Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
 
 
 
 
 
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/platform_device.h>
  24#include <linux/sysrq.h>
  25#include <linux/device.h>
  26#include <linux/tty.h>
  27#include <linux/tty_flip.h>
  28#include <linux/serial_core.h>
  29#include <linux/serial.h>
  30#include <linux/amba/bus.h>
  31#include <linux/amba/serial.h>
  32#include <linux/clk.h>
  33#include <linux/slab.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/scatterlist.h>
  37#include <linux/delay.h>
  38#include <linux/types.h>
  39#include <linux/of.h>
 
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
 
 
  45#define UART_NR			14
  46
  47#define SERIAL_AMBA_MAJOR	204
  48#define SERIAL_AMBA_MINOR	64
  49#define SERIAL_AMBA_NR		UART_NR
  50
  51#define AMBA_ISR_PASS_LIMIT	256
  52
  53#define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
  54#define UART_DUMMY_DR_RX	BIT(16)
  55
  56enum {
  57	REG_DR,
  58	REG_ST_DMAWM,
  59	REG_ST_TIMEOUT,
  60	REG_FR,
  61	REG_LCRH_RX,
  62	REG_LCRH_TX,
  63	REG_IBRD,
  64	REG_FBRD,
  65	REG_CR,
  66	REG_IFLS,
  67	REG_IMSC,
  68	REG_RIS,
  69	REG_MIS,
  70	REG_ICR,
  71	REG_DMACR,
  72	REG_ST_XFCR,
  73	REG_ST_XON1,
  74	REG_ST_XON2,
  75	REG_ST_XOFF1,
  76	REG_ST_XOFF2,
  77	REG_ST_ITCR,
  78	REG_ST_ITIP,
  79	REG_ST_ABCR,
  80	REG_ST_ABIMSC,
  81
  82	/* The size of the array - must be last */
  83	REG_ARRAY_SIZE,
  84};
  85
  86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  87	[REG_DR] = UART01x_DR,
  88	[REG_FR] = UART01x_FR,
  89	[REG_LCRH_RX] = UART011_LCRH,
  90	[REG_LCRH_TX] = UART011_LCRH,
  91	[REG_IBRD] = UART011_IBRD,
  92	[REG_FBRD] = UART011_FBRD,
  93	[REG_CR] = UART011_CR,
  94	[REG_IFLS] = UART011_IFLS,
  95	[REG_IMSC] = UART011_IMSC,
  96	[REG_RIS] = UART011_RIS,
  97	[REG_MIS] = UART011_MIS,
  98	[REG_ICR] = UART011_ICR,
  99	[REG_DMACR] = UART011_DMACR,
 100};
 101
 102/* There is by now at least one vendor with differing details, so handle it */
 103struct vendor_data {
 104	const u16		*reg_offset;
 105	unsigned int		ifls;
 106	unsigned int		fr_busy;
 107	unsigned int		fr_dsr;
 108	unsigned int		fr_cts;
 109	unsigned int		fr_ri;
 110	unsigned int		inv_fr;
 111	bool			access_32b;
 112	bool			oversampling;
 113	bool			dma_threshold;
 114	bool			cts_event_workaround;
 115	bool			always_enabled;
 116	bool			fixed_options;
 117
 118	unsigned int (*get_fifosize)(struct amba_device *dev);
 119};
 120
 121static unsigned int get_fifosize_arm(struct amba_device *dev)
 122{
 123	return amba_rev(dev) < 3 ? 16 : 32;
 124}
 125
 126static struct vendor_data vendor_arm = {
 127	.reg_offset		= pl011_std_offsets,
 128	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
 129	.fr_busy		= UART01x_FR_BUSY,
 130	.fr_dsr			= UART01x_FR_DSR,
 131	.fr_cts			= UART01x_FR_CTS,
 132	.fr_ri			= UART011_FR_RI,
 133	.oversampling		= false,
 134	.dma_threshold		= false,
 135	.cts_event_workaround	= false,
 136	.always_enabled		= false,
 137	.fixed_options		= false,
 138	.get_fifosize		= get_fifosize_arm,
 139};
 140
 141static const struct vendor_data vendor_sbsa = {
 142	.reg_offset		= pl011_std_offsets,
 143	.fr_busy		= UART01x_FR_BUSY,
 144	.fr_dsr			= UART01x_FR_DSR,
 145	.fr_cts			= UART01x_FR_CTS,
 146	.fr_ri			= UART011_FR_RI,
 147	.access_32b		= true,
 148	.oversampling		= false,
 149	.dma_threshold		= false,
 150	.cts_event_workaround	= false,
 151	.always_enabled		= true,
 152	.fixed_options		= true,
 153};
 154
 155#ifdef CONFIG_ACPI_SPCR_TABLE
 156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 157	.reg_offset		= pl011_std_offsets,
 158	.fr_busy		= UART011_FR_TXFE,
 159	.fr_dsr			= UART01x_FR_DSR,
 160	.fr_cts			= UART01x_FR_CTS,
 161	.fr_ri			= UART011_FR_RI,
 162	.inv_fr			= UART011_FR_TXFE,
 163	.access_32b		= true,
 164	.oversampling		= false,
 165	.dma_threshold		= false,
 166	.cts_event_workaround	= false,
 167	.always_enabled		= true,
 168	.fixed_options		= true,
 169};
 170#endif
 171
 172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 173	[REG_DR] = UART01x_DR,
 174	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 175	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 176	[REG_FR] = UART01x_FR,
 177	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 178	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 179	[REG_IBRD] = UART011_IBRD,
 180	[REG_FBRD] = UART011_FBRD,
 181	[REG_CR] = UART011_CR,
 182	[REG_IFLS] = UART011_IFLS,
 183	[REG_IMSC] = UART011_IMSC,
 184	[REG_RIS] = UART011_RIS,
 185	[REG_MIS] = UART011_MIS,
 186	[REG_ICR] = UART011_ICR,
 187	[REG_DMACR] = UART011_DMACR,
 188	[REG_ST_XFCR] = ST_UART011_XFCR,
 189	[REG_ST_XON1] = ST_UART011_XON1,
 190	[REG_ST_XON2] = ST_UART011_XON2,
 191	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 192	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 193	[REG_ST_ITCR] = ST_UART011_ITCR,
 194	[REG_ST_ITIP] = ST_UART011_ITIP,
 195	[REG_ST_ABCR] = ST_UART011_ABCR,
 196	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 197};
 198
 199static unsigned int get_fifosize_st(struct amba_device *dev)
 200{
 201	return 64;
 202}
 203
 204static struct vendor_data vendor_st = {
 205	.reg_offset		= pl011_st_offsets,
 206	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
 207	.fr_busy		= UART01x_FR_BUSY,
 208	.fr_dsr			= UART01x_FR_DSR,
 209	.fr_cts			= UART01x_FR_CTS,
 210	.fr_ri			= UART011_FR_RI,
 211	.oversampling		= true,
 212	.dma_threshold		= true,
 213	.cts_event_workaround	= true,
 214	.always_enabled		= false,
 215	.fixed_options		= false,
 216	.get_fifosize		= get_fifosize_st,
 217};
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219/* Deals with DMA transactions */
 220
 221struct pl011_dmabuf {
 222	dma_addr_t		dma;
 223	size_t			len;
 224	char			*buf;
 225};
 226
 227struct pl011_dmarx_data {
 228	struct dma_chan		*chan;
 229	struct completion	complete;
 230	bool			use_buf_b;
 231	struct pl011_dmabuf	dbuf_a;
 232	struct pl011_dmabuf	dbuf_b;
 233	dma_cookie_t		cookie;
 234	bool			running;
 235	struct timer_list	timer;
 236	unsigned int last_residue;
 237	unsigned long last_jiffies;
 238	bool auto_poll_rate;
 239	unsigned int poll_rate;
 240	unsigned int poll_timeout;
 241};
 242
 243struct pl011_dmatx_data {
 244	struct dma_chan		*chan;
 245	dma_addr_t		dma;
 246	size_t			len;
 247	char			*buf;
 248	bool			queued;
 249};
 250
 251/*
 252 * We wrap our port structure around the generic uart_port.
 253 */
 254struct uart_amba_port {
 255	struct uart_port	port;
 256	const u16		*reg_offset;
 257	struct clk		*clk;
 258	const struct vendor_data *vendor;
 259	unsigned int		dmacr;		/* dma control reg */
 260	unsigned int		im;		/* interrupt mask */
 261	unsigned int		old_status;
 262	unsigned int		fifosize;	/* vendor-specific */
 
 
 263	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 264	char			type[12];
 265	bool			rs485_tx_started;
 266	unsigned int		rs485_tx_drain_interval; /* usecs */
 267#ifdef CONFIG_DMA_ENGINE
 268	/* DMA stuff */
 269	bool			using_tx_dma;
 270	bool			using_rx_dma;
 271	struct pl011_dmarx_data dmarx;
 272	struct pl011_dmatx_data	dmatx;
 273	bool			dma_probed;
 274#endif
 275};
 276
 277static unsigned int pl011_tx_empty(struct uart_port *port);
 278
 279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 280					unsigned int reg)
 281{
 282	return uap->reg_offset[reg];
 283}
 284
 285static unsigned int pl011_read(const struct uart_amba_port *uap,
 286			       unsigned int reg)
 287{
 288	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 289
 290	return (uap->port.iotype == UPIO_MEM32) ?
 291		readl_relaxed(addr) : readw_relaxed(addr);
 292}
 293
 294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 295			unsigned int reg)
 296{
 297	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 298
 299	if (uap->port.iotype == UPIO_MEM32)
 300		writel_relaxed(val, addr);
 301	else
 302		writew_relaxed(val, addr);
 303}
 304
 305/*
 306 * Reads up to 256 characters from the FIFO or until it's empty and
 307 * inserts them into the TTY layer. Returns the number of characters
 308 * read from the FIFO.
 309 */
 310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 311{
 312	unsigned int ch, fifotaken;
 313	int sysrq;
 314	u16 status;
 315	u8 flag;
 
 316
 317	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 318		status = pl011_read(uap, REG_FR);
 319		if (status & UART01x_FR_RXFE)
 320			break;
 321
 322		/* Take chars from the FIFO and update status */
 323		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 324		flag = TTY_NORMAL;
 325		uap->port.icount.rx++;
 
 326
 327		if (unlikely(ch & UART_DR_ERROR)) {
 328			if (ch & UART011_DR_BE) {
 329				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 330				uap->port.icount.brk++;
 331				if (uart_handle_break(&uap->port))
 332					continue;
 333			} else if (ch & UART011_DR_PE) {
 334				uap->port.icount.parity++;
 335			} else if (ch & UART011_DR_FE) {
 336				uap->port.icount.frame++;
 337			}
 338			if (ch & UART011_DR_OE)
 339				uap->port.icount.overrun++;
 340
 341			ch &= uap->port.read_status_mask;
 342
 343			if (ch & UART011_DR_BE)
 344				flag = TTY_BREAK;
 345			else if (ch & UART011_DR_PE)
 346				flag = TTY_PARITY;
 347			else if (ch & UART011_DR_FE)
 348				flag = TTY_FRAME;
 349		}
 350
 351		uart_port_unlock(&uap->port);
 352		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
 353		uart_port_lock(&uap->port);
 354
 355		if (!sysrq)
 356			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 357	}
 358
 359	return fifotaken;
 360}
 361
 
 362/*
 363 * All the DMA operation mode stuff goes inside this ifdef.
 364 * This assumes that you have a generic DMA device interface,
 365 * no custom DMA interfaces are supported.
 366 */
 367#ifdef CONFIG_DMA_ENGINE
 368
 369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 370
 371static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
 372			     enum dma_data_direction dir)
 373{
 374	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
 375				     &db->dma, GFP_KERNEL);
 376	if (!db->buf)
 
 
 377		return -ENOMEM;
 378	db->len = PL011_DMA_BUFFER_SIZE;
 
 
 
 
 
 379
 380	return 0;
 381}
 382
 383static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
 384			      enum dma_data_direction dir)
 385{
 386	if (db->buf) {
 387		dma_free_coherent(chan->device->dev,
 388				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
 
 389	}
 390}
 391
 392static void pl011_dma_probe(struct uart_amba_port *uap)
 393{
 394	/* DMA is the sole user of the platform data right now */
 395	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 396	struct device *dev = uap->port.dev;
 397	struct dma_slave_config tx_conf = {
 398		.dst_addr = uap->port.mapbase +
 399				 pl011_reg_to_offset(uap, REG_DR),
 400		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 401		.direction = DMA_MEM_TO_DEV,
 402		.dst_maxburst = uap->fifosize >> 1,
 403		.device_fc = false,
 404	};
 405	struct dma_chan *chan;
 406	dma_cap_mask_t mask;
 407
 408	uap->dma_probed = true;
 409	chan = dma_request_chan(dev, "tx");
 410	if (IS_ERR(chan)) {
 411		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 412			uap->dma_probed = false;
 413			return;
 414		}
 415
 416		/* We need platform data */
 417		if (!plat || !plat->dma_filter) {
 418			dev_dbg(uap->port.dev, "no DMA platform data\n");
 419			return;
 420		}
 421
 422		/* Try to acquire a generic DMA engine slave TX channel */
 423		dma_cap_zero(mask);
 424		dma_cap_set(DMA_SLAVE, mask);
 425
 426		chan = dma_request_channel(mask, plat->dma_filter,
 427					   plat->dma_tx_param);
 428		if (!chan) {
 429			dev_err(uap->port.dev, "no TX DMA channel!\n");
 430			return;
 431		}
 432	}
 433
 434	dmaengine_slave_config(chan, &tx_conf);
 435	uap->dmatx.chan = chan;
 436
 437	dev_info(uap->port.dev, "DMA channel TX %s\n",
 438		 dma_chan_name(uap->dmatx.chan));
 439
 440	/* Optionally make use of an RX channel as well */
 441	chan = dma_request_chan(dev, "rx");
 442
 443	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
 444		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 445
 446		if (!chan) {
 447			dev_err(uap->port.dev, "no RX DMA channel!\n");
 448			return;
 449		}
 450	}
 451
 452	if (!IS_ERR(chan)) {
 453		struct dma_slave_config rx_conf = {
 454			.src_addr = uap->port.mapbase +
 455				pl011_reg_to_offset(uap, REG_DR),
 456			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 457			.direction = DMA_DEV_TO_MEM,
 458			.src_maxburst = uap->fifosize >> 2,
 459			.device_fc = false,
 460		};
 461		struct dma_slave_caps caps;
 462
 463		/*
 464		 * Some DMA controllers provide information on their capabilities.
 465		 * If the controller does, check for suitable residue processing
 466		 * otherwise assime all is well.
 467		 */
 468		if (dma_get_slave_caps(chan, &caps) == 0) {
 469			if (caps.residue_granularity ==
 470					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 471				dma_release_channel(chan);
 472				dev_info(uap->port.dev,
 473					 "RX DMA disabled - no residue processing\n");
 474				return;
 475			}
 476		}
 477		dmaengine_slave_config(chan, &rx_conf);
 478		uap->dmarx.chan = chan;
 479
 480		uap->dmarx.auto_poll_rate = false;
 481		if (plat && plat->dma_rx_poll_enable) {
 482			/* Set poll rate if specified. */
 483			if (plat->dma_rx_poll_rate) {
 484				uap->dmarx.auto_poll_rate = false;
 485				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 486			} else {
 487				/*
 488				 * 100 ms defaults to poll rate if not
 489				 * specified. This will be adjusted with
 490				 * the baud rate at set_termios.
 491				 */
 492				uap->dmarx.auto_poll_rate = true;
 493				uap->dmarx.poll_rate =  100;
 494			}
 495			/* 3 secs defaults poll_timeout if not specified. */
 496			if (plat->dma_rx_poll_timeout)
 497				uap->dmarx.poll_timeout =
 498					plat->dma_rx_poll_timeout;
 499			else
 500				uap->dmarx.poll_timeout = 3000;
 501		} else if (!plat && dev->of_node) {
 502			uap->dmarx.auto_poll_rate =
 503					of_property_read_bool(dev->of_node, "auto-poll");
 504			if (uap->dmarx.auto_poll_rate) {
 505				u32 x;
 506
 507				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
 
 508					uap->dmarx.poll_rate = x;
 509				else
 510					uap->dmarx.poll_rate = 100;
 511				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
 
 512					uap->dmarx.poll_timeout = x;
 513				else
 514					uap->dmarx.poll_timeout = 3000;
 515			}
 516		}
 517		dev_info(uap->port.dev, "DMA channel RX %s\n",
 518			 dma_chan_name(uap->dmarx.chan));
 519	}
 520}
 521
 522static void pl011_dma_remove(struct uart_amba_port *uap)
 523{
 524	if (uap->dmatx.chan)
 525		dma_release_channel(uap->dmatx.chan);
 526	if (uap->dmarx.chan)
 527		dma_release_channel(uap->dmarx.chan);
 528}
 529
 530/* Forward declare these for the refill routine */
 531static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 532static void pl011_start_tx_pio(struct uart_amba_port *uap);
 533
 534/*
 535 * The current DMA TX buffer has been sent.
 536 * Try to queue up another DMA buffer.
 537 */
 538static void pl011_dma_tx_callback(void *data)
 539{
 540	struct uart_amba_port *uap = data;
 541	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 542	unsigned long flags;
 543	u16 dmacr;
 544
 545	uart_port_lock_irqsave(&uap->port, &flags);
 546	if (uap->dmatx.queued)
 547		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
 548				 dmatx->len, DMA_TO_DEVICE);
 549
 550	dmacr = uap->dmacr;
 551	uap->dmacr = dmacr & ~UART011_TXDMAE;
 552	pl011_write(uap->dmacr, uap, REG_DMACR);
 553
 554	/*
 555	 * If TX DMA was disabled, it means that we've stopped the DMA for
 556	 * some reason (eg, XOFF received, or we want to send an X-char.)
 557	 *
 558	 * Note: we need to be careful here of a potential race between DMA
 559	 * and the rest of the driver - if the driver disables TX DMA while
 560	 * a TX buffer completing, we must update the tx queued status to
 561	 * get further refills (hence we check dmacr).
 562	 */
 563	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 564	    uart_circ_empty(&uap->port.state->xmit)) {
 565		uap->dmatx.queued = false;
 566		uart_port_unlock_irqrestore(&uap->port, flags);
 567		return;
 568	}
 569
 570	if (pl011_dma_tx_refill(uap) <= 0)
 571		/*
 572		 * We didn't queue a DMA buffer for some reason, but we
 573		 * have data pending to be sent.  Re-enable the TX IRQ.
 574		 */
 575		pl011_start_tx_pio(uap);
 576
 577	uart_port_unlock_irqrestore(&uap->port, flags);
 578}
 579
 580/*
 581 * Try to refill the TX DMA buffer.
 582 * Locking: called with port lock held and IRQs disabled.
 583 * Returns:
 584 *   1 if we queued up a TX DMA buffer.
 585 *   0 if we didn't want to handle this by DMA
 586 *  <0 on error
 587 */
 588static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 589{
 590	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 591	struct dma_chan *chan = dmatx->chan;
 592	struct dma_device *dma_dev = chan->device;
 593	struct dma_async_tx_descriptor *desc;
 594	struct circ_buf *xmit = &uap->port.state->xmit;
 595	unsigned int count;
 596
 597	/*
 598	 * Try to avoid the overhead involved in using DMA if the
 599	 * transaction fits in the first half of the FIFO, by using
 600	 * the standard interrupt handling.  This ensures that we
 601	 * issue a uart_write_wakeup() at the appropriate time.
 602	 */
 603	count = uart_circ_chars_pending(xmit);
 604	if (count < (uap->fifosize >> 1)) {
 605		uap->dmatx.queued = false;
 606		return 0;
 607	}
 608
 609	/*
 610	 * Bodge: don't send the last character by DMA, as this
 611	 * will prevent XON from notifying us to restart DMA.
 612	 */
 613	count -= 1;
 614
 615	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 616	if (count > PL011_DMA_BUFFER_SIZE)
 617		count = PL011_DMA_BUFFER_SIZE;
 618
 619	if (xmit->tail < xmit->head) {
 620		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 621	} else {
 622		size_t first = UART_XMIT_SIZE - xmit->tail;
 623		size_t second;
 624
 625		if (first > count)
 626			first = count;
 627		second = count - first;
 628
 629		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 630		if (second)
 631			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 632	}
 633
 634	dmatx->len = count;
 635	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
 636				    DMA_TO_DEVICE);
 637	if (dmatx->dma == DMA_MAPPING_ERROR) {
 638		uap->dmatx.queued = false;
 639		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 640		return -EBUSY;
 641	}
 642
 643	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
 644					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 645	if (!desc) {
 646		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
 647		uap->dmatx.queued = false;
 648		/*
 649		 * If DMA cannot be used right now, we complete this
 650		 * transaction via IRQ and let the TTY layer retry.
 651		 */
 652		dev_dbg(uap->port.dev, "TX DMA busy\n");
 653		return -EBUSY;
 654	}
 655
 656	/* Some data to go along to the callback */
 657	desc->callback = pl011_dma_tx_callback;
 658	desc->callback_param = uap;
 659
 660	/* All errors should happen at prepare time */
 661	dmaengine_submit(desc);
 662
 663	/* Fire the DMA transaction */
 664	dma_dev->device_issue_pending(chan);
 665
 666	uap->dmacr |= UART011_TXDMAE;
 667	pl011_write(uap->dmacr, uap, REG_DMACR);
 668	uap->dmatx.queued = true;
 669
 670	/*
 671	 * Now we know that DMA will fire, so advance the ring buffer
 672	 * with the stuff we just dispatched.
 673	 */
 674	uart_xmit_advance(&uap->port, count);
 
 675
 676	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 677		uart_write_wakeup(&uap->port);
 678
 679	return 1;
 680}
 681
 682/*
 683 * We received a transmit interrupt without a pending X-char but with
 684 * pending characters.
 685 * Locking: called with port lock held and IRQs disabled.
 686 * Returns:
 687 *   false if we want to use PIO to transmit
 688 *   true if we queued a DMA buffer
 689 */
 690static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 691{
 692	if (!uap->using_tx_dma)
 693		return false;
 694
 695	/*
 696	 * If we already have a TX buffer queued, but received a
 697	 * TX interrupt, it will be because we've just sent an X-char.
 698	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 699	 */
 700	if (uap->dmatx.queued) {
 701		uap->dmacr |= UART011_TXDMAE;
 702		pl011_write(uap->dmacr, uap, REG_DMACR);
 703		uap->im &= ~UART011_TXIM;
 704		pl011_write(uap->im, uap, REG_IMSC);
 705		return true;
 706	}
 707
 708	/*
 709	 * We don't have a TX buffer queued, so try to queue one.
 710	 * If we successfully queued a buffer, mask the TX IRQ.
 711	 */
 712	if (pl011_dma_tx_refill(uap) > 0) {
 713		uap->im &= ~UART011_TXIM;
 714		pl011_write(uap->im, uap, REG_IMSC);
 715		return true;
 716	}
 717	return false;
 718}
 719
 720/*
 721 * Stop the DMA transmit (eg, due to received XOFF).
 722 * Locking: called with port lock held and IRQs disabled.
 723 */
 724static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 725{
 726	if (uap->dmatx.queued) {
 727		uap->dmacr &= ~UART011_TXDMAE;
 728		pl011_write(uap->dmacr, uap, REG_DMACR);
 729	}
 730}
 731
 732/*
 733 * Try to start a DMA transmit, or in the case of an XON/OFF
 734 * character queued for send, try to get that character out ASAP.
 735 * Locking: called with port lock held and IRQs disabled.
 736 * Returns:
 737 *   false if we want the TX IRQ to be enabled
 738 *   true if we have a buffer queued
 739 */
 740static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 741{
 742	u16 dmacr;
 743
 744	if (!uap->using_tx_dma)
 745		return false;
 746
 747	if (!uap->port.x_char) {
 748		/* no X-char, try to push chars out in DMA mode */
 749		bool ret = true;
 750
 751		if (!uap->dmatx.queued) {
 752			if (pl011_dma_tx_refill(uap) > 0) {
 753				uap->im &= ~UART011_TXIM;
 754				pl011_write(uap->im, uap, REG_IMSC);
 755			} else {
 756				ret = false;
 757			}
 758		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 759			uap->dmacr |= UART011_TXDMAE;
 760			pl011_write(uap->dmacr, uap, REG_DMACR);
 761		}
 762		return ret;
 763	}
 764
 765	/*
 766	 * We have an X-char to send.  Disable DMA to prevent it loading
 767	 * the TX fifo, and then see if we can stuff it into the FIFO.
 768	 */
 769	dmacr = uap->dmacr;
 770	uap->dmacr &= ~UART011_TXDMAE;
 771	pl011_write(uap->dmacr, uap, REG_DMACR);
 772
 773	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 774		/*
 775		 * No space in the FIFO, so enable the transmit interrupt
 776		 * so we know when there is space.  Note that once we've
 777		 * loaded the character, we should just re-enable DMA.
 778		 */
 779		return false;
 780	}
 781
 782	pl011_write(uap->port.x_char, uap, REG_DR);
 783	uap->port.icount.tx++;
 784	uap->port.x_char = 0;
 785
 786	/* Success - restore the DMA state */
 787	uap->dmacr = dmacr;
 788	pl011_write(dmacr, uap, REG_DMACR);
 789
 790	return true;
 791}
 792
 793/*
 794 * Flush the transmit buffer.
 795 * Locking: called with port lock held and IRQs disabled.
 796 */
 797static void pl011_dma_flush_buffer(struct uart_port *port)
 798__releases(&uap->port.lock)
 799__acquires(&uap->port.lock)
 800{
 801	struct uart_amba_port *uap =
 802	    container_of(port, struct uart_amba_port, port);
 803
 804	if (!uap->using_tx_dma)
 805		return;
 806
 807	dmaengine_terminate_async(uap->dmatx.chan);
 808
 
 
 809	if (uap->dmatx.queued) {
 810		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
 811				 uap->dmatx.len, DMA_TO_DEVICE);
 812		uap->dmatx.queued = false;
 813		uap->dmacr &= ~UART011_TXDMAE;
 814		pl011_write(uap->dmacr, uap, REG_DMACR);
 815	}
 816}
 817
 818static void pl011_dma_rx_callback(void *data);
 819
 820static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 821{
 822	struct dma_chan *rxchan = uap->dmarx.chan;
 823	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 824	struct dma_async_tx_descriptor *desc;
 825	struct pl011_dmabuf *dbuf;
 826
 827	if (!rxchan)
 828		return -EIO;
 829
 830	/* Start the RX DMA job */
 831	dbuf = uap->dmarx.use_buf_b ?
 832		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 833	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
 834					   DMA_DEV_TO_MEM,
 835					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 836	/*
 837	 * If the DMA engine is busy and cannot prepare a
 838	 * channel, no big deal, the driver will fall back
 839	 * to interrupt mode as a result of this error code.
 840	 */
 841	if (!desc) {
 842		uap->dmarx.running = false;
 843		dmaengine_terminate_all(rxchan);
 844		return -EBUSY;
 845	}
 846
 847	/* Some data to go along to the callback */
 848	desc->callback = pl011_dma_rx_callback;
 849	desc->callback_param = uap;
 850	dmarx->cookie = dmaengine_submit(desc);
 851	dma_async_issue_pending(rxchan);
 852
 853	uap->dmacr |= UART011_RXDMAE;
 854	pl011_write(uap->dmacr, uap, REG_DMACR);
 855	uap->dmarx.running = true;
 856
 857	uap->im &= ~UART011_RXIM;
 858	pl011_write(uap->im, uap, REG_IMSC);
 859
 860	return 0;
 861}
 862
 863/*
 864 * This is called when either the DMA job is complete, or
 865 * the FIFO timeout interrupt occurred. This must be called
 866 * with the port spinlock uap->port.lock held.
 867 */
 868static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 869			       u32 pending, bool use_buf_b,
 870			       bool readfifo)
 871{
 872	struct tty_port *port = &uap->port.state->port;
 873	struct pl011_dmabuf *dbuf = use_buf_b ?
 874		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 875	int dma_count = 0;
 876	u32 fifotaken = 0; /* only used for vdbg() */
 877
 878	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 879	int dmataken = 0;
 880
 881	if (uap->dmarx.poll_rate) {
 882		/* The data can be taken by polling */
 883		dmataken = dbuf->len - dmarx->last_residue;
 884		/* Recalculate the pending size */
 885		if (pending >= dmataken)
 886			pending -= dmataken;
 887	}
 888
 889	/* Pick the remain data from the DMA */
 890	if (pending) {
 
 891		/*
 892		 * First take all chars in the DMA pipe, then look in the FIFO.
 893		 * Note that tty_insert_flip_buf() tries to take as many chars
 894		 * as it can.
 895		 */
 896		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
 
 897
 898		uap->port.icount.rx += dma_count;
 899		if (dma_count < pending)
 900			dev_warn(uap->port.dev,
 901				 "couldn't insert all characters (TTY is full?)\n");
 902	}
 903
 904	/* Reset the last_residue for Rx DMA poll */
 905	if (uap->dmarx.poll_rate)
 906		dmarx->last_residue = dbuf->len;
 907
 908	/*
 909	 * Only continue with trying to read the FIFO if all DMA chars have
 910	 * been taken first.
 911	 */
 912	if (dma_count == pending && readfifo) {
 913		/* Clear any error flags */
 914		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 915			    UART011_FEIS, uap, REG_ICR);
 916
 917		/*
 918		 * If we read all the DMA'd characters, and we had an
 919		 * incomplete buffer, that could be due to an rx error, or
 920		 * maybe we just timed out. Read any pending chars and check
 921		 * the error status.
 922		 *
 923		 * Error conditions will only occur in the FIFO, these will
 924		 * trigger an immediate interrupt and stop the DMA job, so we
 925		 * will always find the error in the FIFO, never in the DMA
 926		 * buffer.
 927		 */
 928		fifotaken = pl011_fifo_to_tty(uap);
 929	}
 930
 
 931	dev_vdbg(uap->port.dev,
 932		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 933		 dma_count, fifotaken);
 934	tty_flip_buffer_push(port);
 
 935}
 936
 937static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 938{
 939	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 940	struct dma_chan *rxchan = dmarx->chan;
 941	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 942		&dmarx->dbuf_b : &dmarx->dbuf_a;
 943	size_t pending;
 944	struct dma_tx_state state;
 945	enum dma_status dmastat;
 946
 947	/*
 948	 * Pause the transfer so we can trust the current counter,
 949	 * do this before we pause the PL011 block, else we may
 950	 * overflow the FIFO.
 951	 */
 952	if (dmaengine_pause(rxchan))
 953		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 954	dmastat = rxchan->device->device_tx_status(rxchan,
 955						   dmarx->cookie, &state);
 956	if (dmastat != DMA_PAUSED)
 957		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 958
 959	/* Disable RX DMA - incoming data will wait in the FIFO */
 960	uap->dmacr &= ~UART011_RXDMAE;
 961	pl011_write(uap->dmacr, uap, REG_DMACR);
 962	uap->dmarx.running = false;
 963
 964	pending = dbuf->len - state.residue;
 965	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 966	/* Then we terminate the transfer - we now know our residue */
 967	dmaengine_terminate_all(rxchan);
 968
 969	/*
 970	 * This will take the chars we have so far and insert
 971	 * into the framework.
 972	 */
 973	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 974
 975	/* Switch buffer & re-trigger DMA job */
 976	dmarx->use_buf_b = !dmarx->use_buf_b;
 977	if (pl011_dma_rx_trigger_dma(uap)) {
 978		dev_dbg(uap->port.dev,
 979			"could not retrigger RX DMA job fall back to interrupt mode\n");
 980		uap->im |= UART011_RXIM;
 981		pl011_write(uap->im, uap, REG_IMSC);
 982	}
 983}
 984
 985static void pl011_dma_rx_callback(void *data)
 986{
 987	struct uart_amba_port *uap = data;
 988	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 989	struct dma_chan *rxchan = dmarx->chan;
 990	bool lastbuf = dmarx->use_buf_b;
 991	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 992		&dmarx->dbuf_b : &dmarx->dbuf_a;
 993	size_t pending;
 994	struct dma_tx_state state;
 995	int ret;
 996
 997	/*
 998	 * This completion interrupt occurs typically when the
 999	 * RX buffer is totally stuffed but no timeout has yet
1000	 * occurred. When that happens, we just want the RX
1001	 * routine to flush out the secondary DMA buffer while
1002	 * we immediately trigger the next DMA job.
1003	 */
1004	uart_port_lock_irq(&uap->port);
1005	/*
1006	 * Rx data can be taken by the UART interrupts during
1007	 * the DMA irq handler. So we check the residue here.
1008	 */
1009	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1010	pending = dbuf->len - state.residue;
1011	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1012	/* Then we terminate the transfer - we now know our residue */
1013	dmaengine_terminate_all(rxchan);
1014
1015	uap->dmarx.running = false;
1016	dmarx->use_buf_b = !lastbuf;
1017	ret = pl011_dma_rx_trigger_dma(uap);
1018
1019	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1020	uart_port_unlock_irq(&uap->port);
1021	/*
1022	 * Do this check after we picked the DMA chars so we don't
1023	 * get some IRQ immediately from RX.
1024	 */
1025	if (ret) {
1026		dev_dbg(uap->port.dev,
1027			"could not retrigger RX DMA job fall back to interrupt mode\n");
1028		uap->im |= UART011_RXIM;
1029		pl011_write(uap->im, uap, REG_IMSC);
1030	}
1031}
1032
1033/*
1034 * Stop accepting received characters, when we're shutting down or
1035 * suspending this port.
1036 * Locking: called with port lock held and IRQs disabled.
1037 */
1038static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1039{
1040	if (!uap->using_rx_dma)
1041		return;
1042
1043	/* FIXME.  Just disable the DMA enable */
1044	uap->dmacr &= ~UART011_RXDMAE;
1045	pl011_write(uap->dmacr, uap, REG_DMACR);
1046}
1047
1048/*
1049 * Timer handler for Rx DMA polling.
1050 * Every polling, It checks the residue in the dma buffer and transfer
1051 * data to the tty. Also, last_residue is updated for the next polling.
1052 */
1053static void pl011_dma_rx_poll(struct timer_list *t)
1054{
1055	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1056	struct tty_port *port = &uap->port.state->port;
1057	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1058	struct dma_chan *rxchan = uap->dmarx.chan;
1059	unsigned long flags;
1060	unsigned int dmataken = 0;
1061	unsigned int size = 0;
1062	struct pl011_dmabuf *dbuf;
1063	int dma_count;
1064	struct dma_tx_state state;
1065
1066	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1067	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1068	if (likely(state.residue < dmarx->last_residue)) {
1069		dmataken = dbuf->len - dmarx->last_residue;
1070		size = dmarx->last_residue - state.residue;
1071		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1072						   size);
1073		if (dma_count == size)
1074			dmarx->last_residue =  state.residue;
1075		dmarx->last_jiffies = jiffies;
1076	}
1077	tty_flip_buffer_push(port);
1078
1079	/*
1080	 * If no data is received in poll_timeout, the driver will fall back
1081	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1082	 */
1083	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1084			> uap->dmarx.poll_timeout) {
1085		uart_port_lock_irqsave(&uap->port, &flags);
 
1086		pl011_dma_rx_stop(uap);
1087		uap->im |= UART011_RXIM;
1088		pl011_write(uap->im, uap, REG_IMSC);
1089		uart_port_unlock_irqrestore(&uap->port, flags);
1090
1091		uap->dmarx.running = false;
1092		dmaengine_terminate_all(rxchan);
1093		del_timer(&uap->dmarx.timer);
1094	} else {
1095		mod_timer(&uap->dmarx.timer,
1096			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1097	}
1098}
1099
1100static void pl011_dma_startup(struct uart_amba_port *uap)
1101{
1102	int ret;
1103
1104	if (!uap->dma_probed)
1105		pl011_dma_probe(uap);
1106
1107	if (!uap->dmatx.chan)
1108		return;
1109
1110	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1111	if (!uap->dmatx.buf) {
 
1112		uap->port.fifosize = uap->fifosize;
1113		return;
1114	}
1115
1116	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1117
1118	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1119	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1120	uap->using_tx_dma = true;
1121
1122	if (!uap->dmarx.chan)
1123		goto skip_rx;
1124
1125	/* Allocate and map DMA RX buffers */
1126	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1127				DMA_FROM_DEVICE);
1128	if (ret) {
1129		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1130			"RX buffer A", ret);
1131		goto skip_rx;
1132	}
1133
1134	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1135				DMA_FROM_DEVICE);
1136	if (ret) {
1137		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138			"RX buffer B", ret);
1139		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1140				  DMA_FROM_DEVICE);
1141		goto skip_rx;
1142	}
1143
1144	uap->using_rx_dma = true;
1145
1146skip_rx:
1147	/* Turn on DMA error (RX/TX will be enabled on demand) */
1148	uap->dmacr |= UART011_DMAONERR;
1149	pl011_write(uap->dmacr, uap, REG_DMACR);
1150
1151	/*
1152	 * ST Micro variants has some specific dma burst threshold
1153	 * compensation. Set this to 16 bytes, so burst will only
1154	 * be issued above/below 16 bytes.
1155	 */
1156	if (uap->vendor->dma_threshold)
1157		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1158			    uap, REG_ST_DMAWM);
1159
1160	if (uap->using_rx_dma) {
1161		if (pl011_dma_rx_trigger_dma(uap))
1162			dev_dbg(uap->port.dev,
1163				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1164		if (uap->dmarx.poll_rate) {
1165			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
 
 
1166			mod_timer(&uap->dmarx.timer,
1167				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
 
1168			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1169			uap->dmarx.last_jiffies = jiffies;
1170		}
1171	}
1172}
1173
1174static void pl011_dma_shutdown(struct uart_amba_port *uap)
1175{
1176	if (!(uap->using_tx_dma || uap->using_rx_dma))
1177		return;
1178
1179	/* Disable RX and TX DMA */
1180	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1181		cpu_relax();
1182
1183	uart_port_lock_irq(&uap->port);
1184	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1185	pl011_write(uap->dmacr, uap, REG_DMACR);
1186	uart_port_unlock_irq(&uap->port);
1187
1188	if (uap->using_tx_dma) {
1189		/* In theory, this should already be done by pl011_dma_flush_buffer */
1190		dmaengine_terminate_all(uap->dmatx.chan);
1191		if (uap->dmatx.queued) {
1192			dma_unmap_single(uap->dmatx.chan->device->dev,
1193					 uap->dmatx.dma, uap->dmatx.len,
1194					 DMA_TO_DEVICE);
1195			uap->dmatx.queued = false;
1196		}
1197
1198		kfree(uap->dmatx.buf);
1199		uap->using_tx_dma = false;
1200	}
1201
1202	if (uap->using_rx_dma) {
1203		dmaengine_terminate_all(uap->dmarx.chan);
1204		/* Clean up the RX DMA */
1205		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1206		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1207		if (uap->dmarx.poll_rate)
1208			del_timer_sync(&uap->dmarx.timer);
1209		uap->using_rx_dma = false;
1210	}
1211}
1212
1213static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1214{
1215	return uap->using_rx_dma;
1216}
1217
1218static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1219{
1220	return uap->using_rx_dma && uap->dmarx.running;
1221}
1222
1223#else
1224/* Blank functions if the DMA engine is not available */
 
 
 
 
1225static inline void pl011_dma_remove(struct uart_amba_port *uap)
1226{
1227}
1228
1229static inline void pl011_dma_startup(struct uart_amba_port *uap)
1230{
1231}
1232
1233static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1234{
1235}
1236
1237static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1238{
1239	return false;
1240}
1241
1242static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1243{
1244}
1245
1246static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1247{
1248	return false;
1249}
1250
1251static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1256{
1257}
1258
1259static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1260{
1261	return -EIO;
1262}
1263
1264static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1270{
1271	return false;
1272}
1273
1274#define pl011_dma_flush_buffer	NULL
1275#endif
1276
1277static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1278{
1279	/*
1280	 * To be on the safe side only time out after twice as many iterations
1281	 * as fifo size.
1282	 */
1283	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1284	struct uart_port *port = &uap->port;
1285	int i = 0;
1286	u32 cr;
1287
1288	/* Wait until hardware tx queue is empty */
1289	while (!pl011_tx_empty(port)) {
1290		if (i > MAX_TX_DRAIN_ITERS) {
1291			dev_warn(port->dev,
1292				 "timeout while draining hardware tx queue\n");
1293			break;
1294		}
1295
1296		udelay(uap->rs485_tx_drain_interval);
1297		i++;
1298	}
1299
1300	if (port->rs485.delay_rts_after_send)
1301		mdelay(port->rs485.delay_rts_after_send);
1302
1303	cr = pl011_read(uap, REG_CR);
1304
1305	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1306		cr &= ~UART011_CR_RTS;
1307	else
1308		cr |= UART011_CR_RTS;
1309
1310	/* Disable the transmitter and reenable the transceiver */
1311	cr &= ~UART011_CR_TXE;
1312	cr |= UART011_CR_RXE;
1313	pl011_write(cr, uap, REG_CR);
1314
1315	uap->rs485_tx_started = false;
1316}
1317
1318static void pl011_stop_tx(struct uart_port *port)
1319{
1320	struct uart_amba_port *uap =
1321	    container_of(port, struct uart_amba_port, port);
1322
1323	uap->im &= ~UART011_TXIM;
1324	pl011_write(uap->im, uap, REG_IMSC);
1325	pl011_dma_tx_stop(uap);
1326
1327	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1328		pl011_rs485_tx_stop(uap);
1329}
1330
1331static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1332
1333/* Start TX with programmed I/O only (no DMA) */
1334static void pl011_start_tx_pio(struct uart_amba_port *uap)
1335{
1336	if (pl011_tx_chars(uap, false)) {
1337		uap->im |= UART011_TXIM;
1338		pl011_write(uap->im, uap, REG_IMSC);
1339	}
1340}
1341
1342static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1343{
1344	struct uart_port *port = &uap->port;
1345	u32 cr;
1346
1347	/* Enable transmitter */
1348	cr = pl011_read(uap, REG_CR);
1349	cr |= UART011_CR_TXE;
1350
1351	/* Disable receiver if half-duplex */
1352	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1353		cr &= ~UART011_CR_RXE;
1354
1355	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1356		cr &= ~UART011_CR_RTS;
1357	else
1358		cr |= UART011_CR_RTS;
1359
1360	pl011_write(cr, uap, REG_CR);
1361
1362	if (port->rs485.delay_rts_before_send)
1363		mdelay(port->rs485.delay_rts_before_send);
1364
1365	uap->rs485_tx_started = true;
1366}
1367
1368static void pl011_start_tx(struct uart_port *port)
1369{
1370	struct uart_amba_port *uap =
1371	    container_of(port, struct uart_amba_port, port);
1372
1373	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1374	    !uap->rs485_tx_started)
1375		pl011_rs485_tx_start(uap);
1376
1377	if (!pl011_dma_tx_start(uap))
1378		pl011_start_tx_pio(uap);
1379}
1380
1381static void pl011_stop_rx(struct uart_port *port)
1382{
1383	struct uart_amba_port *uap =
1384	    container_of(port, struct uart_amba_port, port);
1385
1386	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1387		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1388	pl011_write(uap->im, uap, REG_IMSC);
1389
1390	pl011_dma_rx_stop(uap);
1391}
1392
1393static void pl011_throttle_rx(struct uart_port *port)
1394{
1395	unsigned long flags;
1396
1397	uart_port_lock_irqsave(port, &flags);
1398	pl011_stop_rx(port);
1399	uart_port_unlock_irqrestore(port, flags);
1400}
1401
1402static void pl011_enable_ms(struct uart_port *port)
1403{
1404	struct uart_amba_port *uap =
1405	    container_of(port, struct uart_amba_port, port);
1406
1407	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1408	pl011_write(uap->im, uap, REG_IMSC);
1409}
1410
1411static void pl011_rx_chars(struct uart_amba_port *uap)
1412__releases(&uap->port.lock)
1413__acquires(&uap->port.lock)
1414{
1415	pl011_fifo_to_tty(uap);
1416
1417	uart_port_unlock(&uap->port);
1418	tty_flip_buffer_push(&uap->port.state->port);
1419	/*
1420	 * If we were temporarily out of DMA mode for a while,
1421	 * attempt to switch back to DMA mode again.
1422	 */
1423	if (pl011_dma_rx_available(uap)) {
1424		if (pl011_dma_rx_trigger_dma(uap)) {
1425			dev_dbg(uap->port.dev,
1426				"could not trigger RX DMA job fall back to interrupt mode again\n");
1427			uap->im |= UART011_RXIM;
1428			pl011_write(uap->im, uap, REG_IMSC);
1429		} else {
1430#ifdef CONFIG_DMA_ENGINE
1431			/* Start Rx DMA poll */
1432			if (uap->dmarx.poll_rate) {
1433				uap->dmarx.last_jiffies = jiffies;
1434				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1435				mod_timer(&uap->dmarx.timer,
1436					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
 
1437			}
1438#endif
1439		}
1440	}
1441	uart_port_lock(&uap->port);
1442}
1443
1444static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1445			  bool from_irq)
1446{
1447	if (unlikely(!from_irq) &&
1448	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1449		return false; /* unable to transmit character */
1450
1451	pl011_write(c, uap, REG_DR);
1452	uap->port.icount.tx++;
1453
1454	return true;
1455}
1456
1457/* Returns true if tx interrupts have to be (kept) enabled  */
1458static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1459{
1460	struct circ_buf *xmit = &uap->port.state->xmit;
1461	int count = uap->fifosize >> 1;
1462
1463	if (uap->port.x_char) {
1464		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1465			return true;
1466		uap->port.x_char = 0;
1467		--count;
1468	}
1469	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1470		pl011_stop_tx(&uap->port);
1471		return false;
1472	}
1473
1474	/* If we are using DMA mode, try to send some characters. */
1475	if (pl011_dma_tx_irq(uap))
1476		return true;
1477
1478	do {
1479		if (likely(from_irq) && count-- == 0)
1480			break;
1481
1482		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1483			break;
1484
1485		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1486	} while (!uart_circ_empty(xmit));
1487
1488	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1489		uart_write_wakeup(&uap->port);
1490
1491	if (uart_circ_empty(xmit)) {
1492		pl011_stop_tx(&uap->port);
1493		return false;
1494	}
1495	return true;
1496}
1497
1498static void pl011_modem_status(struct uart_amba_port *uap)
1499{
1500	unsigned int status, delta;
1501
1502	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1503
1504	delta = status ^ uap->old_status;
1505	uap->old_status = status;
1506
1507	if (!delta)
1508		return;
1509
1510	if (delta & UART01x_FR_DCD)
1511		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1512
1513	if (delta & uap->vendor->fr_dsr)
1514		uap->port.icount.dsr++;
1515
1516	if (delta & uap->vendor->fr_cts)
1517		uart_handle_cts_change(&uap->port,
1518				       status & uap->vendor->fr_cts);
1519
1520	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1521}
1522
1523static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1524{
 
 
1525	if (!uap->vendor->cts_event_workaround)
1526		return;
1527
1528	/* workaround to make sure that all bits are unlocked.. */
1529	pl011_write(0x00, uap, REG_ICR);
1530
1531	/*
1532	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1533	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1534	 * so add 2 dummy reads
1535	 */
1536	pl011_read(uap, REG_ICR);
1537	pl011_read(uap, REG_ICR);
1538}
1539
1540static irqreturn_t pl011_int(int irq, void *dev_id)
1541{
1542	struct uart_amba_port *uap = dev_id;
1543	unsigned long flags;
1544	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
 
1545	int handled = 0;
1546
1547	uart_port_lock_irqsave(&uap->port, &flags);
1548	status = pl011_read(uap, REG_RIS) & uap->im;
 
1549	if (status) {
1550		do {
1551			check_apply_cts_event_workaround(uap);
1552
1553			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
 
1554				    uap, REG_ICR);
1555
1556			if (status & (UART011_RTIS | UART011_RXIS)) {
1557				if (pl011_dma_rx_running(uap))
1558					pl011_dma_rx_irq(uap);
1559				else
1560					pl011_rx_chars(uap);
1561			}
1562			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1563				      UART011_CTSMIS | UART011_RIMIS))
1564				pl011_modem_status(uap);
1565			if (status & UART011_TXIS)
1566				pl011_tx_chars(uap, true);
1567
1568			if (pass_counter-- == 0)
1569				break;
1570
1571			status = pl011_read(uap, REG_RIS) & uap->im;
1572		} while (status != 0);
1573		handled = 1;
1574	}
1575
1576	uart_port_unlock_irqrestore(&uap->port, flags);
1577
1578	return IRQ_RETVAL(handled);
1579}
1580
1581static unsigned int pl011_tx_empty(struct uart_port *port)
1582{
1583	struct uart_amba_port *uap =
1584	    container_of(port, struct uart_amba_port, port);
1585
1586	/* Allow feature register bits to be inverted to work around errata */
1587	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588
1589	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590							0 : TIOCSER_TEMT;
1591}
1592
1593static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1594{
1595	if (cond)
1596		*ptr |= mask;
1597}
1598
1599static unsigned int pl011_get_mctrl(struct uart_port *port)
1600{
1601	struct uart_amba_port *uap =
1602	    container_of(port, struct uart_amba_port, port);
1603	unsigned int result = 0;
1604	unsigned int status = pl011_read(uap, REG_FR);
1605
1606	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1607	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1608	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1609	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1610
 
 
 
 
1611	return result;
1612}
1613
1614static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1615{
1616	if (cond)
1617		*ptr |= mask;
1618	else
1619		*ptr &= ~mask;
1620}
1621
1622static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1623{
1624	struct uart_amba_port *uap =
1625	    container_of(port, struct uart_amba_port, port);
1626	unsigned int cr;
1627
1628	cr = pl011_read(uap, REG_CR);
1629
1630	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1631	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1632	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1633	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1634	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
 
 
 
 
 
 
1635
1636	if (port->status & UPSTAT_AUTORTS) {
1637		/* We need to disable auto-RTS if we want to turn RTS off */
1638		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1639	}
 
1640
1641	pl011_write(cr, uap, REG_CR);
1642}
1643
1644static void pl011_break_ctl(struct uart_port *port, int break_state)
1645{
1646	struct uart_amba_port *uap =
1647	    container_of(port, struct uart_amba_port, port);
1648	unsigned long flags;
1649	unsigned int lcr_h;
1650
1651	uart_port_lock_irqsave(&uap->port, &flags);
1652	lcr_h = pl011_read(uap, REG_LCRH_TX);
1653	if (break_state == -1)
1654		lcr_h |= UART01x_LCRH_BRK;
1655	else
1656		lcr_h &= ~UART01x_LCRH_BRK;
1657	pl011_write(lcr_h, uap, REG_LCRH_TX);
1658	uart_port_unlock_irqrestore(&uap->port, flags);
1659}
1660
1661#ifdef CONFIG_CONSOLE_POLL
1662
1663static void pl011_quiesce_irqs(struct uart_port *port)
1664{
1665	struct uart_amba_port *uap =
1666	    container_of(port, struct uart_amba_port, port);
1667
1668	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1669	/*
1670	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1671	 * we simply mask it. start_tx() will unmask it.
1672	 *
1673	 * Note we can race with start_tx(), and if the race happens, the
1674	 * polling user might get another interrupt just after we clear it.
1675	 * But it should be OK and can happen even w/o the race, e.g.
1676	 * controller immediately got some new data and raised the IRQ.
1677	 *
1678	 * And whoever uses polling routines assumes that it manages the device
1679	 * (including tx queue), so we're also fine with start_tx()'s caller
1680	 * side.
1681	 */
1682	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1683		    REG_IMSC);
1684}
1685
1686static int pl011_get_poll_char(struct uart_port *port)
1687{
1688	struct uart_amba_port *uap =
1689	    container_of(port, struct uart_amba_port, port);
1690	unsigned int status;
1691
1692	/*
1693	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1694	 * debugger.
1695	 */
1696	pl011_quiesce_irqs(port);
1697
1698	status = pl011_read(uap, REG_FR);
1699	if (status & UART01x_FR_RXFE)
1700		return NO_POLL_CHAR;
1701
1702	return pl011_read(uap, REG_DR);
1703}
1704
1705static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
 
1706{
1707	struct uart_amba_port *uap =
1708	    container_of(port, struct uart_amba_port, port);
1709
1710	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1711		cpu_relax();
1712
1713	pl011_write(ch, uap, REG_DR);
1714}
1715
1716#endif /* CONFIG_CONSOLE_POLL */
1717
1718static int pl011_hwinit(struct uart_port *port)
1719{
1720	struct uart_amba_port *uap =
1721	    container_of(port, struct uart_amba_port, port);
1722	int retval;
1723
1724	/* Optionaly enable pins to be muxed in and configured */
1725	pinctrl_pm_select_default_state(port->dev);
1726
1727	/*
1728	 * Try to enable the clock producer.
1729	 */
1730	retval = clk_prepare_enable(uap->clk);
1731	if (retval)
1732		return retval;
1733
1734	uap->port.uartclk = clk_get_rate(uap->clk);
1735
1736	/* Clear pending error and receive interrupts */
1737	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1738		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1739		    uap, REG_ICR);
1740
1741	/*
1742	 * Save interrupts enable mask, and enable RX interrupts in case if
1743	 * the interrupt is used for NMI entry.
1744	 */
1745	uap->im = pl011_read(uap, REG_IMSC);
1746	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1747
1748	if (dev_get_platdata(uap->port.dev)) {
1749		struct amba_pl011_data *plat;
1750
1751		plat = dev_get_platdata(uap->port.dev);
1752		if (plat->init)
1753			plat->init();
1754	}
1755	return 0;
1756}
1757
1758static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1759{
1760	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1761	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1762}
1763
1764static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1765{
1766	pl011_write(lcr_h, uap, REG_LCRH_RX);
1767	if (pl011_split_lcrh(uap)) {
1768		int i;
1769		/*
1770		 * Wait 10 PCLKs before writing LCRH_TX register,
1771		 * to get this delay write read only register 10 times
1772		 */
1773		for (i = 0; i < 10; ++i)
1774			pl011_write(0xff, uap, REG_MIS);
1775		pl011_write(lcr_h, uap, REG_LCRH_TX);
1776	}
1777}
1778
1779static int pl011_allocate_irq(struct uart_amba_port *uap)
1780{
1781	pl011_write(uap->im, uap, REG_IMSC);
1782
1783	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1784}
1785
1786/*
1787 * Enable interrupts, only timeouts when using DMA
1788 * if initial RX DMA job failed, start in interrupt mode
1789 * as well.
1790 */
1791static void pl011_enable_interrupts(struct uart_amba_port *uap)
1792{
1793	unsigned long flags;
1794	unsigned int i;
1795
1796	uart_port_lock_irqsave(&uap->port, &flags);
1797
1798	/* Clear out any spuriously appearing RX interrupts */
1799	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1800
1801	/*
1802	 * RXIS is asserted only when the RX FIFO transitions from below
1803	 * to above the trigger threshold.  If the RX FIFO is already
1804	 * full to the threshold this can't happen and RXIS will now be
1805	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1806	 */
1807	for (i = 0; i < uap->fifosize * 2; ++i) {
1808		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1809			break;
1810
1811		pl011_read(uap, REG_DR);
1812	}
1813
1814	uap->im = UART011_RTIM;
1815	if (!pl011_dma_rx_running(uap))
1816		uap->im |= UART011_RXIM;
1817	pl011_write(uap->im, uap, REG_IMSC);
1818	uart_port_unlock_irqrestore(&uap->port, flags);
1819}
1820
1821static void pl011_unthrottle_rx(struct uart_port *port)
1822{
1823	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1824	unsigned long flags;
1825
1826	uart_port_lock_irqsave(&uap->port, &flags);
1827
1828	uap->im = UART011_RTIM;
1829	if (!pl011_dma_rx_running(uap))
1830		uap->im |= UART011_RXIM;
1831
1832	pl011_write(uap->im, uap, REG_IMSC);
1833
1834	uart_port_unlock_irqrestore(&uap->port, flags);
1835}
1836
1837static int pl011_startup(struct uart_port *port)
1838{
1839	struct uart_amba_port *uap =
1840	    container_of(port, struct uart_amba_port, port);
1841	unsigned int cr;
1842	int retval;
1843
1844	retval = pl011_hwinit(port);
1845	if (retval)
1846		goto clk_dis;
1847
1848	retval = pl011_allocate_irq(uap);
1849	if (retval)
1850		goto clk_dis;
1851
1852	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1853
1854	uart_port_lock_irq(&uap->port);
1855
1856	cr = pl011_read(uap, REG_CR);
1857	cr &= UART011_CR_RTS | UART011_CR_DTR;
1858	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1859
1860	if (!(port->rs485.flags & SER_RS485_ENABLED))
1861		cr |= UART011_CR_TXE;
1862
 
 
 
1863	pl011_write(cr, uap, REG_CR);
1864
1865	uart_port_unlock_irq(&uap->port);
1866
1867	/*
1868	 * initialise the old status of the modem signals
1869	 */
1870	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1871
1872	/* Startup DMA */
1873	pl011_dma_startup(uap);
1874
1875	pl011_enable_interrupts(uap);
1876
1877	return 0;
1878
1879 clk_dis:
1880	clk_disable_unprepare(uap->clk);
1881	return retval;
1882}
1883
1884static int sbsa_uart_startup(struct uart_port *port)
1885{
1886	struct uart_amba_port *uap =
1887		container_of(port, struct uart_amba_port, port);
1888	int retval;
1889
1890	retval = pl011_hwinit(port);
1891	if (retval)
1892		return retval;
1893
1894	retval = pl011_allocate_irq(uap);
1895	if (retval)
1896		return retval;
1897
1898	/* The SBSA UART does not support any modem status lines. */
1899	uap->old_status = 0;
1900
1901	pl011_enable_interrupts(uap);
1902
1903	return 0;
1904}
1905
1906static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
 
1907{
1908	unsigned long val;
1909
1910	val = pl011_read(uap, lcrh);
1911	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1912	pl011_write(val, uap, lcrh);
1913}
1914
1915/*
1916 * disable the port. It should not disable RTS and DTR.
1917 * Also RTS and DTR state should be preserved to restore
1918 * it during startup().
1919 */
1920static void pl011_disable_uart(struct uart_amba_port *uap)
1921{
1922	unsigned int cr;
1923
1924	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1925	uart_port_lock_irq(&uap->port);
1926	cr = pl011_read(uap, REG_CR);
 
1927	cr &= UART011_CR_RTS | UART011_CR_DTR;
1928	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1929	pl011_write(cr, uap, REG_CR);
1930	uart_port_unlock_irq(&uap->port);
1931
1932	/*
1933	 * disable break condition and fifos
1934	 */
1935	pl011_shutdown_channel(uap, REG_LCRH_RX);
1936	if (pl011_split_lcrh(uap))
1937		pl011_shutdown_channel(uap, REG_LCRH_TX);
1938}
1939
1940static void pl011_disable_interrupts(struct uart_amba_port *uap)
1941{
1942	uart_port_lock_irq(&uap->port);
1943
1944	/* mask all interrupts and clear all pending ones */
1945	uap->im = 0;
1946	pl011_write(uap->im, uap, REG_IMSC);
1947	pl011_write(0xffff, uap, REG_ICR);
1948
1949	uart_port_unlock_irq(&uap->port);
1950}
1951
1952static void pl011_shutdown(struct uart_port *port)
1953{
1954	struct uart_amba_port *uap =
1955		container_of(port, struct uart_amba_port, port);
1956
1957	pl011_disable_interrupts(uap);
1958
1959	pl011_dma_shutdown(uap);
1960
1961	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1962		pl011_rs485_tx_stop(uap);
1963
1964	free_irq(uap->port.irq, uap);
1965
1966	pl011_disable_uart(uap);
1967
1968	/*
1969	 * Shut down the clock producer
1970	 */
1971	clk_disable_unprepare(uap->clk);
1972	/* Optionally let pins go into sleep states */
1973	pinctrl_pm_select_sleep_state(port->dev);
1974
1975	if (dev_get_platdata(uap->port.dev)) {
1976		struct amba_pl011_data *plat;
1977
1978		plat = dev_get_platdata(uap->port.dev);
1979		if (plat->exit)
1980			plat->exit();
1981	}
1982
1983	if (uap->port.ops->flush_buffer)
1984		uap->port.ops->flush_buffer(port);
1985}
1986
1987static void sbsa_uart_shutdown(struct uart_port *port)
1988{
1989	struct uart_amba_port *uap =
1990		container_of(port, struct uart_amba_port, port);
1991
1992	pl011_disable_interrupts(uap);
1993
1994	free_irq(uap->port.irq, uap);
1995
1996	if (uap->port.ops->flush_buffer)
1997		uap->port.ops->flush_buffer(port);
1998}
1999
2000static void
2001pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2002{
2003	port->read_status_mask = UART011_DR_OE | 255;
2004	if (termios->c_iflag & INPCK)
2005		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2006	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2007		port->read_status_mask |= UART011_DR_BE;
2008
2009	/*
2010	 * Characters to ignore
2011	 */
2012	port->ignore_status_mask = 0;
2013	if (termios->c_iflag & IGNPAR)
2014		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2015	if (termios->c_iflag & IGNBRK) {
2016		port->ignore_status_mask |= UART011_DR_BE;
2017		/*
2018		 * If we're ignoring parity and break indicators,
2019		 * ignore overruns too (for real raw support).
2020		 */
2021		if (termios->c_iflag & IGNPAR)
2022			port->ignore_status_mask |= UART011_DR_OE;
2023	}
2024
2025	/*
2026	 * Ignore all characters if CREAD is not set.
2027	 */
2028	if ((termios->c_cflag & CREAD) == 0)
2029		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2030}
2031
2032static void
2033pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2034		  const struct ktermios *old)
2035{
2036	struct uart_amba_port *uap =
2037	    container_of(port, struct uart_amba_port, port);
2038	unsigned int lcr_h, old_cr;
2039	unsigned long flags;
2040	unsigned int baud, quot, clkdiv;
2041	unsigned int bits;
2042
2043	if (uap->vendor->oversampling)
2044		clkdiv = 8;
2045	else
2046		clkdiv = 16;
2047
2048	/*
2049	 * Ask the core to calculate the divisor for us.
2050	 */
2051	baud = uart_get_baud_rate(port, termios, old, 0,
2052				  port->uartclk / clkdiv);
2053#ifdef CONFIG_DMA_ENGINE
2054	/*
2055	 * Adjust RX DMA polling rate with baud rate if not specified.
2056	 */
2057	if (uap->dmarx.auto_poll_rate)
2058		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2059#endif
2060
2061	if (baud > port->uartclk / 16)
2062		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2063	else
2064		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2065
2066	switch (termios->c_cflag & CSIZE) {
2067	case CS5:
2068		lcr_h = UART01x_LCRH_WLEN_5;
2069		break;
2070	case CS6:
2071		lcr_h = UART01x_LCRH_WLEN_6;
2072		break;
2073	case CS7:
2074		lcr_h = UART01x_LCRH_WLEN_7;
2075		break;
2076	default: // CS8
2077		lcr_h = UART01x_LCRH_WLEN_8;
2078		break;
2079	}
2080	if (termios->c_cflag & CSTOPB)
2081		lcr_h |= UART01x_LCRH_STP2;
2082	if (termios->c_cflag & PARENB) {
2083		lcr_h |= UART01x_LCRH_PEN;
2084		if (!(termios->c_cflag & PARODD))
2085			lcr_h |= UART01x_LCRH_EPS;
2086		if (termios->c_cflag & CMSPAR)
2087			lcr_h |= UART011_LCRH_SPS;
2088	}
2089	if (uap->fifosize > 1)
2090		lcr_h |= UART01x_LCRH_FEN;
2091
2092	bits = tty_get_frame_size(termios->c_cflag);
2093
2094	uart_port_lock_irqsave(port, &flags);
2095
2096	/*
2097	 * Update the per-port timeout.
2098	 */
2099	uart_update_timeout(port, termios->c_cflag, baud);
2100
2101	/*
2102	 * Calculate the approximated time it takes to transmit one character
2103	 * with the given baud rate. We use this as the poll interval when we
2104	 * wait for the tx queue to empty.
2105	 */
2106	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2107
2108	pl011_setup_status_masks(port, termios);
2109
2110	if (UART_ENABLE_MS(port, termios->c_cflag))
2111		pl011_enable_ms(port);
2112
2113	if (port->rs485.flags & SER_RS485_ENABLED)
2114		termios->c_cflag &= ~CRTSCTS;
2115
2116	old_cr = pl011_read(uap, REG_CR);
 
2117
2118	if (termios->c_cflag & CRTSCTS) {
2119		if (old_cr & UART011_CR_RTS)
2120			old_cr |= UART011_CR_RTSEN;
2121
2122		old_cr |= UART011_CR_CTSEN;
2123		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2124	} else {
2125		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2126		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2127	}
2128
2129	if (uap->vendor->oversampling) {
2130		if (baud > port->uartclk / 16)
2131			old_cr |= ST_UART011_CR_OVSFACT;
2132		else
2133			old_cr &= ~ST_UART011_CR_OVSFACT;
2134	}
2135
2136	/*
2137	 * Workaround for the ST Micro oversampling variants to
2138	 * increase the bitrate slightly, by lowering the divisor,
2139	 * to avoid delayed sampling of start bit at high speeds,
2140	 * else we see data corruption.
2141	 */
2142	if (uap->vendor->oversampling) {
2143		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2144			quot -= 1;
2145		else if (baud > 3250000 && quot > 2)
2146			quot -= 2;
2147	}
2148	/* Set baud rate */
2149	pl011_write(quot & 0x3f, uap, REG_FBRD);
2150	pl011_write(quot >> 6, uap, REG_IBRD);
2151
2152	/*
2153	 * ----------v----------v----------v----------v-----
2154	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2155	 * REG_FBRD & REG_IBRD.
2156	 * ----------^----------^----------^----------^-----
2157	 */
2158	pl011_write_lcr_h(uap, lcr_h);
2159
2160	/*
2161	 * Receive was disabled by pl011_disable_uart during shutdown.
2162	 * Need to reenable receive if you need to use a tty_driver
2163	 * returns from tty_find_polling_driver() after a port shutdown.
2164	 */
2165	old_cr |= UART011_CR_RXE;
2166	pl011_write(old_cr, uap, REG_CR);
2167
2168	uart_port_unlock_irqrestore(port, flags);
2169}
2170
2171static void
2172sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2173		      const struct ktermios *old)
2174{
2175	struct uart_amba_port *uap =
2176	    container_of(port, struct uart_amba_port, port);
2177	unsigned long flags;
2178
2179	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2180
2181	/* The SBSA UART only supports 8n1 without hardware flow control. */
2182	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2183	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2184	termios->c_cflag |= CS8 | CLOCAL;
2185
2186	uart_port_lock_irqsave(port, &flags);
2187	uart_update_timeout(port, CS8, uap->fixed_baud);
2188	pl011_setup_status_masks(port, termios);
2189	uart_port_unlock_irqrestore(port, flags);
2190}
2191
2192static const char *pl011_type(struct uart_port *port)
2193{
2194	struct uart_amba_port *uap =
2195	    container_of(port, struct uart_amba_port, port);
2196	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2197}
2198
2199/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200 * Configure/autoconfigure the port.
2201 */
2202static void pl011_config_port(struct uart_port *port, int flags)
2203{
2204	if (flags & UART_CONFIG_TYPE)
2205		port->type = PORT_AMBA;
 
 
2206}
2207
2208/*
2209 * verify the new serial_struct (for TIOCSSERIAL).
2210 */
2211static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2212{
2213	int ret = 0;
2214
2215	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2216		ret = -EINVAL;
2217	if (ser->irq < 0 || ser->irq >= nr_irqs)
2218		ret = -EINVAL;
2219	if (ser->baud_base < 9600)
2220		ret = -EINVAL;
2221	if (port->mapbase != (unsigned long)ser->iomem_base)
2222		ret = -EINVAL;
2223	return ret;
2224}
2225
2226static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2227			      struct serial_rs485 *rs485)
2228{
2229	struct uart_amba_port *uap =
2230		container_of(port, struct uart_amba_port, port);
2231
2232	if (port->rs485.flags & SER_RS485_ENABLED)
2233		pl011_rs485_tx_stop(uap);
2234
2235	/* Make sure auto RTS is disabled */
2236	if (rs485->flags & SER_RS485_ENABLED) {
2237		u32 cr = pl011_read(uap, REG_CR);
2238
2239		cr &= ~UART011_CR_RTSEN;
2240		pl011_write(cr, uap, REG_CR);
2241		port->status &= ~UPSTAT_AUTORTS;
2242	}
2243
2244	return 0;
2245}
2246
2247static const struct uart_ops amba_pl011_pops = {
2248	.tx_empty	= pl011_tx_empty,
2249	.set_mctrl	= pl011_set_mctrl,
2250	.get_mctrl	= pl011_get_mctrl,
2251	.stop_tx	= pl011_stop_tx,
2252	.start_tx	= pl011_start_tx,
2253	.stop_rx	= pl011_stop_rx,
2254	.throttle	= pl011_throttle_rx,
2255	.unthrottle	= pl011_unthrottle_rx,
2256	.enable_ms	= pl011_enable_ms,
2257	.break_ctl	= pl011_break_ctl,
2258	.startup	= pl011_startup,
2259	.shutdown	= pl011_shutdown,
2260	.flush_buffer	= pl011_dma_flush_buffer,
2261	.set_termios	= pl011_set_termios,
2262	.type		= pl011_type,
 
 
2263	.config_port	= pl011_config_port,
2264	.verify_port	= pl011_verify_port,
2265#ifdef CONFIG_CONSOLE_POLL
2266	.poll_init     = pl011_hwinit,
2267	.poll_get_char = pl011_get_poll_char,
2268	.poll_put_char = pl011_put_poll_char,
2269#endif
2270};
2271
2272static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2273{
2274}
2275
2276static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2277{
2278	return 0;
2279}
2280
2281static const struct uart_ops sbsa_uart_pops = {
2282	.tx_empty	= pl011_tx_empty,
2283	.set_mctrl	= sbsa_uart_set_mctrl,
2284	.get_mctrl	= sbsa_uart_get_mctrl,
2285	.stop_tx	= pl011_stop_tx,
2286	.start_tx	= pl011_start_tx,
2287	.stop_rx	= pl011_stop_rx,
2288	.startup	= sbsa_uart_startup,
2289	.shutdown	= sbsa_uart_shutdown,
2290	.set_termios	= sbsa_uart_set_termios,
2291	.type		= pl011_type,
 
 
2292	.config_port	= pl011_config_port,
2293	.verify_port	= pl011_verify_port,
2294#ifdef CONFIG_CONSOLE_POLL
2295	.poll_init     = pl011_hwinit,
2296	.poll_get_char = pl011_get_poll_char,
2297	.poll_put_char = pl011_put_poll_char,
2298#endif
2299};
2300
2301static struct uart_amba_port *amba_ports[UART_NR];
2302
2303#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2304
2305static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2306{
2307	struct uart_amba_port *uap =
2308	    container_of(port, struct uart_amba_port, port);
2309
2310	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2311		cpu_relax();
2312	pl011_write(ch, uap, REG_DR);
2313}
2314
2315static void
2316pl011_console_write(struct console *co, const char *s, unsigned int count)
2317{
2318	struct uart_amba_port *uap = amba_ports[co->index];
2319	unsigned int old_cr = 0, new_cr;
2320	unsigned long flags;
2321	int locked = 1;
2322
2323	clk_enable(uap->clk);
2324
2325	local_irq_save(flags);
2326	if (uap->port.sysrq)
2327		locked = 0;
2328	else if (oops_in_progress)
2329		locked = uart_port_trylock(&uap->port);
2330	else
2331		uart_port_lock(&uap->port);
2332
2333	/*
2334	 *	First save the CR then disable the interrupts
2335	 */
2336	if (!uap->vendor->always_enabled) {
2337		old_cr = pl011_read(uap, REG_CR);
2338		new_cr = old_cr & ~UART011_CR_CTSEN;
2339		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2340		pl011_write(new_cr, uap, REG_CR);
2341	}
2342
2343	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2344
2345	/*
2346	 *	Finally, wait for transmitter to become empty and restore the
2347	 *	TCR. Allow feature register bits to be inverted to work around
2348	 *	errata.
2349	 */
2350	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2351						& uap->vendor->fr_busy)
2352		cpu_relax();
2353	if (!uap->vendor->always_enabled)
2354		pl011_write(old_cr, uap, REG_CR);
2355
2356	if (locked)
2357		uart_port_unlock(&uap->port);
2358	local_irq_restore(flags);
2359
2360	clk_disable(uap->clk);
2361}
2362
2363static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2364				      int *parity, int *bits)
2365{
2366	unsigned int lcr_h, ibrd, fbrd;
2367
2368	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2369		return;
2370
2371	lcr_h = pl011_read(uap, REG_LCRH_TX);
 
 
 
 
 
 
 
2372
2373	*parity = 'n';
2374	if (lcr_h & UART01x_LCRH_PEN) {
2375		if (lcr_h & UART01x_LCRH_EPS)
2376			*parity = 'e';
2377		else
2378			*parity = 'o';
2379	}
2380
2381	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382		*bits = 7;
2383	else
2384		*bits = 8;
2385
2386	ibrd = pl011_read(uap, REG_IBRD);
2387	fbrd = pl011_read(uap, REG_FBRD);
2388
2389	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390
2391	if (uap->vendor->oversampling &&
2392	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2393		*baud *= 2;
 
2394}
2395
2396static int pl011_console_setup(struct console *co, char *options)
2397{
2398	struct uart_amba_port *uap;
2399	int baud = 38400;
2400	int bits = 8;
2401	int parity = 'n';
2402	int flow = 'n';
2403	int ret;
2404
2405	/*
2406	 * Check whether an invalid uart number has been specified, and
2407	 * if so, search for the first available port that does have
2408	 * console support.
2409	 */
2410	if (co->index >= UART_NR)
2411		co->index = 0;
2412	uap = amba_ports[co->index];
2413	if (!uap)
2414		return -ENODEV;
2415
2416	/* Allow pins to be muxed in and configured */
2417	pinctrl_pm_select_default_state(uap->port.dev);
2418
2419	ret = clk_prepare(uap->clk);
2420	if (ret)
2421		return ret;
2422
2423	if (dev_get_platdata(uap->port.dev)) {
2424		struct amba_pl011_data *plat;
2425
2426		plat = dev_get_platdata(uap->port.dev);
2427		if (plat->init)
2428			plat->init();
2429	}
2430
2431	uap->port.uartclk = clk_get_rate(uap->clk);
2432
2433	if (uap->vendor->fixed_options) {
2434		baud = uap->fixed_baud;
2435	} else {
2436		if (options)
2437			uart_parse_options(options,
2438					   &baud, &parity, &bits, &flow);
2439		else
2440			pl011_console_get_options(uap, &baud, &parity, &bits);
2441	}
2442
2443	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2444}
2445
2446/**
2447 *	pl011_console_match - non-standard console matching
2448 *	@co:	  registering console
2449 *	@name:	  name from console command line
2450 *	@idx:	  index from console command line
2451 *	@options: ptr to option string from console command line
2452 *
2453 *	Only attempts to match console command lines of the form:
2454 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2455 *	    console=pl011,0x<addr>[,<options>]
2456 *	This form is used to register an initial earlycon boot console and
2457 *	replace it with the amba_console at pl011 driver init.
2458 *
2459 *	Performs console setup for a match (as required by interface)
2460 *	If no <options> are specified, then assume the h/w is already setup.
2461 *
2462 *	Returns 0 if console matches; otherwise non-zero to use default matching
2463 */
2464static int pl011_console_match(struct console *co, char *name, int idx,
2465			       char *options)
2466{
2467	unsigned char iotype;
2468	resource_size_t addr;
2469	int i;
2470
2471	/*
2472	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2473	 * have a distinct console name, so make sure we check for that.
2474	 * The actual implementation of the erratum occurs in the probe
2475	 * function.
2476	 */
2477	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2478		return -ENODEV;
2479
2480	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2481		return -ENODEV;
2482
2483	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2484		return -ENODEV;
2485
2486	/* try to match the port specified on the command line */
2487	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2488		struct uart_port *port;
2489
2490		if (!amba_ports[i])
2491			continue;
2492
2493		port = &amba_ports[i]->port;
2494
2495		if (port->mapbase != addr)
2496			continue;
2497
2498		co->index = i;
2499		port->cons = co;
2500		return pl011_console_setup(co, options);
2501	}
2502
2503	return -ENODEV;
2504}
2505
2506static struct uart_driver amba_reg;
2507static struct console amba_console = {
2508	.name		= "ttyAMA",
2509	.write		= pl011_console_write,
2510	.device		= uart_console_device,
2511	.setup		= pl011_console_setup,
2512	.match		= pl011_console_match,
2513	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2514	.index		= -1,
2515	.data		= &amba_reg,
2516};
2517
2518#define AMBA_CONSOLE	(&amba_console)
2519
2520static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2521{
2522	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2523		cpu_relax();
2524	writel(c, port->membase + UART01x_DR);
2525	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2526		cpu_relax();
2527}
2528
2529static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2530{
2531	struct earlycon_device *dev = con->data;
2532
2533	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2534}
2535
2536static void pl011_putc(struct uart_port *port, unsigned char c)
2537{
2538	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2539		cpu_relax();
2540	if (port->iotype == UPIO_MEM32)
2541		writel(c, port->membase + UART01x_DR);
2542	else
2543		writeb(c, port->membase + UART01x_DR);
2544	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2545		cpu_relax();
2546}
2547
2548static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2549{
2550	struct earlycon_device *dev = con->data;
2551
2552	uart_console_write(&dev->port, s, n, pl011_putc);
2553}
2554
2555#ifdef CONFIG_CONSOLE_POLL
2556static int pl011_getc(struct uart_port *port)
2557{
2558	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2559		return NO_POLL_CHAR;
2560
2561	if (port->iotype == UPIO_MEM32)
2562		return readl(port->membase + UART01x_DR);
2563	else
2564		return readb(port->membase + UART01x_DR);
2565}
2566
2567static int pl011_early_read(struct console *con, char *s, unsigned int n)
2568{
2569	struct earlycon_device *dev = con->data;
2570	int ch, num_read = 0;
2571
2572	while (num_read < n) {
2573		ch = pl011_getc(&dev->port);
2574		if (ch == NO_POLL_CHAR)
2575			break;
2576
2577		s[num_read++] = ch;
2578	}
2579
2580	return num_read;
2581}
2582#else
2583#define pl011_early_read NULL
2584#endif
2585
2586/*
2587 * On non-ACPI systems, earlycon is enabled by specifying
2588 * "earlycon=pl011,<address>" on the kernel command line.
2589 *
2590 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2591 * by specifying only "earlycon" on the command line.  Because it requires
2592 * SPCR, the console starts after ACPI is parsed, which is later than a
2593 * traditional early console.
2594 *
2595 * To get the traditional early console that starts before ACPI is parsed,
2596 * specify the full "earlycon=pl011,<address>" option.
2597 */
2598static int __init pl011_early_console_setup(struct earlycon_device *device,
2599					    const char *opt)
2600{
2601	if (!device->port.membase)
2602		return -ENODEV;
2603
2604	device->con->write = pl011_early_write;
2605	device->con->read = pl011_early_read;
2606
2607	return 0;
2608}
2609
2610OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2611
2612OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2613
2614/*
2615 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2616 * Erratum 44, traditional earlycon can be enabled by specifying
2617 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2618 *
2619 * Alternatively, you can just specify "earlycon", and the early console
2620 * will be enabled with the information from the SPCR table.  In this
2621 * case, the SPCR code will detect the need for the E44 work-around,
2622 * and set the console name to "qdf2400_e44".
2623 */
2624static int __init
2625qdf2400_e44_early_console_setup(struct earlycon_device *device,
2626				const char *opt)
2627{
2628	if (!device->port.membase)
2629		return -ENODEV;
2630
2631	device->con->write = qdf2400_e44_early_write;
2632	return 0;
2633}
2634
2635EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636
2637#else
2638#define AMBA_CONSOLE	NULL
2639#endif
2640
2641static struct uart_driver amba_reg = {
2642	.owner			= THIS_MODULE,
2643	.driver_name		= "ttyAMA",
2644	.dev_name		= "ttyAMA",
2645	.major			= SERIAL_AMBA_MAJOR,
2646	.minor			= SERIAL_AMBA_MINOR,
2647	.nr			= UART_NR,
2648	.cons			= AMBA_CONSOLE,
2649};
2650
2651static int pl011_probe_dt_alias(int index, struct device *dev)
2652{
2653	struct device_node *np;
2654	static bool seen_dev_with_alias;
2655	static bool seen_dev_without_alias;
2656	int ret = index;
2657
2658	if (!IS_ENABLED(CONFIG_OF))
2659		return ret;
2660
2661	np = dev->of_node;
2662	if (!np)
2663		return ret;
2664
2665	ret = of_alias_get_id(np, "serial");
2666	if (ret < 0) {
2667		seen_dev_without_alias = true;
2668		ret = index;
2669	} else {
2670		seen_dev_with_alias = true;
2671		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2672			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2673			ret = index;
2674		}
2675	}
2676
2677	if (seen_dev_with_alias && seen_dev_without_alias)
2678		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679
2680	return ret;
2681}
2682
2683/* unregisters the driver also if no more ports are left */
2684static void pl011_unregister_port(struct uart_amba_port *uap)
2685{
2686	int i;
2687	bool busy = false;
2688
2689	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690		if (amba_ports[i] == uap)
2691			amba_ports[i] = NULL;
2692		else if (amba_ports[i])
2693			busy = true;
2694	}
2695	pl011_dma_remove(uap);
2696	if (!busy)
2697		uart_unregister_driver(&amba_reg);
2698}
2699
2700static int pl011_find_free_port(void)
2701{
2702	int i;
2703
2704	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705		if (!amba_ports[i])
2706			return i;
2707
2708	return -EBUSY;
2709}
2710
2711static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712{
2713	struct uart_port *port = &uap->port;
2714	int ret;
2715
2716	ret = uart_get_rs485_mode(port);
2717	if (ret)
2718		return ret;
2719
2720	return 0;
2721}
2722
2723static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724			    struct resource *mmiobase, int index)
2725{
2726	void __iomem *base;
2727	int ret;
2728
2729	base = devm_ioremap_resource(dev, mmiobase);
2730	if (IS_ERR(base))
2731		return PTR_ERR(base);
2732
2733	index = pl011_probe_dt_alias(index, dev);
2734
 
2735	uap->port.dev = dev;
2736	uap->port.mapbase = mmiobase->start;
2737	uap->port.membase = base;
2738	uap->port.fifosize = uap->fifosize;
2739	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740	uap->port.flags = UPF_BOOT_AUTOCONF;
2741	uap->port.line = index;
2742
2743	ret = pl011_get_rs485_mode(uap);
2744	if (ret)
2745		return ret;
2746
2747	amba_ports[index] = uap;
2748
2749	return 0;
2750}
2751
2752static int pl011_register_port(struct uart_amba_port *uap)
2753{
2754	int ret, i;
2755
2756	/* Ensure interrupts from this UART are masked and cleared */
2757	pl011_write(0, uap, REG_IMSC);
2758	pl011_write(0xffff, uap, REG_ICR);
2759
2760	if (!amba_reg.state) {
2761		ret = uart_register_driver(&amba_reg);
2762		if (ret < 0) {
2763			dev_err(uap->port.dev,
2764				"Failed to register AMBA-PL011 driver\n");
2765			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766				if (amba_ports[i] == uap)
2767					amba_ports[i] = NULL;
2768			return ret;
2769		}
2770	}
2771
2772	ret = uart_add_one_port(&amba_reg, &uap->port);
2773	if (ret)
2774		pl011_unregister_port(uap);
2775
2776	return ret;
2777}
2778
2779static const struct serial_rs485 pl011_rs485_supported = {
2780	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781		 SER_RS485_RX_DURING_TX,
2782	.delay_rts_before_send = 1,
2783	.delay_rts_after_send = 1,
2784};
2785
2786static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787{
2788	struct uart_amba_port *uap;
2789	struct vendor_data *vendor = id->data;
2790	int portnr, ret;
2791	u32 val;
2792
2793	portnr = pl011_find_free_port();
2794	if (portnr < 0)
2795		return portnr;
2796
2797	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798			   GFP_KERNEL);
2799	if (!uap)
2800		return -ENOMEM;
2801
2802	uap->clk = devm_clk_get(&dev->dev, NULL);
2803	if (IS_ERR(uap->clk))
2804		return PTR_ERR(uap->clk);
2805
2806	uap->reg_offset = vendor->reg_offset;
2807	uap->vendor = vendor;
2808	uap->fifosize = vendor->get_fifosize(dev);
2809	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810	uap->port.irq = dev->irq[0];
2811	uap->port.ops = &amba_pl011_pops;
2812	uap->port.rs485_config = pl011_rs485_config;
2813	uap->port.rs485_supported = pl011_rs485_supported;
2814	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815
2816	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817		switch (val) {
2818		case 1:
2819			uap->port.iotype = UPIO_MEM;
2820			break;
2821		case 4:
2822			uap->port.iotype = UPIO_MEM32;
2823			break;
2824		default:
2825			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826				 val);
2827			return -EINVAL;
2828		}
2829	}
2830
2831	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832	if (ret)
2833		return ret;
2834
2835	amba_set_drvdata(dev, uap);
2836
2837	return pl011_register_port(uap);
2838}
2839
2840static void pl011_remove(struct amba_device *dev)
2841{
2842	struct uart_amba_port *uap = amba_get_drvdata(dev);
2843
2844	uart_remove_one_port(&amba_reg, &uap->port);
2845	pl011_unregister_port(uap);
 
2846}
2847
2848#ifdef CONFIG_PM_SLEEP
2849static int pl011_suspend(struct device *dev)
2850{
2851	struct uart_amba_port *uap = dev_get_drvdata(dev);
2852
2853	if (!uap)
2854		return -EINVAL;
2855
2856	return uart_suspend_port(&amba_reg, &uap->port);
2857}
2858
2859static int pl011_resume(struct device *dev)
2860{
2861	struct uart_amba_port *uap = dev_get_drvdata(dev);
2862
2863	if (!uap)
2864		return -EINVAL;
2865
2866	return uart_resume_port(&amba_reg, &uap->port);
2867}
2868#endif
2869
2870static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871
2872#ifdef CONFIG_ACPI_SPCR_TABLE
2873static void qpdf2400_erratum44_workaround(struct device *dev,
2874					  struct uart_amba_port *uap)
2875{
2876	if (!qdf2400_e44_present)
2877		return;
2878
2879	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2880	uap->vendor = &vendor_qdt_qdf2400_e44;
2881}
2882#else
2883static void qpdf2400_erratum44_workaround(struct device *dev,
2884					  struct uart_amba_port *uap)
2885{ /* empty */ }
2886#endif
2887
2888static int sbsa_uart_probe(struct platform_device *pdev)
2889{
2890	struct uart_amba_port *uap;
2891	struct resource *r;
2892	int portnr, ret;
2893	int baudrate;
2894
2895	/*
2896	 * Check the mandatory baud rate parameter in the DT node early
2897	 * so that we can easily exit with the error.
2898	 */
2899	if (pdev->dev.of_node) {
2900		struct device_node *np = pdev->dev.of_node;
2901
2902		ret = of_property_read_u32(np, "current-speed", &baudrate);
2903		if (ret)
2904			return ret;
2905	} else {
2906		baudrate = 115200;
2907	}
2908
2909	portnr = pl011_find_free_port();
2910	if (portnr < 0)
2911		return portnr;
2912
2913	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2914			   GFP_KERNEL);
2915	if (!uap)
2916		return -ENOMEM;
2917
2918	ret = platform_get_irq(pdev, 0);
2919	if (ret < 0)
 
 
2920		return ret;
 
2921	uap->port.irq	= ret;
2922
2923	uap->vendor = &vendor_sbsa;
2924	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2925
2926	uap->reg_offset	= uap->vendor->reg_offset;
2927	uap->fifosize	= 32;
2928	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2929	uap->port.ops	= &sbsa_uart_pops;
2930	uap->fixed_baud = baudrate;
2931
2932	snprintf(uap->type, sizeof(uap->type), "SBSA");
2933
2934	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2935
2936	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2937	if (ret)
2938		return ret;
2939
2940	platform_set_drvdata(pdev, uap);
2941
2942	return pl011_register_port(uap);
2943}
2944
2945static void sbsa_uart_remove(struct platform_device *pdev)
2946{
2947	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2948
2949	uart_remove_one_port(&amba_reg, &uap->port);
2950	pl011_unregister_port(uap);
 
2951}
2952
2953static const struct of_device_id sbsa_uart_of_match[] = {
2954	{ .compatible = "arm,sbsa-uart", },
2955	{},
2956};
2957MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2958
2959static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2960	{ "ARMH0011", 0 },
2961	{ "ARMHB000", 0 },
2962	{},
2963};
2964MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2965
2966static struct platform_driver arm_sbsa_uart_platform_driver = {
2967	.probe		= sbsa_uart_probe,
2968	.remove_new	= sbsa_uart_remove,
2969	.driver	= {
2970		.name	= "sbsa-uart",
2971		.pm	= &pl011_dev_pm_ops,
2972		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2973		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2974		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2975	},
2976};
2977
2978static const struct amba_id pl011_ids[] = {
2979	{
2980		.id	= 0x00041011,
2981		.mask	= 0x000fffff,
2982		.data	= &vendor_arm,
2983	},
2984	{
2985		.id	= 0x00380802,
2986		.mask	= 0x00ffffff,
2987		.data	= &vendor_st,
2988	},
 
 
 
 
 
2989	{ 0, 0 },
2990};
2991
2992MODULE_DEVICE_TABLE(amba, pl011_ids);
2993
2994static struct amba_driver pl011_driver = {
2995	.drv = {
2996		.name	= "uart-pl011",
2997		.pm	= &pl011_dev_pm_ops,
2998		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2999	},
3000	.id_table	= pl011_ids,
3001	.probe		= pl011_probe,
3002	.remove		= pl011_remove,
3003};
3004
3005static int __init pl011_init(void)
3006{
3007	pr_info("Serial: AMBA PL011 UART driver\n");
3008
3009	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3010		pr_warn("could not register SBSA UART platform driver\n");
3011	return amba_driver_register(&pl011_driver);
3012}
3013
3014static void __exit pl011_exit(void)
3015{
3016	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3017	amba_driver_unregister(&pl011_driver);
3018}
3019
3020/*
3021 * While this can be a module, if builtin it's most likely the console
3022 * So let's leave module_exit but move module_init to an earlier place
3023 */
3024arch_initcall(pl011_init);
3025module_exit(pl011_exit);
3026
3027MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3028MODULE_DESCRIPTION("ARM AMBA serial port driver");
3029MODULE_LICENSE("GPL");
v4.10.11
 
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32
  33#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  34#define SUPPORT_SYSRQ
  35#endif
  36
  37#include <linux/module.h>
  38#include <linux/ioport.h>
  39#include <linux/init.h>
  40#include <linux/console.h>
 
  41#include <linux/sysrq.h>
  42#include <linux/device.h>
  43#include <linux/tty.h>
  44#include <linux/tty_flip.h>
  45#include <linux/serial_core.h>
  46#include <linux/serial.h>
  47#include <linux/amba/bus.h>
  48#include <linux/amba/serial.h>
  49#include <linux/clk.h>
  50#include <linux/slab.h>
  51#include <linux/dmaengine.h>
  52#include <linux/dma-mapping.h>
  53#include <linux/scatterlist.h>
  54#include <linux/delay.h>
  55#include <linux/types.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/pinctrl/consumer.h>
  59#include <linux/sizes.h>
  60#include <linux/io.h>
  61#include <linux/acpi.h>
  62
  63#include "amba-pl011.h"
  64
  65#define UART_NR			14
  66
  67#define SERIAL_AMBA_MAJOR	204
  68#define SERIAL_AMBA_MINOR	64
  69#define SERIAL_AMBA_NR		UART_NR
  70
  71#define AMBA_ISR_PASS_LIMIT	256
  72
  73#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  74#define UART_DUMMY_DR_RX	(1 << 16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  77	[REG_DR] = UART01x_DR,
  78	[REG_FR] = UART01x_FR,
  79	[REG_LCRH_RX] = UART011_LCRH,
  80	[REG_LCRH_TX] = UART011_LCRH,
  81	[REG_IBRD] = UART011_IBRD,
  82	[REG_FBRD] = UART011_FBRD,
  83	[REG_CR] = UART011_CR,
  84	[REG_IFLS] = UART011_IFLS,
  85	[REG_IMSC] = UART011_IMSC,
  86	[REG_RIS] = UART011_RIS,
  87	[REG_MIS] = UART011_MIS,
  88	[REG_ICR] = UART011_ICR,
  89	[REG_DMACR] = UART011_DMACR,
  90};
  91
  92/* There is by now at least one vendor with differing details, so handle it */
  93struct vendor_data {
  94	const u16		*reg_offset;
  95	unsigned int		ifls;
  96	unsigned int		fr_busy;
  97	unsigned int		fr_dsr;
  98	unsigned int		fr_cts;
  99	unsigned int		fr_ri;
 
 100	bool			access_32b;
 101	bool			oversampling;
 102	bool			dma_threshold;
 103	bool			cts_event_workaround;
 104	bool			always_enabled;
 105	bool			fixed_options;
 106
 107	unsigned int (*get_fifosize)(struct amba_device *dev);
 108};
 109
 110static unsigned int get_fifosize_arm(struct amba_device *dev)
 111{
 112	return amba_rev(dev) < 3 ? 16 : 32;
 113}
 114
 115static struct vendor_data vendor_arm = {
 116	.reg_offset		= pl011_std_offsets,
 117	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 118	.fr_busy		= UART01x_FR_BUSY,
 119	.fr_dsr			= UART01x_FR_DSR,
 120	.fr_cts			= UART01x_FR_CTS,
 121	.fr_ri			= UART011_FR_RI,
 122	.oversampling		= false,
 123	.dma_threshold		= false,
 124	.cts_event_workaround	= false,
 125	.always_enabled		= false,
 126	.fixed_options		= false,
 127	.get_fifosize		= get_fifosize_arm,
 128};
 129
 130static struct vendor_data vendor_sbsa = {
 131	.reg_offset		= pl011_std_offsets,
 132	.fr_busy		= UART01x_FR_BUSY,
 133	.fr_dsr			= UART01x_FR_DSR,
 134	.fr_cts			= UART01x_FR_CTS,
 135	.fr_ri			= UART011_FR_RI,
 136	.access_32b		= true,
 137	.oversampling		= false,
 138	.dma_threshold		= false,
 139	.cts_event_workaround	= false,
 140	.always_enabled		= true,
 141	.fixed_options		= true,
 142};
 143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 145	[REG_DR] = UART01x_DR,
 146	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 147	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 148	[REG_FR] = UART01x_FR,
 149	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 150	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 151	[REG_IBRD] = UART011_IBRD,
 152	[REG_FBRD] = UART011_FBRD,
 153	[REG_CR] = UART011_CR,
 154	[REG_IFLS] = UART011_IFLS,
 155	[REG_IMSC] = UART011_IMSC,
 156	[REG_RIS] = UART011_RIS,
 157	[REG_MIS] = UART011_MIS,
 158	[REG_ICR] = UART011_ICR,
 159	[REG_DMACR] = UART011_DMACR,
 160	[REG_ST_XFCR] = ST_UART011_XFCR,
 161	[REG_ST_XON1] = ST_UART011_XON1,
 162	[REG_ST_XON2] = ST_UART011_XON2,
 163	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 164	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 165	[REG_ST_ITCR] = ST_UART011_ITCR,
 166	[REG_ST_ITIP] = ST_UART011_ITIP,
 167	[REG_ST_ABCR] = ST_UART011_ABCR,
 168	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 169};
 170
 171static unsigned int get_fifosize_st(struct amba_device *dev)
 172{
 173	return 64;
 174}
 175
 176static struct vendor_data vendor_st = {
 177	.reg_offset		= pl011_st_offsets,
 178	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 179	.fr_busy		= UART01x_FR_BUSY,
 180	.fr_dsr			= UART01x_FR_DSR,
 181	.fr_cts			= UART01x_FR_CTS,
 182	.fr_ri			= UART011_FR_RI,
 183	.oversampling		= true,
 184	.dma_threshold		= true,
 185	.cts_event_workaround	= true,
 186	.always_enabled		= false,
 187	.fixed_options		= false,
 188	.get_fifosize		= get_fifosize_st,
 189};
 190
 191static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 192	[REG_DR] = ZX_UART011_DR,
 193	[REG_FR] = ZX_UART011_FR,
 194	[REG_LCRH_RX] = ZX_UART011_LCRH,
 195	[REG_LCRH_TX] = ZX_UART011_LCRH,
 196	[REG_IBRD] = ZX_UART011_IBRD,
 197	[REG_FBRD] = ZX_UART011_FBRD,
 198	[REG_CR] = ZX_UART011_CR,
 199	[REG_IFLS] = ZX_UART011_IFLS,
 200	[REG_IMSC] = ZX_UART011_IMSC,
 201	[REG_RIS] = ZX_UART011_RIS,
 202	[REG_MIS] = ZX_UART011_MIS,
 203	[REG_ICR] = ZX_UART011_ICR,
 204	[REG_DMACR] = ZX_UART011_DMACR,
 205};
 206
 207static unsigned int get_fifosize_zte(struct amba_device *dev)
 208{
 209	return 16;
 210}
 211
 212static struct vendor_data vendor_zte = {
 213	.reg_offset		= pl011_zte_offsets,
 214	.access_32b		= true,
 215	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 216	.fr_busy		= ZX_UART01x_FR_BUSY,
 217	.fr_dsr			= ZX_UART01x_FR_DSR,
 218	.fr_cts			= ZX_UART01x_FR_CTS,
 219	.fr_ri			= ZX_UART011_FR_RI,
 220	.get_fifosize		= get_fifosize_zte,
 221};
 222
 223/* Deals with DMA transactions */
 224
 225struct pl011_sgbuf {
 226	struct scatterlist sg;
 227	char *buf;
 
 228};
 229
 230struct pl011_dmarx_data {
 231	struct dma_chan		*chan;
 232	struct completion	complete;
 233	bool			use_buf_b;
 234	struct pl011_sgbuf	sgbuf_a;
 235	struct pl011_sgbuf	sgbuf_b;
 236	dma_cookie_t		cookie;
 237	bool			running;
 238	struct timer_list	timer;
 239	unsigned int last_residue;
 240	unsigned long last_jiffies;
 241	bool auto_poll_rate;
 242	unsigned int poll_rate;
 243	unsigned int poll_timeout;
 244};
 245
 246struct pl011_dmatx_data {
 247	struct dma_chan		*chan;
 248	struct scatterlist	sg;
 
 249	char			*buf;
 250	bool			queued;
 251};
 252
 253/*
 254 * We wrap our port structure around the generic uart_port.
 255 */
 256struct uart_amba_port {
 257	struct uart_port	port;
 258	const u16		*reg_offset;
 259	struct clk		*clk;
 260	const struct vendor_data *vendor;
 261	unsigned int		dmacr;		/* dma control reg */
 262	unsigned int		im;		/* interrupt mask */
 263	unsigned int		old_status;
 264	unsigned int		fifosize;	/* vendor-specific */
 265	unsigned int		old_cr;		/* state during shutdown */
 266	bool			autorts;
 267	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 268	char			type[12];
 
 
 269#ifdef CONFIG_DMA_ENGINE
 270	/* DMA stuff */
 271	bool			using_tx_dma;
 272	bool			using_rx_dma;
 273	struct pl011_dmarx_data dmarx;
 274	struct pl011_dmatx_data	dmatx;
 275	bool			dma_probed;
 276#endif
 277};
 278
 
 
 279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 280	unsigned int reg)
 281{
 282	return uap->reg_offset[reg];
 283}
 284
 285static unsigned int pl011_read(const struct uart_amba_port *uap,
 286	unsigned int reg)
 287{
 288	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 289
 290	return (uap->port.iotype == UPIO_MEM32) ?
 291		readl_relaxed(addr) : readw_relaxed(addr);
 292}
 293
 294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 295	unsigned int reg)
 296{
 297	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 298
 299	if (uap->port.iotype == UPIO_MEM32)
 300		writel_relaxed(val, addr);
 301	else
 302		writew_relaxed(val, addr);
 303}
 304
 305/*
 306 * Reads up to 256 characters from the FIFO or until it's empty and
 307 * inserts them into the TTY layer. Returns the number of characters
 308 * read from the FIFO.
 309 */
 310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 311{
 
 
 312	u16 status;
 313	unsigned int ch, flag, max_count = 256;
 314	int fifotaken = 0;
 315
 316	while (max_count--) {
 317		status = pl011_read(uap, REG_FR);
 318		if (status & UART01x_FR_RXFE)
 319			break;
 320
 321		/* Take chars from the FIFO and update status */
 322		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 323		flag = TTY_NORMAL;
 324		uap->port.icount.rx++;
 325		fifotaken++;
 326
 327		if (unlikely(ch & UART_DR_ERROR)) {
 328			if (ch & UART011_DR_BE) {
 329				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 330				uap->port.icount.brk++;
 331				if (uart_handle_break(&uap->port))
 332					continue;
 333			} else if (ch & UART011_DR_PE)
 334				uap->port.icount.parity++;
 335			else if (ch & UART011_DR_FE)
 336				uap->port.icount.frame++;
 
 337			if (ch & UART011_DR_OE)
 338				uap->port.icount.overrun++;
 339
 340			ch &= uap->port.read_status_mask;
 341
 342			if (ch & UART011_DR_BE)
 343				flag = TTY_BREAK;
 344			else if (ch & UART011_DR_PE)
 345				flag = TTY_PARITY;
 346			else if (ch & UART011_DR_FE)
 347				flag = TTY_FRAME;
 348		}
 349
 350		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 351			continue;
 
 352
 353		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 
 354	}
 355
 356	return fifotaken;
 357}
 358
 359
 360/*
 361 * All the DMA operation mode stuff goes inside this ifdef.
 362 * This assumes that you have a generic DMA device interface,
 363 * no custom DMA interfaces are supported.
 364 */
 365#ifdef CONFIG_DMA_ENGINE
 366
 367#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 368
 369static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 370	enum dma_data_direction dir)
 371{
 372	dma_addr_t dma_addr;
 373
 374	sg->buf = dma_alloc_coherent(chan->device->dev,
 375		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 376	if (!sg->buf)
 377		return -ENOMEM;
 378
 379	sg_init_table(&sg->sg, 1);
 380	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 381		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 382	sg_dma_address(&sg->sg) = dma_addr;
 383	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 384
 385	return 0;
 386}
 387
 388static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 389	enum dma_data_direction dir)
 390{
 391	if (sg->buf) {
 392		dma_free_coherent(chan->device->dev,
 393			PL011_DMA_BUFFER_SIZE, sg->buf,
 394			sg_dma_address(&sg->sg));
 395	}
 396}
 397
 398static void pl011_dma_probe(struct uart_amba_port *uap)
 399{
 400	/* DMA is the sole user of the platform data right now */
 401	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 402	struct device *dev = uap->port.dev;
 403	struct dma_slave_config tx_conf = {
 404		.dst_addr = uap->port.mapbase +
 405				 pl011_reg_to_offset(uap, REG_DR),
 406		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 407		.direction = DMA_MEM_TO_DEV,
 408		.dst_maxburst = uap->fifosize >> 1,
 409		.device_fc = false,
 410	};
 411	struct dma_chan *chan;
 412	dma_cap_mask_t mask;
 413
 414	uap->dma_probed = true;
 415	chan = dma_request_slave_channel_reason(dev, "tx");
 416	if (IS_ERR(chan)) {
 417		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 418			uap->dma_probed = false;
 419			return;
 420		}
 421
 422		/* We need platform data */
 423		if (!plat || !plat->dma_filter) {
 424			dev_info(uap->port.dev, "no DMA platform data\n");
 425			return;
 426		}
 427
 428		/* Try to acquire a generic DMA engine slave TX channel */
 429		dma_cap_zero(mask);
 430		dma_cap_set(DMA_SLAVE, mask);
 431
 432		chan = dma_request_channel(mask, plat->dma_filter,
 433						plat->dma_tx_param);
 434		if (!chan) {
 435			dev_err(uap->port.dev, "no TX DMA channel!\n");
 436			return;
 437		}
 438	}
 439
 440	dmaengine_slave_config(chan, &tx_conf);
 441	uap->dmatx.chan = chan;
 442
 443	dev_info(uap->port.dev, "DMA channel TX %s\n",
 444		 dma_chan_name(uap->dmatx.chan));
 445
 446	/* Optionally make use of an RX channel as well */
 447	chan = dma_request_slave_channel(dev, "rx");
 448
 449	if (!chan && plat && plat->dma_rx_param) {
 450		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 451
 452		if (!chan) {
 453			dev_err(uap->port.dev, "no RX DMA channel!\n");
 454			return;
 455		}
 456	}
 457
 458	if (chan) {
 459		struct dma_slave_config rx_conf = {
 460			.src_addr = uap->port.mapbase +
 461				pl011_reg_to_offset(uap, REG_DR),
 462			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 463			.direction = DMA_DEV_TO_MEM,
 464			.src_maxburst = uap->fifosize >> 2,
 465			.device_fc = false,
 466		};
 467		struct dma_slave_caps caps;
 468
 469		/*
 470		 * Some DMA controllers provide information on their capabilities.
 471		 * If the controller does, check for suitable residue processing
 472		 * otherwise assime all is well.
 473		 */
 474		if (0 == dma_get_slave_caps(chan, &caps)) {
 475			if (caps.residue_granularity ==
 476					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 477				dma_release_channel(chan);
 478				dev_info(uap->port.dev,
 479					"RX DMA disabled - no residue processing\n");
 480				return;
 481			}
 482		}
 483		dmaengine_slave_config(chan, &rx_conf);
 484		uap->dmarx.chan = chan;
 485
 486		uap->dmarx.auto_poll_rate = false;
 487		if (plat && plat->dma_rx_poll_enable) {
 488			/* Set poll rate if specified. */
 489			if (plat->dma_rx_poll_rate) {
 490				uap->dmarx.auto_poll_rate = false;
 491				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 492			} else {
 493				/*
 494				 * 100 ms defaults to poll rate if not
 495				 * specified. This will be adjusted with
 496				 * the baud rate at set_termios.
 497				 */
 498				uap->dmarx.auto_poll_rate = true;
 499				uap->dmarx.poll_rate =  100;
 500			}
 501			/* 3 secs defaults poll_timeout if not specified. */
 502			if (plat->dma_rx_poll_timeout)
 503				uap->dmarx.poll_timeout =
 504					plat->dma_rx_poll_timeout;
 505			else
 506				uap->dmarx.poll_timeout = 3000;
 507		} else if (!plat && dev->of_node) {
 508			uap->dmarx.auto_poll_rate = of_property_read_bool(
 509						dev->of_node, "auto-poll");
 510			if (uap->dmarx.auto_poll_rate) {
 511				u32 x;
 512
 513				if (0 == of_property_read_u32(dev->of_node,
 514						"poll-rate-ms", &x))
 515					uap->dmarx.poll_rate = x;
 516				else
 517					uap->dmarx.poll_rate = 100;
 518				if (0 == of_property_read_u32(dev->of_node,
 519						"poll-timeout-ms", &x))
 520					uap->dmarx.poll_timeout = x;
 521				else
 522					uap->dmarx.poll_timeout = 3000;
 523			}
 524		}
 525		dev_info(uap->port.dev, "DMA channel RX %s\n",
 526			 dma_chan_name(uap->dmarx.chan));
 527	}
 528}
 529
 530static void pl011_dma_remove(struct uart_amba_port *uap)
 531{
 532	if (uap->dmatx.chan)
 533		dma_release_channel(uap->dmatx.chan);
 534	if (uap->dmarx.chan)
 535		dma_release_channel(uap->dmarx.chan);
 536}
 537
 538/* Forward declare these for the refill routine */
 539static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 540static void pl011_start_tx_pio(struct uart_amba_port *uap);
 541
 542/*
 543 * The current DMA TX buffer has been sent.
 544 * Try to queue up another DMA buffer.
 545 */
 546static void pl011_dma_tx_callback(void *data)
 547{
 548	struct uart_amba_port *uap = data;
 549	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 550	unsigned long flags;
 551	u16 dmacr;
 552
 553	spin_lock_irqsave(&uap->port.lock, flags);
 554	if (uap->dmatx.queued)
 555		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 556			     DMA_TO_DEVICE);
 557
 558	dmacr = uap->dmacr;
 559	uap->dmacr = dmacr & ~UART011_TXDMAE;
 560	pl011_write(uap->dmacr, uap, REG_DMACR);
 561
 562	/*
 563	 * If TX DMA was disabled, it means that we've stopped the DMA for
 564	 * some reason (eg, XOFF received, or we want to send an X-char.)
 565	 *
 566	 * Note: we need to be careful here of a potential race between DMA
 567	 * and the rest of the driver - if the driver disables TX DMA while
 568	 * a TX buffer completing, we must update the tx queued status to
 569	 * get further refills (hence we check dmacr).
 570	 */
 571	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 572	    uart_circ_empty(&uap->port.state->xmit)) {
 573		uap->dmatx.queued = false;
 574		spin_unlock_irqrestore(&uap->port.lock, flags);
 575		return;
 576	}
 577
 578	if (pl011_dma_tx_refill(uap) <= 0)
 579		/*
 580		 * We didn't queue a DMA buffer for some reason, but we
 581		 * have data pending to be sent.  Re-enable the TX IRQ.
 582		 */
 583		pl011_start_tx_pio(uap);
 584
 585	spin_unlock_irqrestore(&uap->port.lock, flags);
 586}
 587
 588/*
 589 * Try to refill the TX DMA buffer.
 590 * Locking: called with port lock held and IRQs disabled.
 591 * Returns:
 592 *   1 if we queued up a TX DMA buffer.
 593 *   0 if we didn't want to handle this by DMA
 594 *  <0 on error
 595 */
 596static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 597{
 598	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 599	struct dma_chan *chan = dmatx->chan;
 600	struct dma_device *dma_dev = chan->device;
 601	struct dma_async_tx_descriptor *desc;
 602	struct circ_buf *xmit = &uap->port.state->xmit;
 603	unsigned int count;
 604
 605	/*
 606	 * Try to avoid the overhead involved in using DMA if the
 607	 * transaction fits in the first half of the FIFO, by using
 608	 * the standard interrupt handling.  This ensures that we
 609	 * issue a uart_write_wakeup() at the appropriate time.
 610	 */
 611	count = uart_circ_chars_pending(xmit);
 612	if (count < (uap->fifosize >> 1)) {
 613		uap->dmatx.queued = false;
 614		return 0;
 615	}
 616
 617	/*
 618	 * Bodge: don't send the last character by DMA, as this
 619	 * will prevent XON from notifying us to restart DMA.
 620	 */
 621	count -= 1;
 622
 623	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 624	if (count > PL011_DMA_BUFFER_SIZE)
 625		count = PL011_DMA_BUFFER_SIZE;
 626
 627	if (xmit->tail < xmit->head)
 628		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 629	else {
 630		size_t first = UART_XMIT_SIZE - xmit->tail;
 631		size_t second;
 632
 633		if (first > count)
 634			first = count;
 635		second = count - first;
 636
 637		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 638		if (second)
 639			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 640	}
 641
 642	dmatx->sg.length = count;
 643
 644	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 
 645		uap->dmatx.queued = false;
 646		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 647		return -EBUSY;
 648	}
 649
 650	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 651					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 652	if (!desc) {
 653		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 654		uap->dmatx.queued = false;
 655		/*
 656		 * If DMA cannot be used right now, we complete this
 657		 * transaction via IRQ and let the TTY layer retry.
 658		 */
 659		dev_dbg(uap->port.dev, "TX DMA busy\n");
 660		return -EBUSY;
 661	}
 662
 663	/* Some data to go along to the callback */
 664	desc->callback = pl011_dma_tx_callback;
 665	desc->callback_param = uap;
 666
 667	/* All errors should happen at prepare time */
 668	dmaengine_submit(desc);
 669
 670	/* Fire the DMA transaction */
 671	dma_dev->device_issue_pending(chan);
 672
 673	uap->dmacr |= UART011_TXDMAE;
 674	pl011_write(uap->dmacr, uap, REG_DMACR);
 675	uap->dmatx.queued = true;
 676
 677	/*
 678	 * Now we know that DMA will fire, so advance the ring buffer
 679	 * with the stuff we just dispatched.
 680	 */
 681	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 682	uap->port.icount.tx += count;
 683
 684	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 685		uart_write_wakeup(&uap->port);
 686
 687	return 1;
 688}
 689
 690/*
 691 * We received a transmit interrupt without a pending X-char but with
 692 * pending characters.
 693 * Locking: called with port lock held and IRQs disabled.
 694 * Returns:
 695 *   false if we want to use PIO to transmit
 696 *   true if we queued a DMA buffer
 697 */
 698static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 699{
 700	if (!uap->using_tx_dma)
 701		return false;
 702
 703	/*
 704	 * If we already have a TX buffer queued, but received a
 705	 * TX interrupt, it will be because we've just sent an X-char.
 706	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 707	 */
 708	if (uap->dmatx.queued) {
 709		uap->dmacr |= UART011_TXDMAE;
 710		pl011_write(uap->dmacr, uap, REG_DMACR);
 711		uap->im &= ~UART011_TXIM;
 712		pl011_write(uap->im, uap, REG_IMSC);
 713		return true;
 714	}
 715
 716	/*
 717	 * We don't have a TX buffer queued, so try to queue one.
 718	 * If we successfully queued a buffer, mask the TX IRQ.
 719	 */
 720	if (pl011_dma_tx_refill(uap) > 0) {
 721		uap->im &= ~UART011_TXIM;
 722		pl011_write(uap->im, uap, REG_IMSC);
 723		return true;
 724	}
 725	return false;
 726}
 727
 728/*
 729 * Stop the DMA transmit (eg, due to received XOFF).
 730 * Locking: called with port lock held and IRQs disabled.
 731 */
 732static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 733{
 734	if (uap->dmatx.queued) {
 735		uap->dmacr &= ~UART011_TXDMAE;
 736		pl011_write(uap->dmacr, uap, REG_DMACR);
 737	}
 738}
 739
 740/*
 741 * Try to start a DMA transmit, or in the case of an XON/OFF
 742 * character queued for send, try to get that character out ASAP.
 743 * Locking: called with port lock held and IRQs disabled.
 744 * Returns:
 745 *   false if we want the TX IRQ to be enabled
 746 *   true if we have a buffer queued
 747 */
 748static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 749{
 750	u16 dmacr;
 751
 752	if (!uap->using_tx_dma)
 753		return false;
 754
 755	if (!uap->port.x_char) {
 756		/* no X-char, try to push chars out in DMA mode */
 757		bool ret = true;
 758
 759		if (!uap->dmatx.queued) {
 760			if (pl011_dma_tx_refill(uap) > 0) {
 761				uap->im &= ~UART011_TXIM;
 762				pl011_write(uap->im, uap, REG_IMSC);
 763			} else
 764				ret = false;
 
 765		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 766			uap->dmacr |= UART011_TXDMAE;
 767			pl011_write(uap->dmacr, uap, REG_DMACR);
 768		}
 769		return ret;
 770	}
 771
 772	/*
 773	 * We have an X-char to send.  Disable DMA to prevent it loading
 774	 * the TX fifo, and then see if we can stuff it into the FIFO.
 775	 */
 776	dmacr = uap->dmacr;
 777	uap->dmacr &= ~UART011_TXDMAE;
 778	pl011_write(uap->dmacr, uap, REG_DMACR);
 779
 780	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 781		/*
 782		 * No space in the FIFO, so enable the transmit interrupt
 783		 * so we know when there is space.  Note that once we've
 784		 * loaded the character, we should just re-enable DMA.
 785		 */
 786		return false;
 787	}
 788
 789	pl011_write(uap->port.x_char, uap, REG_DR);
 790	uap->port.icount.tx++;
 791	uap->port.x_char = 0;
 792
 793	/* Success - restore the DMA state */
 794	uap->dmacr = dmacr;
 795	pl011_write(dmacr, uap, REG_DMACR);
 796
 797	return true;
 798}
 799
 800/*
 801 * Flush the transmit buffer.
 802 * Locking: called with port lock held and IRQs disabled.
 803 */
 804static void pl011_dma_flush_buffer(struct uart_port *port)
 805__releases(&uap->port.lock)
 806__acquires(&uap->port.lock)
 807{
 808	struct uart_amba_port *uap =
 809	    container_of(port, struct uart_amba_port, port);
 810
 811	if (!uap->using_tx_dma)
 812		return;
 813
 814	/* Avoid deadlock with the DMA engine callback */
 815	spin_unlock(&uap->port.lock);
 816	dmaengine_terminate_all(uap->dmatx.chan);
 817	spin_lock(&uap->port.lock);
 818	if (uap->dmatx.queued) {
 819		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 820			     DMA_TO_DEVICE);
 821		uap->dmatx.queued = false;
 822		uap->dmacr &= ~UART011_TXDMAE;
 823		pl011_write(uap->dmacr, uap, REG_DMACR);
 824	}
 825}
 826
 827static void pl011_dma_rx_callback(void *data);
 828
 829static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 830{
 831	struct dma_chan *rxchan = uap->dmarx.chan;
 832	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 833	struct dma_async_tx_descriptor *desc;
 834	struct pl011_sgbuf *sgbuf;
 835
 836	if (!rxchan)
 837		return -EIO;
 838
 839	/* Start the RX DMA job */
 840	sgbuf = uap->dmarx.use_buf_b ?
 841		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 842	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 843					DMA_DEV_TO_MEM,
 844					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 845	/*
 846	 * If the DMA engine is busy and cannot prepare a
 847	 * channel, no big deal, the driver will fall back
 848	 * to interrupt mode as a result of this error code.
 849	 */
 850	if (!desc) {
 851		uap->dmarx.running = false;
 852		dmaengine_terminate_all(rxchan);
 853		return -EBUSY;
 854	}
 855
 856	/* Some data to go along to the callback */
 857	desc->callback = pl011_dma_rx_callback;
 858	desc->callback_param = uap;
 859	dmarx->cookie = dmaengine_submit(desc);
 860	dma_async_issue_pending(rxchan);
 861
 862	uap->dmacr |= UART011_RXDMAE;
 863	pl011_write(uap->dmacr, uap, REG_DMACR);
 864	uap->dmarx.running = true;
 865
 866	uap->im &= ~UART011_RXIM;
 867	pl011_write(uap->im, uap, REG_IMSC);
 868
 869	return 0;
 870}
 871
 872/*
 873 * This is called when either the DMA job is complete, or
 874 * the FIFO timeout interrupt occurred. This must be called
 875 * with the port spinlock uap->port.lock held.
 876 */
 877static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 878			       u32 pending, bool use_buf_b,
 879			       bool readfifo)
 880{
 881	struct tty_port *port = &uap->port.state->port;
 882	struct pl011_sgbuf *sgbuf = use_buf_b ?
 883		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 884	int dma_count = 0;
 885	u32 fifotaken = 0; /* only used for vdbg() */
 886
 887	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 888	int dmataken = 0;
 889
 890	if (uap->dmarx.poll_rate) {
 891		/* The data can be taken by polling */
 892		dmataken = sgbuf->sg.length - dmarx->last_residue;
 893		/* Recalculate the pending size */
 894		if (pending >= dmataken)
 895			pending -= dmataken;
 896	}
 897
 898	/* Pick the remain data from the DMA */
 899	if (pending) {
 900
 901		/*
 902		 * First take all chars in the DMA pipe, then look in the FIFO.
 903		 * Note that tty_insert_flip_buf() tries to take as many chars
 904		 * as it can.
 905		 */
 906		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 907				pending);
 908
 909		uap->port.icount.rx += dma_count;
 910		if (dma_count < pending)
 911			dev_warn(uap->port.dev,
 912				 "couldn't insert all characters (TTY is full?)\n");
 913	}
 914
 915	/* Reset the last_residue for Rx DMA poll */
 916	if (uap->dmarx.poll_rate)
 917		dmarx->last_residue = sgbuf->sg.length;
 918
 919	/*
 920	 * Only continue with trying to read the FIFO if all DMA chars have
 921	 * been taken first.
 922	 */
 923	if (dma_count == pending && readfifo) {
 924		/* Clear any error flags */
 925		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 926			    UART011_FEIS, uap, REG_ICR);
 927
 928		/*
 929		 * If we read all the DMA'd characters, and we had an
 930		 * incomplete buffer, that could be due to an rx error, or
 931		 * maybe we just timed out. Read any pending chars and check
 932		 * the error status.
 933		 *
 934		 * Error conditions will only occur in the FIFO, these will
 935		 * trigger an immediate interrupt and stop the DMA job, so we
 936		 * will always find the error in the FIFO, never in the DMA
 937		 * buffer.
 938		 */
 939		fifotaken = pl011_fifo_to_tty(uap);
 940	}
 941
 942	spin_unlock(&uap->port.lock);
 943	dev_vdbg(uap->port.dev,
 944		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 945		 dma_count, fifotaken);
 946	tty_flip_buffer_push(port);
 947	spin_lock(&uap->port.lock);
 948}
 949
 950static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 951{
 952	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 953	struct dma_chan *rxchan = dmarx->chan;
 954	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 955		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 956	size_t pending;
 957	struct dma_tx_state state;
 958	enum dma_status dmastat;
 959
 960	/*
 961	 * Pause the transfer so we can trust the current counter,
 962	 * do this before we pause the PL011 block, else we may
 963	 * overflow the FIFO.
 964	 */
 965	if (dmaengine_pause(rxchan))
 966		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 967	dmastat = rxchan->device->device_tx_status(rxchan,
 968						   dmarx->cookie, &state);
 969	if (dmastat != DMA_PAUSED)
 970		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 971
 972	/* Disable RX DMA - incoming data will wait in the FIFO */
 973	uap->dmacr &= ~UART011_RXDMAE;
 974	pl011_write(uap->dmacr, uap, REG_DMACR);
 975	uap->dmarx.running = false;
 976
 977	pending = sgbuf->sg.length - state.residue;
 978	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 979	/* Then we terminate the transfer - we now know our residue */
 980	dmaengine_terminate_all(rxchan);
 981
 982	/*
 983	 * This will take the chars we have so far and insert
 984	 * into the framework.
 985	 */
 986	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 987
 988	/* Switch buffer & re-trigger DMA job */
 989	dmarx->use_buf_b = !dmarx->use_buf_b;
 990	if (pl011_dma_rx_trigger_dma(uap)) {
 991		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 992			"fall back to interrupt mode\n");
 993		uap->im |= UART011_RXIM;
 994		pl011_write(uap->im, uap, REG_IMSC);
 995	}
 996}
 997
 998static void pl011_dma_rx_callback(void *data)
 999{
1000	struct uart_amba_port *uap = data;
1001	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1002	struct dma_chan *rxchan = dmarx->chan;
1003	bool lastbuf = dmarx->use_buf_b;
1004	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1005		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1006	size_t pending;
1007	struct dma_tx_state state;
1008	int ret;
1009
1010	/*
1011	 * This completion interrupt occurs typically when the
1012	 * RX buffer is totally stuffed but no timeout has yet
1013	 * occurred. When that happens, we just want the RX
1014	 * routine to flush out the secondary DMA buffer while
1015	 * we immediately trigger the next DMA job.
1016	 */
1017	spin_lock_irq(&uap->port.lock);
1018	/*
1019	 * Rx data can be taken by the UART interrupts during
1020	 * the DMA irq handler. So we check the residue here.
1021	 */
1022	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1023	pending = sgbuf->sg.length - state.residue;
1024	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1025	/* Then we terminate the transfer - we now know our residue */
1026	dmaengine_terminate_all(rxchan);
1027
1028	uap->dmarx.running = false;
1029	dmarx->use_buf_b = !lastbuf;
1030	ret = pl011_dma_rx_trigger_dma(uap);
1031
1032	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1033	spin_unlock_irq(&uap->port.lock);
1034	/*
1035	 * Do this check after we picked the DMA chars so we don't
1036	 * get some IRQ immediately from RX.
1037	 */
1038	if (ret) {
1039		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1040			"fall back to interrupt mode\n");
1041		uap->im |= UART011_RXIM;
1042		pl011_write(uap->im, uap, REG_IMSC);
1043	}
1044}
1045
1046/*
1047 * Stop accepting received characters, when we're shutting down or
1048 * suspending this port.
1049 * Locking: called with port lock held and IRQs disabled.
1050 */
1051static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1052{
 
 
 
1053	/* FIXME.  Just disable the DMA enable */
1054	uap->dmacr &= ~UART011_RXDMAE;
1055	pl011_write(uap->dmacr, uap, REG_DMACR);
1056}
1057
1058/*
1059 * Timer handler for Rx DMA polling.
1060 * Every polling, It checks the residue in the dma buffer and transfer
1061 * data to the tty. Also, last_residue is updated for the next polling.
1062 */
1063static void pl011_dma_rx_poll(unsigned long args)
1064{
1065	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1066	struct tty_port *port = &uap->port.state->port;
1067	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1068	struct dma_chan *rxchan = uap->dmarx.chan;
1069	unsigned long flags = 0;
1070	unsigned int dmataken = 0;
1071	unsigned int size = 0;
1072	struct pl011_sgbuf *sgbuf;
1073	int dma_count;
1074	struct dma_tx_state state;
1075
1076	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1077	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1078	if (likely(state.residue < dmarx->last_residue)) {
1079		dmataken = sgbuf->sg.length - dmarx->last_residue;
1080		size = dmarx->last_residue - state.residue;
1081		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1082				size);
1083		if (dma_count == size)
1084			dmarx->last_residue =  state.residue;
1085		dmarx->last_jiffies = jiffies;
1086	}
1087	tty_flip_buffer_push(port);
1088
1089	/*
1090	 * If no data is received in poll_timeout, the driver will fall back
1091	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1092	 */
1093	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1094			> uap->dmarx.poll_timeout) {
1095
1096		spin_lock_irqsave(&uap->port.lock, flags);
1097		pl011_dma_rx_stop(uap);
1098		uap->im |= UART011_RXIM;
1099		pl011_write(uap->im, uap, REG_IMSC);
1100		spin_unlock_irqrestore(&uap->port.lock, flags);
1101
1102		uap->dmarx.running = false;
1103		dmaengine_terminate_all(rxchan);
1104		del_timer(&uap->dmarx.timer);
1105	} else {
1106		mod_timer(&uap->dmarx.timer,
1107			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108	}
1109}
1110
1111static void pl011_dma_startup(struct uart_amba_port *uap)
1112{
1113	int ret;
1114
1115	if (!uap->dma_probed)
1116		pl011_dma_probe(uap);
1117
1118	if (!uap->dmatx.chan)
1119		return;
1120
1121	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1122	if (!uap->dmatx.buf) {
1123		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1124		uap->port.fifosize = uap->fifosize;
1125		return;
1126	}
1127
1128	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1129
1130	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1131	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1132	uap->using_tx_dma = true;
1133
1134	if (!uap->dmarx.chan)
1135		goto skip_rx;
1136
1137	/* Allocate and map DMA RX buffers */
1138	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1139			       DMA_FROM_DEVICE);
1140	if (ret) {
1141		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1142			"RX buffer A", ret);
1143		goto skip_rx;
1144	}
1145
1146	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1147			       DMA_FROM_DEVICE);
1148	if (ret) {
1149		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1150			"RX buffer B", ret);
1151		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1152				 DMA_FROM_DEVICE);
1153		goto skip_rx;
1154	}
1155
1156	uap->using_rx_dma = true;
1157
1158skip_rx:
1159	/* Turn on DMA error (RX/TX will be enabled on demand) */
1160	uap->dmacr |= UART011_DMAONERR;
1161	pl011_write(uap->dmacr, uap, REG_DMACR);
1162
1163	/*
1164	 * ST Micro variants has some specific dma burst threshold
1165	 * compensation. Set this to 16 bytes, so burst will only
1166	 * be issued above/below 16 bytes.
1167	 */
1168	if (uap->vendor->dma_threshold)
1169		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1170			    uap, REG_ST_DMAWM);
1171
1172	if (uap->using_rx_dma) {
1173		if (pl011_dma_rx_trigger_dma(uap))
1174			dev_dbg(uap->port.dev, "could not trigger initial "
1175				"RX DMA job, fall back to interrupt mode\n");
1176		if (uap->dmarx.poll_rate) {
1177			init_timer(&(uap->dmarx.timer));
1178			uap->dmarx.timer.function = pl011_dma_rx_poll;
1179			uap->dmarx.timer.data = (unsigned long)uap;
1180			mod_timer(&uap->dmarx.timer,
1181				jiffies +
1182				msecs_to_jiffies(uap->dmarx.poll_rate));
1183			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184			uap->dmarx.last_jiffies = jiffies;
1185		}
1186	}
1187}
1188
1189static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190{
1191	if (!(uap->using_tx_dma || uap->using_rx_dma))
1192		return;
1193
1194	/* Disable RX and TX DMA */
1195	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196		cpu_relax();
1197
1198	spin_lock_irq(&uap->port.lock);
1199	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200	pl011_write(uap->dmacr, uap, REG_DMACR);
1201	spin_unlock_irq(&uap->port.lock);
1202
1203	if (uap->using_tx_dma) {
1204		/* In theory, this should already be done by pl011_dma_flush_buffer */
1205		dmaengine_terminate_all(uap->dmatx.chan);
1206		if (uap->dmatx.queued) {
1207			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208				     DMA_TO_DEVICE);
 
1209			uap->dmatx.queued = false;
1210		}
1211
1212		kfree(uap->dmatx.buf);
1213		uap->using_tx_dma = false;
1214	}
1215
1216	if (uap->using_rx_dma) {
1217		dmaengine_terminate_all(uap->dmarx.chan);
1218		/* Clean up the RX DMA */
1219		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221		if (uap->dmarx.poll_rate)
1222			del_timer_sync(&uap->dmarx.timer);
1223		uap->using_rx_dma = false;
1224	}
1225}
1226
1227static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma;
1230}
1231
1232static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233{
1234	return uap->using_rx_dma && uap->dmarx.running;
1235}
1236
1237#else
1238/* Blank functions if the DMA engine is not available */
1239static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244{
1245}
1246
1247static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248{
1249}
1250
1251static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270{
1271}
1272
1273static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274{
1275}
1276
1277static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278{
1279	return -EIO;
1280}
1281
1282static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283{
1284	return false;
1285}
1286
1287static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288{
1289	return false;
1290}
1291
1292#define pl011_dma_flush_buffer	NULL
1293#endif
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295static void pl011_stop_tx(struct uart_port *port)
1296{
1297	struct uart_amba_port *uap =
1298	    container_of(port, struct uart_amba_port, port);
1299
1300	uap->im &= ~UART011_TXIM;
1301	pl011_write(uap->im, uap, REG_IMSC);
1302	pl011_dma_tx_stop(uap);
 
 
 
1303}
1304
1305static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306
1307/* Start TX with programmed I/O only (no DMA) */
1308static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309{
1310	uap->im |= UART011_TXIM;
1311	pl011_write(uap->im, uap, REG_IMSC);
1312	pl011_tx_chars(uap, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313}
1314
1315static void pl011_start_tx(struct uart_port *port)
1316{
1317	struct uart_amba_port *uap =
1318	    container_of(port, struct uart_amba_port, port);
1319
 
 
 
 
1320	if (!pl011_dma_tx_start(uap))
1321		pl011_start_tx_pio(uap);
1322}
1323
1324static void pl011_stop_rx(struct uart_port *port)
1325{
1326	struct uart_amba_port *uap =
1327	    container_of(port, struct uart_amba_port, port);
1328
1329	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1330		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1331	pl011_write(uap->im, uap, REG_IMSC);
1332
1333	pl011_dma_rx_stop(uap);
1334}
1335
 
 
 
 
 
 
 
 
 
1336static void pl011_enable_ms(struct uart_port *port)
1337{
1338	struct uart_amba_port *uap =
1339	    container_of(port, struct uart_amba_port, port);
1340
1341	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1342	pl011_write(uap->im, uap, REG_IMSC);
1343}
1344
1345static void pl011_rx_chars(struct uart_amba_port *uap)
1346__releases(&uap->port.lock)
1347__acquires(&uap->port.lock)
1348{
1349	pl011_fifo_to_tty(uap);
1350
1351	spin_unlock(&uap->port.lock);
1352	tty_flip_buffer_push(&uap->port.state->port);
1353	/*
1354	 * If we were temporarily out of DMA mode for a while,
1355	 * attempt to switch back to DMA mode again.
1356	 */
1357	if (pl011_dma_rx_available(uap)) {
1358		if (pl011_dma_rx_trigger_dma(uap)) {
1359			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1360				"fall back to interrupt mode again\n");
1361			uap->im |= UART011_RXIM;
1362			pl011_write(uap->im, uap, REG_IMSC);
1363		} else {
1364#ifdef CONFIG_DMA_ENGINE
1365			/* Start Rx DMA poll */
1366			if (uap->dmarx.poll_rate) {
1367				uap->dmarx.last_jiffies = jiffies;
1368				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1369				mod_timer(&uap->dmarx.timer,
1370					jiffies +
1371					msecs_to_jiffies(uap->dmarx.poll_rate));
1372			}
1373#endif
1374		}
1375	}
1376	spin_lock(&uap->port.lock);
1377}
1378
1379static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1380			  bool from_irq)
1381{
1382	if (unlikely(!from_irq) &&
1383	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1384		return false; /* unable to transmit character */
1385
1386	pl011_write(c, uap, REG_DR);
1387	uap->port.icount.tx++;
1388
1389	return true;
1390}
1391
1392static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
 
1393{
1394	struct circ_buf *xmit = &uap->port.state->xmit;
1395	int count = uap->fifosize >> 1;
1396
1397	if (uap->port.x_char) {
1398		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1399			return;
1400		uap->port.x_char = 0;
1401		--count;
1402	}
1403	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1404		pl011_stop_tx(&uap->port);
1405		return;
1406	}
1407
1408	/* If we are using DMA mode, try to send some characters. */
1409	if (pl011_dma_tx_irq(uap))
1410		return;
1411
1412	do {
1413		if (likely(from_irq) && count-- == 0)
1414			break;
1415
1416		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1417			break;
1418
1419		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1420	} while (!uart_circ_empty(xmit));
1421
1422	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1423		uart_write_wakeup(&uap->port);
1424
1425	if (uart_circ_empty(xmit))
1426		pl011_stop_tx(&uap->port);
 
 
 
1427}
1428
1429static void pl011_modem_status(struct uart_amba_port *uap)
1430{
1431	unsigned int status, delta;
1432
1433	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1434
1435	delta = status ^ uap->old_status;
1436	uap->old_status = status;
1437
1438	if (!delta)
1439		return;
1440
1441	if (delta & UART01x_FR_DCD)
1442		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1443
1444	if (delta & uap->vendor->fr_dsr)
1445		uap->port.icount.dsr++;
1446
1447	if (delta & uap->vendor->fr_cts)
1448		uart_handle_cts_change(&uap->port,
1449				       status & uap->vendor->fr_cts);
1450
1451	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1452}
1453
1454static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1455{
1456	unsigned int dummy_read;
1457
1458	if (!uap->vendor->cts_event_workaround)
1459		return;
1460
1461	/* workaround to make sure that all bits are unlocked.. */
1462	pl011_write(0x00, uap, REG_ICR);
1463
1464	/*
1465	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1466	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1467	 * so add 2 dummy reads
1468	 */
1469	dummy_read = pl011_read(uap, REG_ICR);
1470	dummy_read = pl011_read(uap, REG_ICR);
1471}
1472
1473static irqreturn_t pl011_int(int irq, void *dev_id)
1474{
1475	struct uart_amba_port *uap = dev_id;
1476	unsigned long flags;
1477	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1478	u16 imsc;
1479	int handled = 0;
1480
1481	spin_lock_irqsave(&uap->port.lock, flags);
1482	imsc = pl011_read(uap, REG_IMSC);
1483	status = pl011_read(uap, REG_RIS) & imsc;
1484	if (status) {
1485		do {
1486			check_apply_cts_event_workaround(uap);
1487
1488			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1489					       UART011_RXIS),
1490				    uap, REG_ICR);
1491
1492			if (status & (UART011_RTIS|UART011_RXIS)) {
1493				if (pl011_dma_rx_running(uap))
1494					pl011_dma_rx_irq(uap);
1495				else
1496					pl011_rx_chars(uap);
1497			}
1498			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1499				      UART011_CTSMIS|UART011_RIMIS))
1500				pl011_modem_status(uap);
1501			if (status & UART011_TXIS)
1502				pl011_tx_chars(uap, true);
1503
1504			if (pass_counter-- == 0)
1505				break;
1506
1507			status = pl011_read(uap, REG_RIS) & imsc;
1508		} while (status != 0);
1509		handled = 1;
1510	}
1511
1512	spin_unlock_irqrestore(&uap->port.lock, flags);
1513
1514	return IRQ_RETVAL(handled);
1515}
1516
1517static unsigned int pl011_tx_empty(struct uart_port *port)
1518{
1519	struct uart_amba_port *uap =
1520	    container_of(port, struct uart_amba_port, port);
1521	unsigned int status = pl011_read(uap, REG_FR);
 
 
 
1522	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1523							0 : TIOCSER_TEMT;
1524}
1525
 
 
 
 
 
 
1526static unsigned int pl011_get_mctrl(struct uart_port *port)
1527{
1528	struct uart_amba_port *uap =
1529	    container_of(port, struct uart_amba_port, port);
1530	unsigned int result = 0;
1531	unsigned int status = pl011_read(uap, REG_FR);
1532
1533#define TIOCMBIT(uartbit, tiocmbit)	\
1534	if (status & uartbit)		\
1535		result |= tiocmbit
1536
1537	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1538	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1539	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1540	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1541#undef TIOCMBIT
1542	return result;
1543}
1544
 
 
 
 
 
 
 
 
1545static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1546{
1547	struct uart_amba_port *uap =
1548	    container_of(port, struct uart_amba_port, port);
1549	unsigned int cr;
1550
1551	cr = pl011_read(uap, REG_CR);
1552
1553#define	TIOCMBIT(tiocmbit, uartbit)		\
1554	if (mctrl & tiocmbit)		\
1555		cr |= uartbit;		\
1556	else				\
1557		cr &= ~uartbit
1558
1559	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1560	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1561	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1562	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1563	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1564
1565	if (uap->autorts) {
1566		/* We need to disable auto-RTS if we want to turn RTS off */
1567		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1568	}
1569#undef TIOCMBIT
1570
1571	pl011_write(cr, uap, REG_CR);
1572}
1573
1574static void pl011_break_ctl(struct uart_port *port, int break_state)
1575{
1576	struct uart_amba_port *uap =
1577	    container_of(port, struct uart_amba_port, port);
1578	unsigned long flags;
1579	unsigned int lcr_h;
1580
1581	spin_lock_irqsave(&uap->port.lock, flags);
1582	lcr_h = pl011_read(uap, REG_LCRH_TX);
1583	if (break_state == -1)
1584		lcr_h |= UART01x_LCRH_BRK;
1585	else
1586		lcr_h &= ~UART01x_LCRH_BRK;
1587	pl011_write(lcr_h, uap, REG_LCRH_TX);
1588	spin_unlock_irqrestore(&uap->port.lock, flags);
1589}
1590
1591#ifdef CONFIG_CONSOLE_POLL
1592
1593static void pl011_quiesce_irqs(struct uart_port *port)
1594{
1595	struct uart_amba_port *uap =
1596	    container_of(port, struct uart_amba_port, port);
1597
1598	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1599	/*
1600	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1601	 * we simply mask it. start_tx() will unmask it.
1602	 *
1603	 * Note we can race with start_tx(), and if the race happens, the
1604	 * polling user might get another interrupt just after we clear it.
1605	 * But it should be OK and can happen even w/o the race, e.g.
1606	 * controller immediately got some new data and raised the IRQ.
1607	 *
1608	 * And whoever uses polling routines assumes that it manages the device
1609	 * (including tx queue), so we're also fine with start_tx()'s caller
1610	 * side.
1611	 */
1612	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1613		    REG_IMSC);
1614}
1615
1616static int pl011_get_poll_char(struct uart_port *port)
1617{
1618	struct uart_amba_port *uap =
1619	    container_of(port, struct uart_amba_port, port);
1620	unsigned int status;
1621
1622	/*
1623	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1624	 * debugger.
1625	 */
1626	pl011_quiesce_irqs(port);
1627
1628	status = pl011_read(uap, REG_FR);
1629	if (status & UART01x_FR_RXFE)
1630		return NO_POLL_CHAR;
1631
1632	return pl011_read(uap, REG_DR);
1633}
1634
1635static void pl011_put_poll_char(struct uart_port *port,
1636			 unsigned char ch)
1637{
1638	struct uart_amba_port *uap =
1639	    container_of(port, struct uart_amba_port, port);
1640
1641	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1642		cpu_relax();
1643
1644	pl011_write(ch, uap, REG_DR);
1645}
1646
1647#endif /* CONFIG_CONSOLE_POLL */
1648
1649static int pl011_hwinit(struct uart_port *port)
1650{
1651	struct uart_amba_port *uap =
1652	    container_of(port, struct uart_amba_port, port);
1653	int retval;
1654
1655	/* Optionaly enable pins to be muxed in and configured */
1656	pinctrl_pm_select_default_state(port->dev);
1657
1658	/*
1659	 * Try to enable the clock producer.
1660	 */
1661	retval = clk_prepare_enable(uap->clk);
1662	if (retval)
1663		return retval;
1664
1665	uap->port.uartclk = clk_get_rate(uap->clk);
1666
1667	/* Clear pending error and receive interrupts */
1668	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1669		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1670		    uap, REG_ICR);
1671
1672	/*
1673	 * Save interrupts enable mask, and enable RX interrupts in case if
1674	 * the interrupt is used for NMI entry.
1675	 */
1676	uap->im = pl011_read(uap, REG_IMSC);
1677	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1678
1679	if (dev_get_platdata(uap->port.dev)) {
1680		struct amba_pl011_data *plat;
1681
1682		plat = dev_get_platdata(uap->port.dev);
1683		if (plat->init)
1684			plat->init();
1685	}
1686	return 0;
1687}
1688
1689static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1690{
1691	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1692	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1693}
1694
1695static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1696{
1697	pl011_write(lcr_h, uap, REG_LCRH_RX);
1698	if (pl011_split_lcrh(uap)) {
1699		int i;
1700		/*
1701		 * Wait 10 PCLKs before writing LCRH_TX register,
1702		 * to get this delay write read only register 10 times
1703		 */
1704		for (i = 0; i < 10; ++i)
1705			pl011_write(0xff, uap, REG_MIS);
1706		pl011_write(lcr_h, uap, REG_LCRH_TX);
1707	}
1708}
1709
1710static int pl011_allocate_irq(struct uart_amba_port *uap)
1711{
1712	pl011_write(uap->im, uap, REG_IMSC);
1713
1714	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1715}
1716
1717/*
1718 * Enable interrupts, only timeouts when using DMA
1719 * if initial RX DMA job failed, start in interrupt mode
1720 * as well.
1721 */
1722static void pl011_enable_interrupts(struct uart_amba_port *uap)
1723{
1724	spin_lock_irq(&uap->port.lock);
 
 
 
1725
1726	/* Clear out any spuriously appearing RX interrupts */
1727	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728	uap->im = UART011_RTIM;
1729	if (!pl011_dma_rx_running(uap))
1730		uap->im |= UART011_RXIM;
 
1731	pl011_write(uap->im, uap, REG_IMSC);
1732	spin_unlock_irq(&uap->port.lock);
 
1733}
1734
1735static int pl011_startup(struct uart_port *port)
1736{
1737	struct uart_amba_port *uap =
1738	    container_of(port, struct uart_amba_port, port);
1739	unsigned int cr;
1740	int retval;
1741
1742	retval = pl011_hwinit(port);
1743	if (retval)
1744		goto clk_dis;
1745
1746	retval = pl011_allocate_irq(uap);
1747	if (retval)
1748		goto clk_dis;
1749
1750	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1751
1752	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
1753
1754	/* restore RTS and DTR */
1755	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1756	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1757	pl011_write(cr, uap, REG_CR);
1758
1759	spin_unlock_irq(&uap->port.lock);
1760
1761	/*
1762	 * initialise the old status of the modem signals
1763	 */
1764	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1765
1766	/* Startup DMA */
1767	pl011_dma_startup(uap);
1768
1769	pl011_enable_interrupts(uap);
1770
1771	return 0;
1772
1773 clk_dis:
1774	clk_disable_unprepare(uap->clk);
1775	return retval;
1776}
1777
1778static int sbsa_uart_startup(struct uart_port *port)
1779{
1780	struct uart_amba_port *uap =
1781		container_of(port, struct uart_amba_port, port);
1782	int retval;
1783
1784	retval = pl011_hwinit(port);
1785	if (retval)
1786		return retval;
1787
1788	retval = pl011_allocate_irq(uap);
1789	if (retval)
1790		return retval;
1791
1792	/* The SBSA UART does not support any modem status lines. */
1793	uap->old_status = 0;
1794
1795	pl011_enable_interrupts(uap);
1796
1797	return 0;
1798}
1799
1800static void pl011_shutdown_channel(struct uart_amba_port *uap,
1801					unsigned int lcrh)
1802{
1803      unsigned long val;
1804
1805      val = pl011_read(uap, lcrh);
1806      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1807      pl011_write(val, uap, lcrh);
1808}
1809
1810/*
1811 * disable the port. It should not disable RTS and DTR.
1812 * Also RTS and DTR state should be preserved to restore
1813 * it during startup().
1814 */
1815static void pl011_disable_uart(struct uart_amba_port *uap)
1816{
1817	unsigned int cr;
1818
1819	uap->autorts = false;
1820	spin_lock_irq(&uap->port.lock);
1821	cr = pl011_read(uap, REG_CR);
1822	uap->old_cr = cr;
1823	cr &= UART011_CR_RTS | UART011_CR_DTR;
1824	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1825	pl011_write(cr, uap, REG_CR);
1826	spin_unlock_irq(&uap->port.lock);
1827
1828	/*
1829	 * disable break condition and fifos
1830	 */
1831	pl011_shutdown_channel(uap, REG_LCRH_RX);
1832	if (pl011_split_lcrh(uap))
1833		pl011_shutdown_channel(uap, REG_LCRH_TX);
1834}
1835
1836static void pl011_disable_interrupts(struct uart_amba_port *uap)
1837{
1838	spin_lock_irq(&uap->port.lock);
1839
1840	/* mask all interrupts and clear all pending ones */
1841	uap->im = 0;
1842	pl011_write(uap->im, uap, REG_IMSC);
1843	pl011_write(0xffff, uap, REG_ICR);
1844
1845	spin_unlock_irq(&uap->port.lock);
1846}
1847
1848static void pl011_shutdown(struct uart_port *port)
1849{
1850	struct uart_amba_port *uap =
1851		container_of(port, struct uart_amba_port, port);
1852
1853	pl011_disable_interrupts(uap);
1854
1855	pl011_dma_shutdown(uap);
1856
 
 
 
1857	free_irq(uap->port.irq, uap);
1858
1859	pl011_disable_uart(uap);
1860
1861	/*
1862	 * Shut down the clock producer
1863	 */
1864	clk_disable_unprepare(uap->clk);
1865	/* Optionally let pins go into sleep states */
1866	pinctrl_pm_select_sleep_state(port->dev);
1867
1868	if (dev_get_platdata(uap->port.dev)) {
1869		struct amba_pl011_data *plat;
1870
1871		plat = dev_get_platdata(uap->port.dev);
1872		if (plat->exit)
1873			plat->exit();
1874	}
1875
1876	if (uap->port.ops->flush_buffer)
1877		uap->port.ops->flush_buffer(port);
1878}
1879
1880static void sbsa_uart_shutdown(struct uart_port *port)
1881{
1882	struct uart_amba_port *uap =
1883		container_of(port, struct uart_amba_port, port);
1884
1885	pl011_disable_interrupts(uap);
1886
1887	free_irq(uap->port.irq, uap);
1888
1889	if (uap->port.ops->flush_buffer)
1890		uap->port.ops->flush_buffer(port);
1891}
1892
1893static void
1894pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1895{
1896	port->read_status_mask = UART011_DR_OE | 255;
1897	if (termios->c_iflag & INPCK)
1898		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1899	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1900		port->read_status_mask |= UART011_DR_BE;
1901
1902	/*
1903	 * Characters to ignore
1904	 */
1905	port->ignore_status_mask = 0;
1906	if (termios->c_iflag & IGNPAR)
1907		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1908	if (termios->c_iflag & IGNBRK) {
1909		port->ignore_status_mask |= UART011_DR_BE;
1910		/*
1911		 * If we're ignoring parity and break indicators,
1912		 * ignore overruns too (for real raw support).
1913		 */
1914		if (termios->c_iflag & IGNPAR)
1915			port->ignore_status_mask |= UART011_DR_OE;
1916	}
1917
1918	/*
1919	 * Ignore all characters if CREAD is not set.
1920	 */
1921	if ((termios->c_cflag & CREAD) == 0)
1922		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1923}
1924
1925static void
1926pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1927		     struct ktermios *old)
1928{
1929	struct uart_amba_port *uap =
1930	    container_of(port, struct uart_amba_port, port);
1931	unsigned int lcr_h, old_cr;
1932	unsigned long flags;
1933	unsigned int baud, quot, clkdiv;
 
1934
1935	if (uap->vendor->oversampling)
1936		clkdiv = 8;
1937	else
1938		clkdiv = 16;
1939
1940	/*
1941	 * Ask the core to calculate the divisor for us.
1942	 */
1943	baud = uart_get_baud_rate(port, termios, old, 0,
1944				  port->uartclk / clkdiv);
1945#ifdef CONFIG_DMA_ENGINE
1946	/*
1947	 * Adjust RX DMA polling rate with baud rate if not specified.
1948	 */
1949	if (uap->dmarx.auto_poll_rate)
1950		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1951#endif
1952
1953	if (baud > port->uartclk/16)
1954		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1955	else
1956		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1957
1958	switch (termios->c_cflag & CSIZE) {
1959	case CS5:
1960		lcr_h = UART01x_LCRH_WLEN_5;
1961		break;
1962	case CS6:
1963		lcr_h = UART01x_LCRH_WLEN_6;
1964		break;
1965	case CS7:
1966		lcr_h = UART01x_LCRH_WLEN_7;
1967		break;
1968	default: // CS8
1969		lcr_h = UART01x_LCRH_WLEN_8;
1970		break;
1971	}
1972	if (termios->c_cflag & CSTOPB)
1973		lcr_h |= UART01x_LCRH_STP2;
1974	if (termios->c_cflag & PARENB) {
1975		lcr_h |= UART01x_LCRH_PEN;
1976		if (!(termios->c_cflag & PARODD))
1977			lcr_h |= UART01x_LCRH_EPS;
1978		if (termios->c_cflag & CMSPAR)
1979			lcr_h |= UART011_LCRH_SPS;
1980	}
1981	if (uap->fifosize > 1)
1982		lcr_h |= UART01x_LCRH_FEN;
1983
1984	spin_lock_irqsave(&port->lock, flags);
 
 
1985
1986	/*
1987	 * Update the per-port timeout.
1988	 */
1989	uart_update_timeout(port, termios->c_cflag, baud);
1990
 
 
 
 
 
 
 
1991	pl011_setup_status_masks(port, termios);
1992
1993	if (UART_ENABLE_MS(port, termios->c_cflag))
1994		pl011_enable_ms(port);
1995
1996	/* first, disable everything */
 
 
1997	old_cr = pl011_read(uap, REG_CR);
1998	pl011_write(0, uap, REG_CR);
1999
2000	if (termios->c_cflag & CRTSCTS) {
2001		if (old_cr & UART011_CR_RTS)
2002			old_cr |= UART011_CR_RTSEN;
2003
2004		old_cr |= UART011_CR_CTSEN;
2005		uap->autorts = true;
2006	} else {
2007		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2008		uap->autorts = false;
2009	}
2010
2011	if (uap->vendor->oversampling) {
2012		if (baud > port->uartclk / 16)
2013			old_cr |= ST_UART011_CR_OVSFACT;
2014		else
2015			old_cr &= ~ST_UART011_CR_OVSFACT;
2016	}
2017
2018	/*
2019	 * Workaround for the ST Micro oversampling variants to
2020	 * increase the bitrate slightly, by lowering the divisor,
2021	 * to avoid delayed sampling of start bit at high speeds,
2022	 * else we see data corruption.
2023	 */
2024	if (uap->vendor->oversampling) {
2025		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2026			quot -= 1;
2027		else if ((baud > 3250000) && (quot > 2))
2028			quot -= 2;
2029	}
2030	/* Set baud rate */
2031	pl011_write(quot & 0x3f, uap, REG_FBRD);
2032	pl011_write(quot >> 6, uap, REG_IBRD);
2033
2034	/*
2035	 * ----------v----------v----------v----------v-----
2036	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2037	 * REG_FBRD & REG_IBRD.
2038	 * ----------^----------^----------^----------^-----
2039	 */
2040	pl011_write_lcr_h(uap, lcr_h);
 
 
 
 
 
 
 
2041	pl011_write(old_cr, uap, REG_CR);
2042
2043	spin_unlock_irqrestore(&port->lock, flags);
2044}
2045
2046static void
2047sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2048		      struct ktermios *old)
2049{
2050	struct uart_amba_port *uap =
2051	    container_of(port, struct uart_amba_port, port);
2052	unsigned long flags;
2053
2054	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2055
2056	/* The SBSA UART only supports 8n1 without hardware flow control. */
2057	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2058	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2059	termios->c_cflag |= CS8 | CLOCAL;
2060
2061	spin_lock_irqsave(&port->lock, flags);
2062	uart_update_timeout(port, CS8, uap->fixed_baud);
2063	pl011_setup_status_masks(port, termios);
2064	spin_unlock_irqrestore(&port->lock, flags);
2065}
2066
2067static const char *pl011_type(struct uart_port *port)
2068{
2069	struct uart_amba_port *uap =
2070	    container_of(port, struct uart_amba_port, port);
2071	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2072}
2073
2074/*
2075 * Release the memory region(s) being used by 'port'
2076 */
2077static void pl011_release_port(struct uart_port *port)
2078{
2079	release_mem_region(port->mapbase, SZ_4K);
2080}
2081
2082/*
2083 * Request the memory region(s) being used by 'port'
2084 */
2085static int pl011_request_port(struct uart_port *port)
2086{
2087	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2088			!= NULL ? 0 : -EBUSY;
2089}
2090
2091/*
2092 * Configure/autoconfigure the port.
2093 */
2094static void pl011_config_port(struct uart_port *port, int flags)
2095{
2096	if (flags & UART_CONFIG_TYPE) {
2097		port->type = PORT_AMBA;
2098		pl011_request_port(port);
2099	}
2100}
2101
2102/*
2103 * verify the new serial_struct (for TIOCSSERIAL).
2104 */
2105static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2106{
2107	int ret = 0;
 
2108	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2109		ret = -EINVAL;
2110	if (ser->irq < 0 || ser->irq >= nr_irqs)
2111		ret = -EINVAL;
2112	if (ser->baud_base < 9600)
2113		ret = -EINVAL;
 
 
2114	return ret;
2115}
2116
2117static struct uart_ops amba_pl011_pops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118	.tx_empty	= pl011_tx_empty,
2119	.set_mctrl	= pl011_set_mctrl,
2120	.get_mctrl	= pl011_get_mctrl,
2121	.stop_tx	= pl011_stop_tx,
2122	.start_tx	= pl011_start_tx,
2123	.stop_rx	= pl011_stop_rx,
 
 
2124	.enable_ms	= pl011_enable_ms,
2125	.break_ctl	= pl011_break_ctl,
2126	.startup	= pl011_startup,
2127	.shutdown	= pl011_shutdown,
2128	.flush_buffer	= pl011_dma_flush_buffer,
2129	.set_termios	= pl011_set_termios,
2130	.type		= pl011_type,
2131	.release_port	= pl011_release_port,
2132	.request_port	= pl011_request_port,
2133	.config_port	= pl011_config_port,
2134	.verify_port	= pl011_verify_port,
2135#ifdef CONFIG_CONSOLE_POLL
2136	.poll_init     = pl011_hwinit,
2137	.poll_get_char = pl011_get_poll_char,
2138	.poll_put_char = pl011_put_poll_char,
2139#endif
2140};
2141
2142static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2143{
2144}
2145
2146static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2147{
2148	return 0;
2149}
2150
2151static const struct uart_ops sbsa_uart_pops = {
2152	.tx_empty	= pl011_tx_empty,
2153	.set_mctrl	= sbsa_uart_set_mctrl,
2154	.get_mctrl	= sbsa_uart_get_mctrl,
2155	.stop_tx	= pl011_stop_tx,
2156	.start_tx	= pl011_start_tx,
2157	.stop_rx	= pl011_stop_rx,
2158	.startup	= sbsa_uart_startup,
2159	.shutdown	= sbsa_uart_shutdown,
2160	.set_termios	= sbsa_uart_set_termios,
2161	.type		= pl011_type,
2162	.release_port	= pl011_release_port,
2163	.request_port	= pl011_request_port,
2164	.config_port	= pl011_config_port,
2165	.verify_port	= pl011_verify_port,
2166#ifdef CONFIG_CONSOLE_POLL
2167	.poll_init     = pl011_hwinit,
2168	.poll_get_char = pl011_get_poll_char,
2169	.poll_put_char = pl011_put_poll_char,
2170#endif
2171};
2172
2173static struct uart_amba_port *amba_ports[UART_NR];
2174
2175#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2176
2177static void pl011_console_putchar(struct uart_port *port, int ch)
2178{
2179	struct uart_amba_port *uap =
2180	    container_of(port, struct uart_amba_port, port);
2181
2182	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2183		cpu_relax();
2184	pl011_write(ch, uap, REG_DR);
2185}
2186
2187static void
2188pl011_console_write(struct console *co, const char *s, unsigned int count)
2189{
2190	struct uart_amba_port *uap = amba_ports[co->index];
2191	unsigned int old_cr = 0, new_cr;
2192	unsigned long flags;
2193	int locked = 1;
2194
2195	clk_enable(uap->clk);
2196
2197	local_irq_save(flags);
2198	if (uap->port.sysrq)
2199		locked = 0;
2200	else if (oops_in_progress)
2201		locked = spin_trylock(&uap->port.lock);
2202	else
2203		spin_lock(&uap->port.lock);
2204
2205	/*
2206	 *	First save the CR then disable the interrupts
2207	 */
2208	if (!uap->vendor->always_enabled) {
2209		old_cr = pl011_read(uap, REG_CR);
2210		new_cr = old_cr & ~UART011_CR_CTSEN;
2211		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2212		pl011_write(new_cr, uap, REG_CR);
2213	}
2214
2215	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2216
2217	/*
2218	 *	Finally, wait for transmitter to become empty
2219	 *	and restore the TCR
 
2220	 */
2221	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
 
2222		cpu_relax();
2223	if (!uap->vendor->always_enabled)
2224		pl011_write(old_cr, uap, REG_CR);
2225
2226	if (locked)
2227		spin_unlock(&uap->port.lock);
2228	local_irq_restore(flags);
2229
2230	clk_disable(uap->clk);
2231}
2232
2233static void __init
2234pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2235			     int *parity, int *bits)
2236{
2237	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2238		unsigned int lcr_h, ibrd, fbrd;
2239
2240		lcr_h = pl011_read(uap, REG_LCRH_TX);
2241
2242		*parity = 'n';
2243		if (lcr_h & UART01x_LCRH_PEN) {
2244			if (lcr_h & UART01x_LCRH_EPS)
2245				*parity = 'e';
2246			else
2247				*parity = 'o';
2248		}
2249
2250		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2251			*bits = 7;
 
 
2252		else
2253			*bits = 8;
 
2254
2255		ibrd = pl011_read(uap, REG_IBRD);
2256		fbrd = pl011_read(uap, REG_FBRD);
 
 
2257
2258		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
 
2259
2260		if (uap->vendor->oversampling) {
2261			if (pl011_read(uap, REG_CR)
2262				  & ST_UART011_CR_OVSFACT)
2263				*baud *= 2;
2264		}
2265	}
2266}
2267
2268static int __init pl011_console_setup(struct console *co, char *options)
2269{
2270	struct uart_amba_port *uap;
2271	int baud = 38400;
2272	int bits = 8;
2273	int parity = 'n';
2274	int flow = 'n';
2275	int ret;
2276
2277	/*
2278	 * Check whether an invalid uart number has been specified, and
2279	 * if so, search for the first available port that does have
2280	 * console support.
2281	 */
2282	if (co->index >= UART_NR)
2283		co->index = 0;
2284	uap = amba_ports[co->index];
2285	if (!uap)
2286		return -ENODEV;
2287
2288	/* Allow pins to be muxed in and configured */
2289	pinctrl_pm_select_default_state(uap->port.dev);
2290
2291	ret = clk_prepare(uap->clk);
2292	if (ret)
2293		return ret;
2294
2295	if (dev_get_platdata(uap->port.dev)) {
2296		struct amba_pl011_data *plat;
2297
2298		plat = dev_get_platdata(uap->port.dev);
2299		if (plat->init)
2300			plat->init();
2301	}
2302
2303	uap->port.uartclk = clk_get_rate(uap->clk);
2304
2305	if (uap->vendor->fixed_options) {
2306		baud = uap->fixed_baud;
2307	} else {
2308		if (options)
2309			uart_parse_options(options,
2310					   &baud, &parity, &bits, &flow);
2311		else
2312			pl011_console_get_options(uap, &baud, &parity, &bits);
2313	}
2314
2315	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2316}
2317
2318/**
2319 *	pl011_console_match - non-standard console matching
2320 *	@co:	  registering console
2321 *	@name:	  name from console command line
2322 *	@idx:	  index from console command line
2323 *	@options: ptr to option string from console command line
2324 *
2325 *	Only attempts to match console command lines of the form:
2326 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2327 *	    console=pl011,0x<addr>[,<options>]
2328 *	This form is used to register an initial earlycon boot console and
2329 *	replace it with the amba_console at pl011 driver init.
2330 *
2331 *	Performs console setup for a match (as required by interface)
2332 *	If no <options> are specified, then assume the h/w is already setup.
2333 *
2334 *	Returns 0 if console matches; otherwise non-zero to use default matching
2335 */
2336static int __init pl011_console_match(struct console *co, char *name, int idx,
2337				      char *options)
2338{
2339	unsigned char iotype;
2340	resource_size_t addr;
2341	int i;
2342
2343	if (strcmp(name, "pl011") != 0)
 
 
 
 
 
 
2344		return -ENODEV;
2345
2346	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2347		return -ENODEV;
2348
2349	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2350		return -ENODEV;
2351
2352	/* try to match the port specified on the command line */
2353	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2354		struct uart_port *port;
2355
2356		if (!amba_ports[i])
2357			continue;
2358
2359		port = &amba_ports[i]->port;
2360
2361		if (port->mapbase != addr)
2362			continue;
2363
2364		co->index = i;
2365		port->cons = co;
2366		return pl011_console_setup(co, options);
2367	}
2368
2369	return -ENODEV;
2370}
2371
2372static struct uart_driver amba_reg;
2373static struct console amba_console = {
2374	.name		= "ttyAMA",
2375	.write		= pl011_console_write,
2376	.device		= uart_console_device,
2377	.setup		= pl011_console_setup,
2378	.match		= pl011_console_match,
2379	.flags		= CON_PRINTBUFFER,
2380	.index		= -1,
2381	.data		= &amba_reg,
2382};
2383
2384#define AMBA_CONSOLE	(&amba_console)
2385
2386static void pl011_putc(struct uart_port *port, int c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387{
2388	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2389		cpu_relax();
2390	if (port->iotype == UPIO_MEM32)
2391		writel(c, port->membase + UART01x_DR);
2392	else
2393		writeb(c, port->membase + UART01x_DR);
2394	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2395		cpu_relax();
2396}
2397
2398static void pl011_early_write(struct console *con, const char *s, unsigned n)
2399{
2400	struct earlycon_device *dev = con->data;
2401
2402	uart_console_write(&dev->port, s, n, pl011_putc);
2403}
2404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2405static int __init pl011_early_console_setup(struct earlycon_device *device,
2406					    const char *opt)
2407{
2408	if (!device->port.membase)
2409		return -ENODEV;
2410
2411	device->con->write = pl011_early_write;
 
 
2412	return 0;
2413}
 
2414OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
 
2415OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417#else
2418#define AMBA_CONSOLE	NULL
2419#endif
2420
2421static struct uart_driver amba_reg = {
2422	.owner			= THIS_MODULE,
2423	.driver_name		= "ttyAMA",
2424	.dev_name		= "ttyAMA",
2425	.major			= SERIAL_AMBA_MAJOR,
2426	.minor			= SERIAL_AMBA_MINOR,
2427	.nr			= UART_NR,
2428	.cons			= AMBA_CONSOLE,
2429};
2430
2431static int pl011_probe_dt_alias(int index, struct device *dev)
2432{
2433	struct device_node *np;
2434	static bool seen_dev_with_alias = false;
2435	static bool seen_dev_without_alias = false;
2436	int ret = index;
2437
2438	if (!IS_ENABLED(CONFIG_OF))
2439		return ret;
2440
2441	np = dev->of_node;
2442	if (!np)
2443		return ret;
2444
2445	ret = of_alias_get_id(np, "serial");
2446	if (ret < 0) {
2447		seen_dev_without_alias = true;
2448		ret = index;
2449	} else {
2450		seen_dev_with_alias = true;
2451		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2452			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2453			ret = index;
2454		}
2455	}
2456
2457	if (seen_dev_with_alias && seen_dev_without_alias)
2458		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2459
2460	return ret;
2461}
2462
2463/* unregisters the driver also if no more ports are left */
2464static void pl011_unregister_port(struct uart_amba_port *uap)
2465{
2466	int i;
2467	bool busy = false;
2468
2469	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2470		if (amba_ports[i] == uap)
2471			amba_ports[i] = NULL;
2472		else if (amba_ports[i])
2473			busy = true;
2474	}
2475	pl011_dma_remove(uap);
2476	if (!busy)
2477		uart_unregister_driver(&amba_reg);
2478}
2479
2480static int pl011_find_free_port(void)
2481{
2482	int i;
2483
2484	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2485		if (amba_ports[i] == NULL)
2486			return i;
2487
2488	return -EBUSY;
2489}
2490
 
 
 
 
 
 
 
 
 
 
 
 
2491static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2492			    struct resource *mmiobase, int index)
2493{
2494	void __iomem *base;
 
2495
2496	base = devm_ioremap_resource(dev, mmiobase);
2497	if (IS_ERR(base))
2498		return PTR_ERR(base);
2499
2500	index = pl011_probe_dt_alias(index, dev);
2501
2502	uap->old_cr = 0;
2503	uap->port.dev = dev;
2504	uap->port.mapbase = mmiobase->start;
2505	uap->port.membase = base;
2506	uap->port.fifosize = uap->fifosize;
 
2507	uap->port.flags = UPF_BOOT_AUTOCONF;
2508	uap->port.line = index;
2509
 
 
 
 
2510	amba_ports[index] = uap;
2511
2512	return 0;
2513}
2514
2515static int pl011_register_port(struct uart_amba_port *uap)
2516{
2517	int ret;
2518
2519	/* Ensure interrupts from this UART are masked and cleared */
2520	pl011_write(0, uap, REG_IMSC);
2521	pl011_write(0xffff, uap, REG_ICR);
2522
2523	if (!amba_reg.state) {
2524		ret = uart_register_driver(&amba_reg);
2525		if (ret < 0) {
2526			dev_err(uap->port.dev,
2527				"Failed to register AMBA-PL011 driver\n");
 
 
 
2528			return ret;
2529		}
2530	}
2531
2532	ret = uart_add_one_port(&amba_reg, &uap->port);
2533	if (ret)
2534		pl011_unregister_port(uap);
2535
2536	return ret;
2537}
2538
 
 
 
 
 
 
 
2539static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2540{
2541	struct uart_amba_port *uap;
2542	struct vendor_data *vendor = id->data;
2543	int portnr, ret;
 
2544
2545	portnr = pl011_find_free_port();
2546	if (portnr < 0)
2547		return portnr;
2548
2549	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2550			   GFP_KERNEL);
2551	if (!uap)
2552		return -ENOMEM;
2553
2554	uap->clk = devm_clk_get(&dev->dev, NULL);
2555	if (IS_ERR(uap->clk))
2556		return PTR_ERR(uap->clk);
2557
2558	uap->reg_offset = vendor->reg_offset;
2559	uap->vendor = vendor;
2560	uap->fifosize = vendor->get_fifosize(dev);
2561	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2562	uap->port.irq = dev->irq[0];
2563	uap->port.ops = &amba_pl011_pops;
 
 
 
2564
2565	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
2566
2567	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2568	if (ret)
2569		return ret;
2570
2571	amba_set_drvdata(dev, uap);
2572
2573	return pl011_register_port(uap);
2574}
2575
2576static int pl011_remove(struct amba_device *dev)
2577{
2578	struct uart_amba_port *uap = amba_get_drvdata(dev);
2579
2580	uart_remove_one_port(&amba_reg, &uap->port);
2581	pl011_unregister_port(uap);
2582	return 0;
2583}
2584
2585#ifdef CONFIG_PM_SLEEP
2586static int pl011_suspend(struct device *dev)
2587{
2588	struct uart_amba_port *uap = dev_get_drvdata(dev);
2589
2590	if (!uap)
2591		return -EINVAL;
2592
2593	return uart_suspend_port(&amba_reg, &uap->port);
2594}
2595
2596static int pl011_resume(struct device *dev)
2597{
2598	struct uart_amba_port *uap = dev_get_drvdata(dev);
2599
2600	if (!uap)
2601		return -EINVAL;
2602
2603	return uart_resume_port(&amba_reg, &uap->port);
2604}
2605#endif
2606
2607static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609static int sbsa_uart_probe(struct platform_device *pdev)
2610{
2611	struct uart_amba_port *uap;
2612	struct resource *r;
2613	int portnr, ret;
2614	int baudrate;
2615
2616	/*
2617	 * Check the mandatory baud rate parameter in the DT node early
2618	 * so that we can easily exit with the error.
2619	 */
2620	if (pdev->dev.of_node) {
2621		struct device_node *np = pdev->dev.of_node;
2622
2623		ret = of_property_read_u32(np, "current-speed", &baudrate);
2624		if (ret)
2625			return ret;
2626	} else {
2627		baudrate = 115200;
2628	}
2629
2630	portnr = pl011_find_free_port();
2631	if (portnr < 0)
2632		return portnr;
2633
2634	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2635			   GFP_KERNEL);
2636	if (!uap)
2637		return -ENOMEM;
2638
2639	ret = platform_get_irq(pdev, 0);
2640	if (ret < 0) {
2641		if (ret != -EPROBE_DEFER)
2642			dev_err(&pdev->dev, "cannot obtain irq\n");
2643		return ret;
2644	}
2645	uap->port.irq	= ret;
2646
2647	uap->reg_offset	= vendor_sbsa.reg_offset;
2648	uap->vendor	= &vendor_sbsa;
 
 
2649	uap->fifosize	= 32;
2650	uap->port.iotype = vendor_sbsa.access_32b ? UPIO_MEM32 : UPIO_MEM;
2651	uap->port.ops	= &sbsa_uart_pops;
2652	uap->fixed_baud = baudrate;
2653
2654	snprintf(uap->type, sizeof(uap->type), "SBSA");
2655
2656	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2657
2658	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2659	if (ret)
2660		return ret;
2661
2662	platform_set_drvdata(pdev, uap);
2663
2664	return pl011_register_port(uap);
2665}
2666
2667static int sbsa_uart_remove(struct platform_device *pdev)
2668{
2669	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2670
2671	uart_remove_one_port(&amba_reg, &uap->port);
2672	pl011_unregister_port(uap);
2673	return 0;
2674}
2675
2676static const struct of_device_id sbsa_uart_of_match[] = {
2677	{ .compatible = "arm,sbsa-uart", },
2678	{},
2679};
2680MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2681
2682static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2683	{ "ARMH0011", 0 },
 
2684	{},
2685};
2686MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2687
2688static struct platform_driver arm_sbsa_uart_platform_driver = {
2689	.probe		= sbsa_uart_probe,
2690	.remove		= sbsa_uart_remove,
2691	.driver	= {
2692		.name	= "sbsa-uart",
 
2693		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2694		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
 
2695	},
2696};
2697
2698static struct amba_id pl011_ids[] = {
2699	{
2700		.id	= 0x00041011,
2701		.mask	= 0x000fffff,
2702		.data	= &vendor_arm,
2703	},
2704	{
2705		.id	= 0x00380802,
2706		.mask	= 0x00ffffff,
2707		.data	= &vendor_st,
2708	},
2709	{
2710		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2711		.mask	= 0x00ffffff,
2712		.data	= &vendor_zte,
2713	},
2714	{ 0, 0 },
2715};
2716
2717MODULE_DEVICE_TABLE(amba, pl011_ids);
2718
2719static struct amba_driver pl011_driver = {
2720	.drv = {
2721		.name	= "uart-pl011",
2722		.pm	= &pl011_dev_pm_ops,
 
2723	},
2724	.id_table	= pl011_ids,
2725	.probe		= pl011_probe,
2726	.remove		= pl011_remove,
2727};
2728
2729static int __init pl011_init(void)
2730{
2731	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2732
2733	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2734		pr_warn("could not register SBSA UART platform driver\n");
2735	return amba_driver_register(&pl011_driver);
2736}
2737
2738static void __exit pl011_exit(void)
2739{
2740	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2741	amba_driver_unregister(&pl011_driver);
2742}
2743
2744/*
2745 * While this can be a module, if builtin it's most likely the console
2746 * So let's leave module_exit but move module_init to an earlier place
2747 */
2748arch_initcall(pl011_init);
2749module_exit(pl011_exit);
2750
2751MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2752MODULE_DESCRIPTION("ARM AMBA serial port driver");
2753MODULE_LICENSE("GPL");