Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/****************************************************************************
   2 *
   3 * Driver for the IFX 6x60 spi modem.
   4 *
   5 * Copyright (C) 2008 Option International
   6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   7 *		      Denis Joseph Barrow <d.barow@option.com>
   8 *		      Jan Dumon <j.dumon@option.com>
   9 *
  10 * Copyright (C) 2009, 2010 Intel Corp
  11 * Russ Gorby <russ.gorby@intel.com>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  25 * USA
  26 *
  27 * Driver modified by Intel from Option gtm501l_spi.c
  28 *
  29 * Notes
  30 * o	The driver currently assumes a single device only. If you need to
  31 *	change this then look for saved_ifx_dev and add a device lookup
  32 * o	The driver is intended to be big-endian safe but has never been
  33 *	tested that way (no suitable hardware). There are a couple of FIXME
  34 *	notes by areas that may need addressing
  35 * o	Some of the GPIO naming/setup assumptions may need revisiting if
  36 *	you need to use this driver for another platform.
  37 *
  38 *****************************************************************************/
  39#include <linux/dma-mapping.h>
  40#include <linux/module.h>
  41#include <linux/termios.h>
  42#include <linux/tty.h>
  43#include <linux/device.h>
  44#include <linux/spi/spi.h>
  45#include <linux/kfifo.h>
  46#include <linux/tty_flip.h>
  47#include <linux/timer.h>
  48#include <linux/serial.h>
  49#include <linux/interrupt.h>
  50#include <linux/irq.h>
  51#include <linux/rfkill.h>
  52#include <linux/fs.h>
  53#include <linux/ip.h>
  54#include <linux/dmapool.h>
  55#include <linux/gpio.h>
  56#include <linux/sched.h>
  57#include <linux/time.h>
  58#include <linux/wait.h>
  59#include <linux/pm.h>
  60#include <linux/pm_runtime.h>
  61#include <linux/spi/ifx_modem.h>
  62#include <linux/delay.h>
  63#include <linux/reboot.h>
  64
  65#include "ifx6x60.h"
  66
  67#define IFX_SPI_MORE_MASK		0x10
  68#define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
  69#define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
  70#define IFX_SPI_MODE			SPI_MODE_1
  71#define IFX_SPI_TTY_ID			0
  72#define IFX_SPI_TIMEOUT_SEC		2
  73#define IFX_SPI_HEADER_0		(-1)
  74#define IFX_SPI_HEADER_F		(-2)
  75
  76#define PO_POST_DELAY		200
  77#define IFX_MDM_RST_PMU	4
  78
  79/* forward reference */
  80static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  81static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  82				unsigned long event, void *data);
  83static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
  84
  85/* local variables */
  86static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
  87static struct tty_driver *tty_drv;
  88static struct ifx_spi_device *saved_ifx_dev;
  89static struct lock_class_key ifx_spi_key;
  90
  91static struct notifier_block ifx_modem_reboot_notifier_block = {
  92	.notifier_call = ifx_modem_reboot_callback,
  93};
  94
  95static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
  96{
  97	gpio_set_value(IFX_MDM_RST_PMU, 1);
  98	msleep(PO_POST_DELAY);
  99
 100	return 0;
 101}
 102
 103static int ifx_modem_reboot_callback(struct notifier_block *nfb,
 104				 unsigned long event, void *data)
 105{
 106	if (saved_ifx_dev)
 107		ifx_modem_power_off(saved_ifx_dev);
 108	else
 109		pr_warn("no ifx modem active;\n");
 110
 111	return NOTIFY_OK;
 112}
 113
 114/* GPIO/GPE settings */
 115
 116/**
 117 *	mrdy_set_high		-	set MRDY GPIO
 118 *	@ifx: device we are controlling
 119 *
 120 */
 121static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 122{
 123	gpio_set_value(ifx->gpio.mrdy, 1);
 124}
 125
 126/**
 127 *	mrdy_set_low		-	clear MRDY GPIO
 128 *	@ifx: device we are controlling
 129 *
 130 */
 131static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 132{
 133	gpio_set_value(ifx->gpio.mrdy, 0);
 134}
 135
 136/**
 137 *	ifx_spi_power_state_set
 138 *	@ifx_dev: our SPI device
 139 *	@val: bits to set
 140 *
 141 *	Set bit in power status and signal power system if status becomes non-0
 142 */
 143static void
 144ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 145{
 146	unsigned long flags;
 147
 148	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 149
 150	/*
 151	 * if power status is already non-0, just update, else
 152	 * tell power system
 153	 */
 154	if (!ifx_dev->power_status)
 155		pm_runtime_get(&ifx_dev->spi_dev->dev);
 156	ifx_dev->power_status |= val;
 157
 158	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 159}
 160
 161/**
 162 *	ifx_spi_power_state_clear	-	clear power bit
 163 *	@ifx_dev: our SPI device
 164 *	@val: bits to clear
 165 *
 166 *	clear bit in power status and signal power system if status becomes 0
 167 */
 168static void
 169ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 170{
 171	unsigned long flags;
 172
 173	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 174
 175	if (ifx_dev->power_status) {
 176		ifx_dev->power_status &= ~val;
 177		if (!ifx_dev->power_status)
 178			pm_runtime_put(&ifx_dev->spi_dev->dev);
 179	}
 180
 181	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 182}
 183
 184/**
 185 *	swap_buf_8
 186 *	@buf: our buffer
 187 *	@len : number of bytes (not words) in the buffer
 188 *	@end: end of buffer
 189 *
 190 *	Swap the contents of a buffer into big endian format
 191 */
 192static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 193{
 194	/* don't swap buffer if SPI word width is 8 bits */
 195	return;
 196}
 197
 198/**
 199 *	swap_buf_16
 200 *	@buf: our buffer
 201 *	@len : number of bytes (not words) in the buffer
 202 *	@end: end of buffer
 203 *
 204 *	Swap the contents of a buffer into big endian format
 205 */
 206static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 207{
 208	int n;
 209
 210	u16 *buf_16 = (u16 *)buf;
 211	len = ((len + 1) >> 1);
 212	if ((void *)&buf_16[len] > end) {
 213		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 214		       &buf_16[len], end);
 215		return;
 216	}
 217	for (n = 0; n < len; n++) {
 218		*buf_16 = cpu_to_be16(*buf_16);
 219		buf_16++;
 220	}
 221}
 222
 223/**
 224 *	swap_buf_32
 225 *	@buf: our buffer
 226 *	@len : number of bytes (not words) in the buffer
 227 *	@end: end of buffer
 228 *
 229 *	Swap the contents of a buffer into big endian format
 230 */
 231static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 232{
 233	int n;
 234
 235	u32 *buf_32 = (u32 *)buf;
 236	len = (len + 3) >> 2;
 237
 238	if ((void *)&buf_32[len] > end) {
 239		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 240		       &buf_32[len], end);
 241		return;
 242	}
 243	for (n = 0; n < len; n++) {
 244		*buf_32 = cpu_to_be32(*buf_32);
 245		buf_32++;
 246	}
 247}
 248
 249/**
 250 *	mrdy_assert		-	assert MRDY line
 251 *	@ifx_dev: our SPI device
 252 *
 253 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 254 *	now.
 255 *
 256 *	FIXME: Can SRDY even go high as we are running this code ?
 257 */
 258static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 259{
 260	int val = gpio_get_value(ifx_dev->gpio.srdy);
 261	if (!val) {
 262		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 263				      &ifx_dev->flags)) {
 264			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 265
 266		}
 267	}
 268	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 269	mrdy_set_high(ifx_dev);
 270}
 271
 272/**
 273 *	ifx_spi_timeout		-	SPI timeout
 274 *	@arg: our SPI device
 275 *
 276 *	The SPI has timed out: hang up the tty. Users will then see a hangup
 277 *	and error events.
 278 */
 279static void ifx_spi_timeout(unsigned long arg)
 280{
 281	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
 282
 283	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 284	tty_port_tty_hangup(&ifx_dev->tty_port, false);
 285	mrdy_set_low(ifx_dev);
 286	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 287}
 288
 289/* char/tty operations */
 290
 291/**
 292 *	ifx_spi_tiocmget	-	get modem lines
 293 *	@tty: our tty device
 294 *	@filp: file handle issuing the request
 295 *
 296 *	Map the signal state into Linux modem flags and report the value
 297 *	in Linux terms
 298 */
 299static int ifx_spi_tiocmget(struct tty_struct *tty)
 300{
 301	unsigned int value;
 302	struct ifx_spi_device *ifx_dev = tty->driver_data;
 303
 304	value =
 305	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 306	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 307	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 308	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 309	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 310	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 311	return value;
 312}
 313
 314/**
 315 *	ifx_spi_tiocmset	-	set modem bits
 316 *	@tty: the tty structure
 317 *	@set: bits to set
 318 *	@clear: bits to clear
 319 *
 320 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
 321 *	and flag that an update to the modem is needed.
 322 *
 323 *	FIXME: do we need to kick the tranfers when we do this ?
 324 */
 325static int ifx_spi_tiocmset(struct tty_struct *tty,
 326			    unsigned int set, unsigned int clear)
 327{
 328	struct ifx_spi_device *ifx_dev = tty->driver_data;
 329
 330	if (set & TIOCM_RTS)
 331		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 332	if (set & TIOCM_DTR)
 333		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 334	if (clear & TIOCM_RTS)
 335		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 336	if (clear & TIOCM_DTR)
 337		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 338
 339	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 340	return 0;
 341}
 342
 343/**
 344 *	ifx_spi_open	-	called on tty open
 345 *	@tty: our tty device
 346 *	@filp: file handle being associated with the tty
 347 *
 348 *	Open the tty interface. We let the tty_port layer do all the work
 349 *	for us.
 350 *
 351 *	FIXME: Remove single device assumption and saved_ifx_dev
 352 */
 353static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 354{
 355	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 356}
 357
 358/**
 359 *	ifx_spi_close	-	called when our tty closes
 360 *	@tty: the tty being closed
 361 *	@filp: the file handle being closed
 362 *
 363 *	Perform the close of the tty. We use the tty_port layer to do all
 364 *	our hard work.
 365 */
 366static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 367{
 368	struct ifx_spi_device *ifx_dev = tty->driver_data;
 369	tty_port_close(&ifx_dev->tty_port, tty, filp);
 370	/* FIXME: should we do an ifx_spi_reset here ? */
 371}
 372
 373/**
 374 *	ifx_decode_spi_header	-	decode received header
 375 *	@buffer: the received data
 376 *	@length: decoded length
 377 *	@more: decoded more flag
 378 *	@received_cts: status of cts we received
 379 *
 380 *	Note how received_cts is handled -- if header is all F it is left
 381 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
 382 *	taken from the incoming header.
 383 *
 384 *	FIXME: endianness
 385 */
 386static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 387			unsigned char *more, unsigned char *received_cts)
 388{
 389	u16 h1;
 390	u16 h2;
 391	u16 *in_buffer = (u16 *)buffer;
 392
 393	h1 = *in_buffer;
 394	h2 = *(in_buffer+1);
 395
 396	if (h1 == 0 && h2 == 0) {
 397		*received_cts = 0;
 398		*more = 0;
 399		return IFX_SPI_HEADER_0;
 400	} else if (h1 == 0xffff && h2 == 0xffff) {
 401		*more = 0;
 402		/* spi_slave_cts remains as it was */
 403		return IFX_SPI_HEADER_F;
 404	}
 405
 406	*length = h1 & 0xfff;	/* upper bits of byte are flags */
 407	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 408	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 409	return 0;
 410}
 411
 412/**
 413 *	ifx_setup_spi_header	-	set header fields
 414 *	@txbuffer: pointer to start of SPI buffer
 415 *	@tx_count: bytes
 416 *	@more: indicate if more to follow
 417 *
 418 *	Format up an SPI header for a transfer
 419 *
 420 *	FIXME: endianness?
 421 */
 422static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 423					unsigned char more)
 424{
 425	*(u16 *)(txbuffer) = tx_count;
 426	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 427	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 428}
 429
 430/**
 431 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
 432 *	@ifx_dev: our SPI device
 433 *
 434 *	The transmit buffr needs a header and various other bits of
 435 *	information followed by as much data as we can pull from the FIFO
 436 *	and transfer. This function formats up a suitable buffer in the
 437 *	ifx_dev->tx_buffer
 438 *
 439 *	FIXME: performance - should we wake the tty when the queue is half
 440 *			     empty ?
 441 */
 442static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 443{
 444	int temp_count;
 445	int queue_length;
 446	int tx_count;
 447	unsigned char *tx_buffer;
 448
 449	tx_buffer = ifx_dev->tx_buffer;
 450
 451	/* make room for required SPI header */
 452	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 453	tx_count = IFX_SPI_HEADER_OVERHEAD;
 454
 455	/* clear to signal no more data if this turns out to be the
 456	 * last buffer sent in a sequence */
 457	ifx_dev->spi_more = 0;
 458
 459	/* if modem cts is set, just send empty buffer */
 460	if (!ifx_dev->spi_slave_cts) {
 461		/* see if there's tx data */
 462		queue_length = kfifo_len(&ifx_dev->tx_fifo);
 463		if (queue_length != 0) {
 464			/* data to mux -- see if there's room for it */
 465			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 466			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 467					tx_buffer, temp_count,
 468					&ifx_dev->fifo_lock);
 469
 470			/* update buffer pointer and data count in message */
 471			tx_buffer += temp_count;
 472			tx_count += temp_count;
 473			if (temp_count == queue_length)
 474				/* poke port to get more data */
 475				tty_port_tty_wakeup(&ifx_dev->tty_port);
 476			else /* more data in port, use next SPI message */
 477				ifx_dev->spi_more = 1;
 478		}
 479	}
 480	/* have data and info for header -- set up SPI header in buffer */
 481	/* spi header needs payload size, not entire buffer size */
 482	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 483					tx_count-IFX_SPI_HEADER_OVERHEAD,
 484					ifx_dev->spi_more);
 485	/* swap actual data in the buffer */
 486	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 487		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 488	return tx_count;
 489}
 490
 491/**
 492 *	ifx_spi_write		-	line discipline write
 493 *	@tty: our tty device
 494 *	@buf: pointer to buffer to write (kernel space)
 495 *	@count: size of buffer
 496 *
 497 *	Write the characters we have been given into the FIFO. If the device
 498 *	is not active then activate it, when the SRDY line is asserted back
 499 *	this will commence I/O
 500 */
 501static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 502			 int count)
 503{
 504	struct ifx_spi_device *ifx_dev = tty->driver_data;
 505	unsigned char *tmp_buf = (unsigned char *)buf;
 506	unsigned long flags;
 507	bool is_fifo_empty;
 508	int tx_count;
 509
 510	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 511	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 512	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 513	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 514	if (is_fifo_empty)
 515		mrdy_assert(ifx_dev);
 516
 517	return tx_count;
 518}
 519
 520/**
 521 *	ifx_spi_chars_in_buffer	-	line discipline helper
 522 *	@tty: our tty device
 523 *
 524 *	Report how much data we can accept before we drop bytes. As we use
 525 *	a simple FIFO this is nice and easy.
 526 */
 527static int ifx_spi_write_room(struct tty_struct *tty)
 528{
 529	struct ifx_spi_device *ifx_dev = tty->driver_data;
 530	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 531}
 532
 533/**
 534 *	ifx_spi_chars_in_buffer	-	line discipline helper
 535 *	@tty: our tty device
 536 *
 537 *	Report how many characters we have buffered. In our case this is the
 538 *	number of bytes sitting in our transmit FIFO.
 539 */
 540static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 541{
 542	struct ifx_spi_device *ifx_dev = tty->driver_data;
 543	return kfifo_len(&ifx_dev->tx_fifo);
 544}
 545
 546/**
 547 *	ifx_port_hangup
 548 *	@port: our tty port
 549 *
 550 *	tty port hang up. Called when tty_hangup processing is invoked either
 551 *	by loss of carrier, or by software (eg vhangup). Serialized against
 552 *	activate/shutdown by the tty layer.
 553 */
 554static void ifx_spi_hangup(struct tty_struct *tty)
 555{
 556	struct ifx_spi_device *ifx_dev = tty->driver_data;
 557	tty_port_hangup(&ifx_dev->tty_port);
 558}
 559
 560/**
 561 *	ifx_port_activate
 562 *	@port: our tty port
 563 *
 564 *	tty port activate method - called for first open. Serialized
 565 *	with hangup and shutdown by the tty layer.
 566 */
 567static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 568{
 569	struct ifx_spi_device *ifx_dev =
 570		container_of(port, struct ifx_spi_device, tty_port);
 571
 572	/* clear any old data; can't do this in 'close' */
 573	kfifo_reset(&ifx_dev->tx_fifo);
 574
 575	/* clear any flag which may be set in port shutdown procedure */
 576	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 577	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 578
 579	/* put port data into this tty */
 580	tty->driver_data = ifx_dev;
 581
 582	/* allows flip string push from int context */
 583	port->low_latency = 1;
 584
 585	/* set flag to allows data transfer */
 586	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 587
 588	return 0;
 589}
 590
 591/**
 592 *	ifx_port_shutdown
 593 *	@port: our tty port
 594 *
 595 *	tty port shutdown method - called for last port close. Serialized
 596 *	with hangup and activate by the tty layer.
 597 */
 598static void ifx_port_shutdown(struct tty_port *port)
 599{
 600	struct ifx_spi_device *ifx_dev =
 601		container_of(port, struct ifx_spi_device, tty_port);
 602
 603	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 604	mrdy_set_low(ifx_dev);
 605	del_timer(&ifx_dev->spi_timer);
 606	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 607	tasklet_kill(&ifx_dev->io_work_tasklet);
 608}
 609
 610static const struct tty_port_operations ifx_tty_port_ops = {
 611	.activate = ifx_port_activate,
 612	.shutdown = ifx_port_shutdown,
 613};
 614
 615static const struct tty_operations ifx_spi_serial_ops = {
 616	.open = ifx_spi_open,
 617	.close = ifx_spi_close,
 618	.write = ifx_spi_write,
 619	.hangup = ifx_spi_hangup,
 620	.write_room = ifx_spi_write_room,
 621	.chars_in_buffer = ifx_spi_chars_in_buffer,
 622	.tiocmget = ifx_spi_tiocmget,
 623	.tiocmset = ifx_spi_tiocmset,
 624};
 625
 626/**
 627 *	ifx_spi_insert_fip_string	-	queue received data
 628 *	@ifx_ser: our SPI device
 629 *	@chars: buffer we have received
 630 *	@size: number of chars reeived
 631 *
 632 *	Queue bytes to the tty assuming the tty side is currently open. If
 633 *	not the discard the data.
 634 */
 635static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 636				    unsigned char *chars, size_t size)
 637{
 638	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 639	tty_flip_buffer_push(&ifx_dev->tty_port);
 640}
 641
 642/**
 643 *	ifx_spi_complete	-	SPI transfer completed
 644 *	@ctx: our SPI device
 645 *
 646 *	An SPI transfer has completed. Process any received data and kick off
 647 *	any further transmits we can commence.
 648 */
 649static void ifx_spi_complete(void *ctx)
 650{
 651	struct ifx_spi_device *ifx_dev = ctx;
 652	int length;
 653	int actual_length;
 654	unsigned char more = 0;
 655	unsigned char cts;
 656	int local_write_pending = 0;
 657	int queue_length;
 658	int srdy;
 659	int decode_result;
 660
 661	mrdy_set_low(ifx_dev);
 662
 663	if (!ifx_dev->spi_msg.status) {
 664		/* check header validity, get comm flags */
 665		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 666			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 667		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 668				&length, &more, &cts);
 669		if (decode_result == IFX_SPI_HEADER_0) {
 670			dev_dbg(&ifx_dev->spi_dev->dev,
 671				"ignore input: invalid header 0");
 672			ifx_dev->spi_slave_cts = 0;
 673			goto complete_exit;
 674		} else if (decode_result == IFX_SPI_HEADER_F) {
 675			dev_dbg(&ifx_dev->spi_dev->dev,
 676				"ignore input: invalid header F");
 677			goto complete_exit;
 678		}
 679
 680		ifx_dev->spi_slave_cts = cts;
 681
 682		actual_length = min((unsigned int)length,
 683					ifx_dev->spi_msg.actual_length);
 684		ifx_dev->swap_buf(
 685			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 686			 actual_length,
 687			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 688		ifx_spi_insert_flip_string(
 689			ifx_dev,
 690			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 691			(size_t)actual_length);
 692	} else {
 693		more = 0;
 694		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 695		       ifx_dev->spi_msg.status);
 696	}
 697
 698complete_exit:
 699	if (ifx_dev->write_pending) {
 700		ifx_dev->write_pending = 0;
 701		local_write_pending = 1;
 702	}
 703
 704	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 705
 706	queue_length = kfifo_len(&ifx_dev->tx_fifo);
 707	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 708	if (!srdy)
 709		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 710
 711	/* schedule output if there is more to do */
 712	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 713		tasklet_schedule(&ifx_dev->io_work_tasklet);
 714	else {
 715		if (more || ifx_dev->spi_more || queue_length > 0 ||
 716			local_write_pending) {
 717			if (ifx_dev->spi_slave_cts) {
 718				if (more)
 719					mrdy_assert(ifx_dev);
 720			} else
 721				mrdy_assert(ifx_dev);
 722		} else {
 723			/*
 724			 * poke line discipline driver if any for more data
 725			 * may or may not get more data to write
 726			 * for now, say not busy
 727			 */
 728			ifx_spi_power_state_clear(ifx_dev,
 729						  IFX_SPI_POWER_DATA_PENDING);
 730			tty_port_tty_wakeup(&ifx_dev->tty_port);
 731		}
 732	}
 733}
 734
 735/**
 736 *	ifx_spio_io		-	I/O tasklet
 737 *	@data: our SPI device
 738 *
 739 *	Queue data for transmission if possible and then kick off the
 740 *	transfer.
 741 */
 742static void ifx_spi_io(unsigned long data)
 743{
 744	int retval;
 745	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 746
 747	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 748		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 749		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 750			ifx_dev->gpio.unack_srdy_int_nb--;
 751
 752		ifx_spi_prepare_tx_buffer(ifx_dev);
 753
 754		spi_message_init(&ifx_dev->spi_msg);
 755		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 756
 757		ifx_dev->spi_msg.context = ifx_dev;
 758		ifx_dev->spi_msg.complete = ifx_spi_complete;
 759
 760		/* set up our spi transfer */
 761		/* note len is BYTES, not transfers */
 762		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 763		ifx_dev->spi_xfer.cs_change = 0;
 764		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 765		/* ifx_dev->spi_xfer.speed_hz = 390625; */
 766		ifx_dev->spi_xfer.bits_per_word =
 767			ifx_dev->spi_dev->bits_per_word;
 768
 769		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 770		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 771
 772		/*
 773		 * setup dma pointers
 774		 */
 775		if (ifx_dev->use_dma) {
 776			ifx_dev->spi_msg.is_dma_mapped = 1;
 777			ifx_dev->tx_dma = ifx_dev->tx_bus;
 778			ifx_dev->rx_dma = ifx_dev->rx_bus;
 779			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 780			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 781		} else {
 782			ifx_dev->spi_msg.is_dma_mapped = 0;
 783			ifx_dev->tx_dma = (dma_addr_t)0;
 784			ifx_dev->rx_dma = (dma_addr_t)0;
 785			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 786			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 787		}
 788
 789		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 790
 791		/* Assert MRDY. This may have already been done by the write
 792		 * routine.
 793		 */
 794		mrdy_assert(ifx_dev);
 795
 796		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 797		if (retval) {
 798			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 799				  &ifx_dev->flags);
 800			tasklet_schedule(&ifx_dev->io_work_tasklet);
 801			return;
 802		}
 803	} else
 804		ifx_dev->write_pending = 1;
 805}
 806
 807/**
 808 *	ifx_spi_free_port	-	free up the tty side
 809 *	@ifx_dev: IFX device going away
 810 *
 811 *	Unregister and free up a port when the device goes away
 812 */
 813static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 814{
 815	if (ifx_dev->tty_dev)
 816		tty_unregister_device(tty_drv, ifx_dev->minor);
 817	tty_port_destroy(&ifx_dev->tty_port);
 818	kfifo_free(&ifx_dev->tx_fifo);
 819}
 820
 821/**
 822 *	ifx_spi_create_port	-	create a new port
 823 *	@ifx_dev: our spi device
 824 *
 825 *	Allocate and initialise the tty port that goes with this interface
 826 *	and add it to the tty layer so that it can be opened.
 827 */
 828static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 829{
 830	int ret = 0;
 831	struct tty_port *pport = &ifx_dev->tty_port;
 832
 833	spin_lock_init(&ifx_dev->fifo_lock);
 834	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 835		&ifx_spi_key, 0);
 836
 837	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 838		ret = -ENOMEM;
 839		goto error_ret;
 840	}
 841
 842	tty_port_init(pport);
 843	pport->ops = &ifx_tty_port_ops;
 844	ifx_dev->minor = IFX_SPI_TTY_ID;
 845	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 846			ifx_dev->minor, &ifx_dev->spi_dev->dev);
 847	if (IS_ERR(ifx_dev->tty_dev)) {
 848		dev_dbg(&ifx_dev->spi_dev->dev,
 849			"%s: registering tty device failed", __func__);
 850		ret = PTR_ERR(ifx_dev->tty_dev);
 851		goto error_port;
 852	}
 853	return 0;
 854
 855error_port:
 856	tty_port_destroy(pport);
 857error_ret:
 858	ifx_spi_free_port(ifx_dev);
 859	return ret;
 860}
 861
 862/**
 863 *	ifx_spi_handle_srdy		-	handle SRDY
 864 *	@ifx_dev: device asserting SRDY
 865 *
 866 *	Check our device state and see what we need to kick off when SRDY
 867 *	is asserted. This usually means killing the timer and firing off the
 868 *	I/O processing.
 869 */
 870static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 871{
 872	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 873		del_timer(&ifx_dev->spi_timer);
 874		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 875	}
 876
 877	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 878
 879	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 880		tasklet_schedule(&ifx_dev->io_work_tasklet);
 881	else
 882		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 883}
 884
 885/**
 886 *	ifx_spi_srdy_interrupt	-	SRDY asserted
 887 *	@irq: our IRQ number
 888 *	@dev: our ifx device
 889 *
 890 *	The modem asserted SRDY. Handle the srdy event
 891 */
 892static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 893{
 894	struct ifx_spi_device *ifx_dev = dev;
 895	ifx_dev->gpio.unack_srdy_int_nb++;
 896	ifx_spi_handle_srdy(ifx_dev);
 897	return IRQ_HANDLED;
 898}
 899
 900/**
 901 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
 902 *	@irq: interrupt number
 903 *	@dev: our device pointer
 904 *
 905 *	The modem has either entered or left reset state. Check the GPIO
 906 *	line to see which.
 907 *
 908 *	FIXME: review locking on MR_INPROGRESS versus
 909 *	parallel unsolicited reset/solicited reset
 910 */
 911static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 912{
 913	struct ifx_spi_device *ifx_dev = dev;
 914	int val = gpio_get_value(ifx_dev->gpio.reset_out);
 915	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 916
 917	if (val == 0) {
 918		/* entered reset */
 919		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 920		if (!solreset) {
 921			/* unsolicited reset  */
 922			tty_port_tty_hangup(&ifx_dev->tty_port, false);
 923		}
 924	} else {
 925		/* exited reset */
 926		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 927		if (solreset) {
 928			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 929			wake_up(&ifx_dev->mdm_reset_wait);
 930		}
 931	}
 932	return IRQ_HANDLED;
 933}
 934
 935/**
 936 *	ifx_spi_free_device - free device
 937 *	@ifx_dev: device to free
 938 *
 939 *	Free the IFX device
 940 */
 941static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 942{
 943	ifx_spi_free_port(ifx_dev);
 944	dma_free_coherent(&ifx_dev->spi_dev->dev,
 945				IFX_SPI_TRANSFER_SIZE,
 946				ifx_dev->tx_buffer,
 947				ifx_dev->tx_bus);
 948	dma_free_coherent(&ifx_dev->spi_dev->dev,
 949				IFX_SPI_TRANSFER_SIZE,
 950				ifx_dev->rx_buffer,
 951				ifx_dev->rx_bus);
 952}
 953
 954/**
 955 *	ifx_spi_reset	-	reset modem
 956 *	@ifx_dev: modem to reset
 957 *
 958 *	Perform a reset on the modem
 959 */
 960static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 961{
 962	int ret;
 963	/*
 964	 * set up modem power, reset
 965	 *
 966	 * delays are required on some platforms for the modem
 967	 * to reset properly
 968	 */
 969	set_bit(MR_START, &ifx_dev->mdm_reset_state);
 970	gpio_set_value(ifx_dev->gpio.po, 0);
 971	gpio_set_value(ifx_dev->gpio.reset, 0);
 972	msleep(25);
 973	gpio_set_value(ifx_dev->gpio.reset, 1);
 974	msleep(1);
 975	gpio_set_value(ifx_dev->gpio.po, 1);
 976	msleep(1);
 977	gpio_set_value(ifx_dev->gpio.po, 0);
 978	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 979				 test_bit(MR_COMPLETE,
 980					  &ifx_dev->mdm_reset_state),
 981				 IFX_RESET_TIMEOUT);
 982	if (!ret)
 983		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 984			 ifx_dev->mdm_reset_state);
 985
 986	ifx_dev->mdm_reset_state = 0;
 987	return ret;
 988}
 989
 990/**
 991 *	ifx_spi_spi_probe	-	probe callback
 992 *	@spi: our possible matching SPI device
 993 *
 994 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
 995 *	GPIO setup.
 996 *
 997 *	FIXME:
 998 *	-	Support for multiple devices
 999 *	-	Split out MID specific GPIO handling eventually
1000 */
1001
1002static int ifx_spi_spi_probe(struct spi_device *spi)
1003{
1004	int ret;
1005	int srdy;
1006	struct ifx_modem_platform_data *pl_data;
1007	struct ifx_spi_device *ifx_dev;
1008
1009	if (saved_ifx_dev) {
1010		dev_dbg(&spi->dev, "ignoring subsequent detection");
1011		return -ENODEV;
1012	}
1013
1014	pl_data = dev_get_platdata(&spi->dev);
1015	if (!pl_data) {
1016		dev_err(&spi->dev, "missing platform data!");
1017		return -ENODEV;
1018	}
1019
1020	/* initialize structure to hold our device variables */
1021	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1022	if (!ifx_dev) {
1023		dev_err(&spi->dev, "spi device allocation failed");
1024		return -ENOMEM;
1025	}
1026	saved_ifx_dev = ifx_dev;
1027	ifx_dev->spi_dev = spi;
1028	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1029	spin_lock_init(&ifx_dev->write_lock);
1030	spin_lock_init(&ifx_dev->power_lock);
1031	ifx_dev->power_status = 0;
1032	init_timer(&ifx_dev->spi_timer);
1033	ifx_dev->spi_timer.function = ifx_spi_timeout;
1034	ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
1035	ifx_dev->modem = pl_data->modem_type;
1036	ifx_dev->use_dma = pl_data->use_dma;
1037	ifx_dev->max_hz = pl_data->max_hz;
1038	/* initialize spi mode, etc */
1039	spi->max_speed_hz = ifx_dev->max_hz;
1040	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1041	spi->bits_per_word = spi_bpw;
1042	ret = spi_setup(spi);
1043	if (ret) {
1044		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1045		kfree(ifx_dev);
1046		return -ENODEV;
1047	}
1048
1049	/* init swap_buf function according to word width configuration */
1050	if (spi->bits_per_word == 32)
1051		ifx_dev->swap_buf = swap_buf_32;
1052	else if (spi->bits_per_word == 16)
1053		ifx_dev->swap_buf = swap_buf_16;
1054	else
1055		ifx_dev->swap_buf = swap_buf_8;
1056
1057	/* ensure SPI protocol flags are initialized to enable transfer */
1058	ifx_dev->spi_more = 0;
1059	ifx_dev->spi_slave_cts = 0;
1060
1061	/*initialize transfer and dma buffers */
1062	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1063				IFX_SPI_TRANSFER_SIZE,
1064				&ifx_dev->tx_bus,
1065				GFP_KERNEL);
1066	if (!ifx_dev->tx_buffer) {
1067		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1068		ret = -ENOMEM;
1069		goto error_ret;
1070	}
1071	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1072				IFX_SPI_TRANSFER_SIZE,
1073				&ifx_dev->rx_bus,
1074				GFP_KERNEL);
1075	if (!ifx_dev->rx_buffer) {
1076		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1077		ret = -ENOMEM;
1078		goto error_ret;
1079	}
1080
1081	/* initialize waitq for modem reset */
1082	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1083
1084	spi_set_drvdata(spi, ifx_dev);
1085	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1086						(unsigned long)ifx_dev);
1087
1088	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1089
1090	/* create our tty port */
1091	ret = ifx_spi_create_port(ifx_dev);
1092	if (ret != 0) {
1093		dev_err(&spi->dev, "create default tty port failed");
1094		goto error_ret;
1095	}
1096
1097	ifx_dev->gpio.reset = pl_data->rst_pmu;
1098	ifx_dev->gpio.po = pl_data->pwr_on;
1099	ifx_dev->gpio.mrdy = pl_data->mrdy;
1100	ifx_dev->gpio.srdy = pl_data->srdy;
1101	ifx_dev->gpio.reset_out = pl_data->rst_out;
1102
1103	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1104		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1105		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1106
1107	/* Configure gpios */
1108	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1109	if (ret < 0) {
1110		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1111			ifx_dev->gpio.reset);
1112		goto error_ret;
1113	}
1114	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1115	ret += gpio_export(ifx_dev->gpio.reset, 1);
1116	if (ret) {
1117		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1118			ifx_dev->gpio.reset);
1119		ret = -EBUSY;
1120		goto error_ret2;
1121	}
1122
1123	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1124	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1125	ret += gpio_export(ifx_dev->gpio.po, 1);
1126	if (ret) {
1127		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1128			ifx_dev->gpio.po);
1129		ret = -EBUSY;
1130		goto error_ret3;
1131	}
1132
1133	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1134	if (ret < 0) {
1135		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1136			ifx_dev->gpio.mrdy);
1137		goto error_ret3;
1138	}
1139	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1140	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1141	if (ret) {
1142		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1143			ifx_dev->gpio.mrdy);
1144		ret = -EBUSY;
1145		goto error_ret4;
1146	}
1147
1148	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1149	if (ret < 0) {
1150		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1151			ifx_dev->gpio.srdy);
1152		ret = -EBUSY;
1153		goto error_ret4;
1154	}
1155	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1156	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1157	if (ret) {
1158		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1159			ifx_dev->gpio.srdy);
1160		ret = -EBUSY;
1161		goto error_ret5;
1162	}
1163
1164	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1165	if (ret < 0) {
1166		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1167			ifx_dev->gpio.reset_out);
1168		goto error_ret5;
1169	}
1170	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1171	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1172	if (ret) {
1173		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1174			ifx_dev->gpio.reset_out);
1175		ret = -EBUSY;
1176		goto error_ret6;
1177	}
1178
1179	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1180			  ifx_spi_reset_interrupt,
1181			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1182			  ifx_dev);
1183	if (ret) {
1184		dev_err(&spi->dev, "Unable to get irq %x\n",
1185			gpio_to_irq(ifx_dev->gpio.reset_out));
1186		goto error_ret6;
1187	}
1188
1189	ret = ifx_spi_reset(ifx_dev);
1190
1191	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1192			  ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1193			  ifx_dev);
1194	if (ret) {
1195		dev_err(&spi->dev, "Unable to get irq %x",
1196			gpio_to_irq(ifx_dev->gpio.srdy));
1197		goto error_ret7;
1198	}
1199
1200	/* set pm runtime power state and register with power system */
1201	pm_runtime_set_active(&spi->dev);
1202	pm_runtime_enable(&spi->dev);
1203
1204	/* handle case that modem is already signaling SRDY */
1205	/* no outgoing tty open at this point, this just satisfies the
1206	 * modem's read and should reset communication properly
1207	 */
1208	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1209
1210	if (srdy) {
1211		mrdy_assert(ifx_dev);
1212		ifx_spi_handle_srdy(ifx_dev);
1213	} else
1214		mrdy_set_low(ifx_dev);
1215	return 0;
1216
1217error_ret7:
1218	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1219error_ret6:
1220	gpio_free(ifx_dev->gpio.srdy);
1221error_ret5:
1222	gpio_free(ifx_dev->gpio.mrdy);
1223error_ret4:
1224	gpio_free(ifx_dev->gpio.reset);
1225error_ret3:
1226	gpio_free(ifx_dev->gpio.po);
1227error_ret2:
1228	gpio_free(ifx_dev->gpio.reset_out);
1229error_ret:
1230	ifx_spi_free_device(ifx_dev);
1231	saved_ifx_dev = NULL;
1232	return ret;
1233}
1234
1235/**
1236 *	ifx_spi_spi_remove	-	SPI device was removed
1237 *	@spi: SPI device
1238 *
1239 *	FIXME: We should be shutting the device down here not in
1240 *	the module unload path.
1241 */
1242
1243static int ifx_spi_spi_remove(struct spi_device *spi)
1244{
1245	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1246	/* stop activity */
1247	tasklet_kill(&ifx_dev->io_work_tasklet);
1248	/* free irq */
1249	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1250	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1251
1252	gpio_free(ifx_dev->gpio.srdy);
1253	gpio_free(ifx_dev->gpio.mrdy);
1254	gpio_free(ifx_dev->gpio.reset);
1255	gpio_free(ifx_dev->gpio.po);
1256	gpio_free(ifx_dev->gpio.reset_out);
1257
1258	/* free allocations */
1259	ifx_spi_free_device(ifx_dev);
1260
1261	saved_ifx_dev = NULL;
1262	return 0;
1263}
1264
1265/**
1266 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1267 *	@spi: SPI device
1268 *
1269 *	No action needs to be taken here
1270 */
1271
1272static void ifx_spi_spi_shutdown(struct spi_device *spi)
1273{
1274	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1275
1276	ifx_modem_power_off(ifx_dev);
1277}
1278
1279/*
1280 * various suspends and resumes have nothing to do
1281 * no hardware to save state for
1282 */
1283
1284/**
1285 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1286 *	@dev: device being suspended
1287 *
1288 *	Suspend the modem. No action needed on Intel MID platforms, may
1289 *	need extending for other systems.
1290 */
1291static int ifx_spi_pm_suspend(struct device *dev)
1292{
1293	return 0;
1294}
1295
1296/**
1297 *	ifx_spi_pm_resume	-	resume modem on system resume
1298 *	@dev: device being suspended
1299 *
1300 *	Allow the modem to resume. No action needed.
1301 *
1302 *	FIXME: do we need to reset anything here ?
1303 */
1304static int ifx_spi_pm_resume(struct device *dev)
1305{
1306	return 0;
1307}
1308
1309/**
1310 *	ifx_spi_pm_runtime_resume	-	suspend modem
1311 *	@dev: device being suspended
1312 *
1313 *	Allow the modem to resume. No action needed.
1314 */
1315static int ifx_spi_pm_runtime_resume(struct device *dev)
1316{
1317	return 0;
1318}
1319
1320/**
1321 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1322 *	@dev: device being suspended
1323 *
1324 *	Allow the modem to suspend and thus suspend to continue up the
1325 *	device tree.
1326 */
1327static int ifx_spi_pm_runtime_suspend(struct device *dev)
1328{
1329	return 0;
1330}
1331
1332/**
1333 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1334 *	@dev: our device
1335 *
1336 *	Check conditions and queue runtime suspend if idle.
1337 */
1338static int ifx_spi_pm_runtime_idle(struct device *dev)
1339{
1340	struct spi_device *spi = to_spi_device(dev);
1341	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1342
1343	if (!ifx_dev->power_status)
1344		pm_runtime_suspend(dev);
1345
1346	return 0;
1347}
1348
1349static const struct dev_pm_ops ifx_spi_pm = {
1350	.resume = ifx_spi_pm_resume,
1351	.suspend = ifx_spi_pm_suspend,
1352	.runtime_resume = ifx_spi_pm_runtime_resume,
1353	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1354	.runtime_idle = ifx_spi_pm_runtime_idle
1355};
1356
1357static const struct spi_device_id ifx_id_table[] = {
1358	{"ifx6160", 0},
1359	{"ifx6260", 0},
1360	{ }
1361};
1362MODULE_DEVICE_TABLE(spi, ifx_id_table);
1363
1364/* spi operations */
1365static struct spi_driver ifx_spi_driver = {
1366	.driver = {
1367		.name = DRVNAME,
1368		.pm = &ifx_spi_pm,
1369	},
1370	.probe = ifx_spi_spi_probe,
1371	.shutdown = ifx_spi_spi_shutdown,
1372	.remove = ifx_spi_spi_remove,
1373	.id_table = ifx_id_table
1374};
1375
1376/**
1377 *	ifx_spi_exit	-	module exit
1378 *
1379 *	Unload the module.
1380 */
1381
1382static void __exit ifx_spi_exit(void)
1383{
1384	/* unregister */
1385	tty_unregister_driver(tty_drv);
1386	put_tty_driver(tty_drv);
1387	spi_unregister_driver(&ifx_spi_driver);
1388	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1389}
1390
1391/**
1392 *	ifx_spi_init		-	module entry point
1393 *
1394 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1395 *	We need to initialize upper-edge spi driver after the tty
1396 *	driver because otherwise the spi probe will race
1397 */
1398
1399static int __init ifx_spi_init(void)
1400{
1401	int result;
1402
1403	tty_drv = alloc_tty_driver(1);
1404	if (!tty_drv) {
1405		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1406		return -ENOMEM;
1407	}
1408
1409	tty_drv->driver_name = DRVNAME;
1410	tty_drv->name = TTYNAME;
1411	tty_drv->minor_start = IFX_SPI_TTY_ID;
1412	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1413	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1414	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1415	tty_drv->init_termios = tty_std_termios;
1416
1417	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1418
1419	result = tty_register_driver(tty_drv);
1420	if (result) {
1421		pr_err("%s: tty_register_driver failed(%d)",
1422			DRVNAME, result);
1423		goto err_free_tty;
1424	}
1425
1426	result = spi_register_driver(&ifx_spi_driver);
1427	if (result) {
1428		pr_err("%s: spi_register_driver failed(%d)",
1429			DRVNAME, result);
1430		goto err_unreg_tty;
1431	}
1432
1433	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1434	if (result) {
1435		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1436			DRVNAME, result);
1437		goto err_unreg_spi;
1438	}
1439
1440	return 0;
1441err_unreg_spi:
1442	spi_unregister_driver(&ifx_spi_driver);
1443err_unreg_tty:
1444	tty_unregister_driver(tty_drv);
1445err_free_tty:
1446	put_tty_driver(tty_drv);
1447
1448	return result;
1449}
1450
1451module_init(ifx_spi_init);
1452module_exit(ifx_spi_exit);
1453
1454MODULE_AUTHOR("Intel");
1455MODULE_DESCRIPTION("IFX6x60 spi driver");
1456MODULE_LICENSE("GPL");
1457MODULE_INFO(Version, "0.1-IFX6x60");