Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 * Copyright (C) 2014 Fujitsu. All rights reserved.
5 */
6
7#include <linux/kthread.h>
8#include <linux/slab.h>
9#include <linux/list.h>
10#include <linux/spinlock.h>
11#include <linux/freezer.h>
12#include <trace/events/btrfs.h>
13#include "async-thread.h"
14#include "ctree.h"
15
16enum {
17 WORK_DONE_BIT,
18 WORK_ORDER_DONE_BIT,
19};
20
21#define NO_THRESHOLD (-1)
22#define DFT_THRESHOLD (32)
23
24struct btrfs_workqueue {
25 struct workqueue_struct *normal_wq;
26
27 /* File system this workqueue services */
28 struct btrfs_fs_info *fs_info;
29
30 /* List head pointing to ordered work list */
31 struct list_head ordered_list;
32
33 /* Spinlock for ordered_list */
34 spinlock_t list_lock;
35
36 /* Thresholding related variants */
37 atomic_t pending;
38
39 /* Up limit of concurrency workers */
40 int limit_active;
41
42 /* Current number of concurrency workers */
43 int current_active;
44
45 /* Threshold to change current_active */
46 int thresh;
47 unsigned int count;
48 spinlock_t thres_lock;
49};
50
51struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct btrfs_workqueue *wq)
52{
53 return wq->fs_info;
54}
55
56struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
57{
58 return work->wq->fs_info;
59}
60
61bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
62{
63 /*
64 * We could compare wq->pending with num_online_cpus()
65 * to support "thresh == NO_THRESHOLD" case, but it requires
66 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
67 * postpone it until someone needs the support of that case.
68 */
69 if (wq->thresh == NO_THRESHOLD)
70 return false;
71
72 return atomic_read(&wq->pending) > wq->thresh * 2;
73}
74
75static void btrfs_init_workqueue(struct btrfs_workqueue *wq,
76 struct btrfs_fs_info *fs_info)
77{
78 wq->fs_info = fs_info;
79 atomic_set(&wq->pending, 0);
80 INIT_LIST_HEAD(&wq->ordered_list);
81 spin_lock_init(&wq->list_lock);
82 spin_lock_init(&wq->thres_lock);
83}
84
85struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
86 const char *name, unsigned int flags,
87 int limit_active, int thresh)
88{
89 struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
90
91 if (!ret)
92 return NULL;
93
94 btrfs_init_workqueue(ret, fs_info);
95
96 ret->limit_active = limit_active;
97 if (thresh == 0)
98 thresh = DFT_THRESHOLD;
99 /* For low threshold, disabling threshold is a better choice */
100 if (thresh < DFT_THRESHOLD) {
101 ret->current_active = limit_active;
102 ret->thresh = NO_THRESHOLD;
103 } else {
104 /*
105 * For threshold-able wq, let its concurrency grow on demand.
106 * Use minimal max_active at alloc time to reduce resource
107 * usage.
108 */
109 ret->current_active = 1;
110 ret->thresh = thresh;
111 }
112
113 ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active,
114 name);
115 if (!ret->normal_wq) {
116 kfree(ret);
117 return NULL;
118 }
119
120 trace_btrfs_workqueue_alloc(ret, name);
121 return ret;
122}
123
124struct btrfs_workqueue *btrfs_alloc_ordered_workqueue(
125 struct btrfs_fs_info *fs_info, const char *name,
126 unsigned int flags)
127{
128 struct btrfs_workqueue *ret;
129
130 ret = kzalloc(sizeof(*ret), GFP_KERNEL);
131 if (!ret)
132 return NULL;
133
134 btrfs_init_workqueue(ret, fs_info);
135
136 /* Ordered workqueues don't allow @max_active adjustments. */
137 ret->limit_active = 1;
138 ret->current_active = 1;
139 ret->thresh = NO_THRESHOLD;
140
141 ret->normal_wq = alloc_ordered_workqueue("btrfs-%s", flags, name);
142 if (!ret->normal_wq) {
143 kfree(ret);
144 return NULL;
145 }
146
147 trace_btrfs_workqueue_alloc(ret, name);
148 return ret;
149}
150
151/*
152 * Hook for threshold which will be called in btrfs_queue_work.
153 * This hook WILL be called in IRQ handler context,
154 * so workqueue_set_max_active MUST NOT be called in this hook
155 */
156static inline void thresh_queue_hook(struct btrfs_workqueue *wq)
157{
158 if (wq->thresh == NO_THRESHOLD)
159 return;
160 atomic_inc(&wq->pending);
161}
162
163/*
164 * Hook for threshold which will be called before executing the work,
165 * This hook is called in kthread content.
166 * So workqueue_set_max_active is called here.
167 */
168static inline void thresh_exec_hook(struct btrfs_workqueue *wq)
169{
170 int new_current_active;
171 long pending;
172 int need_change = 0;
173
174 if (wq->thresh == NO_THRESHOLD)
175 return;
176
177 atomic_dec(&wq->pending);
178 spin_lock(&wq->thres_lock);
179 /*
180 * Use wq->count to limit the calling frequency of
181 * workqueue_set_max_active.
182 */
183 wq->count++;
184 wq->count %= (wq->thresh / 4);
185 if (!wq->count)
186 goto out;
187 new_current_active = wq->current_active;
188
189 /*
190 * pending may be changed later, but it's OK since we really
191 * don't need it so accurate to calculate new_max_active.
192 */
193 pending = atomic_read(&wq->pending);
194 if (pending > wq->thresh)
195 new_current_active++;
196 if (pending < wq->thresh / 2)
197 new_current_active--;
198 new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
199 if (new_current_active != wq->current_active) {
200 need_change = 1;
201 wq->current_active = new_current_active;
202 }
203out:
204 spin_unlock(&wq->thres_lock);
205
206 if (need_change) {
207 workqueue_set_max_active(wq->normal_wq, wq->current_active);
208 }
209}
210
211static void run_ordered_work(struct btrfs_workqueue *wq,
212 struct btrfs_work *self)
213{
214 struct list_head *list = &wq->ordered_list;
215 struct btrfs_work *work;
216 spinlock_t *lock = &wq->list_lock;
217 unsigned long flags;
218 bool free_self = false;
219
220 while (1) {
221 spin_lock_irqsave(lock, flags);
222 if (list_empty(list))
223 break;
224 work = list_entry(list->next, struct btrfs_work,
225 ordered_list);
226 if (!test_bit(WORK_DONE_BIT, &work->flags))
227 break;
228 /*
229 * Orders all subsequent loads after reading WORK_DONE_BIT,
230 * paired with the smp_mb__before_atomic in btrfs_work_helper
231 * this guarantees that the ordered function will see all
232 * updates from ordinary work function.
233 */
234 smp_rmb();
235
236 /*
237 * we are going to call the ordered done function, but
238 * we leave the work item on the list as a barrier so
239 * that later work items that are done don't have their
240 * functions called before this one returns
241 */
242 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
243 break;
244 trace_btrfs_ordered_sched(work);
245 spin_unlock_irqrestore(lock, flags);
246 work->ordered_func(work, false);
247
248 /* now take the lock again and drop our item from the list */
249 spin_lock_irqsave(lock, flags);
250 list_del(&work->ordered_list);
251 spin_unlock_irqrestore(lock, flags);
252
253 if (work == self) {
254 /*
255 * This is the work item that the worker is currently
256 * executing.
257 *
258 * The kernel workqueue code guarantees non-reentrancy
259 * of work items. I.e., if a work item with the same
260 * address and work function is queued twice, the second
261 * execution is blocked until the first one finishes. A
262 * work item may be freed and recycled with the same
263 * work function; the workqueue code assumes that the
264 * original work item cannot depend on the recycled work
265 * item in that case (see find_worker_executing_work()).
266 *
267 * Note that different types of Btrfs work can depend on
268 * each other, and one type of work on one Btrfs
269 * filesystem may even depend on the same type of work
270 * on another Btrfs filesystem via, e.g., a loop device.
271 * Therefore, we must not allow the current work item to
272 * be recycled until we are really done, otherwise we
273 * break the above assumption and can deadlock.
274 */
275 free_self = true;
276 } else {
277 /*
278 * We don't want to call the ordered free functions with
279 * the lock held.
280 */
281 work->ordered_func(work, true);
282 /* NB: work must not be dereferenced past this point. */
283 trace_btrfs_all_work_done(wq->fs_info, work);
284 }
285 }
286 spin_unlock_irqrestore(lock, flags);
287
288 if (free_self) {
289 self->ordered_func(self, true);
290 /* NB: self must not be dereferenced past this point. */
291 trace_btrfs_all_work_done(wq->fs_info, self);
292 }
293}
294
295static void btrfs_work_helper(struct work_struct *normal_work)
296{
297 struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
298 normal_work);
299 struct btrfs_workqueue *wq = work->wq;
300 int need_order = 0;
301
302 /*
303 * We should not touch things inside work in the following cases:
304 * 1) after work->func() if it has no ordered_func(..., true) to free
305 * Since the struct is freed in work->func().
306 * 2) after setting WORK_DONE_BIT
307 * The work may be freed in other threads almost instantly.
308 * So we save the needed things here.
309 */
310 if (work->ordered_func)
311 need_order = 1;
312
313 trace_btrfs_work_sched(work);
314 thresh_exec_hook(wq);
315 work->func(work);
316 if (need_order) {
317 /*
318 * Ensures all memory accesses done in the work function are
319 * ordered before setting the WORK_DONE_BIT. Ensuring the thread
320 * which is going to executed the ordered work sees them.
321 * Pairs with the smp_rmb in run_ordered_work.
322 */
323 smp_mb__before_atomic();
324 set_bit(WORK_DONE_BIT, &work->flags);
325 run_ordered_work(wq, work);
326 } else {
327 /* NB: work must not be dereferenced past this point. */
328 trace_btrfs_all_work_done(wq->fs_info, work);
329 }
330}
331
332void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
333 btrfs_ordered_func_t ordered_func)
334{
335 work->func = func;
336 work->ordered_func = ordered_func;
337 INIT_WORK(&work->normal_work, btrfs_work_helper);
338 INIT_LIST_HEAD(&work->ordered_list);
339 work->flags = 0;
340}
341
342void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work)
343{
344 unsigned long flags;
345
346 work->wq = wq;
347 thresh_queue_hook(wq);
348 if (work->ordered_func) {
349 spin_lock_irqsave(&wq->list_lock, flags);
350 list_add_tail(&work->ordered_list, &wq->ordered_list);
351 spin_unlock_irqrestore(&wq->list_lock, flags);
352 }
353 trace_btrfs_work_queued(work);
354 queue_work(wq->normal_wq, &work->normal_work);
355}
356
357void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
358{
359 if (!wq)
360 return;
361 destroy_workqueue(wq->normal_wq);
362 trace_btrfs_workqueue_destroy(wq);
363 kfree(wq);
364}
365
366void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
367{
368 if (wq)
369 wq->limit_active = limit_active;
370}
371
372void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
373{
374 flush_workqueue(wq->normal_wq);
375}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 * Copyright (C) 2014 Fujitsu. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/kthread.h>
21#include <linux/slab.h>
22#include <linux/list.h>
23#include <linux/spinlock.h>
24#include <linux/freezer.h>
25#include "async-thread.h"
26#include "ctree.h"
27
28#define WORK_DONE_BIT 0
29#define WORK_ORDER_DONE_BIT 1
30#define WORK_HIGH_PRIO_BIT 2
31
32#define NO_THRESHOLD (-1)
33#define DFT_THRESHOLD (32)
34
35struct __btrfs_workqueue {
36 struct workqueue_struct *normal_wq;
37
38 /* File system this workqueue services */
39 struct btrfs_fs_info *fs_info;
40
41 /* List head pointing to ordered work list */
42 struct list_head ordered_list;
43
44 /* Spinlock for ordered_list */
45 spinlock_t list_lock;
46
47 /* Thresholding related variants */
48 atomic_t pending;
49
50 /* Up limit of concurrency workers */
51 int limit_active;
52
53 /* Current number of concurrency workers */
54 int current_active;
55
56 /* Threshold to change current_active */
57 int thresh;
58 unsigned int count;
59 spinlock_t thres_lock;
60};
61
62struct btrfs_workqueue {
63 struct __btrfs_workqueue *normal;
64 struct __btrfs_workqueue *high;
65};
66
67static void normal_work_helper(struct btrfs_work *work);
68
69#define BTRFS_WORK_HELPER(name) \
70void btrfs_##name(struct work_struct *arg) \
71{ \
72 struct btrfs_work *work = container_of(arg, struct btrfs_work, \
73 normal_work); \
74 normal_work_helper(work); \
75}
76
77struct btrfs_fs_info *
78btrfs_workqueue_owner(struct __btrfs_workqueue *wq)
79{
80 return wq->fs_info;
81}
82
83struct btrfs_fs_info *
84btrfs_work_owner(struct btrfs_work *work)
85{
86 return work->wq->fs_info;
87}
88
89bool btrfs_workqueue_normal_congested(struct btrfs_workqueue *wq)
90{
91 /*
92 * We could compare wq->normal->pending with num_online_cpus()
93 * to support "thresh == NO_THRESHOLD" case, but it requires
94 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
95 * postpone it until someone needs the support of that case.
96 */
97 if (wq->normal->thresh == NO_THRESHOLD)
98 return false;
99
100 return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2;
101}
102
103BTRFS_WORK_HELPER(worker_helper);
104BTRFS_WORK_HELPER(delalloc_helper);
105BTRFS_WORK_HELPER(flush_delalloc_helper);
106BTRFS_WORK_HELPER(cache_helper);
107BTRFS_WORK_HELPER(submit_helper);
108BTRFS_WORK_HELPER(fixup_helper);
109BTRFS_WORK_HELPER(endio_helper);
110BTRFS_WORK_HELPER(endio_meta_helper);
111BTRFS_WORK_HELPER(endio_meta_write_helper);
112BTRFS_WORK_HELPER(endio_raid56_helper);
113BTRFS_WORK_HELPER(endio_repair_helper);
114BTRFS_WORK_HELPER(rmw_helper);
115BTRFS_WORK_HELPER(endio_write_helper);
116BTRFS_WORK_HELPER(freespace_write_helper);
117BTRFS_WORK_HELPER(delayed_meta_helper);
118BTRFS_WORK_HELPER(readahead_helper);
119BTRFS_WORK_HELPER(qgroup_rescan_helper);
120BTRFS_WORK_HELPER(extent_refs_helper);
121BTRFS_WORK_HELPER(scrub_helper);
122BTRFS_WORK_HELPER(scrubwrc_helper);
123BTRFS_WORK_HELPER(scrubnc_helper);
124BTRFS_WORK_HELPER(scrubparity_helper);
125
126static struct __btrfs_workqueue *
127__btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name,
128 unsigned int flags, int limit_active, int thresh)
129{
130 struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
131
132 if (!ret)
133 return NULL;
134
135 ret->fs_info = fs_info;
136 ret->limit_active = limit_active;
137 atomic_set(&ret->pending, 0);
138 if (thresh == 0)
139 thresh = DFT_THRESHOLD;
140 /* For low threshold, disabling threshold is a better choice */
141 if (thresh < DFT_THRESHOLD) {
142 ret->current_active = limit_active;
143 ret->thresh = NO_THRESHOLD;
144 } else {
145 /*
146 * For threshold-able wq, let its concurrency grow on demand.
147 * Use minimal max_active at alloc time to reduce resource
148 * usage.
149 */
150 ret->current_active = 1;
151 ret->thresh = thresh;
152 }
153
154 if (flags & WQ_HIGHPRI)
155 ret->normal_wq = alloc_workqueue("%s-%s-high", flags,
156 ret->current_active, "btrfs",
157 name);
158 else
159 ret->normal_wq = alloc_workqueue("%s-%s", flags,
160 ret->current_active, "btrfs",
161 name);
162 if (!ret->normal_wq) {
163 kfree(ret);
164 return NULL;
165 }
166
167 INIT_LIST_HEAD(&ret->ordered_list);
168 spin_lock_init(&ret->list_lock);
169 spin_lock_init(&ret->thres_lock);
170 trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
171 return ret;
172}
173
174static inline void
175__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);
176
177struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
178 const char *name,
179 unsigned int flags,
180 int limit_active,
181 int thresh)
182{
183 struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
184
185 if (!ret)
186 return NULL;
187
188 ret->normal = __btrfs_alloc_workqueue(fs_info, name,
189 flags & ~WQ_HIGHPRI,
190 limit_active, thresh);
191 if (!ret->normal) {
192 kfree(ret);
193 return NULL;
194 }
195
196 if (flags & WQ_HIGHPRI) {
197 ret->high = __btrfs_alloc_workqueue(fs_info, name, flags,
198 limit_active, thresh);
199 if (!ret->high) {
200 __btrfs_destroy_workqueue(ret->normal);
201 kfree(ret);
202 return NULL;
203 }
204 }
205 return ret;
206}
207
208/*
209 * Hook for threshold which will be called in btrfs_queue_work.
210 * This hook WILL be called in IRQ handler context,
211 * so workqueue_set_max_active MUST NOT be called in this hook
212 */
213static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
214{
215 if (wq->thresh == NO_THRESHOLD)
216 return;
217 atomic_inc(&wq->pending);
218}
219
220/*
221 * Hook for threshold which will be called before executing the work,
222 * This hook is called in kthread content.
223 * So workqueue_set_max_active is called here.
224 */
225static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
226{
227 int new_current_active;
228 long pending;
229 int need_change = 0;
230
231 if (wq->thresh == NO_THRESHOLD)
232 return;
233
234 atomic_dec(&wq->pending);
235 spin_lock(&wq->thres_lock);
236 /*
237 * Use wq->count to limit the calling frequency of
238 * workqueue_set_max_active.
239 */
240 wq->count++;
241 wq->count %= (wq->thresh / 4);
242 if (!wq->count)
243 goto out;
244 new_current_active = wq->current_active;
245
246 /*
247 * pending may be changed later, but it's OK since we really
248 * don't need it so accurate to calculate new_max_active.
249 */
250 pending = atomic_read(&wq->pending);
251 if (pending > wq->thresh)
252 new_current_active++;
253 if (pending < wq->thresh / 2)
254 new_current_active--;
255 new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
256 if (new_current_active != wq->current_active) {
257 need_change = 1;
258 wq->current_active = new_current_active;
259 }
260out:
261 spin_unlock(&wq->thres_lock);
262
263 if (need_change) {
264 workqueue_set_max_active(wq->normal_wq, wq->current_active);
265 }
266}
267
268static void run_ordered_work(struct __btrfs_workqueue *wq)
269{
270 struct list_head *list = &wq->ordered_list;
271 struct btrfs_work *work;
272 spinlock_t *lock = &wq->list_lock;
273 unsigned long flags;
274
275 while (1) {
276 void *wtag;
277
278 spin_lock_irqsave(lock, flags);
279 if (list_empty(list))
280 break;
281 work = list_entry(list->next, struct btrfs_work,
282 ordered_list);
283 if (!test_bit(WORK_DONE_BIT, &work->flags))
284 break;
285
286 /*
287 * we are going to call the ordered done function, but
288 * we leave the work item on the list as a barrier so
289 * that later work items that are done don't have their
290 * functions called before this one returns
291 */
292 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
293 break;
294 trace_btrfs_ordered_sched(work);
295 spin_unlock_irqrestore(lock, flags);
296 work->ordered_func(work);
297
298 /* now take the lock again and drop our item from the list */
299 spin_lock_irqsave(lock, flags);
300 list_del(&work->ordered_list);
301 spin_unlock_irqrestore(lock, flags);
302
303 /*
304 * We don't want to call the ordered free functions with the
305 * lock held though. Save the work as tag for the trace event,
306 * because the callback could free the structure.
307 */
308 wtag = work;
309 work->ordered_free(work);
310 trace_btrfs_all_work_done(wq->fs_info, wtag);
311 }
312 spin_unlock_irqrestore(lock, flags);
313}
314
315static void normal_work_helper(struct btrfs_work *work)
316{
317 struct __btrfs_workqueue *wq;
318 void *wtag;
319 int need_order = 0;
320
321 /*
322 * We should not touch things inside work in the following cases:
323 * 1) after work->func() if it has no ordered_free
324 * Since the struct is freed in work->func().
325 * 2) after setting WORK_DONE_BIT
326 * The work may be freed in other threads almost instantly.
327 * So we save the needed things here.
328 */
329 if (work->ordered_func)
330 need_order = 1;
331 wq = work->wq;
332 /* Safe for tracepoints in case work gets freed by the callback */
333 wtag = work;
334
335 trace_btrfs_work_sched(work);
336 thresh_exec_hook(wq);
337 work->func(work);
338 if (need_order) {
339 set_bit(WORK_DONE_BIT, &work->flags);
340 run_ordered_work(wq);
341 }
342 if (!need_order)
343 trace_btrfs_all_work_done(wq->fs_info, wtag);
344}
345
346void btrfs_init_work(struct btrfs_work *work, btrfs_work_func_t uniq_func,
347 btrfs_func_t func,
348 btrfs_func_t ordered_func,
349 btrfs_func_t ordered_free)
350{
351 work->func = func;
352 work->ordered_func = ordered_func;
353 work->ordered_free = ordered_free;
354 INIT_WORK(&work->normal_work, uniq_func);
355 INIT_LIST_HEAD(&work->ordered_list);
356 work->flags = 0;
357}
358
359static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
360 struct btrfs_work *work)
361{
362 unsigned long flags;
363
364 work->wq = wq;
365 thresh_queue_hook(wq);
366 if (work->ordered_func) {
367 spin_lock_irqsave(&wq->list_lock, flags);
368 list_add_tail(&work->ordered_list, &wq->ordered_list);
369 spin_unlock_irqrestore(&wq->list_lock, flags);
370 }
371 trace_btrfs_work_queued(work);
372 queue_work(wq->normal_wq, &work->normal_work);
373}
374
375void btrfs_queue_work(struct btrfs_workqueue *wq,
376 struct btrfs_work *work)
377{
378 struct __btrfs_workqueue *dest_wq;
379
380 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
381 dest_wq = wq->high;
382 else
383 dest_wq = wq->normal;
384 __btrfs_queue_work(dest_wq, work);
385}
386
387static inline void
388__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
389{
390 destroy_workqueue(wq->normal_wq);
391 trace_btrfs_workqueue_destroy(wq);
392 kfree(wq);
393}
394
395void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
396{
397 if (!wq)
398 return;
399 if (wq->high)
400 __btrfs_destroy_workqueue(wq->high);
401 __btrfs_destroy_workqueue(wq->normal);
402 kfree(wq);
403}
404
405void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
406{
407 if (!wq)
408 return;
409 wq->normal->limit_active = limit_active;
410 if (wq->high)
411 wq->high->limit_active = limit_active;
412}
413
414void btrfs_set_work_high_priority(struct btrfs_work *work)
415{
416 set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
417}