possible for mount and umount to race in such a way that
7447 * we execute this code path, but open_fs_devices failed to clear
7448 * total_rw_bytes. We certainly want it cleared before reading the
7449 * device items, so clear it here.
7450 */
7451 fs_info->fs_devices->total_rw_bytes = 0;
7452
7453 /*
7454 * Lockdep complains about possible circular locking dependency between
7455 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7456 * used for freeze procection of a fs (struct super_block.s_writers),
7457 * which we take when starting a transaction, and extent buffers of the
7458 * chunk tree if we call read_one_dev() while holding a lock on an
7459 * extent buffer of the chunk tree. Since we are mounting the filesystem
7460 * and at this point there can't be any concurrent task modifying the
7461 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7462 */
7463 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7464 path->skip_locking = 1;
7465
7466 /*
7467 * Read all device items, and then all the chunk items. All
7468 * device items are found before any chunk item (their object id
7469 * is smaller than the lowest possible object id for a chunk
7470 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7471 */
7472 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7473 key.offset = 0;
7474 key.type = 0;
7475 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7476 struct extent_buffer *node = path->nodes[1];
7477
7478 leaf = path->nodes[0];
7479 slot = path->slots[0];
7480
7481 if (node) {
7482 if (last_ra_node != node->start) {
7483 readahead_tree_node_children(node);
7484 last_ra_node = node->start;
7485 }
7486 }
7487 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7488 struct btrfs_dev_item *dev_item;
7489 dev_item = btrfs_item_ptr(leaf, slot,
7490 struct btrfs_dev_item);
7491 ret = read_one_dev(leaf, dev_item);
7492 if (ret)
7493 goto error;
7494 total_dev++;
7495 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7496 struct btrfs_chunk *chunk;
7497
7498 /*
7499 * We are only called at mount time, so no need to take
7500 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7501 * we always lock first fs_info->chunk_mutex before
7502 * acquiring any locks on the chunk tree. This is a
7503 * requirement for chunk allocation, see the comment on
7504 * top of btrfs_chunk_alloc() for details.
7505 */
7506 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7507 ret = read_one_chunk(&found_key, leaf, chunk);
7508 if (ret)
7509 goto error;
7510 }
7511 }
7512 /* Catch error found during iteration */
7513 if (iter_ret < 0) {
7514 ret = iter_ret;
7515 goto error;
7516 }
7517
7518 /*
7519 * After loading chunk tree, we've got all device information,
7520 * do another round of validation checks.
7521 */
7522 if (total_dev != fs_info->fs_devices->total_devices) {
7523 btrfs_warn(fs_info,
7524"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7525 btrfs_super_num_devices(fs_info->super_copy),
7526 total_dev);
7527 fs_info->fs_devices->total_devices = total_dev;
7528 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7529 }
7530 if (btrfs_super_total_bytes(fs_info->super_copy) <
7531 fs_info->fs_devices->total_rw_bytes) {
7532 btrfs_err(fs_info,
7533 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7534 btrfs_super_total_bytes(fs_info->super_copy),
7535 fs_info->fs_devices->total_rw_bytes);
7536 ret = -EINVAL;
7537 goto error;
7538 }
7539 ret = 0;
7540error:
7541 mutex_unlock(&uuid_mutex);
7542
7543 btrfs_free_path(path);
7544 return ret;
7545}
7546
7547int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7548{
7549 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7550 struct btrfs_device *device;
7551 int ret = 0;
7552
7553 fs_devices->fs_info = fs_info;
7554
7555 mutex_lock(&fs_devices->device_list_mutex);
7556 list_for_each_entry(device, &fs_devices->devices, dev_list)
7557 device->fs_info = fs_info;
7558
7559 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7560 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7561 device->fs_info = fs_info;
7562 ret = btrfs_get_dev_zone_info(device, false);
7563 if (ret)
7564 break;
7565 }
7566
7567 seed_devs->fs_info = fs_info;
7568 }
7569 mutex_unlock(&fs_devices->device_list_mutex);
7570
7571 return ret;
7572}
7573
7574static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7575 const struct btrfs_dev_stats_item *ptr,
7576 int index)
7577{
7578 u64 val;
7579
7580 read_extent_buffer(eb, &val,
7581 offsetof(struct btrfs_dev_stats_item, values) +
7582 ((unsigned long)ptr) + (index * sizeof(u64)),
7583 sizeof(val));
7584 return val;
7585}
7586
7587static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7588 struct btrfs_dev_stats_item *ptr,
7589 int index, u64 val)
7590{
7591 write_extent_buffer(eb, &val,
7592 offsetof(struct btrfs_dev_stats_item, values) +
7593 ((unsigned long)ptr) + (index * sizeof(u64)),
7594 sizeof(val));
7595}
7596
7597static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7598 struct btrfs_path *path)
7599{
7600 struct btrfs_dev_stats_item *ptr;
7601 struct extent_buffer *eb;
7602 struct btrfs_key key;
7603 int item_size;
7604 int i, ret, slot;
7605
7606 if (!device->fs_info->dev_root)
7607 return 0;
7608
7609 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7610 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7611 key.offset = device->devid;
7612 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7613 if (ret) {
7614 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7615 btrfs_dev_stat_set(device, i, 0);
7616 device->dev_stats_valid = 1;
7617 btrfs_release_path(path);
7618 return ret < 0 ? ret : 0;
7619 }
7620 slot = path->slots[0];
7621 eb = path->nodes[0];
7622 item_size = btrfs_item_size(eb, slot);
7623
7624 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7625
7626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7627 if (item_size >= (1 + i) * sizeof(__le64))
7628 btrfs_dev_stat_set(device, i,
7629 btrfs_dev_stats_value(eb, ptr, i));
7630 else
7631 btrfs_dev_stat_set(device, i, 0);
7632 }
7633
7634 device->dev_stats_valid = 1;
7635 btrfs_dev_stat_print_on_load(device);
7636 btrfs_release_path(path);
7637
7638 return 0;
7639}
7640
7641int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7642{
7643 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7644 struct btrfs_device *device;
7645 struct btrfs_path *path = NULL;
7646 int ret = 0;
7647
7648 path = btrfs_alloc_path();
7649 if (!path)
7650 return -ENOMEM;
7651
7652 mutex_lock(&fs_devices->device_list_mutex);
7653 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7654 ret = btrfs_device_init_dev_stats(device, path);
7655 if (ret)
7656 goto out;
7657 }
7658 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7659 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7660 ret = btrfs_device_init_dev_stats(device, path);
7661 if (ret)
7662 goto out;
7663 }
7664 }
7665out:
7666 mutex_unlock(&fs_devices->device_list_mutex);
7667
7668 btrfs_free_path(path);
7669 return ret;
7670}
7671
7672static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7673 struct btrfs_device *device)
7674{
7675 struct btrfs_fs_info *fs_info = trans->fs_info;
7676 struct btrfs_root *dev_root = fs_info->dev_root;
7677 struct btrfs_path *path;
7678 struct btrfs_key key;
7679 struct extent_buffer *eb;
7680 struct btrfs_dev_stats_item *ptr;
7681 int ret;
7682 int i;
7683
7684 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7685 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7686 key.offset = device->devid;
7687
7688 path = btrfs_alloc_path();
7689 if (!path)
7690 return -ENOMEM;
7691 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "error %d while searching for dev_stats item for device %s",
7695 ret, btrfs_dev_name(device));
7696 goto out;
7697 }
7698
7699 if (ret == 0 &&
7700 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7701 /* need to delete old one and insert a new one */
7702 ret = btrfs_del_item(trans, dev_root, path);
7703 if (ret != 0) {
7704 btrfs_warn_in_rcu(fs_info,
7705 "delete too small dev_stats item for device %s failed %d",
7706 btrfs_dev_name(device), ret);
7707 goto out;
7708 }
7709 ret = 1;
7710 }
7711
7712 if (ret == 1) {
7713 /* need to insert a new item */
7714 btrfs_release_path(path);
7715 ret = btrfs_insert_empty_item(trans, dev_root, path,
7716 &key, sizeof(*ptr));
7717 if (ret < 0) {
7718 btrfs_warn_in_rcu(fs_info,
7719 "insert dev_stats item for device %s failed %d",
7720 btrfs_dev_name(device), ret);
7721 goto out;
7722 }
7723 }
7724
7725 eb = path->nodes[0];
7726 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7728 btrfs_set_dev_stats_value(eb, ptr, i,
7729 btrfs_dev_stat_read(device, i));
7730 btrfs_mark_buffer_dirty(trans, eb);
7731
7732out:
7733 btrfs_free_path(path);
7734 return ret;
7735}
7736
7737/*
7738 * called from commit_transaction. Writes all changed device stats to disk.
7739 */
7740int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7741{
7742 struct btrfs_fs_info *fs_info = trans->fs_info;
7743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7744 struct btrfs_device *device;
7745 int stats_cnt;
7746 int ret = 0;
7747
7748 mutex_lock(&fs_devices->device_list_mutex);
7749 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7750 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7751 if (!device->dev_stats_valid || stats_cnt == 0)
7752 continue;
7753
7754
7755 /*
7756 * There is a LOAD-LOAD control dependency between the value of
7757 * dev_stats_ccnt and updating the on-disk values which requires
7758 * reading the in-memory counters. Such control dependencies
7759 * require explicit read memory barriers.
7760 *
7761 * This memory barriers pairs with smp_mb__before_atomic in
7762 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7763 * barrier implied by atomic_xchg in
7764 * btrfs_dev_stats_read_and_reset
7765 */
7766 smp_rmb();
7767
7768 ret = update_dev_stat_item(trans, device);
7769 if (!ret)
7770 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7771 }
7772 mutex_unlock(&fs_devices->device_list_mutex);
7773
7774 return ret;
7775}
7776
7777void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7778{
7779 btrfs_dev_stat_inc(dev, index);
7780
7781 if (!dev->dev_stats_valid)
7782 return;
7783 btrfs_err_rl_in_rcu(dev->fs_info,
7784 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785 btrfs_dev_name(dev),
7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7791}
7792
7793static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7794{
7795 int i;
7796
7797 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798 if (btrfs_dev_stat_read(dev, i) != 0)
7799 break;
7800 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801 return; /* all values == 0, suppress message */
7802
7803 btrfs_info_in_rcu(dev->fs_info,
7804 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805 btrfs_dev_name(dev),
7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7811}
7812
7813int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814 struct btrfs_ioctl_get_dev_stats *stats)
7815{
7816 BTRFS_DEV_LOOKUP_ARGS(args);
7817 struct btrfs_device *dev;
7818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7819 int i;
7820
7821 mutex_lock(&fs_devices->device_list_mutex);
7822 args.devid = stats->devid;
7823 dev = btrfs_find_device(fs_info->fs_devices, &args);
7824 mutex_unlock(&fs_devices->device_list_mutex);
7825
7826 if (!dev) {
7827 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7828 return -ENODEV;
7829 } else if (!dev->dev_stats_valid) {
7830 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7831 return -ENODEV;
7832 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7833 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7834 if (stats->nr_items > i)
7835 stats->values[i] =
7836 btrfs_dev_stat_read_and_reset(dev, i);
7837 else
7838 btrfs_dev_stat_set(dev, i, 0);
7839 }
7840 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7841 current->comm, task_pid_nr(current));
7842 } else {
7843 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7844 if (stats->nr_items > i)
7845 stats->values[i] = btrfs_dev_stat_read(dev, i);
7846 }
7847 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7848 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7849 return 0;
7850}
7851
7852/*
7853 * Update the size and bytes used for each device where it changed. This is
7854 * delayed since we would otherwise get errors while writing out the
7855 * superblocks.
7856 *
7857 * Must be invoked during transaction commit.
7858 */
7859void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7860{
7861 struct btrfs_device *curr, *next;
7862
7863 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7864
7865 if (list_empty(&trans->dev_update_list))
7866 return;
7867
7868 /*
7869 * We don't need the device_list_mutex here. This list is owned by the
7870 * transaction and the transaction must complete before the device is
7871 * released.
7872 */
7873 mutex_lock(&trans->fs_info->chunk_mutex);
7874 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7875 post_commit_list) {
7876 list_del_init(&curr->post_commit_list);
7877 curr->commit_total_bytes = curr->disk_total_bytes;
7878 curr->commit_bytes_used = curr->bytes_used;
7879 }
7880 mutex_unlock(&trans->fs_info->chunk_mutex);
7881}
7882
7883/*
7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7885 */
7886int btrfs_bg_type_to_factor(u64 flags)
7887{
7888 const int index = btrfs_bg_flags_to_raid_index(flags);
7889
7890 return btrfs_raid_array[index].ncopies;
7891}
7892
7893
7894
7895static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7896 u64 chunk_offset, u64 devid,
7897 u64 physical_offset, u64 physical_len)
7898{
7899 struct btrfs_dev_lookup_args args = { .devid = devid };
7900 struct btrfs_chunk_map *map;
7901 struct btrfs_device *dev;
7902 u64 stripe_len;
7903 bool found = false;
7904 int ret = 0;
7905 int i;
7906
7907 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7908 if (!map) {
7909 btrfs_err(fs_info,
7910"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911 physical_offset, devid);
7912 ret = -EUCLEAN;
7913 goto out;
7914 }
7915
7916 stripe_len = btrfs_calc_stripe_length(map);
7917 if (physical_len != stripe_len) {
7918 btrfs_err(fs_info,
7919"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7920 physical_offset, devid, map->start, physical_len,
7921 stripe_len);
7922 ret = -EUCLEAN;
7923 goto out;
7924 }
7925
7926 /*
7927 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7928 * space. Although kernel can handle it without problem, better to warn
7929 * the users.
7930 */
7931 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7932 btrfs_warn(fs_info,
7933 "devid %llu physical %llu len %llu inside the reserved space",
7934 devid, physical_offset, physical_len);
7935
7936 for (i = 0; i < map->num_stripes; i++) {
7937 if (map->stripes[i].dev->devid == devid &&
7938 map->stripes[i].physical == physical_offset) {
7939 found = true;
7940 if (map->verified_stripes >= map->num_stripes) {
7941 btrfs_err(fs_info,
7942 "too many dev extents for chunk %llu found",
7943 map->start);
7944 ret = -EUCLEAN;
7945 goto out;
7946 }
7947 map->verified_stripes++;
7948 break;
7949 }
7950 }
7951 if (!found) {
7952 btrfs_err(fs_info,
7953 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7954 physical_offset, devid);
7955 ret = -EUCLEAN;
7956 }
7957
7958 /* Make sure no dev extent is beyond device boundary */
7959 dev = btrfs_find_device(fs_info->fs_devices, &args);
7960 if (!dev) {
7961 btrfs_err(fs_info, "failed to find devid %llu", devid);
7962 ret = -EUCLEAN;
7963 goto out;
7964 }
7965
7966 if (physical_offset + physical_len > dev->disk_total_bytes) {
7967 btrfs_err(fs_info,
7968"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7969 devid, physical_offset, physical_len,
7970 dev->disk_total_bytes);
7971 ret = -EUCLEAN;
7972 goto out;
7973 }
7974
7975 if (dev->zone_info) {
7976 u64 zone_size = dev->zone_info->zone_size;
7977
7978 if (!IS_ALIGNED(physical_offset, zone_size) ||
7979 !IS_ALIGNED(physical_len, zone_size)) {
7980 btrfs_err(fs_info,
7981"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7982 devid, physical_offset, physical_len);
7983 ret = -EUCLEAN;
7984 goto out;
7985 }
7986 }
7987
7988out:
7989 btrfs_free_chunk_map(map);
7990 return ret;
7991}
7992
7993static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7994{
7995 struct rb_node *node;
7996 int ret = 0;
7997
7998 read_lock(&fs_info->mapping_tree_lock);
7999 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8000 struct btrfs_chunk_map *map;
8001
8002 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8003 if (map->num_stripes != map->verified_stripes) {
8004 btrfs_err(fs_info,
8005 "chunk %llu has missing dev extent, have %d expect %d",
8006 map->start, map->verified_stripes, map->num_stripes);
8007 ret = -EUCLEAN;
8008 goto out;
8009 }
8010 }
8011out:
8012 read_unlock(&fs_info->mapping_tree_lock);
8013 return ret;
8014}
8015
8016/*
8017 * Ensure that all dev extents are mapped to correct chunk, otherwise
8018 * later chunk allocation/free would cause unexpected behavior.
8019 *
8020 * NOTE: This will iterate through the whole device tree, which should be of
8021 * the same size level as the chunk tree. This slightly increases mount time.
8022 */
8023int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8024{
8025 struct btrfs_path *path;
8026 struct btrfs_root *root = fs_info->dev_root;
8027 struct btrfs_key key;
8028 u64 prev_devid = 0;
8029 u64 prev_dev_ext_end = 0;
8030 int ret = 0;
8031
8032 /*
8033 * We don't have a dev_root because we mounted with ignorebadroots and
8034 * failed to load the root, so we want to skip the verification in this
8035 * case for sure.
8036 *
8037 * However if the dev root is fine, but the tree itself is corrupted
8038 * we'd still fail to mount. This verification is only to make sure
8039 * writes can happen safely, so instead just bypass this check
8040 * completely in the case of IGNOREBADROOTS.
8041 */
8042 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8043 return 0;
8044
8045 key.objectid = 1;
8046 key.type = BTRFS_DEV_EXTENT_KEY;
8047 key.offset = 0;
8048
8049 path = btrfs_alloc_path();
8050 if (!path)
8051 return -ENOMEM;
8052
8053 path->reada = READA_FORWARD;
8054 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8055 if (ret < 0)
8056 goto out;
8057
8058 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8059 ret = btrfs_next_leaf(root, path);
8060 if (ret < 0)
8061 goto out;
8062 /* No dev extents at all? Not good */
8063 if (ret > 0) {
8064 ret = -EUCLEAN;
8065 goto out;
8066 }
8067 }
8068 while (1) {
8069 struct extent_buffer *leaf = path->nodes[0];
8070 struct btrfs_dev_extent *dext;
8071 int slot = path->slots[0];
8072 u64 chunk_offset;
8073 u64 physical_offset;
8074 u64 physical_len;
8075 u64 devid;
8076
8077 btrfs_item_key_to_cpu(leaf, &key, slot);
8078 if (key.type != BTRFS_DEV_EXTENT_KEY)
8079 break;
8080 devid = key.objectid;
8081 physical_offset = key.offset;
8082
8083 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8084 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8085 physical_len = btrfs_dev_extent_length(leaf, dext);
8086
8087 /* Check if this dev extent overlaps with the previous one */
8088 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8089 btrfs_err(fs_info,
8090"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8091 devid, physical_offset, prev_dev_ext_end);
8092 ret = -EUCLEAN;
8093 goto out;
8094 }
8095
8096 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8097 physical_offset, physical_len);
8098 if (ret < 0)
8099 goto out;
8100 prev_devid = devid;
8101 prev_dev_ext_end = physical_offset + physical_len;
8102
8103 ret = btrfs_next_item(root, path);
8104 if (ret < 0)
8105 goto out;
8106 if (ret > 0) {
8107 ret = 0;
8108 break;
8109 }
8110 }
8111
8112 /* Ensure all chunks have corresponding dev extents */
8113 ret = verify_chunk_dev_extent_mapping(fs_info);
8114out:
8115 btrfs_free_path(path);
8116 return ret;
8117}
8118
8119/*
8120 * Check whether the given block group or device is pinned by any inode being
8121 * used as a swapfile.
8122 */
8123bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8124{
8125 struct btrfs_swapfile_pin *sp;
8126 struct rb_node *node;
8127
8128 spin_lock(&fs_info->swapfile_pins_lock);
8129 node = fs_info->swapfile_pins.rb_node;
8130 while (node) {
8131 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8132 if (ptr < sp->ptr)
8133 node = node->rb_left;
8134 else if (ptr > sp->ptr)
8135 node = node->rb_right;
8136 else
8137 break;
8138 }
8139 spin_unlock(&fs_info->swapfile_pins_lock);
8140 return node != NULL;
8141}
8142
8143static int relocating_repair_kthread(void *data)
8144{
8145 struct btrfs_block_group *cache = data;
8146 struct btrfs_fs_info *fs_info = cache->fs_info;
8147 u64 target;
8148 int ret = 0;
8149
8150 target = cache->start;
8151 btrfs_put_block_group(cache);
8152
8153 sb_start_write(fs_info->sb);
8154 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8155 btrfs_info(fs_info,
8156 "zoned: skip relocating block group %llu to repair: EBUSY",
8157 target);
8158 sb_end_write(fs_info->sb);
8159 return -EBUSY;
8160 }
8161
8162 mutex_lock(&fs_info->reclaim_bgs_lock);
8163
8164 /* Ensure block group still exists */
8165 cache = btrfs_lookup_block_group(fs_info, target);
8166 if (!cache)
8167 goto out;
8168
8169 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8170 goto out;
8171
8172 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8173 if (ret < 0)
8174 goto out;
8175
8176 btrfs_info(fs_info,
8177 "zoned: relocating block group %llu to repair IO failure",
8178 target);
8179 ret = btrfs_relocate_chunk(fs_info, target);
8180
8181out:
8182 if (cache)
8183 btrfs_put_block_group(cache);
8184 mutex_unlock(&fs_info->reclaim_bgs_lock);
8185 btrfs_exclop_finish(fs_info);
8186 sb_end_write(fs_info->sb);
8187
8188 return ret;
8189}
8190
8191bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8192{
8193 struct btrfs_block_group *cache;
8194
8195 if (!btrfs_is_zoned(fs_info))
8196 return false;
8197
8198 /* Do not attempt to repair in degraded state */
8199 if (btrfs_test_opt(fs_info, DEGRADED))
8200 return true;
8201
8202 cache = btrfs_lookup_block_group(fs_info, logical);
8203 if (!cache)
8204 return true;
8205
8206 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8207 btrfs_put_block_group(cache);
8208 return true;
8209 }
8210
8211 kthread_run(relocating_repair_kthread, cache,
8212 "btrfs-relocating-repair");
8213
8214 return true;
8215}
8216
8217static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8218 struct btrfs_io_stripe *smap,
8219 u64 logical)
8220{
8221 int data_stripes = nr_bioc_data_stripes(bioc);
8222 int i;
8223
8224 for (i = 0; i < data_stripes; i++) {
8225 u64 stripe_start = bioc->full_stripe_logical +
8226 btrfs_stripe_nr_to_offset(i);
8227
8228 if (logical >= stripe_start &&
8229 logical < stripe_start + BTRFS_STRIPE_LEN)
8230 break;
8231 }
8232 ASSERT(i < data_stripes);
8233 smap->dev = bioc->stripes[i].dev;
8234 smap->physical = bioc->stripes[i].physical +
8235 ((logical - bioc->full_stripe_logical) &
8236 BTRFS_STRIPE_LEN_MASK);
8237}
8238
8239/*
8240 * Map a repair write into a single device.
8241 *
8242 * A repair write is triggered by read time repair or scrub, which would only
8243 * update the contents of a single device.
8244 * Not update any other mirrors nor go through RMW path.
8245 *
8246 * Callers should ensure:
8247 *
8248 * - Call btrfs_bio_counter_inc_blocked() first
8249 * - The range does not cross stripe boundary
8250 * - Has a valid @mirror_num passed in.
8251 */
8252int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8253 struct btrfs_io_stripe *smap, u64 logical,
8254 u32 length, int mirror_num)
8255{
8256 struct btrfs_io_context *bioc = NULL;
8257 u64 map_length = length;
8258 int mirror_ret = mirror_num;
8259 int ret;
8260
8261 ASSERT(mirror_num > 0);
8262
8263 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8264 &bioc, smap, &mirror_ret);
8265 if (ret < 0)
8266 return ret;
8267
8268 /* The map range should not cross stripe boundary. */
8269 ASSERT(map_length >= length);
8270
8271 /* Already mapped to single stripe. */
8272 if (!bioc)
8273 goto out;
8274
8275 /* Map the RAID56 multi-stripe writes to a single one. */
8276 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8277 map_raid56_repair_block(bioc, smap, logical);
8278 goto out;
8279 }
8280
8281 ASSERT(mirror_num <= bioc->num_stripes);
8282 smap->dev = bioc->stripes[mirror_num - 1].dev;
8283 smap->physical = bioc->stripes[mirror_num - 1].physical;
8284out:
8285 btrfs_put_bioc(bioc);
8286 ASSERT(smap->dev);
8287 return 0;
8288}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/iocontext.h>
24#include <linux/capability.h>
25#include <linux/ratelimit.h>
26#include <linux/kthread.h>
27#include <linux/raid/pq.h>
28#include <linux/semaphore.h>
29#include <linux/uuid.h>
30#include <asm/div64.h>
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
37#include "raid56.h"
38#include "async-thread.h"
39#include "check-integrity.h"
40#include "rcu-string.h"
41#include "math.h"
42#include "dev-replace.h"
43#include "sysfs.h"
44
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
136static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info,
138 struct btrfs_device *device);
139static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144DEFINE_MUTEX(uuid_mutex);
145static LIST_HEAD(fs_uuids);
146struct list_head *btrfs_get_fs_uuids(void)
147{
148 return &fs_uuids;
149}
150
151static struct btrfs_fs_devices *__alloc_fs_devices(void)
152{
153 struct btrfs_fs_devices *fs_devs;
154
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167}
168
169/**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179{
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192}
193
194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195{
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
203 kfree(device);
204 }
205 kfree(fs_devices);
206}
207
208static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210{
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219}
220
221void btrfs_cleanup_fs_uuids(void)
222{
223 struct btrfs_fs_devices *fs_devices;
224
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
230 }
231}
232
233static struct btrfs_device *__alloc_device(void)
234{
235 struct btrfs_device *dev;
236
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255}
256
257static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
259{
260 struct btrfs_device *dev;
261
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 return dev;
266 }
267 }
268 return NULL;
269}
270
271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272{
273 struct btrfs_fs_devices *fs_devices;
274
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280}
281
282static int
283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286{
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317}
318
319static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321{
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331}
332
333/*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
344static noinline void run_scheduled_bios(struct btrfs_device *device)
345{
346 struct btrfs_fs_info *fs_info = device->fs_info;
347 struct bio *pending;
348 struct backing_dev_info *bdi;
349 struct btrfs_pending_bios *pending_bios;
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
355 unsigned long limit;
356 unsigned long last_waited = 0;
357 int force_reg = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
368
369 bdi = blk_get_backing_dev_info(device->bdev);
370 limit = btrfs_async_submit_limit(fs_info);
371 limit = limit * 2 / 3;
372
373loop:
374 spin_lock(&device->io_lock);
375
376loop_lock:
377 num_run = 0;
378
379 /* take all the bios off the list at once and process them
380 * later on (without the lock held). But, remember the
381 * tail and other pointers so the bios can be properly reinserted
382 * into the list if we hit congestion
383 */
384 if (!force_reg && device->pending_sync_bios.head) {
385 pending_bios = &device->pending_sync_bios;
386 force_reg = 1;
387 } else {
388 pending_bios = &device->pending_bios;
389 force_reg = 0;
390 }
391
392 pending = pending_bios->head;
393 tail = pending_bios->tail;
394 WARN_ON(pending && !tail);
395
396 /*
397 * if pending was null this time around, no bios need processing
398 * at all and we can stop. Otherwise it'll loop back up again
399 * and do an additional check so no bios are missed.
400 *
401 * device->running_pending is used to synchronize with the
402 * schedule_bio code.
403 */
404 if (device->pending_sync_bios.head == NULL &&
405 device->pending_bios.head == NULL) {
406 again = 0;
407 device->running_pending = 0;
408 } else {
409 again = 1;
410 device->running_pending = 1;
411 }
412
413 pending_bios->head = NULL;
414 pending_bios->tail = NULL;
415
416 spin_unlock(&device->io_lock);
417
418 while (pending) {
419
420 rmb();
421 /* we want to work on both lists, but do more bios on the
422 * sync list than the regular list
423 */
424 if ((num_run > 32 &&
425 pending_bios != &device->pending_sync_bios &&
426 device->pending_sync_bios.head) ||
427 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
428 device->pending_bios.head)) {
429 spin_lock(&device->io_lock);
430 requeue_list(pending_bios, pending, tail);
431 goto loop_lock;
432 }
433
434 cur = pending;
435 pending = pending->bi_next;
436 cur->bi_next = NULL;
437
438 /*
439 * atomic_dec_return implies a barrier for waitqueue_active
440 */
441 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
442 waitqueue_active(&fs_info->async_submit_wait))
443 wake_up(&fs_info->async_submit_wait);
444
445 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
446
447 /*
448 * if we're doing the sync list, record that our
449 * plug has some sync requests on it
450 *
451 * If we're doing the regular list and there are
452 * sync requests sitting around, unplug before
453 * we add more
454 */
455 if (pending_bios == &device->pending_sync_bios) {
456 sync_pending = 1;
457 } else if (sync_pending) {
458 blk_finish_plug(&plug);
459 blk_start_plug(&plug);
460 sync_pending = 0;
461 }
462
463 btrfsic_submit_bio(cur);
464 num_run++;
465 batch_run++;
466
467 cond_resched();
468
469 /*
470 * we made progress, there is more work to do and the bdi
471 * is now congested. Back off and let other work structs
472 * run instead
473 */
474 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
475 fs_info->fs_devices->open_devices > 1) {
476 struct io_context *ioc;
477
478 ioc = current->io_context;
479
480 /*
481 * the main goal here is that we don't want to
482 * block if we're going to be able to submit
483 * more requests without blocking.
484 *
485 * This code does two great things, it pokes into
486 * the elevator code from a filesystem _and_
487 * it makes assumptions about how batching works.
488 */
489 if (ioc && ioc->nr_batch_requests > 0 &&
490 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
491 (last_waited == 0 ||
492 ioc->last_waited == last_waited)) {
493 /*
494 * we want to go through our batch of
495 * requests and stop. So, we copy out
496 * the ioc->last_waited time and test
497 * against it before looping
498 */
499 last_waited = ioc->last_waited;
500 cond_resched();
501 continue;
502 }
503 spin_lock(&device->io_lock);
504 requeue_list(pending_bios, pending, tail);
505 device->running_pending = 1;
506
507 spin_unlock(&device->io_lock);
508 btrfs_queue_work(fs_info->submit_workers,
509 &device->work);
510 goto done;
511 }
512 /* unplug every 64 requests just for good measure */
513 if (batch_run % 64 == 0) {
514 blk_finish_plug(&plug);
515 blk_start_plug(&plug);
516 sync_pending = 0;
517 }
518 }
519
520 cond_resched();
521 if (again)
522 goto loop;
523
524 spin_lock(&device->io_lock);
525 if (device->pending_bios.head || device->pending_sync_bios.head)
526 goto loop_lock;
527 spin_unlock(&device->io_lock);
528
529done:
530 blk_finish_plug(&plug);
531}
532
533static void pending_bios_fn(struct btrfs_work *work)
534{
535 struct btrfs_device *device;
536
537 device = container_of(work, struct btrfs_device, work);
538 run_scheduled_bios(device);
539}
540
541
542void btrfs_free_stale_device(struct btrfs_device *cur_dev)
543{
544 struct btrfs_fs_devices *fs_devs;
545 struct btrfs_device *dev;
546
547 if (!cur_dev->name)
548 return;
549
550 list_for_each_entry(fs_devs, &fs_uuids, list) {
551 int del = 1;
552
553 if (fs_devs->opened)
554 continue;
555 if (fs_devs->seeding)
556 continue;
557
558 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
559
560 if (dev == cur_dev)
561 continue;
562 if (!dev->name)
563 continue;
564
565 /*
566 * Todo: This won't be enough. What if the same device
567 * comes back (with new uuid and) with its mapper path?
568 * But for now, this does help as mostly an admin will
569 * either use mapper or non mapper path throughout.
570 */
571 rcu_read_lock();
572 del = strcmp(rcu_str_deref(dev->name),
573 rcu_str_deref(cur_dev->name));
574 rcu_read_unlock();
575 if (!del)
576 break;
577 }
578
579 if (!del) {
580 /* delete the stale device */
581 if (fs_devs->num_devices == 1) {
582 btrfs_sysfs_remove_fsid(fs_devs);
583 list_del(&fs_devs->list);
584 free_fs_devices(fs_devs);
585 } else {
586 fs_devs->num_devices--;
587 list_del(&dev->dev_list);
588 rcu_string_free(dev->name);
589 kfree(dev);
590 }
591 break;
592 }
593 }
594}
595
596/*
597 * Add new device to list of registered devices
598 *
599 * Returns:
600 * 1 - first time device is seen
601 * 0 - device already known
602 * < 0 - error
603 */
604static noinline int device_list_add(const char *path,
605 struct btrfs_super_block *disk_super,
606 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
607{
608 struct btrfs_device *device;
609 struct btrfs_fs_devices *fs_devices;
610 struct rcu_string *name;
611 int ret = 0;
612 u64 found_transid = btrfs_super_generation(disk_super);
613
614 fs_devices = find_fsid(disk_super->fsid);
615 if (!fs_devices) {
616 fs_devices = alloc_fs_devices(disk_super->fsid);
617 if (IS_ERR(fs_devices))
618 return PTR_ERR(fs_devices);
619
620 list_add(&fs_devices->list, &fs_uuids);
621
622 device = NULL;
623 } else {
624 device = __find_device(&fs_devices->devices, devid,
625 disk_super->dev_item.uuid);
626 }
627
628 if (!device) {
629 if (fs_devices->opened)
630 return -EBUSY;
631
632 device = btrfs_alloc_device(NULL, &devid,
633 disk_super->dev_item.uuid);
634 if (IS_ERR(device)) {
635 /* we can safely leave the fs_devices entry around */
636 return PTR_ERR(device);
637 }
638
639 name = rcu_string_strdup(path, GFP_NOFS);
640 if (!name) {
641 kfree(device);
642 return -ENOMEM;
643 }
644 rcu_assign_pointer(device->name, name);
645
646 mutex_lock(&fs_devices->device_list_mutex);
647 list_add_rcu(&device->dev_list, &fs_devices->devices);
648 fs_devices->num_devices++;
649 mutex_unlock(&fs_devices->device_list_mutex);
650
651 ret = 1;
652 device->fs_devices = fs_devices;
653 } else if (!device->name || strcmp(device->name->str, path)) {
654 /*
655 * When FS is already mounted.
656 * 1. If you are here and if the device->name is NULL that
657 * means this device was missing at time of FS mount.
658 * 2. If you are here and if the device->name is different
659 * from 'path' that means either
660 * a. The same device disappeared and reappeared with
661 * different name. or
662 * b. The missing-disk-which-was-replaced, has
663 * reappeared now.
664 *
665 * We must allow 1 and 2a above. But 2b would be a spurious
666 * and unintentional.
667 *
668 * Further in case of 1 and 2a above, the disk at 'path'
669 * would have missed some transaction when it was away and
670 * in case of 2a the stale bdev has to be updated as well.
671 * 2b must not be allowed at all time.
672 */
673
674 /*
675 * For now, we do allow update to btrfs_fs_device through the
676 * btrfs dev scan cli after FS has been mounted. We're still
677 * tracking a problem where systems fail mount by subvolume id
678 * when we reject replacement on a mounted FS.
679 */
680 if (!fs_devices->opened && found_transid < device->generation) {
681 /*
682 * That is if the FS is _not_ mounted and if you
683 * are here, that means there is more than one
684 * disk with same uuid and devid.We keep the one
685 * with larger generation number or the last-in if
686 * generation are equal.
687 */
688 return -EEXIST;
689 }
690
691 name = rcu_string_strdup(path, GFP_NOFS);
692 if (!name)
693 return -ENOMEM;
694 rcu_string_free(device->name);
695 rcu_assign_pointer(device->name, name);
696 if (device->missing) {
697 fs_devices->missing_devices--;
698 device->missing = 0;
699 }
700 }
701
702 /*
703 * Unmount does not free the btrfs_device struct but would zero
704 * generation along with most of the other members. So just update
705 * it back. We need it to pick the disk with largest generation
706 * (as above).
707 */
708 if (!fs_devices->opened)
709 device->generation = found_transid;
710
711 /*
712 * if there is new btrfs on an already registered device,
713 * then remove the stale device entry.
714 */
715 if (ret > 0)
716 btrfs_free_stale_device(device);
717
718 *fs_devices_ret = fs_devices;
719
720 return ret;
721}
722
723static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
724{
725 struct btrfs_fs_devices *fs_devices;
726 struct btrfs_device *device;
727 struct btrfs_device *orig_dev;
728
729 fs_devices = alloc_fs_devices(orig->fsid);
730 if (IS_ERR(fs_devices))
731 return fs_devices;
732
733 mutex_lock(&orig->device_list_mutex);
734 fs_devices->total_devices = orig->total_devices;
735
736 /* We have held the volume lock, it is safe to get the devices. */
737 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
738 struct rcu_string *name;
739
740 device = btrfs_alloc_device(NULL, &orig_dev->devid,
741 orig_dev->uuid);
742 if (IS_ERR(device))
743 goto error;
744
745 /*
746 * This is ok to do without rcu read locked because we hold the
747 * uuid mutex so nothing we touch in here is going to disappear.
748 */
749 if (orig_dev->name) {
750 name = rcu_string_strdup(orig_dev->name->str,
751 GFP_KERNEL);
752 if (!name) {
753 kfree(device);
754 goto error;
755 }
756 rcu_assign_pointer(device->name, name);
757 }
758
759 list_add(&device->dev_list, &fs_devices->devices);
760 device->fs_devices = fs_devices;
761 fs_devices->num_devices++;
762 }
763 mutex_unlock(&orig->device_list_mutex);
764 return fs_devices;
765error:
766 mutex_unlock(&orig->device_list_mutex);
767 free_fs_devices(fs_devices);
768 return ERR_PTR(-ENOMEM);
769}
770
771void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
772{
773 struct btrfs_device *device, *next;
774 struct btrfs_device *latest_dev = NULL;
775
776 mutex_lock(&uuid_mutex);
777again:
778 /* This is the initialized path, it is safe to release the devices. */
779 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
780 if (device->in_fs_metadata) {
781 if (!device->is_tgtdev_for_dev_replace &&
782 (!latest_dev ||
783 device->generation > latest_dev->generation)) {
784 latest_dev = device;
785 }
786 continue;
787 }
788
789 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
790 /*
791 * In the first step, keep the device which has
792 * the correct fsid and the devid that is used
793 * for the dev_replace procedure.
794 * In the second step, the dev_replace state is
795 * read from the device tree and it is known
796 * whether the procedure is really active or
797 * not, which means whether this device is
798 * used or whether it should be removed.
799 */
800 if (step == 0 || device->is_tgtdev_for_dev_replace) {
801 continue;
802 }
803 }
804 if (device->bdev) {
805 blkdev_put(device->bdev, device->mode);
806 device->bdev = NULL;
807 fs_devices->open_devices--;
808 }
809 if (device->writeable) {
810 list_del_init(&device->dev_alloc_list);
811 device->writeable = 0;
812 if (!device->is_tgtdev_for_dev_replace)
813 fs_devices->rw_devices--;
814 }
815 list_del_init(&device->dev_list);
816 fs_devices->num_devices--;
817 rcu_string_free(device->name);
818 kfree(device);
819 }
820
821 if (fs_devices->seed) {
822 fs_devices = fs_devices->seed;
823 goto again;
824 }
825
826 fs_devices->latest_bdev = latest_dev->bdev;
827
828 mutex_unlock(&uuid_mutex);
829}
830
831static void __free_device(struct work_struct *work)
832{
833 struct btrfs_device *device;
834
835 device = container_of(work, struct btrfs_device, rcu_work);
836 rcu_string_free(device->name);
837 kfree(device);
838}
839
840static void free_device(struct rcu_head *head)
841{
842 struct btrfs_device *device;
843
844 device = container_of(head, struct btrfs_device, rcu);
845
846 INIT_WORK(&device->rcu_work, __free_device);
847 schedule_work(&device->rcu_work);
848}
849
850static void btrfs_close_bdev(struct btrfs_device *device)
851{
852 if (device->bdev && device->writeable) {
853 sync_blockdev(device->bdev);
854 invalidate_bdev(device->bdev);
855 }
856
857 if (device->bdev)
858 blkdev_put(device->bdev, device->mode);
859}
860
861static void btrfs_prepare_close_one_device(struct btrfs_device *device)
862{
863 struct btrfs_fs_devices *fs_devices = device->fs_devices;
864 struct btrfs_device *new_device;
865 struct rcu_string *name;
866
867 if (device->bdev)
868 fs_devices->open_devices--;
869
870 if (device->writeable &&
871 device->devid != BTRFS_DEV_REPLACE_DEVID) {
872 list_del_init(&device->dev_alloc_list);
873 fs_devices->rw_devices--;
874 }
875
876 if (device->missing)
877 fs_devices->missing_devices--;
878
879 new_device = btrfs_alloc_device(NULL, &device->devid,
880 device->uuid);
881 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
882
883 /* Safe because we are under uuid_mutex */
884 if (device->name) {
885 name = rcu_string_strdup(device->name->str, GFP_NOFS);
886 BUG_ON(!name); /* -ENOMEM */
887 rcu_assign_pointer(new_device->name, name);
888 }
889
890 list_replace_rcu(&device->dev_list, &new_device->dev_list);
891 new_device->fs_devices = device->fs_devices;
892}
893
894static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
895{
896 struct btrfs_device *device, *tmp;
897 struct list_head pending_put;
898
899 INIT_LIST_HEAD(&pending_put);
900
901 if (--fs_devices->opened > 0)
902 return 0;
903
904 mutex_lock(&fs_devices->device_list_mutex);
905 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
906 btrfs_prepare_close_one_device(device);
907 list_add(&device->dev_list, &pending_put);
908 }
909 mutex_unlock(&fs_devices->device_list_mutex);
910
911 /*
912 * btrfs_show_devname() is using the device_list_mutex,
913 * sometimes call to blkdev_put() leads vfs calling
914 * into this func. So do put outside of device_list_mutex,
915 * as of now.
916 */
917 while (!list_empty(&pending_put)) {
918 device = list_first_entry(&pending_put,
919 struct btrfs_device, dev_list);
920 list_del(&device->dev_list);
921 btrfs_close_bdev(device);
922 call_rcu(&device->rcu, free_device);
923 }
924
925 WARN_ON(fs_devices->open_devices);
926 WARN_ON(fs_devices->rw_devices);
927 fs_devices->opened = 0;
928 fs_devices->seeding = 0;
929
930 return 0;
931}
932
933int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
934{
935 struct btrfs_fs_devices *seed_devices = NULL;
936 int ret;
937
938 mutex_lock(&uuid_mutex);
939 ret = __btrfs_close_devices(fs_devices);
940 if (!fs_devices->opened) {
941 seed_devices = fs_devices->seed;
942 fs_devices->seed = NULL;
943 }
944 mutex_unlock(&uuid_mutex);
945
946 while (seed_devices) {
947 fs_devices = seed_devices;
948 seed_devices = fs_devices->seed;
949 __btrfs_close_devices(fs_devices);
950 free_fs_devices(fs_devices);
951 }
952 /*
953 * Wait for rcu kworkers under __btrfs_close_devices
954 * to finish all blkdev_puts so device is really
955 * free when umount is done.
956 */
957 rcu_barrier();
958 return ret;
959}
960
961static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
962 fmode_t flags, void *holder)
963{
964 struct request_queue *q;
965 struct block_device *bdev;
966 struct list_head *head = &fs_devices->devices;
967 struct btrfs_device *device;
968 struct btrfs_device *latest_dev = NULL;
969 struct buffer_head *bh;
970 struct btrfs_super_block *disk_super;
971 u64 devid;
972 int seeding = 1;
973 int ret = 0;
974
975 flags |= FMODE_EXCL;
976
977 list_for_each_entry(device, head, dev_list) {
978 if (device->bdev)
979 continue;
980 if (!device->name)
981 continue;
982
983 /* Just open everything we can; ignore failures here */
984 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
985 &bdev, &bh))
986 continue;
987
988 disk_super = (struct btrfs_super_block *)bh->b_data;
989 devid = btrfs_stack_device_id(&disk_super->dev_item);
990 if (devid != device->devid)
991 goto error_brelse;
992
993 if (memcmp(device->uuid, disk_super->dev_item.uuid,
994 BTRFS_UUID_SIZE))
995 goto error_brelse;
996
997 device->generation = btrfs_super_generation(disk_super);
998 if (!latest_dev ||
999 device->generation > latest_dev->generation)
1000 latest_dev = device;
1001
1002 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1003 device->writeable = 0;
1004 } else {
1005 device->writeable = !bdev_read_only(bdev);
1006 seeding = 0;
1007 }
1008
1009 q = bdev_get_queue(bdev);
1010 if (blk_queue_discard(q))
1011 device->can_discard = 1;
1012
1013 device->bdev = bdev;
1014 device->in_fs_metadata = 0;
1015 device->mode = flags;
1016
1017 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1018 fs_devices->rotating = 1;
1019
1020 fs_devices->open_devices++;
1021 if (device->writeable &&
1022 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1023 fs_devices->rw_devices++;
1024 list_add(&device->dev_alloc_list,
1025 &fs_devices->alloc_list);
1026 }
1027 brelse(bh);
1028 continue;
1029
1030error_brelse:
1031 brelse(bh);
1032 blkdev_put(bdev, flags);
1033 continue;
1034 }
1035 if (fs_devices->open_devices == 0) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039 fs_devices->seeding = seeding;
1040 fs_devices->opened = 1;
1041 fs_devices->latest_bdev = latest_dev->bdev;
1042 fs_devices->total_rw_bytes = 0;
1043out:
1044 return ret;
1045}
1046
1047int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1048 fmode_t flags, void *holder)
1049{
1050 int ret;
1051
1052 mutex_lock(&uuid_mutex);
1053 if (fs_devices->opened) {
1054 fs_devices->opened++;
1055 ret = 0;
1056 } else {
1057 ret = __btrfs_open_devices(fs_devices, flags, holder);
1058 }
1059 mutex_unlock(&uuid_mutex);
1060 return ret;
1061}
1062
1063void btrfs_release_disk_super(struct page *page)
1064{
1065 kunmap(page);
1066 put_page(page);
1067}
1068
1069int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1070 struct page **page, struct btrfs_super_block **disk_super)
1071{
1072 void *p;
1073 pgoff_t index;
1074
1075 /* make sure our super fits in the device */
1076 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1077 return 1;
1078
1079 /* make sure our super fits in the page */
1080 if (sizeof(**disk_super) > PAGE_SIZE)
1081 return 1;
1082
1083 /* make sure our super doesn't straddle pages on disk */
1084 index = bytenr >> PAGE_SHIFT;
1085 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1086 return 1;
1087
1088 /* pull in the page with our super */
1089 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1090 index, GFP_KERNEL);
1091
1092 if (IS_ERR_OR_NULL(*page))
1093 return 1;
1094
1095 p = kmap(*page);
1096
1097 /* align our pointer to the offset of the super block */
1098 *disk_super = p + (bytenr & ~PAGE_MASK);
1099
1100 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1101 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1102 btrfs_release_disk_super(*page);
1103 return 1;
1104 }
1105
1106 if ((*disk_super)->label[0] &&
1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1108 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1109
1110 return 0;
1111}
1112
1113/*
1114 * Look for a btrfs signature on a device. This may be called out of the mount path
1115 * and we are not allowed to call set_blocksize during the scan. The superblock
1116 * is read via pagecache
1117 */
1118int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1119 struct btrfs_fs_devices **fs_devices_ret)
1120{
1121 struct btrfs_super_block *disk_super;
1122 struct block_device *bdev;
1123 struct page *page;
1124 int ret = -EINVAL;
1125 u64 devid;
1126 u64 transid;
1127 u64 total_devices;
1128 u64 bytenr;
1129
1130 /*
1131 * we would like to check all the supers, but that would make
1132 * a btrfs mount succeed after a mkfs from a different FS.
1133 * So, we need to add a special mount option to scan for
1134 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1135 */
1136 bytenr = btrfs_sb_offset(0);
1137 flags |= FMODE_EXCL;
1138 mutex_lock(&uuid_mutex);
1139
1140 bdev = blkdev_get_by_path(path, flags, holder);
1141 if (IS_ERR(bdev)) {
1142 ret = PTR_ERR(bdev);
1143 goto error;
1144 }
1145
1146 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1147 goto error_bdev_put;
1148
1149 devid = btrfs_stack_device_id(&disk_super->dev_item);
1150 transid = btrfs_super_generation(disk_super);
1151 total_devices = btrfs_super_num_devices(disk_super);
1152
1153 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1154 if (ret > 0) {
1155 if (disk_super->label[0]) {
1156 pr_info("BTRFS: device label %s ", disk_super->label);
1157 } else {
1158 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1159 }
1160
1161 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1162 ret = 0;
1163 }
1164 if (!ret && fs_devices_ret)
1165 (*fs_devices_ret)->total_devices = total_devices;
1166
1167 btrfs_release_disk_super(page);
1168
1169error_bdev_put:
1170 blkdev_put(bdev, flags);
1171error:
1172 mutex_unlock(&uuid_mutex);
1173 return ret;
1174}
1175
1176/* helper to account the used device space in the range */
1177int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1178 u64 end, u64 *length)
1179{
1180 struct btrfs_key key;
1181 struct btrfs_root *root = device->fs_info->dev_root;
1182 struct btrfs_dev_extent *dev_extent;
1183 struct btrfs_path *path;
1184 u64 extent_end;
1185 int ret;
1186 int slot;
1187 struct extent_buffer *l;
1188
1189 *length = 0;
1190
1191 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1192 return 0;
1193
1194 path = btrfs_alloc_path();
1195 if (!path)
1196 return -ENOMEM;
1197 path->reada = READA_FORWARD;
1198
1199 key.objectid = device->devid;
1200 key.offset = start;
1201 key.type = BTRFS_DEV_EXTENT_KEY;
1202
1203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1204 if (ret < 0)
1205 goto out;
1206 if (ret > 0) {
1207 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1208 if (ret < 0)
1209 goto out;
1210 }
1211
1212 while (1) {
1213 l = path->nodes[0];
1214 slot = path->slots[0];
1215 if (slot >= btrfs_header_nritems(l)) {
1216 ret = btrfs_next_leaf(root, path);
1217 if (ret == 0)
1218 continue;
1219 if (ret < 0)
1220 goto out;
1221
1222 break;
1223 }
1224 btrfs_item_key_to_cpu(l, &key, slot);
1225
1226 if (key.objectid < device->devid)
1227 goto next;
1228
1229 if (key.objectid > device->devid)
1230 break;
1231
1232 if (key.type != BTRFS_DEV_EXTENT_KEY)
1233 goto next;
1234
1235 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1236 extent_end = key.offset + btrfs_dev_extent_length(l,
1237 dev_extent);
1238 if (key.offset <= start && extent_end > end) {
1239 *length = end - start + 1;
1240 break;
1241 } else if (key.offset <= start && extent_end > start)
1242 *length += extent_end - start;
1243 else if (key.offset > start && extent_end <= end)
1244 *length += extent_end - key.offset;
1245 else if (key.offset > start && key.offset <= end) {
1246 *length += end - key.offset + 1;
1247 break;
1248 } else if (key.offset > end)
1249 break;
1250
1251next:
1252 path->slots[0]++;
1253 }
1254 ret = 0;
1255out:
1256 btrfs_free_path(path);
1257 return ret;
1258}
1259
1260static int contains_pending_extent(struct btrfs_transaction *transaction,
1261 struct btrfs_device *device,
1262 u64 *start, u64 len)
1263{
1264 struct btrfs_fs_info *fs_info = device->fs_info;
1265 struct extent_map *em;
1266 struct list_head *search_list = &fs_info->pinned_chunks;
1267 int ret = 0;
1268 u64 physical_start = *start;
1269
1270 if (transaction)
1271 search_list = &transaction->pending_chunks;
1272again:
1273 list_for_each_entry(em, search_list, list) {
1274 struct map_lookup *map;
1275 int i;
1276
1277 map = em->map_lookup;
1278 for (i = 0; i < map->num_stripes; i++) {
1279 u64 end;
1280
1281 if (map->stripes[i].dev != device)
1282 continue;
1283 if (map->stripes[i].physical >= physical_start + len ||
1284 map->stripes[i].physical + em->orig_block_len <=
1285 physical_start)
1286 continue;
1287 /*
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1297 * pending chunk.
1298 */
1299 end = map->stripes[i].physical + em->orig_block_len;
1300 if (end > *start) {
1301 *start = end;
1302 ret = 1;
1303 }
1304 }
1305 }
1306 if (search_list != &fs_info->pinned_chunks) {
1307 search_list = &fs_info->pinned_chunks;
1308 goto again;
1309 }
1310
1311 return ret;
1312}
1313
1314
1315/*
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
1323 *
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1326 * of extents
1327 *
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1331 *
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
1335 */
1336int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 struct btrfs_device *device, u64 num_bytes,
1338 u64 search_start, u64 *start, u64 *len)
1339{
1340 struct btrfs_fs_info *fs_info = device->fs_info;
1341 struct btrfs_root *root = fs_info->dev_root;
1342 struct btrfs_key key;
1343 struct btrfs_dev_extent *dev_extent;
1344 struct btrfs_path *path;
1345 u64 hole_size;
1346 u64 max_hole_start;
1347 u64 max_hole_size;
1348 u64 extent_end;
1349 u64 search_end = device->total_bytes;
1350 int ret;
1351 int slot;
1352 struct extent_buffer *l;
1353 u64 min_search_start;
1354
1355 /*
1356 * We don't want to overwrite the superblock on the drive nor any area
1357 * used by the boot loader (grub for example), so we make sure to start
1358 * at an offset of at least 1MB.
1359 */
1360 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1361 search_start = max(search_start, min_search_start);
1362
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
1366
1367 max_hole_start = search_start;
1368 max_hole_size = 0;
1369
1370again:
1371 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372 ret = -ENOSPC;
1373 goto out;
1374 }
1375
1376 path->reada = READA_FORWARD;
1377 path->search_commit_root = 1;
1378 path->skip_locking = 1;
1379
1380 key.objectid = device->devid;
1381 key.offset = search_start;
1382 key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385 if (ret < 0)
1386 goto out;
1387 if (ret > 0) {
1388 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389 if (ret < 0)
1390 goto out;
1391 }
1392
1393 while (1) {
1394 l = path->nodes[0];
1395 slot = path->slots[0];
1396 if (slot >= btrfs_header_nritems(l)) {
1397 ret = btrfs_next_leaf(root, path);
1398 if (ret == 0)
1399 continue;
1400 if (ret < 0)
1401 goto out;
1402
1403 break;
1404 }
1405 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407 if (key.objectid < device->devid)
1408 goto next;
1409
1410 if (key.objectid > device->devid)
1411 break;
1412
1413 if (key.type != BTRFS_DEV_EXTENT_KEY)
1414 goto next;
1415
1416 if (key.offset > search_start) {
1417 hole_size = key.offset - search_start;
1418
1419 /*
1420 * Have to check before we set max_hole_start, otherwise
1421 * we could end up sending back this offset anyway.
1422 */
1423 if (contains_pending_extent(transaction, device,
1424 &search_start,
1425 hole_size)) {
1426 if (key.offset >= search_start) {
1427 hole_size = key.offset - search_start;
1428 } else {
1429 WARN_ON_ONCE(1);
1430 hole_size = 0;
1431 }
1432 }
1433
1434 if (hole_size > max_hole_size) {
1435 max_hole_start = search_start;
1436 max_hole_size = hole_size;
1437 }
1438
1439 /*
1440 * If this free space is greater than which we need,
1441 * it must be the max free space that we have found
1442 * until now, so max_hole_start must point to the start
1443 * of this free space and the length of this free space
1444 * is stored in max_hole_size. Thus, we return
1445 * max_hole_start and max_hole_size and go back to the
1446 * caller.
1447 */
1448 if (hole_size >= num_bytes) {
1449 ret = 0;
1450 goto out;
1451 }
1452 }
1453
1454 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455 extent_end = key.offset + btrfs_dev_extent_length(l,
1456 dev_extent);
1457 if (extent_end > search_start)
1458 search_start = extent_end;
1459next:
1460 path->slots[0]++;
1461 cond_resched();
1462 }
1463
1464 /*
1465 * At this point, search_start should be the end of
1466 * allocated dev extents, and when shrinking the device,
1467 * search_end may be smaller than search_start.
1468 */
1469 if (search_end > search_start) {
1470 hole_size = search_end - search_start;
1471
1472 if (contains_pending_extent(transaction, device, &search_start,
1473 hole_size)) {
1474 btrfs_release_path(path);
1475 goto again;
1476 }
1477
1478 if (hole_size > max_hole_size) {
1479 max_hole_start = search_start;
1480 max_hole_size = hole_size;
1481 }
1482 }
1483
1484 /* See above. */
1485 if (max_hole_size < num_bytes)
1486 ret = -ENOSPC;
1487 else
1488 ret = 0;
1489
1490out:
1491 btrfs_free_path(path);
1492 *start = max_hole_start;
1493 if (len)
1494 *len = max_hole_size;
1495 return ret;
1496}
1497
1498int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device, u64 num_bytes,
1500 u64 *start, u64 *len)
1501{
1502 /* FIXME use last free of some kind */
1503 return find_free_dev_extent_start(trans->transaction, device,
1504 num_bytes, 0, start, len);
1505}
1506
1507static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508 struct btrfs_device *device,
1509 u64 start, u64 *dev_extent_len)
1510{
1511 struct btrfs_fs_info *fs_info = device->fs_info;
1512 struct btrfs_root *root = fs_info->dev_root;
1513 int ret;
1514 struct btrfs_path *path;
1515 struct btrfs_key key;
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 key.objectid = device->devid;
1525 key.offset = start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
1527again:
1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1529 if (ret > 0) {
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
1532 if (ret)
1533 goto out;
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
1540 key = found_key;
1541 btrfs_release_path(path);
1542 goto again;
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
1547 } else {
1548 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1549 goto out;
1550 }
1551
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553
1554 ret = btrfs_del_item(trans, root, path);
1555 if (ret) {
1556 btrfs_handle_fs_error(fs_info, ret,
1557 "Failed to remove dev extent item");
1558 } else {
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1560 }
1561out:
1562 btrfs_free_path(path);
1563 return ret;
1564}
1565
1566static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_tree, u64 chunk_objectid,
1569 u64 chunk_offset, u64 start, u64 num_bytes)
1570{
1571 int ret;
1572 struct btrfs_path *path;
1573 struct btrfs_fs_info *fs_info = device->fs_info;
1574 struct btrfs_root *root = fs_info->dev_root;
1575 struct btrfs_dev_extent *extent;
1576 struct extent_buffer *leaf;
1577 struct btrfs_key key;
1578
1579 WARN_ON(!device->in_fs_metadata);
1580 WARN_ON(device->is_tgtdev_for_dev_replace);
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return -ENOMEM;
1584
1585 key.objectid = device->devid;
1586 key.offset = start;
1587 key.type = BTRFS_DEV_EXTENT_KEY;
1588 ret = btrfs_insert_empty_item(trans, root, path, &key,
1589 sizeof(*extent));
1590 if (ret)
1591 goto out;
1592
1593 leaf = path->nodes[0];
1594 extent = btrfs_item_ptr(leaf, path->slots[0],
1595 struct btrfs_dev_extent);
1596 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1597 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1598 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1601
1602 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 btrfs_mark_buffer_dirty(leaf);
1604out:
1605 btrfs_free_path(path);
1606 return ret;
1607}
1608
1609static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1610{
1611 struct extent_map_tree *em_tree;
1612 struct extent_map *em;
1613 struct rb_node *n;
1614 u64 ret = 0;
1615
1616 em_tree = &fs_info->mapping_tree.map_tree;
1617 read_lock(&em_tree->lock);
1618 n = rb_last(&em_tree->map);
1619 if (n) {
1620 em = rb_entry(n, struct extent_map, rb_node);
1621 ret = em->start + em->len;
1622 }
1623 read_unlock(&em_tree->lock);
1624
1625 return ret;
1626}
1627
1628static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1629 u64 *devid_ret)
1630{
1631 int ret;
1632 struct btrfs_key key;
1633 struct btrfs_key found_key;
1634 struct btrfs_path *path;
1635
1636 path = btrfs_alloc_path();
1637 if (!path)
1638 return -ENOMEM;
1639
1640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 key.type = BTRFS_DEV_ITEM_KEY;
1642 key.offset = (u64)-1;
1643
1644 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1645 if (ret < 0)
1646 goto error;
1647
1648 BUG_ON(ret == 0); /* Corruption */
1649
1650 ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 BTRFS_DEV_ITEMS_OBJECTID,
1652 BTRFS_DEV_ITEM_KEY);
1653 if (ret) {
1654 *devid_ret = 1;
1655 } else {
1656 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1657 path->slots[0]);
1658 *devid_ret = found_key.offset + 1;
1659 }
1660 ret = 0;
1661error:
1662 btrfs_free_path(path);
1663 return ret;
1664}
1665
1666/*
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1669 */
1670static int btrfs_add_device(struct btrfs_trans_handle *trans,
1671 struct btrfs_fs_info *fs_info,
1672 struct btrfs_device *device)
1673{
1674 struct btrfs_root *root = fs_info->chunk_root;
1675 int ret;
1676 struct btrfs_path *path;
1677 struct btrfs_dev_item *dev_item;
1678 struct extent_buffer *leaf;
1679 struct btrfs_key key;
1680 unsigned long ptr;
1681
1682 path = btrfs_alloc_path();
1683 if (!path)
1684 return -ENOMEM;
1685
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
1688 key.offset = device->devid;
1689
1690 ret = btrfs_insert_empty_item(trans, root, path, &key,
1691 sizeof(*dev_item));
1692 if (ret)
1693 goto out;
1694
1695 leaf = path->nodes[0];
1696 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698 btrfs_set_device_id(leaf, dev_item, device->devid);
1699 btrfs_set_device_generation(leaf, dev_item, 0);
1700 btrfs_set_device_type(leaf, dev_item, device->type);
1701 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1704 btrfs_set_device_total_bytes(leaf, dev_item,
1705 btrfs_device_get_disk_total_bytes(device));
1706 btrfs_set_device_bytes_used(leaf, dev_item,
1707 btrfs_device_get_bytes_used(device));
1708 btrfs_set_device_group(leaf, dev_item, 0);
1709 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1711 btrfs_set_device_start_offset(leaf, dev_item, 0);
1712
1713 ptr = btrfs_device_uuid(dev_item);
1714 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1715 ptr = btrfs_device_fsid(dev_item);
1716 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1717 btrfs_mark_buffer_dirty(leaf);
1718
1719 ret = 0;
1720out:
1721 btrfs_free_path(path);
1722 return ret;
1723}
1724
1725/*
1726 * Function to update ctime/mtime for a given device path.
1727 * Mainly used for ctime/mtime based probe like libblkid.
1728 */
1729static void update_dev_time(char *path_name)
1730{
1731 struct file *filp;
1732
1733 filp = filp_open(path_name, O_RDWR, 0);
1734 if (IS_ERR(filp))
1735 return;
1736 file_update_time(filp);
1737 filp_close(filp, NULL);
1738}
1739
1740static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1741 struct btrfs_device *device)
1742{
1743 struct btrfs_root *root = fs_info->chunk_root;
1744 int ret;
1745 struct btrfs_path *path;
1746 struct btrfs_key key;
1747 struct btrfs_trans_handle *trans;
1748
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
1753 trans = btrfs_start_transaction(root, 0);
1754 if (IS_ERR(trans)) {
1755 btrfs_free_path(path);
1756 return PTR_ERR(trans);
1757 }
1758 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1759 key.type = BTRFS_DEV_ITEM_KEY;
1760 key.offset = device->devid;
1761
1762 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1763 if (ret < 0)
1764 goto out;
1765
1766 if (ret > 0) {
1767 ret = -ENOENT;
1768 goto out;
1769 }
1770
1771 ret = btrfs_del_item(trans, root, path);
1772 if (ret)
1773 goto out;
1774out:
1775 btrfs_free_path(path);
1776 btrfs_commit_transaction(trans);
1777 return ret;
1778}
1779
1780/*
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1783 * replace.
1784 */
1785static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 u64 num_devices)
1787{
1788 u64 all_avail;
1789 unsigned seq;
1790 int i;
1791
1792 do {
1793 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795 all_avail = fs_info->avail_data_alloc_bits |
1796 fs_info->avail_system_alloc_bits |
1797 fs_info->avail_metadata_alloc_bits;
1798 } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 if (!(all_avail & btrfs_raid_group[i]))
1802 continue;
1803
1804 if (num_devices < btrfs_raid_array[i].devs_min) {
1805 int ret = btrfs_raid_mindev_error[i];
1806
1807 if (ret)
1808 return ret;
1809 }
1810 }
1811
1812 return 0;
1813}
1814
1815struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1816 struct btrfs_device *device)
1817{
1818 struct btrfs_device *next_device;
1819
1820 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 if (next_device != device &&
1822 !next_device->missing && next_device->bdev)
1823 return next_device;
1824 }
1825
1826 return NULL;
1827}
1828
1829/*
1830 * Helper function to check if the given device is part of s_bdev / latest_bdev
1831 * and replace it with the provided or the next active device, in the context
1832 * where this function called, there should be always be another device (or
1833 * this_dev) which is active.
1834 */
1835void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1836 struct btrfs_device *device, struct btrfs_device *this_dev)
1837{
1838 struct btrfs_device *next_device;
1839
1840 if (this_dev)
1841 next_device = this_dev;
1842 else
1843 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1844 device);
1845 ASSERT(next_device);
1846
1847 if (fs_info->sb->s_bdev &&
1848 (fs_info->sb->s_bdev == device->bdev))
1849 fs_info->sb->s_bdev = next_device->bdev;
1850
1851 if (fs_info->fs_devices->latest_bdev == device->bdev)
1852 fs_info->fs_devices->latest_bdev = next_device->bdev;
1853}
1854
1855int btrfs_rm_device(struct btrfs_fs_info *fs_info, char *device_path, u64 devid)
1856{
1857 struct btrfs_device *device;
1858 struct btrfs_fs_devices *cur_devices;
1859 u64 num_devices;
1860 int ret = 0;
1861 bool clear_super = false;
1862
1863 mutex_lock(&uuid_mutex);
1864
1865 num_devices = fs_info->fs_devices->num_devices;
1866 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1867 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1868 WARN_ON(num_devices < 1);
1869 num_devices--;
1870 }
1871 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1872
1873 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1874 if (ret)
1875 goto out;
1876
1877 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1878 &device);
1879 if (ret)
1880 goto out;
1881
1882 if (device->is_tgtdev_for_dev_replace) {
1883 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1884 goto out;
1885 }
1886
1887 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1888 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1889 goto out;
1890 }
1891
1892 if (device->writeable) {
1893 mutex_lock(&fs_info->chunk_mutex);
1894 list_del_init(&device->dev_alloc_list);
1895 device->fs_devices->rw_devices--;
1896 mutex_unlock(&fs_info->chunk_mutex);
1897 clear_super = true;
1898 }
1899
1900 mutex_unlock(&uuid_mutex);
1901 ret = btrfs_shrink_device(device, 0);
1902 mutex_lock(&uuid_mutex);
1903 if (ret)
1904 goto error_undo;
1905
1906 /*
1907 * TODO: the superblock still includes this device in its num_devices
1908 * counter although write_all_supers() is not locked out. This
1909 * could give a filesystem state which requires a degraded mount.
1910 */
1911 ret = btrfs_rm_dev_item(fs_info, device);
1912 if (ret)
1913 goto error_undo;
1914
1915 device->in_fs_metadata = 0;
1916 btrfs_scrub_cancel_dev(fs_info, device);
1917
1918 /*
1919 * the device list mutex makes sure that we don't change
1920 * the device list while someone else is writing out all
1921 * the device supers. Whoever is writing all supers, should
1922 * lock the device list mutex before getting the number of
1923 * devices in the super block (super_copy). Conversely,
1924 * whoever updates the number of devices in the super block
1925 * (super_copy) should hold the device list mutex.
1926 */
1927
1928 cur_devices = device->fs_devices;
1929 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1930 list_del_rcu(&device->dev_list);
1931
1932 device->fs_devices->num_devices--;
1933 device->fs_devices->total_devices--;
1934
1935 if (device->missing)
1936 device->fs_devices->missing_devices--;
1937
1938 btrfs_assign_next_active_device(fs_info, device, NULL);
1939
1940 if (device->bdev) {
1941 device->fs_devices->open_devices--;
1942 /* remove sysfs entry */
1943 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1944 }
1945
1946 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1947 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1948 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1949
1950 /*
1951 * at this point, the device is zero sized and detached from
1952 * the devices list. All that's left is to zero out the old
1953 * supers and free the device.
1954 */
1955 if (device->writeable)
1956 btrfs_scratch_superblocks(device->bdev, device->name->str);
1957
1958 btrfs_close_bdev(device);
1959 call_rcu(&device->rcu, free_device);
1960
1961 if (cur_devices->open_devices == 0) {
1962 struct btrfs_fs_devices *fs_devices;
1963 fs_devices = fs_info->fs_devices;
1964 while (fs_devices) {
1965 if (fs_devices->seed == cur_devices) {
1966 fs_devices->seed = cur_devices->seed;
1967 break;
1968 }
1969 fs_devices = fs_devices->seed;
1970 }
1971 cur_devices->seed = NULL;
1972 __btrfs_close_devices(cur_devices);
1973 free_fs_devices(cur_devices);
1974 }
1975
1976 fs_info->num_tolerated_disk_barrier_failures =
1977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1978
1979out:
1980 mutex_unlock(&uuid_mutex);
1981 return ret;
1982
1983error_undo:
1984 if (device->writeable) {
1985 mutex_lock(&fs_info->chunk_mutex);
1986 list_add(&device->dev_alloc_list,
1987 &fs_info->fs_devices->alloc_list);
1988 device->fs_devices->rw_devices++;
1989 mutex_unlock(&fs_info->chunk_mutex);
1990 }
1991 goto out;
1992}
1993
1994void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1995 struct btrfs_device *srcdev)
1996{
1997 struct btrfs_fs_devices *fs_devices;
1998
1999 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2000
2001 /*
2002 * in case of fs with no seed, srcdev->fs_devices will point
2003 * to fs_devices of fs_info. However when the dev being replaced is
2004 * a seed dev it will point to the seed's local fs_devices. In short
2005 * srcdev will have its correct fs_devices in both the cases.
2006 */
2007 fs_devices = srcdev->fs_devices;
2008
2009 list_del_rcu(&srcdev->dev_list);
2010 list_del_rcu(&srcdev->dev_alloc_list);
2011 fs_devices->num_devices--;
2012 if (srcdev->missing)
2013 fs_devices->missing_devices--;
2014
2015 if (srcdev->writeable)
2016 fs_devices->rw_devices--;
2017
2018 if (srcdev->bdev)
2019 fs_devices->open_devices--;
2020}
2021
2022void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2023 struct btrfs_device *srcdev)
2024{
2025 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2026
2027 if (srcdev->writeable) {
2028 /* zero out the old super if it is writable */
2029 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2030 }
2031
2032 btrfs_close_bdev(srcdev);
2033
2034 call_rcu(&srcdev->rcu, free_device);
2035
2036 /*
2037 * unless fs_devices is seed fs, num_devices shouldn't go
2038 * zero
2039 */
2040 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2041
2042 /* if this is no devs we rather delete the fs_devices */
2043 if (!fs_devices->num_devices) {
2044 struct btrfs_fs_devices *tmp_fs_devices;
2045
2046 tmp_fs_devices = fs_info->fs_devices;
2047 while (tmp_fs_devices) {
2048 if (tmp_fs_devices->seed == fs_devices) {
2049 tmp_fs_devices->seed = fs_devices->seed;
2050 break;
2051 }
2052 tmp_fs_devices = tmp_fs_devices->seed;
2053 }
2054 fs_devices->seed = NULL;
2055 __btrfs_close_devices(fs_devices);
2056 free_fs_devices(fs_devices);
2057 }
2058}
2059
2060void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2061 struct btrfs_device *tgtdev)
2062{
2063 mutex_lock(&uuid_mutex);
2064 WARN_ON(!tgtdev);
2065 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2066
2067 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2068
2069 if (tgtdev->bdev)
2070 fs_info->fs_devices->open_devices--;
2071
2072 fs_info->fs_devices->num_devices--;
2073
2074 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2075
2076 list_del_rcu(&tgtdev->dev_list);
2077
2078 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2079 mutex_unlock(&uuid_mutex);
2080
2081 /*
2082 * The update_dev_time() with in btrfs_scratch_superblocks()
2083 * may lead to a call to btrfs_show_devname() which will try
2084 * to hold device_list_mutex. And here this device
2085 * is already out of device list, so we don't have to hold
2086 * the device_list_mutex lock.
2087 */
2088 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2089
2090 btrfs_close_bdev(tgtdev);
2091 call_rcu(&tgtdev->rcu, free_device);
2092}
2093
2094static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2095 char *device_path,
2096 struct btrfs_device **device)
2097{
2098 int ret = 0;
2099 struct btrfs_super_block *disk_super;
2100 u64 devid;
2101 u8 *dev_uuid;
2102 struct block_device *bdev;
2103 struct buffer_head *bh;
2104
2105 *device = NULL;
2106 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107 fs_info->bdev_holder, 0, &bdev, &bh);
2108 if (ret)
2109 return ret;
2110 disk_super = (struct btrfs_super_block *)bh->b_data;
2111 devid = btrfs_stack_device_id(&disk_super->dev_item);
2112 dev_uuid = disk_super->dev_item.uuid;
2113 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2114 brelse(bh);
2115 if (!*device)
2116 ret = -ENOENT;
2117 blkdev_put(bdev, FMODE_READ);
2118 return ret;
2119}
2120
2121int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2122 char *device_path,
2123 struct btrfs_device **device)
2124{
2125 *device = NULL;
2126 if (strcmp(device_path, "missing") == 0) {
2127 struct list_head *devices;
2128 struct btrfs_device *tmp;
2129
2130 devices = &fs_info->fs_devices->devices;
2131 /*
2132 * It is safe to read the devices since the volume_mutex
2133 * is held by the caller.
2134 */
2135 list_for_each_entry(tmp, devices, dev_list) {
2136 if (tmp->in_fs_metadata && !tmp->bdev) {
2137 *device = tmp;
2138 break;
2139 }
2140 }
2141
2142 if (!*device)
2143 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144
2145 return 0;
2146 } else {
2147 return btrfs_find_device_by_path(fs_info, device_path, device);
2148 }
2149}
2150
2151/*
2152 * Lookup a device given by device id, or the path if the id is 0.
2153 */
2154int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2155 char *devpath, struct btrfs_device **device)
2156{
2157 int ret;
2158
2159 if (devid) {
2160 ret = 0;
2161 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2162 if (!*device)
2163 ret = -ENOENT;
2164 } else {
2165 if (!devpath || !devpath[0])
2166 return -EINVAL;
2167
2168 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2169 device);
2170 }
2171 return ret;
2172}
2173
2174/*
2175 * does all the dirty work required for changing file system's UUID.
2176 */
2177static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2178{
2179 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2180 struct btrfs_fs_devices *old_devices;
2181 struct btrfs_fs_devices *seed_devices;
2182 struct btrfs_super_block *disk_super = fs_info->super_copy;
2183 struct btrfs_device *device;
2184 u64 super_flags;
2185
2186 BUG_ON(!mutex_is_locked(&uuid_mutex));
2187 if (!fs_devices->seeding)
2188 return -EINVAL;
2189
2190 seed_devices = __alloc_fs_devices();
2191 if (IS_ERR(seed_devices))
2192 return PTR_ERR(seed_devices);
2193
2194 old_devices = clone_fs_devices(fs_devices);
2195 if (IS_ERR(old_devices)) {
2196 kfree(seed_devices);
2197 return PTR_ERR(old_devices);
2198 }
2199
2200 list_add(&old_devices->list, &fs_uuids);
2201
2202 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2203 seed_devices->opened = 1;
2204 INIT_LIST_HEAD(&seed_devices->devices);
2205 INIT_LIST_HEAD(&seed_devices->alloc_list);
2206 mutex_init(&seed_devices->device_list_mutex);
2207
2208 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2209 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2210 synchronize_rcu);
2211 list_for_each_entry(device, &seed_devices->devices, dev_list)
2212 device->fs_devices = seed_devices;
2213
2214 mutex_lock(&fs_info->chunk_mutex);
2215 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2216 mutex_unlock(&fs_info->chunk_mutex);
2217
2218 fs_devices->seeding = 0;
2219 fs_devices->num_devices = 0;
2220 fs_devices->open_devices = 0;
2221 fs_devices->missing_devices = 0;
2222 fs_devices->rotating = 0;
2223 fs_devices->seed = seed_devices;
2224
2225 generate_random_uuid(fs_devices->fsid);
2226 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2227 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2228 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2229
2230 super_flags = btrfs_super_flags(disk_super) &
2231 ~BTRFS_SUPER_FLAG_SEEDING;
2232 btrfs_set_super_flags(disk_super, super_flags);
2233
2234 return 0;
2235}
2236
2237/*
2238 * Store the expected generation for seed devices in device items.
2239 */
2240static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2241 struct btrfs_fs_info *fs_info)
2242{
2243 struct btrfs_root *root = fs_info->chunk_root;
2244 struct btrfs_path *path;
2245 struct extent_buffer *leaf;
2246 struct btrfs_dev_item *dev_item;
2247 struct btrfs_device *device;
2248 struct btrfs_key key;
2249 u8 fs_uuid[BTRFS_UUID_SIZE];
2250 u8 dev_uuid[BTRFS_UUID_SIZE];
2251 u64 devid;
2252 int ret;
2253
2254 path = btrfs_alloc_path();
2255 if (!path)
2256 return -ENOMEM;
2257
2258 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2259 key.offset = 0;
2260 key.type = BTRFS_DEV_ITEM_KEY;
2261
2262 while (1) {
2263 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2264 if (ret < 0)
2265 goto error;
2266
2267 leaf = path->nodes[0];
2268next_slot:
2269 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2270 ret = btrfs_next_leaf(root, path);
2271 if (ret > 0)
2272 break;
2273 if (ret < 0)
2274 goto error;
2275 leaf = path->nodes[0];
2276 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2277 btrfs_release_path(path);
2278 continue;
2279 }
2280
2281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2282 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2283 key.type != BTRFS_DEV_ITEM_KEY)
2284 break;
2285
2286 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2287 struct btrfs_dev_item);
2288 devid = btrfs_device_id(leaf, dev_item);
2289 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2290 BTRFS_UUID_SIZE);
2291 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2292 BTRFS_UUID_SIZE);
2293 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2294 BUG_ON(!device); /* Logic error */
2295
2296 if (device->fs_devices->seeding) {
2297 btrfs_set_device_generation(leaf, dev_item,
2298 device->generation);
2299 btrfs_mark_buffer_dirty(leaf);
2300 }
2301
2302 path->slots[0]++;
2303 goto next_slot;
2304 }
2305 ret = 0;
2306error:
2307 btrfs_free_path(path);
2308 return ret;
2309}
2310
2311int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
2312{
2313 struct btrfs_root *root = fs_info->dev_root;
2314 struct request_queue *q;
2315 struct btrfs_trans_handle *trans;
2316 struct btrfs_device *device;
2317 struct block_device *bdev;
2318 struct list_head *devices;
2319 struct super_block *sb = fs_info->sb;
2320 struct rcu_string *name;
2321 u64 tmp;
2322 int seeding_dev = 0;
2323 int ret = 0;
2324
2325 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2326 return -EROFS;
2327
2328 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2329 fs_info->bdev_holder);
2330 if (IS_ERR(bdev))
2331 return PTR_ERR(bdev);
2332
2333 if (fs_info->fs_devices->seeding) {
2334 seeding_dev = 1;
2335 down_write(&sb->s_umount);
2336 mutex_lock(&uuid_mutex);
2337 }
2338
2339 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2340
2341 devices = &fs_info->fs_devices->devices;
2342
2343 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2344 list_for_each_entry(device, devices, dev_list) {
2345 if (device->bdev == bdev) {
2346 ret = -EEXIST;
2347 mutex_unlock(
2348 &fs_info->fs_devices->device_list_mutex);
2349 goto error;
2350 }
2351 }
2352 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2353
2354 device = btrfs_alloc_device(fs_info, NULL, NULL);
2355 if (IS_ERR(device)) {
2356 /* we can safely leave the fs_devices entry around */
2357 ret = PTR_ERR(device);
2358 goto error;
2359 }
2360
2361 name = rcu_string_strdup(device_path, GFP_KERNEL);
2362 if (!name) {
2363 kfree(device);
2364 ret = -ENOMEM;
2365 goto error;
2366 }
2367 rcu_assign_pointer(device->name, name);
2368
2369 trans = btrfs_start_transaction(root, 0);
2370 if (IS_ERR(trans)) {
2371 rcu_string_free(device->name);
2372 kfree(device);
2373 ret = PTR_ERR(trans);
2374 goto error;
2375 }
2376
2377 q = bdev_get_queue(bdev);
2378 if (blk_queue_discard(q))
2379 device->can_discard = 1;
2380 device->writeable = 1;
2381 device->generation = trans->transid;
2382 device->io_width = fs_info->sectorsize;
2383 device->io_align = fs_info->sectorsize;
2384 device->sector_size = fs_info->sectorsize;
2385 device->total_bytes = i_size_read(bdev->bd_inode);
2386 device->disk_total_bytes = device->total_bytes;
2387 device->commit_total_bytes = device->total_bytes;
2388 device->fs_info = fs_info;
2389 device->bdev = bdev;
2390 device->in_fs_metadata = 1;
2391 device->is_tgtdev_for_dev_replace = 0;
2392 device->mode = FMODE_EXCL;
2393 device->dev_stats_valid = 1;
2394 set_blocksize(device->bdev, 4096);
2395
2396 if (seeding_dev) {
2397 sb->s_flags &= ~MS_RDONLY;
2398 ret = btrfs_prepare_sprout(fs_info);
2399 BUG_ON(ret); /* -ENOMEM */
2400 }
2401
2402 device->fs_devices = fs_info->fs_devices;
2403
2404 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2405 mutex_lock(&fs_info->chunk_mutex);
2406 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2407 list_add(&device->dev_alloc_list,
2408 &fs_info->fs_devices->alloc_list);
2409 fs_info->fs_devices->num_devices++;
2410 fs_info->fs_devices->open_devices++;
2411 fs_info->fs_devices->rw_devices++;
2412 fs_info->fs_devices->total_devices++;
2413 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2414
2415 spin_lock(&fs_info->free_chunk_lock);
2416 fs_info->free_chunk_space += device->total_bytes;
2417 spin_unlock(&fs_info->free_chunk_lock);
2418
2419 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2420 fs_info->fs_devices->rotating = 1;
2421
2422 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2423 btrfs_set_super_total_bytes(fs_info->super_copy,
2424 tmp + device->total_bytes);
2425
2426 tmp = btrfs_super_num_devices(fs_info->super_copy);
2427 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2428
2429 /* add sysfs device entry */
2430 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2431
2432 /*
2433 * we've got more storage, clear any full flags on the space
2434 * infos
2435 */
2436 btrfs_clear_space_info_full(fs_info);
2437
2438 mutex_unlock(&fs_info->chunk_mutex);
2439 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2440
2441 if (seeding_dev) {
2442 mutex_lock(&fs_info->chunk_mutex);
2443 ret = init_first_rw_device(trans, fs_info, device);
2444 mutex_unlock(&fs_info->chunk_mutex);
2445 if (ret) {
2446 btrfs_abort_transaction(trans, ret);
2447 goto error_trans;
2448 }
2449 }
2450
2451 ret = btrfs_add_device(trans, fs_info, device);
2452 if (ret) {
2453 btrfs_abort_transaction(trans, ret);
2454 goto error_trans;
2455 }
2456
2457 if (seeding_dev) {
2458 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2459
2460 ret = btrfs_finish_sprout(trans, fs_info);
2461 if (ret) {
2462 btrfs_abort_transaction(trans, ret);
2463 goto error_trans;
2464 }
2465
2466 /* Sprouting would change fsid of the mounted root,
2467 * so rename the fsid on the sysfs
2468 */
2469 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2470 fs_info->fsid);
2471 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2472 btrfs_warn(fs_info,
2473 "sysfs: failed to create fsid for sprout");
2474 }
2475
2476 fs_info->num_tolerated_disk_barrier_failures =
2477 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2478 ret = btrfs_commit_transaction(trans);
2479
2480 if (seeding_dev) {
2481 mutex_unlock(&uuid_mutex);
2482 up_write(&sb->s_umount);
2483
2484 if (ret) /* transaction commit */
2485 return ret;
2486
2487 ret = btrfs_relocate_sys_chunks(fs_info);
2488 if (ret < 0)
2489 btrfs_handle_fs_error(fs_info, ret,
2490 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2491 trans = btrfs_attach_transaction(root);
2492 if (IS_ERR(trans)) {
2493 if (PTR_ERR(trans) == -ENOENT)
2494 return 0;
2495 return PTR_ERR(trans);
2496 }
2497 ret = btrfs_commit_transaction(trans);
2498 }
2499
2500 /* Update ctime/mtime for libblkid */
2501 update_dev_time(device_path);
2502 return ret;
2503
2504error_trans:
2505 btrfs_end_transaction(trans);
2506 rcu_string_free(device->name);
2507 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2508 kfree(device);
2509error:
2510 blkdev_put(bdev, FMODE_EXCL);
2511 if (seeding_dev) {
2512 mutex_unlock(&uuid_mutex);
2513 up_write(&sb->s_umount);
2514 }
2515 return ret;
2516}
2517
2518int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2519 char *device_path,
2520 struct btrfs_device *srcdev,
2521 struct btrfs_device **device_out)
2522{
2523 struct request_queue *q;
2524 struct btrfs_device *device;
2525 struct block_device *bdev;
2526 struct list_head *devices;
2527 struct rcu_string *name;
2528 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2529 int ret = 0;
2530
2531 *device_out = NULL;
2532 if (fs_info->fs_devices->seeding) {
2533 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2534 return -EINVAL;
2535 }
2536
2537 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2538 fs_info->bdev_holder);
2539 if (IS_ERR(bdev)) {
2540 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2541 return PTR_ERR(bdev);
2542 }
2543
2544 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2545
2546 devices = &fs_info->fs_devices->devices;
2547 list_for_each_entry(device, devices, dev_list) {
2548 if (device->bdev == bdev) {
2549 btrfs_err(fs_info,
2550 "target device is in the filesystem!");
2551 ret = -EEXIST;
2552 goto error;
2553 }
2554 }
2555
2556
2557 if (i_size_read(bdev->bd_inode) <
2558 btrfs_device_get_total_bytes(srcdev)) {
2559 btrfs_err(fs_info,
2560 "target device is smaller than source device!");
2561 ret = -EINVAL;
2562 goto error;
2563 }
2564
2565
2566 device = btrfs_alloc_device(NULL, &devid, NULL);
2567 if (IS_ERR(device)) {
2568 ret = PTR_ERR(device);
2569 goto error;
2570 }
2571
2572 name = rcu_string_strdup(device_path, GFP_NOFS);
2573 if (!name) {
2574 kfree(device);
2575 ret = -ENOMEM;
2576 goto error;
2577 }
2578 rcu_assign_pointer(device->name, name);
2579
2580 q = bdev_get_queue(bdev);
2581 if (blk_queue_discard(q))
2582 device->can_discard = 1;
2583 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2584 device->writeable = 1;
2585 device->generation = 0;
2586 device->io_width = fs_info->sectorsize;
2587 device->io_align = fs_info->sectorsize;
2588 device->sector_size = fs_info->sectorsize;
2589 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2590 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2591 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2592 ASSERT(list_empty(&srcdev->resized_list));
2593 device->commit_total_bytes = srcdev->commit_total_bytes;
2594 device->commit_bytes_used = device->bytes_used;
2595 device->fs_info = fs_info;
2596 device->bdev = bdev;
2597 device->in_fs_metadata = 1;
2598 device->is_tgtdev_for_dev_replace = 1;
2599 device->mode = FMODE_EXCL;
2600 device->dev_stats_valid = 1;
2601 set_blocksize(device->bdev, 4096);
2602 device->fs_devices = fs_info->fs_devices;
2603 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2604 fs_info->fs_devices->num_devices++;
2605 fs_info->fs_devices->open_devices++;
2606 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2607
2608 *device_out = device;
2609 return ret;
2610
2611error:
2612 blkdev_put(bdev, FMODE_EXCL);
2613 return ret;
2614}
2615
2616void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2617 struct btrfs_device *tgtdev)
2618{
2619 u32 sectorsize = fs_info->sectorsize;
2620
2621 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2622 tgtdev->io_width = sectorsize;
2623 tgtdev->io_align = sectorsize;
2624 tgtdev->sector_size = sectorsize;
2625 tgtdev->fs_info = fs_info;
2626 tgtdev->in_fs_metadata = 1;
2627}
2628
2629static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2630 struct btrfs_device *device)
2631{
2632 int ret;
2633 struct btrfs_path *path;
2634 struct btrfs_root *root = device->fs_info->chunk_root;
2635 struct btrfs_dev_item *dev_item;
2636 struct extent_buffer *leaf;
2637 struct btrfs_key key;
2638
2639 path = btrfs_alloc_path();
2640 if (!path)
2641 return -ENOMEM;
2642
2643 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2644 key.type = BTRFS_DEV_ITEM_KEY;
2645 key.offset = device->devid;
2646
2647 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2648 if (ret < 0)
2649 goto out;
2650
2651 if (ret > 0) {
2652 ret = -ENOENT;
2653 goto out;
2654 }
2655
2656 leaf = path->nodes[0];
2657 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2658
2659 btrfs_set_device_id(leaf, dev_item, device->devid);
2660 btrfs_set_device_type(leaf, dev_item, device->type);
2661 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2662 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2663 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2664 btrfs_set_device_total_bytes(leaf, dev_item,
2665 btrfs_device_get_disk_total_bytes(device));
2666 btrfs_set_device_bytes_used(leaf, dev_item,
2667 btrfs_device_get_bytes_used(device));
2668 btrfs_mark_buffer_dirty(leaf);
2669
2670out:
2671 btrfs_free_path(path);
2672 return ret;
2673}
2674
2675int btrfs_grow_device(struct btrfs_trans_handle *trans,
2676 struct btrfs_device *device, u64 new_size)
2677{
2678 struct btrfs_fs_info *fs_info = device->fs_info;
2679 struct btrfs_super_block *super_copy = fs_info->super_copy;
2680 struct btrfs_fs_devices *fs_devices;
2681 u64 old_total;
2682 u64 diff;
2683
2684 if (!device->writeable)
2685 return -EACCES;
2686
2687 mutex_lock(&fs_info->chunk_mutex);
2688 old_total = btrfs_super_total_bytes(super_copy);
2689 diff = new_size - device->total_bytes;
2690
2691 if (new_size <= device->total_bytes ||
2692 device->is_tgtdev_for_dev_replace) {
2693 mutex_unlock(&fs_info->chunk_mutex);
2694 return -EINVAL;
2695 }
2696
2697 fs_devices = fs_info->fs_devices;
2698
2699 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2700 device->fs_devices->total_rw_bytes += diff;
2701
2702 btrfs_device_set_total_bytes(device, new_size);
2703 btrfs_device_set_disk_total_bytes(device, new_size);
2704 btrfs_clear_space_info_full(device->fs_info);
2705 if (list_empty(&device->resized_list))
2706 list_add_tail(&device->resized_list,
2707 &fs_devices->resized_devices);
2708 mutex_unlock(&fs_info->chunk_mutex);
2709
2710 return btrfs_update_device(trans, device);
2711}
2712
2713static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2714 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2715 u64 chunk_offset)
2716{
2717 struct btrfs_root *root = fs_info->chunk_root;
2718 int ret;
2719 struct btrfs_path *path;
2720 struct btrfs_key key;
2721
2722 path = btrfs_alloc_path();
2723 if (!path)
2724 return -ENOMEM;
2725
2726 key.objectid = chunk_objectid;
2727 key.offset = chunk_offset;
2728 key.type = BTRFS_CHUNK_ITEM_KEY;
2729
2730 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2731 if (ret < 0)
2732 goto out;
2733 else if (ret > 0) { /* Logic error or corruption */
2734 btrfs_handle_fs_error(fs_info, -ENOENT,
2735 "Failed lookup while freeing chunk.");
2736 ret = -ENOENT;
2737 goto out;
2738 }
2739
2740 ret = btrfs_del_item(trans, root, path);
2741 if (ret < 0)
2742 btrfs_handle_fs_error(fs_info, ret,
2743 "Failed to delete chunk item.");
2744out:
2745 btrfs_free_path(path);
2746 return ret;
2747}
2748
2749static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2750 u64 chunk_objectid, u64 chunk_offset)
2751{
2752 struct btrfs_super_block *super_copy = fs_info->super_copy;
2753 struct btrfs_disk_key *disk_key;
2754 struct btrfs_chunk *chunk;
2755 u8 *ptr;
2756 int ret = 0;
2757 u32 num_stripes;
2758 u32 array_size;
2759 u32 len = 0;
2760 u32 cur;
2761 struct btrfs_key key;
2762
2763 mutex_lock(&fs_info->chunk_mutex);
2764 array_size = btrfs_super_sys_array_size(super_copy);
2765
2766 ptr = super_copy->sys_chunk_array;
2767 cur = 0;
2768
2769 while (cur < array_size) {
2770 disk_key = (struct btrfs_disk_key *)ptr;
2771 btrfs_disk_key_to_cpu(&key, disk_key);
2772
2773 len = sizeof(*disk_key);
2774
2775 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2776 chunk = (struct btrfs_chunk *)(ptr + len);
2777 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2778 len += btrfs_chunk_item_size(num_stripes);
2779 } else {
2780 ret = -EIO;
2781 break;
2782 }
2783 if (key.objectid == chunk_objectid &&
2784 key.offset == chunk_offset) {
2785 memmove(ptr, ptr + len, array_size - (cur + len));
2786 array_size -= len;
2787 btrfs_set_super_sys_array_size(super_copy, array_size);
2788 } else {
2789 ptr += len;
2790 cur += len;
2791 }
2792 }
2793 mutex_unlock(&fs_info->chunk_mutex);
2794 return ret;
2795}
2796
2797int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2798 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2799{
2800 struct extent_map_tree *em_tree;
2801 struct extent_map *em;
2802 struct map_lookup *map;
2803 u64 dev_extent_len = 0;
2804 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2805 int i, ret = 0;
2806 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2807
2808 em_tree = &fs_info->mapping_tree.map_tree;
2809
2810 read_lock(&em_tree->lock);
2811 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2812 read_unlock(&em_tree->lock);
2813
2814 if (!em || em->start > chunk_offset ||
2815 em->start + em->len < chunk_offset) {
2816 /*
2817 * This is a logic error, but we don't want to just rely on the
2818 * user having built with ASSERT enabled, so if ASSERT doesn't
2819 * do anything we still error out.
2820 */
2821 ASSERT(0);
2822 if (em)
2823 free_extent_map(em);
2824 return -EINVAL;
2825 }
2826 map = em->map_lookup;
2827 mutex_lock(&fs_info->chunk_mutex);
2828 check_system_chunk(trans, fs_info, map->type);
2829 mutex_unlock(&fs_info->chunk_mutex);
2830
2831 /*
2832 * Take the device list mutex to prevent races with the final phase of
2833 * a device replace operation that replaces the device object associated
2834 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2835 */
2836 mutex_lock(&fs_devices->device_list_mutex);
2837 for (i = 0; i < map->num_stripes; i++) {
2838 struct btrfs_device *device = map->stripes[i].dev;
2839 ret = btrfs_free_dev_extent(trans, device,
2840 map->stripes[i].physical,
2841 &dev_extent_len);
2842 if (ret) {
2843 mutex_unlock(&fs_devices->device_list_mutex);
2844 btrfs_abort_transaction(trans, ret);
2845 goto out;
2846 }
2847
2848 if (device->bytes_used > 0) {
2849 mutex_lock(&fs_info->chunk_mutex);
2850 btrfs_device_set_bytes_used(device,
2851 device->bytes_used - dev_extent_len);
2852 spin_lock(&fs_info->free_chunk_lock);
2853 fs_info->free_chunk_space += dev_extent_len;
2854 spin_unlock(&fs_info->free_chunk_lock);
2855 btrfs_clear_space_info_full(fs_info);
2856 mutex_unlock(&fs_info->chunk_mutex);
2857 }
2858
2859 if (map->stripes[i].dev) {
2860 ret = btrfs_update_device(trans, map->stripes[i].dev);
2861 if (ret) {
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863 btrfs_abort_transaction(trans, ret);
2864 goto out;
2865 }
2866 }
2867 }
2868 mutex_unlock(&fs_devices->device_list_mutex);
2869
2870 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2871 if (ret) {
2872 btrfs_abort_transaction(trans, ret);
2873 goto out;
2874 }
2875
2876 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2877
2878 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2879 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2880 chunk_offset);
2881 if (ret) {
2882 btrfs_abort_transaction(trans, ret);
2883 goto out;
2884 }
2885 }
2886
2887 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2888 if (ret) {
2889 btrfs_abort_transaction(trans, ret);
2890 goto out;
2891 }
2892
2893out:
2894 /* once for us */
2895 free_extent_map(em);
2896 return ret;
2897}
2898
2899static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2900{
2901 struct btrfs_root *root = fs_info->chunk_root;
2902 struct btrfs_trans_handle *trans;
2903 int ret;
2904
2905 /*
2906 * Prevent races with automatic removal of unused block groups.
2907 * After we relocate and before we remove the chunk with offset
2908 * chunk_offset, automatic removal of the block group can kick in,
2909 * resulting in a failure when calling btrfs_remove_chunk() below.
2910 *
2911 * Make sure to acquire this mutex before doing a tree search (dev
2912 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2913 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2914 * we release the path used to search the chunk/dev tree and before
2915 * the current task acquires this mutex and calls us.
2916 */
2917 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2918
2919 ret = btrfs_can_relocate(fs_info, chunk_offset);
2920 if (ret)
2921 return -ENOSPC;
2922
2923 /* step one, relocate all the extents inside this chunk */
2924 btrfs_scrub_pause(fs_info);
2925 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2926 btrfs_scrub_continue(fs_info);
2927 if (ret)
2928 return ret;
2929
2930 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2931 chunk_offset);
2932 if (IS_ERR(trans)) {
2933 ret = PTR_ERR(trans);
2934 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2935 return ret;
2936 }
2937
2938 /*
2939 * step two, delete the device extents and the
2940 * chunk tree entries
2941 */
2942 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2943 btrfs_end_transaction(trans);
2944 return ret;
2945}
2946
2947static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2948{
2949 struct btrfs_root *chunk_root = fs_info->chunk_root;
2950 struct btrfs_path *path;
2951 struct extent_buffer *leaf;
2952 struct btrfs_chunk *chunk;
2953 struct btrfs_key key;
2954 struct btrfs_key found_key;
2955 u64 chunk_type;
2956 bool retried = false;
2957 int failed = 0;
2958 int ret;
2959
2960 path = btrfs_alloc_path();
2961 if (!path)
2962 return -ENOMEM;
2963
2964again:
2965 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2966 key.offset = (u64)-1;
2967 key.type = BTRFS_CHUNK_ITEM_KEY;
2968
2969 while (1) {
2970 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2971 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2972 if (ret < 0) {
2973 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2974 goto error;
2975 }
2976 BUG_ON(ret == 0); /* Corruption */
2977
2978 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2979 key.type);
2980 if (ret)
2981 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2982 if (ret < 0)
2983 goto error;
2984 if (ret > 0)
2985 break;
2986
2987 leaf = path->nodes[0];
2988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2989
2990 chunk = btrfs_item_ptr(leaf, path->slots[0],
2991 struct btrfs_chunk);
2992 chunk_type = btrfs_chunk_type(leaf, chunk);
2993 btrfs_release_path(path);
2994
2995 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2996 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2997 if (ret == -ENOSPC)
2998 failed++;
2999 else
3000 BUG_ON(ret);
3001 }
3002 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3003
3004 if (found_key.offset == 0)
3005 break;
3006 key.offset = found_key.offset - 1;
3007 }
3008 ret = 0;
3009 if (failed && !retried) {
3010 failed = 0;
3011 retried = true;
3012 goto again;
3013 } else if (WARN_ON(failed && retried)) {
3014 ret = -ENOSPC;
3015 }
3016error:
3017 btrfs_free_path(path);
3018 return ret;
3019}
3020
3021static int insert_balance_item(struct btrfs_fs_info *fs_info,
3022 struct btrfs_balance_control *bctl)
3023{
3024 struct btrfs_root *root = fs_info->tree_root;
3025 struct btrfs_trans_handle *trans;
3026 struct btrfs_balance_item *item;
3027 struct btrfs_disk_balance_args disk_bargs;
3028 struct btrfs_path *path;
3029 struct extent_buffer *leaf;
3030 struct btrfs_key key;
3031 int ret, err;
3032
3033 path = btrfs_alloc_path();
3034 if (!path)
3035 return -ENOMEM;
3036
3037 trans = btrfs_start_transaction(root, 0);
3038 if (IS_ERR(trans)) {
3039 btrfs_free_path(path);
3040 return PTR_ERR(trans);
3041 }
3042
3043 key.objectid = BTRFS_BALANCE_OBJECTID;
3044 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3045 key.offset = 0;
3046
3047 ret = btrfs_insert_empty_item(trans, root, path, &key,
3048 sizeof(*item));
3049 if (ret)
3050 goto out;
3051
3052 leaf = path->nodes[0];
3053 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3054
3055 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3056
3057 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3058 btrfs_set_balance_data(leaf, item, &disk_bargs);
3059 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3060 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3061 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3062 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3063
3064 btrfs_set_balance_flags(leaf, item, bctl->flags);
3065
3066 btrfs_mark_buffer_dirty(leaf);
3067out:
3068 btrfs_free_path(path);
3069 err = btrfs_commit_transaction(trans);
3070 if (err && !ret)
3071 ret = err;
3072 return ret;
3073}
3074
3075static int del_balance_item(struct btrfs_fs_info *fs_info)
3076{
3077 struct btrfs_root *root = fs_info->tree_root;
3078 struct btrfs_trans_handle *trans;
3079 struct btrfs_path *path;
3080 struct btrfs_key key;
3081 int ret, err;
3082
3083 path = btrfs_alloc_path();
3084 if (!path)
3085 return -ENOMEM;
3086
3087 trans = btrfs_start_transaction(root, 0);
3088 if (IS_ERR(trans)) {
3089 btrfs_free_path(path);
3090 return PTR_ERR(trans);
3091 }
3092
3093 key.objectid = BTRFS_BALANCE_OBJECTID;
3094 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3095 key.offset = 0;
3096
3097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3098 if (ret < 0)
3099 goto out;
3100 if (ret > 0) {
3101 ret = -ENOENT;
3102 goto out;
3103 }
3104
3105 ret = btrfs_del_item(trans, root, path);
3106out:
3107 btrfs_free_path(path);
3108 err = btrfs_commit_transaction(trans);
3109 if (err && !ret)
3110 ret = err;
3111 return ret;
3112}
3113
3114/*
3115 * This is a heuristic used to reduce the number of chunks balanced on
3116 * resume after balance was interrupted.
3117 */
3118static void update_balance_args(struct btrfs_balance_control *bctl)
3119{
3120 /*
3121 * Turn on soft mode for chunk types that were being converted.
3122 */
3123 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3124 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3125 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3126 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3127 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3128 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3129
3130 /*
3131 * Turn on usage filter if is not already used. The idea is
3132 * that chunks that we have already balanced should be
3133 * reasonably full. Don't do it for chunks that are being
3134 * converted - that will keep us from relocating unconverted
3135 * (albeit full) chunks.
3136 */
3137 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3138 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141 bctl->data.usage = 90;
3142 }
3143 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3144 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147 bctl->sys.usage = 90;
3148 }
3149 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3150 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3152 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3153 bctl->meta.usage = 90;
3154 }
3155}
3156
3157/*
3158 * Should be called with both balance and volume mutexes held to
3159 * serialize other volume operations (add_dev/rm_dev/resize) with
3160 * restriper. Same goes for unset_balance_control.
3161 */
3162static void set_balance_control(struct btrfs_balance_control *bctl)
3163{
3164 struct btrfs_fs_info *fs_info = bctl->fs_info;
3165
3166 BUG_ON(fs_info->balance_ctl);
3167
3168 spin_lock(&fs_info->balance_lock);
3169 fs_info->balance_ctl = bctl;
3170 spin_unlock(&fs_info->balance_lock);
3171}
3172
3173static void unset_balance_control(struct btrfs_fs_info *fs_info)
3174{
3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3176
3177 BUG_ON(!fs_info->balance_ctl);
3178
3179 spin_lock(&fs_info->balance_lock);
3180 fs_info->balance_ctl = NULL;
3181 spin_unlock(&fs_info->balance_lock);
3182
3183 kfree(bctl);
3184}
3185
3186/*
3187 * Balance filters. Return 1 if chunk should be filtered out
3188 * (should not be balanced).
3189 */
3190static int chunk_profiles_filter(u64 chunk_type,
3191 struct btrfs_balance_args *bargs)
3192{
3193 chunk_type = chunk_to_extended(chunk_type) &
3194 BTRFS_EXTENDED_PROFILE_MASK;
3195
3196 if (bargs->profiles & chunk_type)
3197 return 0;
3198
3199 return 1;
3200}
3201
3202static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3203 struct btrfs_balance_args *bargs)
3204{
3205 struct btrfs_block_group_cache *cache;
3206 u64 chunk_used;
3207 u64 user_thresh_min;
3208 u64 user_thresh_max;
3209 int ret = 1;
3210
3211 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3212 chunk_used = btrfs_block_group_used(&cache->item);
3213
3214 if (bargs->usage_min == 0)
3215 user_thresh_min = 0;
3216 else
3217 user_thresh_min = div_factor_fine(cache->key.offset,
3218 bargs->usage_min);
3219
3220 if (bargs->usage_max == 0)
3221 user_thresh_max = 1;
3222 else if (bargs->usage_max > 100)
3223 user_thresh_max = cache->key.offset;
3224 else
3225 user_thresh_max = div_factor_fine(cache->key.offset,
3226 bargs->usage_max);
3227
3228 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3229 ret = 0;
3230
3231 btrfs_put_block_group(cache);
3232 return ret;
3233}
3234
3235static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3236 u64 chunk_offset, struct btrfs_balance_args *bargs)
3237{
3238 struct btrfs_block_group_cache *cache;
3239 u64 chunk_used, user_thresh;
3240 int ret = 1;
3241
3242 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3243 chunk_used = btrfs_block_group_used(&cache->item);
3244
3245 if (bargs->usage_min == 0)
3246 user_thresh = 1;
3247 else if (bargs->usage > 100)
3248 user_thresh = cache->key.offset;
3249 else
3250 user_thresh = div_factor_fine(cache->key.offset,
3251 bargs->usage);
3252
3253 if (chunk_used < user_thresh)
3254 ret = 0;
3255
3256 btrfs_put_block_group(cache);
3257 return ret;
3258}
3259
3260static int chunk_devid_filter(struct extent_buffer *leaf,
3261 struct btrfs_chunk *chunk,
3262 struct btrfs_balance_args *bargs)
3263{
3264 struct btrfs_stripe *stripe;
3265 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3266 int i;
3267
3268 for (i = 0; i < num_stripes; i++) {
3269 stripe = btrfs_stripe_nr(chunk, i);
3270 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3271 return 0;
3272 }
3273
3274 return 1;
3275}
3276
3277/* [pstart, pend) */
3278static int chunk_drange_filter(struct extent_buffer *leaf,
3279 struct btrfs_chunk *chunk,
3280 u64 chunk_offset,
3281 struct btrfs_balance_args *bargs)
3282{
3283 struct btrfs_stripe *stripe;
3284 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3285 u64 stripe_offset;
3286 u64 stripe_length;
3287 int factor;
3288 int i;
3289
3290 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3291 return 0;
3292
3293 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3294 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3295 factor = num_stripes / 2;
3296 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3297 factor = num_stripes - 1;
3298 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3299 factor = num_stripes - 2;
3300 } else {
3301 factor = num_stripes;
3302 }
3303
3304 for (i = 0; i < num_stripes; i++) {
3305 stripe = btrfs_stripe_nr(chunk, i);
3306 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3307 continue;
3308
3309 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3310 stripe_length = btrfs_chunk_length(leaf, chunk);
3311 stripe_length = div_u64(stripe_length, factor);
3312
3313 if (stripe_offset < bargs->pend &&
3314 stripe_offset + stripe_length > bargs->pstart)
3315 return 0;
3316 }
3317
3318 return 1;
3319}
3320
3321/* [vstart, vend) */
3322static int chunk_vrange_filter(struct extent_buffer *leaf,
3323 struct btrfs_chunk *chunk,
3324 u64 chunk_offset,
3325 struct btrfs_balance_args *bargs)
3326{
3327 if (chunk_offset < bargs->vend &&
3328 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3329 /* at least part of the chunk is inside this vrange */
3330 return 0;
3331
3332 return 1;
3333}
3334
3335static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3336 struct btrfs_chunk *chunk,
3337 struct btrfs_balance_args *bargs)
3338{
3339 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3340
3341 if (bargs->stripes_min <= num_stripes
3342 && num_stripes <= bargs->stripes_max)
3343 return 0;
3344
3345 return 1;
3346}
3347
3348static int chunk_soft_convert_filter(u64 chunk_type,
3349 struct btrfs_balance_args *bargs)
3350{
3351 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3352 return 0;
3353
3354 chunk_type = chunk_to_extended(chunk_type) &
3355 BTRFS_EXTENDED_PROFILE_MASK;
3356
3357 if (bargs->target == chunk_type)
3358 return 1;
3359
3360 return 0;
3361}
3362
3363static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3364 struct extent_buffer *leaf,
3365 struct btrfs_chunk *chunk, u64 chunk_offset)
3366{
3367 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3368 struct btrfs_balance_args *bargs = NULL;
3369 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3370
3371 /* type filter */
3372 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3373 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3374 return 0;
3375 }
3376
3377 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3378 bargs = &bctl->data;
3379 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3380 bargs = &bctl->sys;
3381 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3382 bargs = &bctl->meta;
3383
3384 /* profiles filter */
3385 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3386 chunk_profiles_filter(chunk_type, bargs)) {
3387 return 0;
3388 }
3389
3390 /* usage filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3392 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3393 return 0;
3394 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3395 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3396 return 0;
3397 }
3398
3399 /* devid filter */
3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3401 chunk_devid_filter(leaf, chunk, bargs)) {
3402 return 0;
3403 }
3404
3405 /* drange filter, makes sense only with devid filter */
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3407 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3408 return 0;
3409 }
3410
3411 /* vrange filter */
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3413 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3414 return 0;
3415 }
3416
3417 /* stripes filter */
3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3419 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3420 return 0;
3421 }
3422
3423 /* soft profile changing mode */
3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3425 chunk_soft_convert_filter(chunk_type, bargs)) {
3426 return 0;
3427 }
3428
3429 /*
3430 * limited by count, must be the last filter
3431 */
3432 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3433 if (bargs->limit == 0)
3434 return 0;
3435 else
3436 bargs->limit--;
3437 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3438 /*
3439 * Same logic as the 'limit' filter; the minimum cannot be
3440 * determined here because we do not have the global information
3441 * about the count of all chunks that satisfy the filters.
3442 */
3443 if (bargs->limit_max == 0)
3444 return 0;
3445 else
3446 bargs->limit_max--;
3447 }
3448
3449 return 1;
3450}
3451
3452static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3453{
3454 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3455 struct btrfs_root *chunk_root = fs_info->chunk_root;
3456 struct btrfs_root *dev_root = fs_info->dev_root;
3457 struct list_head *devices;
3458 struct btrfs_device *device;
3459 u64 old_size;
3460 u64 size_to_free;
3461 u64 chunk_type;
3462 struct btrfs_chunk *chunk;
3463 struct btrfs_path *path = NULL;
3464 struct btrfs_key key;
3465 struct btrfs_key found_key;
3466 struct btrfs_trans_handle *trans;
3467 struct extent_buffer *leaf;
3468 int slot;
3469 int ret;
3470 int enospc_errors = 0;
3471 bool counting = true;
3472 /* The single value limit and min/max limits use the same bytes in the */
3473 u64 limit_data = bctl->data.limit;
3474 u64 limit_meta = bctl->meta.limit;
3475 u64 limit_sys = bctl->sys.limit;
3476 u32 count_data = 0;
3477 u32 count_meta = 0;
3478 u32 count_sys = 0;
3479 int chunk_reserved = 0;
3480 u64 bytes_used = 0;
3481
3482 /* step one make some room on all the devices */
3483 devices = &fs_info->fs_devices->devices;
3484 list_for_each_entry(device, devices, dev_list) {
3485 old_size = btrfs_device_get_total_bytes(device);
3486 size_to_free = div_factor(old_size, 1);
3487 size_to_free = min_t(u64, size_to_free, SZ_1M);
3488 if (!device->writeable ||
3489 btrfs_device_get_total_bytes(device) -
3490 btrfs_device_get_bytes_used(device) > size_to_free ||
3491 device->is_tgtdev_for_dev_replace)
3492 continue;
3493
3494 ret = btrfs_shrink_device(device, old_size - size_to_free);
3495 if (ret == -ENOSPC)
3496 break;
3497 if (ret) {
3498 /* btrfs_shrink_device never returns ret > 0 */
3499 WARN_ON(ret > 0);
3500 goto error;
3501 }
3502
3503 trans = btrfs_start_transaction(dev_root, 0);
3504 if (IS_ERR(trans)) {
3505 ret = PTR_ERR(trans);
3506 btrfs_info_in_rcu(fs_info,
3507 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3508 rcu_str_deref(device->name), ret,
3509 old_size, old_size - size_to_free);
3510 goto error;
3511 }
3512
3513 ret = btrfs_grow_device(trans, device, old_size);
3514 if (ret) {
3515 btrfs_end_transaction(trans);
3516 /* btrfs_grow_device never returns ret > 0 */
3517 WARN_ON(ret > 0);
3518 btrfs_info_in_rcu(fs_info,
3519 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3520 rcu_str_deref(device->name), ret,
3521 old_size, old_size - size_to_free);
3522 goto error;
3523 }
3524
3525 btrfs_end_transaction(trans);
3526 }
3527
3528 /* step two, relocate all the chunks */
3529 path = btrfs_alloc_path();
3530 if (!path) {
3531 ret = -ENOMEM;
3532 goto error;
3533 }
3534
3535 /* zero out stat counters */
3536 spin_lock(&fs_info->balance_lock);
3537 memset(&bctl->stat, 0, sizeof(bctl->stat));
3538 spin_unlock(&fs_info->balance_lock);
3539again:
3540 if (!counting) {
3541 /*
3542 * The single value limit and min/max limits use the same bytes
3543 * in the
3544 */
3545 bctl->data.limit = limit_data;
3546 bctl->meta.limit = limit_meta;
3547 bctl->sys.limit = limit_sys;
3548 }
3549 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3550 key.offset = (u64)-1;
3551 key.type = BTRFS_CHUNK_ITEM_KEY;
3552
3553 while (1) {
3554 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3555 atomic_read(&fs_info->balance_cancel_req)) {
3556 ret = -ECANCELED;
3557 goto error;
3558 }
3559
3560 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3561 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3562 if (ret < 0) {
3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564 goto error;
3565 }
3566
3567 /*
3568 * this shouldn't happen, it means the last relocate
3569 * failed
3570 */
3571 if (ret == 0)
3572 BUG(); /* FIXME break ? */
3573
3574 ret = btrfs_previous_item(chunk_root, path, 0,
3575 BTRFS_CHUNK_ITEM_KEY);
3576 if (ret) {
3577 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3578 ret = 0;
3579 break;
3580 }
3581
3582 leaf = path->nodes[0];
3583 slot = path->slots[0];
3584 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3585
3586 if (found_key.objectid != key.objectid) {
3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 break;
3589 }
3590
3591 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3592 chunk_type = btrfs_chunk_type(leaf, chunk);
3593
3594 if (!counting) {
3595 spin_lock(&fs_info->balance_lock);
3596 bctl->stat.considered++;
3597 spin_unlock(&fs_info->balance_lock);
3598 }
3599
3600 ret = should_balance_chunk(fs_info, leaf, chunk,
3601 found_key.offset);
3602
3603 btrfs_release_path(path);
3604 if (!ret) {
3605 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606 goto loop;
3607 }
3608
3609 if (counting) {
3610 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3611 spin_lock(&fs_info->balance_lock);
3612 bctl->stat.expected++;
3613 spin_unlock(&fs_info->balance_lock);
3614
3615 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3616 count_data++;
3617 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3618 count_sys++;
3619 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3620 count_meta++;
3621
3622 goto loop;
3623 }
3624
3625 /*
3626 * Apply limit_min filter, no need to check if the LIMITS
3627 * filter is used, limit_min is 0 by default
3628 */
3629 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3630 count_data < bctl->data.limit_min)
3631 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3632 count_meta < bctl->meta.limit_min)
3633 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3634 count_sys < bctl->sys.limit_min)) {
3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 goto loop;
3637 }
3638
3639 ASSERT(fs_info->data_sinfo);
3640 spin_lock(&fs_info->data_sinfo->lock);
3641 bytes_used = fs_info->data_sinfo->bytes_used;
3642 spin_unlock(&fs_info->data_sinfo->lock);
3643
3644 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3645 !chunk_reserved && !bytes_used) {
3646 trans = btrfs_start_transaction(chunk_root, 0);
3647 if (IS_ERR(trans)) {
3648 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3649 ret = PTR_ERR(trans);
3650 goto error;
3651 }
3652
3653 ret = btrfs_force_chunk_alloc(trans, fs_info,
3654 BTRFS_BLOCK_GROUP_DATA);
3655 btrfs_end_transaction(trans);
3656 if (ret < 0) {
3657 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 goto error;
3659 }
3660 chunk_reserved = 1;
3661 }
3662
3663 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3664 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3665 if (ret && ret != -ENOSPC)
3666 goto error;
3667 if (ret == -ENOSPC) {
3668 enospc_errors++;
3669 } else {
3670 spin_lock(&fs_info->balance_lock);
3671 bctl->stat.completed++;
3672 spin_unlock(&fs_info->balance_lock);
3673 }
3674loop:
3675 if (found_key.offset == 0)
3676 break;
3677 key.offset = found_key.offset - 1;
3678 }
3679
3680 if (counting) {
3681 btrfs_release_path(path);
3682 counting = false;
3683 goto again;
3684 }
3685error:
3686 btrfs_free_path(path);
3687 if (enospc_errors) {
3688 btrfs_info(fs_info, "%d enospc errors during balance",
3689 enospc_errors);
3690 if (!ret)
3691 ret = -ENOSPC;
3692 }
3693
3694 return ret;
3695}
3696
3697/**
3698 * alloc_profile_is_valid - see if a given profile is valid and reduced
3699 * @flags: profile to validate
3700 * @extended: if true @flags is treated as an extended profile
3701 */
3702static int alloc_profile_is_valid(u64 flags, int extended)
3703{
3704 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3705 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3706
3707 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3708
3709 /* 1) check that all other bits are zeroed */
3710 if (flags & ~mask)
3711 return 0;
3712
3713 /* 2) see if profile is reduced */
3714 if (flags == 0)
3715 return !extended; /* "0" is valid for usual profiles */
3716
3717 /* true if exactly one bit set */
3718 return (flags & (flags - 1)) == 0;
3719}
3720
3721static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3722{
3723 /* cancel requested || normal exit path */
3724 return atomic_read(&fs_info->balance_cancel_req) ||
3725 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3726 atomic_read(&fs_info->balance_cancel_req) == 0);
3727}
3728
3729static void __cancel_balance(struct btrfs_fs_info *fs_info)
3730{
3731 int ret;
3732
3733 unset_balance_control(fs_info);
3734 ret = del_balance_item(fs_info);
3735 if (ret)
3736 btrfs_handle_fs_error(fs_info, ret, NULL);
3737
3738 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3739}
3740
3741/* Non-zero return value signifies invalidity */
3742static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3743 u64 allowed)
3744{
3745 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3746 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3747 (bctl_arg->target & ~allowed)));
3748}
3749
3750/*
3751 * Should be called with both balance and volume mutexes held
3752 */
3753int btrfs_balance(struct btrfs_balance_control *bctl,
3754 struct btrfs_ioctl_balance_args *bargs)
3755{
3756 struct btrfs_fs_info *fs_info = bctl->fs_info;
3757 u64 allowed;
3758 int mixed = 0;
3759 int ret;
3760 u64 num_devices;
3761 unsigned seq;
3762
3763 if (btrfs_fs_closing(fs_info) ||
3764 atomic_read(&fs_info->balance_pause_req) ||
3765 atomic_read(&fs_info->balance_cancel_req)) {
3766 ret = -EINVAL;
3767 goto out;
3768 }
3769
3770 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3771 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3772 mixed = 1;
3773
3774 /*
3775 * In case of mixed groups both data and meta should be picked,
3776 * and identical options should be given for both of them.
3777 */
3778 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3779 if (mixed && (bctl->flags & allowed)) {
3780 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3781 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3782 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3783 btrfs_err(fs_info,
3784 "with mixed groups data and metadata balance options must be the same");
3785 ret = -EINVAL;
3786 goto out;
3787 }
3788 }
3789
3790 num_devices = fs_info->fs_devices->num_devices;
3791 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3792 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3793 BUG_ON(num_devices < 1);
3794 num_devices--;
3795 }
3796 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3797 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3798 if (num_devices > 1)
3799 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3800 if (num_devices > 2)
3801 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3802 if (num_devices > 3)
3803 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3804 BTRFS_BLOCK_GROUP_RAID6);
3805 if (validate_convert_profile(&bctl->data, allowed)) {
3806 btrfs_err(fs_info,
3807 "unable to start balance with target data profile %llu",
3808 bctl->data.target);
3809 ret = -EINVAL;
3810 goto out;
3811 }
3812 if (validate_convert_profile(&bctl->meta, allowed)) {
3813 btrfs_err(fs_info,
3814 "unable to start balance with target metadata profile %llu",
3815 bctl->meta.target);
3816 ret = -EINVAL;
3817 goto out;
3818 }
3819 if (validate_convert_profile(&bctl->sys, allowed)) {
3820 btrfs_err(fs_info,
3821 "unable to start balance with target system profile %llu",
3822 bctl->sys.target);
3823 ret = -EINVAL;
3824 goto out;
3825 }
3826
3827 /* allow to reduce meta or sys integrity only if force set */
3828 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3829 BTRFS_BLOCK_GROUP_RAID10 |
3830 BTRFS_BLOCK_GROUP_RAID5 |
3831 BTRFS_BLOCK_GROUP_RAID6;
3832 do {
3833 seq = read_seqbegin(&fs_info->profiles_lock);
3834
3835 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3836 (fs_info->avail_system_alloc_bits & allowed) &&
3837 !(bctl->sys.target & allowed)) ||
3838 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3839 (fs_info->avail_metadata_alloc_bits & allowed) &&
3840 !(bctl->meta.target & allowed))) {
3841 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3842 btrfs_info(fs_info,
3843 "force reducing metadata integrity");
3844 } else {
3845 btrfs_err(fs_info,
3846 "balance will reduce metadata integrity, use force if you want this");
3847 ret = -EINVAL;
3848 goto out;
3849 }
3850 }
3851 } while (read_seqretry(&fs_info->profiles_lock, seq));
3852
3853 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3854 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3855 btrfs_warn(fs_info,
3856 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3857 bctl->meta.target, bctl->data.target);
3858 }
3859
3860 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3861 fs_info->num_tolerated_disk_barrier_failures = min(
3862 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3863 btrfs_get_num_tolerated_disk_barrier_failures(
3864 bctl->sys.target));
3865 }
3866
3867 ret = insert_balance_item(fs_info, bctl);
3868 if (ret && ret != -EEXIST)
3869 goto out;
3870
3871 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3872 BUG_ON(ret == -EEXIST);
3873 set_balance_control(bctl);
3874 } else {
3875 BUG_ON(ret != -EEXIST);
3876 spin_lock(&fs_info->balance_lock);
3877 update_balance_args(bctl);
3878 spin_unlock(&fs_info->balance_lock);
3879 }
3880
3881 atomic_inc(&fs_info->balance_running);
3882 mutex_unlock(&fs_info->balance_mutex);
3883
3884 ret = __btrfs_balance(fs_info);
3885
3886 mutex_lock(&fs_info->balance_mutex);
3887 atomic_dec(&fs_info->balance_running);
3888
3889 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3890 fs_info->num_tolerated_disk_barrier_failures =
3891 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3892 }
3893
3894 if (bargs) {
3895 memset(bargs, 0, sizeof(*bargs));
3896 update_ioctl_balance_args(fs_info, 0, bargs);
3897 }
3898
3899 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3900 balance_need_close(fs_info)) {
3901 __cancel_balance(fs_info);
3902 }
3903
3904 wake_up(&fs_info->balance_wait_q);
3905
3906 return ret;
3907out:
3908 if (bctl->flags & BTRFS_BALANCE_RESUME)
3909 __cancel_balance(fs_info);
3910 else {
3911 kfree(bctl);
3912 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3913 }
3914 return ret;
3915}
3916
3917static int balance_kthread(void *data)
3918{
3919 struct btrfs_fs_info *fs_info = data;
3920 int ret = 0;
3921
3922 mutex_lock(&fs_info->volume_mutex);
3923 mutex_lock(&fs_info->balance_mutex);
3924
3925 if (fs_info->balance_ctl) {
3926 btrfs_info(fs_info, "continuing balance");
3927 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3928 }
3929
3930 mutex_unlock(&fs_info->balance_mutex);
3931 mutex_unlock(&fs_info->volume_mutex);
3932
3933 return ret;
3934}
3935
3936int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3937{
3938 struct task_struct *tsk;
3939
3940 spin_lock(&fs_info->balance_lock);
3941 if (!fs_info->balance_ctl) {
3942 spin_unlock(&fs_info->balance_lock);
3943 return 0;
3944 }
3945 spin_unlock(&fs_info->balance_lock);
3946
3947 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3948 btrfs_info(fs_info, "force skipping balance");
3949 return 0;
3950 }
3951
3952 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3953 return PTR_ERR_OR_ZERO(tsk);
3954}
3955
3956int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3957{
3958 struct btrfs_balance_control *bctl;
3959 struct btrfs_balance_item *item;
3960 struct btrfs_disk_balance_args disk_bargs;
3961 struct btrfs_path *path;
3962 struct extent_buffer *leaf;
3963 struct btrfs_key key;
3964 int ret;
3965
3966 path = btrfs_alloc_path();
3967 if (!path)
3968 return -ENOMEM;
3969
3970 key.objectid = BTRFS_BALANCE_OBJECTID;
3971 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3972 key.offset = 0;
3973
3974 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3975 if (ret < 0)
3976 goto out;
3977 if (ret > 0) { /* ret = -ENOENT; */
3978 ret = 0;
3979 goto out;
3980 }
3981
3982 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3983 if (!bctl) {
3984 ret = -ENOMEM;
3985 goto out;
3986 }
3987
3988 leaf = path->nodes[0];
3989 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3990
3991 bctl->fs_info = fs_info;
3992 bctl->flags = btrfs_balance_flags(leaf, item);
3993 bctl->flags |= BTRFS_BALANCE_RESUME;
3994
3995 btrfs_balance_data(leaf, item, &disk_bargs);
3996 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3997 btrfs_balance_meta(leaf, item, &disk_bargs);
3998 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3999 btrfs_balance_sys(leaf, item, &disk_bargs);
4000 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4001
4002 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4003
4004 mutex_lock(&fs_info->volume_mutex);
4005 mutex_lock(&fs_info->balance_mutex);
4006
4007 set_balance_control(bctl);
4008
4009 mutex_unlock(&fs_info->balance_mutex);
4010 mutex_unlock(&fs_info->volume_mutex);
4011out:
4012 btrfs_free_path(path);
4013 return ret;
4014}
4015
4016int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4017{
4018 int ret = 0;
4019
4020 mutex_lock(&fs_info->balance_mutex);
4021 if (!fs_info->balance_ctl) {
4022 mutex_unlock(&fs_info->balance_mutex);
4023 return -ENOTCONN;
4024 }
4025
4026 if (atomic_read(&fs_info->balance_running)) {
4027 atomic_inc(&fs_info->balance_pause_req);
4028 mutex_unlock(&fs_info->balance_mutex);
4029
4030 wait_event(fs_info->balance_wait_q,
4031 atomic_read(&fs_info->balance_running) == 0);
4032
4033 mutex_lock(&fs_info->balance_mutex);
4034 /* we are good with balance_ctl ripped off from under us */
4035 BUG_ON(atomic_read(&fs_info->balance_running));
4036 atomic_dec(&fs_info->balance_pause_req);
4037 } else {
4038 ret = -ENOTCONN;
4039 }
4040
4041 mutex_unlock(&fs_info->balance_mutex);
4042 return ret;
4043}
4044
4045int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4046{
4047 if (fs_info->sb->s_flags & MS_RDONLY)
4048 return -EROFS;
4049
4050 mutex_lock(&fs_info->balance_mutex);
4051 if (!fs_info->balance_ctl) {
4052 mutex_unlock(&fs_info->balance_mutex);
4053 return -ENOTCONN;
4054 }
4055
4056 atomic_inc(&fs_info->balance_cancel_req);
4057 /*
4058 * if we are running just wait and return, balance item is
4059 * deleted in btrfs_balance in this case
4060 */
4061 if (atomic_read(&fs_info->balance_running)) {
4062 mutex_unlock(&fs_info->balance_mutex);
4063 wait_event(fs_info->balance_wait_q,
4064 atomic_read(&fs_info->balance_running) == 0);
4065 mutex_lock(&fs_info->balance_mutex);
4066 } else {
4067 /* __cancel_balance needs volume_mutex */
4068 mutex_unlock(&fs_info->balance_mutex);
4069 mutex_lock(&fs_info->volume_mutex);
4070 mutex_lock(&fs_info->balance_mutex);
4071
4072 if (fs_info->balance_ctl)
4073 __cancel_balance(fs_info);
4074
4075 mutex_unlock(&fs_info->volume_mutex);
4076 }
4077
4078 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4079 atomic_dec(&fs_info->balance_cancel_req);
4080 mutex_unlock(&fs_info->balance_mutex);
4081 return 0;
4082}
4083
4084static int btrfs_uuid_scan_kthread(void *data)
4085{
4086 struct btrfs_fs_info *fs_info = data;
4087 struct btrfs_root *root = fs_info->tree_root;
4088 struct btrfs_key key;
4089 struct btrfs_key max_key;
4090 struct btrfs_path *path = NULL;
4091 int ret = 0;
4092 struct extent_buffer *eb;
4093 int slot;
4094 struct btrfs_root_item root_item;
4095 u32 item_size;
4096 struct btrfs_trans_handle *trans = NULL;
4097
4098 path = btrfs_alloc_path();
4099 if (!path) {
4100 ret = -ENOMEM;
4101 goto out;
4102 }
4103
4104 key.objectid = 0;
4105 key.type = BTRFS_ROOT_ITEM_KEY;
4106 key.offset = 0;
4107
4108 max_key.objectid = (u64)-1;
4109 max_key.type = BTRFS_ROOT_ITEM_KEY;
4110 max_key.offset = (u64)-1;
4111
4112 while (1) {
4113 ret = btrfs_search_forward(root, &key, path, 0);
4114 if (ret) {
4115 if (ret > 0)
4116 ret = 0;
4117 break;
4118 }
4119
4120 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4121 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4122 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4123 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4124 goto skip;
4125
4126 eb = path->nodes[0];
4127 slot = path->slots[0];
4128 item_size = btrfs_item_size_nr(eb, slot);
4129 if (item_size < sizeof(root_item))
4130 goto skip;
4131
4132 read_extent_buffer(eb, &root_item,
4133 btrfs_item_ptr_offset(eb, slot),
4134 (int)sizeof(root_item));
4135 if (btrfs_root_refs(&root_item) == 0)
4136 goto skip;
4137
4138 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4139 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4140 if (trans)
4141 goto update_tree;
4142
4143 btrfs_release_path(path);
4144 /*
4145 * 1 - subvol uuid item
4146 * 1 - received_subvol uuid item
4147 */
4148 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4149 if (IS_ERR(trans)) {
4150 ret = PTR_ERR(trans);
4151 break;
4152 }
4153 continue;
4154 } else {
4155 goto skip;
4156 }
4157update_tree:
4158 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4159 ret = btrfs_uuid_tree_add(trans, fs_info,
4160 root_item.uuid,
4161 BTRFS_UUID_KEY_SUBVOL,
4162 key.objectid);
4163 if (ret < 0) {
4164 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4165 ret);
4166 break;
4167 }
4168 }
4169
4170 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4171 ret = btrfs_uuid_tree_add(trans, fs_info,
4172 root_item.received_uuid,
4173 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4174 key.objectid);
4175 if (ret < 0) {
4176 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4177 ret);
4178 break;
4179 }
4180 }
4181
4182skip:
4183 if (trans) {
4184 ret = btrfs_end_transaction(trans);
4185 trans = NULL;
4186 if (ret)
4187 break;
4188 }
4189
4190 btrfs_release_path(path);
4191 if (key.offset < (u64)-1) {
4192 key.offset++;
4193 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4194 key.offset = 0;
4195 key.type = BTRFS_ROOT_ITEM_KEY;
4196 } else if (key.objectid < (u64)-1) {
4197 key.offset = 0;
4198 key.type = BTRFS_ROOT_ITEM_KEY;
4199 key.objectid++;
4200 } else {
4201 break;
4202 }
4203 cond_resched();
4204 }
4205
4206out:
4207 btrfs_free_path(path);
4208 if (trans && !IS_ERR(trans))
4209 btrfs_end_transaction(trans);
4210 if (ret)
4211 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4212 else
4213 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4214 up(&fs_info->uuid_tree_rescan_sem);
4215 return 0;
4216}
4217
4218/*
4219 * Callback for btrfs_uuid_tree_iterate().
4220 * returns:
4221 * 0 check succeeded, the entry is not outdated.
4222 * < 0 if an error occurred.
4223 * > 0 if the check failed, which means the caller shall remove the entry.
4224 */
4225static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4226 u8 *uuid, u8 type, u64 subid)
4227{
4228 struct btrfs_key key;
4229 int ret = 0;
4230 struct btrfs_root *subvol_root;
4231
4232 if (type != BTRFS_UUID_KEY_SUBVOL &&
4233 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4234 goto out;
4235
4236 key.objectid = subid;
4237 key.type = BTRFS_ROOT_ITEM_KEY;
4238 key.offset = (u64)-1;
4239 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4240 if (IS_ERR(subvol_root)) {
4241 ret = PTR_ERR(subvol_root);
4242 if (ret == -ENOENT)
4243 ret = 1;
4244 goto out;
4245 }
4246
4247 switch (type) {
4248 case BTRFS_UUID_KEY_SUBVOL:
4249 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4250 ret = 1;
4251 break;
4252 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4253 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4254 BTRFS_UUID_SIZE))
4255 ret = 1;
4256 break;
4257 }
4258
4259out:
4260 return ret;
4261}
4262
4263static int btrfs_uuid_rescan_kthread(void *data)
4264{
4265 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4266 int ret;
4267
4268 /*
4269 * 1st step is to iterate through the existing UUID tree and
4270 * to delete all entries that contain outdated data.
4271 * 2nd step is to add all missing entries to the UUID tree.
4272 */
4273 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4274 if (ret < 0) {
4275 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4276 up(&fs_info->uuid_tree_rescan_sem);
4277 return ret;
4278 }
4279 return btrfs_uuid_scan_kthread(data);
4280}
4281
4282int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4283{
4284 struct btrfs_trans_handle *trans;
4285 struct btrfs_root *tree_root = fs_info->tree_root;
4286 struct btrfs_root *uuid_root;
4287 struct task_struct *task;
4288 int ret;
4289
4290 /*
4291 * 1 - root node
4292 * 1 - root item
4293 */
4294 trans = btrfs_start_transaction(tree_root, 2);
4295 if (IS_ERR(trans))
4296 return PTR_ERR(trans);
4297
4298 uuid_root = btrfs_create_tree(trans, fs_info,
4299 BTRFS_UUID_TREE_OBJECTID);
4300 if (IS_ERR(uuid_root)) {
4301 ret = PTR_ERR(uuid_root);
4302 btrfs_abort_transaction(trans, ret);
4303 btrfs_end_transaction(trans);
4304 return ret;
4305 }
4306
4307 fs_info->uuid_root = uuid_root;
4308
4309 ret = btrfs_commit_transaction(trans);
4310 if (ret)
4311 return ret;
4312
4313 down(&fs_info->uuid_tree_rescan_sem);
4314 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4315 if (IS_ERR(task)) {
4316 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4317 btrfs_warn(fs_info, "failed to start uuid_scan task");
4318 up(&fs_info->uuid_tree_rescan_sem);
4319 return PTR_ERR(task);
4320 }
4321
4322 return 0;
4323}
4324
4325int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4326{
4327 struct task_struct *task;
4328
4329 down(&fs_info->uuid_tree_rescan_sem);
4330 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4331 if (IS_ERR(task)) {
4332 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4333 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4334 up(&fs_info->uuid_tree_rescan_sem);
4335 return PTR_ERR(task);
4336 }
4337
4338 return 0;
4339}
4340
4341/*
4342 * shrinking a device means finding all of the device extents past
4343 * the new size, and then following the back refs to the chunks.
4344 * The chunk relocation code actually frees the device extent
4345 */
4346int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4347{
4348 struct btrfs_fs_info *fs_info = device->fs_info;
4349 struct btrfs_root *root = fs_info->dev_root;
4350 struct btrfs_trans_handle *trans;
4351 struct btrfs_dev_extent *dev_extent = NULL;
4352 struct btrfs_path *path;
4353 u64 length;
4354 u64 chunk_offset;
4355 int ret;
4356 int slot;
4357 int failed = 0;
4358 bool retried = false;
4359 bool checked_pending_chunks = false;
4360 struct extent_buffer *l;
4361 struct btrfs_key key;
4362 struct btrfs_super_block *super_copy = fs_info->super_copy;
4363 u64 old_total = btrfs_super_total_bytes(super_copy);
4364 u64 old_size = btrfs_device_get_total_bytes(device);
4365 u64 diff = old_size - new_size;
4366
4367 if (device->is_tgtdev_for_dev_replace)
4368 return -EINVAL;
4369
4370 path = btrfs_alloc_path();
4371 if (!path)
4372 return -ENOMEM;
4373
4374 path->reada = READA_FORWARD;
4375
4376 mutex_lock(&fs_info->chunk_mutex);
4377
4378 btrfs_device_set_total_bytes(device, new_size);
4379 if (device->writeable) {
4380 device->fs_devices->total_rw_bytes -= diff;
4381 spin_lock(&fs_info->free_chunk_lock);
4382 fs_info->free_chunk_space -= diff;
4383 spin_unlock(&fs_info->free_chunk_lock);
4384 }
4385 mutex_unlock(&fs_info->chunk_mutex);
4386
4387again:
4388 key.objectid = device->devid;
4389 key.offset = (u64)-1;
4390 key.type = BTRFS_DEV_EXTENT_KEY;
4391
4392 do {
4393 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4394 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4395 if (ret < 0) {
4396 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4397 goto done;
4398 }
4399
4400 ret = btrfs_previous_item(root, path, 0, key.type);
4401 if (ret)
4402 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4403 if (ret < 0)
4404 goto done;
4405 if (ret) {
4406 ret = 0;
4407 btrfs_release_path(path);
4408 break;
4409 }
4410
4411 l = path->nodes[0];
4412 slot = path->slots[0];
4413 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4414
4415 if (key.objectid != device->devid) {
4416 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4417 btrfs_release_path(path);
4418 break;
4419 }
4420
4421 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4422 length = btrfs_dev_extent_length(l, dev_extent);
4423
4424 if (key.offset + length <= new_size) {
4425 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4426 btrfs_release_path(path);
4427 break;
4428 }
4429
4430 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4431 btrfs_release_path(path);
4432
4433 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4434 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4435 if (ret && ret != -ENOSPC)
4436 goto done;
4437 if (ret == -ENOSPC)
4438 failed++;
4439 } while (key.offset-- > 0);
4440
4441 if (failed && !retried) {
4442 failed = 0;
4443 retried = true;
4444 goto again;
4445 } else if (failed && retried) {
4446 ret = -ENOSPC;
4447 goto done;
4448 }
4449
4450 /* Shrinking succeeded, else we would be at "done". */
4451 trans = btrfs_start_transaction(root, 0);
4452 if (IS_ERR(trans)) {
4453 ret = PTR_ERR(trans);
4454 goto done;
4455 }
4456
4457 mutex_lock(&fs_info->chunk_mutex);
4458
4459 /*
4460 * We checked in the above loop all device extents that were already in
4461 * the device tree. However before we have updated the device's
4462 * total_bytes to the new size, we might have had chunk allocations that
4463 * have not complete yet (new block groups attached to transaction
4464 * handles), and therefore their device extents were not yet in the
4465 * device tree and we missed them in the loop above. So if we have any
4466 * pending chunk using a device extent that overlaps the device range
4467 * that we can not use anymore, commit the current transaction and
4468 * repeat the search on the device tree - this way we guarantee we will
4469 * not have chunks using device extents that end beyond 'new_size'.
4470 */
4471 if (!checked_pending_chunks) {
4472 u64 start = new_size;
4473 u64 len = old_size - new_size;
4474
4475 if (contains_pending_extent(trans->transaction, device,
4476 &start, len)) {
4477 mutex_unlock(&fs_info->chunk_mutex);
4478 checked_pending_chunks = true;
4479 failed = 0;
4480 retried = false;
4481 ret = btrfs_commit_transaction(trans);
4482 if (ret)
4483 goto done;
4484 goto again;
4485 }
4486 }
4487
4488 btrfs_device_set_disk_total_bytes(device, new_size);
4489 if (list_empty(&device->resized_list))
4490 list_add_tail(&device->resized_list,
4491 &fs_info->fs_devices->resized_devices);
4492
4493 WARN_ON(diff > old_total);
4494 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4495 mutex_unlock(&fs_info->chunk_mutex);
4496
4497 /* Now btrfs_update_device() will change the on-disk size. */
4498 ret = btrfs_update_device(trans, device);
4499 btrfs_end_transaction(trans);
4500done:
4501 btrfs_free_path(path);
4502 if (ret) {
4503 mutex_lock(&fs_info->chunk_mutex);
4504 btrfs_device_set_total_bytes(device, old_size);
4505 if (device->writeable)
4506 device->fs_devices->total_rw_bytes += diff;
4507 spin_lock(&fs_info->free_chunk_lock);
4508 fs_info->free_chunk_space += diff;
4509 spin_unlock(&fs_info->free_chunk_lock);
4510 mutex_unlock(&fs_info->chunk_mutex);
4511 }
4512 return ret;
4513}
4514
4515static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4516 struct btrfs_key *key,
4517 struct btrfs_chunk *chunk, int item_size)
4518{
4519 struct btrfs_super_block *super_copy = fs_info->super_copy;
4520 struct btrfs_disk_key disk_key;
4521 u32 array_size;
4522 u8 *ptr;
4523
4524 mutex_lock(&fs_info->chunk_mutex);
4525 array_size = btrfs_super_sys_array_size(super_copy);
4526 if (array_size + item_size + sizeof(disk_key)
4527 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4528 mutex_unlock(&fs_info->chunk_mutex);
4529 return -EFBIG;
4530 }
4531
4532 ptr = super_copy->sys_chunk_array + array_size;
4533 btrfs_cpu_key_to_disk(&disk_key, key);
4534 memcpy(ptr, &disk_key, sizeof(disk_key));
4535 ptr += sizeof(disk_key);
4536 memcpy(ptr, chunk, item_size);
4537 item_size += sizeof(disk_key);
4538 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4539 mutex_unlock(&fs_info->chunk_mutex);
4540
4541 return 0;
4542}
4543
4544/*
4545 * sort the devices in descending order by max_avail, total_avail
4546 */
4547static int btrfs_cmp_device_info(const void *a, const void *b)
4548{
4549 const struct btrfs_device_info *di_a = a;
4550 const struct btrfs_device_info *di_b = b;
4551
4552 if (di_a->max_avail > di_b->max_avail)
4553 return -1;
4554 if (di_a->max_avail < di_b->max_avail)
4555 return 1;
4556 if (di_a->total_avail > di_b->total_avail)
4557 return -1;
4558 if (di_a->total_avail < di_b->total_avail)
4559 return 1;
4560 return 0;
4561}
4562
4563static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4564{
4565 /* TODO allow them to set a preferred stripe size */
4566 return SZ_64K;
4567}
4568
4569static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4570{
4571 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4572 return;
4573
4574 btrfs_set_fs_incompat(info, RAID56);
4575}
4576
4577#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4578 - sizeof(struct btrfs_chunk)) \
4579 / sizeof(struct btrfs_stripe) + 1)
4580
4581#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4582 - 2 * sizeof(struct btrfs_disk_key) \
4583 - 2 * sizeof(struct btrfs_chunk)) \
4584 / sizeof(struct btrfs_stripe) + 1)
4585
4586static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4587 struct btrfs_fs_info *fs_info, u64 start,
4588 u64 type)
4589{
4590 struct btrfs_fs_info *info = trans->fs_info;
4591 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4592 struct list_head *cur;
4593 struct map_lookup *map = NULL;
4594 struct extent_map_tree *em_tree;
4595 struct extent_map *em;
4596 struct btrfs_device_info *devices_info = NULL;
4597 u64 total_avail;
4598 int num_stripes; /* total number of stripes to allocate */
4599 int data_stripes; /* number of stripes that count for
4600 block group size */
4601 int sub_stripes; /* sub_stripes info for map */
4602 int dev_stripes; /* stripes per dev */
4603 int devs_max; /* max devs to use */
4604 int devs_min; /* min devs needed */
4605 int devs_increment; /* ndevs has to be a multiple of this */
4606 int ncopies; /* how many copies to data has */
4607 int ret;
4608 u64 max_stripe_size;
4609 u64 max_chunk_size;
4610 u64 stripe_size;
4611 u64 num_bytes;
4612 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4613 int ndevs;
4614 int i;
4615 int j;
4616 int index;
4617
4618 BUG_ON(!alloc_profile_is_valid(type, 0));
4619
4620 if (list_empty(&fs_devices->alloc_list))
4621 return -ENOSPC;
4622
4623 index = __get_raid_index(type);
4624
4625 sub_stripes = btrfs_raid_array[index].sub_stripes;
4626 dev_stripes = btrfs_raid_array[index].dev_stripes;
4627 devs_max = btrfs_raid_array[index].devs_max;
4628 devs_min = btrfs_raid_array[index].devs_min;
4629 devs_increment = btrfs_raid_array[index].devs_increment;
4630 ncopies = btrfs_raid_array[index].ncopies;
4631
4632 if (type & BTRFS_BLOCK_GROUP_DATA) {
4633 max_stripe_size = SZ_1G;
4634 max_chunk_size = 10 * max_stripe_size;
4635 if (!devs_max)
4636 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4637 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4638 /* for larger filesystems, use larger metadata chunks */
4639 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4640 max_stripe_size = SZ_1G;
4641 else
4642 max_stripe_size = SZ_256M;
4643 max_chunk_size = max_stripe_size;
4644 if (!devs_max)
4645 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4646 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4647 max_stripe_size = SZ_32M;
4648 max_chunk_size = 2 * max_stripe_size;
4649 if (!devs_max)
4650 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4651 } else {
4652 btrfs_err(info, "invalid chunk type 0x%llx requested",
4653 type);
4654 BUG_ON(1);
4655 }
4656
4657 /* we don't want a chunk larger than 10% of writeable space */
4658 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4659 max_chunk_size);
4660
4661 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4662 GFP_NOFS);
4663 if (!devices_info)
4664 return -ENOMEM;
4665
4666 cur = fs_devices->alloc_list.next;
4667
4668 /*
4669 * in the first pass through the devices list, we gather information
4670 * about the available holes on each device.
4671 */
4672 ndevs = 0;
4673 while (cur != &fs_devices->alloc_list) {
4674 struct btrfs_device *device;
4675 u64 max_avail;
4676 u64 dev_offset;
4677
4678 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4679
4680 cur = cur->next;
4681
4682 if (!device->writeable) {
4683 WARN(1, KERN_ERR
4684 "BTRFS: read-only device in alloc_list\n");
4685 continue;
4686 }
4687
4688 if (!device->in_fs_metadata ||
4689 device->is_tgtdev_for_dev_replace)
4690 continue;
4691
4692 if (device->total_bytes > device->bytes_used)
4693 total_avail = device->total_bytes - device->bytes_used;
4694 else
4695 total_avail = 0;
4696
4697 /* If there is no space on this device, skip it. */
4698 if (total_avail == 0)
4699 continue;
4700
4701 ret = find_free_dev_extent(trans, device,
4702 max_stripe_size * dev_stripes,
4703 &dev_offset, &max_avail);
4704 if (ret && ret != -ENOSPC)
4705 goto error;
4706
4707 if (ret == 0)
4708 max_avail = max_stripe_size * dev_stripes;
4709
4710 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4711 continue;
4712
4713 if (ndevs == fs_devices->rw_devices) {
4714 WARN(1, "%s: found more than %llu devices\n",
4715 __func__, fs_devices->rw_devices);
4716 break;
4717 }
4718 devices_info[ndevs].dev_offset = dev_offset;
4719 devices_info[ndevs].max_avail = max_avail;
4720 devices_info[ndevs].total_avail = total_avail;
4721 devices_info[ndevs].dev = device;
4722 ++ndevs;
4723 }
4724
4725 /*
4726 * now sort the devices by hole size / available space
4727 */
4728 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4729 btrfs_cmp_device_info, NULL);
4730
4731 /* round down to number of usable stripes */
4732 ndevs -= ndevs % devs_increment;
4733
4734 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4735 ret = -ENOSPC;
4736 goto error;
4737 }
4738
4739 if (devs_max && ndevs > devs_max)
4740 ndevs = devs_max;
4741 /*
4742 * the primary goal is to maximize the number of stripes, so use as many
4743 * devices as possible, even if the stripes are not maximum sized.
4744 */
4745 stripe_size = devices_info[ndevs-1].max_avail;
4746 num_stripes = ndevs * dev_stripes;
4747
4748 /*
4749 * this will have to be fixed for RAID1 and RAID10 over
4750 * more drives
4751 */
4752 data_stripes = num_stripes / ncopies;
4753
4754 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4755 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4756 info->stripesize);
4757 data_stripes = num_stripes - 1;
4758 }
4759 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4760 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4761 info->stripesize);
4762 data_stripes = num_stripes - 2;
4763 }
4764
4765 /*
4766 * Use the number of data stripes to figure out how big this chunk
4767 * is really going to be in terms of logical address space,
4768 * and compare that answer with the max chunk size
4769 */
4770 if (stripe_size * data_stripes > max_chunk_size) {
4771 u64 mask = (1ULL << 24) - 1;
4772
4773 stripe_size = div_u64(max_chunk_size, data_stripes);
4774
4775 /* bump the answer up to a 16MB boundary */
4776 stripe_size = (stripe_size + mask) & ~mask;
4777
4778 /* but don't go higher than the limits we found
4779 * while searching for free extents
4780 */
4781 if (stripe_size > devices_info[ndevs-1].max_avail)
4782 stripe_size = devices_info[ndevs-1].max_avail;
4783 }
4784
4785 stripe_size = div_u64(stripe_size, dev_stripes);
4786
4787 /* align to BTRFS_STRIPE_LEN */
4788 stripe_size = div_u64(stripe_size, raid_stripe_len);
4789 stripe_size *= raid_stripe_len;
4790
4791 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4792 if (!map) {
4793 ret = -ENOMEM;
4794 goto error;
4795 }
4796 map->num_stripes = num_stripes;
4797
4798 for (i = 0; i < ndevs; ++i) {
4799 for (j = 0; j < dev_stripes; ++j) {
4800 int s = i * dev_stripes + j;
4801 map->stripes[s].dev = devices_info[i].dev;
4802 map->stripes[s].physical = devices_info[i].dev_offset +
4803 j * stripe_size;
4804 }
4805 }
4806 map->sector_size = info->sectorsize;
4807 map->stripe_len = raid_stripe_len;
4808 map->io_align = raid_stripe_len;
4809 map->io_width = raid_stripe_len;
4810 map->type = type;
4811 map->sub_stripes = sub_stripes;
4812
4813 num_bytes = stripe_size * data_stripes;
4814
4815 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4816
4817 em = alloc_extent_map();
4818 if (!em) {
4819 kfree(map);
4820 ret = -ENOMEM;
4821 goto error;
4822 }
4823 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4824 em->map_lookup = map;
4825 em->start = start;
4826 em->len = num_bytes;
4827 em->block_start = 0;
4828 em->block_len = em->len;
4829 em->orig_block_len = stripe_size;
4830
4831 em_tree = &info->mapping_tree.map_tree;
4832 write_lock(&em_tree->lock);
4833 ret = add_extent_mapping(em_tree, em, 0);
4834 if (!ret) {
4835 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4836 atomic_inc(&em->refs);
4837 }
4838 write_unlock(&em_tree->lock);
4839 if (ret) {
4840 free_extent_map(em);
4841 goto error;
4842 }
4843
4844 ret = btrfs_make_block_group(trans, info, 0, type,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 start, num_bytes);
4847 if (ret)
4848 goto error_del_extent;
4849
4850 for (i = 0; i < map->num_stripes; i++) {
4851 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4852 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4853 }
4854
4855 spin_lock(&info->free_chunk_lock);
4856 info->free_chunk_space -= (stripe_size * map->num_stripes);
4857 spin_unlock(&info->free_chunk_lock);
4858
4859 free_extent_map(em);
4860 check_raid56_incompat_flag(info, type);
4861
4862 kfree(devices_info);
4863 return 0;
4864
4865error_del_extent:
4866 write_lock(&em_tree->lock);
4867 remove_extent_mapping(em_tree, em);
4868 write_unlock(&em_tree->lock);
4869
4870 /* One for our allocation */
4871 free_extent_map(em);
4872 /* One for the tree reference */
4873 free_extent_map(em);
4874 /* One for the pending_chunks list reference */
4875 free_extent_map(em);
4876error:
4877 kfree(devices_info);
4878 return ret;
4879}
4880
4881int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4882 struct btrfs_fs_info *fs_info,
4883 u64 chunk_offset, u64 chunk_size)
4884{
4885 struct btrfs_root *extent_root = fs_info->extent_root;
4886 struct btrfs_root *chunk_root = fs_info->chunk_root;
4887 struct btrfs_key key;
4888 struct btrfs_device *device;
4889 struct btrfs_chunk *chunk;
4890 struct btrfs_stripe *stripe;
4891 struct extent_map_tree *em_tree;
4892 struct extent_map *em;
4893 struct map_lookup *map;
4894 size_t item_size;
4895 u64 dev_offset;
4896 u64 stripe_size;
4897 int i = 0;
4898 int ret = 0;
4899
4900 em_tree = &fs_info->mapping_tree.map_tree;
4901 read_lock(&em_tree->lock);
4902 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4903 read_unlock(&em_tree->lock);
4904
4905 if (!em) {
4906 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
4907 chunk_offset, chunk_size);
4908 return -EINVAL;
4909 }
4910
4911 if (em->start != chunk_offset || em->len != chunk_size) {
4912 btrfs_crit(fs_info,
4913 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4914 chunk_offset, chunk_size, em->start, em->len);
4915 free_extent_map(em);
4916 return -EINVAL;
4917 }
4918
4919 map = em->map_lookup;
4920 item_size = btrfs_chunk_item_size(map->num_stripes);
4921 stripe_size = em->orig_block_len;
4922
4923 chunk = kzalloc(item_size, GFP_NOFS);
4924 if (!chunk) {
4925 ret = -ENOMEM;
4926 goto out;
4927 }
4928
4929 /*
4930 * Take the device list mutex to prevent races with the final phase of
4931 * a device replace operation that replaces the device object associated
4932 * with the map's stripes, because the device object's id can change
4933 * at any time during that final phase of the device replace operation
4934 * (dev-replace.c:btrfs_dev_replace_finishing()).
4935 */
4936 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4937 for (i = 0; i < map->num_stripes; i++) {
4938 device = map->stripes[i].dev;
4939 dev_offset = map->stripes[i].physical;
4940
4941 ret = btrfs_update_device(trans, device);
4942 if (ret)
4943 break;
4944 ret = btrfs_alloc_dev_extent(trans, device,
4945 chunk_root->root_key.objectid,
4946 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4947 chunk_offset, dev_offset,
4948 stripe_size);
4949 if (ret)
4950 break;
4951 }
4952 if (ret) {
4953 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4954 goto out;
4955 }
4956
4957 stripe = &chunk->stripe;
4958 for (i = 0; i < map->num_stripes; i++) {
4959 device = map->stripes[i].dev;
4960 dev_offset = map->stripes[i].physical;
4961
4962 btrfs_set_stack_stripe_devid(stripe, device->devid);
4963 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4964 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4965 stripe++;
4966 }
4967 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4968
4969 btrfs_set_stack_chunk_length(chunk, chunk_size);
4970 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4971 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4972 btrfs_set_stack_chunk_type(chunk, map->type);
4973 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4974 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4975 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4976 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4977 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4978
4979 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4980 key.type = BTRFS_CHUNK_ITEM_KEY;
4981 key.offset = chunk_offset;
4982
4983 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4984 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4985 /*
4986 * TODO: Cleanup of inserted chunk root in case of
4987 * failure.
4988 */
4989 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4990 }
4991
4992out:
4993 kfree(chunk);
4994 free_extent_map(em);
4995 return ret;
4996}
4997
4998/*
4999 * Chunk allocation falls into two parts. The first part does works
5000 * that make the new allocated chunk useable, but not do any operation
5001 * that modifies the chunk tree. The second part does the works that
5002 * require modifying the chunk tree. This division is important for the
5003 * bootstrap process of adding storage to a seed btrfs.
5004 */
5005int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5006 struct btrfs_fs_info *fs_info, u64 type)
5007{
5008 u64 chunk_offset;
5009
5010 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5011 chunk_offset = find_next_chunk(fs_info);
5012 return __btrfs_alloc_chunk(trans, fs_info, chunk_offset, type);
5013}
5014
5015static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5016 struct btrfs_fs_info *fs_info,
5017 struct btrfs_device *device)
5018{
5019 struct btrfs_root *extent_root = fs_info->extent_root;
5020 u64 chunk_offset;
5021 u64 sys_chunk_offset;
5022 u64 alloc_profile;
5023 int ret;
5024
5025 chunk_offset = find_next_chunk(fs_info);
5026 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5027 ret = __btrfs_alloc_chunk(trans, fs_info, chunk_offset, alloc_profile);
5028 if (ret)
5029 return ret;
5030
5031 sys_chunk_offset = find_next_chunk(fs_info);
5032 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5033 ret = __btrfs_alloc_chunk(trans, fs_info, sys_chunk_offset,
5034 alloc_profile);
5035 return ret;
5036}
5037
5038static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5039{
5040 int max_errors;
5041
5042 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5043 BTRFS_BLOCK_GROUP_RAID10 |
5044 BTRFS_BLOCK_GROUP_RAID5 |
5045 BTRFS_BLOCK_GROUP_DUP)) {
5046 max_errors = 1;
5047 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5048 max_errors = 2;
5049 } else {
5050 max_errors = 0;
5051 }
5052
5053 return max_errors;
5054}
5055
5056int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5057{
5058 struct extent_map *em;
5059 struct map_lookup *map;
5060 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5061 int readonly = 0;
5062 int miss_ndevs = 0;
5063 int i;
5064
5065 read_lock(&map_tree->map_tree.lock);
5066 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5067 read_unlock(&map_tree->map_tree.lock);
5068 if (!em)
5069 return 1;
5070
5071 map = em->map_lookup;
5072 for (i = 0; i < map->num_stripes; i++) {
5073 if (map->stripes[i].dev->missing) {
5074 miss_ndevs++;
5075 continue;
5076 }
5077
5078 if (!map->stripes[i].dev->writeable) {
5079 readonly = 1;
5080 goto end;
5081 }
5082 }
5083
5084 /*
5085 * If the number of missing devices is larger than max errors,
5086 * we can not write the data into that chunk successfully, so
5087 * set it readonly.
5088 */
5089 if (miss_ndevs > btrfs_chunk_max_errors(map))
5090 readonly = 1;
5091end:
5092 free_extent_map(em);
5093 return readonly;
5094}
5095
5096void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5097{
5098 extent_map_tree_init(&tree->map_tree);
5099}
5100
5101void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5102{
5103 struct extent_map *em;
5104
5105 while (1) {
5106 write_lock(&tree->map_tree.lock);
5107 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5108 if (em)
5109 remove_extent_mapping(&tree->map_tree, em);
5110 write_unlock(&tree->map_tree.lock);
5111 if (!em)
5112 break;
5113 /* once for us */
5114 free_extent_map(em);
5115 /* once for the tree */
5116 free_extent_map(em);
5117 }
5118}
5119
5120int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5121{
5122 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5123 struct extent_map *em;
5124 struct map_lookup *map;
5125 struct extent_map_tree *em_tree = &map_tree->map_tree;
5126 int ret;
5127
5128 read_lock(&em_tree->lock);
5129 em = lookup_extent_mapping(em_tree, logical, len);
5130 read_unlock(&em_tree->lock);
5131
5132 /*
5133 * We could return errors for these cases, but that could get ugly and
5134 * we'd probably do the same thing which is just not do anything else
5135 * and exit, so return 1 so the callers don't try to use other copies.
5136 */
5137 if (!em) {
5138 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5139 logical+len);
5140 return 1;
5141 }
5142
5143 if (em->start > logical || em->start + em->len < logical) {
5144 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5145 logical, logical+len, em->start,
5146 em->start + em->len);
5147 free_extent_map(em);
5148 return 1;
5149 }
5150
5151 map = em->map_lookup;
5152 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5153 ret = map->num_stripes;
5154 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5155 ret = map->sub_stripes;
5156 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5157 ret = 2;
5158 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5159 ret = 3;
5160 else
5161 ret = 1;
5162 free_extent_map(em);
5163
5164 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5165 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5166 ret++;
5167 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5168
5169 return ret;
5170}
5171
5172unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5173 struct btrfs_mapping_tree *map_tree,
5174 u64 logical)
5175{
5176 struct extent_map *em;
5177 struct map_lookup *map;
5178 struct extent_map_tree *em_tree = &map_tree->map_tree;
5179 unsigned long len = fs_info->sectorsize;
5180
5181 read_lock(&em_tree->lock);
5182 em = lookup_extent_mapping(em_tree, logical, len);
5183 read_unlock(&em_tree->lock);
5184 BUG_ON(!em);
5185
5186 BUG_ON(em->start > logical || em->start + em->len < logical);
5187 map = em->map_lookup;
5188 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5189 len = map->stripe_len * nr_data_stripes(map);
5190 free_extent_map(em);
5191 return len;
5192}
5193
5194int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5195 u64 logical, u64 len, int mirror_num)
5196{
5197 struct extent_map *em;
5198 struct map_lookup *map;
5199 struct extent_map_tree *em_tree = &map_tree->map_tree;
5200 int ret = 0;
5201
5202 read_lock(&em_tree->lock);
5203 em = lookup_extent_mapping(em_tree, logical, len);
5204 read_unlock(&em_tree->lock);
5205 BUG_ON(!em);
5206
5207 BUG_ON(em->start > logical || em->start + em->len < logical);
5208 map = em->map_lookup;
5209 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5210 ret = 1;
5211 free_extent_map(em);
5212 return ret;
5213}
5214
5215static int find_live_mirror(struct btrfs_fs_info *fs_info,
5216 struct map_lookup *map, int first, int num,
5217 int optimal, int dev_replace_is_ongoing)
5218{
5219 int i;
5220 int tolerance;
5221 struct btrfs_device *srcdev;
5222
5223 if (dev_replace_is_ongoing &&
5224 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5225 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5226 srcdev = fs_info->dev_replace.srcdev;
5227 else
5228 srcdev = NULL;
5229
5230 /*
5231 * try to avoid the drive that is the source drive for a
5232 * dev-replace procedure, only choose it if no other non-missing
5233 * mirror is available
5234 */
5235 for (tolerance = 0; tolerance < 2; tolerance++) {
5236 if (map->stripes[optimal].dev->bdev &&
5237 (tolerance || map->stripes[optimal].dev != srcdev))
5238 return optimal;
5239 for (i = first; i < first + num; i++) {
5240 if (map->stripes[i].dev->bdev &&
5241 (tolerance || map->stripes[i].dev != srcdev))
5242 return i;
5243 }
5244 }
5245
5246 /* we couldn't find one that doesn't fail. Just return something
5247 * and the io error handling code will clean up eventually
5248 */
5249 return optimal;
5250}
5251
5252static inline int parity_smaller(u64 a, u64 b)
5253{
5254 return a > b;
5255}
5256
5257/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5258static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5259{
5260 struct btrfs_bio_stripe s;
5261 int i;
5262 u64 l;
5263 int again = 1;
5264
5265 while (again) {
5266 again = 0;
5267 for (i = 0; i < num_stripes - 1; i++) {
5268 if (parity_smaller(bbio->raid_map[i],
5269 bbio->raid_map[i+1])) {
5270 s = bbio->stripes[i];
5271 l = bbio->raid_map[i];
5272 bbio->stripes[i] = bbio->stripes[i+1];
5273 bbio->raid_map[i] = bbio->raid_map[i+1];
5274 bbio->stripes[i+1] = s;
5275 bbio->raid_map[i+1] = l;
5276
5277 again = 1;
5278 }
5279 }
5280 }
5281}
5282
5283static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5284{
5285 struct btrfs_bio *bbio = kzalloc(
5286 /* the size of the btrfs_bio */
5287 sizeof(struct btrfs_bio) +
5288 /* plus the variable array for the stripes */
5289 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5290 /* plus the variable array for the tgt dev */
5291 sizeof(int) * (real_stripes) +
5292 /*
5293 * plus the raid_map, which includes both the tgt dev
5294 * and the stripes
5295 */
5296 sizeof(u64) * (total_stripes),
5297 GFP_NOFS|__GFP_NOFAIL);
5298
5299 atomic_set(&bbio->error, 0);
5300 atomic_set(&bbio->refs, 1);
5301
5302 return bbio;
5303}
5304
5305void btrfs_get_bbio(struct btrfs_bio *bbio)
5306{
5307 WARN_ON(!atomic_read(&bbio->refs));
5308 atomic_inc(&bbio->refs);
5309}
5310
5311void btrfs_put_bbio(struct btrfs_bio *bbio)
5312{
5313 if (!bbio)
5314 return;
5315 if (atomic_dec_and_test(&bbio->refs))
5316 kfree(bbio);
5317}
5318
5319static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5320 enum btrfs_map_op op,
5321 u64 logical, u64 *length,
5322 struct btrfs_bio **bbio_ret,
5323 int mirror_num, int need_raid_map)
5324{
5325 struct extent_map *em;
5326 struct map_lookup *map;
5327 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5328 struct extent_map_tree *em_tree = &map_tree->map_tree;
5329 u64 offset;
5330 u64 stripe_offset;
5331 u64 stripe_end_offset;
5332 u64 stripe_nr;
5333 u64 stripe_nr_orig;
5334 u64 stripe_nr_end;
5335 u64 stripe_len;
5336 u32 stripe_index;
5337 int i;
5338 int ret = 0;
5339 int num_stripes;
5340 int max_errors = 0;
5341 int tgtdev_indexes = 0;
5342 struct btrfs_bio *bbio = NULL;
5343 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5344 int dev_replace_is_ongoing = 0;
5345 int num_alloc_stripes;
5346 int patch_the_first_stripe_for_dev_replace = 0;
5347 u64 physical_to_patch_in_first_stripe = 0;
5348 u64 raid56_full_stripe_start = (u64)-1;
5349
5350 read_lock(&em_tree->lock);
5351 em = lookup_extent_mapping(em_tree, logical, *length);
5352 read_unlock(&em_tree->lock);
5353
5354 if (!em) {
5355 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5356 logical, *length);
5357 return -EINVAL;
5358 }
5359
5360 if (em->start > logical || em->start + em->len < logical) {
5361 btrfs_crit(fs_info,
5362 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5363 logical, em->start, em->start + em->len);
5364 free_extent_map(em);
5365 return -EINVAL;
5366 }
5367
5368 map = em->map_lookup;
5369 offset = logical - em->start;
5370
5371 stripe_len = map->stripe_len;
5372 stripe_nr = offset;
5373 /*
5374 * stripe_nr counts the total number of stripes we have to stride
5375 * to get to this block
5376 */
5377 stripe_nr = div64_u64(stripe_nr, stripe_len);
5378
5379 stripe_offset = stripe_nr * stripe_len;
5380 if (offset < stripe_offset) {
5381 btrfs_crit(fs_info,
5382 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5383 stripe_offset, offset, em->start, logical,
5384 stripe_len);
5385 free_extent_map(em);
5386 return -EINVAL;
5387 }
5388
5389 /* stripe_offset is the offset of this block in its stripe*/
5390 stripe_offset = offset - stripe_offset;
5391
5392 /* if we're here for raid56, we need to know the stripe aligned start */
5393 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5394 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5395 raid56_full_stripe_start = offset;
5396
5397 /* allow a write of a full stripe, but make sure we don't
5398 * allow straddling of stripes
5399 */
5400 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5401 full_stripe_len);
5402 raid56_full_stripe_start *= full_stripe_len;
5403 }
5404
5405 if (op == BTRFS_MAP_DISCARD) {
5406 /* we don't discard raid56 yet */
5407 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5408 ret = -EOPNOTSUPP;
5409 goto out;
5410 }
5411 *length = min_t(u64, em->len - offset, *length);
5412 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5413 u64 max_len;
5414 /* For writes to RAID[56], allow a full stripeset across all disks.
5415 For other RAID types and for RAID[56] reads, just allow a single
5416 stripe (on a single disk). */
5417 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5418 (op == BTRFS_MAP_WRITE)) {
5419 max_len = stripe_len * nr_data_stripes(map) -
5420 (offset - raid56_full_stripe_start);
5421 } else {
5422 /* we limit the length of each bio to what fits in a stripe */
5423 max_len = stripe_len - stripe_offset;
5424 }
5425 *length = min_t(u64, em->len - offset, max_len);
5426 } else {
5427 *length = em->len - offset;
5428 }
5429
5430 /* This is for when we're called from btrfs_merge_bio_hook() and all
5431 it cares about is the length */
5432 if (!bbio_ret)
5433 goto out;
5434
5435 btrfs_dev_replace_lock(dev_replace, 0);
5436 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5437 if (!dev_replace_is_ongoing)
5438 btrfs_dev_replace_unlock(dev_replace, 0);
5439 else
5440 btrfs_dev_replace_set_lock_blocking(dev_replace);
5441
5442 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5443 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5444 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5445 /*
5446 * in dev-replace case, for repair case (that's the only
5447 * case where the mirror is selected explicitly when
5448 * calling btrfs_map_block), blocks left of the left cursor
5449 * can also be read from the target drive.
5450 * For REQ_GET_READ_MIRRORS, the target drive is added as
5451 * the last one to the array of stripes. For READ, it also
5452 * needs to be supported using the same mirror number.
5453 * If the requested block is not left of the left cursor,
5454 * EIO is returned. This can happen because btrfs_num_copies()
5455 * returns one more in the dev-replace case.
5456 */
5457 u64 tmp_length = *length;
5458 struct btrfs_bio *tmp_bbio = NULL;
5459 int tmp_num_stripes;
5460 u64 srcdev_devid = dev_replace->srcdev->devid;
5461 int index_srcdev = 0;
5462 int found = 0;
5463 u64 physical_of_found = 0;
5464
5465 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5466 logical, &tmp_length, &tmp_bbio, 0, 0);
5467 if (ret) {
5468 WARN_ON(tmp_bbio != NULL);
5469 goto out;
5470 }
5471
5472 tmp_num_stripes = tmp_bbio->num_stripes;
5473 if (mirror_num > tmp_num_stripes) {
5474 /*
5475 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5476 * mirror, that means that the requested area
5477 * is not left of the left cursor
5478 */
5479 ret = -EIO;
5480 btrfs_put_bbio(tmp_bbio);
5481 goto out;
5482 }
5483
5484 /*
5485 * process the rest of the function using the mirror_num
5486 * of the source drive. Therefore look it up first.
5487 * At the end, patch the device pointer to the one of the
5488 * target drive.
5489 */
5490 for (i = 0; i < tmp_num_stripes; i++) {
5491 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5492 continue;
5493
5494 /*
5495 * In case of DUP, in order to keep it simple, only add
5496 * the mirror with the lowest physical address
5497 */
5498 if (found &&
5499 physical_of_found <= tmp_bbio->stripes[i].physical)
5500 continue;
5501
5502 index_srcdev = i;
5503 found = 1;
5504 physical_of_found = tmp_bbio->stripes[i].physical;
5505 }
5506
5507 btrfs_put_bbio(tmp_bbio);
5508
5509 if (!found) {
5510 WARN_ON(1);
5511 ret = -EIO;
5512 goto out;
5513 }
5514
5515 mirror_num = index_srcdev + 1;
5516 patch_the_first_stripe_for_dev_replace = 1;
5517 physical_to_patch_in_first_stripe = physical_of_found;
5518 } else if (mirror_num > map->num_stripes) {
5519 mirror_num = 0;
5520 }
5521
5522 num_stripes = 1;
5523 stripe_index = 0;
5524 stripe_nr_orig = stripe_nr;
5525 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5526 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5527 stripe_end_offset = stripe_nr_end * map->stripe_len -
5528 (offset + *length);
5529
5530 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5531 if (op == BTRFS_MAP_DISCARD)
5532 num_stripes = min_t(u64, map->num_stripes,
5533 stripe_nr_end - stripe_nr_orig);
5534 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5535 &stripe_index);
5536 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5537 op != BTRFS_MAP_GET_READ_MIRRORS)
5538 mirror_num = 1;
5539 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5540 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5541 op == BTRFS_MAP_GET_READ_MIRRORS)
5542 num_stripes = map->num_stripes;
5543 else if (mirror_num)
5544 stripe_index = mirror_num - 1;
5545 else {
5546 stripe_index = find_live_mirror(fs_info, map, 0,
5547 map->num_stripes,
5548 current->pid % map->num_stripes,
5549 dev_replace_is_ongoing);
5550 mirror_num = stripe_index + 1;
5551 }
5552
5553 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5554 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5555 op == BTRFS_MAP_GET_READ_MIRRORS) {
5556 num_stripes = map->num_stripes;
5557 } else if (mirror_num) {
5558 stripe_index = mirror_num - 1;
5559 } else {
5560 mirror_num = 1;
5561 }
5562
5563 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5564 u32 factor = map->num_stripes / map->sub_stripes;
5565
5566 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5567 stripe_index *= map->sub_stripes;
5568
5569 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5570 num_stripes = map->sub_stripes;
5571 else if (op == BTRFS_MAP_DISCARD)
5572 num_stripes = min_t(u64, map->sub_stripes *
5573 (stripe_nr_end - stripe_nr_orig),
5574 map->num_stripes);
5575 else if (mirror_num)
5576 stripe_index += mirror_num - 1;
5577 else {
5578 int old_stripe_index = stripe_index;
5579 stripe_index = find_live_mirror(fs_info, map,
5580 stripe_index,
5581 map->sub_stripes, stripe_index +
5582 current->pid % map->sub_stripes,
5583 dev_replace_is_ongoing);
5584 mirror_num = stripe_index - old_stripe_index + 1;
5585 }
5586
5587 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5588 if (need_raid_map &&
5589 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5590 mirror_num > 1)) {
5591 /* push stripe_nr back to the start of the full stripe */
5592 stripe_nr = div_u64(raid56_full_stripe_start,
5593 stripe_len * nr_data_stripes(map));
5594
5595 /* RAID[56] write or recovery. Return all stripes */
5596 num_stripes = map->num_stripes;
5597 max_errors = nr_parity_stripes(map);
5598
5599 *length = map->stripe_len;
5600 stripe_index = 0;
5601 stripe_offset = 0;
5602 } else {
5603 /*
5604 * Mirror #0 or #1 means the original data block.
5605 * Mirror #2 is RAID5 parity block.
5606 * Mirror #3 is RAID6 Q block.
5607 */
5608 stripe_nr = div_u64_rem(stripe_nr,
5609 nr_data_stripes(map), &stripe_index);
5610 if (mirror_num > 1)
5611 stripe_index = nr_data_stripes(map) +
5612 mirror_num - 2;
5613
5614 /* We distribute the parity blocks across stripes */
5615 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5616 &stripe_index);
5617 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5618 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
5619 mirror_num = 1;
5620 }
5621 } else {
5622 /*
5623 * after this, stripe_nr is the number of stripes on this
5624 * device we have to walk to find the data, and stripe_index is
5625 * the number of our device in the stripe array
5626 */
5627 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5628 &stripe_index);
5629 mirror_num = stripe_index + 1;
5630 }
5631 if (stripe_index >= map->num_stripes) {
5632 btrfs_crit(fs_info,
5633 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5634 stripe_index, map->num_stripes);
5635 ret = -EINVAL;
5636 goto out;
5637 }
5638
5639 num_alloc_stripes = num_stripes;
5640 if (dev_replace_is_ongoing) {
5641 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
5642 num_alloc_stripes <<= 1;
5643 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5644 num_alloc_stripes++;
5645 tgtdev_indexes = num_stripes;
5646 }
5647
5648 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5649 if (!bbio) {
5650 ret = -ENOMEM;
5651 goto out;
5652 }
5653 if (dev_replace_is_ongoing)
5654 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5655
5656 /* build raid_map */
5657 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5658 need_raid_map &&
5659 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
5660 mirror_num > 1)) {
5661 u64 tmp;
5662 unsigned rot;
5663
5664 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5665 sizeof(struct btrfs_bio_stripe) *
5666 num_alloc_stripes +
5667 sizeof(int) * tgtdev_indexes);
5668
5669 /* Work out the disk rotation on this stripe-set */
5670 div_u64_rem(stripe_nr, num_stripes, &rot);
5671
5672 /* Fill in the logical address of each stripe */
5673 tmp = stripe_nr * nr_data_stripes(map);
5674 for (i = 0; i < nr_data_stripes(map); i++)
5675 bbio->raid_map[(i+rot) % num_stripes] =
5676 em->start + (tmp + i) * map->stripe_len;
5677
5678 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5679 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5680 bbio->raid_map[(i+rot+1) % num_stripes] =
5681 RAID6_Q_STRIPE;
5682 }
5683
5684 if (op == BTRFS_MAP_DISCARD) {
5685 u32 factor = 0;
5686 u32 sub_stripes = 0;
5687 u64 stripes_per_dev = 0;
5688 u32 remaining_stripes = 0;
5689 u32 last_stripe = 0;
5690
5691 if (map->type &
5692 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5693 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5694 sub_stripes = 1;
5695 else
5696 sub_stripes = map->sub_stripes;
5697
5698 factor = map->num_stripes / sub_stripes;
5699 stripes_per_dev = div_u64_rem(stripe_nr_end -
5700 stripe_nr_orig,
5701 factor,
5702 &remaining_stripes);
5703 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5704 last_stripe *= sub_stripes;
5705 }
5706
5707 for (i = 0; i < num_stripes; i++) {
5708 bbio->stripes[i].physical =
5709 map->stripes[stripe_index].physical +
5710 stripe_offset + stripe_nr * map->stripe_len;
5711 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5712
5713 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5714 BTRFS_BLOCK_GROUP_RAID10)) {
5715 bbio->stripes[i].length = stripes_per_dev *
5716 map->stripe_len;
5717
5718 if (i / sub_stripes < remaining_stripes)
5719 bbio->stripes[i].length +=
5720 map->stripe_len;
5721
5722 /*
5723 * Special for the first stripe and
5724 * the last stripe:
5725 *
5726 * |-------|...|-------|
5727 * |----------|
5728 * off end_off
5729 */
5730 if (i < sub_stripes)
5731 bbio->stripes[i].length -=
5732 stripe_offset;
5733
5734 if (stripe_index >= last_stripe &&
5735 stripe_index <= (last_stripe +
5736 sub_stripes - 1))
5737 bbio->stripes[i].length -=
5738 stripe_end_offset;
5739
5740 if (i == sub_stripes - 1)
5741 stripe_offset = 0;
5742 } else
5743 bbio->stripes[i].length = *length;
5744
5745 stripe_index++;
5746 if (stripe_index == map->num_stripes) {
5747 /* This could only happen for RAID0/10 */
5748 stripe_index = 0;
5749 stripe_nr++;
5750 }
5751 }
5752 } else {
5753 for (i = 0; i < num_stripes; i++) {
5754 bbio->stripes[i].physical =
5755 map->stripes[stripe_index].physical +
5756 stripe_offset +
5757 stripe_nr * map->stripe_len;
5758 bbio->stripes[i].dev =
5759 map->stripes[stripe_index].dev;
5760 stripe_index++;
5761 }
5762 }
5763
5764 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5765 max_errors = btrfs_chunk_max_errors(map);
5766
5767 if (bbio->raid_map)
5768 sort_parity_stripes(bbio, num_stripes);
5769
5770 tgtdev_indexes = 0;
5771 if (dev_replace_is_ongoing &&
5772 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
5773 dev_replace->tgtdev != NULL) {
5774 int index_where_to_add;
5775 u64 srcdev_devid = dev_replace->srcdev->devid;
5776
5777 /*
5778 * duplicate the write operations while the dev replace
5779 * procedure is running. Since the copying of the old disk
5780 * to the new disk takes place at run time while the
5781 * filesystem is mounted writable, the regular write
5782 * operations to the old disk have to be duplicated to go
5783 * to the new disk as well.
5784 * Note that device->missing is handled by the caller, and
5785 * that the write to the old disk is already set up in the
5786 * stripes array.
5787 */
5788 index_where_to_add = num_stripes;
5789 for (i = 0; i < num_stripes; i++) {
5790 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5791 /* write to new disk, too */
5792 struct btrfs_bio_stripe *new =
5793 bbio->stripes + index_where_to_add;
5794 struct btrfs_bio_stripe *old =
5795 bbio->stripes + i;
5796
5797 new->physical = old->physical;
5798 new->length = old->length;
5799 new->dev = dev_replace->tgtdev;
5800 bbio->tgtdev_map[i] = index_where_to_add;
5801 index_where_to_add++;
5802 max_errors++;
5803 tgtdev_indexes++;
5804 }
5805 }
5806 num_stripes = index_where_to_add;
5807 } else if (dev_replace_is_ongoing &&
5808 op == BTRFS_MAP_GET_READ_MIRRORS &&
5809 dev_replace->tgtdev != NULL) {
5810 u64 srcdev_devid = dev_replace->srcdev->devid;
5811 int index_srcdev = 0;
5812 int found = 0;
5813 u64 physical_of_found = 0;
5814
5815 /*
5816 * During the dev-replace procedure, the target drive can
5817 * also be used to read data in case it is needed to repair
5818 * a corrupt block elsewhere. This is possible if the
5819 * requested area is left of the left cursor. In this area,
5820 * the target drive is a full copy of the source drive.
5821 */
5822 for (i = 0; i < num_stripes; i++) {
5823 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5824 /*
5825 * In case of DUP, in order to keep it
5826 * simple, only add the mirror with the
5827 * lowest physical address
5828 */
5829 if (found &&
5830 physical_of_found <=
5831 bbio->stripes[i].physical)
5832 continue;
5833 index_srcdev = i;
5834 found = 1;
5835 physical_of_found = bbio->stripes[i].physical;
5836 }
5837 }
5838 if (found) {
5839 struct btrfs_bio_stripe *tgtdev_stripe =
5840 bbio->stripes + num_stripes;
5841
5842 tgtdev_stripe->physical = physical_of_found;
5843 tgtdev_stripe->length =
5844 bbio->stripes[index_srcdev].length;
5845 tgtdev_stripe->dev = dev_replace->tgtdev;
5846 bbio->tgtdev_map[index_srcdev] = num_stripes;
5847
5848 tgtdev_indexes++;
5849 num_stripes++;
5850 }
5851 }
5852
5853 *bbio_ret = bbio;
5854 bbio->map_type = map->type;
5855 bbio->num_stripes = num_stripes;
5856 bbio->max_errors = max_errors;
5857 bbio->mirror_num = mirror_num;
5858 bbio->num_tgtdevs = tgtdev_indexes;
5859
5860 /*
5861 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5862 * mirror_num == num_stripes + 1 && dev_replace target drive is
5863 * available as a mirror
5864 */
5865 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5866 WARN_ON(num_stripes > 1);
5867 bbio->stripes[0].dev = dev_replace->tgtdev;
5868 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5869 bbio->mirror_num = map->num_stripes + 1;
5870 }
5871out:
5872 if (dev_replace_is_ongoing) {
5873 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5874 btrfs_dev_replace_unlock(dev_replace, 0);
5875 }
5876 free_extent_map(em);
5877 return ret;
5878}
5879
5880int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5881 u64 logical, u64 *length,
5882 struct btrfs_bio **bbio_ret, int mirror_num)
5883{
5884 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5885 mirror_num, 0);
5886}
5887
5888/* For Scrub/replace */
5889int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5890 u64 logical, u64 *length,
5891 struct btrfs_bio **bbio_ret, int mirror_num,
5892 int need_raid_map)
5893{
5894 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5895 mirror_num, need_raid_map);
5896}
5897
5898int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5899 u64 chunk_start, u64 physical, u64 devid,
5900 u64 **logical, int *naddrs, int *stripe_len)
5901{
5902 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5903 struct extent_map_tree *em_tree = &map_tree->map_tree;
5904 struct extent_map *em;
5905 struct map_lookup *map;
5906 u64 *buf;
5907 u64 bytenr;
5908 u64 length;
5909 u64 stripe_nr;
5910 u64 rmap_len;
5911 int i, j, nr = 0;
5912
5913 read_lock(&em_tree->lock);
5914 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5915 read_unlock(&em_tree->lock);
5916
5917 if (!em) {
5918 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5919 chunk_start);
5920 return -EIO;
5921 }
5922
5923 if (em->start != chunk_start) {
5924 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5925 em->start, chunk_start);
5926 free_extent_map(em);
5927 return -EIO;
5928 }
5929 map = em->map_lookup;
5930
5931 length = em->len;
5932 rmap_len = map->stripe_len;
5933
5934 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5935 length = div_u64(length, map->num_stripes / map->sub_stripes);
5936 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5937 length = div_u64(length, map->num_stripes);
5938 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5939 length = div_u64(length, nr_data_stripes(map));
5940 rmap_len = map->stripe_len * nr_data_stripes(map);
5941 }
5942
5943 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5944 BUG_ON(!buf); /* -ENOMEM */
5945
5946 for (i = 0; i < map->num_stripes; i++) {
5947 if (devid && map->stripes[i].dev->devid != devid)
5948 continue;
5949 if (map->stripes[i].physical > physical ||
5950 map->stripes[i].physical + length <= physical)
5951 continue;
5952
5953 stripe_nr = physical - map->stripes[i].physical;
5954 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5955
5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5957 stripe_nr = stripe_nr * map->num_stripes + i;
5958 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5959 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5960 stripe_nr = stripe_nr * map->num_stripes + i;
5961 } /* else if RAID[56], multiply by nr_data_stripes().
5962 * Alternatively, just use rmap_len below instead of
5963 * map->stripe_len */
5964
5965 bytenr = chunk_start + stripe_nr * rmap_len;
5966 WARN_ON(nr >= map->num_stripes);
5967 for (j = 0; j < nr; j++) {
5968 if (buf[j] == bytenr)
5969 break;
5970 }
5971 if (j == nr) {
5972 WARN_ON(nr >= map->num_stripes);
5973 buf[nr++] = bytenr;
5974 }
5975 }
5976
5977 *logical = buf;
5978 *naddrs = nr;
5979 *stripe_len = rmap_len;
5980
5981 free_extent_map(em);
5982 return 0;
5983}
5984
5985static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5986{
5987 bio->bi_private = bbio->private;
5988 bio->bi_end_io = bbio->end_io;
5989 bio_endio(bio);
5990
5991 btrfs_put_bbio(bbio);
5992}
5993
5994static void btrfs_end_bio(struct bio *bio)
5995{
5996 struct btrfs_bio *bbio = bio->bi_private;
5997 int is_orig_bio = 0;
5998
5999 if (bio->bi_error) {
6000 atomic_inc(&bbio->error);
6001 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6002 unsigned int stripe_index =
6003 btrfs_io_bio(bio)->stripe_index;
6004 struct btrfs_device *dev;
6005
6006 BUG_ON(stripe_index >= bbio->num_stripes);
6007 dev = bbio->stripes[stripe_index].dev;
6008 if (dev->bdev) {
6009 if (bio_op(bio) == REQ_OP_WRITE)
6010 btrfs_dev_stat_inc(dev,
6011 BTRFS_DEV_STAT_WRITE_ERRS);
6012 else
6013 btrfs_dev_stat_inc(dev,
6014 BTRFS_DEV_STAT_READ_ERRS);
6015 if (bio->bi_opf & REQ_PREFLUSH)
6016 btrfs_dev_stat_inc(dev,
6017 BTRFS_DEV_STAT_FLUSH_ERRS);
6018 btrfs_dev_stat_print_on_error(dev);
6019 }
6020 }
6021 }
6022
6023 if (bio == bbio->orig_bio)
6024 is_orig_bio = 1;
6025
6026 btrfs_bio_counter_dec(bbio->fs_info);
6027
6028 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6029 if (!is_orig_bio) {
6030 bio_put(bio);
6031 bio = bbio->orig_bio;
6032 }
6033
6034 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6035 /* only send an error to the higher layers if it is
6036 * beyond the tolerance of the btrfs bio
6037 */
6038 if (atomic_read(&bbio->error) > bbio->max_errors) {
6039 bio->bi_error = -EIO;
6040 } else {
6041 /*
6042 * this bio is actually up to date, we didn't
6043 * go over the max number of errors
6044 */
6045 bio->bi_error = 0;
6046 }
6047
6048 btrfs_end_bbio(bbio, bio);
6049 } else if (!is_orig_bio) {
6050 bio_put(bio);
6051 }
6052}
6053
6054/*
6055 * see run_scheduled_bios for a description of why bios are collected for
6056 * async submit.
6057 *
6058 * This will add one bio to the pending list for a device and make sure
6059 * the work struct is scheduled.
6060 */
6061static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6062 struct bio *bio)
6063{
6064 struct btrfs_fs_info *fs_info = device->fs_info;
6065 int should_queue = 1;
6066 struct btrfs_pending_bios *pending_bios;
6067
6068 if (device->missing || !device->bdev) {
6069 bio_io_error(bio);
6070 return;
6071 }
6072
6073 /* don't bother with additional async steps for reads, right now */
6074 if (bio_op(bio) == REQ_OP_READ) {
6075 bio_get(bio);
6076 btrfsic_submit_bio(bio);
6077 bio_put(bio);
6078 return;
6079 }
6080
6081 /*
6082 * nr_async_bios allows us to reliably return congestion to the
6083 * higher layers. Otherwise, the async bio makes it appear we have
6084 * made progress against dirty pages when we've really just put it
6085 * on a queue for later
6086 */
6087 atomic_inc(&fs_info->nr_async_bios);
6088 WARN_ON(bio->bi_next);
6089 bio->bi_next = NULL;
6090
6091 spin_lock(&device->io_lock);
6092 if (op_is_sync(bio->bi_opf))
6093 pending_bios = &device->pending_sync_bios;
6094 else
6095 pending_bios = &device->pending_bios;
6096
6097 if (pending_bios->tail)
6098 pending_bios->tail->bi_next = bio;
6099
6100 pending_bios->tail = bio;
6101 if (!pending_bios->head)
6102 pending_bios->head = bio;
6103 if (device->running_pending)
6104 should_queue = 0;
6105
6106 spin_unlock(&device->io_lock);
6107
6108 if (should_queue)
6109 btrfs_queue_work(fs_info->submit_workers, &device->work);
6110}
6111
6112static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6113 u64 physical, int dev_nr, int async)
6114{
6115 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6116 struct btrfs_fs_info *fs_info = bbio->fs_info;
6117
6118 bio->bi_private = bbio;
6119 btrfs_io_bio(bio)->stripe_index = dev_nr;
6120 bio->bi_end_io = btrfs_end_bio;
6121 bio->bi_iter.bi_sector = physical >> 9;
6122#ifdef DEBUG
6123 {
6124 struct rcu_string *name;
6125
6126 rcu_read_lock();
6127 name = rcu_dereference(dev->name);
6128 btrfs_debug(fs_info,
6129 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6130 bio_op(bio), bio->bi_opf,
6131 (u64)bio->bi_iter.bi_sector,
6132 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6133 bio->bi_iter.bi_size);
6134 rcu_read_unlock();
6135 }
6136#endif
6137 bio->bi_bdev = dev->bdev;
6138
6139 btrfs_bio_counter_inc_noblocked(fs_info);
6140
6141 if (async)
6142 btrfs_schedule_bio(dev, bio);
6143 else
6144 btrfsic_submit_bio(bio);
6145}
6146
6147static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6148{
6149 atomic_inc(&bbio->error);
6150 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6151 /* Should be the original bio. */
6152 WARN_ON(bio != bbio->orig_bio);
6153
6154 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6155 bio->bi_iter.bi_sector = logical >> 9;
6156 bio->bi_error = -EIO;
6157 btrfs_end_bbio(bbio, bio);
6158 }
6159}
6160
6161int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6162 int mirror_num, int async_submit)
6163{
6164 struct btrfs_device *dev;
6165 struct bio *first_bio = bio;
6166 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6167 u64 length = 0;
6168 u64 map_length;
6169 int ret;
6170 int dev_nr;
6171 int total_devs;
6172 struct btrfs_bio *bbio = NULL;
6173
6174 length = bio->bi_iter.bi_size;
6175 map_length = length;
6176
6177 btrfs_bio_counter_inc_blocked(fs_info);
6178 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6179 &map_length, &bbio, mirror_num, 1);
6180 if (ret) {
6181 btrfs_bio_counter_dec(fs_info);
6182 return ret;
6183 }
6184
6185 total_devs = bbio->num_stripes;
6186 bbio->orig_bio = first_bio;
6187 bbio->private = first_bio->bi_private;
6188 bbio->end_io = first_bio->bi_end_io;
6189 bbio->fs_info = fs_info;
6190 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6191
6192 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6193 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6194 /* In this case, map_length has been set to the length of
6195 a single stripe; not the whole write */
6196 if (bio_op(bio) == REQ_OP_WRITE) {
6197 ret = raid56_parity_write(fs_info, bio, bbio,
6198 map_length);
6199 } else {
6200 ret = raid56_parity_recover(fs_info, bio, bbio,
6201 map_length, mirror_num, 1);
6202 }
6203
6204 btrfs_bio_counter_dec(fs_info);
6205 return ret;
6206 }
6207
6208 if (map_length < length) {
6209 btrfs_crit(fs_info,
6210 "mapping failed logical %llu bio len %llu len %llu",
6211 logical, length, map_length);
6212 BUG();
6213 }
6214
6215 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6216 dev = bbio->stripes[dev_nr].dev;
6217 if (!dev || !dev->bdev ||
6218 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6219 bbio_error(bbio, first_bio, logical);
6220 continue;
6221 }
6222
6223 if (dev_nr < total_devs - 1) {
6224 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6225 BUG_ON(!bio); /* -ENOMEM */
6226 } else
6227 bio = first_bio;
6228
6229 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6230 dev_nr, async_submit);
6231 }
6232 btrfs_bio_counter_dec(fs_info);
6233 return 0;
6234}
6235
6236struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6237 u8 *uuid, u8 *fsid)
6238{
6239 struct btrfs_device *device;
6240 struct btrfs_fs_devices *cur_devices;
6241
6242 cur_devices = fs_info->fs_devices;
6243 while (cur_devices) {
6244 if (!fsid ||
6245 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6246 device = __find_device(&cur_devices->devices,
6247 devid, uuid);
6248 if (device)
6249 return device;
6250 }
6251 cur_devices = cur_devices->seed;
6252 }
6253 return NULL;
6254}
6255
6256static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6257 u64 devid, u8 *dev_uuid)
6258{
6259 struct btrfs_device *device;
6260
6261 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6262 if (IS_ERR(device))
6263 return NULL;
6264
6265 list_add(&device->dev_list, &fs_devices->devices);
6266 device->fs_devices = fs_devices;
6267 fs_devices->num_devices++;
6268
6269 device->missing = 1;
6270 fs_devices->missing_devices++;
6271
6272 return device;
6273}
6274
6275/**
6276 * btrfs_alloc_device - allocate struct btrfs_device
6277 * @fs_info: used only for generating a new devid, can be NULL if
6278 * devid is provided (i.e. @devid != NULL).
6279 * @devid: a pointer to devid for this device. If NULL a new devid
6280 * is generated.
6281 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6282 * is generated.
6283 *
6284 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6285 * on error. Returned struct is not linked onto any lists and can be
6286 * destroyed with kfree() right away.
6287 */
6288struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6289 const u64 *devid,
6290 const u8 *uuid)
6291{
6292 struct btrfs_device *dev;
6293 u64 tmp;
6294
6295 if (WARN_ON(!devid && !fs_info))
6296 return ERR_PTR(-EINVAL);
6297
6298 dev = __alloc_device();
6299 if (IS_ERR(dev))
6300 return dev;
6301
6302 if (devid)
6303 tmp = *devid;
6304 else {
6305 int ret;
6306
6307 ret = find_next_devid(fs_info, &tmp);
6308 if (ret) {
6309 kfree(dev);
6310 return ERR_PTR(ret);
6311 }
6312 }
6313 dev->devid = tmp;
6314
6315 if (uuid)
6316 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6317 else
6318 generate_random_uuid(dev->uuid);
6319
6320 btrfs_init_work(&dev->work, btrfs_submit_helper,
6321 pending_bios_fn, NULL, NULL);
6322
6323 return dev;
6324}
6325
6326/* Return -EIO if any error, otherwise return 0. */
6327static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6328 struct extent_buffer *leaf,
6329 struct btrfs_chunk *chunk, u64 logical)
6330{
6331 u64 length;
6332 u64 stripe_len;
6333 u16 num_stripes;
6334 u16 sub_stripes;
6335 u64 type;
6336
6337 length = btrfs_chunk_length(leaf, chunk);
6338 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6339 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6340 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6341 type = btrfs_chunk_type(leaf, chunk);
6342
6343 if (!num_stripes) {
6344 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6345 num_stripes);
6346 return -EIO;
6347 }
6348 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6349 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6350 return -EIO;
6351 }
6352 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6353 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6354 btrfs_chunk_sector_size(leaf, chunk));
6355 return -EIO;
6356 }
6357 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6358 btrfs_err(fs_info, "invalid chunk length %llu", length);
6359 return -EIO;
6360 }
6361 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6362 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6363 stripe_len);
6364 return -EIO;
6365 }
6366 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6367 type) {
6368 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6369 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6370 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6371 btrfs_chunk_type(leaf, chunk));
6372 return -EIO;
6373 }
6374 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6375 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6376 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6377 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6378 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6379 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6380 num_stripes != 1)) {
6381 btrfs_err(fs_info,
6382 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6383 num_stripes, sub_stripes,
6384 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6385 return -EIO;
6386 }
6387
6388 return 0;
6389}
6390
6391static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6392 struct extent_buffer *leaf,
6393 struct btrfs_chunk *chunk)
6394{
6395 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6396 struct map_lookup *map;
6397 struct extent_map *em;
6398 u64 logical;
6399 u64 length;
6400 u64 stripe_len;
6401 u64 devid;
6402 u8 uuid[BTRFS_UUID_SIZE];
6403 int num_stripes;
6404 int ret;
6405 int i;
6406
6407 logical = key->offset;
6408 length = btrfs_chunk_length(leaf, chunk);
6409 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6410 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6411
6412 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6413 if (ret)
6414 return ret;
6415
6416 read_lock(&map_tree->map_tree.lock);
6417 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6418 read_unlock(&map_tree->map_tree.lock);
6419
6420 /* already mapped? */
6421 if (em && em->start <= logical && em->start + em->len > logical) {
6422 free_extent_map(em);
6423 return 0;
6424 } else if (em) {
6425 free_extent_map(em);
6426 }
6427
6428 em = alloc_extent_map();
6429 if (!em)
6430 return -ENOMEM;
6431 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6432 if (!map) {
6433 free_extent_map(em);
6434 return -ENOMEM;
6435 }
6436
6437 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6438 em->map_lookup = map;
6439 em->start = logical;
6440 em->len = length;
6441 em->orig_start = 0;
6442 em->block_start = 0;
6443 em->block_len = em->len;
6444
6445 map->num_stripes = num_stripes;
6446 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6447 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6448 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6449 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6450 map->type = btrfs_chunk_type(leaf, chunk);
6451 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6452 for (i = 0; i < num_stripes; i++) {
6453 map->stripes[i].physical =
6454 btrfs_stripe_offset_nr(leaf, chunk, i);
6455 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6456 read_extent_buffer(leaf, uuid, (unsigned long)
6457 btrfs_stripe_dev_uuid_nr(chunk, i),
6458 BTRFS_UUID_SIZE);
6459 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6460 uuid, NULL);
6461 if (!map->stripes[i].dev &&
6462 !btrfs_test_opt(fs_info, DEGRADED)) {
6463 free_extent_map(em);
6464 return -EIO;
6465 }
6466 if (!map->stripes[i].dev) {
6467 map->stripes[i].dev =
6468 add_missing_dev(fs_info->fs_devices, devid,
6469 uuid);
6470 if (!map->stripes[i].dev) {
6471 free_extent_map(em);
6472 return -EIO;
6473 }
6474 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6475 devid, uuid);
6476 }
6477 map->stripes[i].dev->in_fs_metadata = 1;
6478 }
6479
6480 write_lock(&map_tree->map_tree.lock);
6481 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6482 write_unlock(&map_tree->map_tree.lock);
6483 BUG_ON(ret); /* Tree corruption */
6484 free_extent_map(em);
6485
6486 return 0;
6487}
6488
6489static void fill_device_from_item(struct extent_buffer *leaf,
6490 struct btrfs_dev_item *dev_item,
6491 struct btrfs_device *device)
6492{
6493 unsigned long ptr;
6494
6495 device->devid = btrfs_device_id(leaf, dev_item);
6496 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6497 device->total_bytes = device->disk_total_bytes;
6498 device->commit_total_bytes = device->disk_total_bytes;
6499 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6500 device->commit_bytes_used = device->bytes_used;
6501 device->type = btrfs_device_type(leaf, dev_item);
6502 device->io_align = btrfs_device_io_align(leaf, dev_item);
6503 device->io_width = btrfs_device_io_width(leaf, dev_item);
6504 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6505 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6506 device->is_tgtdev_for_dev_replace = 0;
6507
6508 ptr = btrfs_device_uuid(dev_item);
6509 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6510}
6511
6512static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6513 u8 *fsid)
6514{
6515 struct btrfs_fs_devices *fs_devices;
6516 int ret;
6517
6518 BUG_ON(!mutex_is_locked(&uuid_mutex));
6519
6520 fs_devices = fs_info->fs_devices->seed;
6521 while (fs_devices) {
6522 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6523 return fs_devices;
6524
6525 fs_devices = fs_devices->seed;
6526 }
6527
6528 fs_devices = find_fsid(fsid);
6529 if (!fs_devices) {
6530 if (!btrfs_test_opt(fs_info, DEGRADED))
6531 return ERR_PTR(-ENOENT);
6532
6533 fs_devices = alloc_fs_devices(fsid);
6534 if (IS_ERR(fs_devices))
6535 return fs_devices;
6536
6537 fs_devices->seeding = 1;
6538 fs_devices->opened = 1;
6539 return fs_devices;
6540 }
6541
6542 fs_devices = clone_fs_devices(fs_devices);
6543 if (IS_ERR(fs_devices))
6544 return fs_devices;
6545
6546 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6547 fs_info->bdev_holder);
6548 if (ret) {
6549 free_fs_devices(fs_devices);
6550 fs_devices = ERR_PTR(ret);
6551 goto out;
6552 }
6553
6554 if (!fs_devices->seeding) {
6555 __btrfs_close_devices(fs_devices);
6556 free_fs_devices(fs_devices);
6557 fs_devices = ERR_PTR(-EINVAL);
6558 goto out;
6559 }
6560
6561 fs_devices->seed = fs_info->fs_devices->seed;
6562 fs_info->fs_devices->seed = fs_devices;
6563out:
6564 return fs_devices;
6565}
6566
6567static int read_one_dev(struct btrfs_fs_info *fs_info,
6568 struct extent_buffer *leaf,
6569 struct btrfs_dev_item *dev_item)
6570{
6571 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6572 struct btrfs_device *device;
6573 u64 devid;
6574 int ret;
6575 u8 fs_uuid[BTRFS_UUID_SIZE];
6576 u8 dev_uuid[BTRFS_UUID_SIZE];
6577
6578 devid = btrfs_device_id(leaf, dev_item);
6579 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6580 BTRFS_UUID_SIZE);
6581 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6582 BTRFS_UUID_SIZE);
6583
6584 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6585 fs_devices = open_seed_devices(fs_info, fs_uuid);
6586 if (IS_ERR(fs_devices))
6587 return PTR_ERR(fs_devices);
6588 }
6589
6590 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6591 if (!device) {
6592 if (!btrfs_test_opt(fs_info, DEGRADED))
6593 return -EIO;
6594
6595 device = add_missing_dev(fs_devices, devid, dev_uuid);
6596 if (!device)
6597 return -ENOMEM;
6598 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6599 devid, dev_uuid);
6600 } else {
6601 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6602 return -EIO;
6603
6604 if(!device->bdev && !device->missing) {
6605 /*
6606 * this happens when a device that was properly setup
6607 * in the device info lists suddenly goes bad.
6608 * device->bdev is NULL, and so we have to set
6609 * device->missing to one here
6610 */
6611 device->fs_devices->missing_devices++;
6612 device->missing = 1;
6613 }
6614
6615 /* Move the device to its own fs_devices */
6616 if (device->fs_devices != fs_devices) {
6617 ASSERT(device->missing);
6618
6619 list_move(&device->dev_list, &fs_devices->devices);
6620 device->fs_devices->num_devices--;
6621 fs_devices->num_devices++;
6622
6623 device->fs_devices->missing_devices--;
6624 fs_devices->missing_devices++;
6625
6626 device->fs_devices = fs_devices;
6627 }
6628 }
6629
6630 if (device->fs_devices != fs_info->fs_devices) {
6631 BUG_ON(device->writeable);
6632 if (device->generation !=
6633 btrfs_device_generation(leaf, dev_item))
6634 return -EINVAL;
6635 }
6636
6637 fill_device_from_item(leaf, dev_item, device);
6638 device->in_fs_metadata = 1;
6639 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6640 device->fs_devices->total_rw_bytes += device->total_bytes;
6641 spin_lock(&fs_info->free_chunk_lock);
6642 fs_info->free_chunk_space += device->total_bytes -
6643 device->bytes_used;
6644 spin_unlock(&fs_info->free_chunk_lock);
6645 }
6646 ret = 0;
6647 return ret;
6648}
6649
6650int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6651{
6652 struct btrfs_root *root = fs_info->tree_root;
6653 struct btrfs_super_block *super_copy = fs_info->super_copy;
6654 struct extent_buffer *sb;
6655 struct btrfs_disk_key *disk_key;
6656 struct btrfs_chunk *chunk;
6657 u8 *array_ptr;
6658 unsigned long sb_array_offset;
6659 int ret = 0;
6660 u32 num_stripes;
6661 u32 array_size;
6662 u32 len = 0;
6663 u32 cur_offset;
6664 u64 type;
6665 struct btrfs_key key;
6666
6667 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6668 /*
6669 * This will create extent buffer of nodesize, superblock size is
6670 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6671 * overallocate but we can keep it as-is, only the first page is used.
6672 */
6673 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6674 if (IS_ERR(sb))
6675 return PTR_ERR(sb);
6676 set_extent_buffer_uptodate(sb);
6677 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6678 /*
6679 * The sb extent buffer is artificial and just used to read the system array.
6680 * set_extent_buffer_uptodate() call does not properly mark all it's
6681 * pages up-to-date when the page is larger: extent does not cover the
6682 * whole page and consequently check_page_uptodate does not find all
6683 * the page's extents up-to-date (the hole beyond sb),
6684 * write_extent_buffer then triggers a WARN_ON.
6685 *
6686 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6687 * but sb spans only this function. Add an explicit SetPageUptodate call
6688 * to silence the warning eg. on PowerPC 64.
6689 */
6690 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6691 SetPageUptodate(sb->pages[0]);
6692
6693 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6694 array_size = btrfs_super_sys_array_size(super_copy);
6695
6696 array_ptr = super_copy->sys_chunk_array;
6697 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6698 cur_offset = 0;
6699
6700 while (cur_offset < array_size) {
6701 disk_key = (struct btrfs_disk_key *)array_ptr;
6702 len = sizeof(*disk_key);
6703 if (cur_offset + len > array_size)
6704 goto out_short_read;
6705
6706 btrfs_disk_key_to_cpu(&key, disk_key);
6707
6708 array_ptr += len;
6709 sb_array_offset += len;
6710 cur_offset += len;
6711
6712 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6713 chunk = (struct btrfs_chunk *)sb_array_offset;
6714 /*
6715 * At least one btrfs_chunk with one stripe must be
6716 * present, exact stripe count check comes afterwards
6717 */
6718 len = btrfs_chunk_item_size(1);
6719 if (cur_offset + len > array_size)
6720 goto out_short_read;
6721
6722 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6723 if (!num_stripes) {
6724 btrfs_err(fs_info,
6725 "invalid number of stripes %u in sys_array at offset %u",
6726 num_stripes, cur_offset);
6727 ret = -EIO;
6728 break;
6729 }
6730
6731 type = btrfs_chunk_type(sb, chunk);
6732 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6733 btrfs_err(fs_info,
6734 "invalid chunk type %llu in sys_array at offset %u",
6735 type, cur_offset);
6736 ret = -EIO;
6737 break;
6738 }
6739
6740 len = btrfs_chunk_item_size(num_stripes);
6741 if (cur_offset + len > array_size)
6742 goto out_short_read;
6743
6744 ret = read_one_chunk(fs_info, &key, sb, chunk);
6745 if (ret)
6746 break;
6747 } else {
6748 btrfs_err(fs_info,
6749 "unexpected item type %u in sys_array at offset %u",
6750 (u32)key.type, cur_offset);
6751 ret = -EIO;
6752 break;
6753 }
6754 array_ptr += len;
6755 sb_array_offset += len;
6756 cur_offset += len;
6757 }
6758 clear_extent_buffer_uptodate(sb);
6759 free_extent_buffer_stale(sb);
6760 return ret;
6761
6762out_short_read:
6763 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6764 len, cur_offset);
6765 clear_extent_buffer_uptodate(sb);
6766 free_extent_buffer_stale(sb);
6767 return -EIO;
6768}
6769
6770int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6771{
6772 struct btrfs_root *root = fs_info->chunk_root;
6773 struct btrfs_path *path;
6774 struct extent_buffer *leaf;
6775 struct btrfs_key key;
6776 struct btrfs_key found_key;
6777 int ret;
6778 int slot;
6779 u64 total_dev = 0;
6780
6781 path = btrfs_alloc_path();
6782 if (!path)
6783 return -ENOMEM;
6784
6785 mutex_lock(&uuid_mutex);
6786 mutex_lock(&fs_info->chunk_mutex);
6787
6788 /*
6789 * Read all device items, and then all the chunk items. All
6790 * device items are found before any chunk item (their object id
6791 * is smaller than the lowest possible object id for a chunk
6792 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6793 */
6794 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6795 key.offset = 0;
6796 key.type = 0;
6797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6798 if (ret < 0)
6799 goto error;
6800 while (1) {
6801 leaf = path->nodes[0];
6802 slot = path->slots[0];
6803 if (slot >= btrfs_header_nritems(leaf)) {
6804 ret = btrfs_next_leaf(root, path);
6805 if (ret == 0)
6806 continue;
6807 if (ret < 0)
6808 goto error;
6809 break;
6810 }
6811 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6812 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6813 struct btrfs_dev_item *dev_item;
6814 dev_item = btrfs_item_ptr(leaf, slot,
6815 struct btrfs_dev_item);
6816 ret = read_one_dev(fs_info, leaf, dev_item);
6817 if (ret)
6818 goto error;
6819 total_dev++;
6820 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6821 struct btrfs_chunk *chunk;
6822 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6823 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6824 if (ret)
6825 goto error;
6826 }
6827 path->slots[0]++;
6828 }
6829
6830 /*
6831 * After loading chunk tree, we've got all device information,
6832 * do another round of validation checks.
6833 */
6834 if (total_dev != fs_info->fs_devices->total_devices) {
6835 btrfs_err(fs_info,
6836 "super_num_devices %llu mismatch with num_devices %llu found here",
6837 btrfs_super_num_devices(fs_info->super_copy),
6838 total_dev);
6839 ret = -EINVAL;
6840 goto error;
6841 }
6842 if (btrfs_super_total_bytes(fs_info->super_copy) <
6843 fs_info->fs_devices->total_rw_bytes) {
6844 btrfs_err(fs_info,
6845 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6846 btrfs_super_total_bytes(fs_info->super_copy),
6847 fs_info->fs_devices->total_rw_bytes);
6848 ret = -EINVAL;
6849 goto error;
6850 }
6851 ret = 0;
6852error:
6853 mutex_unlock(&fs_info->chunk_mutex);
6854 mutex_unlock(&uuid_mutex);
6855
6856 btrfs_free_path(path);
6857 return ret;
6858}
6859
6860void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6861{
6862 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6863 struct btrfs_device *device;
6864
6865 while (fs_devices) {
6866 mutex_lock(&fs_devices->device_list_mutex);
6867 list_for_each_entry(device, &fs_devices->devices, dev_list)
6868 device->fs_info = fs_info;
6869 mutex_unlock(&fs_devices->device_list_mutex);
6870
6871 fs_devices = fs_devices->seed;
6872 }
6873}
6874
6875static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6876{
6877 int i;
6878
6879 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6880 btrfs_dev_stat_reset(dev, i);
6881}
6882
6883int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6884{
6885 struct btrfs_key key;
6886 struct btrfs_key found_key;
6887 struct btrfs_root *dev_root = fs_info->dev_root;
6888 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6889 struct extent_buffer *eb;
6890 int slot;
6891 int ret = 0;
6892 struct btrfs_device *device;
6893 struct btrfs_path *path = NULL;
6894 int i;
6895
6896 path = btrfs_alloc_path();
6897 if (!path) {
6898 ret = -ENOMEM;
6899 goto out;
6900 }
6901
6902 mutex_lock(&fs_devices->device_list_mutex);
6903 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6904 int item_size;
6905 struct btrfs_dev_stats_item *ptr;
6906
6907 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6908 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6909 key.offset = device->devid;
6910 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6911 if (ret) {
6912 __btrfs_reset_dev_stats(device);
6913 device->dev_stats_valid = 1;
6914 btrfs_release_path(path);
6915 continue;
6916 }
6917 slot = path->slots[0];
6918 eb = path->nodes[0];
6919 btrfs_item_key_to_cpu(eb, &found_key, slot);
6920 item_size = btrfs_item_size_nr(eb, slot);
6921
6922 ptr = btrfs_item_ptr(eb, slot,
6923 struct btrfs_dev_stats_item);
6924
6925 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6926 if (item_size >= (1 + i) * sizeof(__le64))
6927 btrfs_dev_stat_set(device, i,
6928 btrfs_dev_stats_value(eb, ptr, i));
6929 else
6930 btrfs_dev_stat_reset(device, i);
6931 }
6932
6933 device->dev_stats_valid = 1;
6934 btrfs_dev_stat_print_on_load(device);
6935 btrfs_release_path(path);
6936 }
6937 mutex_unlock(&fs_devices->device_list_mutex);
6938
6939out:
6940 btrfs_free_path(path);
6941 return ret < 0 ? ret : 0;
6942}
6943
6944static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6945 struct btrfs_fs_info *fs_info,
6946 struct btrfs_device *device)
6947{
6948 struct btrfs_root *dev_root = fs_info->dev_root;
6949 struct btrfs_path *path;
6950 struct btrfs_key key;
6951 struct extent_buffer *eb;
6952 struct btrfs_dev_stats_item *ptr;
6953 int ret;
6954 int i;
6955
6956 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6957 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6958 key.offset = device->devid;
6959
6960 path = btrfs_alloc_path();
6961 BUG_ON(!path);
6962 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6963 if (ret < 0) {
6964 btrfs_warn_in_rcu(fs_info,
6965 "error %d while searching for dev_stats item for device %s",
6966 ret, rcu_str_deref(device->name));
6967 goto out;
6968 }
6969
6970 if (ret == 0 &&
6971 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6972 /* need to delete old one and insert a new one */
6973 ret = btrfs_del_item(trans, dev_root, path);
6974 if (ret != 0) {
6975 btrfs_warn_in_rcu(fs_info,
6976 "delete too small dev_stats item for device %s failed %d",
6977 rcu_str_deref(device->name), ret);
6978 goto out;
6979 }
6980 ret = 1;
6981 }
6982
6983 if (ret == 1) {
6984 /* need to insert a new item */
6985 btrfs_release_path(path);
6986 ret = btrfs_insert_empty_item(trans, dev_root, path,
6987 &key, sizeof(*ptr));
6988 if (ret < 0) {
6989 btrfs_warn_in_rcu(fs_info,
6990 "insert dev_stats item for device %s failed %d",
6991 rcu_str_deref(device->name), ret);
6992 goto out;
6993 }
6994 }
6995
6996 eb = path->nodes[0];
6997 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6998 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6999 btrfs_set_dev_stats_value(eb, ptr, i,
7000 btrfs_dev_stat_read(device, i));
7001 btrfs_mark_buffer_dirty(eb);
7002
7003out:
7004 btrfs_free_path(path);
7005 return ret;
7006}
7007
7008/*
7009 * called from commit_transaction. Writes all changed device stats to disk.
7010 */
7011int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7012 struct btrfs_fs_info *fs_info)
7013{
7014 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7015 struct btrfs_device *device;
7016 int stats_cnt;
7017 int ret = 0;
7018
7019 mutex_lock(&fs_devices->device_list_mutex);
7020 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7021 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7022 continue;
7023
7024 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7025 ret = update_dev_stat_item(trans, fs_info, device);
7026 if (!ret)
7027 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7028 }
7029 mutex_unlock(&fs_devices->device_list_mutex);
7030
7031 return ret;
7032}
7033
7034void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7035{
7036 btrfs_dev_stat_inc(dev, index);
7037 btrfs_dev_stat_print_on_error(dev);
7038}
7039
7040static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7041{
7042 if (!dev->dev_stats_valid)
7043 return;
7044 btrfs_err_rl_in_rcu(dev->fs_info,
7045 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7046 rcu_str_deref(dev->name),
7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7050 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7051 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7052}
7053
7054static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7055{
7056 int i;
7057
7058 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7059 if (btrfs_dev_stat_read(dev, i) != 0)
7060 break;
7061 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7062 return; /* all values == 0, suppress message */
7063
7064 btrfs_info_in_rcu(dev->fs_info,
7065 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7066 rcu_str_deref(dev->name),
7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7071 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7072}
7073
7074int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7075 struct btrfs_ioctl_get_dev_stats *stats)
7076{
7077 struct btrfs_device *dev;
7078 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7079 int i;
7080
7081 mutex_lock(&fs_devices->device_list_mutex);
7082 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7083 mutex_unlock(&fs_devices->device_list_mutex);
7084
7085 if (!dev) {
7086 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7087 return -ENODEV;
7088 } else if (!dev->dev_stats_valid) {
7089 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7090 return -ENODEV;
7091 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7092 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7093 if (stats->nr_items > i)
7094 stats->values[i] =
7095 btrfs_dev_stat_read_and_reset(dev, i);
7096 else
7097 btrfs_dev_stat_reset(dev, i);
7098 }
7099 } else {
7100 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7101 if (stats->nr_items > i)
7102 stats->values[i] = btrfs_dev_stat_read(dev, i);
7103 }
7104 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7105 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7106 return 0;
7107}
7108
7109void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7110{
7111 struct buffer_head *bh;
7112 struct btrfs_super_block *disk_super;
7113 int copy_num;
7114
7115 if (!bdev)
7116 return;
7117
7118 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7119 copy_num++) {
7120
7121 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7122 continue;
7123
7124 disk_super = (struct btrfs_super_block *)bh->b_data;
7125
7126 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7127 set_buffer_dirty(bh);
7128 sync_dirty_buffer(bh);
7129 brelse(bh);
7130 }
7131
7132 /* Notify udev that device has changed */
7133 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7134
7135 /* Update ctime/mtime for device path for libblkid */
7136 update_dev_time(device_path);
7137}
7138
7139/*
7140 * Update the size of all devices, which is used for writing out the
7141 * super blocks.
7142 */
7143void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7144{
7145 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7146 struct btrfs_device *curr, *next;
7147
7148 if (list_empty(&fs_devices->resized_devices))
7149 return;
7150
7151 mutex_lock(&fs_devices->device_list_mutex);
7152 mutex_lock(&fs_info->chunk_mutex);
7153 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7154 resized_list) {
7155 list_del_init(&curr->resized_list);
7156 curr->commit_total_bytes = curr->disk_total_bytes;
7157 }
7158 mutex_unlock(&fs_info->chunk_mutex);
7159 mutex_unlock(&fs_devices->device_list_mutex);
7160}
7161
7162/* Must be invoked during the transaction commit */
7163void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7164 struct btrfs_transaction *transaction)
7165{
7166 struct extent_map *em;
7167 struct map_lookup *map;
7168 struct btrfs_device *dev;
7169 int i;
7170
7171 if (list_empty(&transaction->pending_chunks))
7172 return;
7173
7174 /* In order to kick the device replace finish process */
7175 mutex_lock(&fs_info->chunk_mutex);
7176 list_for_each_entry(em, &transaction->pending_chunks, list) {
7177 map = em->map_lookup;
7178
7179 for (i = 0; i < map->num_stripes; i++) {
7180 dev = map->stripes[i].dev;
7181 dev->commit_bytes_used = dev->bytes_used;
7182 }
7183 }
7184 mutex_unlock(&fs_info->chunk_mutex);
7185}
7186
7187void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7188{
7189 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7190 while (fs_devices) {
7191 fs_devices->fs_info = fs_info;
7192 fs_devices = fs_devices->seed;
7193 }
7194}
7195
7196void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7197{
7198 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7199 while (fs_devices) {
7200 fs_devices->fs_info = NULL;
7201 fs_devices = fs_devices->seed;
7202 }
7203}