Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
   3 *
   4 * Based on skelton.c by Donald Becker.
   5 *
   6 * This driver is a replacement of older and less maintained version.
   7 * This is a header of the older version:
   8 *	-----<snip>-----
   9 *	Copyright 2001 MontaVista Software Inc.
  10 *	Author: MontaVista Software, Inc.
  11 *		ahennessy@mvista.com
  12 *	Copyright (C) 2000-2001 Toshiba Corporation
  13 *	static const char *version =
  14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15 *	-----<snip>-----
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 *
  21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22 * All Rights Reserved.
  23 */
  24
  25#define DRV_VERSION	"1.39"
  26static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
  27#define MODNAME			"tc35815"
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/fcntl.h>
  33#include <linux/interrupt.h>
  34#include <linux/ioport.h>
  35#include <linux/in.h>
  36#include <linux/if_vlan.h>
  37#include <linux/slab.h>
  38#include <linux/string.h>
  39#include <linux/spinlock.h>
  40#include <linux/errno.h>
  41#include <linux/netdevice.h>
  42#include <linux/etherdevice.h>
  43#include <linux/skbuff.h>
  44#include <linux/delay.h>
  45#include <linux/pci.h>
  46#include <linux/phy.h>
  47#include <linux/workqueue.h>
  48#include <linux/platform_device.h>
  49#include <linux/prefetch.h>
  50#include <asm/io.h>
  51#include <asm/byteorder.h>
  52
  53enum tc35815_chiptype {
  54	TC35815CF = 0,
  55	TC35815_NWU,
  56	TC35815_TX4939,
  57};
  58
  59/* indexed by tc35815_chiptype, above */
  60static const struct {
  61	const char *name;
  62} chip_info[] = {
  63	{ "TOSHIBA TC35815CF 10/100BaseTX" },
  64	{ "TOSHIBA TC35815 with Wake on LAN" },
  65	{ "TOSHIBA TC35815/TX4939" },
  66};
  67
  68static const struct pci_device_id tc35815_pci_tbl[] = {
  69	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  72	{0,}
  73};
  74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  75
  76/* see MODULE_PARM_DESC */
  77static struct tc35815_options {
  78	int speed;
  79	int duplex;
  80} options;
  81
  82/*
  83 * Registers
  84 */
  85struct tc35815_regs {
  86	__u32 DMA_Ctl;		/* 0x00 */
  87	__u32 TxFrmPtr;
  88	__u32 TxThrsh;
  89	__u32 TxPollCtr;
  90	__u32 BLFrmPtr;
  91	__u32 RxFragSize;
  92	__u32 Int_En;
  93	__u32 FDA_Bas;
  94	__u32 FDA_Lim;		/* 0x20 */
  95	__u32 Int_Src;
  96	__u32 unused0[2];
  97	__u32 PauseCnt;
  98	__u32 RemPauCnt;
  99	__u32 TxCtlFrmStat;
 100	__u32 unused1;
 101	__u32 MAC_Ctl;		/* 0x40 */
 102	__u32 CAM_Ctl;
 103	__u32 Tx_Ctl;
 104	__u32 Tx_Stat;
 105	__u32 Rx_Ctl;
 106	__u32 Rx_Stat;
 107	__u32 MD_Data;
 108	__u32 MD_CA;
 109	__u32 CAM_Adr;		/* 0x60 */
 110	__u32 CAM_Data;
 111	__u32 CAM_Ena;
 112	__u32 PROM_Ctl;
 113	__u32 PROM_Data;
 114	__u32 Algn_Cnt;
 115	__u32 CRC_Cnt;
 116	__u32 Miss_Cnt;
 117};
 118
 119/*
 120 * Bit assignments
 121 */
 122/* DMA_Ctl bit assign ------------------------------------------------------- */
 123#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
 124#define DMA_RxAlign_1	       0x00400000
 125#define DMA_RxAlign_2	       0x00800000
 126#define DMA_RxAlign_3	       0x00c00000
 127#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
 128#define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
 129#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
 130#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
 131#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
 132#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
 133#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
 134#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
 135#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
 136
 137/* RxFragSize bit assign ---------------------------------------------------- */
 138#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
 139#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
 140
 141/* MAC_Ctl bit assign ------------------------------------------------------- */
 142#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
 143#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
 144#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
 145#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
 146#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
 147#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
 148#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
 149#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
 150#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
 151#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
 152#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
 153#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
 154
 155/* PROM_Ctl bit assign ------------------------------------------------------ */
 156#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
 157#define PROM_Read	       0x00004000 /*10:Read operation		     */
 158#define PROM_Write	       0x00002000 /*01:Write operation		     */
 159#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
 160					  /*00:Enable or Disable Writting,   */
 161					  /*	  as specified in PROM_Addr. */
 162#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
 163					  /*00xxxx:	      disable	     */
 164
 165/* CAM_Ctl bit assign ------------------------------------------------------- */
 166#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
 167#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
 168					  /*			accept other */
 169#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
 170#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
 171#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
 172
 173/* CAM_Ena bit assign ------------------------------------------------------- */
 174#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
 175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
 176#define CAM_Ena_Bit(index)	(1 << (index))
 177#define CAM_ENTRY_DESTINATION	0
 178#define CAM_ENTRY_SOURCE	1
 179#define CAM_ENTRY_MACCTL	20
 180
 181/* Tx_Ctl bit assign -------------------------------------------------------- */
 182#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
 183#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
 184#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
 185#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
 186#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
 187#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
 188#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
 189#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
 190#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
 191#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
 192#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
 193#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
 194
 195/* Tx_Stat bit assign ------------------------------------------------------- */
 196#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
 197#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
 198#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
 199#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
 200#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
 201#define Tx_Under	       0x00000100 /* Underrun			     */
 202#define Tx_Defer	       0x00000200 /* Deferral			     */
 203#define Tx_NCarr	       0x00000400 /* No Carrier			     */
 204#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
 205#define Tx_LateColl	       0x00001000 /* Late Collision		     */
 206#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
 207#define Tx_Comp		       0x00004000 /* Completion			     */
 208#define Tx_Halted	       0x00008000 /* Tx Halted			     */
 209#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
 210
 211/* Rx_Ctl bit assign -------------------------------------------------------- */
 212#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
 213#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
 214#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
 215#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
 216#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
 217#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
 218#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
 219#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
 220#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
 221#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
 222#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
 223#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
 224
 225/* Rx_Stat bit assign ------------------------------------------------------- */
 226#define Rx_Halted	       0x00008000 /* Rx Halted			     */
 227#define Rx_Good		       0x00004000 /* Rx Good			     */
 228#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
 229#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
 230#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
 231#define Rx_Over		       0x00000400 /* Rx Overflow		     */
 232#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
 233#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
 234#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
 235#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
 236#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
 237#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
 238
 239#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
 240
 241/* Int_En bit assign -------------------------------------------------------- */
 242#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
 243#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
 244#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
 245#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
 246#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
 247#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
 248#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
 249#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
 250#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
 251#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
 252#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
 253#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
 254					  /*		   Exhausted Enable  */
 255
 256/* Int_Src bit assign ------------------------------------------------------- */
 257#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
 258#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
 259#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
 260#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
 261#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
 262#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
 263#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
 264#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
 265#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
 266#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
 267#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
 268#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
 269#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
 270#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
 271#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
 272
 273/* MD_CA bit assign --------------------------------------------------------- */
 274#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
 275#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
 276#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
 277
 278
 279/*
 280 * Descriptors
 281 */
 282
 283/* Frame descriptor */
 284struct FDesc {
 285	volatile __u32 FDNext;
 286	volatile __u32 FDSystem;
 287	volatile __u32 FDStat;
 288	volatile __u32 FDCtl;
 289};
 290
 291/* Buffer descriptor */
 292struct BDesc {
 293	volatile __u32 BuffData;
 294	volatile __u32 BDCtl;
 295};
 296
 297#define FD_ALIGN	16
 298
 299/* Frame Descriptor bit assign ---------------------------------------------- */
 300#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
 301#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
 302#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
 303#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
 304#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
 305#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
 306#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
 307#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
 308#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
 309#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
 310#define FD_BDCnt_SHIFT	       16
 311
 312/* Buffer Descriptor bit assign --------------------------------------------- */
 313#define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
 314#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
 315#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
 316#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
 317#define BD_RxBDID_SHIFT	       16
 318#define BD_RxBDSeqN_SHIFT      24
 319
 320
 321/* Some useful constants. */
 322
 323#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
 324	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
 325	Tx_En)	/* maybe  0x7b01 */
 326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
 327#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
 328	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
 329#define INT_EN_CMD  (Int_NRAbtEn | \
 330	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
 331	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
 332	Int_STargAbtEn | \
 333	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
 334#define DMA_CTL_CMD	DMA_BURST_SIZE
 335#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
 336
 337/* Tuning parameters */
 338#define DMA_BURST_SIZE	32
 339#define TX_THRESHOLD	1024
 340/* used threshold with packet max byte for low pci transfer ability.*/
 341#define TX_THRESHOLD_MAX 1536
 342/* setting threshold max value when overrun error occurred this count. */
 343#define TX_THRESHOLD_KEEP_LIMIT 10
 344
 345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
 346#define FD_PAGE_NUM 4
 347#define RX_BUF_NUM	128	/* < 256 */
 348#define RX_FD_NUM	256	/* >= 32 */
 349#define TX_FD_NUM	128
 350#if RX_CTL_CMD & Rx_LongEn
 351#define RX_BUF_SIZE	PAGE_SIZE
 352#elif RX_CTL_CMD & Rx_StripCRC
 353#define RX_BUF_SIZE	\
 354	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
 355#else
 356#define RX_BUF_SIZE	\
 357	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
 358#endif
 359#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
 360#define NAPI_WEIGHT	16
 361
 362struct TxFD {
 363	struct FDesc fd;
 364	struct BDesc bd;
 365	struct BDesc unused;
 366};
 367
 368struct RxFD {
 369	struct FDesc fd;
 370	struct BDesc bd[];	/* variable length */
 371};
 372
 373struct FrFD {
 374	struct FDesc fd;
 375	struct BDesc bd[RX_BUF_NUM];
 376};
 377
 378
 379#define tc_readl(addr)	ioread32(addr)
 380#define tc_writel(d, addr)	iowrite32(d, addr)
 381
 382#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
 383
 384/* Information that need to be kept for each controller. */
 385struct tc35815_local {
 386	struct pci_dev *pci_dev;
 387
 388	struct net_device *dev;
 389	struct napi_struct napi;
 390
 391	/* statistics */
 392	struct {
 393		int max_tx_qlen;
 394		int tx_ints;
 395		int rx_ints;
 396		int tx_underrun;
 397	} lstats;
 398
 399	/* Tx control lock.  This protects the transmit buffer ring
 400	 * state along with the "tx full" state of the driver.  This
 401	 * means all netif_queue flow control actions are protected
 402	 * by this lock as well.
 403	 */
 404	spinlock_t lock;
 405	spinlock_t rx_lock;
 406
 407	struct mii_bus *mii_bus;
 408	int duplex;
 409	int speed;
 410	int link;
 411	struct work_struct restart_work;
 412
 413	/*
 414	 * Transmitting: Batch Mode.
 415	 *	1 BD in 1 TxFD.
 416	 * Receiving: Non-Packing Mode.
 417	 *	1 circular FD for Free Buffer List.
 418	 *	RX_BUF_NUM BD in Free Buffer FD.
 419	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
 420	 */
 421	void *fd_buf;	/* for TxFD, RxFD, FrFD */
 422	dma_addr_t fd_buf_dma;
 423	struct TxFD *tfd_base;
 424	unsigned int tfd_start;
 425	unsigned int tfd_end;
 426	struct RxFD *rfd_base;
 427	struct RxFD *rfd_limit;
 428	struct RxFD *rfd_cur;
 429	struct FrFD *fbl_ptr;
 430	unsigned int fbl_count;
 431	struct {
 432		struct sk_buff *skb;
 433		dma_addr_t skb_dma;
 434	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
 435	u32 msg_enable;
 436	enum tc35815_chiptype chiptype;
 437};
 438
 439static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
 440{
 441	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
 442}
 443#ifdef DEBUG
 444static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
 445{
 446	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
 447}
 448#endif
 449static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
 450				       struct pci_dev *hwdev,
 451				       dma_addr_t *dma_handle)
 452{
 453	struct sk_buff *skb;
 454	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
 455	if (!skb)
 456		return NULL;
 457	*dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
 458				     DMA_FROM_DEVICE);
 459	if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
 460		dev_kfree_skb_any(skb);
 461		return NULL;
 462	}
 463	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
 464	return skb;
 465}
 466
 467static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
 468{
 469	dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
 470			 DMA_FROM_DEVICE);
 471	dev_kfree_skb_any(skb);
 472}
 473
 474/* Index to functions, as function prototypes. */
 475
 476static int	tc35815_open(struct net_device *dev);
 477static netdev_tx_t	tc35815_send_packet(struct sk_buff *skb,
 478					    struct net_device *dev);
 479static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
 480static int	tc35815_rx(struct net_device *dev, int limit);
 481static int	tc35815_poll(struct napi_struct *napi, int budget);
 482static void	tc35815_txdone(struct net_device *dev);
 483static int	tc35815_close(struct net_device *dev);
 484static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
 485static void	tc35815_set_multicast_list(struct net_device *dev);
 486static void	tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
 
 487#ifdef CONFIG_NET_POLL_CONTROLLER
 488static void	tc35815_poll_controller(struct net_device *dev);
 489#endif
 490static const struct ethtool_ops tc35815_ethtool_ops;
 491
 492/* Example routines you must write ;->. */
 493static void	tc35815_chip_reset(struct net_device *dev);
 494static void	tc35815_chip_init(struct net_device *dev);
 495
 496#ifdef DEBUG
 497static void	panic_queues(struct net_device *dev);
 498#endif
 499
 500static void tc35815_restart_work(struct work_struct *work);
 501
 502static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 503{
 504	struct net_device *dev = bus->priv;
 505	struct tc35815_regs __iomem *tr =
 506		(struct tc35815_regs __iomem *)dev->base_addr;
 507	unsigned long timeout = jiffies + HZ;
 508
 509	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
 510	udelay(12); /* it takes 32 x 400ns at least */
 511	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 512		if (time_after(jiffies, timeout))
 513			return -EIO;
 514		cpu_relax();
 515	}
 516	return tc_readl(&tr->MD_Data) & 0xffff;
 517}
 518
 519static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
 520{
 521	struct net_device *dev = bus->priv;
 522	struct tc35815_regs __iomem *tr =
 523		(struct tc35815_regs __iomem *)dev->base_addr;
 524	unsigned long timeout = jiffies + HZ;
 525
 526	tc_writel(val, &tr->MD_Data);
 527	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
 528		  &tr->MD_CA);
 529	udelay(12); /* it takes 32 x 400ns at least */
 530	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 531		if (time_after(jiffies, timeout))
 532			return -EIO;
 533		cpu_relax();
 534	}
 535	return 0;
 536}
 537
 538static void tc_handle_link_change(struct net_device *dev)
 539{
 540	struct tc35815_local *lp = netdev_priv(dev);
 541	struct phy_device *phydev = dev->phydev;
 542	unsigned long flags;
 543	int status_change = 0;
 544
 545	spin_lock_irqsave(&lp->lock, flags);
 546	if (phydev->link &&
 547	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
 548		struct tc35815_regs __iomem *tr =
 549			(struct tc35815_regs __iomem *)dev->base_addr;
 550		u32 reg;
 551
 552		reg = tc_readl(&tr->MAC_Ctl);
 553		reg |= MAC_HaltReq;
 554		tc_writel(reg, &tr->MAC_Ctl);
 555		if (phydev->duplex == DUPLEX_FULL)
 556			reg |= MAC_FullDup;
 557		else
 558			reg &= ~MAC_FullDup;
 559		tc_writel(reg, &tr->MAC_Ctl);
 560		reg &= ~MAC_HaltReq;
 561		tc_writel(reg, &tr->MAC_Ctl);
 562
 563		/*
 564		 * TX4939 PCFG.SPEEDn bit will be changed on
 565		 * NETDEV_CHANGE event.
 566		 */
 567		/*
 568		 * WORKAROUND: enable LostCrS only if half duplex
 569		 * operation.
 570		 * (TX4939 does not have EnLCarr)
 571		 */
 572		if (phydev->duplex == DUPLEX_HALF &&
 573		    lp->chiptype != TC35815_TX4939)
 574			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
 575				  &tr->Tx_Ctl);
 576
 577		lp->speed = phydev->speed;
 578		lp->duplex = phydev->duplex;
 579		status_change = 1;
 580	}
 581
 582	if (phydev->link != lp->link) {
 583		if (phydev->link) {
 584			/* delayed promiscuous enabling */
 585			if (dev->flags & IFF_PROMISC)
 586				tc35815_set_multicast_list(dev);
 587		} else {
 588			lp->speed = 0;
 589			lp->duplex = -1;
 590		}
 591		lp->link = phydev->link;
 592
 593		status_change = 1;
 594	}
 595	spin_unlock_irqrestore(&lp->lock, flags);
 596
 597	if (status_change && netif_msg_link(lp)) {
 598		phy_print_status(phydev);
 599		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
 600			 dev->name,
 601			 phy_read(phydev, MII_BMCR),
 602			 phy_read(phydev, MII_BMSR),
 603			 phy_read(phydev, MII_LPA));
 604	}
 605}
 606
 607static int tc_mii_probe(struct net_device *dev)
 608{
 609	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
 610	struct tc35815_local *lp = netdev_priv(dev);
 611	struct phy_device *phydev;
 
 612
 613	phydev = phy_find_first(lp->mii_bus);
 614	if (!phydev) {
 615		printk(KERN_ERR "%s: no PHY found\n", dev->name);
 616		return -ENODEV;
 617	}
 618
 619	/* attach the mac to the phy */
 620	phydev = phy_connect(dev, phydev_name(phydev),
 621			     &tc_handle_link_change,
 622			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
 623	if (IS_ERR(phydev)) {
 624		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
 625		return PTR_ERR(phydev);
 626	}
 627
 628	phy_attached_info(phydev);
 629
 630	/* mask with MAC supported features */
 631	phy_set_max_speed(phydev, SPEED_100);
 632	if (options.speed == 10) {
 633		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
 634		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
 635	} else if (options.speed == 100) {
 636		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
 637		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
 638	}
 639	if (options.duplex == 1) {
 640		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
 641		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
 642	} else if (options.duplex == 2) {
 643		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
 644		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
 645	}
 646	linkmode_andnot(phydev->supported, phydev->supported, mask);
 647	linkmode_copy(phydev->advertising, phydev->supported);
 648
 649	lp->link = 0;
 650	lp->speed = 0;
 651	lp->duplex = -1;
 652
 653	return 0;
 654}
 655
 656static int tc_mii_init(struct net_device *dev)
 657{
 658	struct tc35815_local *lp = netdev_priv(dev);
 659	int err;
 660
 661	lp->mii_bus = mdiobus_alloc();
 662	if (lp->mii_bus == NULL) {
 663		err = -ENOMEM;
 664		goto err_out;
 665	}
 666
 667	lp->mii_bus->name = "tc35815_mii_bus";
 668	lp->mii_bus->read = tc_mdio_read;
 669	lp->mii_bus->write = tc_mdio_write;
 670	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(lp->pci_dev));
 
 671	lp->mii_bus->priv = dev;
 672	lp->mii_bus->parent = &lp->pci_dev->dev;
 673	err = mdiobus_register(lp->mii_bus);
 674	if (err)
 675		goto err_out_free_mii_bus;
 676	err = tc_mii_probe(dev);
 677	if (err)
 678		goto err_out_unregister_bus;
 679	return 0;
 680
 681err_out_unregister_bus:
 682	mdiobus_unregister(lp->mii_bus);
 683err_out_free_mii_bus:
 684	mdiobus_free(lp->mii_bus);
 685err_out:
 686	return err;
 687}
 688
 689#ifdef CONFIG_CPU_TX49XX
 690/*
 691 * Find a platform_device providing a MAC address.  The platform code
 692 * should provide a "tc35815-mac" device with a MAC address in its
 693 * platform_data.
 694 */
 695static int tc35815_mac_match(struct device *dev, const void *data)
 696{
 697	struct platform_device *plat_dev = to_platform_device(dev);
 698	const struct pci_dev *pci_dev = data;
 699	unsigned int id = pci_dev->irq;
 700	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
 701}
 702
 703static int tc35815_read_plat_dev_addr(struct net_device *dev)
 704{
 705	struct tc35815_local *lp = netdev_priv(dev);
 706	struct device *pd = bus_find_device(&platform_bus_type, NULL,
 707					    lp->pci_dev, tc35815_mac_match);
 708	if (pd) {
 709		if (pd->platform_data)
 710			eth_hw_addr_set(dev, pd->platform_data);
 711		put_device(pd);
 712		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
 713	}
 714	return -ENODEV;
 715}
 716#else
 717static int tc35815_read_plat_dev_addr(struct net_device *dev)
 718{
 719	return -ENODEV;
 720}
 721#endif
 722
 723static int tc35815_init_dev_addr(struct net_device *dev)
 724{
 725	struct tc35815_regs __iomem *tr =
 726		(struct tc35815_regs __iomem *)dev->base_addr;
 727	u8 addr[ETH_ALEN];
 728	int i;
 729
 730	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 731		;
 732	for (i = 0; i < 6; i += 2) {
 733		unsigned short data;
 734		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
 735		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 736			;
 737		data = tc_readl(&tr->PROM_Data);
 738		addr[i] = data & 0xff;
 739		addr[i+1] = data >> 8;
 740	}
 741	eth_hw_addr_set(dev, addr);
 742	if (!is_valid_ether_addr(dev->dev_addr))
 743		return tc35815_read_plat_dev_addr(dev);
 744	return 0;
 745}
 746
 747static const struct net_device_ops tc35815_netdev_ops = {
 748	.ndo_open		= tc35815_open,
 749	.ndo_stop		= tc35815_close,
 750	.ndo_start_xmit		= tc35815_send_packet,
 751	.ndo_get_stats		= tc35815_get_stats,
 752	.ndo_set_rx_mode	= tc35815_set_multicast_list,
 753	.ndo_tx_timeout		= tc35815_tx_timeout,
 754	.ndo_eth_ioctl		= phy_do_ioctl_running,
 755	.ndo_validate_addr	= eth_validate_addr,
 756	.ndo_set_mac_address	= eth_mac_addr,
 757#ifdef CONFIG_NET_POLL_CONTROLLER
 758	.ndo_poll_controller	= tc35815_poll_controller,
 759#endif
 760};
 761
 762static int tc35815_init_one(struct pci_dev *pdev,
 763			    const struct pci_device_id *ent)
 764{
 765	void __iomem *ioaddr = NULL;
 766	struct net_device *dev;
 767	struct tc35815_local *lp;
 768	int rc;
 769
 770	static int printed_version;
 771	if (!printed_version++) {
 772		printk(version);
 773		dev_printk(KERN_DEBUG, &pdev->dev,
 774			   "speed:%d duplex:%d\n",
 775			   options.speed, options.duplex);
 776	}
 777
 778	if (!pdev->irq) {
 779		dev_warn(&pdev->dev, "no IRQ assigned.\n");
 780		return -ENODEV;
 781	}
 782
 783	/* dev zeroed in alloc_etherdev */
 784	dev = alloc_etherdev(sizeof(*lp));
 785	if (dev == NULL)
 786		return -ENOMEM;
 787
 788	SET_NETDEV_DEV(dev, &pdev->dev);
 789	lp = netdev_priv(dev);
 790	lp->dev = dev;
 791
 792	/* enable device (incl. PCI PM wakeup), and bus-mastering */
 793	rc = pcim_enable_device(pdev);
 794	if (rc)
 795		goto err_out;
 796	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
 797	if (rc)
 798		goto err_out;
 799	pci_set_master(pdev);
 800	ioaddr = pcim_iomap_table(pdev)[1];
 801
 802	/* Initialize the device structure. */
 803	dev->netdev_ops = &tc35815_netdev_ops;
 804	dev->ethtool_ops = &tc35815_ethtool_ops;
 805	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
 806	netif_napi_add_weight(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
 807
 808	dev->irq = pdev->irq;
 809	dev->base_addr = (unsigned long)ioaddr;
 810
 811	INIT_WORK(&lp->restart_work, tc35815_restart_work);
 812	spin_lock_init(&lp->lock);
 813	spin_lock_init(&lp->rx_lock);
 814	lp->pci_dev = pdev;
 815	lp->chiptype = ent->driver_data;
 816
 817	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
 818	pci_set_drvdata(pdev, dev);
 819
 820	/* Soft reset the chip. */
 821	tc35815_chip_reset(dev);
 822
 823	/* Retrieve the ethernet address. */
 824	if (tc35815_init_dev_addr(dev)) {
 825		dev_warn(&pdev->dev, "not valid ether addr\n");
 826		eth_hw_addr_random(dev);
 827	}
 828
 829	rc = register_netdev(dev);
 830	if (rc)
 831		goto err_out;
 832
 833	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
 834		dev->name,
 835		chip_info[ent->driver_data].name,
 836		dev->base_addr,
 837		dev->dev_addr,
 838		dev->irq);
 839
 840	rc = tc_mii_init(dev);
 841	if (rc)
 842		goto err_out_unregister;
 843
 844	return 0;
 845
 846err_out_unregister:
 847	unregister_netdev(dev);
 848err_out:
 849	free_netdev(dev);
 850	return rc;
 851}
 852
 853
 854static void tc35815_remove_one(struct pci_dev *pdev)
 855{
 856	struct net_device *dev = pci_get_drvdata(pdev);
 857	struct tc35815_local *lp = netdev_priv(dev);
 858
 859	phy_disconnect(dev->phydev);
 860	mdiobus_unregister(lp->mii_bus);
 861	mdiobus_free(lp->mii_bus);
 862	unregister_netdev(dev);
 863	free_netdev(dev);
 864}
 865
 866static int
 867tc35815_init_queues(struct net_device *dev)
 868{
 869	struct tc35815_local *lp = netdev_priv(dev);
 870	int i;
 871	unsigned long fd_addr;
 872
 873	if (!lp->fd_buf) {
 874		BUG_ON(sizeof(struct FDesc) +
 875		       sizeof(struct BDesc) * RX_BUF_NUM +
 876		       sizeof(struct FDesc) * RX_FD_NUM +
 877		       sizeof(struct TxFD) * TX_FD_NUM >
 878		       PAGE_SIZE * FD_PAGE_NUM);
 879
 880		lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
 881						PAGE_SIZE * FD_PAGE_NUM,
 882						&lp->fd_buf_dma, GFP_ATOMIC);
 883		if (!lp->fd_buf)
 884			return -ENOMEM;
 885		for (i = 0; i < RX_BUF_NUM; i++) {
 886			lp->rx_skbs[i].skb =
 887				alloc_rxbuf_skb(dev, lp->pci_dev,
 888						&lp->rx_skbs[i].skb_dma);
 889			if (!lp->rx_skbs[i].skb) {
 890				while (--i >= 0) {
 891					free_rxbuf_skb(lp->pci_dev,
 892						       lp->rx_skbs[i].skb,
 893						       lp->rx_skbs[i].skb_dma);
 894					lp->rx_skbs[i].skb = NULL;
 895				}
 896				dma_free_coherent(&lp->pci_dev->dev,
 897						  PAGE_SIZE * FD_PAGE_NUM,
 898						  lp->fd_buf, lp->fd_buf_dma);
 
 899				lp->fd_buf = NULL;
 900				return -ENOMEM;
 901			}
 902		}
 903		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
 904		       dev->name, lp->fd_buf);
 905		printk("\n");
 906	} else {
 907		for (i = 0; i < FD_PAGE_NUM; i++)
 908			clear_page((void *)((unsigned long)lp->fd_buf +
 909					    i * PAGE_SIZE));
 910	}
 911	fd_addr = (unsigned long)lp->fd_buf;
 912
 913	/* Free Descriptors (for Receive) */
 914	lp->rfd_base = (struct RxFD *)fd_addr;
 915	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
 916	for (i = 0; i < RX_FD_NUM; i++)
 917		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
 918	lp->rfd_cur = lp->rfd_base;
 919	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
 920
 921	/* Transmit Descriptors */
 922	lp->tfd_base = (struct TxFD *)fd_addr;
 923	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
 924	for (i = 0; i < TX_FD_NUM; i++) {
 925		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
 926		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
 927		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
 928	}
 929	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
 930	lp->tfd_start = 0;
 931	lp->tfd_end = 0;
 932
 933	/* Buffer List (for Receive) */
 934	lp->fbl_ptr = (struct FrFD *)fd_addr;
 935	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
 936	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
 937	/*
 938	 * move all allocated skbs to head of rx_skbs[] array.
 939	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
 940	 * tc35815_rx() had failed.
 941	 */
 942	lp->fbl_count = 0;
 943	for (i = 0; i < RX_BUF_NUM; i++) {
 944		if (lp->rx_skbs[i].skb) {
 945			if (i != lp->fbl_count) {
 946				lp->rx_skbs[lp->fbl_count].skb =
 947					lp->rx_skbs[i].skb;
 948				lp->rx_skbs[lp->fbl_count].skb_dma =
 949					lp->rx_skbs[i].skb_dma;
 950			}
 951			lp->fbl_count++;
 952		}
 953	}
 954	for (i = 0; i < RX_BUF_NUM; i++) {
 955		if (i >= lp->fbl_count) {
 956			lp->fbl_ptr->bd[i].BuffData = 0;
 957			lp->fbl_ptr->bd[i].BDCtl = 0;
 958			continue;
 959		}
 960		lp->fbl_ptr->bd[i].BuffData =
 961			cpu_to_le32(lp->rx_skbs[i].skb_dma);
 962		/* BDID is index of FrFD.bd[] */
 963		lp->fbl_ptr->bd[i].BDCtl =
 964			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
 965				    RX_BUF_SIZE);
 966	}
 967
 968	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
 969	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
 970	return 0;
 971}
 972
 973static void
 974tc35815_clear_queues(struct net_device *dev)
 975{
 976	struct tc35815_local *lp = netdev_priv(dev);
 977	int i;
 978
 979	for (i = 0; i < TX_FD_NUM; i++) {
 980		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
 981		struct sk_buff *skb =
 982			fdsystem != 0xffffffff ?
 983			lp->tx_skbs[fdsystem].skb : NULL;
 984#ifdef DEBUG
 985		if (lp->tx_skbs[i].skb != skb) {
 986			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
 987			panic_queues(dev);
 988		}
 989#else
 990		BUG_ON(lp->tx_skbs[i].skb != skb);
 991#endif
 992		if (skb) {
 993			dma_unmap_single(&lp->pci_dev->dev,
 994					 lp->tx_skbs[i].skb_dma, skb->len,
 995					 DMA_TO_DEVICE);
 996			lp->tx_skbs[i].skb = NULL;
 997			lp->tx_skbs[i].skb_dma = 0;
 998			dev_kfree_skb_any(skb);
 999		}
1000		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1001	}
1002
1003	tc35815_init_queues(dev);
1004}
1005
1006static void
1007tc35815_free_queues(struct net_device *dev)
1008{
1009	struct tc35815_local *lp = netdev_priv(dev);
1010	int i;
1011
1012	if (lp->tfd_base) {
1013		for (i = 0; i < TX_FD_NUM; i++) {
1014			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1015			struct sk_buff *skb =
1016				fdsystem != 0xffffffff ?
1017				lp->tx_skbs[fdsystem].skb : NULL;
1018#ifdef DEBUG
1019			if (lp->tx_skbs[i].skb != skb) {
1020				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1021				panic_queues(dev);
1022			}
1023#else
1024			BUG_ON(lp->tx_skbs[i].skb != skb);
1025#endif
1026			if (skb) {
1027				dma_unmap_single(&lp->pci_dev->dev,
1028						 lp->tx_skbs[i].skb_dma,
1029						 skb->len, DMA_TO_DEVICE);
1030				dev_kfree_skb(skb);
 
1031				lp->tx_skbs[i].skb = NULL;
1032				lp->tx_skbs[i].skb_dma = 0;
1033			}
1034			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1035		}
1036	}
1037
1038	lp->rfd_base = NULL;
1039	lp->rfd_limit = NULL;
1040	lp->rfd_cur = NULL;
1041	lp->fbl_ptr = NULL;
1042
1043	for (i = 0; i < RX_BUF_NUM; i++) {
1044		if (lp->rx_skbs[i].skb) {
1045			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1046				       lp->rx_skbs[i].skb_dma);
1047			lp->rx_skbs[i].skb = NULL;
1048		}
1049	}
1050	if (lp->fd_buf) {
1051		dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1052				  lp->fd_buf, lp->fd_buf_dma);
1053		lp->fd_buf = NULL;
1054	}
1055}
1056
1057static void
1058dump_txfd(struct TxFD *fd)
1059{
1060	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1061	       le32_to_cpu(fd->fd.FDNext),
1062	       le32_to_cpu(fd->fd.FDSystem),
1063	       le32_to_cpu(fd->fd.FDStat),
1064	       le32_to_cpu(fd->fd.FDCtl));
1065	printk("BD: ");
1066	printk(" %08x %08x",
1067	       le32_to_cpu(fd->bd.BuffData),
1068	       le32_to_cpu(fd->bd.BDCtl));
1069	printk("\n");
1070}
1071
1072static int
1073dump_rxfd(struct RxFD *fd)
1074{
1075	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1076	if (bd_count > 8)
1077		bd_count = 8;
1078	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1079	       le32_to_cpu(fd->fd.FDNext),
1080	       le32_to_cpu(fd->fd.FDSystem),
1081	       le32_to_cpu(fd->fd.FDStat),
1082	       le32_to_cpu(fd->fd.FDCtl));
1083	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1084		return 0;
1085	printk("BD: ");
1086	for (i = 0; i < bd_count; i++)
1087		printk(" %08x %08x",
1088		       le32_to_cpu(fd->bd[i].BuffData),
1089		       le32_to_cpu(fd->bd[i].BDCtl));
1090	printk("\n");
1091	return bd_count;
1092}
1093
1094#ifdef DEBUG
1095static void
1096dump_frfd(struct FrFD *fd)
1097{
1098	int i;
1099	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1100	       le32_to_cpu(fd->fd.FDNext),
1101	       le32_to_cpu(fd->fd.FDSystem),
1102	       le32_to_cpu(fd->fd.FDStat),
1103	       le32_to_cpu(fd->fd.FDCtl));
1104	printk("BD: ");
1105	for (i = 0; i < RX_BUF_NUM; i++)
1106		printk(" %08x %08x",
1107		       le32_to_cpu(fd->bd[i].BuffData),
1108		       le32_to_cpu(fd->bd[i].BDCtl));
1109	printk("\n");
1110}
1111
1112static void
1113panic_queues(struct net_device *dev)
1114{
1115	struct tc35815_local *lp = netdev_priv(dev);
1116	int i;
1117
1118	printk("TxFD base %p, start %u, end %u\n",
1119	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1120	printk("RxFD base %p limit %p cur %p\n",
1121	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1122	printk("FrFD %p\n", lp->fbl_ptr);
1123	for (i = 0; i < TX_FD_NUM; i++)
1124		dump_txfd(&lp->tfd_base[i]);
1125	for (i = 0; i < RX_FD_NUM; i++) {
1126		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1127		i += (bd_count + 1) / 2;	/* skip BDs */
1128	}
1129	dump_frfd(lp->fbl_ptr);
1130	panic("%s: Illegal queue state.", dev->name);
1131}
1132#endif
1133
1134static void print_eth(const u8 *add)
1135{
1136	printk(KERN_DEBUG "print_eth(%p)\n", add);
1137	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1138		add + 6, add, add[12], add[13]);
1139}
1140
1141static int tc35815_tx_full(struct net_device *dev)
1142{
1143	struct tc35815_local *lp = netdev_priv(dev);
1144	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1145}
1146
1147static void tc35815_restart(struct net_device *dev)
1148{
1149	struct tc35815_local *lp = netdev_priv(dev);
1150	int ret;
1151
1152	if (dev->phydev) {
1153		ret = phy_init_hw(dev->phydev);
1154		if (ret)
1155			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1156	}
1157
1158	spin_lock_bh(&lp->rx_lock);
1159	spin_lock_irq(&lp->lock);
1160	tc35815_chip_reset(dev);
1161	tc35815_clear_queues(dev);
1162	tc35815_chip_init(dev);
1163	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1164	tc35815_set_multicast_list(dev);
1165	spin_unlock_irq(&lp->lock);
1166	spin_unlock_bh(&lp->rx_lock);
1167
1168	netif_wake_queue(dev);
1169}
1170
1171static void tc35815_restart_work(struct work_struct *work)
1172{
1173	struct tc35815_local *lp =
1174		container_of(work, struct tc35815_local, restart_work);
1175	struct net_device *dev = lp->dev;
1176
1177	tc35815_restart(dev);
1178}
1179
1180static void tc35815_schedule_restart(struct net_device *dev)
1181{
1182	struct tc35815_local *lp = netdev_priv(dev);
1183	struct tc35815_regs __iomem *tr =
1184		(struct tc35815_regs __iomem *)dev->base_addr;
1185	unsigned long flags;
1186
1187	/* disable interrupts */
1188	spin_lock_irqsave(&lp->lock, flags);
1189	tc_writel(0, &tr->Int_En);
1190	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1191	schedule_work(&lp->restart_work);
1192	spin_unlock_irqrestore(&lp->lock, flags);
1193}
1194
1195static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1196{
1197	struct tc35815_regs __iomem *tr =
1198		(struct tc35815_regs __iomem *)dev->base_addr;
1199
1200	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1201	       dev->name, tc_readl(&tr->Tx_Stat));
1202
1203	/* Try to restart the adaptor. */
1204	tc35815_schedule_restart(dev);
1205	dev->stats.tx_errors++;
1206}
1207
1208/*
1209 * Open/initialize the controller. This is called (in the current kernel)
1210 * sometime after booting when the 'ifconfig' program is run.
1211 *
1212 * This routine should set everything up anew at each open, even
1213 * registers that "should" only need to be set once at boot, so that
1214 * there is non-reboot way to recover if something goes wrong.
1215 */
1216static int
1217tc35815_open(struct net_device *dev)
1218{
1219	struct tc35815_local *lp = netdev_priv(dev);
1220
1221	/*
1222	 * This is used if the interrupt line can turned off (shared).
1223	 * See 3c503.c for an example of selecting the IRQ at config-time.
1224	 */
1225	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1226			dev->name, dev))
1227		return -EAGAIN;
1228
1229	tc35815_chip_reset(dev);
1230
1231	if (tc35815_init_queues(dev) != 0) {
1232		free_irq(dev->irq, dev);
1233		return -EAGAIN;
1234	}
1235
1236	napi_enable(&lp->napi);
1237
1238	/* Reset the hardware here. Don't forget to set the station address. */
1239	spin_lock_irq(&lp->lock);
1240	tc35815_chip_init(dev);
1241	spin_unlock_irq(&lp->lock);
1242
1243	netif_carrier_off(dev);
1244	/* schedule a link state check */
1245	phy_start(dev->phydev);
1246
1247	/* We are now ready to accept transmit requeusts from
1248	 * the queueing layer of the networking.
1249	 */
1250	netif_start_queue(dev);
1251
1252	return 0;
1253}
1254
1255/* This will only be invoked if your driver is _not_ in XOFF state.
1256 * What this means is that you need not check it, and that this
1257 * invariant will hold if you make sure that the netif_*_queue()
1258 * calls are done at the proper times.
1259 */
1260static netdev_tx_t
1261tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1262{
1263	struct tc35815_local *lp = netdev_priv(dev);
1264	struct TxFD *txfd;
1265	unsigned long flags;
1266
1267	/* If some error occurs while trying to transmit this
1268	 * packet, you should return '1' from this function.
1269	 * In such a case you _may not_ do anything to the
1270	 * SKB, it is still owned by the network queueing
1271	 * layer when an error is returned.  This means you
1272	 * may not modify any SKB fields, you may not free
1273	 * the SKB, etc.
1274	 */
1275
1276	/* This is the most common case for modern hardware.
1277	 * The spinlock protects this code from the TX complete
1278	 * hardware interrupt handler.  Queue flow control is
1279	 * thus managed under this lock as well.
1280	 */
1281	spin_lock_irqsave(&lp->lock, flags);
1282
1283	/* failsafe... (handle txdone now if half of FDs are used) */
1284	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1285	    TX_FD_NUM / 2)
1286		tc35815_txdone(dev);
1287
1288	if (netif_msg_pktdata(lp))
1289		print_eth(skb->data);
1290#ifdef DEBUG
1291	if (lp->tx_skbs[lp->tfd_start].skb) {
1292		printk("%s: tx_skbs conflict.\n", dev->name);
1293		panic_queues(dev);
1294	}
1295#else
1296	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1297#endif
1298	lp->tx_skbs[lp->tfd_start].skb = skb;
1299	lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1300							    skb->data,
1301							    skb->len,
1302							    DMA_TO_DEVICE);
1303
1304	/*add to ring */
1305	txfd = &lp->tfd_base[lp->tfd_start];
1306	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1307	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1308	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1309	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1310
1311	if (lp->tfd_start == lp->tfd_end) {
1312		struct tc35815_regs __iomem *tr =
1313			(struct tc35815_regs __iomem *)dev->base_addr;
1314		/* Start DMA Transmitter. */
1315		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1316		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1317		if (netif_msg_tx_queued(lp)) {
1318			printk("%s: starting TxFD.\n", dev->name);
1319			dump_txfd(txfd);
1320		}
1321		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1322	} else {
1323		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1324		if (netif_msg_tx_queued(lp)) {
1325			printk("%s: queueing TxFD.\n", dev->name);
1326			dump_txfd(txfd);
1327		}
1328	}
1329	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1330
1331	/* If we just used up the very last entry in the
1332	 * TX ring on this device, tell the queueing
1333	 * layer to send no more.
1334	 */
1335	if (tc35815_tx_full(dev)) {
1336		if (netif_msg_tx_queued(lp))
1337			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1338		netif_stop_queue(dev);
1339	}
1340
1341	/* When the TX completion hw interrupt arrives, this
1342	 * is when the transmit statistics are updated.
1343	 */
1344
1345	spin_unlock_irqrestore(&lp->lock, flags);
1346	return NETDEV_TX_OK;
1347}
1348
1349#define FATAL_ERROR_INT \
1350	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1351static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1352{
1353	static int count;
1354	printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1355	       dev->name, status);
1356	if (status & Int_IntPCI)
1357		printk(" IntPCI");
1358	if (status & Int_DmParErr)
1359		printk(" DmParErr");
1360	if (status & Int_IntNRAbt)
1361		printk(" IntNRAbt");
1362	printk("\n");
1363	if (count++ > 100)
1364		panic("%s: Too many fatal errors.", dev->name);
1365	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1366	/* Try to restart the adaptor. */
1367	tc35815_schedule_restart(dev);
1368}
1369
1370static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1371{
1372	struct tc35815_local *lp = netdev_priv(dev);
1373	int ret = -1;
1374
1375	/* Fatal errors... */
1376	if (status & FATAL_ERROR_INT) {
1377		tc35815_fatal_error_interrupt(dev, status);
1378		return 0;
1379	}
1380	/* recoverable errors */
1381	if (status & Int_IntFDAEx) {
1382		if (netif_msg_rx_err(lp))
1383			dev_warn(&dev->dev,
1384				 "Free Descriptor Area Exhausted (%#x).\n",
1385				 status);
1386		dev->stats.rx_dropped++;
1387		ret = 0;
1388	}
1389	if (status & Int_IntBLEx) {
1390		if (netif_msg_rx_err(lp))
1391			dev_warn(&dev->dev,
1392				 "Buffer List Exhausted (%#x).\n",
1393				 status);
1394		dev->stats.rx_dropped++;
1395		ret = 0;
1396	}
1397	if (status & Int_IntExBD) {
1398		if (netif_msg_rx_err(lp))
1399			dev_warn(&dev->dev,
1400				 "Excessive Buffer Descriptors (%#x).\n",
1401				 status);
1402		dev->stats.rx_length_errors++;
1403		ret = 0;
1404	}
1405
1406	/* normal notification */
1407	if (status & Int_IntMacRx) {
1408		/* Got a packet(s). */
1409		ret = tc35815_rx(dev, limit);
1410		lp->lstats.rx_ints++;
1411	}
1412	if (status & Int_IntMacTx) {
1413		/* Transmit complete. */
1414		lp->lstats.tx_ints++;
1415		spin_lock_irq(&lp->lock);
1416		tc35815_txdone(dev);
1417		spin_unlock_irq(&lp->lock);
1418		if (ret < 0)
1419			ret = 0;
1420	}
1421	return ret;
1422}
1423
1424/*
1425 * The typical workload of the driver:
1426 * Handle the network interface interrupts.
1427 */
1428static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1429{
1430	struct net_device *dev = dev_id;
1431	struct tc35815_local *lp = netdev_priv(dev);
1432	struct tc35815_regs __iomem *tr =
1433		(struct tc35815_regs __iomem *)dev->base_addr;
1434	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1435
1436	if (!(dmactl & DMA_IntMask)) {
1437		if (napi_schedule_prep(&lp->napi)) {
1438			/* disable interrupts */
1439			tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1440			__napi_schedule(&lp->napi);
 
 
 
 
1441		}
1442		(void)tc_readl(&tr->Int_Src);	/* flush */
1443		return IRQ_HANDLED;
1444	}
1445	return IRQ_NONE;
1446}
1447
1448#ifdef CONFIG_NET_POLL_CONTROLLER
1449static void tc35815_poll_controller(struct net_device *dev)
1450{
1451	disable_irq(dev->irq);
1452	tc35815_interrupt(dev->irq, dev);
1453	enable_irq(dev->irq);
1454}
1455#endif
1456
1457/* We have a good packet(s), get it/them out of the buffers. */
1458static int
1459tc35815_rx(struct net_device *dev, int limit)
1460{
1461	struct tc35815_local *lp = netdev_priv(dev);
1462	unsigned int fdctl;
1463	int i;
1464	int received = 0;
1465
1466	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1467		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1468		int pkt_len = fdctl & FD_FDLength_MASK;
1469		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1470#ifdef DEBUG
1471		struct RxFD *next_rfd;
1472#endif
1473#if (RX_CTL_CMD & Rx_StripCRC) == 0
1474		pkt_len -= ETH_FCS_LEN;
1475#endif
1476
1477		if (netif_msg_rx_status(lp))
1478			dump_rxfd(lp->rfd_cur);
1479		if (status & Rx_Good) {
1480			struct sk_buff *skb;
1481			unsigned char *data;
1482			int cur_bd;
1483
1484			if (--limit < 0)
1485				break;
1486			BUG_ON(bd_count > 1);
1487			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1488				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1489#ifdef DEBUG
1490			if (cur_bd >= RX_BUF_NUM) {
1491				printk("%s: invalid BDID.\n", dev->name);
1492				panic_queues(dev);
1493			}
1494			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1495			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1496			if (!lp->rx_skbs[cur_bd].skb) {
1497				printk("%s: NULL skb.\n", dev->name);
1498				panic_queues(dev);
1499			}
1500#else
1501			BUG_ON(cur_bd >= RX_BUF_NUM);
1502#endif
1503			skb = lp->rx_skbs[cur_bd].skb;
1504			prefetch(skb->data);
1505			lp->rx_skbs[cur_bd].skb = NULL;
1506			dma_unmap_single(&lp->pci_dev->dev,
1507					 lp->rx_skbs[cur_bd].skb_dma,
1508					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1509			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1510				memmove(skb->data, skb->data - NET_IP_ALIGN,
1511					pkt_len);
1512			data = skb_put(skb, pkt_len);
1513			if (netif_msg_pktdata(lp))
1514				print_eth(data);
1515			skb->protocol = eth_type_trans(skb, dev);
1516			netif_receive_skb(skb);
1517			received++;
1518			dev->stats.rx_packets++;
1519			dev->stats.rx_bytes += pkt_len;
1520		} else {
1521			dev->stats.rx_errors++;
1522			if (netif_msg_rx_err(lp))
1523				dev_info(&dev->dev, "Rx error (status %x)\n",
1524					 status & Rx_Stat_Mask);
1525			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1526			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1527				status &= ~(Rx_LongErr|Rx_CRCErr);
1528				status |= Rx_Over;
1529			}
1530			if (status & Rx_LongErr)
1531				dev->stats.rx_length_errors++;
1532			if (status & Rx_Over)
1533				dev->stats.rx_fifo_errors++;
1534			if (status & Rx_CRCErr)
1535				dev->stats.rx_crc_errors++;
1536			if (status & Rx_Align)
1537				dev->stats.rx_frame_errors++;
1538		}
1539
1540		if (bd_count > 0) {
1541			/* put Free Buffer back to controller */
1542			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1543			unsigned char id =
1544				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1545#ifdef DEBUG
1546			if (id >= RX_BUF_NUM) {
1547				printk("%s: invalid BDID.\n", dev->name);
1548				panic_queues(dev);
1549			}
1550#else
1551			BUG_ON(id >= RX_BUF_NUM);
1552#endif
1553			/* free old buffers */
1554			lp->fbl_count--;
1555			while (lp->fbl_count < RX_BUF_NUM)
1556			{
1557				unsigned char curid =
1558					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1559				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1560#ifdef DEBUG
1561				bdctl = le32_to_cpu(bd->BDCtl);
1562				if (bdctl & BD_CownsBD) {
1563					printk("%s: Freeing invalid BD.\n",
1564					       dev->name);
1565					panic_queues(dev);
1566				}
1567#endif
1568				/* pass BD to controller */
1569				if (!lp->rx_skbs[curid].skb) {
1570					lp->rx_skbs[curid].skb =
1571						alloc_rxbuf_skb(dev,
1572								lp->pci_dev,
1573								&lp->rx_skbs[curid].skb_dma);
1574					if (!lp->rx_skbs[curid].skb)
1575						break; /* try on next reception */
1576					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1577				}
1578				/* Note: BDLength was modified by chip. */
1579				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1580							(curid << BD_RxBDID_SHIFT) |
1581							RX_BUF_SIZE);
1582				lp->fbl_count++;
1583			}
1584		}
1585
1586		/* put RxFD back to controller */
1587#ifdef DEBUG
1588		next_rfd = fd_bus_to_virt(lp,
1589					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1590		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1591			printk("%s: RxFD FDNext invalid.\n", dev->name);
1592			panic_queues(dev);
1593		}
1594#endif
1595		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1596			/* pass FD to controller */
1597#ifdef DEBUG
1598			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1599#else
1600			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1601#endif
1602			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1603			lp->rfd_cur++;
1604		}
1605		if (lp->rfd_cur > lp->rfd_limit)
1606			lp->rfd_cur = lp->rfd_base;
1607#ifdef DEBUG
1608		if (lp->rfd_cur != next_rfd)
1609			printk("rfd_cur = %p, next_rfd %p\n",
1610			       lp->rfd_cur, next_rfd);
1611#endif
1612	}
1613
1614	return received;
1615}
1616
1617static int tc35815_poll(struct napi_struct *napi, int budget)
1618{
1619	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1620	struct net_device *dev = lp->dev;
1621	struct tc35815_regs __iomem *tr =
1622		(struct tc35815_regs __iomem *)dev->base_addr;
1623	int received = 0, handled;
1624	u32 status;
1625
1626	if (budget <= 0)
1627		return received;
1628
1629	spin_lock(&lp->rx_lock);
1630	status = tc_readl(&tr->Int_Src);
1631	do {
1632		/* BLEx, FDAEx will be cleared later */
1633		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1634			  &tr->Int_Src);	/* write to clear */
1635
1636		handled = tc35815_do_interrupt(dev, status, budget - received);
1637		if (status & (Int_BLEx | Int_FDAEx))
1638			tc_writel(status & (Int_BLEx | Int_FDAEx),
1639				  &tr->Int_Src);
1640		if (handled >= 0) {
1641			received += handled;
1642			if (received >= budget)
1643				break;
1644		}
1645		status = tc_readl(&tr->Int_Src);
1646	} while (status);
1647	spin_unlock(&lp->rx_lock);
1648
1649	if (received < budget) {
1650		napi_complete_done(napi, received);
1651		/* enable interrupts */
1652		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1653	}
1654	return received;
1655}
1656
1657#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1658
1659static void
1660tc35815_check_tx_stat(struct net_device *dev, int status)
1661{
1662	struct tc35815_local *lp = netdev_priv(dev);
1663	const char *msg = NULL;
1664
1665	/* count collisions */
1666	if (status & Tx_ExColl)
1667		dev->stats.collisions += 16;
1668	if (status & Tx_TxColl_MASK)
1669		dev->stats.collisions += status & Tx_TxColl_MASK;
1670
1671	/* TX4939 does not have NCarr */
1672	if (lp->chiptype == TC35815_TX4939)
1673		status &= ~Tx_NCarr;
1674	/* WORKAROUND: ignore LostCrS in full duplex operation */
1675	if (!lp->link || lp->duplex == DUPLEX_FULL)
1676		status &= ~Tx_NCarr;
1677
1678	if (!(status & TX_STA_ERR)) {
1679		/* no error. */
1680		dev->stats.tx_packets++;
1681		return;
1682	}
1683
1684	dev->stats.tx_errors++;
1685	if (status & Tx_ExColl) {
1686		dev->stats.tx_aborted_errors++;
1687		msg = "Excessive Collision.";
1688	}
1689	if (status & Tx_Under) {
1690		dev->stats.tx_fifo_errors++;
1691		msg = "Tx FIFO Underrun.";
1692		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1693			lp->lstats.tx_underrun++;
1694			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1695				struct tc35815_regs __iomem *tr =
1696					(struct tc35815_regs __iomem *)dev->base_addr;
1697				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1698				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1699			}
1700		}
1701	}
1702	if (status & Tx_Defer) {
1703		dev->stats.tx_fifo_errors++;
1704		msg = "Excessive Deferral.";
1705	}
1706	if (status & Tx_NCarr) {
1707		dev->stats.tx_carrier_errors++;
1708		msg = "Lost Carrier Sense.";
1709	}
1710	if (status & Tx_LateColl) {
1711		dev->stats.tx_aborted_errors++;
1712		msg = "Late Collision.";
1713	}
1714	if (status & Tx_TxPar) {
1715		dev->stats.tx_fifo_errors++;
1716		msg = "Transmit Parity Error.";
1717	}
1718	if (status & Tx_SQErr) {
1719		dev->stats.tx_heartbeat_errors++;
1720		msg = "Signal Quality Error.";
1721	}
1722	if (msg && netif_msg_tx_err(lp))
1723		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1724}
1725
1726/* This handles TX complete events posted by the device
1727 * via interrupts.
1728 */
1729static void
1730tc35815_txdone(struct net_device *dev)
1731{
1732	struct tc35815_local *lp = netdev_priv(dev);
1733	struct TxFD *txfd;
1734	unsigned int fdctl;
1735
1736	txfd = &lp->tfd_base[lp->tfd_end];
1737	while (lp->tfd_start != lp->tfd_end &&
1738	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1739		int status = le32_to_cpu(txfd->fd.FDStat);
1740		struct sk_buff *skb;
1741		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1742		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1743
1744		if (netif_msg_tx_done(lp)) {
1745			printk("%s: complete TxFD.\n", dev->name);
1746			dump_txfd(txfd);
1747		}
1748		tc35815_check_tx_stat(dev, status);
1749
1750		skb = fdsystem != 0xffffffff ?
1751			lp->tx_skbs[fdsystem].skb : NULL;
1752#ifdef DEBUG
1753		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1754			printk("%s: tx_skbs mismatch.\n", dev->name);
1755			panic_queues(dev);
1756		}
1757#else
1758		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1759#endif
1760		if (skb) {
1761			dev->stats.tx_bytes += skb->len;
1762			dma_unmap_single(&lp->pci_dev->dev,
1763					 lp->tx_skbs[lp->tfd_end].skb_dma,
1764					 skb->len, DMA_TO_DEVICE);
1765			lp->tx_skbs[lp->tfd_end].skb = NULL;
1766			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1767			dev_kfree_skb_any(skb);
1768		}
1769		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1770
1771		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1772		txfd = &lp->tfd_base[lp->tfd_end];
1773#ifdef DEBUG
1774		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1775			printk("%s: TxFD FDNext invalid.\n", dev->name);
1776			panic_queues(dev);
1777		}
1778#endif
1779		if (fdnext & FD_Next_EOL) {
1780			/* DMA Transmitter has been stopping... */
1781			if (lp->tfd_end != lp->tfd_start) {
1782				struct tc35815_regs __iomem *tr =
1783					(struct tc35815_regs __iomem *)dev->base_addr;
1784				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1785				struct TxFD *txhead = &lp->tfd_base[head];
1786				int qlen = (lp->tfd_start + TX_FD_NUM
1787					    - lp->tfd_end) % TX_FD_NUM;
1788
1789#ifdef DEBUG
1790				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1791					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1792					panic_queues(dev);
1793				}
1794#endif
1795				/* log max queue length */
1796				if (lp->lstats.max_tx_qlen < qlen)
1797					lp->lstats.max_tx_qlen = qlen;
1798
1799
1800				/* start DMA Transmitter again */
1801				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1802				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1803				if (netif_msg_tx_queued(lp)) {
1804					printk("%s: start TxFD on queue.\n",
1805					       dev->name);
1806					dump_txfd(txfd);
1807				}
1808				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1809			}
1810			break;
1811		}
1812	}
1813
1814	/* If we had stopped the queue due to a "tx full"
1815	 * condition, and space has now been made available,
1816	 * wake up the queue.
1817	 */
1818	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1819		netif_wake_queue(dev);
1820}
1821
1822/* The inverse routine to tc35815_open(). */
1823static int
1824tc35815_close(struct net_device *dev)
1825{
1826	struct tc35815_local *lp = netdev_priv(dev);
1827
1828	netif_stop_queue(dev);
1829	napi_disable(&lp->napi);
1830	if (dev->phydev)
1831		phy_stop(dev->phydev);
1832	cancel_work_sync(&lp->restart_work);
1833
1834	/* Flush the Tx and disable Rx here. */
1835	tc35815_chip_reset(dev);
1836	free_irq(dev->irq, dev);
1837
1838	tc35815_free_queues(dev);
1839
1840	return 0;
1841
1842}
1843
1844/*
1845 * Get the current statistics.
1846 * This may be called with the card open or closed.
1847 */
1848static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1849{
1850	struct tc35815_regs __iomem *tr =
1851		(struct tc35815_regs __iomem *)dev->base_addr;
1852	if (netif_running(dev))
1853		/* Update the statistics from the device registers. */
1854		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1855
1856	return &dev->stats;
1857}
1858
1859static void tc35815_set_cam_entry(struct net_device *dev, int index,
1860				  const unsigned char *addr)
1861{
1862	struct tc35815_local *lp = netdev_priv(dev);
1863	struct tc35815_regs __iomem *tr =
1864		(struct tc35815_regs __iomem *)dev->base_addr;
1865	int cam_index = index * 6;
1866	u32 cam_data;
1867	u32 saved_addr;
1868
1869	saved_addr = tc_readl(&tr->CAM_Adr);
1870
1871	if (netif_msg_hw(lp))
1872		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1873			dev->name, index, addr);
1874	if (index & 1) {
1875		/* read modify write */
1876		tc_writel(cam_index - 2, &tr->CAM_Adr);
1877		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1878		cam_data |= addr[0] << 8 | addr[1];
1879		tc_writel(cam_data, &tr->CAM_Data);
1880		/* write whole word */
1881		tc_writel(cam_index + 2, &tr->CAM_Adr);
1882		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1883		tc_writel(cam_data, &tr->CAM_Data);
1884	} else {
1885		/* write whole word */
1886		tc_writel(cam_index, &tr->CAM_Adr);
1887		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1888		tc_writel(cam_data, &tr->CAM_Data);
1889		/* read modify write */
1890		tc_writel(cam_index + 4, &tr->CAM_Adr);
1891		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1892		cam_data |= addr[4] << 24 | (addr[5] << 16);
1893		tc_writel(cam_data, &tr->CAM_Data);
1894	}
1895
1896	tc_writel(saved_addr, &tr->CAM_Adr);
1897}
1898
1899
1900/*
1901 * Set or clear the multicast filter for this adaptor.
1902 * num_addrs == -1	Promiscuous mode, receive all packets
1903 * num_addrs == 0	Normal mode, clear multicast list
1904 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1905 *			and do best-effort filtering.
1906 */
1907static void
1908tc35815_set_multicast_list(struct net_device *dev)
1909{
1910	struct tc35815_regs __iomem *tr =
1911		(struct tc35815_regs __iomem *)dev->base_addr;
1912
1913	if (dev->flags & IFF_PROMISC) {
1914		/* With some (all?) 100MHalf HUB, controller will hang
1915		 * if we enabled promiscuous mode before linkup...
1916		 */
1917		struct tc35815_local *lp = netdev_priv(dev);
1918
1919		if (!lp->link)
1920			return;
1921		/* Enable promiscuous mode */
1922		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1923	} else if ((dev->flags & IFF_ALLMULTI) ||
1924		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1925		/* CAM 0, 1, 20 are reserved. */
1926		/* Disable promiscuous mode, use normal mode. */
1927		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1928	} else if (!netdev_mc_empty(dev)) {
1929		struct netdev_hw_addr *ha;
1930		int i;
1931		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1932
1933		tc_writel(0, &tr->CAM_Ctl);
1934		/* Walk the address list, and load the filter */
1935		i = 0;
1936		netdev_for_each_mc_addr(ha, dev) {
1937			/* entry 0,1 is reserved. */
1938			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1939			ena_bits |= CAM_Ena_Bit(i + 2);
1940			i++;
1941		}
1942		tc_writel(ena_bits, &tr->CAM_Ena);
1943		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1944	} else {
1945		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1946		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1947	}
1948}
1949
1950static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1951{
1952	struct tc35815_local *lp = netdev_priv(dev);
1953
1954	strscpy(info->driver, MODNAME, sizeof(info->driver));
1955	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1956	strscpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1957}
1958
1959static u32 tc35815_get_msglevel(struct net_device *dev)
1960{
1961	struct tc35815_local *lp = netdev_priv(dev);
1962	return lp->msg_enable;
1963}
1964
1965static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1966{
1967	struct tc35815_local *lp = netdev_priv(dev);
1968	lp->msg_enable = datum;
1969}
1970
1971static int tc35815_get_sset_count(struct net_device *dev, int sset)
1972{
1973	struct tc35815_local *lp = netdev_priv(dev);
1974
1975	switch (sset) {
1976	case ETH_SS_STATS:
1977		return sizeof(lp->lstats) / sizeof(int);
1978	default:
1979		return -EOPNOTSUPP;
1980	}
1981}
1982
1983static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1984{
1985	struct tc35815_local *lp = netdev_priv(dev);
1986	data[0] = lp->lstats.max_tx_qlen;
1987	data[1] = lp->lstats.tx_ints;
1988	data[2] = lp->lstats.rx_ints;
1989	data[3] = lp->lstats.tx_underrun;
1990}
1991
1992static struct {
1993	const char str[ETH_GSTRING_LEN];
1994} ethtool_stats_keys[] = {
1995	{ "max_tx_qlen" },
1996	{ "tx_ints" },
1997	{ "rx_ints" },
1998	{ "tx_underrun" },
1999};
2000
2001static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2002{
2003	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2004}
2005
2006static const struct ethtool_ops tc35815_ethtool_ops = {
2007	.get_drvinfo		= tc35815_get_drvinfo,
2008	.get_link		= ethtool_op_get_link,
2009	.get_msglevel		= tc35815_get_msglevel,
2010	.set_msglevel		= tc35815_set_msglevel,
2011	.get_strings		= tc35815_get_strings,
2012	.get_sset_count		= tc35815_get_sset_count,
2013	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2014	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2015	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2016};
 
 
 
 
 
 
 
 
 
2017
2018static void tc35815_chip_reset(struct net_device *dev)
2019{
2020	struct tc35815_regs __iomem *tr =
2021		(struct tc35815_regs __iomem *)dev->base_addr;
2022	int i;
2023	/* reset the controller */
2024	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2025	udelay(4); /* 3200ns */
2026	i = 0;
2027	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2028		if (i++ > 100) {
2029			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2030			break;
2031		}
2032		mdelay(1);
2033	}
2034	tc_writel(0, &tr->MAC_Ctl);
2035
2036	/* initialize registers to default value */
2037	tc_writel(0, &tr->DMA_Ctl);
2038	tc_writel(0, &tr->TxThrsh);
2039	tc_writel(0, &tr->TxPollCtr);
2040	tc_writel(0, &tr->RxFragSize);
2041	tc_writel(0, &tr->Int_En);
2042	tc_writel(0, &tr->FDA_Bas);
2043	tc_writel(0, &tr->FDA_Lim);
2044	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2045	tc_writel(0, &tr->CAM_Ctl);
2046	tc_writel(0, &tr->Tx_Ctl);
2047	tc_writel(0, &tr->Rx_Ctl);
2048	tc_writel(0, &tr->CAM_Ena);
2049	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2050
2051	/* initialize internal SRAM */
2052	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2053	for (i = 0; i < 0x1000; i += 4) {
2054		tc_writel(i, &tr->CAM_Adr);
2055		tc_writel(0, &tr->CAM_Data);
2056	}
2057	tc_writel(0, &tr->DMA_Ctl);
2058}
2059
2060static void tc35815_chip_init(struct net_device *dev)
2061{
2062	struct tc35815_local *lp = netdev_priv(dev);
2063	struct tc35815_regs __iomem *tr =
2064		(struct tc35815_regs __iomem *)dev->base_addr;
2065	unsigned long txctl = TX_CTL_CMD;
2066
2067	/* load station address to CAM */
2068	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2069
2070	/* Enable CAM (broadcast and unicast) */
2071	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2072	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2073
2074	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2075	if (HAVE_DMA_RXALIGN(lp))
2076		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2077	else
2078		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2079	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2080	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2081	tc_writel(INT_EN_CMD, &tr->Int_En);
2082
2083	/* set queues */
2084	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2085	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2086		  &tr->FDA_Lim);
2087	/*
2088	 * Activation method:
2089	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2090	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2091	 */
2092	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2093	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2094
2095	/* start MAC transmitter */
2096	/* TX4939 does not have EnLCarr */
2097	if (lp->chiptype == TC35815_TX4939)
2098		txctl &= ~Tx_EnLCarr;
2099	/* WORKAROUND: ignore LostCrS in full duplex operation */
2100	if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2101		txctl &= ~Tx_EnLCarr;
2102	tc_writel(txctl, &tr->Tx_Ctl);
2103}
2104
2105#ifdef CONFIG_PM
2106static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2107{
2108	struct net_device *dev = pci_get_drvdata(pdev);
2109	struct tc35815_local *lp = netdev_priv(dev);
2110	unsigned long flags;
2111
2112	pci_save_state(pdev);
2113	if (!netif_running(dev))
2114		return 0;
2115	netif_device_detach(dev);
2116	if (dev->phydev)
2117		phy_stop(dev->phydev);
2118	spin_lock_irqsave(&lp->lock, flags);
2119	tc35815_chip_reset(dev);
2120	spin_unlock_irqrestore(&lp->lock, flags);
2121	pci_set_power_state(pdev, PCI_D3hot);
2122	return 0;
2123}
2124
2125static int tc35815_resume(struct pci_dev *pdev)
2126{
2127	struct net_device *dev = pci_get_drvdata(pdev);
2128
2129	pci_restore_state(pdev);
2130	if (!netif_running(dev))
2131		return 0;
2132	pci_set_power_state(pdev, PCI_D0);
2133	tc35815_restart(dev);
2134	netif_carrier_off(dev);
2135	if (dev->phydev)
2136		phy_start(dev->phydev);
2137	netif_device_attach(dev);
2138	return 0;
2139}
2140#endif /* CONFIG_PM */
2141
2142static struct pci_driver tc35815_pci_driver = {
2143	.name		= MODNAME,
2144	.id_table	= tc35815_pci_tbl,
2145	.probe		= tc35815_init_one,
2146	.remove		= tc35815_remove_one,
2147#ifdef CONFIG_PM
2148	.suspend	= tc35815_suspend,
2149	.resume		= tc35815_resume,
2150#endif
2151};
2152
2153module_param_named(speed, options.speed, int, 0);
2154MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2155module_param_named(duplex, options.duplex, int, 0);
2156MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2157
2158module_pci_driver(tc35815_pci_driver);
2159MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2160MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
   3 *
   4 * Based on skelton.c by Donald Becker.
   5 *
   6 * This driver is a replacement of older and less maintained version.
   7 * This is a header of the older version:
   8 *	-----<snip>-----
   9 *	Copyright 2001 MontaVista Software Inc.
  10 *	Author: MontaVista Software, Inc.
  11 *		ahennessy@mvista.com
  12 *	Copyright (C) 2000-2001 Toshiba Corporation
  13 *	static const char *version =
  14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15 *	-----<snip>-----
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 *
  21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22 * All Rights Reserved.
  23 */
  24
  25#define DRV_VERSION	"1.39"
  26static const char *version = "tc35815.c:v" DRV_VERSION "\n";
  27#define MODNAME			"tc35815"
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/fcntl.h>
  33#include <linux/interrupt.h>
  34#include <linux/ioport.h>
  35#include <linux/in.h>
  36#include <linux/if_vlan.h>
  37#include <linux/slab.h>
  38#include <linux/string.h>
  39#include <linux/spinlock.h>
  40#include <linux/errno.h>
  41#include <linux/netdevice.h>
  42#include <linux/etherdevice.h>
  43#include <linux/skbuff.h>
  44#include <linux/delay.h>
  45#include <linux/pci.h>
  46#include <linux/phy.h>
  47#include <linux/workqueue.h>
  48#include <linux/platform_device.h>
  49#include <linux/prefetch.h>
  50#include <asm/io.h>
  51#include <asm/byteorder.h>
  52
  53enum tc35815_chiptype {
  54	TC35815CF = 0,
  55	TC35815_NWU,
  56	TC35815_TX4939,
  57};
  58
  59/* indexed by tc35815_chiptype, above */
  60static const struct {
  61	const char *name;
  62} chip_info[] = {
  63	{ "TOSHIBA TC35815CF 10/100BaseTX" },
  64	{ "TOSHIBA TC35815 with Wake on LAN" },
  65	{ "TOSHIBA TC35815/TX4939" },
  66};
  67
  68static const struct pci_device_id tc35815_pci_tbl[] = {
  69	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  72	{0,}
  73};
  74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  75
  76/* see MODULE_PARM_DESC */
  77static struct tc35815_options {
  78	int speed;
  79	int duplex;
  80} options;
  81
  82/*
  83 * Registers
  84 */
  85struct tc35815_regs {
  86	__u32 DMA_Ctl;		/* 0x00 */
  87	__u32 TxFrmPtr;
  88	__u32 TxThrsh;
  89	__u32 TxPollCtr;
  90	__u32 BLFrmPtr;
  91	__u32 RxFragSize;
  92	__u32 Int_En;
  93	__u32 FDA_Bas;
  94	__u32 FDA_Lim;		/* 0x20 */
  95	__u32 Int_Src;
  96	__u32 unused0[2];
  97	__u32 PauseCnt;
  98	__u32 RemPauCnt;
  99	__u32 TxCtlFrmStat;
 100	__u32 unused1;
 101	__u32 MAC_Ctl;		/* 0x40 */
 102	__u32 CAM_Ctl;
 103	__u32 Tx_Ctl;
 104	__u32 Tx_Stat;
 105	__u32 Rx_Ctl;
 106	__u32 Rx_Stat;
 107	__u32 MD_Data;
 108	__u32 MD_CA;
 109	__u32 CAM_Adr;		/* 0x60 */
 110	__u32 CAM_Data;
 111	__u32 CAM_Ena;
 112	__u32 PROM_Ctl;
 113	__u32 PROM_Data;
 114	__u32 Algn_Cnt;
 115	__u32 CRC_Cnt;
 116	__u32 Miss_Cnt;
 117};
 118
 119/*
 120 * Bit assignments
 121 */
 122/* DMA_Ctl bit assign ------------------------------------------------------- */
 123#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
 124#define DMA_RxAlign_1	       0x00400000
 125#define DMA_RxAlign_2	       0x00800000
 126#define DMA_RxAlign_3	       0x00c00000
 127#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
 128#define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
 129#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
 130#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
 131#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
 132#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
 133#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
 134#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
 135#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
 136
 137/* RxFragSize bit assign ---------------------------------------------------- */
 138#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
 139#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
 140
 141/* MAC_Ctl bit assign ------------------------------------------------------- */
 142#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
 143#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
 144#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
 145#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
 146#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
 147#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
 148#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
 149#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
 150#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
 151#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
 152#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
 153#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
 154
 155/* PROM_Ctl bit assign ------------------------------------------------------ */
 156#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
 157#define PROM_Read	       0x00004000 /*10:Read operation		     */
 158#define PROM_Write	       0x00002000 /*01:Write operation		     */
 159#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
 160					  /*00:Enable or Disable Writting,   */
 161					  /*	  as specified in PROM_Addr. */
 162#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
 163					  /*00xxxx:	      disable	     */
 164
 165/* CAM_Ctl bit assign ------------------------------------------------------- */
 166#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
 167#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
 168					  /*			accept other */
 169#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
 170#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
 171#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
 172
 173/* CAM_Ena bit assign ------------------------------------------------------- */
 174#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
 175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
 176#define CAM_Ena_Bit(index)	(1 << (index))
 177#define CAM_ENTRY_DESTINATION	0
 178#define CAM_ENTRY_SOURCE	1
 179#define CAM_ENTRY_MACCTL	20
 180
 181/* Tx_Ctl bit assign -------------------------------------------------------- */
 182#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
 183#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
 184#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
 185#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
 186#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
 187#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
 188#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
 189#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
 190#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
 191#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
 192#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
 193#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
 194
 195/* Tx_Stat bit assign ------------------------------------------------------- */
 196#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
 197#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
 198#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
 199#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
 200#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
 201#define Tx_Under	       0x00000100 /* Underrun			     */
 202#define Tx_Defer	       0x00000200 /* Deferral			     */
 203#define Tx_NCarr	       0x00000400 /* No Carrier			     */
 204#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
 205#define Tx_LateColl	       0x00001000 /* Late Collision		     */
 206#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
 207#define Tx_Comp		       0x00004000 /* Completion			     */
 208#define Tx_Halted	       0x00008000 /* Tx Halted			     */
 209#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
 210
 211/* Rx_Ctl bit assign -------------------------------------------------------- */
 212#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
 213#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
 214#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
 215#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
 216#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
 217#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
 218#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
 219#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
 220#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
 221#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
 222#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
 223#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
 224
 225/* Rx_Stat bit assign ------------------------------------------------------- */
 226#define Rx_Halted	       0x00008000 /* Rx Halted			     */
 227#define Rx_Good		       0x00004000 /* Rx Good			     */
 228#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
 229#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
 230#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
 231#define Rx_Over		       0x00000400 /* Rx Overflow		     */
 232#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
 233#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
 234#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
 235#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
 236#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
 237#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
 238
 239#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
 240
 241/* Int_En bit assign -------------------------------------------------------- */
 242#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
 243#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
 244#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
 245#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
 246#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
 247#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
 248#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
 249#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
 250#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
 251#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
 252#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
 253#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
 254					  /*		   Exhausted Enable  */
 255
 256/* Int_Src bit assign ------------------------------------------------------- */
 257#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
 258#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
 259#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
 260#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
 261#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
 262#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
 263#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
 264#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
 265#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
 266#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
 267#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
 268#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
 269#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
 270#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
 271#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
 272
 273/* MD_CA bit assign --------------------------------------------------------- */
 274#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
 275#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
 276#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
 277
 278
 279/*
 280 * Descriptors
 281 */
 282
 283/* Frame descriptor */
 284struct FDesc {
 285	volatile __u32 FDNext;
 286	volatile __u32 FDSystem;
 287	volatile __u32 FDStat;
 288	volatile __u32 FDCtl;
 289};
 290
 291/* Buffer descriptor */
 292struct BDesc {
 293	volatile __u32 BuffData;
 294	volatile __u32 BDCtl;
 295};
 296
 297#define FD_ALIGN	16
 298
 299/* Frame Descriptor bit assign ---------------------------------------------- */
 300#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
 301#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
 302#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
 303#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
 304#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
 305#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
 306#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
 307#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
 308#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
 309#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
 310#define FD_BDCnt_SHIFT	       16
 311
 312/* Buffer Descriptor bit assign --------------------------------------------- */
 313#define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
 314#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
 315#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
 316#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
 317#define BD_RxBDID_SHIFT	       16
 318#define BD_RxBDSeqN_SHIFT      24
 319
 320
 321/* Some useful constants. */
 322
 323#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
 324	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
 325	Tx_En)	/* maybe  0x7b01 */
 326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
 327#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
 328	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
 329#define INT_EN_CMD  (Int_NRAbtEn | \
 330	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
 331	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
 332	Int_STargAbtEn | \
 333	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
 334#define DMA_CTL_CMD	DMA_BURST_SIZE
 335#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
 336
 337/* Tuning parameters */
 338#define DMA_BURST_SIZE	32
 339#define TX_THRESHOLD	1024
 340/* used threshold with packet max byte for low pci transfer ability.*/
 341#define TX_THRESHOLD_MAX 1536
 342/* setting threshold max value when overrun error occurred this count. */
 343#define TX_THRESHOLD_KEEP_LIMIT 10
 344
 345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
 346#define FD_PAGE_NUM 4
 347#define RX_BUF_NUM	128	/* < 256 */
 348#define RX_FD_NUM	256	/* >= 32 */
 349#define TX_FD_NUM	128
 350#if RX_CTL_CMD & Rx_LongEn
 351#define RX_BUF_SIZE	PAGE_SIZE
 352#elif RX_CTL_CMD & Rx_StripCRC
 353#define RX_BUF_SIZE	\
 354	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
 355#else
 356#define RX_BUF_SIZE	\
 357	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
 358#endif
 359#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
 360#define NAPI_WEIGHT	16
 361
 362struct TxFD {
 363	struct FDesc fd;
 364	struct BDesc bd;
 365	struct BDesc unused;
 366};
 367
 368struct RxFD {
 369	struct FDesc fd;
 370	struct BDesc bd[0];	/* variable length */
 371};
 372
 373struct FrFD {
 374	struct FDesc fd;
 375	struct BDesc bd[RX_BUF_NUM];
 376};
 377
 378
 379#define tc_readl(addr)	ioread32(addr)
 380#define tc_writel(d, addr)	iowrite32(d, addr)
 381
 382#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
 383
 384/* Information that need to be kept for each controller. */
 385struct tc35815_local {
 386	struct pci_dev *pci_dev;
 387
 388	struct net_device *dev;
 389	struct napi_struct napi;
 390
 391	/* statistics */
 392	struct {
 393		int max_tx_qlen;
 394		int tx_ints;
 395		int rx_ints;
 396		int tx_underrun;
 397	} lstats;
 398
 399	/* Tx control lock.  This protects the transmit buffer ring
 400	 * state along with the "tx full" state of the driver.  This
 401	 * means all netif_queue flow control actions are protected
 402	 * by this lock as well.
 403	 */
 404	spinlock_t lock;
 405	spinlock_t rx_lock;
 406
 407	struct mii_bus *mii_bus;
 408	int duplex;
 409	int speed;
 410	int link;
 411	struct work_struct restart_work;
 412
 413	/*
 414	 * Transmitting: Batch Mode.
 415	 *	1 BD in 1 TxFD.
 416	 * Receiving: Non-Packing Mode.
 417	 *	1 circular FD for Free Buffer List.
 418	 *	RX_BUF_NUM BD in Free Buffer FD.
 419	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
 420	 */
 421	void *fd_buf;	/* for TxFD, RxFD, FrFD */
 422	dma_addr_t fd_buf_dma;
 423	struct TxFD *tfd_base;
 424	unsigned int tfd_start;
 425	unsigned int tfd_end;
 426	struct RxFD *rfd_base;
 427	struct RxFD *rfd_limit;
 428	struct RxFD *rfd_cur;
 429	struct FrFD *fbl_ptr;
 430	unsigned int fbl_count;
 431	struct {
 432		struct sk_buff *skb;
 433		dma_addr_t skb_dma;
 434	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
 435	u32 msg_enable;
 436	enum tc35815_chiptype chiptype;
 437};
 438
 439static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
 440{
 441	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
 442}
 443#ifdef DEBUG
 444static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
 445{
 446	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
 447}
 448#endif
 449static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
 450				       struct pci_dev *hwdev,
 451				       dma_addr_t *dma_handle)
 452{
 453	struct sk_buff *skb;
 454	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
 455	if (!skb)
 456		return NULL;
 457	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
 458				     PCI_DMA_FROMDEVICE);
 459	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
 460		dev_kfree_skb_any(skb);
 461		return NULL;
 462	}
 463	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
 464	return skb;
 465}
 466
 467static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
 468{
 469	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
 470			 PCI_DMA_FROMDEVICE);
 471	dev_kfree_skb_any(skb);
 472}
 473
 474/* Index to functions, as function prototypes. */
 475
 476static int	tc35815_open(struct net_device *dev);
 477static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
 
 478static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
 479static int	tc35815_rx(struct net_device *dev, int limit);
 480static int	tc35815_poll(struct napi_struct *napi, int budget);
 481static void	tc35815_txdone(struct net_device *dev);
 482static int	tc35815_close(struct net_device *dev);
 483static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
 484static void	tc35815_set_multicast_list(struct net_device *dev);
 485static void	tc35815_tx_timeout(struct net_device *dev);
 486static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 487#ifdef CONFIG_NET_POLL_CONTROLLER
 488static void	tc35815_poll_controller(struct net_device *dev);
 489#endif
 490static const struct ethtool_ops tc35815_ethtool_ops;
 491
 492/* Example routines you must write ;->. */
 493static void	tc35815_chip_reset(struct net_device *dev);
 494static void	tc35815_chip_init(struct net_device *dev);
 495
 496#ifdef DEBUG
 497static void	panic_queues(struct net_device *dev);
 498#endif
 499
 500static void tc35815_restart_work(struct work_struct *work);
 501
 502static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 503{
 504	struct net_device *dev = bus->priv;
 505	struct tc35815_regs __iomem *tr =
 506		(struct tc35815_regs __iomem *)dev->base_addr;
 507	unsigned long timeout = jiffies + HZ;
 508
 509	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
 510	udelay(12); /* it takes 32 x 400ns at least */
 511	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 512		if (time_after(jiffies, timeout))
 513			return -EIO;
 514		cpu_relax();
 515	}
 516	return tc_readl(&tr->MD_Data) & 0xffff;
 517}
 518
 519static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
 520{
 521	struct net_device *dev = bus->priv;
 522	struct tc35815_regs __iomem *tr =
 523		(struct tc35815_regs __iomem *)dev->base_addr;
 524	unsigned long timeout = jiffies + HZ;
 525
 526	tc_writel(val, &tr->MD_Data);
 527	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
 528		  &tr->MD_CA);
 529	udelay(12); /* it takes 32 x 400ns at least */
 530	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 531		if (time_after(jiffies, timeout))
 532			return -EIO;
 533		cpu_relax();
 534	}
 535	return 0;
 536}
 537
 538static void tc_handle_link_change(struct net_device *dev)
 539{
 540	struct tc35815_local *lp = netdev_priv(dev);
 541	struct phy_device *phydev = dev->phydev;
 542	unsigned long flags;
 543	int status_change = 0;
 544
 545	spin_lock_irqsave(&lp->lock, flags);
 546	if (phydev->link &&
 547	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
 548		struct tc35815_regs __iomem *tr =
 549			(struct tc35815_regs __iomem *)dev->base_addr;
 550		u32 reg;
 551
 552		reg = tc_readl(&tr->MAC_Ctl);
 553		reg |= MAC_HaltReq;
 554		tc_writel(reg, &tr->MAC_Ctl);
 555		if (phydev->duplex == DUPLEX_FULL)
 556			reg |= MAC_FullDup;
 557		else
 558			reg &= ~MAC_FullDup;
 559		tc_writel(reg, &tr->MAC_Ctl);
 560		reg &= ~MAC_HaltReq;
 561		tc_writel(reg, &tr->MAC_Ctl);
 562
 563		/*
 564		 * TX4939 PCFG.SPEEDn bit will be changed on
 565		 * NETDEV_CHANGE event.
 566		 */
 567		/*
 568		 * WORKAROUND: enable LostCrS only if half duplex
 569		 * operation.
 570		 * (TX4939 does not have EnLCarr)
 571		 */
 572		if (phydev->duplex == DUPLEX_HALF &&
 573		    lp->chiptype != TC35815_TX4939)
 574			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
 575				  &tr->Tx_Ctl);
 576
 577		lp->speed = phydev->speed;
 578		lp->duplex = phydev->duplex;
 579		status_change = 1;
 580	}
 581
 582	if (phydev->link != lp->link) {
 583		if (phydev->link) {
 584			/* delayed promiscuous enabling */
 585			if (dev->flags & IFF_PROMISC)
 586				tc35815_set_multicast_list(dev);
 587		} else {
 588			lp->speed = 0;
 589			lp->duplex = -1;
 590		}
 591		lp->link = phydev->link;
 592
 593		status_change = 1;
 594	}
 595	spin_unlock_irqrestore(&lp->lock, flags);
 596
 597	if (status_change && netif_msg_link(lp)) {
 598		phy_print_status(phydev);
 599		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
 600			 dev->name,
 601			 phy_read(phydev, MII_BMCR),
 602			 phy_read(phydev, MII_BMSR),
 603			 phy_read(phydev, MII_LPA));
 604	}
 605}
 606
 607static int tc_mii_probe(struct net_device *dev)
 608{
 
 609	struct tc35815_local *lp = netdev_priv(dev);
 610	struct phy_device *phydev;
 611	u32 dropmask;
 612
 613	phydev = phy_find_first(lp->mii_bus);
 614	if (!phydev) {
 615		printk(KERN_ERR "%s: no PHY found\n", dev->name);
 616		return -ENODEV;
 617	}
 618
 619	/* attach the mac to the phy */
 620	phydev = phy_connect(dev, phydev_name(phydev),
 621			     &tc_handle_link_change,
 622			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
 623	if (IS_ERR(phydev)) {
 624		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
 625		return PTR_ERR(phydev);
 626	}
 627
 628	phy_attached_info(phydev);
 629
 630	/* mask with MAC supported features */
 631	phydev->supported &= PHY_BASIC_FEATURES;
 632	dropmask = 0;
 633	if (options.speed == 10)
 634		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
 635	else if (options.speed == 100)
 636		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
 637	if (options.duplex == 1)
 638		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
 639	else if (options.duplex == 2)
 640		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
 641	phydev->supported &= ~dropmask;
 642	phydev->advertising = phydev->supported;
 
 
 
 
 
 643
 644	lp->link = 0;
 645	lp->speed = 0;
 646	lp->duplex = -1;
 647
 648	return 0;
 649}
 650
 651static int tc_mii_init(struct net_device *dev)
 652{
 653	struct tc35815_local *lp = netdev_priv(dev);
 654	int err;
 655
 656	lp->mii_bus = mdiobus_alloc();
 657	if (lp->mii_bus == NULL) {
 658		err = -ENOMEM;
 659		goto err_out;
 660	}
 661
 662	lp->mii_bus->name = "tc35815_mii_bus";
 663	lp->mii_bus->read = tc_mdio_read;
 664	lp->mii_bus->write = tc_mdio_write;
 665	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
 666		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
 667	lp->mii_bus->priv = dev;
 668	lp->mii_bus->parent = &lp->pci_dev->dev;
 669	err = mdiobus_register(lp->mii_bus);
 670	if (err)
 671		goto err_out_free_mii_bus;
 672	err = tc_mii_probe(dev);
 673	if (err)
 674		goto err_out_unregister_bus;
 675	return 0;
 676
 677err_out_unregister_bus:
 678	mdiobus_unregister(lp->mii_bus);
 679err_out_free_mii_bus:
 680	mdiobus_free(lp->mii_bus);
 681err_out:
 682	return err;
 683}
 684
 685#ifdef CONFIG_CPU_TX49XX
 686/*
 687 * Find a platform_device providing a MAC address.  The platform code
 688 * should provide a "tc35815-mac" device with a MAC address in its
 689 * platform_data.
 690 */
 691static int tc35815_mac_match(struct device *dev, void *data)
 692{
 693	struct platform_device *plat_dev = to_platform_device(dev);
 694	struct pci_dev *pci_dev = data;
 695	unsigned int id = pci_dev->irq;
 696	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
 697}
 698
 699static int tc35815_read_plat_dev_addr(struct net_device *dev)
 700{
 701	struct tc35815_local *lp = netdev_priv(dev);
 702	struct device *pd = bus_find_device(&platform_bus_type, NULL,
 703					    lp->pci_dev, tc35815_mac_match);
 704	if (pd) {
 705		if (pd->platform_data)
 706			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
 707		put_device(pd);
 708		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
 709	}
 710	return -ENODEV;
 711}
 712#else
 713static int tc35815_read_plat_dev_addr(struct net_device *dev)
 714{
 715	return -ENODEV;
 716}
 717#endif
 718
 719static int tc35815_init_dev_addr(struct net_device *dev)
 720{
 721	struct tc35815_regs __iomem *tr =
 722		(struct tc35815_regs __iomem *)dev->base_addr;
 
 723	int i;
 724
 725	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 726		;
 727	for (i = 0; i < 6; i += 2) {
 728		unsigned short data;
 729		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
 730		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 731			;
 732		data = tc_readl(&tr->PROM_Data);
 733		dev->dev_addr[i] = data & 0xff;
 734		dev->dev_addr[i+1] = data >> 8;
 735	}
 
 736	if (!is_valid_ether_addr(dev->dev_addr))
 737		return tc35815_read_plat_dev_addr(dev);
 738	return 0;
 739}
 740
 741static const struct net_device_ops tc35815_netdev_ops = {
 742	.ndo_open		= tc35815_open,
 743	.ndo_stop		= tc35815_close,
 744	.ndo_start_xmit		= tc35815_send_packet,
 745	.ndo_get_stats		= tc35815_get_stats,
 746	.ndo_set_rx_mode	= tc35815_set_multicast_list,
 747	.ndo_tx_timeout		= tc35815_tx_timeout,
 748	.ndo_do_ioctl		= tc35815_ioctl,
 749	.ndo_validate_addr	= eth_validate_addr,
 750	.ndo_set_mac_address	= eth_mac_addr,
 751#ifdef CONFIG_NET_POLL_CONTROLLER
 752	.ndo_poll_controller	= tc35815_poll_controller,
 753#endif
 754};
 755
 756static int tc35815_init_one(struct pci_dev *pdev,
 757			    const struct pci_device_id *ent)
 758{
 759	void __iomem *ioaddr = NULL;
 760	struct net_device *dev;
 761	struct tc35815_local *lp;
 762	int rc;
 763
 764	static int printed_version;
 765	if (!printed_version++) {
 766		printk(version);
 767		dev_printk(KERN_DEBUG, &pdev->dev,
 768			   "speed:%d duplex:%d\n",
 769			   options.speed, options.duplex);
 770	}
 771
 772	if (!pdev->irq) {
 773		dev_warn(&pdev->dev, "no IRQ assigned.\n");
 774		return -ENODEV;
 775	}
 776
 777	/* dev zeroed in alloc_etherdev */
 778	dev = alloc_etherdev(sizeof(*lp));
 779	if (dev == NULL)
 780		return -ENOMEM;
 781
 782	SET_NETDEV_DEV(dev, &pdev->dev);
 783	lp = netdev_priv(dev);
 784	lp->dev = dev;
 785
 786	/* enable device (incl. PCI PM wakeup), and bus-mastering */
 787	rc = pcim_enable_device(pdev);
 788	if (rc)
 789		goto err_out;
 790	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
 791	if (rc)
 792		goto err_out;
 793	pci_set_master(pdev);
 794	ioaddr = pcim_iomap_table(pdev)[1];
 795
 796	/* Initialize the device structure. */
 797	dev->netdev_ops = &tc35815_netdev_ops;
 798	dev->ethtool_ops = &tc35815_ethtool_ops;
 799	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
 800	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
 801
 802	dev->irq = pdev->irq;
 803	dev->base_addr = (unsigned long)ioaddr;
 804
 805	INIT_WORK(&lp->restart_work, tc35815_restart_work);
 806	spin_lock_init(&lp->lock);
 807	spin_lock_init(&lp->rx_lock);
 808	lp->pci_dev = pdev;
 809	lp->chiptype = ent->driver_data;
 810
 811	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
 812	pci_set_drvdata(pdev, dev);
 813
 814	/* Soft reset the chip. */
 815	tc35815_chip_reset(dev);
 816
 817	/* Retrieve the ethernet address. */
 818	if (tc35815_init_dev_addr(dev)) {
 819		dev_warn(&pdev->dev, "not valid ether addr\n");
 820		eth_hw_addr_random(dev);
 821	}
 822
 823	rc = register_netdev(dev);
 824	if (rc)
 825		goto err_out;
 826
 827	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
 828		dev->name,
 829		chip_info[ent->driver_data].name,
 830		dev->base_addr,
 831		dev->dev_addr,
 832		dev->irq);
 833
 834	rc = tc_mii_init(dev);
 835	if (rc)
 836		goto err_out_unregister;
 837
 838	return 0;
 839
 840err_out_unregister:
 841	unregister_netdev(dev);
 842err_out:
 843	free_netdev(dev);
 844	return rc;
 845}
 846
 847
 848static void tc35815_remove_one(struct pci_dev *pdev)
 849{
 850	struct net_device *dev = pci_get_drvdata(pdev);
 851	struct tc35815_local *lp = netdev_priv(dev);
 852
 853	phy_disconnect(dev->phydev);
 854	mdiobus_unregister(lp->mii_bus);
 855	mdiobus_free(lp->mii_bus);
 856	unregister_netdev(dev);
 857	free_netdev(dev);
 858}
 859
 860static int
 861tc35815_init_queues(struct net_device *dev)
 862{
 863	struct tc35815_local *lp = netdev_priv(dev);
 864	int i;
 865	unsigned long fd_addr;
 866
 867	if (!lp->fd_buf) {
 868		BUG_ON(sizeof(struct FDesc) +
 869		       sizeof(struct BDesc) * RX_BUF_NUM +
 870		       sizeof(struct FDesc) * RX_FD_NUM +
 871		       sizeof(struct TxFD) * TX_FD_NUM >
 872		       PAGE_SIZE * FD_PAGE_NUM);
 873
 874		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
 875						  PAGE_SIZE * FD_PAGE_NUM,
 876						  &lp->fd_buf_dma);
 877		if (!lp->fd_buf)
 878			return -ENOMEM;
 879		for (i = 0; i < RX_BUF_NUM; i++) {
 880			lp->rx_skbs[i].skb =
 881				alloc_rxbuf_skb(dev, lp->pci_dev,
 882						&lp->rx_skbs[i].skb_dma);
 883			if (!lp->rx_skbs[i].skb) {
 884				while (--i >= 0) {
 885					free_rxbuf_skb(lp->pci_dev,
 886						       lp->rx_skbs[i].skb,
 887						       lp->rx_skbs[i].skb_dma);
 888					lp->rx_skbs[i].skb = NULL;
 889				}
 890				pci_free_consistent(lp->pci_dev,
 891						    PAGE_SIZE * FD_PAGE_NUM,
 892						    lp->fd_buf,
 893						    lp->fd_buf_dma);
 894				lp->fd_buf = NULL;
 895				return -ENOMEM;
 896			}
 897		}
 898		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
 899		       dev->name, lp->fd_buf);
 900		printk("\n");
 901	} else {
 902		for (i = 0; i < FD_PAGE_NUM; i++)
 903			clear_page((void *)((unsigned long)lp->fd_buf +
 904					    i * PAGE_SIZE));
 905	}
 906	fd_addr = (unsigned long)lp->fd_buf;
 907
 908	/* Free Descriptors (for Receive) */
 909	lp->rfd_base = (struct RxFD *)fd_addr;
 910	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
 911	for (i = 0; i < RX_FD_NUM; i++)
 912		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
 913	lp->rfd_cur = lp->rfd_base;
 914	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
 915
 916	/* Transmit Descriptors */
 917	lp->tfd_base = (struct TxFD *)fd_addr;
 918	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
 919	for (i = 0; i < TX_FD_NUM; i++) {
 920		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
 921		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
 922		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
 923	}
 924	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
 925	lp->tfd_start = 0;
 926	lp->tfd_end = 0;
 927
 928	/* Buffer List (for Receive) */
 929	lp->fbl_ptr = (struct FrFD *)fd_addr;
 930	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
 931	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
 932	/*
 933	 * move all allocated skbs to head of rx_skbs[] array.
 934	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
 935	 * tc35815_rx() had failed.
 936	 */
 937	lp->fbl_count = 0;
 938	for (i = 0; i < RX_BUF_NUM; i++) {
 939		if (lp->rx_skbs[i].skb) {
 940			if (i != lp->fbl_count) {
 941				lp->rx_skbs[lp->fbl_count].skb =
 942					lp->rx_skbs[i].skb;
 943				lp->rx_skbs[lp->fbl_count].skb_dma =
 944					lp->rx_skbs[i].skb_dma;
 945			}
 946			lp->fbl_count++;
 947		}
 948	}
 949	for (i = 0; i < RX_BUF_NUM; i++) {
 950		if (i >= lp->fbl_count) {
 951			lp->fbl_ptr->bd[i].BuffData = 0;
 952			lp->fbl_ptr->bd[i].BDCtl = 0;
 953			continue;
 954		}
 955		lp->fbl_ptr->bd[i].BuffData =
 956			cpu_to_le32(lp->rx_skbs[i].skb_dma);
 957		/* BDID is index of FrFD.bd[] */
 958		lp->fbl_ptr->bd[i].BDCtl =
 959			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
 960				    RX_BUF_SIZE);
 961	}
 962
 963	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
 964	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
 965	return 0;
 966}
 967
 968static void
 969tc35815_clear_queues(struct net_device *dev)
 970{
 971	struct tc35815_local *lp = netdev_priv(dev);
 972	int i;
 973
 974	for (i = 0; i < TX_FD_NUM; i++) {
 975		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
 976		struct sk_buff *skb =
 977			fdsystem != 0xffffffff ?
 978			lp->tx_skbs[fdsystem].skb : NULL;
 979#ifdef DEBUG
 980		if (lp->tx_skbs[i].skb != skb) {
 981			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
 982			panic_queues(dev);
 983		}
 984#else
 985		BUG_ON(lp->tx_skbs[i].skb != skb);
 986#endif
 987		if (skb) {
 988			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
 
 
 989			lp->tx_skbs[i].skb = NULL;
 990			lp->tx_skbs[i].skb_dma = 0;
 991			dev_kfree_skb_any(skb);
 992		}
 993		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
 994	}
 995
 996	tc35815_init_queues(dev);
 997}
 998
 999static void
1000tc35815_free_queues(struct net_device *dev)
1001{
1002	struct tc35815_local *lp = netdev_priv(dev);
1003	int i;
1004
1005	if (lp->tfd_base) {
1006		for (i = 0; i < TX_FD_NUM; i++) {
1007			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1008			struct sk_buff *skb =
1009				fdsystem != 0xffffffff ?
1010				lp->tx_skbs[fdsystem].skb : NULL;
1011#ifdef DEBUG
1012			if (lp->tx_skbs[i].skb != skb) {
1013				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1014				panic_queues(dev);
1015			}
1016#else
1017			BUG_ON(lp->tx_skbs[i].skb != skb);
1018#endif
1019			if (skb) {
 
 
 
1020				dev_kfree_skb(skb);
1021				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1022				lp->tx_skbs[i].skb = NULL;
1023				lp->tx_skbs[i].skb_dma = 0;
1024			}
1025			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1026		}
1027	}
1028
1029	lp->rfd_base = NULL;
1030	lp->rfd_limit = NULL;
1031	lp->rfd_cur = NULL;
1032	lp->fbl_ptr = NULL;
1033
1034	for (i = 0; i < RX_BUF_NUM; i++) {
1035		if (lp->rx_skbs[i].skb) {
1036			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1037				       lp->rx_skbs[i].skb_dma);
1038			lp->rx_skbs[i].skb = NULL;
1039		}
1040	}
1041	if (lp->fd_buf) {
1042		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1043				    lp->fd_buf, lp->fd_buf_dma);
1044		lp->fd_buf = NULL;
1045	}
1046}
1047
1048static void
1049dump_txfd(struct TxFD *fd)
1050{
1051	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1052	       le32_to_cpu(fd->fd.FDNext),
1053	       le32_to_cpu(fd->fd.FDSystem),
1054	       le32_to_cpu(fd->fd.FDStat),
1055	       le32_to_cpu(fd->fd.FDCtl));
1056	printk("BD: ");
1057	printk(" %08x %08x",
1058	       le32_to_cpu(fd->bd.BuffData),
1059	       le32_to_cpu(fd->bd.BDCtl));
1060	printk("\n");
1061}
1062
1063static int
1064dump_rxfd(struct RxFD *fd)
1065{
1066	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1067	if (bd_count > 8)
1068		bd_count = 8;
1069	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1070	       le32_to_cpu(fd->fd.FDNext),
1071	       le32_to_cpu(fd->fd.FDSystem),
1072	       le32_to_cpu(fd->fd.FDStat),
1073	       le32_to_cpu(fd->fd.FDCtl));
1074	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1075		return 0;
1076	printk("BD: ");
1077	for (i = 0; i < bd_count; i++)
1078		printk(" %08x %08x",
1079		       le32_to_cpu(fd->bd[i].BuffData),
1080		       le32_to_cpu(fd->bd[i].BDCtl));
1081	printk("\n");
1082	return bd_count;
1083}
1084
1085#ifdef DEBUG
1086static void
1087dump_frfd(struct FrFD *fd)
1088{
1089	int i;
1090	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1091	       le32_to_cpu(fd->fd.FDNext),
1092	       le32_to_cpu(fd->fd.FDSystem),
1093	       le32_to_cpu(fd->fd.FDStat),
1094	       le32_to_cpu(fd->fd.FDCtl));
1095	printk("BD: ");
1096	for (i = 0; i < RX_BUF_NUM; i++)
1097		printk(" %08x %08x",
1098		       le32_to_cpu(fd->bd[i].BuffData),
1099		       le32_to_cpu(fd->bd[i].BDCtl));
1100	printk("\n");
1101}
1102
1103static void
1104panic_queues(struct net_device *dev)
1105{
1106	struct tc35815_local *lp = netdev_priv(dev);
1107	int i;
1108
1109	printk("TxFD base %p, start %u, end %u\n",
1110	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1111	printk("RxFD base %p limit %p cur %p\n",
1112	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1113	printk("FrFD %p\n", lp->fbl_ptr);
1114	for (i = 0; i < TX_FD_NUM; i++)
1115		dump_txfd(&lp->tfd_base[i]);
1116	for (i = 0; i < RX_FD_NUM; i++) {
1117		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1118		i += (bd_count + 1) / 2;	/* skip BDs */
1119	}
1120	dump_frfd(lp->fbl_ptr);
1121	panic("%s: Illegal queue state.", dev->name);
1122}
1123#endif
1124
1125static void print_eth(const u8 *add)
1126{
1127	printk(KERN_DEBUG "print_eth(%p)\n", add);
1128	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1129		add + 6, add, add[12], add[13]);
1130}
1131
1132static int tc35815_tx_full(struct net_device *dev)
1133{
1134	struct tc35815_local *lp = netdev_priv(dev);
1135	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1136}
1137
1138static void tc35815_restart(struct net_device *dev)
1139{
1140	struct tc35815_local *lp = netdev_priv(dev);
1141	int ret;
1142
1143	if (dev->phydev) {
1144		ret = phy_init_hw(dev->phydev);
1145		if (ret)
1146			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1147	}
1148
1149	spin_lock_bh(&lp->rx_lock);
1150	spin_lock_irq(&lp->lock);
1151	tc35815_chip_reset(dev);
1152	tc35815_clear_queues(dev);
1153	tc35815_chip_init(dev);
1154	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1155	tc35815_set_multicast_list(dev);
1156	spin_unlock_irq(&lp->lock);
1157	spin_unlock_bh(&lp->rx_lock);
1158
1159	netif_wake_queue(dev);
1160}
1161
1162static void tc35815_restart_work(struct work_struct *work)
1163{
1164	struct tc35815_local *lp =
1165		container_of(work, struct tc35815_local, restart_work);
1166	struct net_device *dev = lp->dev;
1167
1168	tc35815_restart(dev);
1169}
1170
1171static void tc35815_schedule_restart(struct net_device *dev)
1172{
1173	struct tc35815_local *lp = netdev_priv(dev);
1174	struct tc35815_regs __iomem *tr =
1175		(struct tc35815_regs __iomem *)dev->base_addr;
1176	unsigned long flags;
1177
1178	/* disable interrupts */
1179	spin_lock_irqsave(&lp->lock, flags);
1180	tc_writel(0, &tr->Int_En);
1181	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1182	schedule_work(&lp->restart_work);
1183	spin_unlock_irqrestore(&lp->lock, flags);
1184}
1185
1186static void tc35815_tx_timeout(struct net_device *dev)
1187{
1188	struct tc35815_regs __iomem *tr =
1189		(struct tc35815_regs __iomem *)dev->base_addr;
1190
1191	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1192	       dev->name, tc_readl(&tr->Tx_Stat));
1193
1194	/* Try to restart the adaptor. */
1195	tc35815_schedule_restart(dev);
1196	dev->stats.tx_errors++;
1197}
1198
1199/*
1200 * Open/initialize the controller. This is called (in the current kernel)
1201 * sometime after booting when the 'ifconfig' program is run.
1202 *
1203 * This routine should set everything up anew at each open, even
1204 * registers that "should" only need to be set once at boot, so that
1205 * there is non-reboot way to recover if something goes wrong.
1206 */
1207static int
1208tc35815_open(struct net_device *dev)
1209{
1210	struct tc35815_local *lp = netdev_priv(dev);
1211
1212	/*
1213	 * This is used if the interrupt line can turned off (shared).
1214	 * See 3c503.c for an example of selecting the IRQ at config-time.
1215	 */
1216	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1217			dev->name, dev))
1218		return -EAGAIN;
1219
1220	tc35815_chip_reset(dev);
1221
1222	if (tc35815_init_queues(dev) != 0) {
1223		free_irq(dev->irq, dev);
1224		return -EAGAIN;
1225	}
1226
1227	napi_enable(&lp->napi);
1228
1229	/* Reset the hardware here. Don't forget to set the station address. */
1230	spin_lock_irq(&lp->lock);
1231	tc35815_chip_init(dev);
1232	spin_unlock_irq(&lp->lock);
1233
1234	netif_carrier_off(dev);
1235	/* schedule a link state check */
1236	phy_start(dev->phydev);
1237
1238	/* We are now ready to accept transmit requeusts from
1239	 * the queueing layer of the networking.
1240	 */
1241	netif_start_queue(dev);
1242
1243	return 0;
1244}
1245
1246/* This will only be invoked if your driver is _not_ in XOFF state.
1247 * What this means is that you need not check it, and that this
1248 * invariant will hold if you make sure that the netif_*_queue()
1249 * calls are done at the proper times.
1250 */
1251static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
 
1252{
1253	struct tc35815_local *lp = netdev_priv(dev);
1254	struct TxFD *txfd;
1255	unsigned long flags;
1256
1257	/* If some error occurs while trying to transmit this
1258	 * packet, you should return '1' from this function.
1259	 * In such a case you _may not_ do anything to the
1260	 * SKB, it is still owned by the network queueing
1261	 * layer when an error is returned.  This means you
1262	 * may not modify any SKB fields, you may not free
1263	 * the SKB, etc.
1264	 */
1265
1266	/* This is the most common case for modern hardware.
1267	 * The spinlock protects this code from the TX complete
1268	 * hardware interrupt handler.  Queue flow control is
1269	 * thus managed under this lock as well.
1270	 */
1271	spin_lock_irqsave(&lp->lock, flags);
1272
1273	/* failsafe... (handle txdone now if half of FDs are used) */
1274	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1275	    TX_FD_NUM / 2)
1276		tc35815_txdone(dev);
1277
1278	if (netif_msg_pktdata(lp))
1279		print_eth(skb->data);
1280#ifdef DEBUG
1281	if (lp->tx_skbs[lp->tfd_start].skb) {
1282		printk("%s: tx_skbs conflict.\n", dev->name);
1283		panic_queues(dev);
1284	}
1285#else
1286	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1287#endif
1288	lp->tx_skbs[lp->tfd_start].skb = skb;
1289	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
 
 
 
1290
1291	/*add to ring */
1292	txfd = &lp->tfd_base[lp->tfd_start];
1293	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1294	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1295	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1296	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1297
1298	if (lp->tfd_start == lp->tfd_end) {
1299		struct tc35815_regs __iomem *tr =
1300			(struct tc35815_regs __iomem *)dev->base_addr;
1301		/* Start DMA Transmitter. */
1302		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1303		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1304		if (netif_msg_tx_queued(lp)) {
1305			printk("%s: starting TxFD.\n", dev->name);
1306			dump_txfd(txfd);
1307		}
1308		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1309	} else {
1310		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1311		if (netif_msg_tx_queued(lp)) {
1312			printk("%s: queueing TxFD.\n", dev->name);
1313			dump_txfd(txfd);
1314		}
1315	}
1316	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1317
1318	/* If we just used up the very last entry in the
1319	 * TX ring on this device, tell the queueing
1320	 * layer to send no more.
1321	 */
1322	if (tc35815_tx_full(dev)) {
1323		if (netif_msg_tx_queued(lp))
1324			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1325		netif_stop_queue(dev);
1326	}
1327
1328	/* When the TX completion hw interrupt arrives, this
1329	 * is when the transmit statistics are updated.
1330	 */
1331
1332	spin_unlock_irqrestore(&lp->lock, flags);
1333	return NETDEV_TX_OK;
1334}
1335
1336#define FATAL_ERROR_INT \
1337	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1338static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1339{
1340	static int count;
1341	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1342	       dev->name, status);
1343	if (status & Int_IntPCI)
1344		printk(" IntPCI");
1345	if (status & Int_DmParErr)
1346		printk(" DmParErr");
1347	if (status & Int_IntNRAbt)
1348		printk(" IntNRAbt");
1349	printk("\n");
1350	if (count++ > 100)
1351		panic("%s: Too many fatal errors.", dev->name);
1352	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1353	/* Try to restart the adaptor. */
1354	tc35815_schedule_restart(dev);
1355}
1356
1357static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1358{
1359	struct tc35815_local *lp = netdev_priv(dev);
1360	int ret = -1;
1361
1362	/* Fatal errors... */
1363	if (status & FATAL_ERROR_INT) {
1364		tc35815_fatal_error_interrupt(dev, status);
1365		return 0;
1366	}
1367	/* recoverable errors */
1368	if (status & Int_IntFDAEx) {
1369		if (netif_msg_rx_err(lp))
1370			dev_warn(&dev->dev,
1371				 "Free Descriptor Area Exhausted (%#x).\n",
1372				 status);
1373		dev->stats.rx_dropped++;
1374		ret = 0;
1375	}
1376	if (status & Int_IntBLEx) {
1377		if (netif_msg_rx_err(lp))
1378			dev_warn(&dev->dev,
1379				 "Buffer List Exhausted (%#x).\n",
1380				 status);
1381		dev->stats.rx_dropped++;
1382		ret = 0;
1383	}
1384	if (status & Int_IntExBD) {
1385		if (netif_msg_rx_err(lp))
1386			dev_warn(&dev->dev,
1387				 "Excessive Buffer Descriptors (%#x).\n",
1388				 status);
1389		dev->stats.rx_length_errors++;
1390		ret = 0;
1391	}
1392
1393	/* normal notification */
1394	if (status & Int_IntMacRx) {
1395		/* Got a packet(s). */
1396		ret = tc35815_rx(dev, limit);
1397		lp->lstats.rx_ints++;
1398	}
1399	if (status & Int_IntMacTx) {
1400		/* Transmit complete. */
1401		lp->lstats.tx_ints++;
1402		spin_lock_irq(&lp->lock);
1403		tc35815_txdone(dev);
1404		spin_unlock_irq(&lp->lock);
1405		if (ret < 0)
1406			ret = 0;
1407	}
1408	return ret;
1409}
1410
1411/*
1412 * The typical workload of the driver:
1413 * Handle the network interface interrupts.
1414 */
1415static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1416{
1417	struct net_device *dev = dev_id;
1418	struct tc35815_local *lp = netdev_priv(dev);
1419	struct tc35815_regs __iomem *tr =
1420		(struct tc35815_regs __iomem *)dev->base_addr;
1421	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1422
1423	if (!(dmactl & DMA_IntMask)) {
1424		/* disable interrupts */
1425		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1426		if (napi_schedule_prep(&lp->napi))
1427			__napi_schedule(&lp->napi);
1428		else {
1429			printk(KERN_ERR "%s: interrupt taken in poll\n",
1430			       dev->name);
1431			BUG();
1432		}
1433		(void)tc_readl(&tr->Int_Src);	/* flush */
1434		return IRQ_HANDLED;
1435	}
1436	return IRQ_NONE;
1437}
1438
1439#ifdef CONFIG_NET_POLL_CONTROLLER
1440static void tc35815_poll_controller(struct net_device *dev)
1441{
1442	disable_irq(dev->irq);
1443	tc35815_interrupt(dev->irq, dev);
1444	enable_irq(dev->irq);
1445}
1446#endif
1447
1448/* We have a good packet(s), get it/them out of the buffers. */
1449static int
1450tc35815_rx(struct net_device *dev, int limit)
1451{
1452	struct tc35815_local *lp = netdev_priv(dev);
1453	unsigned int fdctl;
1454	int i;
1455	int received = 0;
1456
1457	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1458		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1459		int pkt_len = fdctl & FD_FDLength_MASK;
1460		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1461#ifdef DEBUG
1462		struct RxFD *next_rfd;
1463#endif
1464#if (RX_CTL_CMD & Rx_StripCRC) == 0
1465		pkt_len -= ETH_FCS_LEN;
1466#endif
1467
1468		if (netif_msg_rx_status(lp))
1469			dump_rxfd(lp->rfd_cur);
1470		if (status & Rx_Good) {
1471			struct sk_buff *skb;
1472			unsigned char *data;
1473			int cur_bd;
1474
1475			if (--limit < 0)
1476				break;
1477			BUG_ON(bd_count > 1);
1478			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1479				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1480#ifdef DEBUG
1481			if (cur_bd >= RX_BUF_NUM) {
1482				printk("%s: invalid BDID.\n", dev->name);
1483				panic_queues(dev);
1484			}
1485			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1486			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1487			if (!lp->rx_skbs[cur_bd].skb) {
1488				printk("%s: NULL skb.\n", dev->name);
1489				panic_queues(dev);
1490			}
1491#else
1492			BUG_ON(cur_bd >= RX_BUF_NUM);
1493#endif
1494			skb = lp->rx_skbs[cur_bd].skb;
1495			prefetch(skb->data);
1496			lp->rx_skbs[cur_bd].skb = NULL;
1497			pci_unmap_single(lp->pci_dev,
1498					 lp->rx_skbs[cur_bd].skb_dma,
1499					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1500			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1501				memmove(skb->data, skb->data - NET_IP_ALIGN,
1502					pkt_len);
1503			data = skb_put(skb, pkt_len);
1504			if (netif_msg_pktdata(lp))
1505				print_eth(data);
1506			skb->protocol = eth_type_trans(skb, dev);
1507			netif_receive_skb(skb);
1508			received++;
1509			dev->stats.rx_packets++;
1510			dev->stats.rx_bytes += pkt_len;
1511		} else {
1512			dev->stats.rx_errors++;
1513			if (netif_msg_rx_err(lp))
1514				dev_info(&dev->dev, "Rx error (status %x)\n",
1515					 status & Rx_Stat_Mask);
1516			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1517			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1518				status &= ~(Rx_LongErr|Rx_CRCErr);
1519				status |= Rx_Over;
1520			}
1521			if (status & Rx_LongErr)
1522				dev->stats.rx_length_errors++;
1523			if (status & Rx_Over)
1524				dev->stats.rx_fifo_errors++;
1525			if (status & Rx_CRCErr)
1526				dev->stats.rx_crc_errors++;
1527			if (status & Rx_Align)
1528				dev->stats.rx_frame_errors++;
1529		}
1530
1531		if (bd_count > 0) {
1532			/* put Free Buffer back to controller */
1533			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1534			unsigned char id =
1535				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1536#ifdef DEBUG
1537			if (id >= RX_BUF_NUM) {
1538				printk("%s: invalid BDID.\n", dev->name);
1539				panic_queues(dev);
1540			}
1541#else
1542			BUG_ON(id >= RX_BUF_NUM);
1543#endif
1544			/* free old buffers */
1545			lp->fbl_count--;
1546			while (lp->fbl_count < RX_BUF_NUM)
1547			{
1548				unsigned char curid =
1549					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1550				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1551#ifdef DEBUG
1552				bdctl = le32_to_cpu(bd->BDCtl);
1553				if (bdctl & BD_CownsBD) {
1554					printk("%s: Freeing invalid BD.\n",
1555					       dev->name);
1556					panic_queues(dev);
1557				}
1558#endif
1559				/* pass BD to controller */
1560				if (!lp->rx_skbs[curid].skb) {
1561					lp->rx_skbs[curid].skb =
1562						alloc_rxbuf_skb(dev,
1563								lp->pci_dev,
1564								&lp->rx_skbs[curid].skb_dma);
1565					if (!lp->rx_skbs[curid].skb)
1566						break; /* try on next reception */
1567					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1568				}
1569				/* Note: BDLength was modified by chip. */
1570				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1571							(curid << BD_RxBDID_SHIFT) |
1572							RX_BUF_SIZE);
1573				lp->fbl_count++;
1574			}
1575		}
1576
1577		/* put RxFD back to controller */
1578#ifdef DEBUG
1579		next_rfd = fd_bus_to_virt(lp,
1580					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1581		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1582			printk("%s: RxFD FDNext invalid.\n", dev->name);
1583			panic_queues(dev);
1584		}
1585#endif
1586		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1587			/* pass FD to controller */
1588#ifdef DEBUG
1589			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1590#else
1591			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1592#endif
1593			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1594			lp->rfd_cur++;
1595		}
1596		if (lp->rfd_cur > lp->rfd_limit)
1597			lp->rfd_cur = lp->rfd_base;
1598#ifdef DEBUG
1599		if (lp->rfd_cur != next_rfd)
1600			printk("rfd_cur = %p, next_rfd %p\n",
1601			       lp->rfd_cur, next_rfd);
1602#endif
1603	}
1604
1605	return received;
1606}
1607
1608static int tc35815_poll(struct napi_struct *napi, int budget)
1609{
1610	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1611	struct net_device *dev = lp->dev;
1612	struct tc35815_regs __iomem *tr =
1613		(struct tc35815_regs __iomem *)dev->base_addr;
1614	int received = 0, handled;
1615	u32 status;
1616
1617	if (budget <= 0)
1618		return received;
1619
1620	spin_lock(&lp->rx_lock);
1621	status = tc_readl(&tr->Int_Src);
1622	do {
1623		/* BLEx, FDAEx will be cleared later */
1624		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1625			  &tr->Int_Src);	/* write to clear */
1626
1627		handled = tc35815_do_interrupt(dev, status, budget - received);
1628		if (status & (Int_BLEx | Int_FDAEx))
1629			tc_writel(status & (Int_BLEx | Int_FDAEx),
1630				  &tr->Int_Src);
1631		if (handled >= 0) {
1632			received += handled;
1633			if (received >= budget)
1634				break;
1635		}
1636		status = tc_readl(&tr->Int_Src);
1637	} while (status);
1638	spin_unlock(&lp->rx_lock);
1639
1640	if (received < budget) {
1641		napi_complete(napi);
1642		/* enable interrupts */
1643		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1644	}
1645	return received;
1646}
1647
1648#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1649
1650static void
1651tc35815_check_tx_stat(struct net_device *dev, int status)
1652{
1653	struct tc35815_local *lp = netdev_priv(dev);
1654	const char *msg = NULL;
1655
1656	/* count collisions */
1657	if (status & Tx_ExColl)
1658		dev->stats.collisions += 16;
1659	if (status & Tx_TxColl_MASK)
1660		dev->stats.collisions += status & Tx_TxColl_MASK;
1661
1662	/* TX4939 does not have NCarr */
1663	if (lp->chiptype == TC35815_TX4939)
1664		status &= ~Tx_NCarr;
1665	/* WORKAROUND: ignore LostCrS in full duplex operation */
1666	if (!lp->link || lp->duplex == DUPLEX_FULL)
1667		status &= ~Tx_NCarr;
1668
1669	if (!(status & TX_STA_ERR)) {
1670		/* no error. */
1671		dev->stats.tx_packets++;
1672		return;
1673	}
1674
1675	dev->stats.tx_errors++;
1676	if (status & Tx_ExColl) {
1677		dev->stats.tx_aborted_errors++;
1678		msg = "Excessive Collision.";
1679	}
1680	if (status & Tx_Under) {
1681		dev->stats.tx_fifo_errors++;
1682		msg = "Tx FIFO Underrun.";
1683		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1684			lp->lstats.tx_underrun++;
1685			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1686				struct tc35815_regs __iomem *tr =
1687					(struct tc35815_regs __iomem *)dev->base_addr;
1688				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1689				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1690			}
1691		}
1692	}
1693	if (status & Tx_Defer) {
1694		dev->stats.tx_fifo_errors++;
1695		msg = "Excessive Deferral.";
1696	}
1697	if (status & Tx_NCarr) {
1698		dev->stats.tx_carrier_errors++;
1699		msg = "Lost Carrier Sense.";
1700	}
1701	if (status & Tx_LateColl) {
1702		dev->stats.tx_aborted_errors++;
1703		msg = "Late Collision.";
1704	}
1705	if (status & Tx_TxPar) {
1706		dev->stats.tx_fifo_errors++;
1707		msg = "Transmit Parity Error.";
1708	}
1709	if (status & Tx_SQErr) {
1710		dev->stats.tx_heartbeat_errors++;
1711		msg = "Signal Quality Error.";
1712	}
1713	if (msg && netif_msg_tx_err(lp))
1714		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1715}
1716
1717/* This handles TX complete events posted by the device
1718 * via interrupts.
1719 */
1720static void
1721tc35815_txdone(struct net_device *dev)
1722{
1723	struct tc35815_local *lp = netdev_priv(dev);
1724	struct TxFD *txfd;
1725	unsigned int fdctl;
1726
1727	txfd = &lp->tfd_base[lp->tfd_end];
1728	while (lp->tfd_start != lp->tfd_end &&
1729	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1730		int status = le32_to_cpu(txfd->fd.FDStat);
1731		struct sk_buff *skb;
1732		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1733		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1734
1735		if (netif_msg_tx_done(lp)) {
1736			printk("%s: complete TxFD.\n", dev->name);
1737			dump_txfd(txfd);
1738		}
1739		tc35815_check_tx_stat(dev, status);
1740
1741		skb = fdsystem != 0xffffffff ?
1742			lp->tx_skbs[fdsystem].skb : NULL;
1743#ifdef DEBUG
1744		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1745			printk("%s: tx_skbs mismatch.\n", dev->name);
1746			panic_queues(dev);
1747		}
1748#else
1749		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1750#endif
1751		if (skb) {
1752			dev->stats.tx_bytes += skb->len;
1753			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
 
 
1754			lp->tx_skbs[lp->tfd_end].skb = NULL;
1755			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1756			dev_kfree_skb_any(skb);
1757		}
1758		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1759
1760		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1761		txfd = &lp->tfd_base[lp->tfd_end];
1762#ifdef DEBUG
1763		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1764			printk("%s: TxFD FDNext invalid.\n", dev->name);
1765			panic_queues(dev);
1766		}
1767#endif
1768		if (fdnext & FD_Next_EOL) {
1769			/* DMA Transmitter has been stopping... */
1770			if (lp->tfd_end != lp->tfd_start) {
1771				struct tc35815_regs __iomem *tr =
1772					(struct tc35815_regs __iomem *)dev->base_addr;
1773				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1774				struct TxFD *txhead = &lp->tfd_base[head];
1775				int qlen = (lp->tfd_start + TX_FD_NUM
1776					    - lp->tfd_end) % TX_FD_NUM;
1777
1778#ifdef DEBUG
1779				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1780					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1781					panic_queues(dev);
1782				}
1783#endif
1784				/* log max queue length */
1785				if (lp->lstats.max_tx_qlen < qlen)
1786					lp->lstats.max_tx_qlen = qlen;
1787
1788
1789				/* start DMA Transmitter again */
1790				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1791				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1792				if (netif_msg_tx_queued(lp)) {
1793					printk("%s: start TxFD on queue.\n",
1794					       dev->name);
1795					dump_txfd(txfd);
1796				}
1797				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1798			}
1799			break;
1800		}
1801	}
1802
1803	/* If we had stopped the queue due to a "tx full"
1804	 * condition, and space has now been made available,
1805	 * wake up the queue.
1806	 */
1807	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1808		netif_wake_queue(dev);
1809}
1810
1811/* The inverse routine to tc35815_open(). */
1812static int
1813tc35815_close(struct net_device *dev)
1814{
1815	struct tc35815_local *lp = netdev_priv(dev);
1816
1817	netif_stop_queue(dev);
1818	napi_disable(&lp->napi);
1819	if (dev->phydev)
1820		phy_stop(dev->phydev);
1821	cancel_work_sync(&lp->restart_work);
1822
1823	/* Flush the Tx and disable Rx here. */
1824	tc35815_chip_reset(dev);
1825	free_irq(dev->irq, dev);
1826
1827	tc35815_free_queues(dev);
1828
1829	return 0;
1830
1831}
1832
1833/*
1834 * Get the current statistics.
1835 * This may be called with the card open or closed.
1836 */
1837static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1838{
1839	struct tc35815_regs __iomem *tr =
1840		(struct tc35815_regs __iomem *)dev->base_addr;
1841	if (netif_running(dev))
1842		/* Update the statistics from the device registers. */
1843		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1844
1845	return &dev->stats;
1846}
1847
1848static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
 
1849{
1850	struct tc35815_local *lp = netdev_priv(dev);
1851	struct tc35815_regs __iomem *tr =
1852		(struct tc35815_regs __iomem *)dev->base_addr;
1853	int cam_index = index * 6;
1854	u32 cam_data;
1855	u32 saved_addr;
1856
1857	saved_addr = tc_readl(&tr->CAM_Adr);
1858
1859	if (netif_msg_hw(lp))
1860		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1861			dev->name, index, addr);
1862	if (index & 1) {
1863		/* read modify write */
1864		tc_writel(cam_index - 2, &tr->CAM_Adr);
1865		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1866		cam_data |= addr[0] << 8 | addr[1];
1867		tc_writel(cam_data, &tr->CAM_Data);
1868		/* write whole word */
1869		tc_writel(cam_index + 2, &tr->CAM_Adr);
1870		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1871		tc_writel(cam_data, &tr->CAM_Data);
1872	} else {
1873		/* write whole word */
1874		tc_writel(cam_index, &tr->CAM_Adr);
1875		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1876		tc_writel(cam_data, &tr->CAM_Data);
1877		/* read modify write */
1878		tc_writel(cam_index + 4, &tr->CAM_Adr);
1879		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1880		cam_data |= addr[4] << 24 | (addr[5] << 16);
1881		tc_writel(cam_data, &tr->CAM_Data);
1882	}
1883
1884	tc_writel(saved_addr, &tr->CAM_Adr);
1885}
1886
1887
1888/*
1889 * Set or clear the multicast filter for this adaptor.
1890 * num_addrs == -1	Promiscuous mode, receive all packets
1891 * num_addrs == 0	Normal mode, clear multicast list
1892 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1893 *			and do best-effort filtering.
1894 */
1895static void
1896tc35815_set_multicast_list(struct net_device *dev)
1897{
1898	struct tc35815_regs __iomem *tr =
1899		(struct tc35815_regs __iomem *)dev->base_addr;
1900
1901	if (dev->flags & IFF_PROMISC) {
1902		/* With some (all?) 100MHalf HUB, controller will hang
1903		 * if we enabled promiscuous mode before linkup... */
 
1904		struct tc35815_local *lp = netdev_priv(dev);
1905
1906		if (!lp->link)
1907			return;
1908		/* Enable promiscuous mode */
1909		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1910	} else if ((dev->flags & IFF_ALLMULTI) ||
1911		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1912		/* CAM 0, 1, 20 are reserved. */
1913		/* Disable promiscuous mode, use normal mode. */
1914		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1915	} else if (!netdev_mc_empty(dev)) {
1916		struct netdev_hw_addr *ha;
1917		int i;
1918		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1919
1920		tc_writel(0, &tr->CAM_Ctl);
1921		/* Walk the address list, and load the filter */
1922		i = 0;
1923		netdev_for_each_mc_addr(ha, dev) {
1924			/* entry 0,1 is reserved. */
1925			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1926			ena_bits |= CAM_Ena_Bit(i + 2);
1927			i++;
1928		}
1929		tc_writel(ena_bits, &tr->CAM_Ena);
1930		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1931	} else {
1932		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1933		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1934	}
1935}
1936
1937static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1938{
1939	struct tc35815_local *lp = netdev_priv(dev);
1940
1941	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1942	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1943	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1944}
1945
1946static u32 tc35815_get_msglevel(struct net_device *dev)
1947{
1948	struct tc35815_local *lp = netdev_priv(dev);
1949	return lp->msg_enable;
1950}
1951
1952static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1953{
1954	struct tc35815_local *lp = netdev_priv(dev);
1955	lp->msg_enable = datum;
1956}
1957
1958static int tc35815_get_sset_count(struct net_device *dev, int sset)
1959{
1960	struct tc35815_local *lp = netdev_priv(dev);
1961
1962	switch (sset) {
1963	case ETH_SS_STATS:
1964		return sizeof(lp->lstats) / sizeof(int);
1965	default:
1966		return -EOPNOTSUPP;
1967	}
1968}
1969
1970static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1971{
1972	struct tc35815_local *lp = netdev_priv(dev);
1973	data[0] = lp->lstats.max_tx_qlen;
1974	data[1] = lp->lstats.tx_ints;
1975	data[2] = lp->lstats.rx_ints;
1976	data[3] = lp->lstats.tx_underrun;
1977}
1978
1979static struct {
1980	const char str[ETH_GSTRING_LEN];
1981} ethtool_stats_keys[] = {
1982	{ "max_tx_qlen" },
1983	{ "tx_ints" },
1984	{ "rx_ints" },
1985	{ "tx_underrun" },
1986};
1987
1988static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1989{
1990	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
1991}
1992
1993static const struct ethtool_ops tc35815_ethtool_ops = {
1994	.get_drvinfo		= tc35815_get_drvinfo,
1995	.get_link		= ethtool_op_get_link,
1996	.get_msglevel		= tc35815_get_msglevel,
1997	.set_msglevel		= tc35815_set_msglevel,
1998	.get_strings		= tc35815_get_strings,
1999	.get_sset_count		= tc35815_get_sset_count,
2000	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2001	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2002	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2003};
2004
2005static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2006{
2007	if (!netif_running(dev))
2008		return -EINVAL;
2009	if (!dev->phydev)
2010		return -ENODEV;
2011	return phy_mii_ioctl(dev->phydev, rq, cmd);
2012}
2013
2014static void tc35815_chip_reset(struct net_device *dev)
2015{
2016	struct tc35815_regs __iomem *tr =
2017		(struct tc35815_regs __iomem *)dev->base_addr;
2018	int i;
2019	/* reset the controller */
2020	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2021	udelay(4); /* 3200ns */
2022	i = 0;
2023	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2024		if (i++ > 100) {
2025			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2026			break;
2027		}
2028		mdelay(1);
2029	}
2030	tc_writel(0, &tr->MAC_Ctl);
2031
2032	/* initialize registers to default value */
2033	tc_writel(0, &tr->DMA_Ctl);
2034	tc_writel(0, &tr->TxThrsh);
2035	tc_writel(0, &tr->TxPollCtr);
2036	tc_writel(0, &tr->RxFragSize);
2037	tc_writel(0, &tr->Int_En);
2038	tc_writel(0, &tr->FDA_Bas);
2039	tc_writel(0, &tr->FDA_Lim);
2040	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2041	tc_writel(0, &tr->CAM_Ctl);
2042	tc_writel(0, &tr->Tx_Ctl);
2043	tc_writel(0, &tr->Rx_Ctl);
2044	tc_writel(0, &tr->CAM_Ena);
2045	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2046
2047	/* initialize internal SRAM */
2048	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2049	for (i = 0; i < 0x1000; i += 4) {
2050		tc_writel(i, &tr->CAM_Adr);
2051		tc_writel(0, &tr->CAM_Data);
2052	}
2053	tc_writel(0, &tr->DMA_Ctl);
2054}
2055
2056static void tc35815_chip_init(struct net_device *dev)
2057{
2058	struct tc35815_local *lp = netdev_priv(dev);
2059	struct tc35815_regs __iomem *tr =
2060		(struct tc35815_regs __iomem *)dev->base_addr;
2061	unsigned long txctl = TX_CTL_CMD;
2062
2063	/* load station address to CAM */
2064	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2065
2066	/* Enable CAM (broadcast and unicast) */
2067	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2068	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2069
2070	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2071	if (HAVE_DMA_RXALIGN(lp))
2072		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2073	else
2074		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2075	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2076	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2077	tc_writel(INT_EN_CMD, &tr->Int_En);
2078
2079	/* set queues */
2080	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2081	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2082		  &tr->FDA_Lim);
2083	/*
2084	 * Activation method:
2085	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2086	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2087	 */
2088	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2089	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2090
2091	/* start MAC transmitter */
2092	/* TX4939 does not have EnLCarr */
2093	if (lp->chiptype == TC35815_TX4939)
2094		txctl &= ~Tx_EnLCarr;
2095	/* WORKAROUND: ignore LostCrS in full duplex operation */
2096	if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2097		txctl &= ~Tx_EnLCarr;
2098	tc_writel(txctl, &tr->Tx_Ctl);
2099}
2100
2101#ifdef CONFIG_PM
2102static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2103{
2104	struct net_device *dev = pci_get_drvdata(pdev);
2105	struct tc35815_local *lp = netdev_priv(dev);
2106	unsigned long flags;
2107
2108	pci_save_state(pdev);
2109	if (!netif_running(dev))
2110		return 0;
2111	netif_device_detach(dev);
2112	if (dev->phydev)
2113		phy_stop(dev->phydev);
2114	spin_lock_irqsave(&lp->lock, flags);
2115	tc35815_chip_reset(dev);
2116	spin_unlock_irqrestore(&lp->lock, flags);
2117	pci_set_power_state(pdev, PCI_D3hot);
2118	return 0;
2119}
2120
2121static int tc35815_resume(struct pci_dev *pdev)
2122{
2123	struct net_device *dev = pci_get_drvdata(pdev);
2124
2125	pci_restore_state(pdev);
2126	if (!netif_running(dev))
2127		return 0;
2128	pci_set_power_state(pdev, PCI_D0);
2129	tc35815_restart(dev);
2130	netif_carrier_off(dev);
2131	if (dev->phydev)
2132		phy_start(dev->phydev);
2133	netif_device_attach(dev);
2134	return 0;
2135}
2136#endif /* CONFIG_PM */
2137
2138static struct pci_driver tc35815_pci_driver = {
2139	.name		= MODNAME,
2140	.id_table	= tc35815_pci_tbl,
2141	.probe		= tc35815_init_one,
2142	.remove		= tc35815_remove_one,
2143#ifdef CONFIG_PM
2144	.suspend	= tc35815_suspend,
2145	.resume		= tc35815_resume,
2146#endif
2147};
2148
2149module_param_named(speed, options.speed, int, 0);
2150MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2151module_param_named(duplex, options.duplex, int, 0);
2152MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2153
2154module_pci_driver(tc35815_pci_driver);
2155MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2156MODULE_LICENSE("GPL");