Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   4	<http://rt2x00.serialmonkey.com>
   5
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8/*
   9	Module: rt2500usb
  10	Abstract: rt2500usb device specific routines.
  11	Supported chipsets: RT2570.
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/etherdevice.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/usb.h>
  20
  21#include "rt2x00.h"
  22#include "rt2x00usb.h"
  23#include "rt2500usb.h"
  24
  25/*
  26 * Allow hardware encryption to be disabled.
  27 */
  28static bool modparam_nohwcrypt;
  29module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
  30MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  31
  32/*
  33 * Register access.
  34 * All access to the CSR registers will go through the methods
  35 * rt2500usb_register_read and rt2500usb_register_write.
  36 * BBP and RF register require indirect register access,
  37 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38 * These indirect registers work with busy bits,
  39 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
  40 * the register while taking a REGISTER_BUSY_DELAY us delay
  41 * between each attampt. When the busy bit is still set at that time,
  42 * the access attempt is considered to have failed,
  43 * and we will print an error.
  44 * If the csr_mutex is already held then the _lock variants must
  45 * be used instead.
  46 */
  47static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  48				   const unsigned int offset)
 
  49{
  50	__le16 reg;
  51	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  52				      USB_VENDOR_REQUEST_IN, offset,
  53				      &reg, sizeof(reg));
  54	return le16_to_cpu(reg);
  55}
  56
  57static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  58					const unsigned int offset)
 
  59{
  60	__le16 reg;
  61	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  62				       USB_VENDOR_REQUEST_IN, offset,
  63				       &reg, sizeof(reg), REGISTER_TIMEOUT);
  64	return le16_to_cpu(reg);
 
 
 
 
 
 
 
 
 
  65}
  66
  67static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  68					    const unsigned int offset,
  69					    u16 value)
  70{
  71	__le16 reg = cpu_to_le16(value);
  72	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  73				      USB_VENDOR_REQUEST_OUT, offset,
  74				      &reg, sizeof(reg));
  75}
  76
  77static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  78						 const unsigned int offset,
  79						 u16 value)
  80{
  81	__le16 reg = cpu_to_le16(value);
  82	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  83				       USB_VENDOR_REQUEST_OUT, offset,
  84				       &reg, sizeof(reg), REGISTER_TIMEOUT);
  85}
  86
  87static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  88						 const unsigned int offset,
  89						 void *value, const u16 length)
  90{
  91	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  92				      USB_VENDOR_REQUEST_OUT, offset,
  93				      value, length);
  94}
  95
  96static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  97				  const unsigned int offset,
  98				  struct rt2x00_field16 field,
  99				  u16 *reg)
 100{
 101	unsigned int i;
 102
 103	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 104		*reg = rt2500usb_register_read_lock(rt2x00dev, offset);
 105		if (!rt2x00_get_field16(*reg, field))
 106			return 1;
 107		udelay(REGISTER_BUSY_DELAY);
 108	}
 109
 110	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 111		   offset, *reg);
 112	*reg = ~0;
 113
 114	return 0;
 115}
 116
 117#define WAIT_FOR_BBP(__dev, __reg) \
 118	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 119#define WAIT_FOR_RF(__dev, __reg) \
 120	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 121
 122static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 123				const unsigned int word, const u8 value)
 124{
 125	u16 reg;
 126
 127	mutex_lock(&rt2x00dev->csr_mutex);
 128
 129	/*
 130	 * Wait until the BBP becomes available, afterwards we
 131	 * can safely write the new data into the register.
 132	 */
 133	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 134		reg = 0;
 135		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
 136		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 137		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
 138
 139		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 140	}
 141
 142	mutex_unlock(&rt2x00dev->csr_mutex);
 143}
 144
 145static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 146			     const unsigned int word)
 147{
 148	u16 reg;
 149	u8 value;
 150
 151	mutex_lock(&rt2x00dev->csr_mutex);
 152
 153	/*
 154	 * Wait until the BBP becomes available, afterwards we
 155	 * can safely write the read request into the register.
 156	 * After the data has been written, we wait until hardware
 157	 * returns the correct value, if at any time the register
 158	 * doesn't become available in time, reg will be 0xffffffff
 159	 * which means we return 0xff to the caller.
 160	 */
 161	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 162		reg = 0;
 163		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 164		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
 165
 166		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 167
 168		if (WAIT_FOR_BBP(rt2x00dev, &reg))
 169			reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
 170	}
 171
 172	value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 173
 174	mutex_unlock(&rt2x00dev->csr_mutex);
 175
 176	return value;
 177}
 178
 179static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 180			       const unsigned int word, const u32 value)
 181{
 182	u16 reg;
 183
 184	mutex_lock(&rt2x00dev->csr_mutex);
 185
 186	/*
 187	 * Wait until the RF becomes available, afterwards we
 188	 * can safely write the new data into the register.
 189	 */
 190	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 191		reg = 0;
 192		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
 193		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 194
 195		reg = 0;
 196		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
 197		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 198		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
 199		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
 200
 201		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 202		rt2x00_rf_write(rt2x00dev, word, value);
 203	}
 204
 205	mutex_unlock(&rt2x00dev->csr_mutex);
 206}
 207
 208#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 209static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 210				     const unsigned int offset)
 
 211{
 212	return rt2500usb_register_read(rt2x00dev, offset);
 
 
 
 213}
 214
 215static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 216				      const unsigned int offset,
 217				      u32 value)
 218{
 219	rt2500usb_register_write(rt2x00dev, offset, value);
 220}
 221
 222static const struct rt2x00debug rt2500usb_rt2x00debug = {
 223	.owner	= THIS_MODULE,
 224	.csr	= {
 225		.read		= _rt2500usb_register_read,
 226		.write		= _rt2500usb_register_write,
 227		.flags		= RT2X00DEBUGFS_OFFSET,
 228		.word_base	= CSR_REG_BASE,
 229		.word_size	= sizeof(u16),
 230		.word_count	= CSR_REG_SIZE / sizeof(u16),
 231	},
 232	.eeprom	= {
 233		.read		= rt2x00_eeprom_read,
 234		.write		= rt2x00_eeprom_write,
 235		.word_base	= EEPROM_BASE,
 236		.word_size	= sizeof(u16),
 237		.word_count	= EEPROM_SIZE / sizeof(u16),
 238	},
 239	.bbp	= {
 240		.read		= rt2500usb_bbp_read,
 241		.write		= rt2500usb_bbp_write,
 242		.word_base	= BBP_BASE,
 243		.word_size	= sizeof(u8),
 244		.word_count	= BBP_SIZE / sizeof(u8),
 245	},
 246	.rf	= {
 247		.read		= rt2x00_rf_read,
 248		.write		= rt2500usb_rf_write,
 249		.word_base	= RF_BASE,
 250		.word_size	= sizeof(u32),
 251		.word_count	= RF_SIZE / sizeof(u32),
 252	},
 253};
 254#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 255
 256static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 257{
 258	u16 reg;
 259
 260	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
 261	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 262}
 263
 264#ifdef CONFIG_RT2X00_LIB_LEDS
 265static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 266				     enum led_brightness brightness)
 267{
 268	struct rt2x00_led *led =
 269	    container_of(led_cdev, struct rt2x00_led, led_dev);
 270	unsigned int enabled = brightness != LED_OFF;
 271	u16 reg;
 272
 273	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
 274
 275	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 276		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
 277	else if (led->type == LED_TYPE_ACTIVITY)
 278		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
 279
 280	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 281}
 282
 283static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 284			       unsigned long *delay_on,
 285			       unsigned long *delay_off)
 286{
 287	struct rt2x00_led *led =
 288	    container_of(led_cdev, struct rt2x00_led, led_dev);
 289	u16 reg;
 290
 291	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
 292	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
 293	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
 294	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 295
 296	return 0;
 297}
 298
 299static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 300			       struct rt2x00_led *led,
 301			       enum led_type type)
 302{
 303	led->rt2x00dev = rt2x00dev;
 304	led->type = type;
 305	led->led_dev.brightness_set = rt2500usb_brightness_set;
 306	led->led_dev.blink_set = rt2500usb_blink_set;
 307	led->flags = LED_INITIALIZED;
 308}
 309#endif /* CONFIG_RT2X00_LIB_LEDS */
 310
 311/*
 312 * Configuration handlers.
 313 */
 314
 315/*
 316 * rt2500usb does not differentiate between shared and pairwise
 317 * keys, so we should use the same function for both key types.
 318 */
 319static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 320				struct rt2x00lib_crypto *crypto,
 321				struct ieee80211_key_conf *key)
 322{
 323	u32 mask;
 324	u16 reg;
 325	enum cipher curr_cipher;
 326
 327	if (crypto->cmd == SET_KEY) {
 328		/*
 329		 * Disallow to set WEP key other than with index 0,
 330		 * it is known that not work at least on some hardware.
 331		 * SW crypto will be used in that case.
 332		 */
 333		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 334		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 335		    key->keyidx != 0)
 336			return -EOPNOTSUPP;
 337
 338		/*
 339		 * Pairwise key will always be entry 0, but this
 340		 * could collide with a shared key on the same
 341		 * position...
 342		 */
 343		mask = TXRX_CSR0_KEY_ID.bit_mask;
 344
 345		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 346		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 347		reg &= mask;
 348
 349		if (reg && reg == mask)
 350			return -ENOSPC;
 351
 352		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 353
 354		key->hw_key_idx += reg ? ffz(reg) : 0;
 355		/*
 356		 * Hardware requires that all keys use the same cipher
 357		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 358		 * If this is not the first key, compare the cipher with the
 359		 * first one and fall back to SW crypto if not the same.
 360		 */
 361		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 362			return -EOPNOTSUPP;
 363
 364		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 365					      crypto->key, sizeof(crypto->key));
 366
 367		/*
 368		 * The driver does not support the IV/EIV generation
 369		 * in hardware. However it demands the data to be provided
 370		 * both separately as well as inside the frame.
 371		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 372		 * to ensure rt2x00lib will not strip the data from the
 373		 * frame after the copy, now we must tell mac80211
 374		 * to generate the IV/EIV data.
 375		 */
 376		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 377		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 378	}
 379
 380	/*
 381	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 382	 * a particular key is valid.
 383	 */
 384	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 385	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
 386	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 387
 388	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 389	if (crypto->cmd == SET_KEY)
 390		mask |= 1 << key->hw_key_idx;
 391	else if (crypto->cmd == DISABLE_KEY)
 392		mask &= ~(1 << key->hw_key_idx);
 393	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
 394	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 395
 396	return 0;
 397}
 398
 399static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 400				    const unsigned int filter_flags)
 401{
 402	u16 reg;
 403
 404	/*
 405	 * Start configuration steps.
 406	 * Note that the version error will always be dropped
 407	 * and broadcast frames will always be accepted since
 408	 * there is no filter for it at this time.
 409	 */
 410	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 411	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
 412			   !(filter_flags & FIF_FCSFAIL));
 413	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
 414			   !(filter_flags & FIF_PLCPFAIL));
 415	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
 416			   !(filter_flags & FIF_CONTROL));
 417	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
 418			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 419	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
 420			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 421			   !rt2x00dev->intf_ap_count);
 422	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 423	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
 424			   !(filter_flags & FIF_ALLMULTI));
 425	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
 426	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 427}
 428
 429static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 430				  struct rt2x00_intf *intf,
 431				  struct rt2x00intf_conf *conf,
 432				  const unsigned int flags)
 433{
 434	unsigned int bcn_preload;
 435	u16 reg;
 436
 437	if (flags & CONFIG_UPDATE_TYPE) {
 438		/*
 439		 * Enable beacon config
 440		 */
 441		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 442		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
 443		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 444		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
 445				   2 * (conf->type != NL80211_IFTYPE_STATION));
 446		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 447
 448		/*
 449		 * Enable synchronisation.
 450		 */
 451		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 452		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
 453		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 454
 455		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 456		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
 457		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 458	}
 459
 460	if (flags & CONFIG_UPDATE_MAC)
 461		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 462					      (3 * sizeof(__le16)));
 463
 464	if (flags & CONFIG_UPDATE_BSSID)
 465		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 466					      (3 * sizeof(__le16)));
 467}
 468
 469static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 470				 struct rt2x00lib_erp *erp,
 471				 u32 changed)
 472{
 473	u16 reg;
 474
 475	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 476		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
 477		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 478				   !!erp->short_preamble);
 479		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 480	}
 481
 482	if (changed & BSS_CHANGED_BASIC_RATES)
 483		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 484					 erp->basic_rates);
 485
 486	if (changed & BSS_CHANGED_BEACON_INT) {
 487		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 488		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
 489				   erp->beacon_int * 4);
 490		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 491	}
 492
 493	if (changed & BSS_CHANGED_ERP_SLOT) {
 494		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 495		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 496		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 497	}
 498}
 499
 500static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 501				 struct antenna_setup *ant)
 502{
 503	u8 r2;
 504	u8 r14;
 505	u16 csr5;
 506	u16 csr6;
 507
 508	/*
 509	 * We should never come here because rt2x00lib is supposed
 510	 * to catch this and send us the correct antenna explicitely.
 511	 */
 512	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 513	       ant->tx == ANTENNA_SW_DIVERSITY);
 514
 515	r2 = rt2500usb_bbp_read(rt2x00dev, 2);
 516	r14 = rt2500usb_bbp_read(rt2x00dev, 14);
 517	csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
 518	csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
 519
 520	/*
 521	 * Configure the TX antenna.
 522	 */
 523	switch (ant->tx) {
 524	case ANTENNA_HW_DIVERSITY:
 525		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 526		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 527		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 528		break;
 529	case ANTENNA_A:
 530		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 531		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 532		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 533		break;
 534	case ANTENNA_B:
 535	default:
 536		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 537		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 538		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 539		break;
 540	}
 541
 542	/*
 543	 * Configure the RX antenna.
 544	 */
 545	switch (ant->rx) {
 546	case ANTENNA_HW_DIVERSITY:
 547		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 548		break;
 549	case ANTENNA_A:
 550		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 551		break;
 552	case ANTENNA_B:
 553	default:
 554		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 555		break;
 556	}
 557
 558	/*
 559	 * RT2525E and RT5222 need to flip TX I/Q
 560	 */
 561	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 562		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 563		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 564		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 565
 566		/*
 567		 * RT2525E does not need RX I/Q Flip.
 568		 */
 569		if (rt2x00_rf(rt2x00dev, RF2525E))
 570			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 571	} else {
 572		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 573		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 574	}
 575
 576	rt2500usb_bbp_write(rt2x00dev, 2, r2);
 577	rt2500usb_bbp_write(rt2x00dev, 14, r14);
 578	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 579	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 580}
 581
 582static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 583				     struct rf_channel *rf, const int txpower)
 584{
 585	/*
 586	 * Set TXpower.
 587	 */
 588	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 589
 590	/*
 591	 * For RT2525E we should first set the channel to half band higher.
 592	 */
 593	if (rt2x00_rf(rt2x00dev, RF2525E)) {
 594		static const u32 vals[] = {
 595			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 596			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 597			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 598			0x00000902, 0x00000906
 599		};
 600
 601		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 602		if (rf->rf4)
 603			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 604	}
 605
 606	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 607	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 608	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 609	if (rf->rf4)
 610		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 611}
 612
 613static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 614				     const int txpower)
 615{
 616	u32 rf3;
 617
 618	rf3 = rt2x00_rf_read(rt2x00dev, 3);
 619	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 620	rt2500usb_rf_write(rt2x00dev, 3, rf3);
 621}
 622
 623static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 624				struct rt2x00lib_conf *libconf)
 625{
 626	enum dev_state state =
 627	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 628		STATE_SLEEP : STATE_AWAKE;
 629	u16 reg;
 630
 631	if (state == STATE_SLEEP) {
 632		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 633		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
 634				   rt2x00dev->beacon_int - 20);
 635		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 636				   libconf->conf->listen_interval - 1);
 637
 638		/* We must first disable autowake before it can be enabled */
 639		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 640		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 641
 642		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
 643		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 644	} else {
 645		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 646		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 647		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 648	}
 649
 650	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 651}
 652
 653static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 654			     struct rt2x00lib_conf *libconf,
 655			     const unsigned int flags)
 656{
 657	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 658		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 659					 libconf->conf->power_level);
 660	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 661	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 662		rt2500usb_config_txpower(rt2x00dev,
 663					 libconf->conf->power_level);
 664	if (flags & IEEE80211_CONF_CHANGE_PS)
 665		rt2500usb_config_ps(rt2x00dev, libconf);
 666}
 667
 668/*
 669 * Link tuning
 670 */
 671static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 672				 struct link_qual *qual)
 673{
 674	u16 reg;
 675
 676	/*
 677	 * Update FCS error count from register.
 678	 */
 679	reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
 680	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 681
 682	/*
 683	 * Update False CCA count from register.
 684	 */
 685	reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
 686	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 687}
 688
 689static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 690				  struct link_qual *qual)
 691{
 692	u16 eeprom;
 693	u16 value;
 694
 695	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
 696	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 697	rt2500usb_bbp_write(rt2x00dev, 24, value);
 698
 699	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
 700	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 701	rt2500usb_bbp_write(rt2x00dev, 25, value);
 702
 703	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
 704	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 705	rt2500usb_bbp_write(rt2x00dev, 61, value);
 706
 707	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
 708	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 709	rt2500usb_bbp_write(rt2x00dev, 17, value);
 710
 711	qual->vgc_level = value;
 712}
 713
 714/*
 715 * Queue handlers.
 716 */
 717static void rt2500usb_start_queue(struct data_queue *queue)
 718{
 719	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 720	u16 reg;
 721
 722	switch (queue->qid) {
 723	case QID_RX:
 724		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 725		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
 726		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 727		break;
 728	case QID_BEACON:
 729		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 730		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
 731		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
 732		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
 733		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 734		break;
 735	default:
 736		break;
 737	}
 738}
 739
 740static void rt2500usb_stop_queue(struct data_queue *queue)
 741{
 742	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 743	u16 reg;
 744
 745	switch (queue->qid) {
 746	case QID_RX:
 747		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 748		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 749		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 750		break;
 751	case QID_BEACON:
 752		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 753		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 754		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 755		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 756		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 757		break;
 758	default:
 759		break;
 760	}
 761}
 762
 763/*
 764 * Initialization functions.
 765 */
 766static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 767{
 768	u16 reg;
 769
 770	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 771				    USB_MODE_TEST, REGISTER_TIMEOUT);
 772	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 773				    0x00f0, REGISTER_TIMEOUT);
 774
 775	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 776	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 777	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 778
 779	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 780	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 781
 782	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 783	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
 784	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
 785	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 786	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 787
 788	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 789	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 790	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 791	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 792	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 793
 794	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
 795	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
 796	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
 797	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
 798	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
 799	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 800
 801	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
 802	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
 803	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
 804	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
 805	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
 806	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 807
 808	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
 809	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
 810	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
 811	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
 812	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
 813	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 814
 815	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
 816	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
 817	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
 818	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
 819	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
 820	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 821
 822	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 823	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 824	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
 825	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 826	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 827	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 828
 829	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 830	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 831
 832	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 833		return -EBUSY;
 834
 835	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 836	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 837	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 838	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
 839	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 840
 841	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 842		reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
 843		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
 844	} else {
 845		reg = 0;
 846		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
 847		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
 848	}
 849	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 850
 851	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 852	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 853	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 854	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 855
 856	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
 857	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
 858			   rt2x00dev->rx->data_size);
 859	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 860
 861	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 862	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 863	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 864	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
 865	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 866
 867	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 868	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 869	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 870
 871	reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
 872	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
 873	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 874
 875	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
 876	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
 877	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 878
 879	return 0;
 880}
 881
 882static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 883{
 884	unsigned int i;
 885	u8 value;
 886
 887	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 888		value = rt2500usb_bbp_read(rt2x00dev, 0);
 889		if ((value != 0xff) && (value != 0x00))
 890			return 0;
 891		udelay(REGISTER_BUSY_DELAY);
 892	}
 893
 894	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 895	return -EACCES;
 896}
 897
 898static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 899{
 900	unsigned int i;
 901	u16 eeprom;
 902	u8 value;
 903	u8 reg_id;
 904
 905	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 906		return -EACCES;
 907
 908	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 909	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 910	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 911	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 912	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 913	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 914	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 915	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 916	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 917	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 918	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 919	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 920	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 921	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 922	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 923	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 924	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 925	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 926	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 927	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 928	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 929	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 930	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 931	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 932	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 933	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 934	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 935	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 936	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 937	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 938	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 939
 940	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 941		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
 942
 943		if (eeprom != 0xffff && eeprom != 0x0000) {
 944			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 945			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 946			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 947		}
 948	}
 949
 950	return 0;
 951}
 952
 953/*
 954 * Device state switch handlers.
 955 */
 956static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 957{
 958	/*
 959	 * Initialize all registers.
 960	 */
 961	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 962		     rt2500usb_init_bbp(rt2x00dev)))
 963		return -EIO;
 964
 965	return 0;
 966}
 967
 968static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 969{
 970	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 971	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 972
 973	/*
 974	 * Disable synchronisation.
 975	 */
 976	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
 977
 978	rt2x00usb_disable_radio(rt2x00dev);
 979}
 980
 981static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
 982			       enum dev_state state)
 983{
 984	u16 reg;
 985	u16 reg2;
 986	unsigned int i;
 987	bool put_to_sleep;
 988	u8 bbp_state;
 989	u8 rf_state;
 990
 991	put_to_sleep = (state != STATE_AWAKE);
 992
 993	reg = 0;
 994	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
 995	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
 996	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
 997	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
 998	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
 999	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1000
1001	/*
1002	 * Device is not guaranteed to be in the requested state yet.
1003	 * We must wait until the register indicates that the
1004	 * device has entered the correct state.
1005	 */
1006	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1007		reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1008		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1009		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1010		if (bbp_state == state && rf_state == state)
1011			return 0;
1012		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013		msleep(30);
1014	}
1015
1016	return -EBUSY;
1017}
1018
1019static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1020				      enum dev_state state)
1021{
1022	int retval = 0;
1023
1024	switch (state) {
1025	case STATE_RADIO_ON:
1026		retval = rt2500usb_enable_radio(rt2x00dev);
1027		break;
1028	case STATE_RADIO_OFF:
1029		rt2500usb_disable_radio(rt2x00dev);
1030		break;
1031	case STATE_RADIO_IRQ_ON:
1032	case STATE_RADIO_IRQ_OFF:
1033		/* No support, but no error either */
1034		break;
1035	case STATE_DEEP_SLEEP:
1036	case STATE_SLEEP:
1037	case STATE_STANDBY:
1038	case STATE_AWAKE:
1039		retval = rt2500usb_set_state(rt2x00dev, state);
1040		break;
1041	default:
1042		retval = -ENOTSUPP;
1043		break;
1044	}
1045
1046	if (unlikely(retval))
1047		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1048			   state, retval);
1049
1050	return retval;
1051}
1052
1053/*
1054 * TX descriptor initialization
1055 */
1056static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1057				    struct txentry_desc *txdesc)
1058{
1059	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1060	__le32 *txd = (__le32 *) entry->skb->data;
1061	u32 word;
1062
1063	/*
1064	 * Start writing the descriptor words.
1065	 */
1066	word = rt2x00_desc_read(txd, 0);
1067	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1068	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070	rt2x00_set_field32(&word, TXD_W0_ACK,
1071			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074	rt2x00_set_field32(&word, TXD_W0_OFDM,
1075			   (txdesc->rate_mode == RATE_MODE_OFDM));
1076	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1078	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1079	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1080	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1081	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1082	rt2x00_desc_write(txd, 0, word);
1083
1084	word = rt2x00_desc_read(txd, 1);
1085	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1086	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1087	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1088	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1089	rt2x00_desc_write(txd, 1, word);
1090
1091	word = rt2x00_desc_read(txd, 2);
1092	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1093	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1094	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1095			   txdesc->u.plcp.length_low);
1096	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1097			   txdesc->u.plcp.length_high);
1098	rt2x00_desc_write(txd, 2, word);
1099
1100	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1101		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1102		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1103	}
1104
1105	/*
1106	 * Register descriptor details in skb frame descriptor.
1107	 */
1108	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1109	skbdesc->desc = txd;
1110	skbdesc->desc_len = TXD_DESC_SIZE;
1111}
1112
1113/*
1114 * TX data initialization
1115 */
1116static void rt2500usb_beacondone(struct urb *urb);
1117
1118static void rt2500usb_write_beacon(struct queue_entry *entry,
1119				   struct txentry_desc *txdesc)
1120{
1121	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1122	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1123	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1124	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1125	int length;
1126	u16 reg, reg0;
1127
1128	/*
1129	 * Disable beaconing while we are reloading the beacon data,
1130	 * otherwise we might be sending out invalid data.
1131	 */
1132	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1133	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1134	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1135
1136	/*
1137	 * Add space for the descriptor in front of the skb.
1138	 */
1139	skb_push(entry->skb, TXD_DESC_SIZE);
1140	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1141
1142	/*
1143	 * Write the TX descriptor for the beacon.
1144	 */
1145	rt2500usb_write_tx_desc(entry, txdesc);
1146
1147	/*
1148	 * Dump beacon to userspace through debugfs.
1149	 */
1150	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1151
1152	/*
1153	 * USB devices cannot blindly pass the skb->len as the
1154	 * length of the data to usb_fill_bulk_urb. Pass the skb
1155	 * to the driver to determine what the length should be.
1156	 */
1157	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1158
1159	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1160			  entry->skb->data, length, rt2500usb_beacondone,
1161			  entry);
1162
1163	/*
1164	 * Second we need to create the guardian byte.
1165	 * We only need a single byte, so lets recycle
1166	 * the 'flags' field we are not using for beacons.
1167	 */
1168	bcn_priv->guardian_data = 0;
1169	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1170			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1171			  entry);
1172
1173	/*
1174	 * Send out the guardian byte.
1175	 */
1176	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1177
1178	/*
1179	 * Enable beaconing again.
1180	 */
1181	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1182	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1183	reg0 = reg;
1184	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1185	/*
1186	 * Beacon generation will fail initially.
1187	 * To prevent this we need to change the TXRX_CSR19
1188	 * register several times (reg0 is the same as reg
1189	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1190	 * and 1 in reg).
1191	 */
1192	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1193	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1194	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1195	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1196	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1197}
1198
1199static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1200{
1201	int length;
1202
1203	/*
1204	 * The length _must_ be a multiple of 2,
1205	 * but it must _not_ be a multiple of the USB packet size.
1206	 */
1207	length = roundup(entry->skb->len, 2);
1208	length += (2 * !(length % entry->queue->usb_maxpacket));
1209
1210	return length;
1211}
1212
1213/*
1214 * RX control handlers
1215 */
1216static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1217				  struct rxdone_entry_desc *rxdesc)
1218{
1219	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1220	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1221	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1222	__le32 *rxd =
1223	    (__le32 *)(entry->skb->data +
1224		       (entry_priv->urb->actual_length -
1225			entry->queue->desc_size));
1226	u32 word0;
1227	u32 word1;
1228
1229	/*
1230	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1231	 * frame data in rt2x00usb.
1232	 */
1233	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1234	rxd = (__le32 *)skbdesc->desc;
1235
1236	/*
1237	 * It is now safe to read the descriptor on all architectures.
1238	 */
1239	word0 = rt2x00_desc_read(rxd, 0);
1240	word1 = rt2x00_desc_read(rxd, 1);
1241
1242	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1243		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1244	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1245		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1246
1247	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1248	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1249		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1250
1251	if (rxdesc->cipher != CIPHER_NONE) {
1252		rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1253		rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1254		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1255
1256		/* ICV is located at the end of frame */
1257
1258		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1259		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1260			rxdesc->flags |= RX_FLAG_DECRYPTED;
1261		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1262			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1263	}
1264
1265	/*
1266	 * Obtain the status about this packet.
1267	 * When frame was received with an OFDM bitrate,
1268	 * the signal is the PLCP value. If it was received with
1269	 * a CCK bitrate the signal is the rate in 100kbit/s.
1270	 */
1271	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1272	rxdesc->rssi =
1273	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1274	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1275
1276	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1277		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1278	else
1279		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1280	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1281		rxdesc->dev_flags |= RXDONE_MY_BSS;
1282
1283	/*
1284	 * Adjust the skb memory window to the frame boundaries.
1285	 */
1286	skb_trim(entry->skb, rxdesc->size);
1287}
1288
1289/*
1290 * Interrupt functions.
1291 */
1292static void rt2500usb_beacondone(struct urb *urb)
1293{
1294	struct queue_entry *entry = (struct queue_entry *)urb->context;
1295	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1296
1297	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1298		return;
1299
1300	/*
1301	 * Check if this was the guardian beacon,
1302	 * if that was the case we need to send the real beacon now.
1303	 * Otherwise we should free the sk_buffer, the device
1304	 * should be doing the rest of the work now.
1305	 */
1306	if (bcn_priv->guardian_urb == urb) {
1307		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1308	} else if (bcn_priv->urb == urb) {
1309		dev_kfree_skb(entry->skb);
1310		entry->skb = NULL;
1311	}
1312}
1313
1314/*
1315 * Device probe functions.
1316 */
1317static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1318{
1319	u16 word;
1320	u8 *mac;
1321	u8 bbp;
1322
1323	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1324
1325	/*
1326	 * Start validation of the data that has been read.
1327	 */
1328	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1329	rt2x00lib_set_mac_address(rt2x00dev, mac);
1330
1331	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1332	if (word == 0xffff) {
1333		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1334		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1335				   ANTENNA_SW_DIVERSITY);
1336		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1337				   ANTENNA_SW_DIVERSITY);
1338		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1339				   LED_MODE_DEFAULT);
1340		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1341		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1342		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1343		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1344		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1345	}
1346
1347	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1348	if (word == 0xffff) {
1349		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1350		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1351		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1352		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1353		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1354	}
1355
1356	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1357	if (word == 0xffff) {
1358		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1359				   DEFAULT_RSSI_OFFSET);
1360		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1361		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1362				  word);
1363	}
1364
1365	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1366	if (word == 0xffff) {
1367		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1368		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1369		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1370	}
1371
1372	/*
1373	 * Switch lower vgc bound to current BBP R17 value,
1374	 * lower the value a bit for better quality.
1375	 */
1376	bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1377	bbp -= 6;
1378
1379	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1380	if (word == 0xffff) {
1381		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1382		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1383		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1384		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1385	} else {
1386		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1387		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1388	}
1389
1390	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1391	if (word == 0xffff) {
1392		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1393		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1394		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1395		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1396	}
1397
1398	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1399	if (word == 0xffff) {
1400		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1401		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1402		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1403		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1404	}
1405
1406	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1407	if (word == 0xffff) {
1408		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1409		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1410		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1411		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1412	}
1413
1414	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1415	if (word == 0xffff) {
1416		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1417		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1418		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1419		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1420	}
1421
1422	return 0;
1423}
1424
1425static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1426{
1427	u16 reg;
1428	u16 value;
1429	u16 eeprom;
1430
1431	/*
1432	 * Read EEPROM word for configuration.
1433	 */
1434	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1435
1436	/*
1437	 * Identify RF chipset.
1438	 */
1439	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1440	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1441	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1442
1443	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1444		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1445		return -ENODEV;
1446	}
1447
1448	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1449	    !rt2x00_rf(rt2x00dev, RF2523) &&
1450	    !rt2x00_rf(rt2x00dev, RF2524) &&
1451	    !rt2x00_rf(rt2x00dev, RF2525) &&
1452	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1453	    !rt2x00_rf(rt2x00dev, RF5222)) {
1454		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1455		return -ENODEV;
1456	}
1457
1458	/*
1459	 * Identify default antenna configuration.
1460	 */
1461	rt2x00dev->default_ant.tx =
1462	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1463	rt2x00dev->default_ant.rx =
1464	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1465
1466	/*
1467	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1468	 * I am not 100% sure about this, but the legacy drivers do not
1469	 * indicate antenna swapping in software is required when
1470	 * diversity is enabled.
1471	 */
1472	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1473		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1474	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1475		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1476
1477	/*
1478	 * Store led mode, for correct led behaviour.
1479	 */
1480#ifdef CONFIG_RT2X00_LIB_LEDS
1481	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1482
1483	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1484	if (value == LED_MODE_TXRX_ACTIVITY ||
1485	    value == LED_MODE_DEFAULT ||
1486	    value == LED_MODE_ASUS)
1487		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1488				   LED_TYPE_ACTIVITY);
1489#endif /* CONFIG_RT2X00_LIB_LEDS */
1490
1491	/*
1492	 * Detect if this device has an hardware controlled radio.
1493	 */
1494	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1495		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1496
1497	/*
1498	 * Read the RSSI <-> dBm offset information.
1499	 */
1500	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1501	rt2x00dev->rssi_offset =
1502	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1503
1504	return 0;
1505}
1506
1507/*
1508 * RF value list for RF2522
1509 * Supports: 2.4 GHz
1510 */
1511static const struct rf_channel rf_vals_bg_2522[] = {
1512	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1513	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1514	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1515	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1516	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1517	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1518	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1519	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1520	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1521	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1522	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1523	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1524	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1525	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1526};
1527
1528/*
1529 * RF value list for RF2523
1530 * Supports: 2.4 GHz
1531 */
1532static const struct rf_channel rf_vals_bg_2523[] = {
1533	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1534	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1535	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1536	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1537	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1538	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1539	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1540	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1541	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1542	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1543	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1544	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1545	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1546	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1547};
1548
1549/*
1550 * RF value list for RF2524
1551 * Supports: 2.4 GHz
1552 */
1553static const struct rf_channel rf_vals_bg_2524[] = {
1554	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1555	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1556	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1557	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1558	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1559	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1560	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1561	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1562	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1563	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1564	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1565	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1566	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1567	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1568};
1569
1570/*
1571 * RF value list for RF2525
1572 * Supports: 2.4 GHz
1573 */
1574static const struct rf_channel rf_vals_bg_2525[] = {
1575	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1576	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1577	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1578	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1579	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1580	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1581	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1582	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1583	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1584	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1585	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1586	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1587	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1588	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1589};
1590
1591/*
1592 * RF value list for RF2525e
1593 * Supports: 2.4 GHz
1594 */
1595static const struct rf_channel rf_vals_bg_2525e[] = {
1596	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1597	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1598	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1599	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1600	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1601	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1602	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1603	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1604	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1605	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1606	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1607	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1608	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1609	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1610};
1611
1612/*
1613 * RF value list for RF5222
1614 * Supports: 2.4 GHz & 5.2 GHz
1615 */
1616static const struct rf_channel rf_vals_5222[] = {
1617	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1618	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1619	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1620	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1621	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1622	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1623	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1624	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1625	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1626	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1627	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1628	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1629	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1630	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1631
1632	/* 802.11 UNI / HyperLan 2 */
1633	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1634	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1635	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1636	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1637	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1638	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1639	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1640	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1641
1642	/* 802.11 HyperLan 2 */
1643	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1644	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1645	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1646	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1647	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1648	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1649	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1650	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1651	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1652	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1653
1654	/* 802.11 UNII */
1655	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1656	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1657	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1658	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1659	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1660};
1661
1662static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1663{
1664	struct hw_mode_spec *spec = &rt2x00dev->spec;
1665	struct channel_info *info;
1666	u8 *tx_power;
1667	unsigned int i;
1668
1669	/*
1670	 * Initialize all hw fields.
1671	 *
1672	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1673	 * capable of sending the buffered frames out after the DTIM
1674	 * transmission using rt2x00lib_beacondone. This will send out
1675	 * multicast and broadcast traffic immediately instead of buffering it
1676	 * infinitly and thus dropping it after some time.
1677	 */
1678	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1679	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1680	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1681	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1682
1683	/*
1684	 * Disable powersaving as default.
1685	 */
1686	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1687
1688	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1689	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1690				rt2x00_eeprom_addr(rt2x00dev,
1691						   EEPROM_MAC_ADDR_0));
1692
1693	/*
1694	 * Initialize hw_mode information.
1695	 */
1696	spec->supported_bands = SUPPORT_BAND_2GHZ;
1697	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1698
1699	if (rt2x00_rf(rt2x00dev, RF2522)) {
1700		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1701		spec->channels = rf_vals_bg_2522;
1702	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1703		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1704		spec->channels = rf_vals_bg_2523;
1705	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1706		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1707		spec->channels = rf_vals_bg_2524;
1708	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1709		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1710		spec->channels = rf_vals_bg_2525;
1711	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1712		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1713		spec->channels = rf_vals_bg_2525e;
1714	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1715		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1716		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1717		spec->channels = rf_vals_5222;
1718	}
1719
1720	/*
1721	 * Create channel information array
1722	 */
1723	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1724	if (!info)
1725		return -ENOMEM;
1726
1727	spec->channels_info = info;
1728
1729	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1730	for (i = 0; i < 14; i++) {
1731		info[i].max_power = MAX_TXPOWER;
1732		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1733	}
1734
1735	if (spec->num_channels > 14) {
1736		for (i = 14; i < spec->num_channels; i++) {
1737			info[i].max_power = MAX_TXPOWER;
1738			info[i].default_power1 = DEFAULT_TXPOWER;
1739		}
1740	}
1741
1742	return 0;
1743}
1744
1745static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1746{
1747	int retval;
1748	u16 reg;
1749
1750	/*
1751	 * Allocate eeprom data.
1752	 */
1753	retval = rt2500usb_validate_eeprom(rt2x00dev);
1754	if (retval)
1755		return retval;
1756
1757	retval = rt2500usb_init_eeprom(rt2x00dev);
1758	if (retval)
1759		return retval;
1760
1761	/*
1762	 * Enable rfkill polling by setting GPIO direction of the
1763	 * rfkill switch GPIO pin correctly.
1764	 */
1765	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1766	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1767	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1768
1769	/*
1770	 * Initialize hw specifications.
1771	 */
1772	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1773	if (retval)
1774		return retval;
1775
1776	/*
1777	 * This device requires the atim queue
1778	 */
1779	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1780	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1781	if (!modparam_nohwcrypt) {
1782		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1783		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1784	}
1785	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1786	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1787
1788	/*
1789	 * Set the rssi offset.
1790	 */
1791	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1792
1793	return 0;
1794}
1795
1796static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1797	.tx			= rt2x00mac_tx,
1798	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
1799	.start			= rt2x00mac_start,
1800	.stop			= rt2x00mac_stop,
1801	.add_interface		= rt2x00mac_add_interface,
1802	.remove_interface	= rt2x00mac_remove_interface,
1803	.config			= rt2x00mac_config,
1804	.configure_filter	= rt2x00mac_configure_filter,
1805	.set_tim		= rt2x00mac_set_tim,
1806	.set_key		= rt2x00mac_set_key,
1807	.sw_scan_start		= rt2x00mac_sw_scan_start,
1808	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1809	.get_stats		= rt2x00mac_get_stats,
1810	.bss_info_changed	= rt2x00mac_bss_info_changed,
1811	.conf_tx		= rt2x00mac_conf_tx,
1812	.rfkill_poll		= rt2x00mac_rfkill_poll,
1813	.flush			= rt2x00mac_flush,
1814	.set_antenna		= rt2x00mac_set_antenna,
1815	.get_antenna		= rt2x00mac_get_antenna,
1816	.get_ringparam		= rt2x00mac_get_ringparam,
1817	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1818};
1819
1820static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1821	.probe_hw		= rt2500usb_probe_hw,
1822	.initialize		= rt2x00usb_initialize,
1823	.uninitialize		= rt2x00usb_uninitialize,
1824	.clear_entry		= rt2x00usb_clear_entry,
1825	.set_device_state	= rt2500usb_set_device_state,
1826	.rfkill_poll		= rt2500usb_rfkill_poll,
1827	.link_stats		= rt2500usb_link_stats,
1828	.reset_tuner		= rt2500usb_reset_tuner,
1829	.watchdog		= rt2x00usb_watchdog,
1830	.start_queue		= rt2500usb_start_queue,
1831	.kick_queue		= rt2x00usb_kick_queue,
1832	.stop_queue		= rt2500usb_stop_queue,
1833	.flush_queue		= rt2x00usb_flush_queue,
1834	.write_tx_desc		= rt2500usb_write_tx_desc,
1835	.write_beacon		= rt2500usb_write_beacon,
1836	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1837	.fill_rxdone		= rt2500usb_fill_rxdone,
1838	.config_shared_key	= rt2500usb_config_key,
1839	.config_pairwise_key	= rt2500usb_config_key,
1840	.config_filter		= rt2500usb_config_filter,
1841	.config_intf		= rt2500usb_config_intf,
1842	.config_erp		= rt2500usb_config_erp,
1843	.config_ant		= rt2500usb_config_ant,
1844	.config			= rt2500usb_config,
1845};
1846
1847static void rt2500usb_queue_init(struct data_queue *queue)
1848{
1849	switch (queue->qid) {
1850	case QID_RX:
1851		queue->limit = 32;
1852		queue->data_size = DATA_FRAME_SIZE;
1853		queue->desc_size = RXD_DESC_SIZE;
1854		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1855		break;
1856
1857	case QID_AC_VO:
1858	case QID_AC_VI:
1859	case QID_AC_BE:
1860	case QID_AC_BK:
1861		queue->limit = 32;
1862		queue->data_size = DATA_FRAME_SIZE;
1863		queue->desc_size = TXD_DESC_SIZE;
1864		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1865		break;
1866
1867	case QID_BEACON:
1868		queue->limit = 1;
1869		queue->data_size = MGMT_FRAME_SIZE;
1870		queue->desc_size = TXD_DESC_SIZE;
1871		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1872		break;
1873
1874	case QID_ATIM:
1875		queue->limit = 8;
1876		queue->data_size = DATA_FRAME_SIZE;
1877		queue->desc_size = TXD_DESC_SIZE;
1878		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1879		break;
1880
1881	default:
1882		BUG();
1883		break;
1884	}
1885}
1886
1887static const struct rt2x00_ops rt2500usb_ops = {
1888	.name			= KBUILD_MODNAME,
1889	.max_ap_intf		= 1,
1890	.eeprom_size		= EEPROM_SIZE,
1891	.rf_size		= RF_SIZE,
1892	.tx_queues		= NUM_TX_QUEUES,
1893	.queue_init		= rt2500usb_queue_init,
1894	.lib			= &rt2500usb_rt2x00_ops,
1895	.hw			= &rt2500usb_mac80211_ops,
1896#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1897	.debugfs		= &rt2500usb_rt2x00debug,
1898#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1899};
1900
1901/*
1902 * rt2500usb module information.
1903 */
1904static const struct usb_device_id rt2500usb_device_table[] = {
1905	/* ASUS */
1906	{ USB_DEVICE(0x0b05, 0x1706) },
1907	{ USB_DEVICE(0x0b05, 0x1707) },
1908	/* Belkin */
1909	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1910	{ USB_DEVICE(0x050d, 0x7051) },
1911	/* Cisco Systems */
1912	{ USB_DEVICE(0x13b1, 0x000d) },
1913	{ USB_DEVICE(0x13b1, 0x0011) },
1914	{ USB_DEVICE(0x13b1, 0x001a) },
1915	/* Conceptronic */
1916	{ USB_DEVICE(0x14b2, 0x3c02) },
1917	/* D-LINK */
1918	{ USB_DEVICE(0x2001, 0x3c00) },
1919	/* Gigabyte */
1920	{ USB_DEVICE(0x1044, 0x8001) },
1921	{ USB_DEVICE(0x1044, 0x8007) },
1922	/* Hercules */
1923	{ USB_DEVICE(0x06f8, 0xe000) },
1924	/* Melco */
1925	{ USB_DEVICE(0x0411, 0x005e) },
1926	{ USB_DEVICE(0x0411, 0x0066) },
1927	{ USB_DEVICE(0x0411, 0x0067) },
1928	{ USB_DEVICE(0x0411, 0x008b) },
1929	{ USB_DEVICE(0x0411, 0x0097) },
1930	/* MSI */
1931	{ USB_DEVICE(0x0db0, 0x6861) },
1932	{ USB_DEVICE(0x0db0, 0x6865) },
1933	{ USB_DEVICE(0x0db0, 0x6869) },
1934	/* Ralink */
1935	{ USB_DEVICE(0x148f, 0x1706) },
1936	{ USB_DEVICE(0x148f, 0x2570) },
1937	{ USB_DEVICE(0x148f, 0x9020) },
1938	/* Sagem */
1939	{ USB_DEVICE(0x079b, 0x004b) },
1940	/* Siemens */
1941	{ USB_DEVICE(0x0681, 0x3c06) },
1942	/* SMC */
1943	{ USB_DEVICE(0x0707, 0xee13) },
1944	/* Spairon */
1945	{ USB_DEVICE(0x114b, 0x0110) },
1946	/* SURECOM */
1947	{ USB_DEVICE(0x0769, 0x11f3) },
1948	/* Trust */
1949	{ USB_DEVICE(0x0eb0, 0x9020) },
1950	/* VTech */
1951	{ USB_DEVICE(0x0f88, 0x3012) },
1952	/* Zinwell */
1953	{ USB_DEVICE(0x5a57, 0x0260) },
1954	{ 0, }
1955};
1956
1957MODULE_AUTHOR(DRV_PROJECT);
1958MODULE_VERSION(DRV_VERSION);
1959MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
 
1960MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1961MODULE_LICENSE("GPL");
1962
1963static int rt2500usb_probe(struct usb_interface *usb_intf,
1964			   const struct usb_device_id *id)
1965{
1966	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1967}
1968
1969static struct usb_driver rt2500usb_driver = {
1970	.name		= KBUILD_MODNAME,
1971	.id_table	= rt2500usb_device_table,
1972	.probe		= rt2500usb_probe,
1973	.disconnect	= rt2x00usb_disconnect,
1974	.suspend	= rt2x00usb_suspend,
1975	.resume		= rt2x00usb_resume,
1976	.reset_resume	= rt2x00usb_resume,
1977	.disable_hub_initiated_lpm = 1,
1978};
1979
1980module_usb_driver(rt2500usb_driver);
v4.10.11
 
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19/*
  20	Module: rt2500usb
  21	Abstract: rt2500usb device specific routines.
  22	Supported chipsets: RT2570.
  23 */
  24
  25#include <linux/delay.h>
  26#include <linux/etherdevice.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/slab.h>
  30#include <linux/usb.h>
  31
  32#include "rt2x00.h"
  33#include "rt2x00usb.h"
  34#include "rt2500usb.h"
  35
  36/*
  37 * Allow hardware encryption to be disabled.
  38 */
  39static bool modparam_nohwcrypt;
  40module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  41MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  42
  43/*
  44 * Register access.
  45 * All access to the CSR registers will go through the methods
  46 * rt2500usb_register_read and rt2500usb_register_write.
  47 * BBP and RF register require indirect register access,
  48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  49 * These indirect registers work with busy bits,
  50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
  51 * the register while taking a REGISTER_BUSY_DELAY us delay
  52 * between each attampt. When the busy bit is still set at that time,
  53 * the access attempt is considered to have failed,
  54 * and we will print an error.
  55 * If the csr_mutex is already held then the _lock variants must
  56 * be used instead.
  57 */
  58static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  59					   const unsigned int offset,
  60					   u16 *value)
  61{
  62	__le16 reg;
  63	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  64				      USB_VENDOR_REQUEST_IN, offset,
  65				      &reg, sizeof(reg));
  66	*value = le16_to_cpu(reg);
  67}
  68
  69static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  70						const unsigned int offset,
  71						u16 *value)
  72{
  73	__le16 reg;
  74	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  75				       USB_VENDOR_REQUEST_IN, offset,
  76				       &reg, sizeof(reg), REGISTER_TIMEOUT);
  77	*value = le16_to_cpu(reg);
  78}
  79
  80static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  81						const unsigned int offset,
  82						void *value, const u16 length)
  83{
  84	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  85				      USB_VENDOR_REQUEST_IN, offset,
  86				      value, length);
  87}
  88
  89static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  90					    const unsigned int offset,
  91					    u16 value)
  92{
  93	__le16 reg = cpu_to_le16(value);
  94	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  95				      USB_VENDOR_REQUEST_OUT, offset,
  96				      &reg, sizeof(reg));
  97}
  98
  99static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
 100						 const unsigned int offset,
 101						 u16 value)
 102{
 103	__le16 reg = cpu_to_le16(value);
 104	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
 105				       USB_VENDOR_REQUEST_OUT, offset,
 106				       &reg, sizeof(reg), REGISTER_TIMEOUT);
 107}
 108
 109static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
 110						 const unsigned int offset,
 111						 void *value, const u16 length)
 112{
 113	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
 114				      USB_VENDOR_REQUEST_OUT, offset,
 115				      value, length);
 116}
 117
 118static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
 119				  const unsigned int offset,
 120				  struct rt2x00_field16 field,
 121				  u16 *reg)
 122{
 123	unsigned int i;
 124
 125	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 126		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
 127		if (!rt2x00_get_field16(*reg, field))
 128			return 1;
 129		udelay(REGISTER_BUSY_DELAY);
 130	}
 131
 132	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 133		   offset, *reg);
 134	*reg = ~0;
 135
 136	return 0;
 137}
 138
 139#define WAIT_FOR_BBP(__dev, __reg) \
 140	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 141#define WAIT_FOR_RF(__dev, __reg) \
 142	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 143
 144static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 145				const unsigned int word, const u8 value)
 146{
 147	u16 reg;
 148
 149	mutex_lock(&rt2x00dev->csr_mutex);
 150
 151	/*
 152	 * Wait until the BBP becomes available, afterwards we
 153	 * can safely write the new data into the register.
 154	 */
 155	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 156		reg = 0;
 157		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
 158		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 159		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
 160
 161		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 162	}
 163
 164	mutex_unlock(&rt2x00dev->csr_mutex);
 165}
 166
 167static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 168			       const unsigned int word, u8 *value)
 169{
 170	u16 reg;
 
 171
 172	mutex_lock(&rt2x00dev->csr_mutex);
 173
 174	/*
 175	 * Wait until the BBP becomes available, afterwards we
 176	 * can safely write the read request into the register.
 177	 * After the data has been written, we wait until hardware
 178	 * returns the correct value, if at any time the register
 179	 * doesn't become available in time, reg will be 0xffffffff
 180	 * which means we return 0xff to the caller.
 181	 */
 182	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 183		reg = 0;
 184		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 185		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
 186
 187		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 188
 189		if (WAIT_FOR_BBP(rt2x00dev, &reg))
 190			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
 191	}
 192
 193	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 194
 195	mutex_unlock(&rt2x00dev->csr_mutex);
 
 
 196}
 197
 198static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 199			       const unsigned int word, const u32 value)
 200{
 201	u16 reg;
 202
 203	mutex_lock(&rt2x00dev->csr_mutex);
 204
 205	/*
 206	 * Wait until the RF becomes available, afterwards we
 207	 * can safely write the new data into the register.
 208	 */
 209	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 210		reg = 0;
 211		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
 212		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 213
 214		reg = 0;
 215		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
 216		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 217		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
 218		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
 219
 220		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 221		rt2x00_rf_write(rt2x00dev, word, value);
 222	}
 223
 224	mutex_unlock(&rt2x00dev->csr_mutex);
 225}
 226
 227#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 228static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 229				     const unsigned int offset,
 230				     u32 *value)
 231{
 232	u16 tmp;
 233
 234	rt2500usb_register_read(rt2x00dev, offset, &tmp);
 235	*value = tmp;
 236}
 237
 238static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 239				      const unsigned int offset,
 240				      u32 value)
 241{
 242	rt2500usb_register_write(rt2x00dev, offset, value);
 243}
 244
 245static const struct rt2x00debug rt2500usb_rt2x00debug = {
 246	.owner	= THIS_MODULE,
 247	.csr	= {
 248		.read		= _rt2500usb_register_read,
 249		.write		= _rt2500usb_register_write,
 250		.flags		= RT2X00DEBUGFS_OFFSET,
 251		.word_base	= CSR_REG_BASE,
 252		.word_size	= sizeof(u16),
 253		.word_count	= CSR_REG_SIZE / sizeof(u16),
 254	},
 255	.eeprom	= {
 256		.read		= rt2x00_eeprom_read,
 257		.write		= rt2x00_eeprom_write,
 258		.word_base	= EEPROM_BASE,
 259		.word_size	= sizeof(u16),
 260		.word_count	= EEPROM_SIZE / sizeof(u16),
 261	},
 262	.bbp	= {
 263		.read		= rt2500usb_bbp_read,
 264		.write		= rt2500usb_bbp_write,
 265		.word_base	= BBP_BASE,
 266		.word_size	= sizeof(u8),
 267		.word_count	= BBP_SIZE / sizeof(u8),
 268	},
 269	.rf	= {
 270		.read		= rt2x00_rf_read,
 271		.write		= rt2500usb_rf_write,
 272		.word_base	= RF_BASE,
 273		.word_size	= sizeof(u32),
 274		.word_count	= RF_SIZE / sizeof(u32),
 275	},
 276};
 277#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 278
 279static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 280{
 281	u16 reg;
 282
 283	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
 284	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 285}
 286
 287#ifdef CONFIG_RT2X00_LIB_LEDS
 288static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 289				     enum led_brightness brightness)
 290{
 291	struct rt2x00_led *led =
 292	    container_of(led_cdev, struct rt2x00_led, led_dev);
 293	unsigned int enabled = brightness != LED_OFF;
 294	u16 reg;
 295
 296	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
 297
 298	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 299		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
 300	else if (led->type == LED_TYPE_ACTIVITY)
 301		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
 302
 303	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 304}
 305
 306static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 307			       unsigned long *delay_on,
 308			       unsigned long *delay_off)
 309{
 310	struct rt2x00_led *led =
 311	    container_of(led_cdev, struct rt2x00_led, led_dev);
 312	u16 reg;
 313
 314	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
 315	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
 316	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
 317	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 318
 319	return 0;
 320}
 321
 322static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 323			       struct rt2x00_led *led,
 324			       enum led_type type)
 325{
 326	led->rt2x00dev = rt2x00dev;
 327	led->type = type;
 328	led->led_dev.brightness_set = rt2500usb_brightness_set;
 329	led->led_dev.blink_set = rt2500usb_blink_set;
 330	led->flags = LED_INITIALIZED;
 331}
 332#endif /* CONFIG_RT2X00_LIB_LEDS */
 333
 334/*
 335 * Configuration handlers.
 336 */
 337
 338/*
 339 * rt2500usb does not differentiate between shared and pairwise
 340 * keys, so we should use the same function for both key types.
 341 */
 342static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 343				struct rt2x00lib_crypto *crypto,
 344				struct ieee80211_key_conf *key)
 345{
 346	u32 mask;
 347	u16 reg;
 348	enum cipher curr_cipher;
 349
 350	if (crypto->cmd == SET_KEY) {
 351		/*
 352		 * Disallow to set WEP key other than with index 0,
 353		 * it is known that not work at least on some hardware.
 354		 * SW crypto will be used in that case.
 355		 */
 356		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 357		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 358		    key->keyidx != 0)
 359			return -EOPNOTSUPP;
 360
 361		/*
 362		 * Pairwise key will always be entry 0, but this
 363		 * could collide with a shared key on the same
 364		 * position...
 365		 */
 366		mask = TXRX_CSR0_KEY_ID.bit_mask;
 367
 368		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 369		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 370		reg &= mask;
 371
 372		if (reg && reg == mask)
 373			return -ENOSPC;
 374
 375		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 376
 377		key->hw_key_idx += reg ? ffz(reg) : 0;
 378		/*
 379		 * Hardware requires that all keys use the same cipher
 380		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 381		 * If this is not the first key, compare the cipher with the
 382		 * first one and fall back to SW crypto if not the same.
 383		 */
 384		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 385			return -EOPNOTSUPP;
 386
 387		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 388					      crypto->key, sizeof(crypto->key));
 389
 390		/*
 391		 * The driver does not support the IV/EIV generation
 392		 * in hardware. However it demands the data to be provided
 393		 * both separately as well as inside the frame.
 394		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 395		 * to ensure rt2x00lib will not strip the data from the
 396		 * frame after the copy, now we must tell mac80211
 397		 * to generate the IV/EIV data.
 398		 */
 399		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 400		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 401	}
 402
 403	/*
 404	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 405	 * a particular key is valid.
 406	 */
 407	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 408	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
 409	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 410
 411	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 412	if (crypto->cmd == SET_KEY)
 413		mask |= 1 << key->hw_key_idx;
 414	else if (crypto->cmd == DISABLE_KEY)
 415		mask &= ~(1 << key->hw_key_idx);
 416	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
 417	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 418
 419	return 0;
 420}
 421
 422static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 423				    const unsigned int filter_flags)
 424{
 425	u16 reg;
 426
 427	/*
 428	 * Start configuration steps.
 429	 * Note that the version error will always be dropped
 430	 * and broadcast frames will always be accepted since
 431	 * there is no filter for it at this time.
 432	 */
 433	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 434	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
 435			   !(filter_flags & FIF_FCSFAIL));
 436	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
 437			   !(filter_flags & FIF_PLCPFAIL));
 438	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
 439			   !(filter_flags & FIF_CONTROL));
 440	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
 441			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 442	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
 443			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 444			   !rt2x00dev->intf_ap_count);
 445	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 446	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
 447			   !(filter_flags & FIF_ALLMULTI));
 448	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
 449	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 450}
 451
 452static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 453				  struct rt2x00_intf *intf,
 454				  struct rt2x00intf_conf *conf,
 455				  const unsigned int flags)
 456{
 457	unsigned int bcn_preload;
 458	u16 reg;
 459
 460	if (flags & CONFIG_UPDATE_TYPE) {
 461		/*
 462		 * Enable beacon config
 463		 */
 464		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 465		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
 466		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 467		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
 468				   2 * (conf->type != NL80211_IFTYPE_STATION));
 469		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 470
 471		/*
 472		 * Enable synchronisation.
 473		 */
 474		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
 475		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
 476		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 477
 478		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 479		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
 480		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 481	}
 482
 483	if (flags & CONFIG_UPDATE_MAC)
 484		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 485					      (3 * sizeof(__le16)));
 486
 487	if (flags & CONFIG_UPDATE_BSSID)
 488		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 489					      (3 * sizeof(__le16)));
 490}
 491
 492static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 493				 struct rt2x00lib_erp *erp,
 494				 u32 changed)
 495{
 496	u16 reg;
 497
 498	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 499		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
 500		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 501				   !!erp->short_preamble);
 502		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 503	}
 504
 505	if (changed & BSS_CHANGED_BASIC_RATES)
 506		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 507					 erp->basic_rates);
 508
 509	if (changed & BSS_CHANGED_BEACON_INT) {
 510		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
 511		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
 512				   erp->beacon_int * 4);
 513		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 514	}
 515
 516	if (changed & BSS_CHANGED_ERP_SLOT) {
 517		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 518		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 519		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 520	}
 521}
 522
 523static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 524				 struct antenna_setup *ant)
 525{
 526	u8 r2;
 527	u8 r14;
 528	u16 csr5;
 529	u16 csr6;
 530
 531	/*
 532	 * We should never come here because rt2x00lib is supposed
 533	 * to catch this and send us the correct antenna explicitely.
 534	 */
 535	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 536	       ant->tx == ANTENNA_SW_DIVERSITY);
 537
 538	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
 539	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
 540	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
 541	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
 542
 543	/*
 544	 * Configure the TX antenna.
 545	 */
 546	switch (ant->tx) {
 547	case ANTENNA_HW_DIVERSITY:
 548		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 549		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 550		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 551		break;
 552	case ANTENNA_A:
 553		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 554		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 555		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 556		break;
 557	case ANTENNA_B:
 558	default:
 559		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 560		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 561		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 562		break;
 563	}
 564
 565	/*
 566	 * Configure the RX antenna.
 567	 */
 568	switch (ant->rx) {
 569	case ANTENNA_HW_DIVERSITY:
 570		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 571		break;
 572	case ANTENNA_A:
 573		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 574		break;
 575	case ANTENNA_B:
 576	default:
 577		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 578		break;
 579	}
 580
 581	/*
 582	 * RT2525E and RT5222 need to flip TX I/Q
 583	 */
 584	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 585		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 586		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 587		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 588
 589		/*
 590		 * RT2525E does not need RX I/Q Flip.
 591		 */
 592		if (rt2x00_rf(rt2x00dev, RF2525E))
 593			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 594	} else {
 595		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 596		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 597	}
 598
 599	rt2500usb_bbp_write(rt2x00dev, 2, r2);
 600	rt2500usb_bbp_write(rt2x00dev, 14, r14);
 601	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 602	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 603}
 604
 605static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 606				     struct rf_channel *rf, const int txpower)
 607{
 608	/*
 609	 * Set TXpower.
 610	 */
 611	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 612
 613	/*
 614	 * For RT2525E we should first set the channel to half band higher.
 615	 */
 616	if (rt2x00_rf(rt2x00dev, RF2525E)) {
 617		static const u32 vals[] = {
 618			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 619			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 620			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 621			0x00000902, 0x00000906
 622		};
 623
 624		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 625		if (rf->rf4)
 626			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 627	}
 628
 629	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 630	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 631	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 632	if (rf->rf4)
 633		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 634}
 635
 636static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 637				     const int txpower)
 638{
 639	u32 rf3;
 640
 641	rt2x00_rf_read(rt2x00dev, 3, &rf3);
 642	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 643	rt2500usb_rf_write(rt2x00dev, 3, rf3);
 644}
 645
 646static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 647				struct rt2x00lib_conf *libconf)
 648{
 649	enum dev_state state =
 650	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 651		STATE_SLEEP : STATE_AWAKE;
 652	u16 reg;
 653
 654	if (state == STATE_SLEEP) {
 655		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 656		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
 657				   rt2x00dev->beacon_int - 20);
 658		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 659				   libconf->conf->listen_interval - 1);
 660
 661		/* We must first disable autowake before it can be enabled */
 662		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 663		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 664
 665		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
 666		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 667	} else {
 668		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 669		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 670		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 671	}
 672
 673	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 674}
 675
 676static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 677			     struct rt2x00lib_conf *libconf,
 678			     const unsigned int flags)
 679{
 680	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 681		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 682					 libconf->conf->power_level);
 683	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 684	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 685		rt2500usb_config_txpower(rt2x00dev,
 686					 libconf->conf->power_level);
 687	if (flags & IEEE80211_CONF_CHANGE_PS)
 688		rt2500usb_config_ps(rt2x00dev, libconf);
 689}
 690
 691/*
 692 * Link tuning
 693 */
 694static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 695				 struct link_qual *qual)
 696{
 697	u16 reg;
 698
 699	/*
 700	 * Update FCS error count from register.
 701	 */
 702	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
 703	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 704
 705	/*
 706	 * Update False CCA count from register.
 707	 */
 708	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
 709	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 710}
 711
 712static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 713				  struct link_qual *qual)
 714{
 715	u16 eeprom;
 716	u16 value;
 717
 718	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
 719	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 720	rt2500usb_bbp_write(rt2x00dev, 24, value);
 721
 722	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
 723	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 724	rt2500usb_bbp_write(rt2x00dev, 25, value);
 725
 726	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
 727	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 728	rt2500usb_bbp_write(rt2x00dev, 61, value);
 729
 730	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
 731	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 732	rt2500usb_bbp_write(rt2x00dev, 17, value);
 733
 734	qual->vgc_level = value;
 735}
 736
 737/*
 738 * Queue handlers.
 739 */
 740static void rt2500usb_start_queue(struct data_queue *queue)
 741{
 742	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 743	u16 reg;
 744
 745	switch (queue->qid) {
 746	case QID_RX:
 747		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 748		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
 749		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 750		break;
 751	case QID_BEACON:
 752		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 753		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
 754		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
 755		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
 756		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 757		break;
 758	default:
 759		break;
 760	}
 761}
 762
 763static void rt2500usb_stop_queue(struct data_queue *queue)
 764{
 765	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 766	u16 reg;
 767
 768	switch (queue->qid) {
 769	case QID_RX:
 770		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 771		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 772		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 773		break;
 774	case QID_BEACON:
 775		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 776		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 777		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 778		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 779		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 780		break;
 781	default:
 782		break;
 783	}
 784}
 785
 786/*
 787 * Initialization functions.
 788 */
 789static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 790{
 791	u16 reg;
 792
 793	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 794				    USB_MODE_TEST, REGISTER_TIMEOUT);
 795	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 796				    0x00f0, REGISTER_TIMEOUT);
 797
 798	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 799	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 800	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 801
 802	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 803	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 804
 805	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 806	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
 807	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
 808	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 809	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 810
 811	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 812	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 813	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 814	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 815	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 816
 817	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
 818	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
 819	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
 820	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
 821	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
 822	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 823
 824	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
 825	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
 826	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
 827	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
 828	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
 829	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 830
 831	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
 832	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
 833	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
 834	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
 835	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
 836	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 837
 838	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
 839	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
 840	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
 841	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
 842	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
 843	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 844
 845	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 846	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 847	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
 848	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 849	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 850	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 851
 852	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 853	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 854
 855	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 856		return -EBUSY;
 857
 858	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 859	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 860	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 861	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
 862	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 863
 864	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 865		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
 866		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
 867	} else {
 868		reg = 0;
 869		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
 870		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
 871	}
 872	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 873
 874	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 875	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 876	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 877	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 878
 879	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
 880	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
 881			   rt2x00dev->rx->data_size);
 882	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 883
 884	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 885	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 886	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 887	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
 888	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 889
 890	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 891	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 892	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 893
 894	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
 895	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
 896	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 897
 898	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
 899	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
 900	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 901
 902	return 0;
 903}
 904
 905static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 906{
 907	unsigned int i;
 908	u8 value;
 909
 910	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 911		rt2500usb_bbp_read(rt2x00dev, 0, &value);
 912		if ((value != 0xff) && (value != 0x00))
 913			return 0;
 914		udelay(REGISTER_BUSY_DELAY);
 915	}
 916
 917	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 918	return -EACCES;
 919}
 920
 921static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 922{
 923	unsigned int i;
 924	u16 eeprom;
 925	u8 value;
 926	u8 reg_id;
 927
 928	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 929		return -EACCES;
 930
 931	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 932	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 933	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 934	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 935	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 936	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 937	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 938	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 939	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 940	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 941	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 942	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 943	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 944	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 945	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 946	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 947	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 948	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 949	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 950	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 951	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 952	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 953	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 954	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 955	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 956	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 957	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 958	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 959	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 960	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 961	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 962
 963	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 964		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
 965
 966		if (eeprom != 0xffff && eeprom != 0x0000) {
 967			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 968			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 969			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 970		}
 971	}
 972
 973	return 0;
 974}
 975
 976/*
 977 * Device state switch handlers.
 978 */
 979static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 980{
 981	/*
 982	 * Initialize all registers.
 983	 */
 984	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 985		     rt2500usb_init_bbp(rt2x00dev)))
 986		return -EIO;
 987
 988	return 0;
 989}
 990
 991static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 992{
 993	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 994	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 995
 996	/*
 997	 * Disable synchronisation.
 998	 */
 999	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1000
1001	rt2x00usb_disable_radio(rt2x00dev);
1002}
1003
1004static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1005			       enum dev_state state)
1006{
1007	u16 reg;
1008	u16 reg2;
1009	unsigned int i;
1010	char put_to_sleep;
1011	char bbp_state;
1012	char rf_state;
1013
1014	put_to_sleep = (state != STATE_AWAKE);
1015
1016	reg = 0;
1017	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1018	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1019	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1020	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1021	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1022	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1023
1024	/*
1025	 * Device is not guaranteed to be in the requested state yet.
1026	 * We must wait until the register indicates that the
1027	 * device has entered the correct state.
1028	 */
1029	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1030		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1031		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1032		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1033		if (bbp_state == state && rf_state == state)
1034			return 0;
1035		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1036		msleep(30);
1037	}
1038
1039	return -EBUSY;
1040}
1041
1042static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1043				      enum dev_state state)
1044{
1045	int retval = 0;
1046
1047	switch (state) {
1048	case STATE_RADIO_ON:
1049		retval = rt2500usb_enable_radio(rt2x00dev);
1050		break;
1051	case STATE_RADIO_OFF:
1052		rt2500usb_disable_radio(rt2x00dev);
1053		break;
1054	case STATE_RADIO_IRQ_ON:
1055	case STATE_RADIO_IRQ_OFF:
1056		/* No support, but no error either */
1057		break;
1058	case STATE_DEEP_SLEEP:
1059	case STATE_SLEEP:
1060	case STATE_STANDBY:
1061	case STATE_AWAKE:
1062		retval = rt2500usb_set_state(rt2x00dev, state);
1063		break;
1064	default:
1065		retval = -ENOTSUPP;
1066		break;
1067	}
1068
1069	if (unlikely(retval))
1070		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1071			   state, retval);
1072
1073	return retval;
1074}
1075
1076/*
1077 * TX descriptor initialization
1078 */
1079static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1080				    struct txentry_desc *txdesc)
1081{
1082	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1083	__le32 *txd = (__le32 *) entry->skb->data;
1084	u32 word;
1085
1086	/*
1087	 * Start writing the descriptor words.
1088	 */
1089	rt2x00_desc_read(txd, 0, &word);
1090	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1091	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1092			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1093	rt2x00_set_field32(&word, TXD_W0_ACK,
1094			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1095	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1096			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1097	rt2x00_set_field32(&word, TXD_W0_OFDM,
1098			   (txdesc->rate_mode == RATE_MODE_OFDM));
1099	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1100			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1101	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1102	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1103	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1104	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1105	rt2x00_desc_write(txd, 0, word);
1106
1107	rt2x00_desc_read(txd, 1, &word);
1108	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1109	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1110	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1111	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1112	rt2x00_desc_write(txd, 1, word);
1113
1114	rt2x00_desc_read(txd, 2, &word);
1115	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1116	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1117	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1118			   txdesc->u.plcp.length_low);
1119	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1120			   txdesc->u.plcp.length_high);
1121	rt2x00_desc_write(txd, 2, word);
1122
1123	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1124		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1125		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1126	}
1127
1128	/*
1129	 * Register descriptor details in skb frame descriptor.
1130	 */
1131	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1132	skbdesc->desc = txd;
1133	skbdesc->desc_len = TXD_DESC_SIZE;
1134}
1135
1136/*
1137 * TX data initialization
1138 */
1139static void rt2500usb_beacondone(struct urb *urb);
1140
1141static void rt2500usb_write_beacon(struct queue_entry *entry,
1142				   struct txentry_desc *txdesc)
1143{
1144	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1145	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1146	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1147	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1148	int length;
1149	u16 reg, reg0;
1150
1151	/*
1152	 * Disable beaconing while we are reloading the beacon data,
1153	 * otherwise we might be sending out invalid data.
1154	 */
1155	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1156	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1157	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1158
1159	/*
1160	 * Add space for the descriptor in front of the skb.
1161	 */
1162	skb_push(entry->skb, TXD_DESC_SIZE);
1163	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1164
1165	/*
1166	 * Write the TX descriptor for the beacon.
1167	 */
1168	rt2500usb_write_tx_desc(entry, txdesc);
1169
1170	/*
1171	 * Dump beacon to userspace through debugfs.
1172	 */
1173	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1174
1175	/*
1176	 * USB devices cannot blindly pass the skb->len as the
1177	 * length of the data to usb_fill_bulk_urb. Pass the skb
1178	 * to the driver to determine what the length should be.
1179	 */
1180	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1181
1182	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1183			  entry->skb->data, length, rt2500usb_beacondone,
1184			  entry);
1185
1186	/*
1187	 * Second we need to create the guardian byte.
1188	 * We only need a single byte, so lets recycle
1189	 * the 'flags' field we are not using for beacons.
1190	 */
1191	bcn_priv->guardian_data = 0;
1192	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1193			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1194			  entry);
1195
1196	/*
1197	 * Send out the guardian byte.
1198	 */
1199	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1200
1201	/*
1202	 * Enable beaconing again.
1203	 */
1204	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1205	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1206	reg0 = reg;
1207	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1208	/*
1209	 * Beacon generation will fail initially.
1210	 * To prevent this we need to change the TXRX_CSR19
1211	 * register several times (reg0 is the same as reg
1212	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1213	 * and 1 in reg).
1214	 */
1215	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1216	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1217	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220}
1221
1222static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1223{
1224	int length;
1225
1226	/*
1227	 * The length _must_ be a multiple of 2,
1228	 * but it must _not_ be a multiple of the USB packet size.
1229	 */
1230	length = roundup(entry->skb->len, 2);
1231	length += (2 * !(length % entry->queue->usb_maxpacket));
1232
1233	return length;
1234}
1235
1236/*
1237 * RX control handlers
1238 */
1239static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1240				  struct rxdone_entry_desc *rxdesc)
1241{
1242	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1243	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1244	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1245	__le32 *rxd =
1246	    (__le32 *)(entry->skb->data +
1247		       (entry_priv->urb->actual_length -
1248			entry->queue->desc_size));
1249	u32 word0;
1250	u32 word1;
1251
1252	/*
1253	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1254	 * frame data in rt2x00usb.
1255	 */
1256	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1257	rxd = (__le32 *)skbdesc->desc;
1258
1259	/*
1260	 * It is now safe to read the descriptor on all architectures.
1261	 */
1262	rt2x00_desc_read(rxd, 0, &word0);
1263	rt2x00_desc_read(rxd, 1, &word1);
1264
1265	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1266		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1267	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1268		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1269
1270	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1271	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1272		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1273
1274	if (rxdesc->cipher != CIPHER_NONE) {
1275		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1276		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1277		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1278
1279		/* ICV is located at the end of frame */
1280
1281		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1282		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1283			rxdesc->flags |= RX_FLAG_DECRYPTED;
1284		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1285			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1286	}
1287
1288	/*
1289	 * Obtain the status about this packet.
1290	 * When frame was received with an OFDM bitrate,
1291	 * the signal is the PLCP value. If it was received with
1292	 * a CCK bitrate the signal is the rate in 100kbit/s.
1293	 */
1294	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1295	rxdesc->rssi =
1296	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1297	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1298
1299	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1300		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1301	else
1302		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1303	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1304		rxdesc->dev_flags |= RXDONE_MY_BSS;
1305
1306	/*
1307	 * Adjust the skb memory window to the frame boundaries.
1308	 */
1309	skb_trim(entry->skb, rxdesc->size);
1310}
1311
1312/*
1313 * Interrupt functions.
1314 */
1315static void rt2500usb_beacondone(struct urb *urb)
1316{
1317	struct queue_entry *entry = (struct queue_entry *)urb->context;
1318	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1319
1320	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1321		return;
1322
1323	/*
1324	 * Check if this was the guardian beacon,
1325	 * if that was the case we need to send the real beacon now.
1326	 * Otherwise we should free the sk_buffer, the device
1327	 * should be doing the rest of the work now.
1328	 */
1329	if (bcn_priv->guardian_urb == urb) {
1330		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1331	} else if (bcn_priv->urb == urb) {
1332		dev_kfree_skb(entry->skb);
1333		entry->skb = NULL;
1334	}
1335}
1336
1337/*
1338 * Device probe functions.
1339 */
1340static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1341{
1342	u16 word;
1343	u8 *mac;
1344	u8 bbp;
1345
1346	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1347
1348	/*
1349	 * Start validation of the data that has been read.
1350	 */
1351	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1352	rt2x00lib_set_mac_address(rt2x00dev, mac);
1353
1354	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1355	if (word == 0xffff) {
1356		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1357		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1358				   ANTENNA_SW_DIVERSITY);
1359		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1360				   ANTENNA_SW_DIVERSITY);
1361		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1362				   LED_MODE_DEFAULT);
1363		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1364		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1365		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1366		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1367		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1368	}
1369
1370	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1371	if (word == 0xffff) {
1372		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1373		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1374		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1375		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1376		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1377	}
1378
1379	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1380	if (word == 0xffff) {
1381		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1382				   DEFAULT_RSSI_OFFSET);
1383		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1384		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1385				  word);
1386	}
1387
1388	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1389	if (word == 0xffff) {
1390		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1391		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1392		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1393	}
1394
1395	/*
1396	 * Switch lower vgc bound to current BBP R17 value,
1397	 * lower the value a bit for better quality.
1398	 */
1399	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1400	bbp -= 6;
1401
1402	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1403	if (word == 0xffff) {
1404		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1405		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1406		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1407		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1408	} else {
1409		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1410		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1411	}
1412
1413	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1414	if (word == 0xffff) {
1415		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1416		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1417		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1418		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1419	}
1420
1421	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1422	if (word == 0xffff) {
1423		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1424		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1425		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1426		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1427	}
1428
1429	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1430	if (word == 0xffff) {
1431		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1432		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1433		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1434		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1435	}
1436
1437	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1438	if (word == 0xffff) {
1439		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1440		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1441		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1442		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1443	}
1444
1445	return 0;
1446}
1447
1448static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1449{
1450	u16 reg;
1451	u16 value;
1452	u16 eeprom;
1453
1454	/*
1455	 * Read EEPROM word for configuration.
1456	 */
1457	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1458
1459	/*
1460	 * Identify RF chipset.
1461	 */
1462	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1463	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1464	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1465
1466	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1467		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1468		return -ENODEV;
1469	}
1470
1471	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1472	    !rt2x00_rf(rt2x00dev, RF2523) &&
1473	    !rt2x00_rf(rt2x00dev, RF2524) &&
1474	    !rt2x00_rf(rt2x00dev, RF2525) &&
1475	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1476	    !rt2x00_rf(rt2x00dev, RF5222)) {
1477		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1478		return -ENODEV;
1479	}
1480
1481	/*
1482	 * Identify default antenna configuration.
1483	 */
1484	rt2x00dev->default_ant.tx =
1485	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1486	rt2x00dev->default_ant.rx =
1487	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1488
1489	/*
1490	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1491	 * I am not 100% sure about this, but the legacy drivers do not
1492	 * indicate antenna swapping in software is required when
1493	 * diversity is enabled.
1494	 */
1495	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1496		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1497	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1498		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1499
1500	/*
1501	 * Store led mode, for correct led behaviour.
1502	 */
1503#ifdef CONFIG_RT2X00_LIB_LEDS
1504	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1505
1506	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1507	if (value == LED_MODE_TXRX_ACTIVITY ||
1508	    value == LED_MODE_DEFAULT ||
1509	    value == LED_MODE_ASUS)
1510		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1511				   LED_TYPE_ACTIVITY);
1512#endif /* CONFIG_RT2X00_LIB_LEDS */
1513
1514	/*
1515	 * Detect if this device has an hardware controlled radio.
1516	 */
1517	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1518		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1519
1520	/*
1521	 * Read the RSSI <-> dBm offset information.
1522	 */
1523	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1524	rt2x00dev->rssi_offset =
1525	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1526
1527	return 0;
1528}
1529
1530/*
1531 * RF value list for RF2522
1532 * Supports: 2.4 GHz
1533 */
1534static const struct rf_channel rf_vals_bg_2522[] = {
1535	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1536	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1537	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1538	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1539	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1540	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1541	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1542	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1543	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1544	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1545	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1546	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1547	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1548	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1549};
1550
1551/*
1552 * RF value list for RF2523
1553 * Supports: 2.4 GHz
1554 */
1555static const struct rf_channel rf_vals_bg_2523[] = {
1556	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1557	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1558	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1559	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1560	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1561	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1562	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1563	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1564	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1565	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1566	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1567	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1568	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1569	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1570};
1571
1572/*
1573 * RF value list for RF2524
1574 * Supports: 2.4 GHz
1575 */
1576static const struct rf_channel rf_vals_bg_2524[] = {
1577	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1578	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1579	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1580	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1581	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1582	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1583	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1584	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1585	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1586	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1587	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1588	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1589	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1590	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1591};
1592
1593/*
1594 * RF value list for RF2525
1595 * Supports: 2.4 GHz
1596 */
1597static const struct rf_channel rf_vals_bg_2525[] = {
1598	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1599	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1600	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1601	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1602	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1603	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1604	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1605	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1606	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1607	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1608	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1609	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1610	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1611	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1612};
1613
1614/*
1615 * RF value list for RF2525e
1616 * Supports: 2.4 GHz
1617 */
1618static const struct rf_channel rf_vals_bg_2525e[] = {
1619	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1620	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1621	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1622	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1623	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1624	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1625	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1626	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1627	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1628	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1629	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1630	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1631	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1632	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1633};
1634
1635/*
1636 * RF value list for RF5222
1637 * Supports: 2.4 GHz & 5.2 GHz
1638 */
1639static const struct rf_channel rf_vals_5222[] = {
1640	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1641	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1642	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1643	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1644	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1645	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1646	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1647	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1648	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1649	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1650	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1651	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1652	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1653	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1654
1655	/* 802.11 UNI / HyperLan 2 */
1656	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1657	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1658	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1659	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1660	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1661	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1662	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1663	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1664
1665	/* 802.11 HyperLan 2 */
1666	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1667	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1668	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1669	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1670	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1671	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1672	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1673	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1674	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1675	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1676
1677	/* 802.11 UNII */
1678	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1679	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1680	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1681	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1682	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1683};
1684
1685static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1686{
1687	struct hw_mode_spec *spec = &rt2x00dev->spec;
1688	struct channel_info *info;
1689	char *tx_power;
1690	unsigned int i;
1691
1692	/*
1693	 * Initialize all hw fields.
1694	 *
1695	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1696	 * capable of sending the buffered frames out after the DTIM
1697	 * transmission using rt2x00lib_beacondone. This will send out
1698	 * multicast and broadcast traffic immediately instead of buffering it
1699	 * infinitly and thus dropping it after some time.
1700	 */
1701	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1702	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1703	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1704	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1705
1706	/*
1707	 * Disable powersaving as default.
1708	 */
1709	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1710
1711	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1712	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1713				rt2x00_eeprom_addr(rt2x00dev,
1714						   EEPROM_MAC_ADDR_0));
1715
1716	/*
1717	 * Initialize hw_mode information.
1718	 */
1719	spec->supported_bands = SUPPORT_BAND_2GHZ;
1720	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1721
1722	if (rt2x00_rf(rt2x00dev, RF2522)) {
1723		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1724		spec->channels = rf_vals_bg_2522;
1725	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1726		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1727		spec->channels = rf_vals_bg_2523;
1728	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1729		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1730		spec->channels = rf_vals_bg_2524;
1731	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1732		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1733		spec->channels = rf_vals_bg_2525;
1734	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1735		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1736		spec->channels = rf_vals_bg_2525e;
1737	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1738		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1739		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1740		spec->channels = rf_vals_5222;
1741	}
1742
1743	/*
1744	 * Create channel information array
1745	 */
1746	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1747	if (!info)
1748		return -ENOMEM;
1749
1750	spec->channels_info = info;
1751
1752	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1753	for (i = 0; i < 14; i++) {
1754		info[i].max_power = MAX_TXPOWER;
1755		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1756	}
1757
1758	if (spec->num_channels > 14) {
1759		for (i = 14; i < spec->num_channels; i++) {
1760			info[i].max_power = MAX_TXPOWER;
1761			info[i].default_power1 = DEFAULT_TXPOWER;
1762		}
1763	}
1764
1765	return 0;
1766}
1767
1768static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1769{
1770	int retval;
1771	u16 reg;
1772
1773	/*
1774	 * Allocate eeprom data.
1775	 */
1776	retval = rt2500usb_validate_eeprom(rt2x00dev);
1777	if (retval)
1778		return retval;
1779
1780	retval = rt2500usb_init_eeprom(rt2x00dev);
1781	if (retval)
1782		return retval;
1783
1784	/*
1785	 * Enable rfkill polling by setting GPIO direction of the
1786	 * rfkill switch GPIO pin correctly.
1787	 */
1788	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1789	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1790	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1791
1792	/*
1793	 * Initialize hw specifications.
1794	 */
1795	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1796	if (retval)
1797		return retval;
1798
1799	/*
1800	 * This device requires the atim queue
1801	 */
1802	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1803	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1804	if (!modparam_nohwcrypt) {
1805		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1806		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1807	}
1808	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1809	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1810
1811	/*
1812	 * Set the rssi offset.
1813	 */
1814	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1815
1816	return 0;
1817}
1818
1819static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1820	.tx			= rt2x00mac_tx,
 
1821	.start			= rt2x00mac_start,
1822	.stop			= rt2x00mac_stop,
1823	.add_interface		= rt2x00mac_add_interface,
1824	.remove_interface	= rt2x00mac_remove_interface,
1825	.config			= rt2x00mac_config,
1826	.configure_filter	= rt2x00mac_configure_filter,
1827	.set_tim		= rt2x00mac_set_tim,
1828	.set_key		= rt2x00mac_set_key,
1829	.sw_scan_start		= rt2x00mac_sw_scan_start,
1830	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1831	.get_stats		= rt2x00mac_get_stats,
1832	.bss_info_changed	= rt2x00mac_bss_info_changed,
1833	.conf_tx		= rt2x00mac_conf_tx,
1834	.rfkill_poll		= rt2x00mac_rfkill_poll,
1835	.flush			= rt2x00mac_flush,
1836	.set_antenna		= rt2x00mac_set_antenna,
1837	.get_antenna		= rt2x00mac_get_antenna,
1838	.get_ringparam		= rt2x00mac_get_ringparam,
1839	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1840};
1841
1842static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1843	.probe_hw		= rt2500usb_probe_hw,
1844	.initialize		= rt2x00usb_initialize,
1845	.uninitialize		= rt2x00usb_uninitialize,
1846	.clear_entry		= rt2x00usb_clear_entry,
1847	.set_device_state	= rt2500usb_set_device_state,
1848	.rfkill_poll		= rt2500usb_rfkill_poll,
1849	.link_stats		= rt2500usb_link_stats,
1850	.reset_tuner		= rt2500usb_reset_tuner,
1851	.watchdog		= rt2x00usb_watchdog,
1852	.start_queue		= rt2500usb_start_queue,
1853	.kick_queue		= rt2x00usb_kick_queue,
1854	.stop_queue		= rt2500usb_stop_queue,
1855	.flush_queue		= rt2x00usb_flush_queue,
1856	.write_tx_desc		= rt2500usb_write_tx_desc,
1857	.write_beacon		= rt2500usb_write_beacon,
1858	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1859	.fill_rxdone		= rt2500usb_fill_rxdone,
1860	.config_shared_key	= rt2500usb_config_key,
1861	.config_pairwise_key	= rt2500usb_config_key,
1862	.config_filter		= rt2500usb_config_filter,
1863	.config_intf		= rt2500usb_config_intf,
1864	.config_erp		= rt2500usb_config_erp,
1865	.config_ant		= rt2500usb_config_ant,
1866	.config			= rt2500usb_config,
1867};
1868
1869static void rt2500usb_queue_init(struct data_queue *queue)
1870{
1871	switch (queue->qid) {
1872	case QID_RX:
1873		queue->limit = 32;
1874		queue->data_size = DATA_FRAME_SIZE;
1875		queue->desc_size = RXD_DESC_SIZE;
1876		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1877		break;
1878
1879	case QID_AC_VO:
1880	case QID_AC_VI:
1881	case QID_AC_BE:
1882	case QID_AC_BK:
1883		queue->limit = 32;
1884		queue->data_size = DATA_FRAME_SIZE;
1885		queue->desc_size = TXD_DESC_SIZE;
1886		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1887		break;
1888
1889	case QID_BEACON:
1890		queue->limit = 1;
1891		queue->data_size = MGMT_FRAME_SIZE;
1892		queue->desc_size = TXD_DESC_SIZE;
1893		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1894		break;
1895
1896	case QID_ATIM:
1897		queue->limit = 8;
1898		queue->data_size = DATA_FRAME_SIZE;
1899		queue->desc_size = TXD_DESC_SIZE;
1900		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1901		break;
1902
1903	default:
1904		BUG();
1905		break;
1906	}
1907}
1908
1909static const struct rt2x00_ops rt2500usb_ops = {
1910	.name			= KBUILD_MODNAME,
1911	.max_ap_intf		= 1,
1912	.eeprom_size		= EEPROM_SIZE,
1913	.rf_size		= RF_SIZE,
1914	.tx_queues		= NUM_TX_QUEUES,
1915	.queue_init		= rt2500usb_queue_init,
1916	.lib			= &rt2500usb_rt2x00_ops,
1917	.hw			= &rt2500usb_mac80211_ops,
1918#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1919	.debugfs		= &rt2500usb_rt2x00debug,
1920#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1921};
1922
1923/*
1924 * rt2500usb module information.
1925 */
1926static struct usb_device_id rt2500usb_device_table[] = {
1927	/* ASUS */
1928	{ USB_DEVICE(0x0b05, 0x1706) },
1929	{ USB_DEVICE(0x0b05, 0x1707) },
1930	/* Belkin */
1931	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1932	{ USB_DEVICE(0x050d, 0x7051) },
1933	/* Cisco Systems */
1934	{ USB_DEVICE(0x13b1, 0x000d) },
1935	{ USB_DEVICE(0x13b1, 0x0011) },
1936	{ USB_DEVICE(0x13b1, 0x001a) },
1937	/* Conceptronic */
1938	{ USB_DEVICE(0x14b2, 0x3c02) },
1939	/* D-LINK */
1940	{ USB_DEVICE(0x2001, 0x3c00) },
1941	/* Gigabyte */
1942	{ USB_DEVICE(0x1044, 0x8001) },
1943	{ USB_DEVICE(0x1044, 0x8007) },
1944	/* Hercules */
1945	{ USB_DEVICE(0x06f8, 0xe000) },
1946	/* Melco */
1947	{ USB_DEVICE(0x0411, 0x005e) },
1948	{ USB_DEVICE(0x0411, 0x0066) },
1949	{ USB_DEVICE(0x0411, 0x0067) },
1950	{ USB_DEVICE(0x0411, 0x008b) },
1951	{ USB_DEVICE(0x0411, 0x0097) },
1952	/* MSI */
1953	{ USB_DEVICE(0x0db0, 0x6861) },
1954	{ USB_DEVICE(0x0db0, 0x6865) },
1955	{ USB_DEVICE(0x0db0, 0x6869) },
1956	/* Ralink */
1957	{ USB_DEVICE(0x148f, 0x1706) },
1958	{ USB_DEVICE(0x148f, 0x2570) },
1959	{ USB_DEVICE(0x148f, 0x9020) },
1960	/* Sagem */
1961	{ USB_DEVICE(0x079b, 0x004b) },
1962	/* Siemens */
1963	{ USB_DEVICE(0x0681, 0x3c06) },
1964	/* SMC */
1965	{ USB_DEVICE(0x0707, 0xee13) },
1966	/* Spairon */
1967	{ USB_DEVICE(0x114b, 0x0110) },
1968	/* SURECOM */
1969	{ USB_DEVICE(0x0769, 0x11f3) },
1970	/* Trust */
1971	{ USB_DEVICE(0x0eb0, 0x9020) },
1972	/* VTech */
1973	{ USB_DEVICE(0x0f88, 0x3012) },
1974	/* Zinwell */
1975	{ USB_DEVICE(0x5a57, 0x0260) },
1976	{ 0, }
1977};
1978
1979MODULE_AUTHOR(DRV_PROJECT);
1980MODULE_VERSION(DRV_VERSION);
1981MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1982MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1983MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1984MODULE_LICENSE("GPL");
1985
1986static int rt2500usb_probe(struct usb_interface *usb_intf,
1987			   const struct usb_device_id *id)
1988{
1989	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1990}
1991
1992static struct usb_driver rt2500usb_driver = {
1993	.name		= KBUILD_MODNAME,
1994	.id_table	= rt2500usb_device_table,
1995	.probe		= rt2500usb_probe,
1996	.disconnect	= rt2x00usb_disconnect,
1997	.suspend	= rt2x00usb_suspend,
1998	.resume		= rt2x00usb_resume,
1999	.reset_resume	= rt2x00usb_resume,
2000	.disable_hub_initiated_lpm = 1,
2001};
2002
2003module_usb_driver(rt2500usb_driver);