Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
  4 *
  5 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net>
  6 * Copyright (C) 2006 Tower Technologies
  7 * Copyright (C) 2008 Paul Mundt
 
 
 
 
  8 */
  9
 10#include <linux/i2c.h>
 11#include <linux/rtc.h>
 12#include <linux/bcd.h>
 13#include <linux/slab.h>
 14#include <linux/module.h>
 15#include <linux/of.h>
 16
 17/*
 18 * Ricoh has a family of I2C based RTCs, which differ only slightly from
 19 * each other.  Differences center on pinout (e.g. how many interrupts,
 20 * output clock, etc) and how the control registers are used.  The '372
 21 * is significant only because that's the one this driver first supported.
 22 */
 23#define RS5C372_REG_SECS	0
 24#define RS5C372_REG_MINS	1
 25#define RS5C372_REG_HOURS	2
 26#define RS5C372_REG_WDAY	3
 27#define RS5C372_REG_DAY		4
 28#define RS5C372_REG_MONTH	5
 29#define RS5C372_REG_YEAR	6
 30#define RS5C372_REG_TRIM	7
 31#	define RS5C372_TRIM_XSL		0x80		/* only if RS5C372[a|b] */
 32#	define RS5C372_TRIM_MASK	0x7F
 33#	define R2221TL_TRIM_DEV		(1 << 7)	/* only if R2221TL */
 34#	define RS5C372_TRIM_DECR	(1 << 6)
 35
 36#define RS5C_REG_ALARM_A_MIN	8			/* or ALARM_W */
 37#define RS5C_REG_ALARM_A_HOURS	9
 38#define RS5C_REG_ALARM_A_WDAY	10
 39
 40#define RS5C_REG_ALARM_B_MIN	11			/* or ALARM_D */
 41#define RS5C_REG_ALARM_B_HOURS	12
 42#define RS5C_REG_ALARM_B_WDAY	13			/* (ALARM_B only) */
 43
 44#define RS5C_REG_CTRL1		14
 45#	define RS5C_CTRL1_AALE		(1 << 7)	/* or WALE */
 46#	define RS5C_CTRL1_BALE		(1 << 6)	/* or DALE */
 47#	define RV5C387_CTRL1_24		(1 << 5)
 48#	define RS5C372A_CTRL1_SL1	(1 << 5)
 49#	define RS5C_CTRL1_CT_MASK	(7 << 0)
 50#	define RS5C_CTRL1_CT0		(0 << 0)	/* no periodic irq */
 51#	define RS5C_CTRL1_CT4		(4 << 0)	/* 1 Hz level irq */
 52#define RS5C_REG_CTRL2		15
 53#	define RS5C372_CTRL2_24		(1 << 5)
 54#	define RS5C_CTRL2_XSTP		(1 << 4)	/* only if !R2x2x */
 55#	define R2x2x_CTRL2_VDET		(1 << 6)	/* only if  R2x2x */
 56#	define R2x2x_CTRL2_XSTP		(1 << 5)	/* only if  R2x2x */
 57#	define R2x2x_CTRL2_PON		(1 << 4)	/* only if  R2x2x */
 58#	define RS5C_CTRL2_CTFG		(1 << 2)
 59#	define RS5C_CTRL2_AAFG		(1 << 1)	/* or WAFG */
 60#	define RS5C_CTRL2_BAFG		(1 << 0)	/* or DAFG */
 61
 62
 63/* to read (style 1) or write registers starting at R */
 64#define RS5C_ADDR(R)		(((R) << 4) | 0)
 65
 66
 67enum rtc_type {
 68	rtc_undef = 0,
 69	rtc_r2025sd,
 70	rtc_r2221tl,
 71	rtc_rs5c372a,
 72	rtc_rs5c372b,
 73	rtc_rv5c386,
 74	rtc_rv5c387a,
 75};
 76
 77static const struct i2c_device_id rs5c372_id[] = {
 78	{ "r2025sd", rtc_r2025sd },
 79	{ "r2221tl", rtc_r2221tl },
 80	{ "rs5c372a", rtc_rs5c372a },
 81	{ "rs5c372b", rtc_rs5c372b },
 82	{ "rv5c386", rtc_rv5c386 },
 83	{ "rv5c387a", rtc_rv5c387a },
 84	{ }
 85};
 86MODULE_DEVICE_TABLE(i2c, rs5c372_id);
 87
 88static const __maybe_unused struct of_device_id rs5c372_of_match[] = {
 89	{
 90		.compatible = "ricoh,r2025sd",
 91		.data = (void *)rtc_r2025sd
 92	},
 93	{
 94		.compatible = "ricoh,r2221tl",
 95		.data = (void *)rtc_r2221tl
 96	},
 97	{
 98		.compatible = "ricoh,rs5c372a",
 99		.data = (void *)rtc_rs5c372a
100	},
101	{
102		.compatible = "ricoh,rs5c372b",
103		.data = (void *)rtc_rs5c372b
104	},
105	{
106		.compatible = "ricoh,rv5c386",
107		.data = (void *)rtc_rv5c386
108	},
109	{
110		.compatible = "ricoh,rv5c387a",
111		.data = (void *)rtc_rv5c387a
112	},
113	{ }
114};
115MODULE_DEVICE_TABLE(of, rs5c372_of_match);
116
117/* REVISIT:  this assumes that:
118 *  - we're in the 21st century, so it's safe to ignore the century
119 *    bit for rv5c38[67] (REG_MONTH bit 7);
120 *  - we should use ALARM_A not ALARM_B (may be wrong on some boards)
121 */
122struct rs5c372 {
123	struct i2c_client	*client;
124	struct rtc_device	*rtc;
125	enum rtc_type		type;
126	unsigned		time24:1;
127	unsigned		has_irq:1;
128	unsigned		smbus:1;
129	char			buf[17];
130	char			*regs;
131};
132
133static int rs5c_get_regs(struct rs5c372 *rs5c)
134{
135	struct i2c_client	*client = rs5c->client;
136	struct i2c_msg		msgs[] = {
137		{
138			.addr = client->addr,
139			.flags = I2C_M_RD,
140			.len = sizeof(rs5c->buf),
141			.buf = rs5c->buf
142		},
143	};
144
145	/* This implements the third reading method from the datasheet, using
146	 * an internal address that's reset after each transaction (by STOP)
147	 * to 0x0f ... so we read extra registers, and skip the first one.
148	 *
149	 * The first method doesn't work with the iop3xx adapter driver, on at
150	 * least 80219 chips; this works around that bug.
151	 *
152	 * The third method on the other hand doesn't work for the SMBus-only
153	 * configurations, so we use the first method there, stripping off
154	 * the extra register in the process.
155	 */
156	if (rs5c->smbus) {
157		int addr = RS5C_ADDR(RS5C372_REG_SECS);
158		int size = sizeof(rs5c->buf) - 1;
159
160		if (i2c_smbus_read_i2c_block_data(client, addr, size,
161						  rs5c->buf + 1) != size) {
162			dev_warn(&client->dev, "can't read registers\n");
163			return -EIO;
164		}
165	} else {
166		if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
167			dev_warn(&client->dev, "can't read registers\n");
168			return -EIO;
169		}
170	}
171
172	dev_dbg(&client->dev,
173		"%3ph (%02x) %3ph (%02x), %3ph, %3ph; %02x %02x\n",
174		rs5c->regs + 0, rs5c->regs[3],
175		rs5c->regs + 4, rs5c->regs[7],
176		rs5c->regs + 8, rs5c->regs + 11,
177		rs5c->regs[14], rs5c->regs[15]);
178
179	return 0;
180}
181
182static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
183{
184	unsigned	hour;
185
186	if (rs5c->time24)
187		return bcd2bin(reg & 0x3f);
188
189	hour = bcd2bin(reg & 0x1f);
190	if (hour == 12)
191		hour = 0;
192	if (reg & 0x20)
193		hour += 12;
194	return hour;
195}
196
197static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
198{
199	if (rs5c->time24)
200		return bin2bcd(hour);
201
202	if (hour > 12)
203		return 0x20 | bin2bcd(hour - 12);
204	if (hour == 12)
205		return 0x20 | bin2bcd(12);
206	if (hour == 0)
207		return bin2bcd(12);
208	return bin2bcd(hour);
209}
210
211static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
212{
213	struct i2c_client *client = to_i2c_client(dev);
214	struct rs5c372	*rs5c = i2c_get_clientdata(client);
215	int		status = rs5c_get_regs(rs5c);
216	unsigned char ctrl2 = rs5c->regs[RS5C_REG_CTRL2];
217
218	if (status < 0)
219		return status;
220
221	switch (rs5c->type) {
222	case rtc_r2025sd:
223	case rtc_r2221tl:
224		if ((rs5c->type == rtc_r2025sd && !(ctrl2 & R2x2x_CTRL2_XSTP)) ||
225		    (rs5c->type == rtc_r2221tl &&  (ctrl2 & R2x2x_CTRL2_XSTP))) {
226			dev_warn(&client->dev, "rtc oscillator interruption detected. Please reset the rtc clock.\n");
227			return -EINVAL;
228		}
229		break;
230	default:
231		if (ctrl2 & RS5C_CTRL2_XSTP) {
232			dev_warn(&client->dev, "rtc oscillator interruption detected. Please reset the rtc clock.\n");
233			return -EINVAL;
234		}
235	}
236
237	tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
238	tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
239	tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
240
241	tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
242	tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
243
244	/* tm->tm_mon is zero-based */
245	tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
246
247	/* year is 1900 + tm->tm_year */
248	tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100;
249
250	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
251		"mday=%d, mon=%d, year=%d, wday=%d\n",
252		__func__,
253		tm->tm_sec, tm->tm_min, tm->tm_hour,
254		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
255
256	return 0;
 
257}
258
259static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
260{
261	struct i2c_client *client = to_i2c_client(dev);
262	struct rs5c372	*rs5c = i2c_get_clientdata(client);
263	unsigned char	buf[7];
264	unsigned char	ctrl2;
265	int		addr;
266
267	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
268		"mday=%d, mon=%d, year=%d, wday=%d\n",
269		__func__,
270		tm->tm_sec, tm->tm_min, tm->tm_hour,
271		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
272
273	addr   = RS5C_ADDR(RS5C372_REG_SECS);
274	buf[0] = bin2bcd(tm->tm_sec);
275	buf[1] = bin2bcd(tm->tm_min);
276	buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
277	buf[3] = bin2bcd(tm->tm_wday);
278	buf[4] = bin2bcd(tm->tm_mday);
279	buf[5] = bin2bcd(tm->tm_mon + 1);
280	buf[6] = bin2bcd(tm->tm_year - 100);
281
282	if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
283		dev_dbg(&client->dev, "%s: write error in line %i\n",
284			__func__, __LINE__);
285		return -EIO;
286	}
287
288	addr = RS5C_ADDR(RS5C_REG_CTRL2);
289	ctrl2 = i2c_smbus_read_byte_data(client, addr);
290
291	/* clear rtc warning bits */
292	switch (rs5c->type) {
293	case rtc_r2025sd:
294	case rtc_r2221tl:
295		ctrl2 &= ~(R2x2x_CTRL2_VDET | R2x2x_CTRL2_PON);
296		if (rs5c->type == rtc_r2025sd)
297			ctrl2 |= R2x2x_CTRL2_XSTP;
298		else
299			ctrl2 &= ~R2x2x_CTRL2_XSTP;
300		break;
301	default:
302		ctrl2 &= ~RS5C_CTRL2_XSTP;
303		break;
304	}
305
306	if (i2c_smbus_write_byte_data(client, addr, ctrl2) < 0) {
307		dev_dbg(&client->dev, "%s: write error in line %i\n",
308			__func__, __LINE__);
309		return -EIO;
310	}
311
312	return 0;
313}
314
315#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
316#define	NEED_TRIM
317#endif
318
319#if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
320#define	NEED_TRIM
321#endif
322
323#ifdef	NEED_TRIM
324static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
325{
326	struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
327	u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
328
329	if (osc) {
330		if (rs5c372->type == rtc_rs5c372a || rs5c372->type == rtc_rs5c372b)
331			*osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
332		else
333			*osc = 32768;
334	}
335
336	if (trim) {
337		dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
338		tmp &= RS5C372_TRIM_MASK;
339		if (tmp & 0x3e) {
340			int t = tmp & 0x3f;
341
342			if (tmp & 0x40)
343				t = (~t | (s8)0xc0) + 1;
344			else
345				t = t - 1;
346
347			tmp = t * 2;
348		} else
349			tmp = 0;
350		*trim = tmp;
351	}
352
353	return 0;
354}
355#endif
356
 
 
 
 
 
 
 
 
 
 
 
357static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
358{
359	struct i2c_client	*client = to_i2c_client(dev);
360	struct rs5c372		*rs5c = i2c_get_clientdata(client);
361	unsigned char		buf;
362	int			status, addr;
363
364	buf = rs5c->regs[RS5C_REG_CTRL1];
365
366	if (!rs5c->has_irq)
367		return -EINVAL;
368
369	status = rs5c_get_regs(rs5c);
370	if (status < 0)
371		return status;
372
373	addr = RS5C_ADDR(RS5C_REG_CTRL1);
374	if (enabled)
375		buf |= RS5C_CTRL1_AALE;
376	else
377		buf &= ~RS5C_CTRL1_AALE;
378
379	if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
380		dev_warn(dev, "can't update alarm\n");
381		status = -EIO;
382	} else
383		rs5c->regs[RS5C_REG_CTRL1] = buf;
384
385	return status;
386}
387
388
389/* NOTE:  Since RTC_WKALM_{RD,SET} were originally defined for EFI,
390 * which only exposes a polled programming interface; and since
391 * these calls map directly to those EFI requests; we don't demand
392 * we have an IRQ for this chip when we go through this API.
393 *
394 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
395 * though, managed through RTC_AIE_{ON,OFF} requests.
396 */
397
398static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
399{
400	struct i2c_client	*client = to_i2c_client(dev);
401	struct rs5c372		*rs5c = i2c_get_clientdata(client);
402	int			status;
403
404	status = rs5c_get_regs(rs5c);
405	if (status < 0)
406		return status;
407
408	/* report alarm time */
409	t->time.tm_sec = 0;
410	t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
411	t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
412
413	/* ... and status */
414	t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
415	t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);
416
417	return 0;
418}
419
420static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
421{
422	struct i2c_client	*client = to_i2c_client(dev);
423	struct rs5c372		*rs5c = i2c_get_clientdata(client);
424	int			status, addr, i;
425	unsigned char		buf[3];
426
427	/* only handle up to 24 hours in the future, like RTC_ALM_SET */
428	if (t->time.tm_mday != -1
429			|| t->time.tm_mon != -1
430			|| t->time.tm_year != -1)
431		return -EINVAL;
432
433	/* REVISIT: round up tm_sec */
434
435	/* if needed, disable irq (clears pending status) */
436	status = rs5c_get_regs(rs5c);
437	if (status < 0)
438		return status;
439	if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
440		addr = RS5C_ADDR(RS5C_REG_CTRL1);
441		buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
442		if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
443			dev_dbg(dev, "can't disable alarm\n");
444			return -EIO;
445		}
446		rs5c->regs[RS5C_REG_CTRL1] = buf[0];
447	}
448
449	/* set alarm */
450	buf[0] = bin2bcd(t->time.tm_min);
451	buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
452	buf[2] = 0x7f;	/* any/all days */
453
454	for (i = 0; i < sizeof(buf); i++) {
455		addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
456		if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
457			dev_dbg(dev, "can't set alarm time\n");
458			return -EIO;
459		}
460	}
461
462	/* ... and maybe enable its irq */
463	if (t->enabled) {
464		addr = RS5C_ADDR(RS5C_REG_CTRL1);
465		buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
466		if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
467			dev_warn(dev, "can't enable alarm\n");
468		rs5c->regs[RS5C_REG_CTRL1] = buf[0];
469	}
470
471	return 0;
472}
473
474#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
475
476static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
477{
478	int err, osc, trim;
479
480	err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
481	if (err == 0) {
482		seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
483				osc / 1000, osc % 1000);
484		seq_printf(seq, "trim\t\t: %d\n", trim);
485	}
486
487	return 0;
488}
489
490#else
491#define	rs5c372_rtc_proc	NULL
492#endif
493
494#ifdef CONFIG_RTC_INTF_DEV
495static int rs5c372_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
496{
497	struct rs5c372	*rs5c = i2c_get_clientdata(to_i2c_client(dev));
498	unsigned char	ctrl2;
499	int		addr;
500	unsigned int	flags;
501
502	dev_dbg(dev, "%s: cmd=%x\n", __func__, cmd);
503
504	addr = RS5C_ADDR(RS5C_REG_CTRL2);
505	ctrl2 = i2c_smbus_read_byte_data(rs5c->client, addr);
506
507	switch (cmd) {
508	case RTC_VL_READ:
509		flags = 0;
510
511		switch (rs5c->type) {
512		case rtc_r2025sd:
513		case rtc_r2221tl:
514			if ((rs5c->type == rtc_r2025sd && !(ctrl2 & R2x2x_CTRL2_XSTP)) ||
515				(rs5c->type == rtc_r2221tl &&  (ctrl2 & R2x2x_CTRL2_XSTP))) {
516				flags |= RTC_VL_DATA_INVALID;
517			}
518			if (ctrl2 & R2x2x_CTRL2_VDET)
519				flags |= RTC_VL_BACKUP_LOW;
520			break;
521		default:
522			if (ctrl2 & RS5C_CTRL2_XSTP)
523				flags |= RTC_VL_DATA_INVALID;
524			break;
525		}
526
527		return put_user(flags, (unsigned int __user *)arg);
528	case RTC_VL_CLR:
529		/* clear VDET bit */
530		if (rs5c->type == rtc_r2025sd || rs5c->type == rtc_r2221tl) {
531			ctrl2 &= ~R2x2x_CTRL2_VDET;
532			if (i2c_smbus_write_byte_data(rs5c->client, addr, ctrl2) < 0) {
533				dev_dbg(&rs5c->client->dev, "%s: write error in line %i\n",
534						__func__, __LINE__);
535				return -EIO;
536			}
537		}
538		return 0;
539	default:
540		return -ENOIOCTLCMD;
541	}
542	return 0;
543}
544#else
545#define rs5c372_ioctl	NULL
546#endif
547
548static int rs5c372_read_offset(struct device *dev, long *offset)
549{
550	struct rs5c372 *rs5c = i2c_get_clientdata(to_i2c_client(dev));
551	u8 val = rs5c->regs[RS5C372_REG_TRIM];
552	long ppb_per_step = 0;
553	bool decr = val & RS5C372_TRIM_DECR;
554
555	switch (rs5c->type) {
556	case rtc_r2221tl:
557		ppb_per_step = val & R2221TL_TRIM_DEV ? 1017 : 3051;
558		break;
559	case rtc_rs5c372a:
560	case rtc_rs5c372b:
561		ppb_per_step = val & RS5C372_TRIM_XSL ? 3125 : 3051;
562		break;
563	default:
564		ppb_per_step = 3051;
565		break;
566	}
567
568	/* Only bits[0:5] repsents the time counts */
569	val &= 0x3F;
570
571	/* If bits[1:5] are all 0, it means no increment or decrement */
572	if (!(val & 0x3E)) {
573		*offset = 0;
574	} else {
575		if (decr)
576			*offset = -(((~val) & 0x3F) + 1) * ppb_per_step;
577		else
578			*offset = (val - 1) * ppb_per_step;
579	}
580
581	return 0;
582}
583
584static int rs5c372_set_offset(struct device *dev, long offset)
585{
586	struct rs5c372 *rs5c = i2c_get_clientdata(to_i2c_client(dev));
587	int addr = RS5C_ADDR(RS5C372_REG_TRIM);
588	u8 val = 0;
589	u8 tmp = 0;
590	long ppb_per_step = 3051;
591	long steps = LONG_MIN;
592
593	switch (rs5c->type) {
594	case rtc_rs5c372a:
595	case rtc_rs5c372b:
596		tmp = rs5c->regs[RS5C372_REG_TRIM];
597		if (tmp & RS5C372_TRIM_XSL) {
598			ppb_per_step = 3125;
599			val |= RS5C372_TRIM_XSL;
600		}
601		break;
602	case rtc_r2221tl:
603		/*
604		 * Check if it is possible to use high resolution mode (DEV=1).
605		 * In this mode, the minimum resolution is 2 / (32768 * 20 * 3),
606		 * which is about 1017 ppb.
607		 */
608		steps = DIV_ROUND_CLOSEST(offset, 1017);
609		if (steps >= -0x3E && steps <= 0x3E) {
610			ppb_per_step = 1017;
611			val |= R2221TL_TRIM_DEV;
612		} else {
613			/*
614			 * offset is out of the range of high resolution mode.
615			 * Try to use low resolution mode (DEV=0). In this mode,
616			 * the minimum resolution is 2 / (32768 * 20), which is
617			 * about 3051 ppb.
618			 */
619			steps = LONG_MIN;
620		}
621		break;
622	default:
623		break;
624	}
625
626	if (steps == LONG_MIN) {
627		steps = DIV_ROUND_CLOSEST(offset, ppb_per_step);
628		if (steps > 0x3E || steps < -0x3E)
629			return -ERANGE;
630	}
631
632	if (steps > 0) {
633		val |= steps + 1;
634	} else {
635		val |= RS5C372_TRIM_DECR;
636		val |= (~(-steps - 1)) & 0x3F;
637	}
638
639	if (!steps || !(val & 0x3E)) {
640		/*
641		 * if offset is too small, set oscillation adjustment register
642		 * or time trimming register with its default value whic means
643		 * no increment or decrement. But for rs5c372[a|b], the XSL bit
644		 * should be kept unchanged.
645		 */
646		if (rs5c->type == rtc_rs5c372a || rs5c->type == rtc_rs5c372b)
647			val &= RS5C372_TRIM_XSL;
648		else
649			val = 0;
650	}
651
652	dev_dbg(&rs5c->client->dev, "write 0x%x for offset %ld\n", val, offset);
653
654	if (i2c_smbus_write_byte_data(rs5c->client, addr, val) < 0) {
655		dev_err(&rs5c->client->dev, "failed to write 0x%x to reg %d\n", val, addr);
656		return -EIO;
657	}
658
659	rs5c->regs[RS5C372_REG_TRIM] = val;
660
661	return 0;
662}
663
664static const struct rtc_class_ops rs5c372_rtc_ops = {
665	.proc		= rs5c372_rtc_proc,
666	.read_time	= rs5c372_rtc_read_time,
667	.set_time	= rs5c372_rtc_set_time,
668	.read_alarm	= rs5c_read_alarm,
669	.set_alarm	= rs5c_set_alarm,
670	.alarm_irq_enable = rs5c_rtc_alarm_irq_enable,
671	.ioctl		= rs5c372_ioctl,
672	.read_offset    = rs5c372_read_offset,
673	.set_offset     = rs5c372_set_offset,
674};
675
676#if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
677
678static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
679				struct device_attribute *attr, char *buf)
680{
681	int err, trim;
682
683	err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
684	if (err)
685		return err;
686
687	return sprintf(buf, "%d\n", trim);
688}
689static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);
690
691static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
692				struct device_attribute *attr, char *buf)
693{
694	int err, osc;
695
696	err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
697	if (err)
698		return err;
699
700	return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
701}
702static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);
703
704static int rs5c_sysfs_register(struct device *dev)
705{
706	int err;
707
708	err = device_create_file(dev, &dev_attr_trim);
709	if (err)
710		return err;
711	err = device_create_file(dev, &dev_attr_osc);
712	if (err)
713		device_remove_file(dev, &dev_attr_trim);
714
715	return err;
716}
717
718static void rs5c_sysfs_unregister(struct device *dev)
719{
720	device_remove_file(dev, &dev_attr_trim);
721	device_remove_file(dev, &dev_attr_osc);
722}
723
724#else
725static int rs5c_sysfs_register(struct device *dev)
726{
727	return 0;
728}
729
730static void rs5c_sysfs_unregister(struct device *dev)
731{
732	/* nothing */
733}
734#endif	/* SYSFS */
735
736static struct i2c_driver rs5c372_driver;
737
738static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
739{
740	unsigned char buf[2];
741	int addr, i, ret = 0;
742
743	addr   = RS5C_ADDR(RS5C_REG_CTRL1);
744	buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
745	buf[1] = rs5c372->regs[RS5C_REG_CTRL2];
746
747	switch (rs5c372->type) {
748	case rtc_r2025sd:
749		if (buf[1] & R2x2x_CTRL2_XSTP)
750			return ret;
751		break;
752	case rtc_r2221tl:
753		if (!(buf[1] & R2x2x_CTRL2_XSTP))
754			return ret;
755		break;
756	default:
757		if (!(buf[1] & RS5C_CTRL2_XSTP))
758			return ret;
759		break;
760	}
761
 
 
 
 
762	/* use 24hr mode */
763	switch (rs5c372->type) {
764	case rtc_rs5c372a:
765	case rtc_rs5c372b:
766		buf[1] |= RS5C372_CTRL2_24;
767		rs5c372->time24 = 1;
768		break;
769	case rtc_r2025sd:
770	case rtc_r2221tl:
771	case rtc_rv5c386:
772	case rtc_rv5c387a:
773		buf[0] |= RV5C387_CTRL1_24;
774		rs5c372->time24 = 1;
775		break;
776	default:
777		/* impossible */
778		break;
779	}
780
781	for (i = 0; i < sizeof(buf); i++) {
782		addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
783		ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
784		if (unlikely(ret < 0))
785			return ret;
786	}
787
788	rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
789	rs5c372->regs[RS5C_REG_CTRL2] = buf[1];
790
791	return 0;
792}
793
794static int rs5c372_probe(struct i2c_client *client)
 
795{
796	int err = 0;
797	int smbus_mode = 0;
798	struct rs5c372 *rs5c372;
 
799
800	dev_dbg(&client->dev, "%s\n", __func__);
801
802	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
803			I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) {
804		/*
805		 * If we don't have any master mode adapter, try breaking
806		 * it down in to the barest of capabilities.
807		 */
808		if (i2c_check_functionality(client->adapter,
809				I2C_FUNC_SMBUS_BYTE_DATA |
810				I2C_FUNC_SMBUS_I2C_BLOCK))
811			smbus_mode = 1;
812		else {
813			/* Still no good, give up */
814			err = -ENODEV;
815			goto exit;
816		}
817	}
818
819	rs5c372 = devm_kzalloc(&client->dev, sizeof(struct rs5c372),
820				GFP_KERNEL);
821	if (!rs5c372) {
822		err = -ENOMEM;
823		goto exit;
824	}
825
826	rs5c372->client = client;
827	i2c_set_clientdata(client, rs5c372);
828	if (client->dev.of_node) {
829		rs5c372->type = (uintptr_t)of_device_get_match_data(&client->dev);
830	} else {
831		const struct i2c_device_id *id = i2c_match_id(rs5c372_id, client);
832		rs5c372->type = id->driver_data;
833	}
834
835	/* we read registers 0x0f then 0x00-0x0f; skip the first one */
836	rs5c372->regs = &rs5c372->buf[1];
837	rs5c372->smbus = smbus_mode;
838
839	err = rs5c_get_regs(rs5c372);
840	if (err < 0)
841		goto exit;
842
843	/* clock may be set for am/pm or 24 hr time */
844	switch (rs5c372->type) {
845	case rtc_rs5c372a:
846	case rtc_rs5c372b:
847		/* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
848		 * so does periodic irq, except some 327a modes.
849		 */
850		if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
851			rs5c372->time24 = 1;
852		break;
853	case rtc_r2025sd:
854	case rtc_r2221tl:
855	case rtc_rv5c386:
856	case rtc_rv5c387a:
857		if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
858			rs5c372->time24 = 1;
859		/* alarm uses ALARM_W; and nINTRB for alarm and periodic
860		 * irq, on both 386 and 387
861		 */
862		break;
863	default:
864		dev_err(&client->dev, "unknown RTC type\n");
865		goto exit;
866	}
867
868	/* if the oscillator lost power and no other software (like
869	 * the bootloader) set it up, do it here.
870	 *
871	 * The R2025S/D does this a little differently than the other
872	 * parts, so we special case that..
873	 */
874	err = rs5c_oscillator_setup(rs5c372);
875	if (unlikely(err < 0)) {
876		dev_err(&client->dev, "setup error\n");
877		goto exit;
878	}
879
 
 
 
880	dev_info(&client->dev, "%s found, %s\n",
881			({ char *s; switch (rs5c372->type) {
882			case rtc_r2025sd:	s = "r2025sd"; break;
883			case rtc_r2221tl:	s = "r2221tl"; break;
884			case rtc_rs5c372a:	s = "rs5c372a"; break;
885			case rtc_rs5c372b:	s = "rs5c372b"; break;
886			case rtc_rv5c386:	s = "rv5c386"; break;
887			case rtc_rv5c387a:	s = "rv5c387a"; break;
888			default:		s = "chip"; break;
889			}; s;}),
890			rs5c372->time24 ? "24hr" : "am/pm"
891			);
892
893	/* REVISIT use client->irq to register alarm irq ... */
894	rs5c372->rtc = devm_rtc_device_register(&client->dev,
895					rs5c372_driver.driver.name,
896					&rs5c372_rtc_ops, THIS_MODULE);
897
898	if (IS_ERR(rs5c372->rtc)) {
899		err = PTR_ERR(rs5c372->rtc);
900		goto exit;
901	}
902
903	err = rs5c_sysfs_register(&client->dev);
904	if (err)
905		goto exit;
906
907	return 0;
908
909exit:
910	return err;
911}
912
913static void rs5c372_remove(struct i2c_client *client)
914{
915	rs5c_sysfs_unregister(&client->dev);
 
916}
917
918static struct i2c_driver rs5c372_driver = {
919	.driver		= {
920		.name	= "rtc-rs5c372",
921		.of_match_table = of_match_ptr(rs5c372_of_match),
922	},
923	.probe		= rs5c372_probe,
924	.remove		= rs5c372_remove,
925	.id_table	= rs5c372_id,
926};
927
928module_i2c_driver(rs5c372_driver);
929
930MODULE_AUTHOR(
931		"Pavel Mironchik <pmironchik@optifacio.net>, "
932		"Alessandro Zummo <a.zummo@towertech.it>, "
933		"Paul Mundt <lethal@linux-sh.org>");
934MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
935MODULE_LICENSE("GPL");
v4.10.11
 
  1/*
  2 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
  3 *
  4 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net>
  5 * Copyright (C) 2006 Tower Technologies
  6 * Copyright (C) 2008 Paul Mundt
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/i2c.h>
 14#include <linux/rtc.h>
 15#include <linux/bcd.h>
 16#include <linux/slab.h>
 17#include <linux/module.h>
 
 18
 19/*
 20 * Ricoh has a family of I2C based RTCs, which differ only slightly from
 21 * each other.  Differences center on pinout (e.g. how many interrupts,
 22 * output clock, etc) and how the control registers are used.  The '372
 23 * is significant only because that's the one this driver first supported.
 24 */
 25#define RS5C372_REG_SECS	0
 26#define RS5C372_REG_MINS	1
 27#define RS5C372_REG_HOURS	2
 28#define RS5C372_REG_WDAY	3
 29#define RS5C372_REG_DAY		4
 30#define RS5C372_REG_MONTH	5
 31#define RS5C372_REG_YEAR	6
 32#define RS5C372_REG_TRIM	7
 33#	define RS5C372_TRIM_XSL		0x80
 34#	define RS5C372_TRIM_MASK	0x7F
 
 
 35
 36#define RS5C_REG_ALARM_A_MIN	8			/* or ALARM_W */
 37#define RS5C_REG_ALARM_A_HOURS	9
 38#define RS5C_REG_ALARM_A_WDAY	10
 39
 40#define RS5C_REG_ALARM_B_MIN	11			/* or ALARM_D */
 41#define RS5C_REG_ALARM_B_HOURS	12
 42#define RS5C_REG_ALARM_B_WDAY	13			/* (ALARM_B only) */
 43
 44#define RS5C_REG_CTRL1		14
 45#	define RS5C_CTRL1_AALE		(1 << 7)	/* or WALE */
 46#	define RS5C_CTRL1_BALE		(1 << 6)	/* or DALE */
 47#	define RV5C387_CTRL1_24		(1 << 5)
 48#	define RS5C372A_CTRL1_SL1	(1 << 5)
 49#	define RS5C_CTRL1_CT_MASK	(7 << 0)
 50#	define RS5C_CTRL1_CT0		(0 << 0)	/* no periodic irq */
 51#	define RS5C_CTRL1_CT4		(4 << 0)	/* 1 Hz level irq */
 52#define RS5C_REG_CTRL2		15
 53#	define RS5C372_CTRL2_24		(1 << 5)
 54#	define R2025_CTRL2_XST		(1 << 5)
 55#	define RS5C_CTRL2_XSTP		(1 << 4)	/* only if !R2025S/D */
 
 
 56#	define RS5C_CTRL2_CTFG		(1 << 2)
 57#	define RS5C_CTRL2_AAFG		(1 << 1)	/* or WAFG */
 58#	define RS5C_CTRL2_BAFG		(1 << 0)	/* or DAFG */
 59
 60
 61/* to read (style 1) or write registers starting at R */
 62#define RS5C_ADDR(R)		(((R) << 4) | 0)
 63
 64
 65enum rtc_type {
 66	rtc_undef = 0,
 67	rtc_r2025sd,
 68	rtc_r2221tl,
 69	rtc_rs5c372a,
 70	rtc_rs5c372b,
 71	rtc_rv5c386,
 72	rtc_rv5c387a,
 73};
 74
 75static const struct i2c_device_id rs5c372_id[] = {
 76	{ "r2025sd", rtc_r2025sd },
 77	{ "r2221tl", rtc_r2221tl },
 78	{ "rs5c372a", rtc_rs5c372a },
 79	{ "rs5c372b", rtc_rs5c372b },
 80	{ "rv5c386", rtc_rv5c386 },
 81	{ "rv5c387a", rtc_rv5c387a },
 82	{ }
 83};
 84MODULE_DEVICE_TABLE(i2c, rs5c372_id);
 85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86/* REVISIT:  this assumes that:
 87 *  - we're in the 21st century, so it's safe to ignore the century
 88 *    bit for rv5c38[67] (REG_MONTH bit 7);
 89 *  - we should use ALARM_A not ALARM_B (may be wrong on some boards)
 90 */
 91struct rs5c372 {
 92	struct i2c_client	*client;
 93	struct rtc_device	*rtc;
 94	enum rtc_type		type;
 95	unsigned		time24:1;
 96	unsigned		has_irq:1;
 97	unsigned		smbus:1;
 98	char			buf[17];
 99	char			*regs;
100};
101
102static int rs5c_get_regs(struct rs5c372 *rs5c)
103{
104	struct i2c_client	*client = rs5c->client;
105	struct i2c_msg		msgs[] = {
106		{
107			.addr = client->addr,
108			.flags = I2C_M_RD,
109			.len = sizeof(rs5c->buf),
110			.buf = rs5c->buf
111		},
112	};
113
114	/* This implements the third reading method from the datasheet, using
115	 * an internal address that's reset after each transaction (by STOP)
116	 * to 0x0f ... so we read extra registers, and skip the first one.
117	 *
118	 * The first method doesn't work with the iop3xx adapter driver, on at
119	 * least 80219 chips; this works around that bug.
120	 *
121	 * The third method on the other hand doesn't work for the SMBus-only
122	 * configurations, so we use the the first method there, stripping off
123	 * the extra register in the process.
124	 */
125	if (rs5c->smbus) {
126		int addr = RS5C_ADDR(RS5C372_REG_SECS);
127		int size = sizeof(rs5c->buf) - 1;
128
129		if (i2c_smbus_read_i2c_block_data(client, addr, size,
130						  rs5c->buf + 1) != size) {
131			dev_warn(&client->dev, "can't read registers\n");
132			return -EIO;
133		}
134	} else {
135		if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
136			dev_warn(&client->dev, "can't read registers\n");
137			return -EIO;
138		}
139	}
140
141	dev_dbg(&client->dev,
142		"%3ph (%02x) %3ph (%02x), %3ph, %3ph; %02x %02x\n",
143		rs5c->regs + 0, rs5c->regs[3],
144		rs5c->regs + 4, rs5c->regs[7],
145		rs5c->regs + 8, rs5c->regs + 11,
146		rs5c->regs[14], rs5c->regs[15]);
147
148	return 0;
149}
150
151static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
152{
153	unsigned	hour;
154
155	if (rs5c->time24)
156		return bcd2bin(reg & 0x3f);
157
158	hour = bcd2bin(reg & 0x1f);
159	if (hour == 12)
160		hour = 0;
161	if (reg & 0x20)
162		hour += 12;
163	return hour;
164}
165
166static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
167{
168	if (rs5c->time24)
169		return bin2bcd(hour);
170
171	if (hour > 12)
172		return 0x20 | bin2bcd(hour - 12);
173	if (hour == 12)
174		return 0x20 | bin2bcd(12);
175	if (hour == 0)
176		return bin2bcd(12);
177	return bin2bcd(hour);
178}
179
180static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm)
181{
 
182	struct rs5c372	*rs5c = i2c_get_clientdata(client);
183	int		status = rs5c_get_regs(rs5c);
 
184
185	if (status < 0)
186		return status;
187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188	tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
189	tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
190	tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
191
192	tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
193	tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
194
195	/* tm->tm_mon is zero-based */
196	tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
197
198	/* year is 1900 + tm->tm_year */
199	tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100;
200
201	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
202		"mday=%d, mon=%d, year=%d, wday=%d\n",
203		__func__,
204		tm->tm_sec, tm->tm_min, tm->tm_hour,
205		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
206
207	/* rtc might need initialization */
208	return rtc_valid_tm(tm);
209}
210
211static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm)
212{
 
213	struct rs5c372	*rs5c = i2c_get_clientdata(client);
214	unsigned char	buf[7];
 
215	int		addr;
216
217	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
218		"mday=%d, mon=%d, year=%d, wday=%d\n",
219		__func__,
220		tm->tm_sec, tm->tm_min, tm->tm_hour,
221		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
222
223	addr   = RS5C_ADDR(RS5C372_REG_SECS);
224	buf[0] = bin2bcd(tm->tm_sec);
225	buf[1] = bin2bcd(tm->tm_min);
226	buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
227	buf[3] = bin2bcd(tm->tm_wday);
228	buf[4] = bin2bcd(tm->tm_mday);
229	buf[5] = bin2bcd(tm->tm_mon + 1);
230	buf[6] = bin2bcd(tm->tm_year - 100);
231
232	if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
233		dev_err(&client->dev, "%s: write error\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234		return -EIO;
235	}
236
237	return 0;
238}
239
240#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
241#define	NEED_TRIM
242#endif
243
244#if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
245#define	NEED_TRIM
246#endif
247
248#ifdef	NEED_TRIM
249static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
250{
251	struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
252	u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
253
254	if (osc)
255		*osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
 
 
 
 
256
257	if (trim) {
258		dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
259		tmp &= RS5C372_TRIM_MASK;
260		if (tmp & 0x3e) {
261			int t = tmp & 0x3f;
262
263			if (tmp & 0x40)
264				t = (~t | (s8)0xc0) + 1;
265			else
266				t = t - 1;
267
268			tmp = t * 2;
269		} else
270			tmp = 0;
271		*trim = tmp;
272	}
273
274	return 0;
275}
276#endif
277
278static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
279{
280	return rs5c372_get_datetime(to_i2c_client(dev), tm);
281}
282
283static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
284{
285	return rs5c372_set_datetime(to_i2c_client(dev), tm);
286}
287
288
289static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
290{
291	struct i2c_client	*client = to_i2c_client(dev);
292	struct rs5c372		*rs5c = i2c_get_clientdata(client);
293	unsigned char		buf;
294	int			status, addr;
295
296	buf = rs5c->regs[RS5C_REG_CTRL1];
297
298	if (!rs5c->has_irq)
299		return -EINVAL;
300
301	status = rs5c_get_regs(rs5c);
302	if (status < 0)
303		return status;
304
305	addr = RS5C_ADDR(RS5C_REG_CTRL1);
306	if (enabled)
307		buf |= RS5C_CTRL1_AALE;
308	else
309		buf &= ~RS5C_CTRL1_AALE;
310
311	if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
312		dev_warn(dev, "can't update alarm\n");
313		status = -EIO;
314	} else
315		rs5c->regs[RS5C_REG_CTRL1] = buf;
316
317	return status;
318}
319
320
321/* NOTE:  Since RTC_WKALM_{RD,SET} were originally defined for EFI,
322 * which only exposes a polled programming interface; and since
323 * these calls map directly to those EFI requests; we don't demand
324 * we have an IRQ for this chip when we go through this API.
325 *
326 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
327 * though, managed through RTC_AIE_{ON,OFF} requests.
328 */
329
330static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
331{
332	struct i2c_client	*client = to_i2c_client(dev);
333	struct rs5c372		*rs5c = i2c_get_clientdata(client);
334	int			status;
335
336	status = rs5c_get_regs(rs5c);
337	if (status < 0)
338		return status;
339
340	/* report alarm time */
341	t->time.tm_sec = 0;
342	t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
343	t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
344
345	/* ... and status */
346	t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
347	t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);
348
349	return 0;
350}
351
352static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
353{
354	struct i2c_client	*client = to_i2c_client(dev);
355	struct rs5c372		*rs5c = i2c_get_clientdata(client);
356	int			status, addr, i;
357	unsigned char		buf[3];
358
359	/* only handle up to 24 hours in the future, like RTC_ALM_SET */
360	if (t->time.tm_mday != -1
361			|| t->time.tm_mon != -1
362			|| t->time.tm_year != -1)
363		return -EINVAL;
364
365	/* REVISIT: round up tm_sec */
366
367	/* if needed, disable irq (clears pending status) */
368	status = rs5c_get_regs(rs5c);
369	if (status < 0)
370		return status;
371	if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
372		addr = RS5C_ADDR(RS5C_REG_CTRL1);
373		buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
374		if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
375			dev_dbg(dev, "can't disable alarm\n");
376			return -EIO;
377		}
378		rs5c->regs[RS5C_REG_CTRL1] = buf[0];
379	}
380
381	/* set alarm */
382	buf[0] = bin2bcd(t->time.tm_min);
383	buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
384	buf[2] = 0x7f;	/* any/all days */
385
386	for (i = 0; i < sizeof(buf); i++) {
387		addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
388		if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
389			dev_dbg(dev, "can't set alarm time\n");
390			return -EIO;
391		}
392	}
393
394	/* ... and maybe enable its irq */
395	if (t->enabled) {
396		addr = RS5C_ADDR(RS5C_REG_CTRL1);
397		buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
398		if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
399			dev_warn(dev, "can't enable alarm\n");
400		rs5c->regs[RS5C_REG_CTRL1] = buf[0];
401	}
402
403	return 0;
404}
405
406#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
407
408static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
409{
410	int err, osc, trim;
411
412	err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
413	if (err == 0) {
414		seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
415				osc / 1000, osc % 1000);
416		seq_printf(seq, "trim\t\t: %d\n", trim);
417	}
418
419	return 0;
420}
421
422#else
423#define	rs5c372_rtc_proc	NULL
424#endif
425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426static const struct rtc_class_ops rs5c372_rtc_ops = {
427	.proc		= rs5c372_rtc_proc,
428	.read_time	= rs5c372_rtc_read_time,
429	.set_time	= rs5c372_rtc_set_time,
430	.read_alarm	= rs5c_read_alarm,
431	.set_alarm	= rs5c_set_alarm,
432	.alarm_irq_enable = rs5c_rtc_alarm_irq_enable,
 
 
 
433};
434
435#if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
436
437static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
438				struct device_attribute *attr, char *buf)
439{
440	int err, trim;
441
442	err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
443	if (err)
444		return err;
445
446	return sprintf(buf, "%d\n", trim);
447}
448static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);
449
450static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
451				struct device_attribute *attr, char *buf)
452{
453	int err, osc;
454
455	err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
456	if (err)
457		return err;
458
459	return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
460}
461static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);
462
463static int rs5c_sysfs_register(struct device *dev)
464{
465	int err;
466
467	err = device_create_file(dev, &dev_attr_trim);
468	if (err)
469		return err;
470	err = device_create_file(dev, &dev_attr_osc);
471	if (err)
472		device_remove_file(dev, &dev_attr_trim);
473
474	return err;
475}
476
477static void rs5c_sysfs_unregister(struct device *dev)
478{
479	device_remove_file(dev, &dev_attr_trim);
480	device_remove_file(dev, &dev_attr_osc);
481}
482
483#else
484static int rs5c_sysfs_register(struct device *dev)
485{
486	return 0;
487}
488
489static void rs5c_sysfs_unregister(struct device *dev)
490{
491	/* nothing */
492}
493#endif	/* SYSFS */
494
495static struct i2c_driver rs5c372_driver;
496
497static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
498{
499	unsigned char buf[2];
500	int addr, i, ret = 0;
501
502	if (rs5c372->type == rtc_r2025sd) {
503		if (rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST)
 
 
 
 
 
504			return ret;
505		rs5c372->regs[RS5C_REG_CTRL2] |= R2025_CTRL2_XST;
506	} else {
507		if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP))
 
 
 
 
508			return ret;
509		rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP;
510	}
511
512	addr   = RS5C_ADDR(RS5C_REG_CTRL1);
513	buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
514	buf[1] = rs5c372->regs[RS5C_REG_CTRL2];
515
516	/* use 24hr mode */
517	switch (rs5c372->type) {
518	case rtc_rs5c372a:
519	case rtc_rs5c372b:
520		buf[1] |= RS5C372_CTRL2_24;
521		rs5c372->time24 = 1;
522		break;
523	case rtc_r2025sd:
524	case rtc_r2221tl:
525	case rtc_rv5c386:
526	case rtc_rv5c387a:
527		buf[0] |= RV5C387_CTRL1_24;
528		rs5c372->time24 = 1;
529		break;
530	default:
531		/* impossible */
532		break;
533	}
534
535	for (i = 0; i < sizeof(buf); i++) {
536		addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
537		ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
538		if (unlikely(ret < 0))
539			return ret;
540	}
541
542	rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
543	rs5c372->regs[RS5C_REG_CTRL2] = buf[1];
544
545	return 0;
546}
547
548static int rs5c372_probe(struct i2c_client *client,
549			 const struct i2c_device_id *id)
550{
551	int err = 0;
552	int smbus_mode = 0;
553	struct rs5c372 *rs5c372;
554	struct rtc_time tm;
555
556	dev_dbg(&client->dev, "%s\n", __func__);
557
558	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
559			I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) {
560		/*
561		 * If we don't have any master mode adapter, try breaking
562		 * it down in to the barest of capabilities.
563		 */
564		if (i2c_check_functionality(client->adapter,
565				I2C_FUNC_SMBUS_BYTE_DATA |
566				I2C_FUNC_SMBUS_I2C_BLOCK))
567			smbus_mode = 1;
568		else {
569			/* Still no good, give up */
570			err = -ENODEV;
571			goto exit;
572		}
573	}
574
575	rs5c372 = devm_kzalloc(&client->dev, sizeof(struct rs5c372),
576				GFP_KERNEL);
577	if (!rs5c372) {
578		err = -ENOMEM;
579		goto exit;
580	}
581
582	rs5c372->client = client;
583	i2c_set_clientdata(client, rs5c372);
584	rs5c372->type = id->driver_data;
 
 
 
 
 
585
586	/* we read registers 0x0f then 0x00-0x0f; skip the first one */
587	rs5c372->regs = &rs5c372->buf[1];
588	rs5c372->smbus = smbus_mode;
589
590	err = rs5c_get_regs(rs5c372);
591	if (err < 0)
592		goto exit;
593
594	/* clock may be set for am/pm or 24 hr time */
595	switch (rs5c372->type) {
596	case rtc_rs5c372a:
597	case rtc_rs5c372b:
598		/* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
599		 * so does periodic irq, except some 327a modes.
600		 */
601		if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
602			rs5c372->time24 = 1;
603		break;
604	case rtc_r2025sd:
605	case rtc_r2221tl:
606	case rtc_rv5c386:
607	case rtc_rv5c387a:
608		if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
609			rs5c372->time24 = 1;
610		/* alarm uses ALARM_W; and nINTRB for alarm and periodic
611		 * irq, on both 386 and 387
612		 */
613		break;
614	default:
615		dev_err(&client->dev, "unknown RTC type\n");
616		goto exit;
617	}
618
619	/* if the oscillator lost power and no other software (like
620	 * the bootloader) set it up, do it here.
621	 *
622	 * The R2025S/D does this a little differently than the other
623	 * parts, so we special case that..
624	 */
625	err = rs5c_oscillator_setup(rs5c372);
626	if (unlikely(err < 0)) {
627		dev_err(&client->dev, "setup error\n");
628		goto exit;
629	}
630
631	if (rs5c372_get_datetime(client, &tm) < 0)
632		dev_warn(&client->dev, "clock needs to be set\n");
633
634	dev_info(&client->dev, "%s found, %s\n",
635			({ char *s; switch (rs5c372->type) {
636			case rtc_r2025sd:	s = "r2025sd"; break;
637			case rtc_r2221tl:	s = "r2221tl"; break;
638			case rtc_rs5c372a:	s = "rs5c372a"; break;
639			case rtc_rs5c372b:	s = "rs5c372b"; break;
640			case rtc_rv5c386:	s = "rv5c386"; break;
641			case rtc_rv5c387a:	s = "rv5c387a"; break;
642			default:		s = "chip"; break;
643			}; s;}),
644			rs5c372->time24 ? "24hr" : "am/pm"
645			);
646
647	/* REVISIT use client->irq to register alarm irq ... */
648	rs5c372->rtc = devm_rtc_device_register(&client->dev,
649					rs5c372_driver.driver.name,
650					&rs5c372_rtc_ops, THIS_MODULE);
651
652	if (IS_ERR(rs5c372->rtc)) {
653		err = PTR_ERR(rs5c372->rtc);
654		goto exit;
655	}
656
657	err = rs5c_sysfs_register(&client->dev);
658	if (err)
659		goto exit;
660
661	return 0;
662
663exit:
664	return err;
665}
666
667static int rs5c372_remove(struct i2c_client *client)
668{
669	rs5c_sysfs_unregister(&client->dev);
670	return 0;
671}
672
673static struct i2c_driver rs5c372_driver = {
674	.driver		= {
675		.name	= "rtc-rs5c372",
 
676	},
677	.probe		= rs5c372_probe,
678	.remove		= rs5c372_remove,
679	.id_table	= rs5c372_id,
680};
681
682module_i2c_driver(rs5c372_driver);
683
684MODULE_AUTHOR(
685		"Pavel Mironchik <pmironchik@optifacio.net>, "
686		"Alessandro Zummo <a.zummo@towertech.it>, "
687		"Paul Mundt <lethal@linux-sh.org>");
688MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
689MODULE_LICENSE("GPL");