Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * An SPI driver for the Philips PCF2123 RTC
  4 * Copyright 2009 Cyber Switching, Inc.
  5 *
  6 * Author: Chris Verges <chrisv@cyberswitching.com>
  7 * Maintainers: http://www.cyberswitching.com
  8 *
  9 * based on the RS5C348 driver in this same directory.
 10 *
 11 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 12 * the sysfs contributions to this driver.
 13 *
 
 
 
 
 14 * Please note that the CS is active high, so platform data
 15 * should look something like:
 16 *
 17 * static struct spi_board_info ek_spi_devices[] = {
 18 *	...
 19 *	{
 20 *		.modalias		= "rtc-pcf2123",
 21 *		.chip_select		= 1,
 22 *		.controller_data	= (void *)AT91_PIN_PA10,
 23 *		.max_speed_hz		= 1000 * 1000,
 24 *		.mode			= SPI_CS_HIGH,
 25 *		.bus_num		= 0,
 26 *	},
 27 *	...
 28 *};
 
 29 */
 30
 31#include <linux/bcd.h>
 32#include <linux/delay.h>
 33#include <linux/device.h>
 34#include <linux/errno.h>
 35#include <linux/init.h>
 36#include <linux/kernel.h>
 37#include <linux/of.h>
 38#include <linux/string.h>
 39#include <linux/slab.h>
 40#include <linux/rtc.h>
 41#include <linux/spi/spi.h>
 42#include <linux/module.h>
 43#include <linux/regmap.h>
 44
 45/* REGISTERS */
 46#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 47#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 48#define PCF2123_REG_SC		(0x02)	/* datetime */
 49#define PCF2123_REG_MN		(0x03)
 50#define PCF2123_REG_HR		(0x04)
 51#define PCF2123_REG_DM		(0x05)
 52#define PCF2123_REG_DW		(0x06)
 53#define PCF2123_REG_MO		(0x07)
 54#define PCF2123_REG_YR		(0x08)
 55#define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
 56#define PCF2123_REG_ALRM_HR	(0x0a)
 57#define PCF2123_REG_ALRM_DM	(0x0b)
 58#define PCF2123_REG_ALRM_DW	(0x0c)
 59#define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
 60#define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
 61#define PCF2123_REG_CTDWN_TMR	(0x0f)
 62
 63/* PCF2123_REG_CTRL1 BITS */
 64#define CTRL1_CLEAR		(0)	/* Clear */
 65#define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
 66#define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
 67#define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
 68#define CTRL1_STOP		BIT(5)	/* Stop the clock */
 69#define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
 70
 71/* PCF2123_REG_CTRL2 BITS */
 72#define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
 73#define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
 74#define CTRL2_TF		BIT(2)	/* Countdown timer flag */
 75#define CTRL2_AF		BIT(3)	/* Alarm flag */
 76#define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
 77#define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
 78#define CTRL2_SI		BIT(6)	/* Second irq enable */
 79#define CTRL2_MI		BIT(7)	/* Minute irq enable */
 80
 81/* PCF2123_REG_SC BITS */
 82#define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
 83
 84/* PCF2123_REG_ALRM_XX BITS */
 85#define ALRM_DISABLE		BIT(7)	/* MN, HR, DM, or DW alarm matching */
 86
 87/* PCF2123_REG_TMR_CLKOUT BITS */
 88#define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
 89#define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
 90#define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
 91#define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
 92#define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
 93
 94/* PCF2123_REG_OFFSET BITS */
 95#define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
 96#define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
 97#define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
 98#define OFFSET_MASK		GENMASK(6, 0)	/* Offset value */
 99
100/* READ/WRITE ADDRESS BITS */
101#define PCF2123_WRITE		BIT(4)
102#define PCF2123_READ		(BIT(4) | BIT(7))
103
104
105static struct spi_driver pcf2123_driver;
106
107struct pcf2123_data {
108	struct rtc_device *rtc;
109	struct regmap *map;
110};
111
112static const struct regmap_config pcf2123_regmap_config = {
113	.reg_bits = 8,
114	.val_bits = 8,
115	.read_flag_mask = PCF2123_READ,
116	.write_flag_mask = PCF2123_WRITE,
117	.max_register = PCF2123_REG_CTDWN_TMR,
118};
119
120static int pcf2123_read_offset(struct device *dev, long *offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121{
122	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
123	int ret, val;
124	unsigned int reg;
125
126	ret = regmap_read(pcf2123->map, PCF2123_REG_OFFSET, &reg);
 
 
 
 
127	if (ret)
128		return ret;
129
130	val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
132	if (reg & OFFSET_COARSE)
133		val *= 2;
 
 
134
135	*offset = ((long)val) * OFFSET_STEP;
136
137	return 0;
138}
139
140/*
141 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
142 * The main difference between the two is normal offset adjusts the first
143 * second of n minutes every other hour, with 61, 62 and 63 being shoved
144 * into the 60th minute.
145 * The coarse adjustment does the same, but every hour.
146 * the two overlap, with every even normal offset value corresponding
147 * to a coarse offset. Based on this algorithm, it seems that despite the
148 * name, coarse offset is a better fit for overlapping values.
149 */
150static int pcf2123_set_offset(struct device *dev, long offset)
151{
152	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
153	s8 reg;
154
155	if (offset > OFFSET_STEP * 127)
156		reg = 127;
157	else if (offset < OFFSET_STEP * -128)
158		reg = -128;
159	else
160		reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP);
161
162	/* choose fine offset only for odd values in the normal range */
163	if (reg & 1 && reg <= 63 && reg >= -64) {
164		/* Normal offset. Clear the coarse bit */
165		reg &= ~OFFSET_COARSE;
166	} else {
167		/* Coarse offset. Divide by 2 and set the coarse bit */
168		reg >>= 1;
169		reg |= OFFSET_COARSE;
170	}
171
172	return regmap_write(pcf2123->map, PCF2123_REG_OFFSET, (unsigned int)reg);
173}
174
175static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
176{
177	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
178	u8 rxbuf[7];
179	int ret;
180
181	ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_SC, rxbuf,
182				sizeof(rxbuf));
183	if (ret)
184		return ret;
185
186	if (rxbuf[0] & OSC_HAS_STOPPED) {
187		dev_info(dev, "clock was stopped. Time is not valid\n");
188		return -EINVAL;
189	}
190
191	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
192	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
193	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
194	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
195	tm->tm_wday = rxbuf[4] & 0x07;
196	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
197	tm->tm_year = bcd2bin(rxbuf[6]) + 100;
 
 
 
 
 
 
 
 
198
199	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
200
201	return 0;
202}
203
204static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
205{
206	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
207	u8 txbuf[7];
208	int ret;
209
210	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
 
 
 
 
211
212	/* Stop the counter first */
213	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
214	if (ret)
215		return ret;
216
217	/* Set the new time */
218	txbuf[0] = bin2bcd(tm->tm_sec & 0x7F);
219	txbuf[1] = bin2bcd(tm->tm_min & 0x7F);
220	txbuf[2] = bin2bcd(tm->tm_hour & 0x3F);
221	txbuf[3] = bin2bcd(tm->tm_mday & 0x3F);
222	txbuf[4] = tm->tm_wday & 0x07;
223	txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
224	txbuf[6] = bin2bcd(tm->tm_year - 100);
 
225
226	ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_SC, txbuf,
227				sizeof(txbuf));
228	if (ret)
229		return ret;
230
231	/* Start the counter */
232	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
233	if (ret)
234		return ret;
235
236	return 0;
237}
238
239static int pcf2123_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
240{
241	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
242
243	return regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE,
244				  en ? CTRL2_AIE : 0);
245}
246
247static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
248{
249	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
250	u8 rxbuf[4];
251	int ret;
252	unsigned int val = 0;
253
254	ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_ALRM_MN, rxbuf,
255				sizeof(rxbuf));
256	if (ret)
257		return ret;
258
259	alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F);
260	alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F);
261	alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F);
262	alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07);
263
264	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
265
266	ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
267	if (ret)
268		return ret;
269
270	alm->enabled = !!(val & CTRL2_AIE);
271
272	return 0;
273}
274
275static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
276{
277	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
278	u8 txbuf[4];
279	int ret;
280
281	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
282
283	/* Disable alarm interrupt */
284	ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0);
285	if (ret)
286		return ret;
287
288	/* Ensure alarm flag is clear */
289	ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
290	if (ret)
291		return ret;
292
293	/* Set new alarm */
294	txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F);
295	txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F);
296	txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F);
297	txbuf[3] = ALRM_DISABLE;
298
299	ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_ALRM_MN, txbuf,
300				sizeof(txbuf));
301	if (ret)
302		return ret;
303
304	return pcf2123_rtc_alarm_irq_enable(dev, alm->enabled);
305}
306
307static irqreturn_t pcf2123_rtc_irq(int irq, void *dev)
308{
309	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
310	unsigned int val = 0;
311	int ret = IRQ_NONE;
312
313	rtc_lock(pcf2123->rtc);
314	regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
315
316	/* Alarm? */
317	if (val & CTRL2_AF) {
318		ret = IRQ_HANDLED;
319
320		/* Clear alarm flag */
321		regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
322
323		rtc_update_irq(pcf2123->rtc, 1, RTC_IRQF | RTC_AF);
324	}
325
326	rtc_unlock(pcf2123->rtc);
327
328	return ret;
329}
330
331static int pcf2123_reset(struct device *dev)
332{
333	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
334	int ret;
335	unsigned int val = 0;
336
337	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
338	if (ret)
339		return ret;
340
341	/* Stop the counter */
342	dev_dbg(dev, "stopping RTC\n");
343	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
344	if (ret)
345		return ret;
346
347	/* See if the counter was actually stopped */
348	dev_dbg(dev, "checking for presence of RTC\n");
349	ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL1, &val);
350	if (ret)
351		return ret;
352
353	dev_dbg(dev, "received data from RTC (0x%08X)\n", val);
354	if (!(val & CTRL1_STOP))
 
355		return -ENODEV;
356
357	/* Start the counter */
358	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
359	if (ret)
360		return ret;
361
362	return 0;
363}
364
365static const struct rtc_class_ops pcf2123_rtc_ops = {
366	.read_time	= pcf2123_rtc_read_time,
367	.set_time	= pcf2123_rtc_set_time,
368	.read_offset	= pcf2123_read_offset,
369	.set_offset	= pcf2123_set_offset,
370	.read_alarm	= pcf2123_rtc_read_alarm,
371	.set_alarm	= pcf2123_rtc_set_alarm,
372	.alarm_irq_enable = pcf2123_rtc_alarm_irq_enable,
373};
374
375static int pcf2123_probe(struct spi_device *spi)
376{
377	struct rtc_device *rtc;
378	struct rtc_time tm;
379	struct pcf2123_data *pcf2123;
380	int ret = 0;
381
382	pcf2123 = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_data),
383				GFP_KERNEL);
384	if (!pcf2123)
385		return -ENOMEM;
386
387	dev_set_drvdata(&spi->dev, pcf2123);
388
389	pcf2123->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config);
390	if (IS_ERR(pcf2123->map)) {
391		dev_err(&spi->dev, "regmap init failed.\n");
392		return PTR_ERR(pcf2123->map);
393	}
394
395	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
396	if (ret < 0) {
397		ret = pcf2123_reset(&spi->dev);
398		if (ret < 0) {
399			dev_err(&spi->dev, "chip not found\n");
400			return ret;
401		}
402	}
403
404	dev_info(&spi->dev, "spiclk %u KHz.\n",
405			(spi->max_speed_hz + 500) / 1000);
406
407	/* Finalize the initialization */
408	rtc = devm_rtc_allocate_device(&spi->dev);
409	if (IS_ERR(rtc))
410		return PTR_ERR(rtc);
411
412	pcf2123->rtc = rtc;
413
414	/* Register alarm irq */
415	if (spi->irq > 0) {
416		unsigned long irqflags = IRQF_TRIGGER_LOW;
417
418		if (dev_fwnode(&spi->dev))
419			irqflags = 0;
420
421		ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
422				pcf2123_rtc_irq,
423				irqflags | IRQF_ONESHOT,
424				pcf2123_driver.driver.name, &spi->dev);
425		if (!ret)
426			device_init_wakeup(&spi->dev, true);
427		else
428			dev_err(&spi->dev, "could not request irq.\n");
429	}
430
431	/* The PCF2123's alarm only has minute accuracy. Must add timer
432	 * support to this driver to generate interrupts more than once
433	 * per minute.
434	 */
435	set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features);
436	clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
437	rtc->ops = &pcf2123_rtc_ops;
438	rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
439	rtc->range_max = RTC_TIMESTAMP_END_2099;
440	rtc->set_start_time = true;
441
442	ret = devm_rtc_register_device(rtc);
443	if (ret)
444		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
445
446	return 0;
447}
448
449#ifdef CONFIG_OF
450static const struct of_device_id pcf2123_dt_ids[] = {
451	{ .compatible = "nxp,pcf2123", },
452	{ .compatible = "microcrystal,rv2123", },
453	/* Deprecated, do not use */
454	{ .compatible = "nxp,rtc-pcf2123", },
455	{ /* sentinel */ }
456};
457MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
458#endif
459
460static const struct spi_device_id pcf2123_spi_ids[] = {
461	{ .name = "pcf2123", },
462	{ .name = "rv2123", },
463	{ .name = "rtc-pcf2123", },
464	{ /* sentinel */ }
465};
466MODULE_DEVICE_TABLE(spi, pcf2123_spi_ids);
467
468static struct spi_driver pcf2123_driver = {
469	.driver	= {
470			.name	= "rtc-pcf2123",
471			.of_match_table = of_match_ptr(pcf2123_dt_ids),
472	},
473	.probe	= pcf2123_probe,
474	.id_table = pcf2123_spi_ids,
475};
476
477module_spi_driver(pcf2123_driver);
478
479MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
480MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
481MODULE_LICENSE("GPL");
v4.10.11
 
  1/*
  2 * An SPI driver for the Philips PCF2123 RTC
  3 * Copyright 2009 Cyber Switching, Inc.
  4 *
  5 * Author: Chris Verges <chrisv@cyberswitching.com>
  6 * Maintainers: http://www.cyberswitching.com
  7 *
  8 * based on the RS5C348 driver in this same directory.
  9 *
 10 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 11 * the sysfs contributions to this driver.
 12 *
 13 * This program is free software; you can redistribute it and/or modify
 14 * it under the terms of the GNU General Public License version 2 as
 15 * published by the Free Software Foundation.
 16 *
 17 * Please note that the CS is active high, so platform data
 18 * should look something like:
 19 *
 20 * static struct spi_board_info ek_spi_devices[] = {
 21 *	...
 22 *	{
 23 *		.modalias		= "rtc-pcf2123",
 24 *		.chip_select		= 1,
 25 *		.controller_data	= (void *)AT91_PIN_PA10,
 26 *		.max_speed_hz		= 1000 * 1000,
 27 *		.mode			= SPI_CS_HIGH,
 28 *		.bus_num		= 0,
 29 *	},
 30 *	...
 31 *};
 32 *
 33 */
 34
 35#include <linux/bcd.h>
 36#include <linux/delay.h>
 37#include <linux/device.h>
 38#include <linux/errno.h>
 39#include <linux/init.h>
 40#include <linux/kernel.h>
 41#include <linux/of.h>
 42#include <linux/string.h>
 43#include <linux/slab.h>
 44#include <linux/rtc.h>
 45#include <linux/spi/spi.h>
 46#include <linux/module.h>
 47#include <linux/sysfs.h>
 48
 49/* REGISTERS */
 50#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 51#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 52#define PCF2123_REG_SC		(0x02)	/* datetime */
 53#define PCF2123_REG_MN		(0x03)
 54#define PCF2123_REG_HR		(0x04)
 55#define PCF2123_REG_DM		(0x05)
 56#define PCF2123_REG_DW		(0x06)
 57#define PCF2123_REG_MO		(0x07)
 58#define PCF2123_REG_YR		(0x08)
 59#define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
 60#define PCF2123_REG_ALRM_HR	(0x0a)
 61#define PCF2123_REG_ALRM_DM	(0x0b)
 62#define PCF2123_REG_ALRM_DW	(0x0c)
 63#define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
 64#define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
 65#define PCF2123_REG_CTDWN_TMR	(0x0f)
 66
 67/* PCF2123_REG_CTRL1 BITS */
 68#define CTRL1_CLEAR		(0)	/* Clear */
 69#define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
 70#define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
 71#define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
 72#define CTRL1_STOP		BIT(5)	/* Stop the clock */
 73#define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
 74
 75/* PCF2123_REG_CTRL2 BITS */
 76#define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
 77#define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
 78#define CTRL2_TF		BIT(2)	/* Countdown timer flag */
 79#define CTRL2_AF		BIT(3)	/* Alarm flag */
 80#define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
 81#define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
 82#define CTRL2_SI		BIT(6)	/* Second irq enable */
 83#define CTRL2_MI		BIT(7)	/* Minute irq enable */
 84
 85/* PCF2123_REG_SC BITS */
 86#define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
 87
 88/* PCF2123_REG_ALRM_XX BITS */
 89#define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
 90
 91/* PCF2123_REG_TMR_CLKOUT BITS */
 92#define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
 93#define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
 94#define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
 95#define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
 96#define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
 97
 98/* PCF2123_REG_OFFSET BITS */
 99#define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
100#define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
101#define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
 
102
103/* READ/WRITE ADDRESS BITS */
104#define PCF2123_WRITE		BIT(4)
105#define PCF2123_READ		(BIT(4) | BIT(7))
106
107
108static struct spi_driver pcf2123_driver;
109
110struct pcf2123_sysfs_reg {
111	struct device_attribute attr;
112	char name[2];
113};
114
115struct pcf2123_plat_data {
116	struct rtc_device *rtc;
117	struct pcf2123_sysfs_reg regs[16];
 
 
 
118};
119
120/*
121 * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
122 * is released properly after an SPI write.  This function should be
123 * called after EVERY read/write call over SPI.
124 */
125static inline void pcf2123_delay_trec(void)
126{
127	ndelay(30);
128}
129
130static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
131{
132	struct spi_device *spi = to_spi_device(dev);
133	int ret;
134
135	reg |= PCF2123_READ;
136	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
137	pcf2123_delay_trec();
138
139	return ret;
140}
141
142static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
143{
144	struct spi_device *spi = to_spi_device(dev);
145	int ret;
146
147	txbuf[0] |= PCF2123_WRITE;
148	ret = spi_write(spi, txbuf, size);
149	pcf2123_delay_trec();
150
151	return ret;
152}
153
154static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
155{
156	u8 txbuf[2];
157
158	txbuf[0] = reg;
159	txbuf[1] = val;
160	return pcf2123_write(dev, txbuf, sizeof(txbuf));
161}
162
163static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
164			    char *buffer)
165{
166	struct pcf2123_sysfs_reg *r;
167	u8 rxbuf[1];
168	unsigned long reg;
169	int ret;
170
171	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
172
173	ret = kstrtoul(r->name, 16, &reg);
174	if (ret)
175		return ret;
176
177	ret = pcf2123_read(dev, reg, rxbuf, 1);
178	if (ret < 0)
179		return -EIO;
180
181	return sprintf(buffer, "0x%x\n", rxbuf[0]);
182}
183
184static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
185			     const char *buffer, size_t count)
186{
187	struct pcf2123_sysfs_reg *r;
188	unsigned long reg;
189	unsigned long val;
190
191	int ret;
192
193	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
194
195	ret = kstrtoul(r->name, 16, &reg);
196	if (ret)
197		return ret;
198
199	ret = kstrtoul(buffer, 10, &val);
200	if (ret)
201		return ret;
202
203	ret = pcf2123_write_reg(dev, reg, val);
204	if (ret < 0)
205		return -EIO;
206	return count;
207}
208
209static int pcf2123_read_offset(struct device *dev, long *offset)
210{
211	int ret;
212	s8 reg;
213
214	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
215	if (ret < 0)
216		return ret;
217
218	if (reg & OFFSET_COARSE)
219		reg <<= 1; /* multiply by 2 and sign extend */
220	else
221		reg = sign_extend32(reg, OFFSET_SIGN_BIT);
222
223	*offset = ((long)reg) * OFFSET_STEP;
224
225	return 0;
226}
227
228/*
229 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
230 * The main difference between the two is normal offset adjusts the first
231 * second of n minutes every other hour, with 61, 62 and 63 being shoved
232 * into the 60th minute.
233 * The coarse adjustment does the same, but every hour.
234 * the two overlap, with every even normal offset value corresponding
235 * to a coarse offset. Based on this algorithm, it seems that despite the
236 * name, coarse offset is a better fit for overlapping values.
237 */
238static int pcf2123_set_offset(struct device *dev, long offset)
239{
 
240	s8 reg;
241
242	if (offset > OFFSET_STEP * 127)
243		reg = 127;
244	else if (offset < OFFSET_STEP * -128)
245		reg = -128;
246	else
247		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
248
249	/* choose fine offset only for odd values in the normal range */
250	if (reg & 1 && reg <= 63 && reg >= -64) {
251		/* Normal offset. Clear the coarse bit */
252		reg &= ~OFFSET_COARSE;
253	} else {
254		/* Coarse offset. Divide by 2 and set the coarse bit */
255		reg >>= 1;
256		reg |= OFFSET_COARSE;
257	}
258
259	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
260}
261
262static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
263{
 
264	u8 rxbuf[7];
265	int ret;
266
267	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
268	if (ret < 0)
 
269		return ret;
270
271	if (rxbuf[0] & OSC_HAS_STOPPED) {
272		dev_info(dev, "clock was stopped. Time is not valid\n");
273		return -EINVAL;
274	}
275
276	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
277	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
278	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
279	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
280	tm->tm_wday = rxbuf[4] & 0x07;
281	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
282	tm->tm_year = bcd2bin(rxbuf[6]);
283	if (tm->tm_year < 70)
284		tm->tm_year += 100;	/* assume we are in 1970...2069 */
285
286	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
287			"mday=%d, mon=%d, year=%d, wday=%d\n",
288			__func__,
289			tm->tm_sec, tm->tm_min, tm->tm_hour,
290			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
291
292	return rtc_valid_tm(tm);
 
 
293}
294
295static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
296{
297	u8 txbuf[8];
 
298	int ret;
299
300	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
301			"mday=%d, mon=%d, year=%d, wday=%d\n",
302			__func__,
303			tm->tm_sec, tm->tm_min, tm->tm_hour,
304			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
305
306	/* Stop the counter first */
307	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
308	if (ret < 0)
309		return ret;
310
311	/* Set the new time */
312	txbuf[0] = PCF2123_REG_SC;
313	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
314	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
315	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
316	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
317	txbuf[5] = tm->tm_wday & 0x07;
318	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
319	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
320
321	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
322	if (ret < 0)
 
323		return ret;
324
325	/* Start the counter */
326	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
327	if (ret < 0)
328		return ret;
329
330	return 0;
331}
332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333static int pcf2123_reset(struct device *dev)
334{
 
335	int ret;
336	u8  rxbuf[2];
337
338	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
339	if (ret < 0)
340		return ret;
341
342	/* Stop the counter */
343	dev_dbg(dev, "stopping RTC\n");
344	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
345	if (ret < 0)
346		return ret;
347
348	/* See if the counter was actually stopped */
349	dev_dbg(dev, "checking for presence of RTC\n");
350	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
351	if (ret < 0)
352		return ret;
353
354	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
355		rxbuf[0], rxbuf[1]);
356	if (!(rxbuf[0] & CTRL1_STOP))
357		return -ENODEV;
358
359	/* Start the counter */
360	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
361	if (ret < 0)
362		return ret;
363
364	return 0;
365}
366
367static const struct rtc_class_ops pcf2123_rtc_ops = {
368	.read_time	= pcf2123_rtc_read_time,
369	.set_time	= pcf2123_rtc_set_time,
370	.read_offset	= pcf2123_read_offset,
371	.set_offset	= pcf2123_set_offset,
372
 
 
373};
374
375static int pcf2123_probe(struct spi_device *spi)
376{
377	struct rtc_device *rtc;
378	struct rtc_time tm;
379	struct pcf2123_plat_data *pdata;
380	int ret, i;
381
382	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
383				GFP_KERNEL);
384	if (!pdata)
385		return -ENOMEM;
386	spi->dev.platform_data = pdata;
 
 
 
 
 
 
 
387
388	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
389	if (ret < 0) {
390		ret = pcf2123_reset(&spi->dev);
391		if (ret < 0) {
392			dev_err(&spi->dev, "chip not found\n");
393			goto kfree_exit;
394		}
395	}
396
397	dev_info(&spi->dev, "spiclk %u KHz.\n",
398			(spi->max_speed_hz + 500) / 1000);
399
400	/* Finalize the initialization */
401	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
402			&pcf2123_rtc_ops, THIS_MODULE);
403
404	if (IS_ERR(rtc)) {
405		dev_err(&spi->dev, "failed to register.\n");
406		ret = PTR_ERR(rtc);
407		goto kfree_exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408	}
409
410	pdata->rtc = rtc;
 
 
 
 
 
 
 
 
 
411
412	for (i = 0; i < 16; i++) {
413		sysfs_attr_init(&pdata->regs[i].attr.attr);
414		sprintf(pdata->regs[i].name, "%1x", i);
415		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
416		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
417		pdata->regs[i].attr.show = pcf2123_show;
418		pdata->regs[i].attr.store = pcf2123_store;
419		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
420		if (ret) {
421			dev_err(&spi->dev, "Unable to create sysfs %s\n",
422				pdata->regs[i].name);
423			goto sysfs_exit;
424		}
425	}
426
427	return 0;
428
429sysfs_exit:
430	for (i--; i >= 0; i--)
431		device_remove_file(&spi->dev, &pdata->regs[i].attr);
432
433kfree_exit:
434	spi->dev.platform_data = NULL;
435	return ret;
436}
437
438static int pcf2123_remove(struct spi_device *spi)
439{
440	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
441	int i;
442
443	if (pdata) {
444		for (i = 0; i < 16; i++)
445			if (pdata->regs[i].name[0])
446				device_remove_file(&spi->dev,
447						   &pdata->regs[i].attr);
448	}
449
450	return 0;
451}
452
453#ifdef CONFIG_OF
454static const struct of_device_id pcf2123_dt_ids[] = {
 
 
 
455	{ .compatible = "nxp,rtc-pcf2123", },
456	{ /* sentinel */ }
457};
458MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
459#endif
460
 
 
 
 
 
 
 
 
461static struct spi_driver pcf2123_driver = {
462	.driver	= {
463			.name	= "rtc-pcf2123",
464			.of_match_table = of_match_ptr(pcf2123_dt_ids),
465	},
466	.probe	= pcf2123_probe,
467	.remove	= pcf2123_remove,
468};
469
470module_spi_driver(pcf2123_driver);
471
472MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
473MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
474MODULE_LICENSE("GPL");