Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
   3 *
   4 * Copyright (C) 2014 Marvell
   5 *
   6 * Marcin Wojtas <mw@semihalf.com>
   7 *
   8 * This file is licensed under the terms of the GNU General Public
   9 * License version 2. This program is licensed "as is" without any
  10 * warranty of any kind, whether express or implied.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/platform_device.h>
  17#include <linux/skbuff.h>
  18#include <linux/inetdevice.h>
  19#include <linux/mbus.h>
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/cpumask.h>
  23#include <linux/of.h>
  24#include <linux/of_irq.h>
  25#include <linux/of_mdio.h>
  26#include <linux/of_net.h>
  27#include <linux/of_address.h>
  28#include <linux/phy.h>
  29#include <linux/clk.h>
  30#include <linux/hrtimer.h>
  31#include <linux/ktime.h>
  32#include <uapi/linux/ppp_defs.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35
  36/* RX Fifo Registers */
  37#define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
  38#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
  39#define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
  40#define MVPP2_RX_FIFO_INIT_REG			0x64
  41
  42/* RX DMA Top Registers */
  43#define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
  44#define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
  45#define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
  46#define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
  47#define     MVPP2_POOL_BUF_SIZE_OFFSET		5
  48#define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
  49#define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
  50#define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
  51#define     MVPP2_RXQ_POOL_SHORT_OFFS		20
  52#define     MVPP2_RXQ_POOL_SHORT_MASK		0x700000
  53#define     MVPP2_RXQ_POOL_LONG_OFFS		24
  54#define     MVPP2_RXQ_POOL_LONG_MASK		0x7000000
  55#define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
  56#define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
  57#define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
  58
  59/* Parser Registers */
  60#define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
  61#define     MVPP2_PRS_PORT_LU_MAX		0xf
  62#define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
  63#define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
  64#define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
  65#define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
  66#define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
  67#define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
  68#define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
  69#define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
  70#define MVPP2_PRS_TCAM_IDX_REG			0x1100
  71#define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
  72#define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
  73#define MVPP2_PRS_SRAM_IDX_REG			0x1200
  74#define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
  75#define MVPP2_PRS_TCAM_CTRL_REG			0x1230
  76#define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
  77
  78/* Classifier Registers */
  79#define MVPP2_CLS_MODE_REG			0x1800
  80#define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
  81#define MVPP2_CLS_PORT_WAY_REG			0x1810
  82#define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
  83#define MVPP2_CLS_LKP_INDEX_REG			0x1814
  84#define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
  85#define MVPP2_CLS_LKP_TBL_REG			0x1818
  86#define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
  87#define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
  88#define MVPP2_CLS_FLOW_INDEX_REG		0x1820
  89#define MVPP2_CLS_FLOW_TBL0_REG			0x1824
  90#define MVPP2_CLS_FLOW_TBL1_REG			0x1828
  91#define MVPP2_CLS_FLOW_TBL2_REG			0x182c
  92#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
  93#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
  94#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
  95#define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
  96#define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
  97#define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
  98
  99/* Descriptor Manager Top Registers */
 100#define MVPP2_RXQ_NUM_REG			0x2040
 101#define MVPP2_RXQ_DESC_ADDR_REG			0x2044
 102#define MVPP2_RXQ_DESC_SIZE_REG			0x2048
 103#define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
 104#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
 105#define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
 106#define     MVPP2_RXQ_NUM_NEW_OFFSET		16
 107#define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
 108#define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
 109#define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
 110#define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
 111#define MVPP2_RXQ_THRESH_REG			0x204c
 112#define     MVPP2_OCCUPIED_THRESH_OFFSET	0
 113#define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
 114#define MVPP2_RXQ_INDEX_REG			0x2050
 115#define MVPP2_TXQ_NUM_REG			0x2080
 116#define MVPP2_TXQ_DESC_ADDR_REG			0x2084
 117#define MVPP2_TXQ_DESC_SIZE_REG			0x2088
 118#define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
 119#define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
 120#define MVPP2_TXQ_THRESH_REG			0x2094
 121#define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
 122#define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
 123#define MVPP2_TXQ_INDEX_REG			0x2098
 124#define MVPP2_TXQ_PREF_BUF_REG			0x209c
 125#define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
 126#define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
 127#define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
 128#define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
 129#define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
 130#define MVPP2_TXQ_PENDING_REG			0x20a0
 131#define     MVPP2_TXQ_PENDING_MASK		0x3fff
 132#define MVPP2_TXQ_INT_STATUS_REG		0x20a4
 133#define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
 134#define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
 135#define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
 136#define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
 137#define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
 138#define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
 139#define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
 140#define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
 141#define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
 142#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
 143#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
 144#define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
 145#define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
 146#define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
 147#define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
 148
 149/* MBUS bridge registers */
 150#define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
 151#define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
 152#define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
 153#define MVPP2_BASE_ADDR_ENABLE			0x4060
 154
 155/* Interrupt Cause and Mask registers */
 156#define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
 157#define MVPP2_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
 158#define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
 159#define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
 160#define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
 161#define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
 162#define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
 163#define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
 164#define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
 165#define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
 166#define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
 167#define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
 168#define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
 169#define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
 170#define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
 171#define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
 172#define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
 173#define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
 174#define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
 175#define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
 176
 177/* Buffer Manager registers */
 178#define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
 179#define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
 180#define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
 181#define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
 182#define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
 183#define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
 184#define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
 185#define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
 186#define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
 187#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
 188#define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
 189#define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
 190#define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
 191#define     MVPP2_BM_START_MASK			BIT(0)
 192#define     MVPP2_BM_STOP_MASK			BIT(1)
 193#define     MVPP2_BM_STATE_MASK			BIT(4)
 194#define     MVPP2_BM_LOW_THRESH_OFFS		8
 195#define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
 196#define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
 197						MVPP2_BM_LOW_THRESH_OFFS)
 198#define     MVPP2_BM_HIGH_THRESH_OFFS		16
 199#define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
 200#define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
 201						MVPP2_BM_HIGH_THRESH_OFFS)
 202#define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
 203#define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
 204#define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
 205#define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
 206#define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
 207#define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
 208#define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
 209#define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
 210#define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
 211#define MVPP2_BM_VIRT_ALLOC_REG			0x6440
 212#define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
 213#define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
 214#define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
 215#define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
 216#define MVPP2_BM_VIRT_RLS_REG			0x64c0
 217#define MVPP2_BM_MC_RLS_REG			0x64c4
 218#define     MVPP2_BM_MC_ID_MASK			0xfff
 219#define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
 220
 221/* TX Scheduler registers */
 222#define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
 223#define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
 224#define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
 225#define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
 226#define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
 227#define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
 228#define MVPP2_TXP_SCHED_MTU_REG			0x801c
 229#define     MVPP2_TXP_MTU_MAX			0x7FFFF
 230#define MVPP2_TXP_SCHED_REFILL_REG		0x8020
 231#define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
 232#define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
 233#define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
 234#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
 235#define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
 236#define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
 237#define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
 238#define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
 239#define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
 240#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
 241#define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
 242#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
 243#define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
 244
 245/* TX general registers */
 246#define MVPP2_TX_SNOOP_REG			0x8800
 247#define MVPP2_TX_PORT_FLUSH_REG			0x8810
 248#define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
 249
 250/* LMS registers */
 251#define MVPP2_SRC_ADDR_MIDDLE			0x24
 252#define MVPP2_SRC_ADDR_HIGH			0x28
 253#define MVPP2_PHY_AN_CFG0_REG			0x34
 254#define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
 255#define MVPP2_MIB_COUNTERS_BASE(port)		(0x1000 + ((port) >> 1) * \
 256						0x400 + (port) * 0x400)
 257#define     MVPP2_MIB_LATE_COLLISION		0x7c
 258#define MVPP2_ISR_SUM_MASK_REG			0x220c
 259#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
 260#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT		0x27
 261
 262/* Per-port registers */
 263#define MVPP2_GMAC_CTRL_0_REG			0x0
 264#define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
 265#define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
 266#define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
 267#define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
 268#define MVPP2_GMAC_CTRL_1_REG			0x4
 269#define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
 270#define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
 271#define      MVPP2_GMAC_PCS_LB_EN_BIT		6
 272#define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
 273#define      MVPP2_GMAC_SA_LOW_OFFS		7
 274#define MVPP2_GMAC_CTRL_2_REG			0x8
 275#define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
 276#define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
 277#define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
 278#define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
 279#define MVPP2_GMAC_AUTONEG_CONFIG		0xc
 280#define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
 281#define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
 282#define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
 283#define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
 284#define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
 285#define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
 286#define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
 287#define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
 288#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
 289#define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
 290#define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
 291#define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
 292					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
 293
 294#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
 295
 296/* Descriptor ring Macros */
 297#define MVPP2_QUEUE_NEXT_DESC(q, index) \
 298	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
 299
 300/* Various constants */
 301
 302/* Coalescing */
 303#define MVPP2_TXDONE_COAL_PKTS_THRESH	15
 304#define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
 305#define MVPP2_RX_COAL_PKTS		32
 306#define MVPP2_RX_COAL_USEC		100
 307
 308/* The two bytes Marvell header. Either contains a special value used
 309 * by Marvell switches when a specific hardware mode is enabled (not
 310 * supported by this driver) or is filled automatically by zeroes on
 311 * the RX side. Those two bytes being at the front of the Ethernet
 312 * header, they allow to have the IP header aligned on a 4 bytes
 313 * boundary automatically: the hardware skips those two bytes on its
 314 * own.
 315 */
 316#define MVPP2_MH_SIZE			2
 317#define MVPP2_ETH_TYPE_LEN		2
 318#define MVPP2_PPPOE_HDR_SIZE		8
 319#define MVPP2_VLAN_TAG_LEN		4
 320
 321/* Lbtd 802.3 type */
 322#define MVPP2_IP_LBDT_TYPE		0xfffa
 323
 324#define MVPP2_TX_CSUM_MAX_SIZE		9800
 325
 326/* Timeout constants */
 327#define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
 328#define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
 329
 330#define MVPP2_TX_MTU_MAX		0x7ffff
 331
 332/* Maximum number of T-CONTs of PON port */
 333#define MVPP2_MAX_TCONT			16
 334
 335/* Maximum number of supported ports */
 336#define MVPP2_MAX_PORTS			4
 337
 338/* Maximum number of TXQs used by single port */
 339#define MVPP2_MAX_TXQ			8
 340
 341/* Maximum number of RXQs used by single port */
 342#define MVPP2_MAX_RXQ			8
 343
 344/* Dfault number of RXQs in use */
 345#define MVPP2_DEFAULT_RXQ		4
 346
 347/* Total number of RXQs available to all ports */
 348#define MVPP2_RXQ_TOTAL_NUM		(MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
 349
 350/* Max number of Rx descriptors */
 351#define MVPP2_MAX_RXD			128
 352
 353/* Max number of Tx descriptors */
 354#define MVPP2_MAX_TXD			1024
 355
 356/* Amount of Tx descriptors that can be reserved at once by CPU */
 357#define MVPP2_CPU_DESC_CHUNK		64
 358
 359/* Max number of Tx descriptors in each aggregated queue */
 360#define MVPP2_AGGR_TXQ_SIZE		256
 361
 362/* Descriptor aligned size */
 363#define MVPP2_DESC_ALIGNED_SIZE		32
 364
 365/* Descriptor alignment mask */
 366#define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
 367
 368/* RX FIFO constants */
 369#define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
 370#define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
 371#define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80
 372
 373/* RX buffer constants */
 374#define MVPP2_SKB_SHINFO_SIZE \
 375	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
 376
 377#define MVPP2_RX_PKT_SIZE(mtu) \
 378	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
 379	      ETH_HLEN + ETH_FCS_LEN, cache_line_size())
 380
 381#define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
 382#define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
 383#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
 384	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
 385
 386#define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
 387
 388/* IPv6 max L3 address size */
 389#define MVPP2_MAX_L3_ADDR_SIZE		16
 390
 391/* Port flags */
 392#define MVPP2_F_LOOPBACK		BIT(0)
 393
 394/* Marvell tag types */
 395enum mvpp2_tag_type {
 396	MVPP2_TAG_TYPE_NONE = 0,
 397	MVPP2_TAG_TYPE_MH   = 1,
 398	MVPP2_TAG_TYPE_DSA  = 2,
 399	MVPP2_TAG_TYPE_EDSA = 3,
 400	MVPP2_TAG_TYPE_VLAN = 4,
 401	MVPP2_TAG_TYPE_LAST = 5
 402};
 403
 404/* Parser constants */
 405#define MVPP2_PRS_TCAM_SRAM_SIZE	256
 406#define MVPP2_PRS_TCAM_WORDS		6
 407#define MVPP2_PRS_SRAM_WORDS		4
 408#define MVPP2_PRS_FLOW_ID_SIZE		64
 409#define MVPP2_PRS_FLOW_ID_MASK		0x3f
 410#define MVPP2_PRS_TCAM_ENTRY_INVALID	1
 411#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
 412#define MVPP2_PRS_IPV4_HEAD		0x40
 413#define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
 414#define MVPP2_PRS_IPV4_MC		0xe0
 415#define MVPP2_PRS_IPV4_MC_MASK		0xf0
 416#define MVPP2_PRS_IPV4_BC_MASK		0xff
 417#define MVPP2_PRS_IPV4_IHL		0x5
 418#define MVPP2_PRS_IPV4_IHL_MASK		0xf
 419#define MVPP2_PRS_IPV6_MC		0xff
 420#define MVPP2_PRS_IPV6_MC_MASK		0xff
 421#define MVPP2_PRS_IPV6_HOP_MASK		0xff
 422#define MVPP2_PRS_TCAM_PROTO_MASK	0xff
 423#define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
 424#define MVPP2_PRS_DBL_VLANS_MAX		100
 425
 426/* Tcam structure:
 427 * - lookup ID - 4 bits
 428 * - port ID - 1 byte
 429 * - additional information - 1 byte
 430 * - header data - 8 bytes
 431 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
 432 */
 433#define MVPP2_PRS_AI_BITS			8
 434#define MVPP2_PRS_PORT_MASK			0xff
 435#define MVPP2_PRS_LU_MASK			0xf
 436#define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
 437				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
 438#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
 439					      (((offs) * 2) - ((offs) % 2)  + 2)
 440#define MVPP2_PRS_TCAM_AI_BYTE			16
 441#define MVPP2_PRS_TCAM_PORT_BYTE		17
 442#define MVPP2_PRS_TCAM_LU_BYTE			20
 443#define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
 444#define MVPP2_PRS_TCAM_INV_WORD			5
 445/* Tcam entries ID */
 446#define MVPP2_PE_DROP_ALL		0
 447#define MVPP2_PE_FIRST_FREE_TID		1
 448#define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
 449#define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
 450#define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
 451#define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
 452#define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
 453#define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
 454#define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
 455#define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
 456#define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
 457#define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
 458#define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
 459#define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
 460#define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
 461#define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
 462#define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
 463#define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
 464#define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
 465#define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
 466#define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
 467#define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
 468#define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
 469#define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
 470#define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
 471#define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
 472#define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
 473
 474/* Sram structure
 475 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
 476 */
 477#define MVPP2_PRS_SRAM_RI_OFFS			0
 478#define MVPP2_PRS_SRAM_RI_WORD			0
 479#define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
 480#define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
 481#define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
 482#define MVPP2_PRS_SRAM_SHIFT_OFFS		64
 483#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
 484#define MVPP2_PRS_SRAM_UDF_OFFS			73
 485#define MVPP2_PRS_SRAM_UDF_BITS			8
 486#define MVPP2_PRS_SRAM_UDF_MASK			0xff
 487#define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
 488#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
 489#define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
 490#define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
 491#define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
 492#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
 493#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
 494#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
 495#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
 496#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
 497#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
 498#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
 499#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
 500#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
 501#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
 502#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
 503#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
 504#define MVPP2_PRS_SRAM_AI_OFFS			90
 505#define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
 506#define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
 507#define MVPP2_PRS_SRAM_AI_MASK			0xff
 508#define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
 509#define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
 510#define MVPP2_PRS_SRAM_LU_DONE_BIT		110
 511#define MVPP2_PRS_SRAM_LU_GEN_BIT		111
 512
 513/* Sram result info bits assignment */
 514#define MVPP2_PRS_RI_MAC_ME_MASK		0x1
 515#define MVPP2_PRS_RI_DSA_MASK			0x2
 516#define MVPP2_PRS_RI_VLAN_MASK			0xc
 517#define MVPP2_PRS_RI_VLAN_NONE			~(BIT(2) | BIT(3))
 518#define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
 519#define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
 520#define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
 521#define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
 522#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
 523#define MVPP2_PRS_RI_L2_CAST_MASK		0x600
 524#define MVPP2_PRS_RI_L2_UCAST			~(BIT(9) | BIT(10))
 525#define MVPP2_PRS_RI_L2_MCAST			BIT(9)
 526#define MVPP2_PRS_RI_L2_BCAST			BIT(10)
 527#define MVPP2_PRS_RI_PPPOE_MASK			0x800
 528#define MVPP2_PRS_RI_L3_PROTO_MASK		0x7000
 529#define MVPP2_PRS_RI_L3_UN			~(BIT(12) | BIT(13) | BIT(14))
 530#define MVPP2_PRS_RI_L3_IP4			BIT(12)
 531#define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
 532#define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
 533#define MVPP2_PRS_RI_L3_IP6			BIT(14)
 534#define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
 535#define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
 536#define MVPP2_PRS_RI_L3_ADDR_MASK		0x18000
 537#define MVPP2_PRS_RI_L3_UCAST			~(BIT(15) | BIT(16))
 538#define MVPP2_PRS_RI_L3_MCAST			BIT(15)
 539#define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
 540#define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
 541#define MVPP2_PRS_RI_UDF3_MASK			0x300000
 542#define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
 543#define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
 544#define MVPP2_PRS_RI_L4_TCP			BIT(22)
 545#define MVPP2_PRS_RI_L4_UDP			BIT(23)
 546#define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
 547#define MVPP2_PRS_RI_UDF7_MASK			0x60000000
 548#define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
 549#define MVPP2_PRS_RI_DROP_MASK			0x80000000
 550
 551/* Sram additional info bits assignment */
 552#define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
 553#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
 554#define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
 555#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
 556#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
 557#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
 558#define MVPP2_PRS_SINGLE_VLAN_AI		0
 559#define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
 560
 561/* DSA/EDSA type */
 562#define MVPP2_PRS_TAGGED		true
 563#define MVPP2_PRS_UNTAGGED		false
 564#define MVPP2_PRS_EDSA			true
 565#define MVPP2_PRS_DSA			false
 566
 567/* MAC entries, shadow udf */
 568enum mvpp2_prs_udf {
 569	MVPP2_PRS_UDF_MAC_DEF,
 570	MVPP2_PRS_UDF_MAC_RANGE,
 571	MVPP2_PRS_UDF_L2_DEF,
 572	MVPP2_PRS_UDF_L2_DEF_COPY,
 573	MVPP2_PRS_UDF_L2_USER,
 574};
 575
 576/* Lookup ID */
 577enum mvpp2_prs_lookup {
 578	MVPP2_PRS_LU_MH,
 579	MVPP2_PRS_LU_MAC,
 580	MVPP2_PRS_LU_DSA,
 581	MVPP2_PRS_LU_VLAN,
 582	MVPP2_PRS_LU_L2,
 583	MVPP2_PRS_LU_PPPOE,
 584	MVPP2_PRS_LU_IP4,
 585	MVPP2_PRS_LU_IP6,
 586	MVPP2_PRS_LU_FLOWS,
 587	MVPP2_PRS_LU_LAST,
 588};
 589
 590/* L3 cast enum */
 591enum mvpp2_prs_l3_cast {
 592	MVPP2_PRS_L3_UNI_CAST,
 593	MVPP2_PRS_L3_MULTI_CAST,
 594	MVPP2_PRS_L3_BROAD_CAST
 595};
 596
 597/* Classifier constants */
 598#define MVPP2_CLS_FLOWS_TBL_SIZE	512
 599#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
 600#define MVPP2_CLS_LKP_TBL_SIZE		64
 601
 602/* BM constants */
 603#define MVPP2_BM_POOLS_NUM		8
 604#define MVPP2_BM_LONG_BUF_NUM		1024
 605#define MVPP2_BM_SHORT_BUF_NUM		2048
 606#define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
 607#define MVPP2_BM_POOL_PTR_ALIGN		128
 608#define MVPP2_BM_SWF_LONG_POOL(port)	((port > 2) ? 2 : port)
 609#define MVPP2_BM_SWF_SHORT_POOL		3
 610
 611/* BM cookie (32 bits) definition */
 612#define MVPP2_BM_COOKIE_POOL_OFFS	8
 613#define MVPP2_BM_COOKIE_CPU_OFFS	24
 614
 615/* BM short pool packet size
 616 * These value assure that for SWF the total number
 617 * of bytes allocated for each buffer will be 512
 618 */
 619#define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
 620
 621enum mvpp2_bm_type {
 622	MVPP2_BM_FREE,
 623	MVPP2_BM_SWF_LONG,
 624	MVPP2_BM_SWF_SHORT
 625};
 626
 627/* Definitions */
 628
 629/* Shared Packet Processor resources */
 630struct mvpp2 {
 631	/* Shared registers' base addresses */
 632	void __iomem *base;
 633	void __iomem *lms_base;
 634
 635	/* Common clocks */
 636	struct clk *pp_clk;
 637	struct clk *gop_clk;
 638
 639	/* List of pointers to port structures */
 640	struct mvpp2_port **port_list;
 641
 642	/* Aggregated TXQs */
 643	struct mvpp2_tx_queue *aggr_txqs;
 644
 645	/* BM pools */
 646	struct mvpp2_bm_pool *bm_pools;
 647
 648	/* PRS shadow table */
 649	struct mvpp2_prs_shadow *prs_shadow;
 650	/* PRS auxiliary table for double vlan entries control */
 651	bool *prs_double_vlans;
 652
 653	/* Tclk value */
 654	u32 tclk;
 655};
 656
 657struct mvpp2_pcpu_stats {
 658	struct	u64_stats_sync syncp;
 659	u64	rx_packets;
 660	u64	rx_bytes;
 661	u64	tx_packets;
 662	u64	tx_bytes;
 663};
 664
 665/* Per-CPU port control */
 666struct mvpp2_port_pcpu {
 667	struct hrtimer tx_done_timer;
 668	bool timer_scheduled;
 669	/* Tasklet for egress finalization */
 670	struct tasklet_struct tx_done_tasklet;
 671};
 672
 673struct mvpp2_port {
 674	u8 id;
 675
 676	int irq;
 677
 678	struct mvpp2 *priv;
 679
 680	/* Per-port registers' base address */
 681	void __iomem *base;
 682
 683	struct mvpp2_rx_queue **rxqs;
 684	struct mvpp2_tx_queue **txqs;
 685	struct net_device *dev;
 686
 687	int pkt_size;
 688
 689	u32 pending_cause_rx;
 690	struct napi_struct napi;
 691
 692	/* Per-CPU port control */
 693	struct mvpp2_port_pcpu __percpu *pcpu;
 694
 695	/* Flags */
 696	unsigned long flags;
 697
 698	u16 tx_ring_size;
 699	u16 rx_ring_size;
 700	struct mvpp2_pcpu_stats __percpu *stats;
 701
 702	phy_interface_t phy_interface;
 703	struct device_node *phy_node;
 704	unsigned int link;
 705	unsigned int duplex;
 706	unsigned int speed;
 707
 708	struct mvpp2_bm_pool *pool_long;
 709	struct mvpp2_bm_pool *pool_short;
 710
 711	/* Index of first port's physical RXQ */
 712	u8 first_rxq;
 713};
 714
 715/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
 716 * layout of the transmit and reception DMA descriptors, and their
 717 * layout is therefore defined by the hardware design
 718 */
 719
 720#define MVPP2_TXD_L3_OFF_SHIFT		0
 721#define MVPP2_TXD_IP_HLEN_SHIFT		8
 722#define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
 723#define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
 724#define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
 725#define MVPP2_TXD_PADDING_DISABLE	BIT(23)
 726#define MVPP2_TXD_L4_UDP		BIT(24)
 727#define MVPP2_TXD_L3_IP6		BIT(26)
 728#define MVPP2_TXD_L_DESC		BIT(28)
 729#define MVPP2_TXD_F_DESC		BIT(29)
 730
 731#define MVPP2_RXD_ERR_SUMMARY		BIT(15)
 732#define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
 733#define MVPP2_RXD_ERR_CRC		0x0
 734#define MVPP2_RXD_ERR_OVERRUN		BIT(13)
 735#define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
 736#define MVPP2_RXD_BM_POOL_ID_OFFS	16
 737#define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
 738#define MVPP2_RXD_HWF_SYNC		BIT(21)
 739#define MVPP2_RXD_L4_CSUM_OK		BIT(22)
 740#define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
 741#define MVPP2_RXD_L4_TCP		BIT(25)
 742#define MVPP2_RXD_L4_UDP		BIT(26)
 743#define MVPP2_RXD_L3_IP4		BIT(28)
 744#define MVPP2_RXD_L3_IP6		BIT(30)
 745#define MVPP2_RXD_BUF_HDR		BIT(31)
 746
 747struct mvpp2_tx_desc {
 748	u32 command;		/* Options used by HW for packet transmitting.*/
 749	u8  packet_offset;	/* the offset from the buffer beginning	*/
 750	u8  phys_txq;		/* destination queue ID			*/
 751	u16 data_size;		/* data size of transmitted packet in bytes */
 752	u32 buf_phys_addr;	/* physical addr of transmitted buffer	*/
 753	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
 754	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
 755	u32 reserved2;		/* reserved (for future use)		*/
 756};
 757
 758struct mvpp2_rx_desc {
 759	u32 status;		/* info about received packet		*/
 760	u16 reserved1;		/* parser_info (for future use, PnC)	*/
 761	u16 data_size;		/* size of received packet in bytes	*/
 762	u32 buf_phys_addr;	/* physical address of the buffer	*/
 763	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
 764	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
 765	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
 766	u8  reserved4;		/* bm_qset (for future use, BM)		*/
 767	u8  reserved5;
 768	u16 reserved6;		/* classify_info (for future use, PnC)	*/
 769	u32 reserved7;		/* flow_id (for future use, PnC) */
 770	u32 reserved8;
 771};
 772
 773struct mvpp2_txq_pcpu_buf {
 774	/* Transmitted SKB */
 775	struct sk_buff *skb;
 776
 777	/* Physical address of transmitted buffer */
 778	dma_addr_t phys;
 779
 780	/* Size transmitted */
 781	size_t size;
 782};
 783
 784/* Per-CPU Tx queue control */
 785struct mvpp2_txq_pcpu {
 786	int cpu;
 787
 788	/* Number of Tx DMA descriptors in the descriptor ring */
 789	int size;
 790
 791	/* Number of currently used Tx DMA descriptor in the
 792	 * descriptor ring
 793	 */
 794	int count;
 795
 796	/* Number of Tx DMA descriptors reserved for each CPU */
 797	int reserved_num;
 798
 799	/* Infos about transmitted buffers */
 800	struct mvpp2_txq_pcpu_buf *buffs;
 801
 802	/* Index of last TX DMA descriptor that was inserted */
 803	int txq_put_index;
 804
 805	/* Index of the TX DMA descriptor to be cleaned up */
 806	int txq_get_index;
 807};
 808
 809struct mvpp2_tx_queue {
 810	/* Physical number of this Tx queue */
 811	u8 id;
 812
 813	/* Logical number of this Tx queue */
 814	u8 log_id;
 815
 816	/* Number of Tx DMA descriptors in the descriptor ring */
 817	int size;
 818
 819	/* Number of currently used Tx DMA descriptor in the descriptor ring */
 820	int count;
 821
 822	/* Per-CPU control of physical Tx queues */
 823	struct mvpp2_txq_pcpu __percpu *pcpu;
 824
 825	/* Array of transmitted skb */
 826	struct sk_buff **tx_skb;
 827
 828	u32 done_pkts_coal;
 829
 830	/* Virtual address of thex Tx DMA descriptors array */
 831	struct mvpp2_tx_desc *descs;
 832
 833	/* DMA address of the Tx DMA descriptors array */
 834	dma_addr_t descs_phys;
 835
 836	/* Index of the last Tx DMA descriptor */
 837	int last_desc;
 838
 839	/* Index of the next Tx DMA descriptor to process */
 840	int next_desc_to_proc;
 841};
 842
 843struct mvpp2_rx_queue {
 844	/* RX queue number, in the range 0-31 for physical RXQs */
 845	u8 id;
 846
 847	/* Num of rx descriptors in the rx descriptor ring */
 848	int size;
 849
 850	u32 pkts_coal;
 851	u32 time_coal;
 852
 853	/* Virtual address of the RX DMA descriptors array */
 854	struct mvpp2_rx_desc *descs;
 855
 856	/* DMA address of the RX DMA descriptors array */
 857	dma_addr_t descs_phys;
 858
 859	/* Index of the last RX DMA descriptor */
 860	int last_desc;
 861
 862	/* Index of the next RX DMA descriptor to process */
 863	int next_desc_to_proc;
 864
 865	/* ID of port to which physical RXQ is mapped */
 866	int port;
 867
 868	/* Port's logic RXQ number to which physical RXQ is mapped */
 869	int logic_rxq;
 870};
 871
 872union mvpp2_prs_tcam_entry {
 873	u32 word[MVPP2_PRS_TCAM_WORDS];
 874	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
 875};
 876
 877union mvpp2_prs_sram_entry {
 878	u32 word[MVPP2_PRS_SRAM_WORDS];
 879	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
 880};
 881
 882struct mvpp2_prs_entry {
 883	u32 index;
 884	union mvpp2_prs_tcam_entry tcam;
 885	union mvpp2_prs_sram_entry sram;
 886};
 887
 888struct mvpp2_prs_shadow {
 889	bool valid;
 890	bool finish;
 891
 892	/* Lookup ID */
 893	int lu;
 894
 895	/* User defined offset */
 896	int udf;
 897
 898	/* Result info */
 899	u32 ri;
 900	u32 ri_mask;
 901};
 902
 903struct mvpp2_cls_flow_entry {
 904	u32 index;
 905	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
 906};
 907
 908struct mvpp2_cls_lookup_entry {
 909	u32 lkpid;
 910	u32 way;
 911	u32 data;
 912};
 913
 914struct mvpp2_bm_pool {
 915	/* Pool number in the range 0-7 */
 916	int id;
 917	enum mvpp2_bm_type type;
 918
 919	/* Buffer Pointers Pool External (BPPE) size */
 920	int size;
 921	/* Number of buffers for this pool */
 922	int buf_num;
 923	/* Pool buffer size */
 924	int buf_size;
 925	/* Packet size */
 926	int pkt_size;
 927
 928	/* BPPE virtual base address */
 929	u32 *virt_addr;
 930	/* BPPE physical base address */
 931	dma_addr_t phys_addr;
 932
 933	/* Ports using BM pool */
 934	u32 port_map;
 935
 936	/* Occupied buffers indicator */
 937	atomic_t in_use;
 938	int in_use_thresh;
 939};
 940
 941struct mvpp2_buff_hdr {
 942	u32 next_buff_phys_addr;
 943	u32 next_buff_virt_addr;
 944	u16 byte_count;
 945	u16 info;
 946	u8  reserved1;		/* bm_qset (for future use, BM)		*/
 947};
 948
 949/* Buffer header info bits */
 950#define MVPP2_B_HDR_INFO_MC_ID_MASK	0xfff
 951#define MVPP2_B_HDR_INFO_MC_ID(info)	((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
 952#define MVPP2_B_HDR_INFO_LAST_OFFS	12
 953#define MVPP2_B_HDR_INFO_LAST_MASK	BIT(12)
 954#define MVPP2_B_HDR_INFO_IS_LAST(info) \
 955	   ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
 956
 957/* Static declaractions */
 958
 959/* Number of RXQs used by single port */
 960static int rxq_number = MVPP2_DEFAULT_RXQ;
 961/* Number of TXQs used by single port */
 962static int txq_number = MVPP2_MAX_TXQ;
 963
 964#define MVPP2_DRIVER_NAME "mvpp2"
 965#define MVPP2_DRIVER_VERSION "1.0"
 966
 967/* Utility/helper methods */
 968
 969static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
 970{
 971	writel(data, priv->base + offset);
 972}
 973
 974static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
 975{
 976	return readl(priv->base + offset);
 977}
 978
 979static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
 980{
 981	txq_pcpu->txq_get_index++;
 982	if (txq_pcpu->txq_get_index == txq_pcpu->size)
 983		txq_pcpu->txq_get_index = 0;
 984}
 985
 986static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
 987			      struct sk_buff *skb,
 988			      struct mvpp2_tx_desc *tx_desc)
 989{
 990	struct mvpp2_txq_pcpu_buf *tx_buf =
 991		txq_pcpu->buffs + txq_pcpu->txq_put_index;
 992	tx_buf->skb = skb;
 993	tx_buf->size = tx_desc->data_size;
 994	tx_buf->phys = tx_desc->buf_phys_addr + tx_desc->packet_offset;
 995	txq_pcpu->txq_put_index++;
 996	if (txq_pcpu->txq_put_index == txq_pcpu->size)
 997		txq_pcpu->txq_put_index = 0;
 998}
 999
1000/* Get number of physical egress port */
1001static inline int mvpp2_egress_port(struct mvpp2_port *port)
1002{
1003	return MVPP2_MAX_TCONT + port->id;
1004}
1005
1006/* Get number of physical TXQ */
1007static inline int mvpp2_txq_phys(int port, int txq)
1008{
1009	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1010}
1011
1012/* Parser configuration routines */
1013
1014/* Update parser tcam and sram hw entries */
1015static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1016{
1017	int i;
1018
1019	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1020		return -EINVAL;
1021
1022	/* Clear entry invalidation bit */
1023	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1024
1025	/* Write tcam index - indirect access */
1026	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1027	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1028		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1029
1030	/* Write sram index - indirect access */
1031	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1032	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1033		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1034
1035	return 0;
1036}
1037
1038/* Read tcam entry from hw */
1039static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1040{
1041	int i;
1042
1043	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1044		return -EINVAL;
1045
1046	/* Write tcam index - indirect access */
1047	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1048
1049	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1050			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1051	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1052		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1053
1054	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1055		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1056
1057	/* Write sram index - indirect access */
1058	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1059	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1060		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1061
1062	return 0;
1063}
1064
1065/* Invalidate tcam hw entry */
1066static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1067{
1068	/* Write index - indirect access */
1069	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1070	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1071		    MVPP2_PRS_TCAM_INV_MASK);
1072}
1073
1074/* Enable shadow table entry and set its lookup ID */
1075static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1076{
1077	priv->prs_shadow[index].valid = true;
1078	priv->prs_shadow[index].lu = lu;
1079}
1080
1081/* Update ri fields in shadow table entry */
1082static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1083				    unsigned int ri, unsigned int ri_mask)
1084{
1085	priv->prs_shadow[index].ri_mask = ri_mask;
1086	priv->prs_shadow[index].ri = ri;
1087}
1088
1089/* Update lookup field in tcam sw entry */
1090static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1091{
1092	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1093
1094	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1095	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1096}
1097
1098/* Update mask for single port in tcam sw entry */
1099static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1100				    unsigned int port, bool add)
1101{
1102	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1103
1104	if (add)
1105		pe->tcam.byte[enable_off] &= ~(1 << port);
1106	else
1107		pe->tcam.byte[enable_off] |= 1 << port;
1108}
1109
1110/* Update port map in tcam sw entry */
1111static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1112					unsigned int ports)
1113{
1114	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1115	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1116
1117	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1118	pe->tcam.byte[enable_off] &= ~port_mask;
1119	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1120}
1121
1122/* Obtain port map from tcam sw entry */
1123static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1124{
1125	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1126
1127	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1128}
1129
1130/* Set byte of data and its enable bits in tcam sw entry */
1131static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1132					 unsigned int offs, unsigned char byte,
1133					 unsigned char enable)
1134{
1135	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1136	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1137}
1138
1139/* Get byte of data and its enable bits from tcam sw entry */
1140static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1141					 unsigned int offs, unsigned char *byte,
1142					 unsigned char *enable)
1143{
1144	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1145	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1146}
1147
1148/* Compare tcam data bytes with a pattern */
1149static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1150				    u16 data)
1151{
1152	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1153	u16 tcam_data;
1154
1155	tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1156	if (tcam_data != data)
1157		return false;
1158	return true;
1159}
1160
1161/* Update ai bits in tcam sw entry */
1162static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1163				     unsigned int bits, unsigned int enable)
1164{
1165	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1166
1167	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1168
1169		if (!(enable & BIT(i)))
1170			continue;
1171
1172		if (bits & BIT(i))
1173			pe->tcam.byte[ai_idx] |= 1 << i;
1174		else
1175			pe->tcam.byte[ai_idx] &= ~(1 << i);
1176	}
1177
1178	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1179}
1180
1181/* Get ai bits from tcam sw entry */
1182static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1183{
1184	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1185}
1186
1187/* Set ethertype in tcam sw entry */
1188static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1189				  unsigned short ethertype)
1190{
1191	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1192	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1193}
1194
1195/* Set bits in sram sw entry */
1196static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1197				    int val)
1198{
1199	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1200}
1201
1202/* Clear bits in sram sw entry */
1203static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1204				      int val)
1205{
1206	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1207}
1208
1209/* Update ri bits in sram sw entry */
1210static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1211				     unsigned int bits, unsigned int mask)
1212{
1213	unsigned int i;
1214
1215	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1216		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1217
1218		if (!(mask & BIT(i)))
1219			continue;
1220
1221		if (bits & BIT(i))
1222			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1223		else
1224			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1225
1226		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1227	}
1228}
1229
1230/* Obtain ri bits from sram sw entry */
1231static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1232{
1233	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1234}
1235
1236/* Update ai bits in sram sw entry */
1237static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1238				     unsigned int bits, unsigned int mask)
1239{
1240	unsigned int i;
1241	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1242
1243	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1244
1245		if (!(mask & BIT(i)))
1246			continue;
1247
1248		if (bits & BIT(i))
1249			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1250		else
1251			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1252
1253		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1254	}
1255}
1256
1257/* Read ai bits from sram sw entry */
1258static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1259{
1260	u8 bits;
1261	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1262	int ai_en_off = ai_off + 1;
1263	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1264
1265	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1266	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1267
1268	return bits;
1269}
1270
1271/* In sram sw entry set lookup ID field of the tcam key to be used in the next
1272 * lookup interation
1273 */
1274static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1275				       unsigned int lu)
1276{
1277	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1278
1279	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1280				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1281	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1282}
1283
1284/* In the sram sw entry set sign and value of the next lookup offset
1285 * and the offset value generated to the classifier
1286 */
1287static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1288				     unsigned int op)
1289{
1290	/* Set sign */
1291	if (shift < 0) {
1292		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1293		shift = 0 - shift;
1294	} else {
1295		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1296	}
1297
1298	/* Set value */
1299	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1300							   (unsigned char)shift;
1301
1302	/* Reset and set operation */
1303	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1304				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1305	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1306
1307	/* Set base offset as current */
1308	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1309}
1310
1311/* In the sram sw entry set sign and value of the user defined offset
1312 * generated to the classifier
1313 */
1314static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1315				      unsigned int type, int offset,
1316				      unsigned int op)
1317{
1318	/* Set sign */
1319	if (offset < 0) {
1320		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1321		offset = 0 - offset;
1322	} else {
1323		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1324	}
1325
1326	/* Set value */
1327	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1328				  MVPP2_PRS_SRAM_UDF_MASK);
1329	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1330	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1331					MVPP2_PRS_SRAM_UDF_BITS)] &=
1332	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1333	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1334					MVPP2_PRS_SRAM_UDF_BITS)] |=
1335				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1336
1337	/* Set offset type */
1338	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1339				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1340	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1341
1342	/* Set offset operation */
1343	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1344				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1345	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1346
1347	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1348					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1349					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1350				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1351
1352	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1353					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1354			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1355
1356	/* Set base offset as current */
1357	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1358}
1359
1360/* Find parser flow entry */
1361static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1362{
1363	struct mvpp2_prs_entry *pe;
1364	int tid;
1365
1366	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1367	if (!pe)
1368		return NULL;
1369	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1370
1371	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1372	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1373		u8 bits;
1374
1375		if (!priv->prs_shadow[tid].valid ||
1376		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1377			continue;
1378
1379		pe->index = tid;
1380		mvpp2_prs_hw_read(priv, pe);
1381		bits = mvpp2_prs_sram_ai_get(pe);
1382
1383		/* Sram store classification lookup ID in AI bits [5:0] */
1384		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1385			return pe;
1386	}
1387	kfree(pe);
1388
1389	return NULL;
1390}
1391
1392/* Return first free tcam index, seeking from start to end */
1393static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1394				     unsigned char end)
1395{
1396	int tid;
1397
1398	if (start > end)
1399		swap(start, end);
1400
1401	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1402		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1403
1404	for (tid = start; tid <= end; tid++) {
1405		if (!priv->prs_shadow[tid].valid)
1406			return tid;
1407	}
1408
1409	return -EINVAL;
1410}
1411
1412/* Enable/disable dropping all mac da's */
1413static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1414{
1415	struct mvpp2_prs_entry pe;
1416
1417	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1418		/* Entry exist - update port only */
1419		pe.index = MVPP2_PE_DROP_ALL;
1420		mvpp2_prs_hw_read(priv, &pe);
1421	} else {
1422		/* Entry doesn't exist - create new */
1423		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1424		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1425		pe.index = MVPP2_PE_DROP_ALL;
1426
1427		/* Non-promiscuous mode for all ports - DROP unknown packets */
1428		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1429					 MVPP2_PRS_RI_DROP_MASK);
1430
1431		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1432		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1433
1434		/* Update shadow table */
1435		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1436
1437		/* Mask all ports */
1438		mvpp2_prs_tcam_port_map_set(&pe, 0);
1439	}
1440
1441	/* Update port mask */
1442	mvpp2_prs_tcam_port_set(&pe, port, add);
1443
1444	mvpp2_prs_hw_write(priv, &pe);
1445}
1446
1447/* Set port to promiscuous mode */
1448static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1449{
1450	struct mvpp2_prs_entry pe;
1451
1452	/* Promiscuous mode - Accept unknown packets */
1453
1454	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1455		/* Entry exist - update port only */
1456		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1457		mvpp2_prs_hw_read(priv, &pe);
1458	} else {
1459		/* Entry doesn't exist - create new */
1460		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1461		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1462		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1463
1464		/* Continue - set next lookup */
1465		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1466
1467		/* Set result info bits */
1468		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1469					 MVPP2_PRS_RI_L2_CAST_MASK);
1470
1471		/* Shift to ethertype */
1472		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1473					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1474
1475		/* Mask all ports */
1476		mvpp2_prs_tcam_port_map_set(&pe, 0);
1477
1478		/* Update shadow table */
1479		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1480	}
1481
1482	/* Update port mask */
1483	mvpp2_prs_tcam_port_set(&pe, port, add);
1484
1485	mvpp2_prs_hw_write(priv, &pe);
1486}
1487
1488/* Accept multicast */
1489static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1490				    bool add)
1491{
1492	struct mvpp2_prs_entry pe;
1493	unsigned char da_mc;
1494
1495	/* Ethernet multicast address first byte is
1496	 * 0x01 for IPv4 and 0x33 for IPv6
1497	 */
1498	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1499
1500	if (priv->prs_shadow[index].valid) {
1501		/* Entry exist - update port only */
1502		pe.index = index;
1503		mvpp2_prs_hw_read(priv, &pe);
1504	} else {
1505		/* Entry doesn't exist - create new */
1506		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1507		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1508		pe.index = index;
1509
1510		/* Continue - set next lookup */
1511		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1512
1513		/* Set result info bits */
1514		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1515					 MVPP2_PRS_RI_L2_CAST_MASK);
1516
1517		/* Update tcam entry data first byte */
1518		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1519
1520		/* Shift to ethertype */
1521		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1522					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1523
1524		/* Mask all ports */
1525		mvpp2_prs_tcam_port_map_set(&pe, 0);
1526
1527		/* Update shadow table */
1528		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1529	}
1530
1531	/* Update port mask */
1532	mvpp2_prs_tcam_port_set(&pe, port, add);
1533
1534	mvpp2_prs_hw_write(priv, &pe);
1535}
1536
1537/* Set entry for dsa packets */
1538static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1539				  bool tagged, bool extend)
1540{
1541	struct mvpp2_prs_entry pe;
1542	int tid, shift;
1543
1544	if (extend) {
1545		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1546		shift = 8;
1547	} else {
1548		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1549		shift = 4;
1550	}
1551
1552	if (priv->prs_shadow[tid].valid) {
1553		/* Entry exist - update port only */
1554		pe.index = tid;
1555		mvpp2_prs_hw_read(priv, &pe);
1556	} else {
1557		/* Entry doesn't exist - create new */
1558		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1559		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1560		pe.index = tid;
1561
1562		/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1563		mvpp2_prs_sram_shift_set(&pe, shift,
1564					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1565
1566		/* Update shadow table */
1567		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1568
1569		if (tagged) {
1570			/* Set tagged bit in DSA tag */
1571			mvpp2_prs_tcam_data_byte_set(&pe, 0,
1572						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1573						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1574			/* Clear all ai bits for next iteration */
1575			mvpp2_prs_sram_ai_update(&pe, 0,
1576						 MVPP2_PRS_SRAM_AI_MASK);
1577			/* If packet is tagged continue check vlans */
1578			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1579		} else {
1580			/* Set result info bits to 'no vlans' */
1581			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1582						 MVPP2_PRS_RI_VLAN_MASK);
1583			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1584		}
1585
1586		/* Mask all ports */
1587		mvpp2_prs_tcam_port_map_set(&pe, 0);
1588	}
1589
1590	/* Update port mask */
1591	mvpp2_prs_tcam_port_set(&pe, port, add);
1592
1593	mvpp2_prs_hw_write(priv, &pe);
1594}
1595
1596/* Set entry for dsa ethertype */
1597static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1598					    bool add, bool tagged, bool extend)
1599{
1600	struct mvpp2_prs_entry pe;
1601	int tid, shift, port_mask;
1602
1603	if (extend) {
1604		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1605		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1606		port_mask = 0;
1607		shift = 8;
1608	} else {
1609		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1610		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
1611		port_mask = MVPP2_PRS_PORT_MASK;
1612		shift = 4;
1613	}
1614
1615	if (priv->prs_shadow[tid].valid) {
1616		/* Entry exist - update port only */
1617		pe.index = tid;
1618		mvpp2_prs_hw_read(priv, &pe);
1619	} else {
1620		/* Entry doesn't exist - create new */
1621		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1622		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1623		pe.index = tid;
1624
1625		/* Set ethertype */
1626		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1627		mvpp2_prs_match_etype(&pe, 2, 0);
1628
1629		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1630					 MVPP2_PRS_RI_DSA_MASK);
1631		/* Shift ethertype + 2 byte reserved + tag*/
1632		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1633					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1634
1635		/* Update shadow table */
1636		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1637
1638		if (tagged) {
1639			/* Set tagged bit in DSA tag */
1640			mvpp2_prs_tcam_data_byte_set(&pe,
1641						     MVPP2_ETH_TYPE_LEN + 2 + 3,
1642						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1643						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1644			/* Clear all ai bits for next iteration */
1645			mvpp2_prs_sram_ai_update(&pe, 0,
1646						 MVPP2_PRS_SRAM_AI_MASK);
1647			/* If packet is tagged continue check vlans */
1648			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1649		} else {
1650			/* Set result info bits to 'no vlans' */
1651			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1652						 MVPP2_PRS_RI_VLAN_MASK);
1653			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1654		}
1655		/* Mask/unmask all ports, depending on dsa type */
1656		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1657	}
1658
1659	/* Update port mask */
1660	mvpp2_prs_tcam_port_set(&pe, port, add);
1661
1662	mvpp2_prs_hw_write(priv, &pe);
1663}
1664
1665/* Search for existing single/triple vlan entry */
1666static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1667						   unsigned short tpid, int ai)
1668{
1669	struct mvpp2_prs_entry *pe;
1670	int tid;
1671
1672	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1673	if (!pe)
1674		return NULL;
1675	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1676
1677	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1678	for (tid = MVPP2_PE_FIRST_FREE_TID;
1679	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1680		unsigned int ri_bits, ai_bits;
1681		bool match;
1682
1683		if (!priv->prs_shadow[tid].valid ||
1684		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1685			continue;
1686
1687		pe->index = tid;
1688
1689		mvpp2_prs_hw_read(priv, pe);
1690		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1691		if (!match)
1692			continue;
1693
1694		/* Get vlan type */
1695		ri_bits = mvpp2_prs_sram_ri_get(pe);
1696		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1697
1698		/* Get current ai value from tcam */
1699		ai_bits = mvpp2_prs_tcam_ai_get(pe);
1700		/* Clear double vlan bit */
1701		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1702
1703		if (ai != ai_bits)
1704			continue;
1705
1706		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1707		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1708			return pe;
1709	}
1710	kfree(pe);
1711
1712	return NULL;
1713}
1714
1715/* Add/update single/triple vlan entry */
1716static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1717			      unsigned int port_map)
1718{
1719	struct mvpp2_prs_entry *pe;
1720	int tid_aux, tid;
1721	int ret = 0;
1722
1723	pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1724
1725	if (!pe) {
1726		/* Create new tcam entry */
1727		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1728						MVPP2_PE_FIRST_FREE_TID);
1729		if (tid < 0)
1730			return tid;
1731
1732		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1733		if (!pe)
1734			return -ENOMEM;
1735
1736		/* Get last double vlan tid */
1737		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1738		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1739			unsigned int ri_bits;
1740
1741			if (!priv->prs_shadow[tid_aux].valid ||
1742			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1743				continue;
1744
1745			pe->index = tid_aux;
1746			mvpp2_prs_hw_read(priv, pe);
1747			ri_bits = mvpp2_prs_sram_ri_get(pe);
1748			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1749			    MVPP2_PRS_RI_VLAN_DOUBLE)
1750				break;
1751		}
1752
1753		if (tid <= tid_aux) {
1754			ret = -EINVAL;
1755			goto error;
1756		}
1757
1758		memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1759		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1760		pe->index = tid;
1761
1762		mvpp2_prs_match_etype(pe, 0, tpid);
1763
1764		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1765		/* Shift 4 bytes - skip 1 vlan tag */
1766		mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1767					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1768		/* Clear all ai bits for next iteration */
1769		mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1770
1771		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1772			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1773						 MVPP2_PRS_RI_VLAN_MASK);
1774		} else {
1775			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1776			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1777						 MVPP2_PRS_RI_VLAN_MASK);
1778		}
1779		mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1780
1781		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1782	}
1783	/* Update ports' mask */
1784	mvpp2_prs_tcam_port_map_set(pe, port_map);
1785
1786	mvpp2_prs_hw_write(priv, pe);
1787
1788error:
1789	kfree(pe);
1790
1791	return ret;
1792}
1793
1794/* Get first free double vlan ai number */
1795static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1796{
1797	int i;
1798
1799	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1800		if (!priv->prs_double_vlans[i])
1801			return i;
1802	}
1803
1804	return -EINVAL;
1805}
1806
1807/* Search for existing double vlan entry */
1808static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1809							  unsigned short tpid1,
1810							  unsigned short tpid2)
1811{
1812	struct mvpp2_prs_entry *pe;
1813	int tid;
1814
1815	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1816	if (!pe)
1817		return NULL;
1818	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1819
1820	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1821	for (tid = MVPP2_PE_FIRST_FREE_TID;
1822	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1823		unsigned int ri_mask;
1824		bool match;
1825
1826		if (!priv->prs_shadow[tid].valid ||
1827		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1828			continue;
1829
1830		pe->index = tid;
1831		mvpp2_prs_hw_read(priv, pe);
1832
1833		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1834			&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1835
1836		if (!match)
1837			continue;
1838
1839		ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1840		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1841			return pe;
1842	}
1843	kfree(pe);
1844
1845	return NULL;
1846}
1847
1848/* Add or update double vlan entry */
1849static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1850				     unsigned short tpid2,
1851				     unsigned int port_map)
1852{
1853	struct mvpp2_prs_entry *pe;
1854	int tid_aux, tid, ai, ret = 0;
1855
1856	pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1857
1858	if (!pe) {
1859		/* Create new tcam entry */
1860		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1861				MVPP2_PE_LAST_FREE_TID);
1862		if (tid < 0)
1863			return tid;
1864
1865		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1866		if (!pe)
1867			return -ENOMEM;
1868
1869		/* Set ai value for new double vlan entry */
1870		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1871		if (ai < 0) {
1872			ret = ai;
1873			goto error;
1874		}
1875
1876		/* Get first single/triple vlan tid */
1877		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1878		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1879			unsigned int ri_bits;
1880
1881			if (!priv->prs_shadow[tid_aux].valid ||
1882			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1883				continue;
1884
1885			pe->index = tid_aux;
1886			mvpp2_prs_hw_read(priv, pe);
1887			ri_bits = mvpp2_prs_sram_ri_get(pe);
1888			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1889			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1890			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1891				break;
1892		}
1893
1894		if (tid >= tid_aux) {
1895			ret = -ERANGE;
1896			goto error;
1897		}
1898
1899		memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1900		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1901		pe->index = tid;
1902
1903		priv->prs_double_vlans[ai] = true;
1904
1905		mvpp2_prs_match_etype(pe, 0, tpid1);
1906		mvpp2_prs_match_etype(pe, 4, tpid2);
1907
1908		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1909		/* Shift 8 bytes - skip 2 vlan tags */
1910		mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1911					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1912		mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1913					 MVPP2_PRS_RI_VLAN_MASK);
1914		mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1915					 MVPP2_PRS_SRAM_AI_MASK);
1916
1917		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1918	}
1919
1920	/* Update ports' mask */
1921	mvpp2_prs_tcam_port_map_set(pe, port_map);
1922	mvpp2_prs_hw_write(priv, pe);
1923
1924error:
1925	kfree(pe);
1926	return ret;
1927}
1928
1929/* IPv4 header parsing for fragmentation and L4 offset */
1930static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1931			       unsigned int ri, unsigned int ri_mask)
1932{
1933	struct mvpp2_prs_entry pe;
1934	int tid;
1935
1936	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1937	    (proto != IPPROTO_IGMP))
1938		return -EINVAL;
1939
1940	/* Fragmented packet */
1941	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1942					MVPP2_PE_LAST_FREE_TID);
1943	if (tid < 0)
1944		return tid;
1945
1946	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1947	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1948	pe.index = tid;
1949
1950	/* Set next lu to IPv4 */
1951	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1952	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1953	/* Set L4 offset */
1954	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1955				  sizeof(struct iphdr) - 4,
1956				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1957	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1958				 MVPP2_PRS_IPV4_DIP_AI_BIT);
1959	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1960				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1961
1962	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1963	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1964	/* Unmask all ports */
1965	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1966
1967	/* Update shadow table and hw entry */
1968	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1969	mvpp2_prs_hw_write(priv, &pe);
1970
1971	/* Not fragmented packet */
1972	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1973					MVPP2_PE_LAST_FREE_TID);
1974	if (tid < 0)
1975		return tid;
1976
1977	pe.index = tid;
1978	/* Clear ri before updating */
1979	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1980	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1981	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1982
1983	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1984	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1985
1986	/* Update shadow table and hw entry */
1987	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1988	mvpp2_prs_hw_write(priv, &pe);
1989
1990	return 0;
1991}
1992
1993/* IPv4 L3 multicast or broadcast */
1994static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1995{
1996	struct mvpp2_prs_entry pe;
1997	int mask, tid;
1998
1999	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2000					MVPP2_PE_LAST_FREE_TID);
2001	if (tid < 0)
2002		return tid;
2003
2004	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2005	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2006	pe.index = tid;
2007
2008	switch (l3_cast) {
2009	case MVPP2_PRS_L3_MULTI_CAST:
2010		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2011					     MVPP2_PRS_IPV4_MC_MASK);
2012		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2013					 MVPP2_PRS_RI_L3_ADDR_MASK);
2014		break;
2015	case  MVPP2_PRS_L3_BROAD_CAST:
2016		mask = MVPP2_PRS_IPV4_BC_MASK;
2017		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2018		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2019		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2020		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2021		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2022					 MVPP2_PRS_RI_L3_ADDR_MASK);
2023		break;
2024	default:
2025		return -EINVAL;
2026	}
2027
2028	/* Finished: go to flowid generation */
2029	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2030	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2031
2032	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2033				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2034	/* Unmask all ports */
2035	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2036
2037	/* Update shadow table and hw entry */
2038	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2039	mvpp2_prs_hw_write(priv, &pe);
2040
2041	return 0;
2042}
2043
2044/* Set entries for protocols over IPv6  */
2045static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2046			       unsigned int ri, unsigned int ri_mask)
2047{
2048	struct mvpp2_prs_entry pe;
2049	int tid;
2050
2051	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2052	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2053		return -EINVAL;
2054
2055	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2056					MVPP2_PE_LAST_FREE_TID);
2057	if (tid < 0)
2058		return tid;
2059
2060	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2061	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2062	pe.index = tid;
2063
2064	/* Finished: go to flowid generation */
2065	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2066	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2067	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2068	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2069				  sizeof(struct ipv6hdr) - 6,
2070				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2071
2072	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2073	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2074				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2075	/* Unmask all ports */
2076	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2077
2078	/* Write HW */
2079	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2080	mvpp2_prs_hw_write(priv, &pe);
2081
2082	return 0;
2083}
2084
2085/* IPv6 L3 multicast entry */
2086static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2087{
2088	struct mvpp2_prs_entry pe;
2089	int tid;
2090
2091	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2092		return -EINVAL;
2093
2094	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2095					MVPP2_PE_LAST_FREE_TID);
2096	if (tid < 0)
2097		return tid;
2098
2099	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2100	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2101	pe.index = tid;
2102
2103	/* Finished: go to flowid generation */
2104	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2105	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2106				 MVPP2_PRS_RI_L3_ADDR_MASK);
2107	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2108				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2109	/* Shift back to IPv6 NH */
2110	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2111
2112	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2113				     MVPP2_PRS_IPV6_MC_MASK);
2114	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2115	/* Unmask all ports */
2116	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2117
2118	/* Update shadow table and hw entry */
2119	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2120	mvpp2_prs_hw_write(priv, &pe);
2121
2122	return 0;
2123}
2124
2125/* Parser per-port initialization */
2126static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2127				   int lu_max, int offset)
2128{
2129	u32 val;
2130
2131	/* Set lookup ID */
2132	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2133	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2134	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2135	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2136
2137	/* Set maximum number of loops for packet received from port */
2138	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2139	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2140	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2141	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2142
2143	/* Set initial offset for packet header extraction for the first
2144	 * searching loop
2145	 */
2146	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2147	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2148	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2149	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2150}
2151
2152/* Default flow entries initialization for all ports */
2153static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2154{
2155	struct mvpp2_prs_entry pe;
2156	int port;
2157
2158	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2159		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2160		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2161		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2162
2163		/* Mask all ports */
2164		mvpp2_prs_tcam_port_map_set(&pe, 0);
2165
2166		/* Set flow ID*/
2167		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2168		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2169
2170		/* Update shadow table and hw entry */
2171		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2172		mvpp2_prs_hw_write(priv, &pe);
2173	}
2174}
2175
2176/* Set default entry for Marvell Header field */
2177static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2178{
2179	struct mvpp2_prs_entry pe;
2180
2181	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2182
2183	pe.index = MVPP2_PE_MH_DEFAULT;
2184	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2185	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2186				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2187	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2188
2189	/* Unmask all ports */
2190	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2191
2192	/* Update shadow table and hw entry */
2193	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2194	mvpp2_prs_hw_write(priv, &pe);
2195}
2196
2197/* Set default entires (place holder) for promiscuous, non-promiscuous and
2198 * multicast MAC addresses
2199 */
2200static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2201{
2202	struct mvpp2_prs_entry pe;
2203
2204	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2205
2206	/* Non-promiscuous mode for all ports - DROP unknown packets */
2207	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2208	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2209
2210	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2211				 MVPP2_PRS_RI_DROP_MASK);
2212	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2213	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2214
2215	/* Unmask all ports */
2216	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2217
2218	/* Update shadow table and hw entry */
2219	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2220	mvpp2_prs_hw_write(priv, &pe);
2221
2222	/* place holders only - no ports */
2223	mvpp2_prs_mac_drop_all_set(priv, 0, false);
2224	mvpp2_prs_mac_promisc_set(priv, 0, false);
2225	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2226	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2227}
2228
2229/* Set default entries for various types of dsa packets */
2230static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2231{
2232	struct mvpp2_prs_entry pe;
2233
2234	/* None tagged EDSA entry - place holder */
2235	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2236			      MVPP2_PRS_EDSA);
2237
2238	/* Tagged EDSA entry - place holder */
2239	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2240
2241	/* None tagged DSA entry - place holder */
2242	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2243			      MVPP2_PRS_DSA);
2244
2245	/* Tagged DSA entry - place holder */
2246	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2247
2248	/* None tagged EDSA ethertype entry - place holder*/
2249	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2250					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2251
2252	/* Tagged EDSA ethertype entry - place holder*/
2253	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2254					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2255
2256	/* None tagged DSA ethertype entry */
2257	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2258					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2259
2260	/* Tagged DSA ethertype entry */
2261	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2262					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2263
2264	/* Set default entry, in case DSA or EDSA tag not found */
2265	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2266	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2267	pe.index = MVPP2_PE_DSA_DEFAULT;
2268	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2269
2270	/* Shift 0 bytes */
2271	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2272	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2273
2274	/* Clear all sram ai bits for next iteration */
2275	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2276
2277	/* Unmask all ports */
2278	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2279
2280	mvpp2_prs_hw_write(priv, &pe);
2281}
2282
2283/* Match basic ethertypes */
2284static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2285{
2286	struct mvpp2_prs_entry pe;
2287	int tid;
2288
2289	/* Ethertype: PPPoE */
2290	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2291					MVPP2_PE_LAST_FREE_TID);
2292	if (tid < 0)
2293		return tid;
2294
2295	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2296	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2297	pe.index = tid;
2298
2299	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2300
2301	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2302				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2303	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2304	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2305				 MVPP2_PRS_RI_PPPOE_MASK);
2306
2307	/* Update shadow table and hw entry */
2308	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2309	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2310	priv->prs_shadow[pe.index].finish = false;
2311	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2312				MVPP2_PRS_RI_PPPOE_MASK);
2313	mvpp2_prs_hw_write(priv, &pe);
2314
2315	/* Ethertype: ARP */
2316	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2317					MVPP2_PE_LAST_FREE_TID);
2318	if (tid < 0)
2319		return tid;
2320
2321	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2322	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2323	pe.index = tid;
2324
2325	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2326
2327	/* Generate flow in the next iteration*/
2328	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2329	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2330	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2331				 MVPP2_PRS_RI_L3_PROTO_MASK);
2332	/* Set L3 offset */
2333	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2334				  MVPP2_ETH_TYPE_LEN,
2335				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2336
2337	/* Update shadow table and hw entry */
2338	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2339	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2340	priv->prs_shadow[pe.index].finish = true;
2341	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2342				MVPP2_PRS_RI_L3_PROTO_MASK);
2343	mvpp2_prs_hw_write(priv, &pe);
2344
2345	/* Ethertype: LBTD */
2346	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2347					MVPP2_PE_LAST_FREE_TID);
2348	if (tid < 0)
2349		return tid;
2350
2351	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2352	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2353	pe.index = tid;
2354
2355	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2356
2357	/* Generate flow in the next iteration*/
2358	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2359	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2360	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2361				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2362				 MVPP2_PRS_RI_CPU_CODE_MASK |
2363				 MVPP2_PRS_RI_UDF3_MASK);
2364	/* Set L3 offset */
2365	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2366				  MVPP2_ETH_TYPE_LEN,
2367				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2368
2369	/* Update shadow table and hw entry */
2370	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2371	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2372	priv->prs_shadow[pe.index].finish = true;
2373	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2374				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2375				MVPP2_PRS_RI_CPU_CODE_MASK |
2376				MVPP2_PRS_RI_UDF3_MASK);
2377	mvpp2_prs_hw_write(priv, &pe);
2378
2379	/* Ethertype: IPv4 without options */
2380	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2381					MVPP2_PE_LAST_FREE_TID);
2382	if (tid < 0)
2383		return tid;
2384
2385	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2386	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2387	pe.index = tid;
2388
2389	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2390	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2391				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2392				     MVPP2_PRS_IPV4_HEAD_MASK |
2393				     MVPP2_PRS_IPV4_IHL_MASK);
2394
2395	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2396	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2397				 MVPP2_PRS_RI_L3_PROTO_MASK);
2398	/* Skip eth_type + 4 bytes of IP header */
2399	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2400				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2401	/* Set L3 offset */
2402	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2403				  MVPP2_ETH_TYPE_LEN,
2404				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2405
2406	/* Update shadow table and hw entry */
2407	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2408	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2409	priv->prs_shadow[pe.index].finish = false;
2410	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2411				MVPP2_PRS_RI_L3_PROTO_MASK);
2412	mvpp2_prs_hw_write(priv, &pe);
2413
2414	/* Ethertype: IPv4 with options */
2415	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2416					MVPP2_PE_LAST_FREE_TID);
2417	if (tid < 0)
2418		return tid;
2419
2420	pe.index = tid;
2421
2422	/* Clear tcam data before updating */
2423	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2424	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2425
2426	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2427				     MVPP2_PRS_IPV4_HEAD,
2428				     MVPP2_PRS_IPV4_HEAD_MASK);
2429
2430	/* Clear ri before updating */
2431	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2432	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2433	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2434				 MVPP2_PRS_RI_L3_PROTO_MASK);
2435
2436	/* Update shadow table and hw entry */
2437	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2438	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2439	priv->prs_shadow[pe.index].finish = false;
2440	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2441				MVPP2_PRS_RI_L3_PROTO_MASK);
2442	mvpp2_prs_hw_write(priv, &pe);
2443
2444	/* Ethertype: IPv6 without options */
2445	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2446					MVPP2_PE_LAST_FREE_TID);
2447	if (tid < 0)
2448		return tid;
2449
2450	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2451	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2452	pe.index = tid;
2453
2454	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2455
2456	/* Skip DIP of IPV6 header */
2457	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2458				 MVPP2_MAX_L3_ADDR_SIZE,
2459				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2460	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2461	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2462				 MVPP2_PRS_RI_L3_PROTO_MASK);
2463	/* Set L3 offset */
2464	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2465				  MVPP2_ETH_TYPE_LEN,
2466				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2467
2468	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2469	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2470	priv->prs_shadow[pe.index].finish = false;
2471	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2472				MVPP2_PRS_RI_L3_PROTO_MASK);
2473	mvpp2_prs_hw_write(priv, &pe);
2474
2475	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2476	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2477	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2478	pe.index = MVPP2_PE_ETH_TYPE_UN;
2479
2480	/* Unmask all ports */
2481	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2482
2483	/* Generate flow in the next iteration*/
2484	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2485	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2486	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2487				 MVPP2_PRS_RI_L3_PROTO_MASK);
2488	/* Set L3 offset even it's unknown L3 */
2489	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2490				  MVPP2_ETH_TYPE_LEN,
2491				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2492
2493	/* Update shadow table and hw entry */
2494	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2495	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2496	priv->prs_shadow[pe.index].finish = true;
2497	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2498				MVPP2_PRS_RI_L3_PROTO_MASK);
2499	mvpp2_prs_hw_write(priv, &pe);
2500
2501	return 0;
2502}
2503
2504/* Configure vlan entries and detect up to 2 successive VLAN tags.
2505 * Possible options:
2506 * 0x8100, 0x88A8
2507 * 0x8100, 0x8100
2508 * 0x8100
2509 * 0x88A8
2510 */
2511static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2512{
2513	struct mvpp2_prs_entry pe;
2514	int err;
2515
2516	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2517					      MVPP2_PRS_DBL_VLANS_MAX,
2518					      GFP_KERNEL);
2519	if (!priv->prs_double_vlans)
2520		return -ENOMEM;
2521
2522	/* Double VLAN: 0x8100, 0x88A8 */
2523	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2524					MVPP2_PRS_PORT_MASK);
2525	if (err)
2526		return err;
2527
2528	/* Double VLAN: 0x8100, 0x8100 */
2529	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2530					MVPP2_PRS_PORT_MASK);
2531	if (err)
2532		return err;
2533
2534	/* Single VLAN: 0x88a8 */
2535	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2536				 MVPP2_PRS_PORT_MASK);
2537	if (err)
2538		return err;
2539
2540	/* Single VLAN: 0x8100 */
2541	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2542				 MVPP2_PRS_PORT_MASK);
2543	if (err)
2544		return err;
2545
2546	/* Set default double vlan entry */
2547	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2548	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2549	pe.index = MVPP2_PE_VLAN_DBL;
2550
2551	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2552	/* Clear ai for next iterations */
2553	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2554	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2555				 MVPP2_PRS_RI_VLAN_MASK);
2556
2557	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2558				 MVPP2_PRS_DBL_VLAN_AI_BIT);
2559	/* Unmask all ports */
2560	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2561
2562	/* Update shadow table and hw entry */
2563	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2564	mvpp2_prs_hw_write(priv, &pe);
2565
2566	/* Set default vlan none entry */
2567	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2568	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2569	pe.index = MVPP2_PE_VLAN_NONE;
2570
2571	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2572	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2573				 MVPP2_PRS_RI_VLAN_MASK);
2574
2575	/* Unmask all ports */
2576	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2577
2578	/* Update shadow table and hw entry */
2579	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2580	mvpp2_prs_hw_write(priv, &pe);
2581
2582	return 0;
2583}
2584
2585/* Set entries for PPPoE ethertype */
2586static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2587{
2588	struct mvpp2_prs_entry pe;
2589	int tid;
2590
2591	/* IPv4 over PPPoE with options */
2592	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2593					MVPP2_PE_LAST_FREE_TID);
2594	if (tid < 0)
2595		return tid;
2596
2597	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2598	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2599	pe.index = tid;
2600
2601	mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2602
2603	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2604	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2605				 MVPP2_PRS_RI_L3_PROTO_MASK);
2606	/* Skip eth_type + 4 bytes of IP header */
2607	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2608				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2609	/* Set L3 offset */
2610	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2611				  MVPP2_ETH_TYPE_LEN,
2612				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2613
2614	/* Update shadow table and hw entry */
2615	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2616	mvpp2_prs_hw_write(priv, &pe);
2617
2618	/* IPv4 over PPPoE without options */
2619	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2620					MVPP2_PE_LAST_FREE_TID);
2621	if (tid < 0)
2622		return tid;
2623
2624	pe.index = tid;
2625
2626	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2627				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2628				     MVPP2_PRS_IPV4_HEAD_MASK |
2629				     MVPP2_PRS_IPV4_IHL_MASK);
2630
2631	/* Clear ri before updating */
2632	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2633	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2634	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2635				 MVPP2_PRS_RI_L3_PROTO_MASK);
2636
2637	/* Update shadow table and hw entry */
2638	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2639	mvpp2_prs_hw_write(priv, &pe);
2640
2641	/* IPv6 over PPPoE */
2642	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2643					MVPP2_PE_LAST_FREE_TID);
2644	if (tid < 0)
2645		return tid;
2646
2647	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2648	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2649	pe.index = tid;
2650
2651	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2652
2653	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2654	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2655				 MVPP2_PRS_RI_L3_PROTO_MASK);
2656	/* Skip eth_type + 4 bytes of IPv6 header */
2657	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2658				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2659	/* Set L3 offset */
2660	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2661				  MVPP2_ETH_TYPE_LEN,
2662				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2663
2664	/* Update shadow table and hw entry */
2665	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2666	mvpp2_prs_hw_write(priv, &pe);
2667
2668	/* Non-IP over PPPoE */
2669	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2670					MVPP2_PE_LAST_FREE_TID);
2671	if (tid < 0)
2672		return tid;
2673
2674	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2675	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2676	pe.index = tid;
2677
2678	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2679				 MVPP2_PRS_RI_L3_PROTO_MASK);
2680
2681	/* Finished: go to flowid generation */
2682	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2683	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2684	/* Set L3 offset even if it's unknown L3 */
2685	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2686				  MVPP2_ETH_TYPE_LEN,
2687				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2688
2689	/* Update shadow table and hw entry */
2690	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2691	mvpp2_prs_hw_write(priv, &pe);
2692
2693	return 0;
2694}
2695
2696/* Initialize entries for IPv4 */
2697static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2698{
2699	struct mvpp2_prs_entry pe;
2700	int err;
2701
2702	/* Set entries for TCP, UDP and IGMP over IPv4 */
2703	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2704				  MVPP2_PRS_RI_L4_PROTO_MASK);
2705	if (err)
2706		return err;
2707
2708	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2709				  MVPP2_PRS_RI_L4_PROTO_MASK);
2710	if (err)
2711		return err;
2712
2713	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2714				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2715				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2716				  MVPP2_PRS_RI_CPU_CODE_MASK |
2717				  MVPP2_PRS_RI_UDF3_MASK);
2718	if (err)
2719		return err;
2720
2721	/* IPv4 Broadcast */
2722	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2723	if (err)
2724		return err;
2725
2726	/* IPv4 Multicast */
2727	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2728	if (err)
2729		return err;
2730
2731	/* Default IPv4 entry for unknown protocols */
2732	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2733	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2734	pe.index = MVPP2_PE_IP4_PROTO_UN;
2735
2736	/* Set next lu to IPv4 */
2737	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2738	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2739	/* Set L4 offset */
2740	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2741				  sizeof(struct iphdr) - 4,
2742				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2743	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2744				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2745	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2746				 MVPP2_PRS_RI_L4_PROTO_MASK);
2747
2748	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2749	/* Unmask all ports */
2750	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2751
2752	/* Update shadow table and hw entry */
2753	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2754	mvpp2_prs_hw_write(priv, &pe);
2755
2756	/* Default IPv4 entry for unicast address */
2757	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2758	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2759	pe.index = MVPP2_PE_IP4_ADDR_UN;
2760
2761	/* Finished: go to flowid generation */
2762	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2763	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2764	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2765				 MVPP2_PRS_RI_L3_ADDR_MASK);
2766
2767	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2768				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2769	/* Unmask all ports */
2770	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2771
2772	/* Update shadow table and hw entry */
2773	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2774	mvpp2_prs_hw_write(priv, &pe);
2775
2776	return 0;
2777}
2778
2779/* Initialize entries for IPv6 */
2780static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2781{
2782	struct mvpp2_prs_entry pe;
2783	int tid, err;
2784
2785	/* Set entries for TCP, UDP and ICMP over IPv6 */
2786	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2787				  MVPP2_PRS_RI_L4_TCP,
2788				  MVPP2_PRS_RI_L4_PROTO_MASK);
2789	if (err)
2790		return err;
2791
2792	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2793				  MVPP2_PRS_RI_L4_UDP,
2794				  MVPP2_PRS_RI_L4_PROTO_MASK);
2795	if (err)
2796		return err;
2797
2798	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2799				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2800				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2801				  MVPP2_PRS_RI_CPU_CODE_MASK |
2802				  MVPP2_PRS_RI_UDF3_MASK);
2803	if (err)
2804		return err;
2805
2806	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2807	/* Result Info: UDF7=1, DS lite */
2808	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2809				  MVPP2_PRS_RI_UDF7_IP6_LITE,
2810				  MVPP2_PRS_RI_UDF7_MASK);
2811	if (err)
2812		return err;
2813
2814	/* IPv6 multicast */
2815	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2816	if (err)
2817		return err;
2818
2819	/* Entry for checking hop limit */
2820	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2821					MVPP2_PE_LAST_FREE_TID);
2822	if (tid < 0)
2823		return tid;
2824
2825	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2826	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2827	pe.index = tid;
2828
2829	/* Finished: go to flowid generation */
2830	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2831	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2832	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2833				 MVPP2_PRS_RI_DROP_MASK,
2834				 MVPP2_PRS_RI_L3_PROTO_MASK |
2835				 MVPP2_PRS_RI_DROP_MASK);
2836
2837	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2838	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2839				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2840
2841	/* Update shadow table and hw entry */
2842	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2843	mvpp2_prs_hw_write(priv, &pe);
2844
2845	/* Default IPv6 entry for unknown protocols */
2846	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2847	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2848	pe.index = MVPP2_PE_IP6_PROTO_UN;
2849
2850	/* Finished: go to flowid generation */
2851	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2852	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2853	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2854				 MVPP2_PRS_RI_L4_PROTO_MASK);
2855	/* Set L4 offset relatively to our current place */
2856	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2857				  sizeof(struct ipv6hdr) - 4,
2858				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2859
2860	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2861				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2862	/* Unmask all ports */
2863	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2864
2865	/* Update shadow table and hw entry */
2866	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2867	mvpp2_prs_hw_write(priv, &pe);
2868
2869	/* Default IPv6 entry for unknown ext protocols */
2870	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2871	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2872	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2873
2874	/* Finished: go to flowid generation */
2875	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2876	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2877	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2878				 MVPP2_PRS_RI_L4_PROTO_MASK);
2879
2880	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2881				 MVPP2_PRS_IPV6_EXT_AI_BIT);
2882	/* Unmask all ports */
2883	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2884
2885	/* Update shadow table and hw entry */
2886	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2887	mvpp2_prs_hw_write(priv, &pe);
2888
2889	/* Default IPv6 entry for unicast address */
2890	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2891	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2892	pe.index = MVPP2_PE_IP6_ADDR_UN;
2893
2894	/* Finished: go to IPv6 again */
2895	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2896	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2897				 MVPP2_PRS_RI_L3_ADDR_MASK);
2898	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2899				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2900	/* Shift back to IPV6 NH */
2901	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2902
2903	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2904	/* Unmask all ports */
2905	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2906
2907	/* Update shadow table and hw entry */
2908	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2909	mvpp2_prs_hw_write(priv, &pe);
2910
2911	return 0;
2912}
2913
2914/* Parser default initialization */
2915static int mvpp2_prs_default_init(struct platform_device *pdev,
2916				  struct mvpp2 *priv)
2917{
2918	int err, index, i;
2919
2920	/* Enable tcam table */
2921	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2922
2923	/* Clear all tcam and sram entries */
2924	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2925		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2926		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2927			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2928
2929		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2930		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2931			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2932	}
2933
2934	/* Invalidate all tcam entries */
2935	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2936		mvpp2_prs_hw_inv(priv, index);
2937
2938	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2939					sizeof(struct mvpp2_prs_shadow),
2940					GFP_KERNEL);
2941	if (!priv->prs_shadow)
2942		return -ENOMEM;
2943
2944	/* Always start from lookup = 0 */
2945	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2946		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2947				       MVPP2_PRS_PORT_LU_MAX, 0);
2948
2949	mvpp2_prs_def_flow_init(priv);
2950
2951	mvpp2_prs_mh_init(priv);
2952
2953	mvpp2_prs_mac_init(priv);
2954
2955	mvpp2_prs_dsa_init(priv);
2956
2957	err = mvpp2_prs_etype_init(priv);
2958	if (err)
2959		return err;
2960
2961	err = mvpp2_prs_vlan_init(pdev, priv);
2962	if (err)
2963		return err;
2964
2965	err = mvpp2_prs_pppoe_init(priv);
2966	if (err)
2967		return err;
2968
2969	err = mvpp2_prs_ip6_init(priv);
2970	if (err)
2971		return err;
2972
2973	err = mvpp2_prs_ip4_init(priv);
2974	if (err)
2975		return err;
2976
2977	return 0;
2978}
2979
2980/* Compare MAC DA with tcam entry data */
2981static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2982				       const u8 *da, unsigned char *mask)
2983{
2984	unsigned char tcam_byte, tcam_mask;
2985	int index;
2986
2987	for (index = 0; index < ETH_ALEN; index++) {
2988		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2989		if (tcam_mask != mask[index])
2990			return false;
2991
2992		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2993			return false;
2994	}
2995
2996	return true;
2997}
2998
2999/* Find tcam entry with matched pair <MAC DA, port> */
3000static struct mvpp2_prs_entry *
3001mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
3002			    unsigned char *mask, int udf_type)
3003{
3004	struct mvpp2_prs_entry *pe;
3005	int tid;
3006
3007	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3008	if (!pe)
3009		return NULL;
3010	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3011
3012	/* Go through the all entires with MVPP2_PRS_LU_MAC */
3013	for (tid = MVPP2_PE_FIRST_FREE_TID;
3014	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3015		unsigned int entry_pmap;
3016
3017		if (!priv->prs_shadow[tid].valid ||
3018		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3019		    (priv->prs_shadow[tid].udf != udf_type))
3020			continue;
3021
3022		pe->index = tid;
3023		mvpp2_prs_hw_read(priv, pe);
3024		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3025
3026		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3027		    entry_pmap == pmap)
3028			return pe;
3029	}
3030	kfree(pe);
3031
3032	return NULL;
3033}
3034
3035/* Update parser's mac da entry */
3036static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3037				   const u8 *da, bool add)
3038{
3039	struct mvpp2_prs_entry *pe;
3040	unsigned int pmap, len, ri;
3041	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3042	int tid;
3043
3044	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3045	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3046					 MVPP2_PRS_UDF_MAC_DEF);
3047
3048	/* No such entry */
3049	if (!pe) {
3050		if (!add)
3051			return 0;
3052
3053		/* Create new TCAM entry */
3054		/* Find first range mac entry*/
3055		for (tid = MVPP2_PE_FIRST_FREE_TID;
3056		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3057			if (priv->prs_shadow[tid].valid &&
3058			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3059			    (priv->prs_shadow[tid].udf ==
3060						       MVPP2_PRS_UDF_MAC_RANGE))
3061				break;
3062
3063		/* Go through the all entries from first to last */
3064		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3065						tid - 1);
3066		if (tid < 0)
3067			return tid;
3068
3069		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3070		if (!pe)
3071			return -ENOMEM;
3072		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3073		pe->index = tid;
3074
3075		/* Mask all ports */
3076		mvpp2_prs_tcam_port_map_set(pe, 0);
3077	}
3078
3079	/* Update port mask */
3080	mvpp2_prs_tcam_port_set(pe, port, add);
3081
3082	/* Invalidate the entry if no ports are left enabled */
3083	pmap = mvpp2_prs_tcam_port_map_get(pe);
3084	if (pmap == 0) {
3085		if (add) {
3086			kfree(pe);
3087			return -EINVAL;
3088		}
3089		mvpp2_prs_hw_inv(priv, pe->index);
3090		priv->prs_shadow[pe->index].valid = false;
3091		kfree(pe);
3092		return 0;
3093	}
3094
3095	/* Continue - set next lookup */
3096	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3097
3098	/* Set match on DA */
3099	len = ETH_ALEN;
3100	while (len--)
3101		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3102
3103	/* Set result info bits */
3104	if (is_broadcast_ether_addr(da))
3105		ri = MVPP2_PRS_RI_L2_BCAST;
3106	else if (is_multicast_ether_addr(da))
3107		ri = MVPP2_PRS_RI_L2_MCAST;
3108	else
3109		ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3110
3111	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3112				 MVPP2_PRS_RI_MAC_ME_MASK);
3113	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3114				MVPP2_PRS_RI_MAC_ME_MASK);
3115
3116	/* Shift to ethertype */
3117	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3118				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3119
3120	/* Update shadow table and hw entry */
3121	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3122	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3123	mvpp2_prs_hw_write(priv, pe);
3124
3125	kfree(pe);
3126
3127	return 0;
3128}
3129
3130static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3131{
3132	struct mvpp2_port *port = netdev_priv(dev);
3133	int err;
3134
3135	/* Remove old parser entry */
3136	err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3137				      false);
3138	if (err)
3139		return err;
3140
3141	/* Add new parser entry */
3142	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3143	if (err)
3144		return err;
3145
3146	/* Set addr in the device */
3147	ether_addr_copy(dev->dev_addr, da);
3148
3149	return 0;
3150}
3151
3152/* Delete all port's multicast simple (not range) entries */
3153static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3154{
3155	struct mvpp2_prs_entry pe;
3156	int index, tid;
3157
3158	for (tid = MVPP2_PE_FIRST_FREE_TID;
3159	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3160		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3161
3162		if (!priv->prs_shadow[tid].valid ||
3163		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3164		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3165			continue;
3166
3167		/* Only simple mac entries */
3168		pe.index = tid;
3169		mvpp2_prs_hw_read(priv, &pe);
3170
3171		/* Read mac addr from entry */
3172		for (index = 0; index < ETH_ALEN; index++)
3173			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3174						     &da_mask[index]);
3175
3176		if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3177			/* Delete this entry */
3178			mvpp2_prs_mac_da_accept(priv, port, da, false);
3179	}
3180}
3181
3182static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3183{
3184	switch (type) {
3185	case MVPP2_TAG_TYPE_EDSA:
3186		/* Add port to EDSA entries */
3187		mvpp2_prs_dsa_tag_set(priv, port, true,
3188				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3189		mvpp2_prs_dsa_tag_set(priv, port, true,
3190				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3191		/* Remove port from DSA entries */
3192		mvpp2_prs_dsa_tag_set(priv, port, false,
3193				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3194		mvpp2_prs_dsa_tag_set(priv, port, false,
3195				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3196		break;
3197
3198	case MVPP2_TAG_TYPE_DSA:
3199		/* Add port to DSA entries */
3200		mvpp2_prs_dsa_tag_set(priv, port, true,
3201				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3202		mvpp2_prs_dsa_tag_set(priv, port, true,
3203				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3204		/* Remove port from EDSA entries */
3205		mvpp2_prs_dsa_tag_set(priv, port, false,
3206				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3207		mvpp2_prs_dsa_tag_set(priv, port, false,
3208				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3209		break;
3210
3211	case MVPP2_TAG_TYPE_MH:
3212	case MVPP2_TAG_TYPE_NONE:
3213		/* Remove port form EDSA and DSA entries */
3214		mvpp2_prs_dsa_tag_set(priv, port, false,
3215				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3216		mvpp2_prs_dsa_tag_set(priv, port, false,
3217				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3218		mvpp2_prs_dsa_tag_set(priv, port, false,
3219				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3220		mvpp2_prs_dsa_tag_set(priv, port, false,
3221				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3222		break;
3223
3224	default:
3225		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3226			return -EINVAL;
3227	}
3228
3229	return 0;
3230}
3231
3232/* Set prs flow for the port */
3233static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3234{
3235	struct mvpp2_prs_entry *pe;
3236	int tid;
3237
3238	pe = mvpp2_prs_flow_find(port->priv, port->id);
3239
3240	/* Such entry not exist */
3241	if (!pe) {
3242		/* Go through the all entires from last to first */
3243		tid = mvpp2_prs_tcam_first_free(port->priv,
3244						MVPP2_PE_LAST_FREE_TID,
3245					       MVPP2_PE_FIRST_FREE_TID);
3246		if (tid < 0)
3247			return tid;
3248
3249		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3250		if (!pe)
3251			return -ENOMEM;
3252
3253		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3254		pe->index = tid;
3255
3256		/* Set flow ID*/
3257		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3258		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3259
3260		/* Update shadow table */
3261		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3262	}
3263
3264	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3265	mvpp2_prs_hw_write(port->priv, pe);
3266	kfree(pe);
3267
3268	return 0;
3269}
3270
3271/* Classifier configuration routines */
3272
3273/* Update classification flow table registers */
3274static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3275				 struct mvpp2_cls_flow_entry *fe)
3276{
3277	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3278	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
3279	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
3280	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
3281}
3282
3283/* Update classification lookup table register */
3284static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3285				   struct mvpp2_cls_lookup_entry *le)
3286{
3287	u32 val;
3288
3289	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3290	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3291	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3292}
3293
3294/* Classifier default initialization */
3295static void mvpp2_cls_init(struct mvpp2 *priv)
3296{
3297	struct mvpp2_cls_lookup_entry le;
3298	struct mvpp2_cls_flow_entry fe;
3299	int index;
3300
3301	/* Enable classifier */
3302	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3303
3304	/* Clear classifier flow table */
3305	memset(&fe.data, 0, sizeof(fe.data));
3306	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3307		fe.index = index;
3308		mvpp2_cls_flow_write(priv, &fe);
3309	}
3310
3311	/* Clear classifier lookup table */
3312	le.data = 0;
3313	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3314		le.lkpid = index;
3315		le.way = 0;
3316		mvpp2_cls_lookup_write(priv, &le);
3317
3318		le.way = 1;
3319		mvpp2_cls_lookup_write(priv, &le);
3320	}
3321}
3322
3323static void mvpp2_cls_port_config(struct mvpp2_port *port)
3324{
3325	struct mvpp2_cls_lookup_entry le;
3326	u32 val;
3327
3328	/* Set way for the port */
3329	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3330	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3331	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3332
3333	/* Pick the entry to be accessed in lookup ID decoding table
3334	 * according to the way and lkpid.
3335	 */
3336	le.lkpid = port->id;
3337	le.way = 0;
3338	le.data = 0;
3339
3340	/* Set initial CPU queue for receiving packets */
3341	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3342	le.data |= port->first_rxq;
3343
3344	/* Disable classification engines */
3345	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3346
3347	/* Update lookup ID table entry */
3348	mvpp2_cls_lookup_write(port->priv, &le);
3349}
3350
3351/* Set CPU queue number for oversize packets */
3352static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3353{
3354	u32 val;
3355
3356	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3357		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3358
3359	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3360		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3361
3362	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3363	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3364	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3365}
3366
3367/* Buffer Manager configuration routines */
3368
3369/* Create pool */
3370static int mvpp2_bm_pool_create(struct platform_device *pdev,
3371				struct mvpp2 *priv,
3372				struct mvpp2_bm_pool *bm_pool, int size)
3373{
3374	int size_bytes;
3375	u32 val;
3376
3377	size_bytes = sizeof(u32) * size;
3378	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3379						&bm_pool->phys_addr,
3380						GFP_KERNEL);
3381	if (!bm_pool->virt_addr)
3382		return -ENOMEM;
3383
3384	if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3385		dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3386				  bm_pool->phys_addr);
3387		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3388			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3389		return -ENOMEM;
3390	}
3391
3392	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3393		    bm_pool->phys_addr);
3394	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3395
3396	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3397	val |= MVPP2_BM_START_MASK;
3398	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3399
3400	bm_pool->type = MVPP2_BM_FREE;
3401	bm_pool->size = size;
3402	bm_pool->pkt_size = 0;
3403	bm_pool->buf_num = 0;
3404	atomic_set(&bm_pool->in_use, 0);
3405
3406	return 0;
3407}
3408
3409/* Set pool buffer size */
3410static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3411				      struct mvpp2_bm_pool *bm_pool,
3412				      int buf_size)
3413{
3414	u32 val;
3415
3416	bm_pool->buf_size = buf_size;
3417
3418	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3419	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3420}
3421
3422/* Free all buffers from the pool */
3423static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3424			       struct mvpp2_bm_pool *bm_pool)
3425{
3426	int i;
3427
3428	for (i = 0; i < bm_pool->buf_num; i++) {
3429		dma_addr_t buf_phys_addr;
3430		u32 vaddr;
3431
3432		/* Get buffer virtual address (indirect access) */
3433		buf_phys_addr = mvpp2_read(priv,
3434					   MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3435		vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3436
3437		dma_unmap_single(dev, buf_phys_addr,
3438				 bm_pool->buf_size, DMA_FROM_DEVICE);
3439
3440		if (!vaddr)
3441			break;
3442		dev_kfree_skb_any((struct sk_buff *)vaddr);
3443	}
3444
3445	/* Update BM driver with number of buffers removed from pool */
3446	bm_pool->buf_num -= i;
3447}
3448
3449/* Cleanup pool */
3450static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3451				 struct mvpp2 *priv,
3452				 struct mvpp2_bm_pool *bm_pool)
3453{
3454	u32 val;
3455
3456	mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3457	if (bm_pool->buf_num) {
3458		WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3459		return 0;
3460	}
3461
3462	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3463	val |= MVPP2_BM_STOP_MASK;
3464	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3465
3466	dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3467			  bm_pool->virt_addr,
3468			  bm_pool->phys_addr);
3469	return 0;
3470}
3471
3472static int mvpp2_bm_pools_init(struct platform_device *pdev,
3473			       struct mvpp2 *priv)
3474{
3475	int i, err, size;
3476	struct mvpp2_bm_pool *bm_pool;
3477
3478	/* Create all pools with maximum size */
3479	size = MVPP2_BM_POOL_SIZE_MAX;
3480	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3481		bm_pool = &priv->bm_pools[i];
3482		bm_pool->id = i;
3483		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3484		if (err)
3485			goto err_unroll_pools;
3486		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3487	}
3488	return 0;
3489
3490err_unroll_pools:
3491	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3492	for (i = i - 1; i >= 0; i--)
3493		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3494	return err;
3495}
3496
3497static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3498{
3499	int i, err;
3500
3501	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3502		/* Mask BM all interrupts */
3503		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3504		/* Clear BM cause register */
3505		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3506	}
3507
3508	/* Allocate and initialize BM pools */
3509	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3510				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3511	if (!priv->bm_pools)
3512		return -ENOMEM;
3513
3514	err = mvpp2_bm_pools_init(pdev, priv);
3515	if (err < 0)
3516		return err;
3517	return 0;
3518}
3519
3520/* Attach long pool to rxq */
3521static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3522				    int lrxq, int long_pool)
3523{
3524	u32 val;
3525	int prxq;
3526
3527	/* Get queue physical ID */
3528	prxq = port->rxqs[lrxq]->id;
3529
3530	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3531	val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3532	val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3533		    MVPP2_RXQ_POOL_LONG_MASK);
3534
3535	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3536}
3537
3538/* Attach short pool to rxq */
3539static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3540				     int lrxq, int short_pool)
3541{
3542	u32 val;
3543	int prxq;
3544
3545	/* Get queue physical ID */
3546	prxq = port->rxqs[lrxq]->id;
3547
3548	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3549	val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3550	val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3551		    MVPP2_RXQ_POOL_SHORT_MASK);
3552
3553	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3554}
3555
3556/* Allocate skb for BM pool */
3557static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3558				       struct mvpp2_bm_pool *bm_pool,
3559				       dma_addr_t *buf_phys_addr,
3560				       gfp_t gfp_mask)
3561{
3562	struct sk_buff *skb;
3563	dma_addr_t phys_addr;
3564
3565	skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3566	if (!skb)
3567		return NULL;
3568
3569	phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3570				   MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3571				    DMA_FROM_DEVICE);
3572	if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3573		dev_kfree_skb_any(skb);
3574		return NULL;
3575	}
3576	*buf_phys_addr = phys_addr;
3577
3578	return skb;
3579}
3580
3581/* Set pool number in a BM cookie */
3582static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3583{
3584	u32 bm;
3585
3586	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3587	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3588
3589	return bm;
3590}
3591
3592/* Get pool number from a BM cookie */
3593static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3594{
3595	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3596}
3597
3598/* Release buffer to BM */
3599static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3600				     u32 buf_phys_addr, u32 buf_virt_addr)
3601{
3602	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3603	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3604}
3605
3606/* Release multicast buffer */
3607static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3608				 u32 buf_phys_addr, u32 buf_virt_addr,
3609				 int mc_id)
3610{
3611	u32 val = 0;
3612
3613	val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3614	mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3615
3616	mvpp2_bm_pool_put(port, pool,
3617			  buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3618			  buf_virt_addr);
3619}
3620
3621/* Refill BM pool */
3622static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3623			      u32 phys_addr, u32 cookie)
3624{
3625	int pool = mvpp2_bm_cookie_pool_get(bm);
3626
3627	mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3628}
3629
3630/* Allocate buffers for the pool */
3631static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3632			     struct mvpp2_bm_pool *bm_pool, int buf_num)
3633{
3634	struct sk_buff *skb;
3635	int i, buf_size, total_size;
3636	u32 bm;
3637	dma_addr_t phys_addr;
3638
3639	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3640	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3641
3642	if (buf_num < 0 ||
3643	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
3644		netdev_err(port->dev,
3645			   "cannot allocate %d buffers for pool %d\n",
3646			   buf_num, bm_pool->id);
3647		return 0;
3648	}
3649
3650	bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3651	for (i = 0; i < buf_num; i++) {
3652		skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3653		if (!skb)
3654			break;
3655
3656		mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3657	}
3658
3659	/* Update BM driver with number of buffers added to pool */
3660	bm_pool->buf_num += i;
3661	bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3662
3663	netdev_dbg(port->dev,
3664		   "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3665		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3666		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3667
3668	netdev_dbg(port->dev,
3669		   "%s pool %d: %d of %d buffers added\n",
3670		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3671		   bm_pool->id, i, buf_num);
3672	return i;
3673}
3674
3675/* Notify the driver that BM pool is being used as specific type and return the
3676 * pool pointer on success
3677 */
3678static struct mvpp2_bm_pool *
3679mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3680		  int pkt_size)
3681{
3682	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3683	int num;
3684
3685	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3686		netdev_err(port->dev, "mixing pool types is forbidden\n");
3687		return NULL;
3688	}
3689
3690	if (new_pool->type == MVPP2_BM_FREE)
3691		new_pool->type = type;
3692
3693	/* Allocate buffers in case BM pool is used as long pool, but packet
3694	 * size doesn't match MTU or BM pool hasn't being used yet
3695	 */
3696	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3697	    (new_pool->pkt_size == 0)) {
3698		int pkts_num;
3699
3700		/* Set default buffer number or free all the buffers in case
3701		 * the pool is not empty
3702		 */
3703		pkts_num = new_pool->buf_num;
3704		if (pkts_num == 0)
3705			pkts_num = type == MVPP2_BM_SWF_LONG ?
3706				   MVPP2_BM_LONG_BUF_NUM :
3707				   MVPP2_BM_SHORT_BUF_NUM;
3708		else
3709			mvpp2_bm_bufs_free(port->dev->dev.parent,
3710					   port->priv, new_pool);
3711
3712		new_pool->pkt_size = pkt_size;
3713
3714		/* Allocate buffers for this pool */
3715		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3716		if (num != pkts_num) {
3717			WARN(1, "pool %d: %d of %d allocated\n",
3718			     new_pool->id, num, pkts_num);
3719			return NULL;
3720		}
3721	}
3722
3723	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3724				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3725
3726	return new_pool;
3727}
3728
3729/* Initialize pools for swf */
3730static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3731{
3732	int rxq;
3733
3734	if (!port->pool_long) {
3735		port->pool_long =
3736		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3737					 MVPP2_BM_SWF_LONG,
3738					 port->pkt_size);
3739		if (!port->pool_long)
3740			return -ENOMEM;
3741
3742		port->pool_long->port_map |= (1 << port->id);
3743
3744		for (rxq = 0; rxq < rxq_number; rxq++)
3745			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3746	}
3747
3748	if (!port->pool_short) {
3749		port->pool_short =
3750			mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3751					  MVPP2_BM_SWF_SHORT,
3752					  MVPP2_BM_SHORT_PKT_SIZE);
3753		if (!port->pool_short)
3754			return -ENOMEM;
3755
3756		port->pool_short->port_map |= (1 << port->id);
3757
3758		for (rxq = 0; rxq < rxq_number; rxq++)
3759			mvpp2_rxq_short_pool_set(port, rxq,
3760						 port->pool_short->id);
3761	}
3762
3763	return 0;
3764}
3765
3766static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3767{
3768	struct mvpp2_port *port = netdev_priv(dev);
3769	struct mvpp2_bm_pool *port_pool = port->pool_long;
3770	int num, pkts_num = port_pool->buf_num;
3771	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3772
3773	/* Update BM pool with new buffer size */
3774	mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
3775	if (port_pool->buf_num) {
3776		WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3777		return -EIO;
3778	}
3779
3780	port_pool->pkt_size = pkt_size;
3781	num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3782	if (num != pkts_num) {
3783		WARN(1, "pool %d: %d of %d allocated\n",
3784		     port_pool->id, num, pkts_num);
3785		return -EIO;
3786	}
3787
3788	mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3789				  MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3790	dev->mtu = mtu;
3791	netdev_update_features(dev);
3792	return 0;
3793}
3794
3795static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3796{
3797	int cpu, cpu_mask = 0;
3798
3799	for_each_present_cpu(cpu)
3800		cpu_mask |= 1 << cpu;
3801	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3802		    MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3803}
3804
3805static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3806{
3807	int cpu, cpu_mask = 0;
3808
3809	for_each_present_cpu(cpu)
3810		cpu_mask |= 1 << cpu;
3811	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3812		    MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3813}
3814
3815/* Mask the current CPU's Rx/Tx interrupts */
3816static void mvpp2_interrupts_mask(void *arg)
3817{
3818	struct mvpp2_port *port = arg;
3819
3820	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3821}
3822
3823/* Unmask the current CPU's Rx/Tx interrupts */
3824static void mvpp2_interrupts_unmask(void *arg)
3825{
3826	struct mvpp2_port *port = arg;
3827
3828	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3829		    (MVPP2_CAUSE_MISC_SUM_MASK |
3830		     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3831}
3832
3833/* Port configuration routines */
3834
3835static void mvpp2_port_mii_set(struct mvpp2_port *port)
3836{
3837	u32 val;
3838
3839	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3840
3841	switch (port->phy_interface) {
3842	case PHY_INTERFACE_MODE_SGMII:
3843		val |= MVPP2_GMAC_INBAND_AN_MASK;
3844		break;
3845	case PHY_INTERFACE_MODE_RGMII:
3846		val |= MVPP2_GMAC_PORT_RGMII_MASK;
3847	default:
3848		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3849	}
3850
3851	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3852}
3853
3854static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3855{
3856	u32 val;
3857
3858	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3859	val |= MVPP2_GMAC_FC_ADV_EN;
3860	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3861}
3862
3863static void mvpp2_port_enable(struct mvpp2_port *port)
3864{
3865	u32 val;
3866
3867	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3868	val |= MVPP2_GMAC_PORT_EN_MASK;
3869	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3870	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3871}
3872
3873static void mvpp2_port_disable(struct mvpp2_port *port)
3874{
3875	u32 val;
3876
3877	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3878	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3879	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3880}
3881
3882/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3883static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3884{
3885	u32 val;
3886
3887	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3888		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3889	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3890}
3891
3892/* Configure loopback port */
3893static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3894{
3895	u32 val;
3896
3897	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3898
3899	if (port->speed == 1000)
3900		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3901	else
3902		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3903
3904	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3905		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3906	else
3907		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3908
3909	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3910}
3911
3912static void mvpp2_port_reset(struct mvpp2_port *port)
3913{
3914	u32 val;
3915
3916	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3917		    ~MVPP2_GMAC_PORT_RESET_MASK;
3918	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3919
3920	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3921	       MVPP2_GMAC_PORT_RESET_MASK)
3922		continue;
3923}
3924
3925/* Change maximum receive size of the port */
3926static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3927{
3928	u32 val;
3929
3930	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3931	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3932	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3933		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3934	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3935}
3936
3937/* Set defaults to the MVPP2 port */
3938static void mvpp2_defaults_set(struct mvpp2_port *port)
3939{
3940	int tx_port_num, val, queue, ptxq, lrxq;
3941
3942	/* Configure port to loopback if needed */
3943	if (port->flags & MVPP2_F_LOOPBACK)
3944		mvpp2_port_loopback_set(port);
3945
3946	/* Update TX FIFO MIN Threshold */
3947	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3948	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3949	/* Min. TX threshold must be less than minimal packet length */
3950	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3951	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3952
3953	/* Disable Legacy WRR, Disable EJP, Release from reset */
3954	tx_port_num = mvpp2_egress_port(port);
3955	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3956		    tx_port_num);
3957	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3958
3959	/* Close bandwidth for all queues */
3960	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3961		ptxq = mvpp2_txq_phys(port->id, queue);
3962		mvpp2_write(port->priv,
3963			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3964	}
3965
3966	/* Set refill period to 1 usec, refill tokens
3967	 * and bucket size to maximum
3968	 */
3969	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3970		    port->priv->tclk / USEC_PER_SEC);
3971	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3972	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3973	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3974	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3975	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3976	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3977	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3978
3979	/* Set MaximumLowLatencyPacketSize value to 256 */
3980	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3981		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3982		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3983
3984	/* Enable Rx cache snoop */
3985	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3986		queue = port->rxqs[lrxq]->id;
3987		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3988		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3989			   MVPP2_SNOOP_BUF_HDR_MASK;
3990		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3991	}
3992
3993	/* At default, mask all interrupts to all present cpus */
3994	mvpp2_interrupts_disable(port);
3995}
3996
3997/* Enable/disable receiving packets */
3998static void mvpp2_ingress_enable(struct mvpp2_port *port)
3999{
4000	u32 val;
4001	int lrxq, queue;
4002
4003	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4004		queue = port->rxqs[lrxq]->id;
4005		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4006		val &= ~MVPP2_RXQ_DISABLE_MASK;
4007		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4008	}
4009}
4010
4011static void mvpp2_ingress_disable(struct mvpp2_port *port)
4012{
4013	u32 val;
4014	int lrxq, queue;
4015
4016	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4017		queue = port->rxqs[lrxq]->id;
4018		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4019		val |= MVPP2_RXQ_DISABLE_MASK;
4020		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4021	}
4022}
4023
4024/* Enable transmit via physical egress queue
4025 * - HW starts take descriptors from DRAM
4026 */
4027static void mvpp2_egress_enable(struct mvpp2_port *port)
4028{
4029	u32 qmap;
4030	int queue;
4031	int tx_port_num = mvpp2_egress_port(port);
4032
4033	/* Enable all initialized TXs. */
4034	qmap = 0;
4035	for (queue = 0; queue < txq_number; queue++) {
4036		struct mvpp2_tx_queue *txq = port->txqs[queue];
4037
4038		if (txq->descs != NULL)
4039			qmap |= (1 << queue);
4040	}
4041
4042	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4043	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4044}
4045
4046/* Disable transmit via physical egress queue
4047 * - HW doesn't take descriptors from DRAM
4048 */
4049static void mvpp2_egress_disable(struct mvpp2_port *port)
4050{
4051	u32 reg_data;
4052	int delay;
4053	int tx_port_num = mvpp2_egress_port(port);
4054
4055	/* Issue stop command for active channels only */
4056	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4057	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4058		    MVPP2_TXP_SCHED_ENQ_MASK;
4059	if (reg_data != 0)
4060		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4061			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4062
4063	/* Wait for all Tx activity to terminate. */
4064	delay = 0;
4065	do {
4066		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4067			netdev_warn(port->dev,
4068				    "Tx stop timed out, status=0x%08x\n",
4069				    reg_data);
4070			break;
4071		}
4072		mdelay(1);
4073		delay++;
4074
4075		/* Check port TX Command register that all
4076		 * Tx queues are stopped
4077		 */
4078		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4079	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4080}
4081
4082/* Rx descriptors helper methods */
4083
4084/* Get number of Rx descriptors occupied by received packets */
4085static inline int
4086mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4087{
4088	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4089
4090	return val & MVPP2_RXQ_OCCUPIED_MASK;
4091}
4092
4093/* Update Rx queue status with the number of occupied and available
4094 * Rx descriptor slots.
4095 */
4096static inline void
4097mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4098			int used_count, int free_count)
4099{
4100	/* Decrement the number of used descriptors and increment count
4101	 * increment the number of free descriptors.
4102	 */
4103	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4104
4105	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4106}
4107
4108/* Get pointer to next RX descriptor to be processed by SW */
4109static inline struct mvpp2_rx_desc *
4110mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4111{
4112	int rx_desc = rxq->next_desc_to_proc;
4113
4114	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4115	prefetch(rxq->descs + rxq->next_desc_to_proc);
4116	return rxq->descs + rx_desc;
4117}
4118
4119/* Set rx queue offset */
4120static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4121				 int prxq, int offset)
4122{
4123	u32 val;
4124
4125	/* Convert offset from bytes to units of 32 bytes */
4126	offset = offset >> 5;
4127
4128	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4129	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4130
4131	/* Offset is in */
4132	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4133		    MVPP2_RXQ_PACKET_OFFSET_MASK);
4134
4135	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4136}
4137
4138/* Obtain BM cookie information from descriptor */
4139static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4140{
4141	int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4142		   MVPP2_RXD_BM_POOL_ID_OFFS;
4143	int cpu = smp_processor_id();
4144
4145	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4146	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4147}
4148
4149/* Tx descriptors helper methods */
4150
4151/* Get number of Tx descriptors waiting to be transmitted by HW */
4152static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4153				       struct mvpp2_tx_queue *txq)
4154{
4155	u32 val;
4156
4157	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4158	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4159
4160	return val & MVPP2_TXQ_PENDING_MASK;
4161}
4162
4163/* Get pointer to next Tx descriptor to be processed (send) by HW */
4164static struct mvpp2_tx_desc *
4165mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4166{
4167	int tx_desc = txq->next_desc_to_proc;
4168
4169	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4170	return txq->descs + tx_desc;
4171}
4172
4173/* Update HW with number of aggregated Tx descriptors to be sent */
4174static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4175{
4176	/* aggregated access - relevant TXQ number is written in TX desc */
4177	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4178}
4179
4180
4181/* Check if there are enough free descriptors in aggregated txq.
4182 * If not, update the number of occupied descriptors and repeat the check.
4183 */
4184static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4185				     struct mvpp2_tx_queue *aggr_txq, int num)
4186{
4187	if ((aggr_txq->count + num) > aggr_txq->size) {
4188		/* Update number of occupied aggregated Tx descriptors */
4189		int cpu = smp_processor_id();
4190		u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4191
4192		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4193	}
4194
4195	if ((aggr_txq->count + num) > aggr_txq->size)
4196		return -ENOMEM;
4197
4198	return 0;
4199}
4200
4201/* Reserved Tx descriptors allocation request */
4202static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4203					 struct mvpp2_tx_queue *txq, int num)
4204{
4205	u32 val;
4206
4207	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4208	mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4209
4210	val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4211
4212	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4213}
4214
4215/* Check if there are enough reserved descriptors for transmission.
4216 * If not, request chunk of reserved descriptors and check again.
4217 */
4218static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4219					    struct mvpp2_tx_queue *txq,
4220					    struct mvpp2_txq_pcpu *txq_pcpu,
4221					    int num)
4222{
4223	int req, cpu, desc_count;
4224
4225	if (txq_pcpu->reserved_num >= num)
4226		return 0;
4227
4228	/* Not enough descriptors reserved! Update the reserved descriptor
4229	 * count and check again.
4230	 */
4231
4232	desc_count = 0;
4233	/* Compute total of used descriptors */
4234	for_each_present_cpu(cpu) {
4235		struct mvpp2_txq_pcpu *txq_pcpu_aux;
4236
4237		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4238		desc_count += txq_pcpu_aux->count;
4239		desc_count += txq_pcpu_aux->reserved_num;
4240	}
4241
4242	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4243	desc_count += req;
4244
4245	if (desc_count >
4246	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4247		return -ENOMEM;
4248
4249	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4250
4251	/* OK, the descriptor cound has been updated: check again. */
4252	if (txq_pcpu->reserved_num < num)
4253		return -ENOMEM;
4254	return 0;
4255}
4256
4257/* Release the last allocated Tx descriptor. Useful to handle DMA
4258 * mapping failures in the Tx path.
4259 */
4260static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4261{
4262	if (txq->next_desc_to_proc == 0)
4263		txq->next_desc_to_proc = txq->last_desc - 1;
4264	else
4265		txq->next_desc_to_proc--;
4266}
4267
4268/* Set Tx descriptors fields relevant for CSUM calculation */
4269static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4270			       int ip_hdr_len, int l4_proto)
4271{
4272	u32 command;
4273
4274	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4275	 * G_L4_chk, L4_type required only for checksum calculation
4276	 */
4277	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4278	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4279	command |= MVPP2_TXD_IP_CSUM_DISABLE;
4280
4281	if (l3_proto == swab16(ETH_P_IP)) {
4282		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
4283		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
4284	} else {
4285		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
4286	}
4287
4288	if (l4_proto == IPPROTO_TCP) {
4289		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
4290		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4291	} else if (l4_proto == IPPROTO_UDP) {
4292		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
4293		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4294	} else {
4295		command |= MVPP2_TXD_L4_CSUM_NOT;
4296	}
4297
4298	return command;
4299}
4300
4301/* Get number of sent descriptors and decrement counter.
4302 * The number of sent descriptors is returned.
4303 * Per-CPU access
4304 */
4305static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4306					   struct mvpp2_tx_queue *txq)
4307{
4308	u32 val;
4309
4310	/* Reading status reg resets transmitted descriptor counter */
4311	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4312
4313	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4314		MVPP2_TRANSMITTED_COUNT_OFFSET;
4315}
4316
4317static void mvpp2_txq_sent_counter_clear(void *arg)
4318{
4319	struct mvpp2_port *port = arg;
4320	int queue;
4321
4322	for (queue = 0; queue < txq_number; queue++) {
4323		int id = port->txqs[queue]->id;
4324
4325		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4326	}
4327}
4328
4329/* Set max sizes for Tx queues */
4330static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4331{
4332	u32	val, size, mtu;
4333	int	txq, tx_port_num;
4334
4335	mtu = port->pkt_size * 8;
4336	if (mtu > MVPP2_TXP_MTU_MAX)
4337		mtu = MVPP2_TXP_MTU_MAX;
4338
4339	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4340	mtu = 3 * mtu;
4341
4342	/* Indirect access to registers */
4343	tx_port_num = mvpp2_egress_port(port);
4344	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4345
4346	/* Set MTU */
4347	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4348	val &= ~MVPP2_TXP_MTU_MAX;
4349	val |= mtu;
4350	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4351
4352	/* TXP token size and all TXQs token size must be larger that MTU */
4353	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4354	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4355	if (size < mtu) {
4356		size = mtu;
4357		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4358		val |= size;
4359		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4360	}
4361
4362	for (txq = 0; txq < txq_number; txq++) {
4363		val = mvpp2_read(port->priv,
4364				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4365		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4366
4367		if (size < mtu) {
4368			size = mtu;
4369			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4370			val |= size;
4371			mvpp2_write(port->priv,
4372				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4373				    val);
4374		}
4375	}
4376}
4377
4378/* Set the number of packets that will be received before Rx interrupt
4379 * will be generated by HW.
4380 */
4381static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4382				   struct mvpp2_rx_queue *rxq, u32 pkts)
4383{
4384	u32 val;
4385
4386	val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4387	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4388	mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4389
4390	rxq->pkts_coal = pkts;
4391}
4392
4393/* Set the time delay in usec before Rx interrupt */
4394static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4395				   struct mvpp2_rx_queue *rxq, u32 usec)
4396{
4397	u32 val;
4398
4399	val = (port->priv->tclk / USEC_PER_SEC) * usec;
4400	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4401
4402	rxq->time_coal = usec;
4403}
4404
4405/* Free Tx queue skbuffs */
4406static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4407				struct mvpp2_tx_queue *txq,
4408				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4409{
4410	int i;
4411
4412	for (i = 0; i < num; i++) {
4413		struct mvpp2_txq_pcpu_buf *tx_buf =
4414			txq_pcpu->buffs + txq_pcpu->txq_get_index;
4415
4416		mvpp2_txq_inc_get(txq_pcpu);
4417
4418		dma_unmap_single(port->dev->dev.parent, tx_buf->phys,
4419				 tx_buf->size, DMA_TO_DEVICE);
4420		if (!tx_buf->skb)
4421			continue;
4422		dev_kfree_skb_any(tx_buf->skb);
4423	}
4424}
4425
4426static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4427							u32 cause)
4428{
4429	int queue = fls(cause) - 1;
4430
4431	return port->rxqs[queue];
4432}
4433
4434static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4435							u32 cause)
4436{
4437	int queue = fls(cause) - 1;
4438
4439	return port->txqs[queue];
4440}
4441
4442/* Handle end of transmission */
4443static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4444			   struct mvpp2_txq_pcpu *txq_pcpu)
4445{
4446	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4447	int tx_done;
4448
4449	if (txq_pcpu->cpu != smp_processor_id())
4450		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4451
4452	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4453	if (!tx_done)
4454		return;
4455	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4456
4457	txq_pcpu->count -= tx_done;
4458
4459	if (netif_tx_queue_stopped(nq))
4460		if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4461			netif_tx_wake_queue(nq);
4462}
4463
4464static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4465{
4466	struct mvpp2_tx_queue *txq;
4467	struct mvpp2_txq_pcpu *txq_pcpu;
4468	unsigned int tx_todo = 0;
4469
4470	while (cause) {
4471		txq = mvpp2_get_tx_queue(port, cause);
4472		if (!txq)
4473			break;
4474
4475		txq_pcpu = this_cpu_ptr(txq->pcpu);
4476
4477		if (txq_pcpu->count) {
4478			mvpp2_txq_done(port, txq, txq_pcpu);
4479			tx_todo += txq_pcpu->count;
4480		}
4481
4482		cause &= ~(1 << txq->log_id);
4483	}
4484	return tx_todo;
4485}
4486
4487/* Rx/Tx queue initialization/cleanup methods */
4488
4489/* Allocate and initialize descriptors for aggr TXQ */
4490static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4491			       struct mvpp2_tx_queue *aggr_txq,
4492			       int desc_num, int cpu,
4493			       struct mvpp2 *priv)
4494{
4495	/* Allocate memory for TX descriptors */
4496	aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4497				desc_num * MVPP2_DESC_ALIGNED_SIZE,
4498				&aggr_txq->descs_phys, GFP_KERNEL);
4499	if (!aggr_txq->descs)
4500		return -ENOMEM;
4501
4502	aggr_txq->last_desc = aggr_txq->size - 1;
4503
4504	/* Aggr TXQ no reset WA */
4505	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4506						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4507
4508	/* Set Tx descriptors queue starting address */
4509	/* indirect access */
4510	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4511		    aggr_txq->descs_phys);
4512	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4513
4514	return 0;
4515}
4516
4517/* Create a specified Rx queue */
4518static int mvpp2_rxq_init(struct mvpp2_port *port,
4519			  struct mvpp2_rx_queue *rxq)
4520
4521{
4522	rxq->size = port->rx_ring_size;
4523
4524	/* Allocate memory for RX descriptors */
4525	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4526					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4527					&rxq->descs_phys, GFP_KERNEL);
4528	if (!rxq->descs)
4529		return -ENOMEM;
4530
4531	rxq->last_desc = rxq->size - 1;
4532
4533	/* Zero occupied and non-occupied counters - direct access */
4534	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4535
4536	/* Set Rx descriptors queue starting address - indirect access */
4537	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4538	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4539	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4540	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4541
4542	/* Set Offset */
4543	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4544
4545	/* Set coalescing pkts and time */
4546	mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4547	mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4548
4549	/* Add number of descriptors ready for receiving packets */
4550	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4551
4552	return 0;
4553}
4554
4555/* Push packets received by the RXQ to BM pool */
4556static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4557				struct mvpp2_rx_queue *rxq)
4558{
4559	int rx_received, i;
4560
4561	rx_received = mvpp2_rxq_received(port, rxq->id);
4562	if (!rx_received)
4563		return;
4564
4565	for (i = 0; i < rx_received; i++) {
4566		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4567		u32 bm = mvpp2_bm_cookie_build(rx_desc);
4568
4569		mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4570				  rx_desc->buf_cookie);
4571	}
4572	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4573}
4574
4575/* Cleanup Rx queue */
4576static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4577			     struct mvpp2_rx_queue *rxq)
4578{
4579	mvpp2_rxq_drop_pkts(port, rxq);
4580
4581	if (rxq->descs)
4582		dma_free_coherent(port->dev->dev.parent,
4583				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4584				  rxq->descs,
4585				  rxq->descs_phys);
4586
4587	rxq->descs             = NULL;
4588	rxq->last_desc         = 0;
4589	rxq->next_desc_to_proc = 0;
4590	rxq->descs_phys        = 0;
4591
4592	/* Clear Rx descriptors queue starting address and size;
4593	 * free descriptor number
4594	 */
4595	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4596	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4597	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4598	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4599}
4600
4601/* Create and initialize a Tx queue */
4602static int mvpp2_txq_init(struct mvpp2_port *port,
4603			  struct mvpp2_tx_queue *txq)
4604{
4605	u32 val;
4606	int cpu, desc, desc_per_txq, tx_port_num;
4607	struct mvpp2_txq_pcpu *txq_pcpu;
4608
4609	txq->size = port->tx_ring_size;
4610
4611	/* Allocate memory for Tx descriptors */
4612	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4613				txq->size * MVPP2_DESC_ALIGNED_SIZE,
4614				&txq->descs_phys, GFP_KERNEL);
4615	if (!txq->descs)
4616		return -ENOMEM;
4617
4618	txq->last_desc = txq->size - 1;
4619
4620	/* Set Tx descriptors queue starting address - indirect access */
4621	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4622	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4623	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4624					     MVPP2_TXQ_DESC_SIZE_MASK);
4625	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4626	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4627		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4628	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4629	val &= ~MVPP2_TXQ_PENDING_MASK;
4630	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4631
4632	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4633	 * for each existing TXQ.
4634	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4635	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4636	 */
4637	desc_per_txq = 16;
4638	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4639	       (txq->log_id * desc_per_txq);
4640
4641	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4642		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4643		    MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4644
4645	/* WRR / EJP configuration - indirect access */
4646	tx_port_num = mvpp2_egress_port(port);
4647	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4648
4649	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4650	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4651	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4652	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4653	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4654
4655	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4656	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4657		    val);
4658
4659	for_each_present_cpu(cpu) {
4660		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4661		txq_pcpu->size = txq->size;
4662		txq_pcpu->buffs = kmalloc(txq_pcpu->size *
4663					  sizeof(struct mvpp2_txq_pcpu_buf),
4664					  GFP_KERNEL);
4665		if (!txq_pcpu->buffs)
4666			goto error;
4667
4668		txq_pcpu->count = 0;
4669		txq_pcpu->reserved_num = 0;
4670		txq_pcpu->txq_put_index = 0;
4671		txq_pcpu->txq_get_index = 0;
4672	}
4673
4674	return 0;
4675
4676error:
4677	for_each_present_cpu(cpu) {
4678		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4679		kfree(txq_pcpu->buffs);
4680	}
4681
4682	dma_free_coherent(port->dev->dev.parent,
4683			  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4684			  txq->descs, txq->descs_phys);
4685
4686	return -ENOMEM;
4687}
4688
4689/* Free allocated TXQ resources */
4690static void mvpp2_txq_deinit(struct mvpp2_port *port,
4691			     struct mvpp2_tx_queue *txq)
4692{
4693	struct mvpp2_txq_pcpu *txq_pcpu;
4694	int cpu;
4695
4696	for_each_present_cpu(cpu) {
4697		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4698		kfree(txq_pcpu->buffs);
4699	}
4700
4701	if (txq->descs)
4702		dma_free_coherent(port->dev->dev.parent,
4703				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4704				  txq->descs, txq->descs_phys);
4705
4706	txq->descs             = NULL;
4707	txq->last_desc         = 0;
4708	txq->next_desc_to_proc = 0;
4709	txq->descs_phys        = 0;
4710
4711	/* Set minimum bandwidth for disabled TXQs */
4712	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4713
4714	/* Set Tx descriptors queue starting address and size */
4715	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4716	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4717	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4718}
4719
4720/* Cleanup Tx ports */
4721static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4722{
4723	struct mvpp2_txq_pcpu *txq_pcpu;
4724	int delay, pending, cpu;
4725	u32 val;
4726
4727	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4728	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4729	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4730	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4731
4732	/* The napi queue has been stopped so wait for all packets
4733	 * to be transmitted.
4734	 */
4735	delay = 0;
4736	do {
4737		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4738			netdev_warn(port->dev,
4739				    "port %d: cleaning queue %d timed out\n",
4740				    port->id, txq->log_id);
4741			break;
4742		}
4743		mdelay(1);
4744		delay++;
4745
4746		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4747	} while (pending);
4748
4749	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4750	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4751
4752	for_each_present_cpu(cpu) {
4753		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4754
4755		/* Release all packets */
4756		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4757
4758		/* Reset queue */
4759		txq_pcpu->count = 0;
4760		txq_pcpu->txq_put_index = 0;
4761		txq_pcpu->txq_get_index = 0;
4762	}
4763}
4764
4765/* Cleanup all Tx queues */
4766static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4767{
4768	struct mvpp2_tx_queue *txq;
4769	int queue;
4770	u32 val;
4771
4772	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4773
4774	/* Reset Tx ports and delete Tx queues */
4775	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4776	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4777
4778	for (queue = 0; queue < txq_number; queue++) {
4779		txq = port->txqs[queue];
4780		mvpp2_txq_clean(port, txq);
4781		mvpp2_txq_deinit(port, txq);
4782	}
4783
4784	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4785
4786	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4787	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4788}
4789
4790/* Cleanup all Rx queues */
4791static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4792{
4793	int queue;
4794
4795	for (queue = 0; queue < rxq_number; queue++)
4796		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4797}
4798
4799/* Init all Rx queues for port */
4800static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4801{
4802	int queue, err;
4803
4804	for (queue = 0; queue < rxq_number; queue++) {
4805		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4806		if (err)
4807			goto err_cleanup;
4808	}
4809	return 0;
4810
4811err_cleanup:
4812	mvpp2_cleanup_rxqs(port);
4813	return err;
4814}
4815
4816/* Init all tx queues for port */
4817static int mvpp2_setup_txqs(struct mvpp2_port *port)
4818{
4819	struct mvpp2_tx_queue *txq;
4820	int queue, err;
4821
4822	for (queue = 0; queue < txq_number; queue++) {
4823		txq = port->txqs[queue];
4824		err = mvpp2_txq_init(port, txq);
4825		if (err)
4826			goto err_cleanup;
4827	}
4828
4829	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4830	return 0;
4831
4832err_cleanup:
4833	mvpp2_cleanup_txqs(port);
4834	return err;
4835}
4836
4837/* The callback for per-port interrupt */
4838static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4839{
4840	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4841
4842	mvpp2_interrupts_disable(port);
4843
4844	napi_schedule(&port->napi);
4845
4846	return IRQ_HANDLED;
4847}
4848
4849/* Adjust link */
4850static void mvpp2_link_event(struct net_device *dev)
4851{
4852	struct mvpp2_port *port = netdev_priv(dev);
4853	struct phy_device *phydev = dev->phydev;
4854	int status_change = 0;
4855	u32 val;
4856
4857	if (phydev->link) {
4858		if ((port->speed != phydev->speed) ||
4859		    (port->duplex != phydev->duplex)) {
4860			u32 val;
4861
4862			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4863			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4864				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4865				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4866				 MVPP2_GMAC_AN_SPEED_EN |
4867				 MVPP2_GMAC_AN_DUPLEX_EN);
4868
4869			if (phydev->duplex)
4870				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4871
4872			if (phydev->speed == SPEED_1000)
4873				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4874			else if (phydev->speed == SPEED_100)
4875				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4876
4877			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4878
4879			port->duplex = phydev->duplex;
4880			port->speed  = phydev->speed;
4881		}
4882	}
4883
4884	if (phydev->link != port->link) {
4885		if (!phydev->link) {
4886			port->duplex = -1;
4887			port->speed = 0;
4888		}
4889
4890		port->link = phydev->link;
4891		status_change = 1;
4892	}
4893
4894	if (status_change) {
4895		if (phydev->link) {
4896			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4897			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4898				MVPP2_GMAC_FORCE_LINK_DOWN);
4899			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4900			mvpp2_egress_enable(port);
4901			mvpp2_ingress_enable(port);
4902		} else {
4903			mvpp2_ingress_disable(port);
4904			mvpp2_egress_disable(port);
4905		}
4906		phy_print_status(phydev);
4907	}
4908}
4909
4910static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
4911{
4912	ktime_t interval;
4913
4914	if (!port_pcpu->timer_scheduled) {
4915		port_pcpu->timer_scheduled = true;
4916		interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
4917		hrtimer_start(&port_pcpu->tx_done_timer, interval,
4918			      HRTIMER_MODE_REL_PINNED);
4919	}
4920}
4921
4922static void mvpp2_tx_proc_cb(unsigned long data)
4923{
4924	struct net_device *dev = (struct net_device *)data;
4925	struct mvpp2_port *port = netdev_priv(dev);
4926	struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
4927	unsigned int tx_todo, cause;
4928
4929	if (!netif_running(dev))
4930		return;
4931	port_pcpu->timer_scheduled = false;
4932
4933	/* Process all the Tx queues */
4934	cause = (1 << txq_number) - 1;
4935	tx_todo = mvpp2_tx_done(port, cause);
4936
4937	/* Set the timer in case not all the packets were processed */
4938	if (tx_todo)
4939		mvpp2_timer_set(port_pcpu);
4940}
4941
4942static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
4943{
4944	struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
4945							 struct mvpp2_port_pcpu,
4946							 tx_done_timer);
4947
4948	tasklet_schedule(&port_pcpu->tx_done_tasklet);
4949
4950	return HRTIMER_NORESTART;
4951}
4952
4953/* Main RX/TX processing routines */
4954
4955/* Display more error info */
4956static void mvpp2_rx_error(struct mvpp2_port *port,
4957			   struct mvpp2_rx_desc *rx_desc)
4958{
4959	u32 status = rx_desc->status;
4960
4961	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4962	case MVPP2_RXD_ERR_CRC:
4963		netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4964			   status, rx_desc->data_size);
4965		break;
4966	case MVPP2_RXD_ERR_OVERRUN:
4967		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4968			   status, rx_desc->data_size);
4969		break;
4970	case MVPP2_RXD_ERR_RESOURCE:
4971		netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4972			   status, rx_desc->data_size);
4973		break;
4974	}
4975}
4976
4977/* Handle RX checksum offload */
4978static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4979			  struct sk_buff *skb)
4980{
4981	if (((status & MVPP2_RXD_L3_IP4) &&
4982	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4983	    (status & MVPP2_RXD_L3_IP6))
4984		if (((status & MVPP2_RXD_L4_UDP) ||
4985		     (status & MVPP2_RXD_L4_TCP)) &&
4986		     (status & MVPP2_RXD_L4_CSUM_OK)) {
4987			skb->csum = 0;
4988			skb->ip_summed = CHECKSUM_UNNECESSARY;
4989			return;
4990		}
4991
4992	skb->ip_summed = CHECKSUM_NONE;
4993}
4994
4995/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4996static int mvpp2_rx_refill(struct mvpp2_port *port,
4997			   struct mvpp2_bm_pool *bm_pool,
4998			   u32 bm, int is_recycle)
4999{
5000	struct sk_buff *skb;
5001	dma_addr_t phys_addr;
5002
5003	if (is_recycle &&
5004	    (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
5005		return 0;
5006
5007	/* No recycle or too many buffers are in use, so allocate a new skb */
5008	skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
5009	if (!skb)
5010		return -ENOMEM;
5011
5012	mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
5013	atomic_dec(&bm_pool->in_use);
5014	return 0;
5015}
5016
5017/* Handle tx checksum */
5018static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5019{
5020	if (skb->ip_summed == CHECKSUM_PARTIAL) {
5021		int ip_hdr_len = 0;
5022		u8 l4_proto;
5023
5024		if (skb->protocol == htons(ETH_P_IP)) {
5025			struct iphdr *ip4h = ip_hdr(skb);
5026
5027			/* Calculate IPv4 checksum and L4 checksum */
5028			ip_hdr_len = ip4h->ihl;
5029			l4_proto = ip4h->protocol;
5030		} else if (skb->protocol == htons(ETH_P_IPV6)) {
5031			struct ipv6hdr *ip6h = ipv6_hdr(skb);
5032
5033			/* Read l4_protocol from one of IPv6 extra headers */
5034			if (skb_network_header_len(skb) > 0)
5035				ip_hdr_len = (skb_network_header_len(skb) >> 2);
5036			l4_proto = ip6h->nexthdr;
5037		} else {
5038			return MVPP2_TXD_L4_CSUM_NOT;
5039		}
5040
5041		return mvpp2_txq_desc_csum(skb_network_offset(skb),
5042				skb->protocol, ip_hdr_len, l4_proto);
5043	}
5044
5045	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5046}
5047
5048static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
5049			      struct mvpp2_rx_desc *rx_desc)
5050{
5051	struct mvpp2_buff_hdr *buff_hdr;
5052	struct sk_buff *skb;
5053	u32 rx_status = rx_desc->status;
5054	u32 buff_phys_addr;
5055	u32 buff_virt_addr;
5056	u32 buff_phys_addr_next;
5057	u32 buff_virt_addr_next;
5058	int mc_id;
5059	int pool_id;
5060
5061	pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5062		   MVPP2_RXD_BM_POOL_ID_OFFS;
5063	buff_phys_addr = rx_desc->buf_phys_addr;
5064	buff_virt_addr = rx_desc->buf_cookie;
5065
5066	do {
5067		skb = (struct sk_buff *)buff_virt_addr;
5068		buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5069
5070		mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5071
5072		buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5073		buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5074
5075		/* Release buffer */
5076		mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5077				     buff_virt_addr, mc_id);
5078
5079		buff_phys_addr = buff_phys_addr_next;
5080		buff_virt_addr = buff_virt_addr_next;
5081
5082	} while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5083}
5084
5085/* Main rx processing */
5086static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5087		    struct mvpp2_rx_queue *rxq)
5088{
5089	struct net_device *dev = port->dev;
5090	int rx_received;
5091	int rx_done = 0;
5092	u32 rcvd_pkts = 0;
5093	u32 rcvd_bytes = 0;
5094
5095	/* Get number of received packets and clamp the to-do */
5096	rx_received = mvpp2_rxq_received(port, rxq->id);
5097	if (rx_todo > rx_received)
5098		rx_todo = rx_received;
5099
5100	while (rx_done < rx_todo) {
5101		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5102		struct mvpp2_bm_pool *bm_pool;
5103		struct sk_buff *skb;
5104		dma_addr_t phys_addr;
5105		u32 bm, rx_status;
5106		int pool, rx_bytes, err;
5107
5108		rx_done++;
5109		rx_status = rx_desc->status;
5110		rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5111		phys_addr = rx_desc->buf_phys_addr;
5112
5113		bm = mvpp2_bm_cookie_build(rx_desc);
5114		pool = mvpp2_bm_cookie_pool_get(bm);
5115		bm_pool = &port->priv->bm_pools[pool];
5116		/* Check if buffer header is used */
5117		if (rx_status & MVPP2_RXD_BUF_HDR) {
5118			mvpp2_buff_hdr_rx(port, rx_desc);
5119			continue;
5120		}
5121
5122		/* In case of an error, release the requested buffer pointer
5123		 * to the Buffer Manager. This request process is controlled
5124		 * by the hardware, and the information about the buffer is
5125		 * comprised by the RX descriptor.
5126		 */
5127		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5128		err_drop_frame:
5129			dev->stats.rx_errors++;
5130			mvpp2_rx_error(port, rx_desc);
5131			/* Return the buffer to the pool */
5132			mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5133					  rx_desc->buf_cookie);
5134			continue;
5135		}
5136
5137		skb = (struct sk_buff *)rx_desc->buf_cookie;
5138
5139		err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5140		if (err) {
5141			netdev_err(port->dev, "failed to refill BM pools\n");
5142			goto err_drop_frame;
5143		}
5144
5145		dma_unmap_single(dev->dev.parent, phys_addr,
5146				 bm_pool->buf_size, DMA_FROM_DEVICE);
5147
5148		rcvd_pkts++;
5149		rcvd_bytes += rx_bytes;
5150		atomic_inc(&bm_pool->in_use);
5151
5152		skb_reserve(skb, MVPP2_MH_SIZE);
5153		skb_put(skb, rx_bytes);
5154		skb->protocol = eth_type_trans(skb, dev);
5155		mvpp2_rx_csum(port, rx_status, skb);
5156
5157		napi_gro_receive(&port->napi, skb);
5158	}
5159
5160	if (rcvd_pkts) {
5161		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5162
5163		u64_stats_update_begin(&stats->syncp);
5164		stats->rx_packets += rcvd_pkts;
5165		stats->rx_bytes   += rcvd_bytes;
5166		u64_stats_update_end(&stats->syncp);
5167	}
5168
5169	/* Update Rx queue management counters */
5170	wmb();
5171	mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5172
5173	return rx_todo;
5174}
5175
5176static inline void
5177tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5178		  struct mvpp2_tx_desc *desc)
5179{
5180	dma_unmap_single(dev, desc->buf_phys_addr,
5181			 desc->data_size, DMA_TO_DEVICE);
5182	mvpp2_txq_desc_put(txq);
5183}
5184
5185/* Handle tx fragmentation processing */
5186static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5187				 struct mvpp2_tx_queue *aggr_txq,
5188				 struct mvpp2_tx_queue *txq)
5189{
5190	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5191	struct mvpp2_tx_desc *tx_desc;
5192	int i;
5193	dma_addr_t buf_phys_addr;
5194
5195	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5196		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5197		void *addr = page_address(frag->page.p) + frag->page_offset;
5198
5199		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5200		tx_desc->phys_txq = txq->id;
5201		tx_desc->data_size = frag->size;
5202
5203		buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5204					       tx_desc->data_size,
5205					       DMA_TO_DEVICE);
5206		if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5207			mvpp2_txq_desc_put(txq);
5208			goto error;
5209		}
5210
5211		tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5212		tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5213
5214		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5215			/* Last descriptor */
5216			tx_desc->command = MVPP2_TXD_L_DESC;
5217			mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5218		} else {
5219			/* Descriptor in the middle: Not First, Not Last */
5220			tx_desc->command = 0;
5221			mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5222		}
5223	}
5224
5225	return 0;
5226
5227error:
5228	/* Release all descriptors that were used to map fragments of
5229	 * this packet, as well as the corresponding DMA mappings
5230	 */
5231	for (i = i - 1; i >= 0; i--) {
5232		tx_desc = txq->descs + i;
5233		tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5234	}
5235
5236	return -ENOMEM;
5237}
5238
5239/* Main tx processing */
5240static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5241{
5242	struct mvpp2_port *port = netdev_priv(dev);
5243	struct mvpp2_tx_queue *txq, *aggr_txq;
5244	struct mvpp2_txq_pcpu *txq_pcpu;
5245	struct mvpp2_tx_desc *tx_desc;
5246	dma_addr_t buf_phys_addr;
5247	int frags = 0;
5248	u16 txq_id;
5249	u32 tx_cmd;
5250
5251	txq_id = skb_get_queue_mapping(skb);
5252	txq = port->txqs[txq_id];
5253	txq_pcpu = this_cpu_ptr(txq->pcpu);
5254	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5255
5256	frags = skb_shinfo(skb)->nr_frags + 1;
5257
5258	/* Check number of available descriptors */
5259	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5260	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5261					     txq_pcpu, frags)) {
5262		frags = 0;
5263		goto out;
5264	}
5265
5266	/* Get a descriptor for the first part of the packet */
5267	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5268	tx_desc->phys_txq = txq->id;
5269	tx_desc->data_size = skb_headlen(skb);
5270
5271	buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5272				       tx_desc->data_size, DMA_TO_DEVICE);
5273	if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5274		mvpp2_txq_desc_put(txq);
5275		frags = 0;
5276		goto out;
5277	}
5278	tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5279	tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5280
5281	tx_cmd = mvpp2_skb_tx_csum(port, skb);
5282
5283	if (frags == 1) {
5284		/* First and Last descriptor */
5285		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5286		tx_desc->command = tx_cmd;
5287		mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5288	} else {
5289		/* First but not Last */
5290		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5291		tx_desc->command = tx_cmd;
5292		mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5293
5294		/* Continue with other skb fragments */
5295		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5296			tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5297			frags = 0;
5298			goto out;
5299		}
5300	}
5301
5302	txq_pcpu->reserved_num -= frags;
5303	txq_pcpu->count += frags;
5304	aggr_txq->count += frags;
5305
5306	/* Enable transmit */
5307	wmb();
5308	mvpp2_aggr_txq_pend_desc_add(port, frags);
5309
5310	if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5311		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5312
5313		netif_tx_stop_queue(nq);
5314	}
5315out:
5316	if (frags > 0) {
5317		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5318
5319		u64_stats_update_begin(&stats->syncp);
5320		stats->tx_packets++;
5321		stats->tx_bytes += skb->len;
5322		u64_stats_update_end(&stats->syncp);
5323	} else {
5324		dev->stats.tx_dropped++;
5325		dev_kfree_skb_any(skb);
5326	}
5327
5328	/* Finalize TX processing */
5329	if (txq_pcpu->count >= txq->done_pkts_coal)
5330		mvpp2_txq_done(port, txq, txq_pcpu);
5331
5332	/* Set the timer in case not all frags were processed */
5333	if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5334		struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5335
5336		mvpp2_timer_set(port_pcpu);
5337	}
5338
5339	return NETDEV_TX_OK;
5340}
5341
5342static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5343{
5344	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5345		netdev_err(dev, "FCS error\n");
5346	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5347		netdev_err(dev, "rx fifo overrun error\n");
5348	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5349		netdev_err(dev, "tx fifo underrun error\n");
5350}
5351
5352static int mvpp2_poll(struct napi_struct *napi, int budget)
5353{
5354	u32 cause_rx_tx, cause_rx, cause_misc;
5355	int rx_done = 0;
5356	struct mvpp2_port *port = netdev_priv(napi->dev);
5357
5358	/* Rx/Tx cause register
5359	 *
5360	 * Bits 0-15: each bit indicates received packets on the Rx queue
5361	 * (bit 0 is for Rx queue 0).
5362	 *
5363	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5364	 * (bit 16 is for Tx queue 0).
5365	 *
5366	 * Each CPU has its own Rx/Tx cause register
5367	 */
5368	cause_rx_tx = mvpp2_read(port->priv,
5369				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5370	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5371	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5372
5373	if (cause_misc) {
5374		mvpp2_cause_error(port->dev, cause_misc);
5375
5376		/* Clear the cause register */
5377		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5378		mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5379			    cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5380	}
5381
5382	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5383
5384	/* Process RX packets */
5385	cause_rx |= port->pending_cause_rx;
5386	while (cause_rx && budget > 0) {
5387		int count;
5388		struct mvpp2_rx_queue *rxq;
5389
5390		rxq = mvpp2_get_rx_queue(port, cause_rx);
5391		if (!rxq)
5392			break;
5393
5394		count = mvpp2_rx(port, budget, rxq);
5395		rx_done += count;
5396		budget -= count;
5397		if (budget > 0) {
5398			/* Clear the bit associated to this Rx queue
5399			 * so that next iteration will continue from
5400			 * the next Rx queue.
5401			 */
5402			cause_rx &= ~(1 << rxq->logic_rxq);
5403		}
5404	}
5405
5406	if (budget > 0) {
5407		cause_rx = 0;
5408		napi_complete(napi);
5409
5410		mvpp2_interrupts_enable(port);
5411	}
5412	port->pending_cause_rx = cause_rx;
5413	return rx_done;
5414}
5415
5416/* Set hw internals when starting port */
5417static void mvpp2_start_dev(struct mvpp2_port *port)
5418{
5419	struct net_device *ndev = port->dev;
5420
5421	mvpp2_gmac_max_rx_size_set(port);
5422	mvpp2_txp_max_tx_size_set(port);
5423
5424	napi_enable(&port->napi);
5425
5426	/* Enable interrupts on all CPUs */
5427	mvpp2_interrupts_enable(port);
5428
5429	mvpp2_port_enable(port);
5430	phy_start(ndev->phydev);
5431	netif_tx_start_all_queues(port->dev);
5432}
5433
5434/* Set hw internals when stopping port */
5435static void mvpp2_stop_dev(struct mvpp2_port *port)
5436{
5437	struct net_device *ndev = port->dev;
5438
5439	/* Stop new packets from arriving to RXQs */
5440	mvpp2_ingress_disable(port);
5441
5442	mdelay(10);
5443
5444	/* Disable interrupts on all CPUs */
5445	mvpp2_interrupts_disable(port);
5446
5447	napi_disable(&port->napi);
5448
5449	netif_carrier_off(port->dev);
5450	netif_tx_stop_all_queues(port->dev);
5451
5452	mvpp2_egress_disable(port);
5453	mvpp2_port_disable(port);
5454	phy_stop(ndev->phydev);
5455}
5456
5457static int mvpp2_check_ringparam_valid(struct net_device *dev,
5458				       struct ethtool_ringparam *ring)
5459{
5460	u16 new_rx_pending = ring->rx_pending;
5461	u16 new_tx_pending = ring->tx_pending;
5462
5463	if (ring->rx_pending == 0 || ring->tx_pending == 0)
5464		return -EINVAL;
5465
5466	if (ring->rx_pending > MVPP2_MAX_RXD)
5467		new_rx_pending = MVPP2_MAX_RXD;
5468	else if (!IS_ALIGNED(ring->rx_pending, 16))
5469		new_rx_pending = ALIGN(ring->rx_pending, 16);
5470
5471	if (ring->tx_pending > MVPP2_MAX_TXD)
5472		new_tx_pending = MVPP2_MAX_TXD;
5473	else if (!IS_ALIGNED(ring->tx_pending, 32))
5474		new_tx_pending = ALIGN(ring->tx_pending, 32);
5475
5476	if (ring->rx_pending != new_rx_pending) {
5477		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5478			    ring->rx_pending, new_rx_pending);
5479		ring->rx_pending = new_rx_pending;
5480	}
5481
5482	if (ring->tx_pending != new_tx_pending) {
5483		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5484			    ring->tx_pending, new_tx_pending);
5485		ring->tx_pending = new_tx_pending;
5486	}
5487
5488	return 0;
5489}
5490
5491static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5492{
5493	u32 mac_addr_l, mac_addr_m, mac_addr_h;
5494
5495	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5496	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5497	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5498	addr[0] = (mac_addr_h >> 24) & 0xFF;
5499	addr[1] = (mac_addr_h >> 16) & 0xFF;
5500	addr[2] = (mac_addr_h >> 8) & 0xFF;
5501	addr[3] = mac_addr_h & 0xFF;
5502	addr[4] = mac_addr_m & 0xFF;
5503	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5504}
5505
5506static int mvpp2_phy_connect(struct mvpp2_port *port)
5507{
5508	struct phy_device *phy_dev;
5509
5510	phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5511				 port->phy_interface);
5512	if (!phy_dev) {
5513		netdev_err(port->dev, "cannot connect to phy\n");
5514		return -ENODEV;
5515	}
5516	phy_dev->supported &= PHY_GBIT_FEATURES;
5517	phy_dev->advertising = phy_dev->supported;
5518
5519	port->link    = 0;
5520	port->duplex  = 0;
5521	port->speed   = 0;
5522
5523	return 0;
5524}
5525
5526static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5527{
5528	struct net_device *ndev = port->dev;
5529
5530	phy_disconnect(ndev->phydev);
5531}
5532
5533static int mvpp2_open(struct net_device *dev)
5534{
5535	struct mvpp2_port *port = netdev_priv(dev);
5536	unsigned char mac_bcast[ETH_ALEN] = {
5537			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5538	int err;
5539
5540	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5541	if (err) {
5542		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5543		return err;
5544	}
5545	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5546				      dev->dev_addr, true);
5547	if (err) {
5548		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5549		return err;
5550	}
5551	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5552	if (err) {
5553		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5554		return err;
5555	}
5556	err = mvpp2_prs_def_flow(port);
5557	if (err) {
5558		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5559		return err;
5560	}
5561
5562	/* Allocate the Rx/Tx queues */
5563	err = mvpp2_setup_rxqs(port);
5564	if (err) {
5565		netdev_err(port->dev, "cannot allocate Rx queues\n");
5566		return err;
5567	}
5568
5569	err = mvpp2_setup_txqs(port);
5570	if (err) {
5571		netdev_err(port->dev, "cannot allocate Tx queues\n");
5572		goto err_cleanup_rxqs;
5573	}
5574
5575	err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5576	if (err) {
5577		netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5578		goto err_cleanup_txqs;
5579	}
5580
5581	/* In default link is down */
5582	netif_carrier_off(port->dev);
5583
5584	err = mvpp2_phy_connect(port);
5585	if (err < 0)
5586		goto err_free_irq;
5587
5588	/* Unmask interrupts on all CPUs */
5589	on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5590
5591	mvpp2_start_dev(port);
5592
5593	return 0;
5594
5595err_free_irq:
5596	free_irq(port->irq, port);
5597err_cleanup_txqs:
5598	mvpp2_cleanup_txqs(port);
5599err_cleanup_rxqs:
5600	mvpp2_cleanup_rxqs(port);
5601	return err;
5602}
5603
5604static int mvpp2_stop(struct net_device *dev)
5605{
5606	struct mvpp2_port *port = netdev_priv(dev);
5607	struct mvpp2_port_pcpu *port_pcpu;
5608	int cpu;
5609
5610	mvpp2_stop_dev(port);
5611	mvpp2_phy_disconnect(port);
5612
5613	/* Mask interrupts on all CPUs */
5614	on_each_cpu(mvpp2_interrupts_mask, port, 1);
5615
5616	free_irq(port->irq, port);
5617	for_each_present_cpu(cpu) {
5618		port_pcpu = per_cpu_ptr(port->pcpu, cpu);
5619
5620		hrtimer_cancel(&port_pcpu->tx_done_timer);
5621		port_pcpu->timer_scheduled = false;
5622		tasklet_kill(&port_pcpu->tx_done_tasklet);
5623	}
5624	mvpp2_cleanup_rxqs(port);
5625	mvpp2_cleanup_txqs(port);
5626
5627	return 0;
5628}
5629
5630static void mvpp2_set_rx_mode(struct net_device *dev)
5631{
5632	struct mvpp2_port *port = netdev_priv(dev);
5633	struct mvpp2 *priv = port->priv;
5634	struct netdev_hw_addr *ha;
5635	int id = port->id;
5636	bool allmulti = dev->flags & IFF_ALLMULTI;
5637
5638	mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5639	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5640	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5641
5642	/* Remove all port->id's mcast enries */
5643	mvpp2_prs_mcast_del_all(priv, id);
5644
5645	if (allmulti && !netdev_mc_empty(dev)) {
5646		netdev_for_each_mc_addr(ha, dev)
5647			mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5648	}
5649}
5650
5651static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5652{
5653	struct mvpp2_port *port = netdev_priv(dev);
5654	const struct sockaddr *addr = p;
5655	int err;
5656
5657	if (!is_valid_ether_addr(addr->sa_data)) {
5658		err = -EADDRNOTAVAIL;
5659		goto error;
5660	}
5661
5662	if (!netif_running(dev)) {
5663		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5664		if (!err)
5665			return 0;
5666		/* Reconfigure parser to accept the original MAC address */
5667		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5668		if (err)
5669			goto error;
5670	}
5671
5672	mvpp2_stop_dev(port);
5673
5674	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5675	if (!err)
5676		goto out_start;
5677
5678	/* Reconfigure parser accept the original MAC address */
5679	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5680	if (err)
5681		goto error;
5682out_start:
5683	mvpp2_start_dev(port);
5684	mvpp2_egress_enable(port);
5685	mvpp2_ingress_enable(port);
5686	return 0;
5687
5688error:
5689	netdev_err(dev, "fail to change MAC address\n");
5690	return err;
5691}
5692
5693static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5694{
5695	struct mvpp2_port *port = netdev_priv(dev);
5696	int err;
5697
5698	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5699		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5700			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5701		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5702	}
5703
5704	if (!netif_running(dev)) {
5705		err = mvpp2_bm_update_mtu(dev, mtu);
5706		if (!err) {
5707			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5708			return 0;
5709		}
5710
5711		/* Reconfigure BM to the original MTU */
5712		err = mvpp2_bm_update_mtu(dev, dev->mtu);
5713		if (err)
5714			goto error;
5715	}
5716
5717	mvpp2_stop_dev(port);
5718
5719	err = mvpp2_bm_update_mtu(dev, mtu);
5720	if (!err) {
5721		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5722		goto out_start;
5723	}
5724
5725	/* Reconfigure BM to the original MTU */
5726	err = mvpp2_bm_update_mtu(dev, dev->mtu);
5727	if (err)
5728		goto error;
5729
5730out_start:
5731	mvpp2_start_dev(port);
5732	mvpp2_egress_enable(port);
5733	mvpp2_ingress_enable(port);
5734
5735	return 0;
5736
5737error:
5738	netdev_err(dev, "fail to change MTU\n");
5739	return err;
5740}
5741
5742static struct rtnl_link_stats64 *
5743mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5744{
5745	struct mvpp2_port *port = netdev_priv(dev);
5746	unsigned int start;
5747	int cpu;
5748
5749	for_each_possible_cpu(cpu) {
5750		struct mvpp2_pcpu_stats *cpu_stats;
5751		u64 rx_packets;
5752		u64 rx_bytes;
5753		u64 tx_packets;
5754		u64 tx_bytes;
5755
5756		cpu_stats = per_cpu_ptr(port->stats, cpu);
5757		do {
5758			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5759			rx_packets = cpu_stats->rx_packets;
5760			rx_bytes   = cpu_stats->rx_bytes;
5761			tx_packets = cpu_stats->tx_packets;
5762			tx_bytes   = cpu_stats->tx_bytes;
5763		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5764
5765		stats->rx_packets += rx_packets;
5766		stats->rx_bytes   += rx_bytes;
5767		stats->tx_packets += tx_packets;
5768		stats->tx_bytes   += tx_bytes;
5769	}
5770
5771	stats->rx_errors	= dev->stats.rx_errors;
5772	stats->rx_dropped	= dev->stats.rx_dropped;
5773	stats->tx_dropped	= dev->stats.tx_dropped;
5774
5775	return stats;
5776}
5777
5778static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5779{
5780	int ret;
5781
5782	if (!dev->phydev)
5783		return -ENOTSUPP;
5784
5785	ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
5786	if (!ret)
5787		mvpp2_link_event(dev);
5788
5789	return ret;
5790}
5791
5792/* Ethtool methods */
5793
5794/* Set interrupt coalescing for ethtools */
5795static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5796				      struct ethtool_coalesce *c)
5797{
5798	struct mvpp2_port *port = netdev_priv(dev);
5799	int queue;
5800
5801	for (queue = 0; queue < rxq_number; queue++) {
5802		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5803
5804		rxq->time_coal = c->rx_coalesce_usecs;
5805		rxq->pkts_coal = c->rx_max_coalesced_frames;
5806		mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5807		mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5808	}
5809
5810	for (queue = 0; queue < txq_number; queue++) {
5811		struct mvpp2_tx_queue *txq = port->txqs[queue];
5812
5813		txq->done_pkts_coal = c->tx_max_coalesced_frames;
5814	}
5815
5816	return 0;
5817}
5818
5819/* get coalescing for ethtools */
5820static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5821				      struct ethtool_coalesce *c)
5822{
5823	struct mvpp2_port *port = netdev_priv(dev);
5824
5825	c->rx_coalesce_usecs        = port->rxqs[0]->time_coal;
5826	c->rx_max_coalesced_frames  = port->rxqs[0]->pkts_coal;
5827	c->tx_max_coalesced_frames =  port->txqs[0]->done_pkts_coal;
5828	return 0;
5829}
5830
5831static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5832				      struct ethtool_drvinfo *drvinfo)
5833{
5834	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5835		sizeof(drvinfo->driver));
5836	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5837		sizeof(drvinfo->version));
5838	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5839		sizeof(drvinfo->bus_info));
5840}
5841
5842static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5843					struct ethtool_ringparam *ring)
5844{
5845	struct mvpp2_port *port = netdev_priv(dev);
5846
5847	ring->rx_max_pending = MVPP2_MAX_RXD;
5848	ring->tx_max_pending = MVPP2_MAX_TXD;
5849	ring->rx_pending = port->rx_ring_size;
5850	ring->tx_pending = port->tx_ring_size;
5851}
5852
5853static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5854				       struct ethtool_ringparam *ring)
5855{
5856	struct mvpp2_port *port = netdev_priv(dev);
5857	u16 prev_rx_ring_size = port->rx_ring_size;
5858	u16 prev_tx_ring_size = port->tx_ring_size;
5859	int err;
5860
5861	err = mvpp2_check_ringparam_valid(dev, ring);
5862	if (err)
5863		return err;
5864
5865	if (!netif_running(dev)) {
5866		port->rx_ring_size = ring->rx_pending;
5867		port->tx_ring_size = ring->tx_pending;
5868		return 0;
5869	}
5870
5871	/* The interface is running, so we have to force a
5872	 * reallocation of the queues
5873	 */
5874	mvpp2_stop_dev(port);
5875	mvpp2_cleanup_rxqs(port);
5876	mvpp2_cleanup_txqs(port);
5877
5878	port->rx_ring_size = ring->rx_pending;
5879	port->tx_ring_size = ring->tx_pending;
5880
5881	err = mvpp2_setup_rxqs(port);
5882	if (err) {
5883		/* Reallocate Rx queues with the original ring size */
5884		port->rx_ring_size = prev_rx_ring_size;
5885		ring->rx_pending = prev_rx_ring_size;
5886		err = mvpp2_setup_rxqs(port);
5887		if (err)
5888			goto err_out;
5889	}
5890	err = mvpp2_setup_txqs(port);
5891	if (err) {
5892		/* Reallocate Tx queues with the original ring size */
5893		port->tx_ring_size = prev_tx_ring_size;
5894		ring->tx_pending = prev_tx_ring_size;
5895		err = mvpp2_setup_txqs(port);
5896		if (err)
5897			goto err_clean_rxqs;
5898	}
5899
5900	mvpp2_start_dev(port);
5901	mvpp2_egress_enable(port);
5902	mvpp2_ingress_enable(port);
5903
5904	return 0;
5905
5906err_clean_rxqs:
5907	mvpp2_cleanup_rxqs(port);
5908err_out:
5909	netdev_err(dev, "fail to change ring parameters");
5910	return err;
5911}
5912
5913/* Device ops */
5914
5915static const struct net_device_ops mvpp2_netdev_ops = {
5916	.ndo_open		= mvpp2_open,
5917	.ndo_stop		= mvpp2_stop,
5918	.ndo_start_xmit		= mvpp2_tx,
5919	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
5920	.ndo_set_mac_address	= mvpp2_set_mac_address,
5921	.ndo_change_mtu		= mvpp2_change_mtu,
5922	.ndo_get_stats64	= mvpp2_get_stats64,
5923	.ndo_do_ioctl		= mvpp2_ioctl,
5924};
5925
5926static const struct ethtool_ops mvpp2_eth_tool_ops = {
5927	.nway_reset	= phy_ethtool_nway_reset,
5928	.get_link	= ethtool_op_get_link,
5929	.set_coalesce	= mvpp2_ethtool_set_coalesce,
5930	.get_coalesce	= mvpp2_ethtool_get_coalesce,
5931	.get_drvinfo	= mvpp2_ethtool_get_drvinfo,
5932	.get_ringparam	= mvpp2_ethtool_get_ringparam,
5933	.set_ringparam	= mvpp2_ethtool_set_ringparam,
5934	.get_link_ksettings = phy_ethtool_get_link_ksettings,
5935	.set_link_ksettings = phy_ethtool_set_link_ksettings,
5936};
5937
5938/* Driver initialization */
5939
5940static void mvpp2_port_power_up(struct mvpp2_port *port)
5941{
5942	mvpp2_port_mii_set(port);
5943	mvpp2_port_periodic_xon_disable(port);
5944	mvpp2_port_fc_adv_enable(port);
5945	mvpp2_port_reset(port);
5946}
5947
5948/* Initialize port HW */
5949static int mvpp2_port_init(struct mvpp2_port *port)
5950{
5951	struct device *dev = port->dev->dev.parent;
5952	struct mvpp2 *priv = port->priv;
5953	struct mvpp2_txq_pcpu *txq_pcpu;
5954	int queue, cpu, err;
5955
5956	if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5957		return -EINVAL;
5958
5959	/* Disable port */
5960	mvpp2_egress_disable(port);
5961	mvpp2_port_disable(port);
5962
5963	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
5964				  GFP_KERNEL);
5965	if (!port->txqs)
5966		return -ENOMEM;
5967
5968	/* Associate physical Tx queues to this port and initialize.
5969	 * The mapping is predefined.
5970	 */
5971	for (queue = 0; queue < txq_number; queue++) {
5972		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
5973		struct mvpp2_tx_queue *txq;
5974
5975		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
5976		if (!txq)
5977			return -ENOMEM;
5978
5979		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
5980		if (!txq->pcpu) {
5981			err = -ENOMEM;
5982			goto err_free_percpu;
5983		}
5984
5985		txq->id = queue_phy_id;
5986		txq->log_id = queue;
5987		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
5988		for_each_present_cpu(cpu) {
5989			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5990			txq_pcpu->cpu = cpu;
5991		}
5992
5993		port->txqs[queue] = txq;
5994	}
5995
5996	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
5997				  GFP_KERNEL);
5998	if (!port->rxqs) {
5999		err = -ENOMEM;
6000		goto err_free_percpu;
6001	}
6002
6003	/* Allocate and initialize Rx queue for this port */
6004	for (queue = 0; queue < rxq_number; queue++) {
6005		struct mvpp2_rx_queue *rxq;
6006
6007		/* Map physical Rx queue to port's logical Rx queue */
6008		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6009		if (!rxq) {
6010			err = -ENOMEM;
6011			goto err_free_percpu;
6012		}
6013		/* Map this Rx queue to a physical queue */
6014		rxq->id = port->first_rxq + queue;
6015		rxq->port = port->id;
6016		rxq->logic_rxq = queue;
6017
6018		port->rxqs[queue] = rxq;
6019	}
6020
6021	/* Configure Rx queue group interrupt for this port */
6022	mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
6023
6024	/* Create Rx descriptor rings */
6025	for (queue = 0; queue < rxq_number; queue++) {
6026		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6027
6028		rxq->size = port->rx_ring_size;
6029		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6030		rxq->time_coal = MVPP2_RX_COAL_USEC;
6031	}
6032
6033	mvpp2_ingress_disable(port);
6034
6035	/* Port default configuration */
6036	mvpp2_defaults_set(port);
6037
6038	/* Port's classifier configuration */
6039	mvpp2_cls_oversize_rxq_set(port);
6040	mvpp2_cls_port_config(port);
6041
6042	/* Provide an initial Rx packet size */
6043	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6044
6045	/* Initialize pools for swf */
6046	err = mvpp2_swf_bm_pool_init(port);
6047	if (err)
6048		goto err_free_percpu;
6049
6050	return 0;
6051
6052err_free_percpu:
6053	for (queue = 0; queue < txq_number; queue++) {
6054		if (!port->txqs[queue])
6055			continue;
6056		free_percpu(port->txqs[queue]->pcpu);
6057	}
6058	return err;
6059}
6060
6061/* Ports initialization */
6062static int mvpp2_port_probe(struct platform_device *pdev,
6063			    struct device_node *port_node,
6064			    struct mvpp2 *priv,
6065			    int *next_first_rxq)
6066{
6067	struct device_node *phy_node;
6068	struct mvpp2_port *port;
6069	struct mvpp2_port_pcpu *port_pcpu;
6070	struct net_device *dev;
6071	struct resource *res;
6072	const char *dt_mac_addr;
6073	const char *mac_from;
6074	char hw_mac_addr[ETH_ALEN];
6075	u32 id;
6076	int features;
6077	int phy_mode;
6078	int priv_common_regs_num = 2;
6079	int err, i, cpu;
6080
6081	dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6082				 rxq_number);
6083	if (!dev)
6084		return -ENOMEM;
6085
6086	phy_node = of_parse_phandle(port_node, "phy", 0);
6087	if (!phy_node) {
6088		dev_err(&pdev->dev, "missing phy\n");
6089		err = -ENODEV;
6090		goto err_free_netdev;
6091	}
6092
6093	phy_mode = of_get_phy_mode(port_node);
6094	if (phy_mode < 0) {
6095		dev_err(&pdev->dev, "incorrect phy mode\n");
6096		err = phy_mode;
6097		goto err_free_netdev;
6098	}
6099
6100	if (of_property_read_u32(port_node, "port-id", &id)) {
6101		err = -EINVAL;
6102		dev_err(&pdev->dev, "missing port-id value\n");
6103		goto err_free_netdev;
6104	}
6105
6106	dev->tx_queue_len = MVPP2_MAX_TXD;
6107	dev->watchdog_timeo = 5 * HZ;
6108	dev->netdev_ops = &mvpp2_netdev_ops;
6109	dev->ethtool_ops = &mvpp2_eth_tool_ops;
6110
6111	port = netdev_priv(dev);
6112
6113	port->irq = irq_of_parse_and_map(port_node, 0);
6114	if (port->irq <= 0) {
6115		err = -EINVAL;
6116		goto err_free_netdev;
6117	}
6118
6119	if (of_property_read_bool(port_node, "marvell,loopback"))
6120		port->flags |= MVPP2_F_LOOPBACK;
6121
6122	port->priv = priv;
6123	port->id = id;
6124	port->first_rxq = *next_first_rxq;
6125	port->phy_node = phy_node;
6126	port->phy_interface = phy_mode;
6127
6128	res = platform_get_resource(pdev, IORESOURCE_MEM,
6129				    priv_common_regs_num + id);
6130	port->base = devm_ioremap_resource(&pdev->dev, res);
6131	if (IS_ERR(port->base)) {
6132		err = PTR_ERR(port->base);
6133		goto err_free_irq;
6134	}
6135
6136	/* Alloc per-cpu stats */
6137	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6138	if (!port->stats) {
6139		err = -ENOMEM;
6140		goto err_free_irq;
6141	}
6142
6143	dt_mac_addr = of_get_mac_address(port_node);
6144	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6145		mac_from = "device tree";
6146		ether_addr_copy(dev->dev_addr, dt_mac_addr);
6147	} else {
6148		mvpp2_get_mac_address(port, hw_mac_addr);
6149		if (is_valid_ether_addr(hw_mac_addr)) {
6150			mac_from = "hardware";
6151			ether_addr_copy(dev->dev_addr, hw_mac_addr);
6152		} else {
6153			mac_from = "random";
6154			eth_hw_addr_random(dev);
6155		}
6156	}
6157
6158	port->tx_ring_size = MVPP2_MAX_TXD;
6159	port->rx_ring_size = MVPP2_MAX_RXD;
6160	port->dev = dev;
6161	SET_NETDEV_DEV(dev, &pdev->dev);
6162
6163	err = mvpp2_port_init(port);
6164	if (err < 0) {
6165		dev_err(&pdev->dev, "failed to init port %d\n", id);
6166		goto err_free_stats;
6167	}
6168	mvpp2_port_power_up(port);
6169
6170	port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6171	if (!port->pcpu) {
6172		err = -ENOMEM;
6173		goto err_free_txq_pcpu;
6174	}
6175
6176	for_each_present_cpu(cpu) {
6177		port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6178
6179		hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6180			     HRTIMER_MODE_REL_PINNED);
6181		port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6182		port_pcpu->timer_scheduled = false;
6183
6184		tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6185			     (unsigned long)dev);
6186	}
6187
6188	netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6189	features = NETIF_F_SG | NETIF_F_IP_CSUM;
6190	dev->features = features | NETIF_F_RXCSUM;
6191	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6192	dev->vlan_features |= features;
6193
6194	/* MTU range: 68 - 9676 */
6195	dev->min_mtu = ETH_MIN_MTU;
6196	/* 9676 == 9700 - 20 and rounding to 8 */
6197	dev->max_mtu = 9676;
6198
6199	err = register_netdev(dev);
6200	if (err < 0) {
6201		dev_err(&pdev->dev, "failed to register netdev\n");
6202		goto err_free_port_pcpu;
6203	}
6204	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6205
6206	/* Increment the first Rx queue number to be used by the next port */
6207	*next_first_rxq += rxq_number;
6208	priv->port_list[id] = port;
6209	return 0;
6210
6211err_free_port_pcpu:
6212	free_percpu(port->pcpu);
6213err_free_txq_pcpu:
6214	for (i = 0; i < txq_number; i++)
6215		free_percpu(port->txqs[i]->pcpu);
6216err_free_stats:
6217	free_percpu(port->stats);
6218err_free_irq:
6219	irq_dispose_mapping(port->irq);
6220err_free_netdev:
6221	of_node_put(phy_node);
6222	free_netdev(dev);
6223	return err;
6224}
6225
6226/* Ports removal routine */
6227static void mvpp2_port_remove(struct mvpp2_port *port)
6228{
6229	int i;
6230
6231	unregister_netdev(port->dev);
6232	of_node_put(port->phy_node);
6233	free_percpu(port->pcpu);
6234	free_percpu(port->stats);
6235	for (i = 0; i < txq_number; i++)
6236		free_percpu(port->txqs[i]->pcpu);
6237	irq_dispose_mapping(port->irq);
6238	free_netdev(port->dev);
6239}
6240
6241/* Initialize decoding windows */
6242static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6243				    struct mvpp2 *priv)
6244{
6245	u32 win_enable;
6246	int i;
6247
6248	for (i = 0; i < 6; i++) {
6249		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6250		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6251
6252		if (i < 4)
6253			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6254	}
6255
6256	win_enable = 0;
6257
6258	for (i = 0; i < dram->num_cs; i++) {
6259		const struct mbus_dram_window *cs = dram->cs + i;
6260
6261		mvpp2_write(priv, MVPP2_WIN_BASE(i),
6262			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6263			    dram->mbus_dram_target_id);
6264
6265		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6266			    (cs->size - 1) & 0xffff0000);
6267
6268		win_enable |= (1 << i);
6269	}
6270
6271	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6272}
6273
6274/* Initialize Rx FIFO's */
6275static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6276{
6277	int port;
6278
6279	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6280		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6281			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
6282		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6283			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6284	}
6285
6286	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6287		    MVPP2_RX_FIFO_PORT_MIN_PKT);
6288	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6289}
6290
6291/* Initialize network controller common part HW */
6292static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6293{
6294	const struct mbus_dram_target_info *dram_target_info;
6295	int err, i;
6296	u32 val;
6297
6298	/* Checks for hardware constraints */
6299	if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6300	    (txq_number > MVPP2_MAX_TXQ)) {
6301		dev_err(&pdev->dev, "invalid queue size parameter\n");
6302		return -EINVAL;
6303	}
6304
6305	/* MBUS windows configuration */
6306	dram_target_info = mv_mbus_dram_info();
6307	if (dram_target_info)
6308		mvpp2_conf_mbus_windows(dram_target_info, priv);
6309
6310	/* Disable HW PHY polling */
6311	val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6312	val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6313	writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6314
6315	/* Allocate and initialize aggregated TXQs */
6316	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6317				       sizeof(struct mvpp2_tx_queue),
6318				       GFP_KERNEL);
6319	if (!priv->aggr_txqs)
6320		return -ENOMEM;
6321
6322	for_each_present_cpu(i) {
6323		priv->aggr_txqs[i].id = i;
6324		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6325		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6326					  MVPP2_AGGR_TXQ_SIZE, i, priv);
6327		if (err < 0)
6328			return err;
6329	}
6330
6331	/* Rx Fifo Init */
6332	mvpp2_rx_fifo_init(priv);
6333
6334	/* Reset Rx queue group interrupt configuration */
6335	for (i = 0; i < MVPP2_MAX_PORTS; i++)
6336		mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6337
6338	writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6339	       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6340
6341	/* Allow cache snoop when transmiting packets */
6342	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6343
6344	/* Buffer Manager initialization */
6345	err = mvpp2_bm_init(pdev, priv);
6346	if (err < 0)
6347		return err;
6348
6349	/* Parser default initialization */
6350	err = mvpp2_prs_default_init(pdev, priv);
6351	if (err < 0)
6352		return err;
6353
6354	/* Classifier default initialization */
6355	mvpp2_cls_init(priv);
6356
6357	return 0;
6358}
6359
6360static int mvpp2_probe(struct platform_device *pdev)
6361{
6362	struct device_node *dn = pdev->dev.of_node;
6363	struct device_node *port_node;
6364	struct mvpp2 *priv;
6365	struct resource *res;
6366	int port_count, first_rxq;
6367	int err;
6368
6369	priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6370	if (!priv)
6371		return -ENOMEM;
6372
6373	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6374	priv->base = devm_ioremap_resource(&pdev->dev, res);
6375	if (IS_ERR(priv->base))
6376		return PTR_ERR(priv->base);
6377
6378	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6379	priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6380	if (IS_ERR(priv->lms_base))
6381		return PTR_ERR(priv->lms_base);
6382
6383	priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6384	if (IS_ERR(priv->pp_clk))
6385		return PTR_ERR(priv->pp_clk);
6386	err = clk_prepare_enable(priv->pp_clk);
6387	if (err < 0)
6388		return err;
6389
6390	priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6391	if (IS_ERR(priv->gop_clk)) {
6392		err = PTR_ERR(priv->gop_clk);
6393		goto err_pp_clk;
6394	}
6395	err = clk_prepare_enable(priv->gop_clk);
6396	if (err < 0)
6397		goto err_pp_clk;
6398
6399	/* Get system's tclk rate */
6400	priv->tclk = clk_get_rate(priv->pp_clk);
6401
6402	/* Initialize network controller */
6403	err = mvpp2_init(pdev, priv);
6404	if (err < 0) {
6405		dev_err(&pdev->dev, "failed to initialize controller\n");
6406		goto err_gop_clk;
6407	}
6408
6409	port_count = of_get_available_child_count(dn);
6410	if (port_count == 0) {
6411		dev_err(&pdev->dev, "no ports enabled\n");
6412		err = -ENODEV;
6413		goto err_gop_clk;
6414	}
6415
6416	priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6417				      sizeof(struct mvpp2_port *),
6418				      GFP_KERNEL);
6419	if (!priv->port_list) {
6420		err = -ENOMEM;
6421		goto err_gop_clk;
6422	}
6423
6424	/* Initialize ports */
6425	first_rxq = 0;
6426	for_each_available_child_of_node(dn, port_node) {
6427		err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6428		if (err < 0)
6429			goto err_gop_clk;
6430	}
6431
6432	platform_set_drvdata(pdev, priv);
6433	return 0;
6434
6435err_gop_clk:
6436	clk_disable_unprepare(priv->gop_clk);
6437err_pp_clk:
6438	clk_disable_unprepare(priv->pp_clk);
6439	return err;
6440}
6441
6442static int mvpp2_remove(struct platform_device *pdev)
6443{
6444	struct mvpp2 *priv = platform_get_drvdata(pdev);
6445	struct device_node *dn = pdev->dev.of_node;
6446	struct device_node *port_node;
6447	int i = 0;
6448
6449	for_each_available_child_of_node(dn, port_node) {
6450		if (priv->port_list[i])
6451			mvpp2_port_remove(priv->port_list[i]);
6452		i++;
6453	}
6454
6455	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6456		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6457
6458		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6459	}
6460
6461	for_each_present_cpu(i) {
6462		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6463
6464		dma_free_coherent(&pdev->dev,
6465				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6466				  aggr_txq->descs,
6467				  aggr_txq->descs_phys);
6468	}
6469
6470	clk_disable_unprepare(priv->pp_clk);
6471	clk_disable_unprepare(priv->gop_clk);
6472
6473	return 0;
6474}
6475
6476static const struct of_device_id mvpp2_match[] = {
6477	{ .compatible = "marvell,armada-375-pp2" },
6478	{ }
6479};
6480MODULE_DEVICE_TABLE(of, mvpp2_match);
6481
6482static struct platform_driver mvpp2_driver = {
6483	.probe = mvpp2_probe,
6484	.remove = mvpp2_remove,
6485	.driver = {
6486		.name = MVPP2_DRIVER_NAME,
6487		.of_match_table = mvpp2_match,
6488	},
6489};
6490
6491module_platform_driver(mvpp2_driver);
6492
6493MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6494MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6495MODULE_LICENSE("GPL v2");