Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4#include <linux/bitfield.h>
5#include "fm10k_pf.h"
6#include "fm10k_vf.h"
7
8/**
9 * fm10k_reset_hw_pf - PF hardware reset
10 * @hw: pointer to hardware structure
11 *
12 * This function should return the hardware to a state similar to the
13 * one it is in after being powered on.
14 **/
15static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
16{
17 s32 err;
18 u32 reg;
19 u16 i;
20
21 /* Disable interrupts */
22 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
23
24 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
25 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
26 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
27
28 /* We assume here Tx and Rx queue 0 are owned by the PF */
29
30 /* Shut off VF access to their queues forcing them to queue 0 */
31 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
32 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
33 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
34 }
35
36 /* shut down all rings */
37 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
38 if (err == FM10K_ERR_REQUESTS_PENDING) {
39 hw->mac.reset_while_pending++;
40 goto force_reset;
41 } else if (err) {
42 return err;
43 }
44
45 /* Verify that DMA is no longer active */
46 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
47 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
48 return FM10K_ERR_DMA_PENDING;
49
50force_reset:
51 /* Inititate data path reset */
52 reg = FM10K_DMA_CTRL_DATAPATH_RESET;
53 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
54
55 /* Flush write and allow 100us for reset to complete */
56 fm10k_write_flush(hw);
57 udelay(FM10K_RESET_TIMEOUT);
58
59 /* Verify we made it out of reset */
60 reg = fm10k_read_reg(hw, FM10K_IP);
61 if (!(reg & FM10K_IP_NOTINRESET))
62 return FM10K_ERR_RESET_FAILED;
63
64 return 0;
65}
66
67/**
68 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
69 * @hw: pointer to hardware structure
70 *
71 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
72 **/
73static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
74{
75 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
76
77 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
78}
79
80/**
81 * fm10k_init_hw_pf - PF hardware initialization
82 * @hw: pointer to hardware structure
83 *
84 **/
85static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
86{
87 u32 dma_ctrl, txqctl;
88 u16 i;
89
90 /* Establish default VSI as valid */
91 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
92 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
93 FM10K_DGLORTMAP_ANY);
94
95 /* Invalidate all other GLORT entries */
96 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
97 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
98
99 /* reset ITR2(0) to point to itself */
100 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
101
102 /* reset VF ITR2(0) to point to 0 avoid PF registers */
103 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
104
105 /* loop through all PF ITR2 registers pointing them to the previous */
106 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
107 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
108
109 /* Enable interrupt moderator if not already enabled */
110 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
111
112 /* compute the default txqctl configuration */
113 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
114 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
115
116 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
117 /* configure rings for 256 Queue / 32 Descriptor cache mode */
118 fm10k_write_reg(hw, FM10K_TQDLOC(i),
119 (i * FM10K_TQDLOC_BASE_32_DESC) |
120 FM10K_TQDLOC_SIZE_32_DESC);
121 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
122
123 /* configure rings to provide TPH processing hints */
124 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
125 FM10K_TPH_TXCTRL_DESC_TPHEN |
126 FM10K_TPH_TXCTRL_DESC_RROEN |
127 FM10K_TPH_TXCTRL_DESC_WROEN |
128 FM10K_TPH_TXCTRL_DATA_RROEN);
129 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
130 FM10K_TPH_RXCTRL_DESC_TPHEN |
131 FM10K_TPH_RXCTRL_DESC_RROEN |
132 FM10K_TPH_RXCTRL_DATA_WROEN |
133 FM10K_TPH_RXCTRL_HDR_WROEN);
134 }
135
136 /* set max hold interval to align with 1.024 usec in all modes and
137 * store ITR scale
138 */
139 switch (hw->bus.speed) {
140 case fm10k_bus_speed_2500:
141 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
142 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
143 break;
144 case fm10k_bus_speed_5000:
145 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
146 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
147 break;
148 case fm10k_bus_speed_8000:
149 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
150 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
151 break;
152 default:
153 dma_ctrl = 0;
154 /* just in case, assume Gen3 ITR scale */
155 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
156 break;
157 }
158
159 /* Configure TSO flags */
160 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
161 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
162
163 /* Enable DMA engine
164 * Set Rx Descriptor size to 32
165 * Set Minimum MSS to 64
166 * Set Maximum number of Rx queues to 256 / 32 Descriptor
167 */
168 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
169 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
170 FM10K_DMA_CTRL_32_DESC;
171
172 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
173
174 /* record maximum queue count, we limit ourselves to 128 */
175 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
176
177 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
178 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
179
180 return 0;
181}
182
183/**
184 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
185 * @hw: pointer to hardware structure
186 * @vid: VLAN ID to add to table
187 * @vsi: Index indicating VF ID or PF ID in table
188 * @set: Indicates if this is a set or clear operation
189 *
190 * This function adds or removes the corresponding VLAN ID from the VLAN
191 * filter table for the corresponding function. In addition to the
192 * standard set/clear that supports one bit a multi-bit write is
193 * supported to set 64 bits at a time.
194 **/
195static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
196{
197 u32 vlan_table, reg, mask, bit, len;
198
199 /* verify the VSI index is valid */
200 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
201 return FM10K_ERR_PARAM;
202
203 /* VLAN multi-bit write:
204 * The multi-bit write has several parts to it.
205 * 24 16 8 0
206 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
207 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
208 * | RSVD0 | Length |C|RSVD0| VLAN ID |
209 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
210 *
211 * VLAN ID: Vlan Starting value
212 * RSVD0: Reserved section, must be 0
213 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
214 * Length: Number of times to repeat the bit being set
215 */
216 len = vid >> 16;
217 vid = (vid << 17) >> 17;
218
219 /* verify the reserved 0 fields are 0 */
220 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
221 return FM10K_ERR_PARAM;
222
223 /* Loop through the table updating all required VLANs */
224 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
225 len < FM10K_VLAN_TABLE_VID_MAX;
226 len -= 32 - bit, reg++, bit = 0) {
227 /* record the initial state of the register */
228 vlan_table = fm10k_read_reg(hw, reg);
229
230 /* truncate mask if we are at the start or end of the run */
231 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
232
233 /* make necessary modifications to the register */
234 mask &= set ? ~vlan_table : vlan_table;
235 if (mask)
236 fm10k_write_reg(hw, reg, vlan_table ^ mask);
237 }
238
239 return 0;
240}
241
242/**
243 * fm10k_read_mac_addr_pf - Read device MAC address
244 * @hw: pointer to the HW structure
245 *
246 * Reads the device MAC address from the SM_AREA and stores the value.
247 **/
248static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
249{
250 u8 perm_addr[ETH_ALEN];
251 u32 serial_num;
252
253 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
254
255 /* last byte should be all 1's */
256 if ((~serial_num) << 24)
257 return FM10K_ERR_INVALID_MAC_ADDR;
258
259 perm_addr[0] = (u8)(serial_num >> 24);
260 perm_addr[1] = (u8)(serial_num >> 16);
261 perm_addr[2] = (u8)(serial_num >> 8);
262
263 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
264
265 /* first byte should be all 1's */
266 if ((~serial_num) >> 24)
267 return FM10K_ERR_INVALID_MAC_ADDR;
268
269 perm_addr[3] = (u8)(serial_num >> 16);
270 perm_addr[4] = (u8)(serial_num >> 8);
271 perm_addr[5] = (u8)(serial_num);
272
273 ether_addr_copy(hw->mac.perm_addr, perm_addr);
274 ether_addr_copy(hw->mac.addr, perm_addr);
275
276 return 0;
277}
278
279/**
280 * fm10k_glort_valid_pf - Validate that the provided glort is valid
281 * @hw: pointer to the HW structure
282 * @glort: base glort to be validated
283 *
284 * This function will return an error if the provided glort is invalid
285 **/
286bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
287{
288 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
289
290 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
291}
292
293/**
294 * fm10k_update_xc_addr_pf - Update device addresses
295 * @hw: pointer to the HW structure
296 * @glort: base resource tag for this request
297 * @mac: MAC address to add/remove from table
298 * @vid: VLAN ID to add/remove from table
299 * @add: Indicates if this is an add or remove operation
300 * @flags: flags field to indicate add and secure
301 *
302 * This function generates a message to the Switch API requesting
303 * that the given logical port add/remove the given L2 MAC/VLAN address.
304 **/
305static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
306 const u8 *mac, u16 vid, bool add, u8 flags)
307{
308 struct fm10k_mbx_info *mbx = &hw->mbx;
309 struct fm10k_mac_update mac_update;
310 u32 msg[5];
311
312 /* clear set bit from VLAN ID */
313 vid &= ~FM10K_VLAN_CLEAR;
314
315 /* if glort or VLAN are not valid return error */
316 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
317 return FM10K_ERR_PARAM;
318
319 /* record fields */
320 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
321 ((u32)mac[3] << 16) |
322 ((u32)mac[4] << 8) |
323 ((u32)mac[5]));
324 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
325 ((u16)mac[1]));
326 mac_update.vlan = cpu_to_le16(vid);
327 mac_update.glort = cpu_to_le16(glort);
328 mac_update.action = add ? 0 : 1;
329 mac_update.flags = flags;
330
331 /* populate mac_update fields */
332 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
333 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
334 &mac_update, sizeof(mac_update));
335
336 /* load onto outgoing mailbox */
337 return mbx->ops.enqueue_tx(hw, mbx, msg);
338}
339
340/**
341 * fm10k_update_uc_addr_pf - Update device unicast addresses
342 * @hw: pointer to the HW structure
343 * @glort: base resource tag for this request
344 * @mac: MAC address to add/remove from table
345 * @vid: VLAN ID to add/remove from table
346 * @add: Indicates if this is an add or remove operation
347 * @flags: flags field to indicate add and secure
348 *
349 * This function is used to add or remove unicast addresses for
350 * the PF.
351 **/
352static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
353 const u8 *mac, u16 vid, bool add, u8 flags)
354{
355 /* verify MAC address is valid */
356 if (!is_valid_ether_addr(mac))
357 return FM10K_ERR_PARAM;
358
359 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
360}
361
362/**
363 * fm10k_update_mc_addr_pf - Update device multicast addresses
364 * @hw: pointer to the HW structure
365 * @glort: base resource tag for this request
366 * @mac: MAC address to add/remove from table
367 * @vid: VLAN ID to add/remove from table
368 * @add: Indicates if this is an add or remove operation
369 *
370 * This function is used to add or remove multicast MAC addresses for
371 * the PF.
372 **/
373static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
374 const u8 *mac, u16 vid, bool add)
375{
376 /* verify multicast address is valid */
377 if (!is_multicast_ether_addr(mac))
378 return FM10K_ERR_PARAM;
379
380 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
381}
382
383/**
384 * fm10k_update_xcast_mode_pf - Request update of multicast mode
385 * @hw: pointer to hardware structure
386 * @glort: base resource tag for this request
387 * @mode: integer value indicating mode being requested
388 *
389 * This function will attempt to request a higher mode for the port
390 * so that it can enable either multicast, multicast promiscuous, or
391 * promiscuous mode of operation.
392 **/
393static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
394{
395 struct fm10k_mbx_info *mbx = &hw->mbx;
396 u32 msg[3], xcast_mode;
397
398 if (mode > FM10K_XCAST_MODE_NONE)
399 return FM10K_ERR_PARAM;
400
401 /* if glort is not valid return error */
402 if (!fm10k_glort_valid_pf(hw, glort))
403 return FM10K_ERR_PARAM;
404
405 /* write xcast mode as a single u32 value,
406 * lower 16 bits: glort
407 * upper 16 bits: mode
408 */
409 xcast_mode = ((u32)mode << 16) | glort;
410
411 /* generate message requesting to change xcast mode */
412 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
413 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
414
415 /* load onto outgoing mailbox */
416 return mbx->ops.enqueue_tx(hw, mbx, msg);
417}
418
419/**
420 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
421 * @hw: pointer to hardware structure
422 *
423 * This function walks through the MSI-X vector table to determine the
424 * number of active interrupts and based on that information updates the
425 * interrupt moderator linked list.
426 **/
427static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
428{
429 u32 i;
430
431 /* Disable interrupt moderator */
432 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
433
434 /* loop through PF from last to first looking enabled vectors */
435 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
436 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
437 break;
438 }
439
440 /* always reset VFITR2[0] to point to last enabled PF vector */
441 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
442
443 /* reset ITR2[0] to point to last enabled PF vector */
444 if (!hw->iov.num_vfs)
445 fm10k_write_reg(hw, FM10K_ITR2(0), i);
446
447 /* Enable interrupt moderator */
448 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
449}
450
451/**
452 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
453 * @hw: pointer to the HW structure
454 * @glort: base resource tag for this request
455 * @count: number of logical ports being updated
456 * @enable: boolean value indicating enable or disable
457 *
458 * This function is used to add/remove a logical port from the switch.
459 **/
460static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
461 u16 count, bool enable)
462{
463 struct fm10k_mbx_info *mbx = &hw->mbx;
464 u32 msg[3], lport_msg;
465
466 /* do nothing if we are being asked to create or destroy 0 ports */
467 if (!count)
468 return 0;
469
470 /* if glort is not valid return error */
471 if (!fm10k_glort_valid_pf(hw, glort))
472 return FM10K_ERR_PARAM;
473
474 /* reset multicast mode if deleting lport */
475 if (!enable)
476 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
477
478 /* construct the lport message from the 2 pieces of data we have */
479 lport_msg = ((u32)count << 16) | glort;
480
481 /* generate lport create/delete message */
482 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
483 FM10K_PF_MSG_ID_LPORT_DELETE);
484 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
485
486 /* load onto outgoing mailbox */
487 return mbx->ops.enqueue_tx(hw, mbx, msg);
488}
489
490/**
491 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
492 * @hw: pointer to hardware structure
493 * @dglort: pointer to dglort configuration structure
494 *
495 * Reads the configuration structure contained in dglort_cfg and uses
496 * that information to then populate a DGLORTMAP/DEC entry and the queues
497 * to which it has been assigned.
498 **/
499static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
500 struct fm10k_dglort_cfg *dglort)
501{
502 u16 glort, queue_count, vsi_count, pc_count;
503 u16 vsi, queue, pc, q_idx;
504 u32 txqctl, dglortdec, dglortmap;
505
506 /* verify the dglort pointer */
507 if (!dglort)
508 return FM10K_ERR_PARAM;
509
510 /* verify the dglort values */
511 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
512 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
513 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
514 return FM10K_ERR_PARAM;
515
516 /* determine count of VSIs and queues */
517 queue_count = BIT(dglort->rss_l + dglort->pc_l);
518 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
519 glort = dglort->glort;
520 q_idx = dglort->queue_b;
521
522 /* configure SGLORT for queues */
523 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
524 for (queue = 0; queue < queue_count; queue++, q_idx++) {
525 if (q_idx >= FM10K_MAX_QUEUES)
526 break;
527
528 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
529 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
530 }
531 }
532
533 /* determine count of PCs and queues */
534 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
535 pc_count = BIT(dglort->pc_l);
536
537 /* configure PC for Tx queues */
538 for (pc = 0; pc < pc_count; pc++) {
539 q_idx = pc + dglort->queue_b;
540 for (queue = 0; queue < queue_count; queue++) {
541 if (q_idx >= FM10K_MAX_QUEUES)
542 break;
543
544 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
545 txqctl &= ~FM10K_TXQCTL_PC_MASK;
546 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
547 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
548
549 q_idx += pc_count;
550 }
551 }
552
553 /* configure DGLORTDEC */
554 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
555 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
556 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
557 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
558 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
559 ((u32)(dglort->queue_l));
560 if (dglort->inner_rss)
561 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
562
563 /* configure DGLORTMAP */
564 dglortmap = (dglort->idx == fm10k_dglort_default) ?
565 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
566 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
567 dglortmap |= dglort->glort;
568
569 /* write values to hardware */
570 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
571 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
572
573 return 0;
574}
575
576u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
577{
578 u16 num_pools = hw->iov.num_pools;
579
580 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
581 8 : FM10K_MAX_QUEUES_POOL;
582}
583
584u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
585{
586 u16 num_vfs = hw->iov.num_vfs;
587 u16 vf_q_idx = FM10K_MAX_QUEUES;
588
589 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
590
591 return vf_q_idx;
592}
593
594static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
595{
596 u16 num_pools = hw->iov.num_pools;
597
598 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
599 FM10K_MAX_VECTORS_POOL;
600}
601
602static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
603{
604 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
605
606 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
607
608 return vf_v_idx;
609}
610
611/**
612 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
613 * @hw: pointer to the HW structure
614 * @num_vfs: number of VFs to be allocated
615 * @num_pools: number of virtualization pools to be allocated
616 *
617 * Allocates queues and traffic classes to virtualization entities to prepare
618 * the PF for SR-IOV and VMDq
619 **/
620static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
621 u16 num_pools)
622{
623 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
624 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
625 int i, j;
626
627 /* hardware only supports up to 64 pools */
628 if (num_pools > 64)
629 return FM10K_ERR_PARAM;
630
631 /* the number of VFs cannot exceed the number of pools */
632 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
633 return FM10K_ERR_PARAM;
634
635 /* record number of virtualization entities */
636 hw->iov.num_vfs = num_vfs;
637 hw->iov.num_pools = num_pools;
638
639 /* determine qmap offsets and counts */
640 qmap_stride = (num_vfs > 8) ? 32 : 256;
641 qpp = fm10k_queues_per_pool(hw);
642 vpp = fm10k_vectors_per_pool(hw);
643
644 /* calculate starting index for queues */
645 vf_q_idx = fm10k_vf_queue_index(hw, 0);
646 qmap_idx = 0;
647
648 /* establish TCs with -1 credits and no quanta to prevent transmit */
649 for (i = 0; i < num_vfs; i++) {
650 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
651 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
652 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
653 FM10K_TC_CREDIT_CREDIT_MASK);
654 }
655
656 /* zero out all mbmem registers */
657 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
658 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
659
660 /* clear event notification of VF FLR */
661 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
662 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
663
664 /* loop through unallocated rings assigning them back to PF */
665 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
666 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
667 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
668 FM10K_TXQCTL_UNLIMITED_BW | vid);
669 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
670 }
671
672 /* PF should have already updated VFITR2[0] */
673
674 /* update all ITR registers to flow to VFITR2[0] */
675 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
676 if (!(i & (vpp - 1)))
677 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
678 else
679 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
680 }
681
682 /* update PF ITR2[0] to reference the last vector */
683 fm10k_write_reg(hw, FM10K_ITR2(0),
684 fm10k_vf_vector_index(hw, num_vfs - 1));
685
686 /* loop through rings populating rings and TCs */
687 for (i = 0; i < num_vfs; i++) {
688 /* record index for VF queue 0 for use in end of loop */
689 vf_q_idx0 = vf_q_idx;
690
691 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
692 /* assign VF and locked TC to queues */
693 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
694 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
695 (i << FM10K_TXQCTL_TC_SHIFT) | i |
696 FM10K_TXQCTL_VF | vid);
697 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
698 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
699 FM10K_RXDCTL_DROP_ON_EMPTY);
700 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
701 (i << FM10K_RXQCTL_VF_SHIFT) |
702 FM10K_RXQCTL_VF);
703
704 /* map queue pair to VF */
705 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
706 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
707 }
708
709 /* repeat the first ring for all of the remaining VF rings */
710 for (; j < qmap_stride; j++, qmap_idx++) {
711 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
712 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
713 }
714 }
715
716 /* loop through remaining indexes assigning all to queue 0 */
717 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
718 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
719 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
720 qmap_idx++;
721 }
722
723 return 0;
724}
725
726/**
727 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
728 * @hw: pointer to the HW structure
729 * @vf_idx: index of VF receiving GLORT
730 * @rate: Rate indicated in Mb/s
731 *
732 * Configured the TC for a given VF to allow only up to a given number
733 * of Mb/s of outgoing Tx throughput.
734 **/
735static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
736{
737 /* configure defaults */
738 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
739 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
740
741 /* verify vf is in range */
742 if (vf_idx >= hw->iov.num_vfs)
743 return FM10K_ERR_PARAM;
744
745 /* set interval to align with 4.096 usec in all modes */
746 switch (hw->bus.speed) {
747 case fm10k_bus_speed_2500:
748 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
749 break;
750 case fm10k_bus_speed_5000:
751 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
752 break;
753 default:
754 break;
755 }
756
757 if (rate) {
758 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
759 return FM10K_ERR_PARAM;
760
761 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
762 * The rate is provided in Mbits per second
763 * To tralslate from rate to quanta we need to multiply the
764 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
765 * dealing with floating point we can round the values up
766 * to the nearest whole number ratio which gives us 128 / 125.
767 */
768 tc_rate = (rate * 128) / 125;
769
770 /* try to keep the rate limiting accurate by increasing
771 * the number of credits and interval for rates less than 4Gb/s
772 */
773 if (rate < 4000)
774 interval <<= 1;
775 else
776 tc_rate >>= 1;
777 }
778
779 /* update rate limiter with new values */
780 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
781 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
782 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
783
784 return 0;
785}
786
787/**
788 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
789 * @hw: pointer to the HW structure
790 * @vf_idx: index of VF receiving GLORT
791 *
792 * Update the interrupt moderator linked list to include any MSI-X
793 * interrupts which the VF has enabled in the MSI-X vector table.
794 **/
795static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
796{
797 u16 vf_v_idx, vf_v_limit, i;
798
799 /* verify vf is in range */
800 if (vf_idx >= hw->iov.num_vfs)
801 return FM10K_ERR_PARAM;
802
803 /* determine vector offset and count */
804 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
805 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
806
807 /* search for first vector that is not masked */
808 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
809 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
810 break;
811 }
812
813 /* reset linked list so it now includes our active vectors */
814 if (vf_idx == (hw->iov.num_vfs - 1))
815 fm10k_write_reg(hw, FM10K_ITR2(0), i);
816 else
817 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
818
819 return 0;
820}
821
822/**
823 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
824 * @hw: pointer to the HW structure
825 * @vf_info: pointer to VF information structure
826 *
827 * Assign a MAC address and default VLAN to a VF and notify it of the update
828 **/
829static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
830 struct fm10k_vf_info *vf_info)
831{
832 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
833 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
834 s32 err = 0;
835 u16 vf_idx, vf_vid;
836
837 /* verify vf is in range */
838 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
839 return FM10K_ERR_PARAM;
840
841 /* determine qmap offsets and counts */
842 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
843 queues_per_pool = fm10k_queues_per_pool(hw);
844
845 /* calculate starting index for queues */
846 vf_idx = vf_info->vf_idx;
847 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
848 qmap_idx = qmap_stride * vf_idx;
849
850 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
851 * used here to indicate to the VF that it will not have privilege to
852 * write VLAN_TABLE. All policy is enforced on the PF but this allows
853 * the VF to correctly report errors to userspace requests.
854 */
855 if (vf_info->pf_vid)
856 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
857 else
858 vf_vid = vf_info->sw_vid;
859
860 /* generate MAC_ADDR request */
861 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
862 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
863 vf_info->mac, vf_vid);
864
865 /* Configure Queue control register with new VLAN ID. The TXQCTL
866 * register is RO from the VF, so the PF must do this even in the
867 * case of notifying the VF of a new VID via the mailbox.
868 */
869 txqctl = FIELD_PREP(FM10K_TXQCTL_VID_MASK, vf_vid);
870 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
871 FM10K_TXQCTL_VF | vf_idx;
872
873 for (i = 0; i < queues_per_pool; i++)
874 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
875
876 /* try loading a message onto outgoing mailbox first */
877 if (vf_info->mbx.ops.enqueue_tx) {
878 err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
879 if (err != FM10K_MBX_ERR_NO_MBX)
880 return err;
881 err = 0;
882 }
883
884 /* If we aren't connected to a mailbox, this is most likely because
885 * the VF driver is not running. It should thus be safe to re-map
886 * queues and use the registers to pass the MAC address so that the VF
887 * driver gets correct information during its initialization.
888 */
889
890 /* MAP Tx queue back to 0 temporarily, and disable it */
891 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
892 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
893
894 /* verify ring has disabled before modifying base address registers */
895 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
896 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
897 /* limit ourselves to a 1ms timeout */
898 if (timeout == 10) {
899 err = FM10K_ERR_DMA_PENDING;
900 goto err_out;
901 }
902
903 usleep_range(100, 200);
904 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
905 }
906
907 /* Update base address registers to contain MAC address */
908 if (is_valid_ether_addr(vf_info->mac)) {
909 tdbal = (((u32)vf_info->mac[3]) << 24) |
910 (((u32)vf_info->mac[4]) << 16) |
911 (((u32)vf_info->mac[5]) << 8);
912
913 tdbah = (((u32)0xFF) << 24) |
914 (((u32)vf_info->mac[0]) << 16) |
915 (((u32)vf_info->mac[1]) << 8) |
916 ((u32)vf_info->mac[2]);
917 }
918
919 /* Record the base address into queue 0 */
920 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
921 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
922
923 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
924 * to pass the information during VF initialization. See definition of
925 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
926 */
927 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
928 FM10K_TDLEN_ITR_SCALE_SHIFT);
929
930err_out:
931 /* restore the queue back to VF ownership */
932 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
933 return err;
934}
935
936/**
937 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
938 * @hw: pointer to the HW structure
939 * @vf_info: pointer to VF information structure
940 *
941 * Reassign the interrupts and queues to a VF following an FLR
942 **/
943static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
944 struct fm10k_vf_info *vf_info)
945{
946 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
947 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
948 u16 vf_v_idx, vf_v_limit, vf_vid;
949 u8 vf_idx = vf_info->vf_idx;
950 int i;
951
952 /* verify vf is in range */
953 if (vf_idx >= hw->iov.num_vfs)
954 return FM10K_ERR_PARAM;
955
956 /* clear event notification of VF FLR */
957 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
958
959 /* force timeout and then disconnect the mailbox */
960 vf_info->mbx.timeout = 0;
961 if (vf_info->mbx.ops.disconnect)
962 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
963
964 /* determine vector offset and count */
965 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
966 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
967
968 /* determine qmap offsets and counts */
969 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
970 queues_per_pool = fm10k_queues_per_pool(hw);
971 qmap_idx = qmap_stride * vf_idx;
972
973 /* make all the queues inaccessible to the VF */
974 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
975 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
976 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
977 }
978
979 /* calculate starting index for queues */
980 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
981
982 /* determine correct default VLAN ID */
983 if (vf_info->pf_vid)
984 vf_vid = vf_info->pf_vid;
985 else
986 vf_vid = vf_info->sw_vid;
987
988 /* configure Queue control register */
989 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
990 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
991 FM10K_TXQCTL_VF | vf_idx;
992 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
993
994 /* stop further DMA and reset queue ownership back to VF */
995 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
996 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
997 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
998 fm10k_write_reg(hw, FM10K_RXDCTL(i),
999 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1000 FM10K_RXDCTL_DROP_ON_EMPTY);
1001 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1002 }
1003
1004 /* reset TC with -1 credits and no quanta to prevent transmit */
1005 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1006 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1007 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1008 FM10K_TC_CREDIT_CREDIT_MASK);
1009
1010 /* update our first entry in the table based on previous VF */
1011 if (!vf_idx)
1012 hw->mac.ops.update_int_moderator(hw);
1013 else
1014 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1015
1016 /* reset linked list so it now includes our active vectors */
1017 if (vf_idx == (hw->iov.num_vfs - 1))
1018 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1019 else
1020 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1021
1022 /* link remaining vectors so that next points to previous */
1023 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1024 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1025
1026 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1027 for (i = FM10K_VFMBMEM_LEN; i--;)
1028 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1029 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1030 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1031 for (i = FM10K_RETA_SIZE; i--;)
1032 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1033 for (i = FM10K_RSSRK_SIZE; i--;)
1034 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1035 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1036
1037 /* Update base address registers to contain MAC address */
1038 if (is_valid_ether_addr(vf_info->mac)) {
1039 tdbal = (((u32)vf_info->mac[3]) << 24) |
1040 (((u32)vf_info->mac[4]) << 16) |
1041 (((u32)vf_info->mac[5]) << 8);
1042 tdbah = (((u32)0xFF) << 24) |
1043 (((u32)vf_info->mac[0]) << 16) |
1044 (((u32)vf_info->mac[1]) << 8) |
1045 ((u32)vf_info->mac[2]);
1046 }
1047
1048 /* map queue pairs back to VF from last to first */
1049 for (i = queues_per_pool; i--;) {
1050 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1051 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1052 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1053 * explanation of how TDLEN is used.
1054 */
1055 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1056 hw->mac.itr_scale <<
1057 FM10K_TDLEN_ITR_SCALE_SHIFT);
1058 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1059 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1060 }
1061
1062 /* repeat the first ring for all the remaining VF rings */
1063 for (i = queues_per_pool; i < qmap_stride; i++) {
1064 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1065 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1066 }
1067
1068 return 0;
1069}
1070
1071/**
1072 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1073 * @hw: pointer to hardware structure
1074 * @vf_info: pointer to VF information structure
1075 * @lport_idx: Logical port offset from the hardware glort
1076 * @flags: Set of capability flags to extend port beyond basic functionality
1077 *
1078 * This function allows enabling a VF port by assigning it a GLORT and
1079 * setting the flags so that it can enable an Rx mode.
1080 **/
1081static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1082 struct fm10k_vf_info *vf_info,
1083 u16 lport_idx, u8 flags)
1084{
1085 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1086
1087 /* if glort is not valid return error */
1088 if (!fm10k_glort_valid_pf(hw, glort))
1089 return FM10K_ERR_PARAM;
1090
1091 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1092 vf_info->glort = glort;
1093
1094 return 0;
1095}
1096
1097/**
1098 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1099 * @hw: pointer to hardware structure
1100 * @vf_info: pointer to VF information structure
1101 *
1102 * This function disables a VF port by stripping it of a GLORT and
1103 * setting the flags so that it cannot enable any Rx mode.
1104 **/
1105static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1106 struct fm10k_vf_info *vf_info)
1107{
1108 u32 msg[1];
1109
1110 /* need to disable the port if it is already enabled */
1111 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1112 /* notify switch that this port has been disabled */
1113 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1114
1115 /* generate port state response to notify VF it is not ready */
1116 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1117 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1118 }
1119
1120 /* clear flags and glort if it exists */
1121 vf_info->vf_flags = 0;
1122 vf_info->glort = 0;
1123}
1124
1125/**
1126 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1127 * @hw: pointer to hardware structure
1128 * @q: stats for all queues of a VF
1129 * @vf_idx: index of VF
1130 *
1131 * This function collects queue stats for VFs.
1132 **/
1133static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1134 struct fm10k_hw_stats_q *q,
1135 u16 vf_idx)
1136{
1137 u32 idx, qpp;
1138
1139 /* get stats for all of the queues */
1140 qpp = fm10k_queues_per_pool(hw);
1141 idx = fm10k_vf_queue_index(hw, vf_idx);
1142 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1143}
1144
1145/**
1146 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1147 * @hw: Pointer to hardware structure
1148 * @results: Pointer array to message, results[0] is pointer to message
1149 * @mbx: Pointer to mailbox information structure
1150 *
1151 * This function is a default handler for MSI-X requests from the VF. The
1152 * assumption is that in this case it is acceptable to just directly
1153 * hand off the message from the VF to the underlying shared code.
1154 **/
1155s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 __always_unused **results,
1156 struct fm10k_mbx_info *mbx)
1157{
1158 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1159 u8 vf_idx = vf_info->vf_idx;
1160
1161 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1162}
1163
1164/**
1165 * fm10k_iov_select_vid - Select correct default VLAN ID
1166 * @vf_info: pointer to VF information structure
1167 * @vid: VLAN ID to correct
1168 *
1169 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1170 * return either the pf_vid or sw_vid depending on which one is set.
1171 */
1172s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1173{
1174 if (!vid)
1175 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1176 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1177 return FM10K_ERR_PARAM;
1178 else
1179 return vid;
1180}
1181
1182/**
1183 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1184 * @hw: Pointer to hardware structure
1185 * @results: Pointer array to message, results[0] is pointer to message
1186 * @mbx: Pointer to mailbox information structure
1187 *
1188 * This function is a default handler for MAC/VLAN requests from the VF.
1189 * The assumption is that in this case it is acceptable to just directly
1190 * hand off the message from the VF to the underlying shared code.
1191 **/
1192s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1193 struct fm10k_mbx_info *mbx)
1194{
1195 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1196 u8 mac[ETH_ALEN];
1197 u32 *result;
1198 int err = 0;
1199 bool set;
1200 u16 vlan;
1201 u32 vid;
1202
1203 /* we shouldn't be updating rules on a disabled interface */
1204 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1205 err = FM10K_ERR_PARAM;
1206
1207 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1208 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1209
1210 /* record VLAN id requested */
1211 err = fm10k_tlv_attr_get_u32(result, &vid);
1212 if (err)
1213 return err;
1214
1215 set = !(vid & FM10K_VLAN_CLEAR);
1216 vid &= ~FM10K_VLAN_CLEAR;
1217
1218 /* if the length field has been set, this is a multi-bit
1219 * update request. For multi-bit requests, simply disallow
1220 * them when the pf_vid has been set. In this case, the PF
1221 * should have already cleared the VLAN_TABLE, and if we
1222 * allowed them, it could allow a rogue VF to receive traffic
1223 * on a VLAN it was not assigned. In the single-bit case, we
1224 * need to modify requests for VLAN 0 to use the default PF or
1225 * SW vid when assigned.
1226 */
1227
1228 if (vid >> 16) {
1229 /* prevent multi-bit requests when PF has
1230 * administratively set the VLAN for this VF
1231 */
1232 if (vf_info->pf_vid)
1233 return FM10K_ERR_PARAM;
1234 } else {
1235 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1236 if (err < 0)
1237 return err;
1238
1239 vid = err;
1240 }
1241
1242 /* update VSI info for VF in regards to VLAN table */
1243 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1244 }
1245
1246 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1247 result = results[FM10K_MAC_VLAN_MSG_MAC];
1248
1249 /* record unicast MAC address requested */
1250 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1251 if (err)
1252 return err;
1253
1254 /* block attempts to set MAC for a locked device */
1255 if (is_valid_ether_addr(vf_info->mac) &&
1256 !ether_addr_equal(mac, vf_info->mac))
1257 return FM10K_ERR_PARAM;
1258
1259 set = !(vlan & FM10K_VLAN_CLEAR);
1260 vlan &= ~FM10K_VLAN_CLEAR;
1261
1262 err = fm10k_iov_select_vid(vf_info, vlan);
1263 if (err < 0)
1264 return err;
1265
1266 vlan = (u16)err;
1267
1268 /* notify switch of request for new unicast address */
1269 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1270 mac, vlan, set, 0);
1271 }
1272
1273 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1274 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1275
1276 /* record multicast MAC address requested */
1277 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1278 if (err)
1279 return err;
1280
1281 /* verify that the VF is allowed to request multicast */
1282 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1283 return FM10K_ERR_PARAM;
1284
1285 set = !(vlan & FM10K_VLAN_CLEAR);
1286 vlan &= ~FM10K_VLAN_CLEAR;
1287
1288 err = fm10k_iov_select_vid(vf_info, vlan);
1289 if (err < 0)
1290 return err;
1291
1292 vlan = (u16)err;
1293
1294 /* notify switch of request for new multicast address */
1295 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1296 mac, vlan, set);
1297 }
1298
1299 return err;
1300}
1301
1302/**
1303 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1304 * @vf_info: VF info structure containing capability flags
1305 * @mode: Requested xcast mode
1306 *
1307 * This function outputs the mode that most closely matches the requested
1308 * mode. If not modes match it will request we disable the port
1309 **/
1310static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1311 u8 mode)
1312{
1313 u8 vf_flags = vf_info->vf_flags;
1314
1315 /* match up mode to capabilities as best as possible */
1316 switch (mode) {
1317 case FM10K_XCAST_MODE_PROMISC:
1318 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1319 return FM10K_XCAST_MODE_PROMISC;
1320 fallthrough;
1321 case FM10K_XCAST_MODE_ALLMULTI:
1322 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1323 return FM10K_XCAST_MODE_ALLMULTI;
1324 fallthrough;
1325 case FM10K_XCAST_MODE_MULTI:
1326 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1327 return FM10K_XCAST_MODE_MULTI;
1328 fallthrough;
1329 case FM10K_XCAST_MODE_NONE:
1330 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1331 return FM10K_XCAST_MODE_NONE;
1332 fallthrough;
1333 default:
1334 break;
1335 }
1336
1337 /* disable interface as it should not be able to request any */
1338 return FM10K_XCAST_MODE_DISABLE;
1339}
1340
1341/**
1342 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1343 * @hw: Pointer to hardware structure
1344 * @results: Pointer array to message, results[0] is pointer to message
1345 * @mbx: Pointer to mailbox information structure
1346 *
1347 * This function is a default handler for port state requests. The port
1348 * state requests for now are basic and consist of enabling or disabling
1349 * the port.
1350 **/
1351s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1352 struct fm10k_mbx_info *mbx)
1353{
1354 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1355 s32 err = 0;
1356 u32 msg[2];
1357 u8 mode = 0;
1358
1359 /* verify VF is allowed to enable even minimal mode */
1360 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1361 return FM10K_ERR_PARAM;
1362
1363 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1364 u32 *result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1365
1366 /* XCAST mode update requested */
1367 err = fm10k_tlv_attr_get_u8(result, &mode);
1368 if (err)
1369 return FM10K_ERR_PARAM;
1370
1371 /* prep for possible demotion depending on capabilities */
1372 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1373
1374 /* if mode is not currently enabled, enable it */
1375 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1376 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1377
1378 /* swap mode back to a bit flag */
1379 mode = FM10K_VF_FLAG_SET_MODE(mode);
1380 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1381 /* need to disable the port if it is already enabled */
1382 if (FM10K_VF_FLAG_ENABLED(vf_info))
1383 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1384 1, false);
1385
1386 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1387 * that we actually re-enable the LPORT state below. Note that
1388 * this has no impact if the VF is already disabled, as the
1389 * flags are already cleared.
1390 */
1391 if (!err)
1392 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1393
1394 /* when enabling the port we should reset the rate limiters */
1395 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1396
1397 /* set mode for minimal functionality */
1398 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1399
1400 /* generate port state response to notify VF it is ready */
1401 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1402 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1403 mbx->ops.enqueue_tx(hw, mbx, msg);
1404 }
1405
1406 /* if enable state toggled note the update */
1407 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1408 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1409 !!mode);
1410
1411 /* if state change succeeded, then update our stored state */
1412 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1413 if (!err)
1414 vf_info->vf_flags = mode;
1415
1416 return err;
1417}
1418
1419/**
1420 * fm10k_update_hw_stats_pf - Updates hardware related statistics of PF
1421 * @hw: pointer to hardware structure
1422 * @stats: pointer to the stats structure to update
1423 *
1424 * This function collects and aggregates global and per queue hardware
1425 * statistics.
1426 **/
1427static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1428 struct fm10k_hw_stats *stats)
1429{
1430 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1431 u32 id, id_prev;
1432
1433 /* Use Tx queue 0 as a canary to detect a reset */
1434 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1435
1436 /* Read Global Statistics */
1437 do {
1438 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1439 &stats->timeout);
1440 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1441 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1442 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1443 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1444 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1445 &stats->vlan_drop);
1446 loopback_drop =
1447 fm10k_read_hw_stats_32b(hw,
1448 FM10K_STATS_LOOPBACK_DROP,
1449 &stats->loopback_drop);
1450 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1451 FM10K_STATS_NODESC_DROP,
1452 &stats->nodesc_drop);
1453
1454 /* if value has not changed then we have consistent data */
1455 id_prev = id;
1456 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1457 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1458
1459 /* drop non-ID bits and set VALID ID bit */
1460 id &= FM10K_TXQCTL_ID_MASK;
1461 id |= FM10K_STAT_VALID;
1462
1463 /* Update Global Statistics */
1464 if (stats->stats_idx == id) {
1465 stats->timeout.count += timeout;
1466 stats->ur.count += ur;
1467 stats->ca.count += ca;
1468 stats->um.count += um;
1469 stats->xec.count += xec;
1470 stats->vlan_drop.count += vlan_drop;
1471 stats->loopback_drop.count += loopback_drop;
1472 stats->nodesc_drop.count += nodesc_drop;
1473 }
1474
1475 /* Update bases and record current PF id */
1476 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1477 fm10k_update_hw_base_32b(&stats->ur, ur);
1478 fm10k_update_hw_base_32b(&stats->ca, ca);
1479 fm10k_update_hw_base_32b(&stats->um, um);
1480 fm10k_update_hw_base_32b(&stats->xec, xec);
1481 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1482 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1483 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1484 stats->stats_idx = id;
1485
1486 /* Update Queue Statistics */
1487 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1488}
1489
1490/**
1491 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1492 * @hw: pointer to hardware structure
1493 * @stats: pointer to the stats structure to update
1494 *
1495 * This function resets the base for global and per queue hardware
1496 * statistics.
1497 **/
1498static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1499 struct fm10k_hw_stats *stats)
1500{
1501 /* Unbind Global Statistics */
1502 fm10k_unbind_hw_stats_32b(&stats->timeout);
1503 fm10k_unbind_hw_stats_32b(&stats->ur);
1504 fm10k_unbind_hw_stats_32b(&stats->ca);
1505 fm10k_unbind_hw_stats_32b(&stats->um);
1506 fm10k_unbind_hw_stats_32b(&stats->xec);
1507 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1508 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1509 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1510
1511 /* Unbind Queue Statistics */
1512 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1513
1514 /* Reinitialize bases for all stats */
1515 fm10k_update_hw_stats_pf(hw, stats);
1516}
1517
1518/**
1519 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1520 * @hw: pointer to hardware structure
1521 * @dma_mask: 64 bit DMA mask required for platform
1522 *
1523 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1524 * to limit the access to memory beyond what is physically in the system.
1525 **/
1526static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1527{
1528 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1529 u32 phyaddr = (u32)(dma_mask >> 32);
1530
1531 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1532}
1533
1534/**
1535 * fm10k_get_fault_pf - Record a fault in one of the interface units
1536 * @hw: pointer to hardware structure
1537 * @type: pointer to fault type register offset
1538 * @fault: pointer to memory location to record the fault
1539 *
1540 * Record the fault register contents to the fault data structure and
1541 * clear the entry from the register.
1542 *
1543 * Returns ERR_PARAM if invalid register is specified or no error is present.
1544 **/
1545static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1546 struct fm10k_fault *fault)
1547{
1548 u32 func;
1549
1550 /* verify the fault register is in range and is aligned */
1551 switch (type) {
1552 case FM10K_PCA_FAULT:
1553 case FM10K_THI_FAULT:
1554 case FM10K_FUM_FAULT:
1555 break;
1556 default:
1557 return FM10K_ERR_PARAM;
1558 }
1559
1560 /* only service faults that are valid */
1561 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1562 if (!(func & FM10K_FAULT_FUNC_VALID))
1563 return FM10K_ERR_PARAM;
1564
1565 /* read remaining fields */
1566 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1567 fault->address <<= 32;
1568 fault->address |= fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1569 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1570
1571 /* clear valid bit to allow for next error */
1572 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1573
1574 /* Record which function triggered the error */
1575 if (func & FM10K_FAULT_FUNC_PF)
1576 fault->func = 0;
1577 else
1578 fault->func = 1 + FIELD_GET(FM10K_FAULT_FUNC_VF_MASK, func);
1579
1580 /* record fault type */
1581 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1582
1583 return 0;
1584}
1585
1586/**
1587 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1588 * @hw: pointer to hardware structure
1589 *
1590 **/
1591static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1592{
1593 struct fm10k_mbx_info *mbx = &hw->mbx;
1594 u32 msg[1];
1595
1596 /* issue request asking for LPORT map */
1597 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1598
1599 /* load onto outgoing mailbox */
1600 return mbx->ops.enqueue_tx(hw, mbx, msg);
1601}
1602
1603/**
1604 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1605 * @hw: pointer to hardware structure
1606 * @switch_ready: pointer to boolean value that will record switch state
1607 *
1608 * This function will check the DMA_CTRL2 register and mailbox in order
1609 * to determine if the switch is ready for the PF to begin requesting
1610 * addresses and mapping traffic to the local interface.
1611 **/
1612static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1613{
1614 u32 dma_ctrl2;
1615
1616 /* verify the switch is ready for interaction */
1617 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1618 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1619 return 0;
1620
1621 /* retrieve generic host state info */
1622 return fm10k_get_host_state_generic(hw, switch_ready);
1623}
1624
1625/* This structure defines the attibutes to be parsed below */
1626const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1627 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1628 sizeof(struct fm10k_swapi_error)),
1629 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1630 FM10K_TLV_ATTR_LAST
1631};
1632
1633/**
1634 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1635 * @hw: Pointer to hardware structure
1636 * @results: pointer array containing parsed data
1637 * @mbx: Pointer to mailbox information structure
1638 *
1639 * This handler configures the lport mapping based on the reply from the
1640 * switch API.
1641 **/
1642s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1643 struct fm10k_mbx_info __always_unused *mbx)
1644{
1645 u16 glort, mask;
1646 u32 dglort_map;
1647 s32 err;
1648
1649 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1650 &dglort_map);
1651 if (err)
1652 return err;
1653
1654 /* extract values out of the header */
1655 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1656 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1657
1658 /* verify mask is set and none of the masked bits in glort are set */
1659 if (!mask || (glort & ~mask))
1660 return FM10K_ERR_PARAM;
1661
1662 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1663 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1664 return FM10K_ERR_PARAM;
1665
1666 /* record the glort, mask, and port count */
1667 hw->mac.dglort_map = dglort_map;
1668
1669 return 0;
1670}
1671
1672const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1673 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1674 FM10K_TLV_ATTR_LAST
1675};
1676
1677/**
1678 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1679 * @hw: Pointer to hardware structure
1680 * @results: pointer array containing parsed data
1681 * @mbx: Pointer to mailbox information structure
1682 *
1683 * This handler configures the default VLAN for the PF
1684 **/
1685static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1686 struct fm10k_mbx_info __always_unused *mbx)
1687{
1688 u16 glort, pvid;
1689 u32 pvid_update;
1690 s32 err;
1691
1692 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1693 &pvid_update);
1694 if (err)
1695 return err;
1696
1697 /* extract values from the pvid update */
1698 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1699 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1700
1701 /* if glort is not valid return error */
1702 if (!fm10k_glort_valid_pf(hw, glort))
1703 return FM10K_ERR_PARAM;
1704
1705 /* verify VLAN ID is valid */
1706 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1707 return FM10K_ERR_PARAM;
1708
1709 /* record the port VLAN ID value */
1710 hw->mac.default_vid = pvid;
1711
1712 return 0;
1713}
1714
1715/**
1716 * fm10k_record_global_table_data - Move global table data to swapi table info
1717 * @from: pointer to source table data structure
1718 * @to: pointer to destination table info structure
1719 *
1720 * This function is will copy table_data to the table_info contained in
1721 * the hw struct.
1722 **/
1723static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1724 struct fm10k_swapi_table_info *to)
1725{
1726 /* convert from le32 struct to CPU byte ordered values */
1727 to->used = le32_to_cpu(from->used);
1728 to->avail = le32_to_cpu(from->avail);
1729}
1730
1731const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1732 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1733 sizeof(struct fm10k_swapi_error)),
1734 FM10K_TLV_ATTR_LAST
1735};
1736
1737/**
1738 * fm10k_msg_err_pf - Message handler for error reply
1739 * @hw: Pointer to hardware structure
1740 * @results: pointer array containing parsed data
1741 * @mbx: Pointer to mailbox information structure
1742 *
1743 * This handler will capture the data for any error replies to previous
1744 * messages that the PF has sent.
1745 **/
1746s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1747 struct fm10k_mbx_info __always_unused *mbx)
1748{
1749 struct fm10k_swapi_error err_msg;
1750 s32 err;
1751
1752 /* extract structure from message */
1753 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1754 &err_msg, sizeof(err_msg));
1755 if (err)
1756 return err;
1757
1758 /* record table status */
1759 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1760 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1761 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1762
1763 /* record SW API status value */
1764 hw->swapi.status = le32_to_cpu(err_msg.status);
1765
1766 return 0;
1767}
1768
1769static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1770 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1771 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1772 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1773 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1774 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1775 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1776 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1777};
1778
1779static const struct fm10k_mac_ops mac_ops_pf = {
1780 .get_bus_info = fm10k_get_bus_info_generic,
1781 .reset_hw = fm10k_reset_hw_pf,
1782 .init_hw = fm10k_init_hw_pf,
1783 .start_hw = fm10k_start_hw_generic,
1784 .stop_hw = fm10k_stop_hw_generic,
1785 .update_vlan = fm10k_update_vlan_pf,
1786 .read_mac_addr = fm10k_read_mac_addr_pf,
1787 .update_uc_addr = fm10k_update_uc_addr_pf,
1788 .update_mc_addr = fm10k_update_mc_addr_pf,
1789 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1790 .update_int_moderator = fm10k_update_int_moderator_pf,
1791 .update_lport_state = fm10k_update_lport_state_pf,
1792 .update_hw_stats = fm10k_update_hw_stats_pf,
1793 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1794 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1795 .set_dma_mask = fm10k_set_dma_mask_pf,
1796 .get_fault = fm10k_get_fault_pf,
1797 .get_host_state = fm10k_get_host_state_pf,
1798 .request_lport_map = fm10k_request_lport_map_pf,
1799};
1800
1801static const struct fm10k_iov_ops iov_ops_pf = {
1802 .assign_resources = fm10k_iov_assign_resources_pf,
1803 .configure_tc = fm10k_iov_configure_tc_pf,
1804 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
1805 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1806 .reset_resources = fm10k_iov_reset_resources_pf,
1807 .set_lport = fm10k_iov_set_lport_pf,
1808 .reset_lport = fm10k_iov_reset_lport_pf,
1809 .update_stats = fm10k_iov_update_stats_pf,
1810};
1811
1812static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1813{
1814 fm10k_get_invariants_generic(hw);
1815
1816 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1817}
1818
1819const struct fm10k_info fm10k_pf_info = {
1820 .mac = fm10k_mac_pf,
1821 .get_invariants = fm10k_get_invariants_pf,
1822 .mac_ops = &mac_ops_pf,
1823 .iov_ops = &iov_ops_pf,
1824};
1/* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include "fm10k_pf.h"
22#include "fm10k_vf.h"
23
24/**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
27 *
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32{
33 s32 err;
34 u32 reg;
35 u16 i;
36
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
45
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 }
51
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 if (err == FM10K_ERR_REQUESTS_PENDING) {
55 hw->mac.reset_while_pending++;
56 goto force_reset;
57 } else if (err) {
58 return err;
59 }
60
61 /* Verify that DMA is no longer active */
62 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
63 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
64 return FM10K_ERR_DMA_PENDING;
65
66force_reset:
67 /* Inititate data path reset */
68 reg = FM10K_DMA_CTRL_DATAPATH_RESET;
69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70
71 /* Flush write and allow 100us for reset to complete */
72 fm10k_write_flush(hw);
73 udelay(FM10K_RESET_TIMEOUT);
74
75 /* Reset mailbox global interrupts */
76 reg = FM10K_MBX_GLOBAL_REQ_INTERRUPT | FM10K_MBX_GLOBAL_ACK_INTERRUPT;
77 fm10k_write_reg(hw, FM10K_GMBX, reg);
78
79 /* Verify we made it out of reset */
80 reg = fm10k_read_reg(hw, FM10K_IP);
81 if (!(reg & FM10K_IP_NOTINRESET))
82 return FM10K_ERR_RESET_FAILED;
83
84 return 0;
85}
86
87/**
88 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
89 * @hw: pointer to hardware structure
90 *
91 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
92 **/
93static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
94{
95 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
96
97 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
98}
99
100/**
101 * fm10k_init_hw_pf - PF hardware initialization
102 * @hw: pointer to hardware structure
103 *
104 **/
105static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
106{
107 u32 dma_ctrl, txqctl;
108 u16 i;
109
110 /* Establish default VSI as valid */
111 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
112 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
113 FM10K_DGLORTMAP_ANY);
114
115 /* Invalidate all other GLORT entries */
116 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
117 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
118
119 /* reset ITR2(0) to point to itself */
120 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
121
122 /* reset VF ITR2(0) to point to 0 avoid PF registers */
123 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
124
125 /* loop through all PF ITR2 registers pointing them to the previous */
126 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
127 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
128
129 /* Enable interrupt moderator if not already enabled */
130 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
131
132 /* compute the default txqctl configuration */
133 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
134 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
135
136 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
137 /* configure rings for 256 Queue / 32 Descriptor cache mode */
138 fm10k_write_reg(hw, FM10K_TQDLOC(i),
139 (i * FM10K_TQDLOC_BASE_32_DESC) |
140 FM10K_TQDLOC_SIZE_32_DESC);
141 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
142
143 /* configure rings to provide TPH processing hints */
144 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
145 FM10K_TPH_TXCTRL_DESC_TPHEN |
146 FM10K_TPH_TXCTRL_DESC_RROEN |
147 FM10K_TPH_TXCTRL_DESC_WROEN |
148 FM10K_TPH_TXCTRL_DATA_RROEN);
149 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
150 FM10K_TPH_RXCTRL_DESC_TPHEN |
151 FM10K_TPH_RXCTRL_DESC_RROEN |
152 FM10K_TPH_RXCTRL_DATA_WROEN |
153 FM10K_TPH_RXCTRL_HDR_WROEN);
154 }
155
156 /* set max hold interval to align with 1.024 usec in all modes and
157 * store ITR scale
158 */
159 switch (hw->bus.speed) {
160 case fm10k_bus_speed_2500:
161 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
162 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
163 break;
164 case fm10k_bus_speed_5000:
165 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
166 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
167 break;
168 case fm10k_bus_speed_8000:
169 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
170 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
171 break;
172 default:
173 dma_ctrl = 0;
174 /* just in case, assume Gen3 ITR scale */
175 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
176 break;
177 }
178
179 /* Configure TSO flags */
180 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
181 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
182
183 /* Enable DMA engine
184 * Set Rx Descriptor size to 32
185 * Set Minimum MSS to 64
186 * Set Maximum number of Rx queues to 256 / 32 Descriptor
187 */
188 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
189 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
190 FM10K_DMA_CTRL_32_DESC;
191
192 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
193
194 /* record maximum queue count, we limit ourselves to 128 */
195 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
196
197 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
198 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
199
200 return 0;
201}
202
203/**
204 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
205 * @hw: pointer to hardware structure
206 * @vid: VLAN ID to add to table
207 * @vsi: Index indicating VF ID or PF ID in table
208 * @set: Indicates if this is a set or clear operation
209 *
210 * This function adds or removes the corresponding VLAN ID from the VLAN
211 * filter table for the corresponding function. In addition to the
212 * standard set/clear that supports one bit a multi-bit write is
213 * supported to set 64 bits at a time.
214 **/
215static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
216{
217 u32 vlan_table, reg, mask, bit, len;
218
219 /* verify the VSI index is valid */
220 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
221 return FM10K_ERR_PARAM;
222
223 /* VLAN multi-bit write:
224 * The multi-bit write has several parts to it.
225 * 24 16 8 0
226 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
227 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
228 * | RSVD0 | Length |C|RSVD0| VLAN ID |
229 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
230 *
231 * VLAN ID: Vlan Starting value
232 * RSVD0: Reserved section, must be 0
233 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
234 * Length: Number of times to repeat the bit being set
235 */
236 len = vid >> 16;
237 vid = (vid << 17) >> 17;
238
239 /* verify the reserved 0 fields are 0 */
240 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
241 return FM10K_ERR_PARAM;
242
243 /* Loop through the table updating all required VLANs */
244 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
245 len < FM10K_VLAN_TABLE_VID_MAX;
246 len -= 32 - bit, reg++, bit = 0) {
247 /* record the initial state of the register */
248 vlan_table = fm10k_read_reg(hw, reg);
249
250 /* truncate mask if we are at the start or end of the run */
251 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
252
253 /* make necessary modifications to the register */
254 mask &= set ? ~vlan_table : vlan_table;
255 if (mask)
256 fm10k_write_reg(hw, reg, vlan_table ^ mask);
257 }
258
259 return 0;
260}
261
262/**
263 * fm10k_read_mac_addr_pf - Read device MAC address
264 * @hw: pointer to the HW structure
265 *
266 * Reads the device MAC address from the SM_AREA and stores the value.
267 **/
268static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
269{
270 u8 perm_addr[ETH_ALEN];
271 u32 serial_num;
272
273 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
274
275 /* last byte should be all 1's */
276 if ((~serial_num) << 24)
277 return FM10K_ERR_INVALID_MAC_ADDR;
278
279 perm_addr[0] = (u8)(serial_num >> 24);
280 perm_addr[1] = (u8)(serial_num >> 16);
281 perm_addr[2] = (u8)(serial_num >> 8);
282
283 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
284
285 /* first byte should be all 1's */
286 if ((~serial_num) >> 24)
287 return FM10K_ERR_INVALID_MAC_ADDR;
288
289 perm_addr[3] = (u8)(serial_num >> 16);
290 perm_addr[4] = (u8)(serial_num >> 8);
291 perm_addr[5] = (u8)(serial_num);
292
293 ether_addr_copy(hw->mac.perm_addr, perm_addr);
294 ether_addr_copy(hw->mac.addr, perm_addr);
295
296 return 0;
297}
298
299/**
300 * fm10k_glort_valid_pf - Validate that the provided glort is valid
301 * @hw: pointer to the HW structure
302 * @glort: base glort to be validated
303 *
304 * This function will return an error if the provided glort is invalid
305 **/
306bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
307{
308 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
309
310 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
311}
312
313/**
314 * fm10k_update_xc_addr_pf - Update device addresses
315 * @hw: pointer to the HW structure
316 * @glort: base resource tag for this request
317 * @mac: MAC address to add/remove from table
318 * @vid: VLAN ID to add/remove from table
319 * @add: Indicates if this is an add or remove operation
320 * @flags: flags field to indicate add and secure
321 *
322 * This function generates a message to the Switch API requesting
323 * that the given logical port add/remove the given L2 MAC/VLAN address.
324 **/
325static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
326 const u8 *mac, u16 vid, bool add, u8 flags)
327{
328 struct fm10k_mbx_info *mbx = &hw->mbx;
329 struct fm10k_mac_update mac_update;
330 u32 msg[5];
331
332 /* clear set bit from VLAN ID */
333 vid &= ~FM10K_VLAN_CLEAR;
334
335 /* if glort or VLAN are not valid return error */
336 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
337 return FM10K_ERR_PARAM;
338
339 /* record fields */
340 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
341 ((u32)mac[3] << 16) |
342 ((u32)mac[4] << 8) |
343 ((u32)mac[5]));
344 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
345 ((u16)mac[1]));
346 mac_update.vlan = cpu_to_le16(vid);
347 mac_update.glort = cpu_to_le16(glort);
348 mac_update.action = add ? 0 : 1;
349 mac_update.flags = flags;
350
351 /* populate mac_update fields */
352 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
353 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
354 &mac_update, sizeof(mac_update));
355
356 /* load onto outgoing mailbox */
357 return mbx->ops.enqueue_tx(hw, mbx, msg);
358}
359
360/**
361 * fm10k_update_uc_addr_pf - Update device unicast addresses
362 * @hw: pointer to the HW structure
363 * @glort: base resource tag for this request
364 * @mac: MAC address to add/remove from table
365 * @vid: VLAN ID to add/remove from table
366 * @add: Indicates if this is an add or remove operation
367 * @flags: flags field to indicate add and secure
368 *
369 * This function is used to add or remove unicast addresses for
370 * the PF.
371 **/
372static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
373 const u8 *mac, u16 vid, bool add, u8 flags)
374{
375 /* verify MAC address is valid */
376 if (!is_valid_ether_addr(mac))
377 return FM10K_ERR_PARAM;
378
379 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
380}
381
382/**
383 * fm10k_update_mc_addr_pf - Update device multicast addresses
384 * @hw: pointer to the HW structure
385 * @glort: base resource tag for this request
386 * @mac: MAC address to add/remove from table
387 * @vid: VLAN ID to add/remove from table
388 * @add: Indicates if this is an add or remove operation
389 *
390 * This function is used to add or remove multicast MAC addresses for
391 * the PF.
392 **/
393static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
394 const u8 *mac, u16 vid, bool add)
395{
396 /* verify multicast address is valid */
397 if (!is_multicast_ether_addr(mac))
398 return FM10K_ERR_PARAM;
399
400 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
401}
402
403/**
404 * fm10k_update_xcast_mode_pf - Request update of multicast mode
405 * @hw: pointer to hardware structure
406 * @glort: base resource tag for this request
407 * @mode: integer value indicating mode being requested
408 *
409 * This function will attempt to request a higher mode for the port
410 * so that it can enable either multicast, multicast promiscuous, or
411 * promiscuous mode of operation.
412 **/
413static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
414{
415 struct fm10k_mbx_info *mbx = &hw->mbx;
416 u32 msg[3], xcast_mode;
417
418 if (mode > FM10K_XCAST_MODE_NONE)
419 return FM10K_ERR_PARAM;
420
421 /* if glort is not valid return error */
422 if (!fm10k_glort_valid_pf(hw, glort))
423 return FM10K_ERR_PARAM;
424
425 /* write xcast mode as a single u32 value,
426 * lower 16 bits: glort
427 * upper 16 bits: mode
428 */
429 xcast_mode = ((u32)mode << 16) | glort;
430
431 /* generate message requesting to change xcast mode */
432 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
433 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
434
435 /* load onto outgoing mailbox */
436 return mbx->ops.enqueue_tx(hw, mbx, msg);
437}
438
439/**
440 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
441 * @hw: pointer to hardware structure
442 *
443 * This function walks through the MSI-X vector table to determine the
444 * number of active interrupts and based on that information updates the
445 * interrupt moderator linked list.
446 **/
447static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
448{
449 u32 i;
450
451 /* Disable interrupt moderator */
452 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
453
454 /* loop through PF from last to first looking enabled vectors */
455 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
456 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
457 break;
458 }
459
460 /* always reset VFITR2[0] to point to last enabled PF vector */
461 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
462
463 /* reset ITR2[0] to point to last enabled PF vector */
464 if (!hw->iov.num_vfs)
465 fm10k_write_reg(hw, FM10K_ITR2(0), i);
466
467 /* Enable interrupt moderator */
468 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
469}
470
471/**
472 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
473 * @hw: pointer to the HW structure
474 * @glort: base resource tag for this request
475 * @count: number of logical ports being updated
476 * @enable: boolean value indicating enable or disable
477 *
478 * This function is used to add/remove a logical port from the switch.
479 **/
480static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
481 u16 count, bool enable)
482{
483 struct fm10k_mbx_info *mbx = &hw->mbx;
484 u32 msg[3], lport_msg;
485
486 /* do nothing if we are being asked to create or destroy 0 ports */
487 if (!count)
488 return 0;
489
490 /* if glort is not valid return error */
491 if (!fm10k_glort_valid_pf(hw, glort))
492 return FM10K_ERR_PARAM;
493
494 /* reset multicast mode if deleting lport */
495 if (!enable)
496 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
497
498 /* construct the lport message from the 2 pieces of data we have */
499 lport_msg = ((u32)count << 16) | glort;
500
501 /* generate lport create/delete message */
502 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
503 FM10K_PF_MSG_ID_LPORT_DELETE);
504 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
505
506 /* load onto outgoing mailbox */
507 return mbx->ops.enqueue_tx(hw, mbx, msg);
508}
509
510/**
511 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
512 * @hw: pointer to hardware structure
513 * @dglort: pointer to dglort configuration structure
514 *
515 * Reads the configuration structure contained in dglort_cfg and uses
516 * that information to then populate a DGLORTMAP/DEC entry and the queues
517 * to which it has been assigned.
518 **/
519static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
520 struct fm10k_dglort_cfg *dglort)
521{
522 u16 glort, queue_count, vsi_count, pc_count;
523 u16 vsi, queue, pc, q_idx;
524 u32 txqctl, dglortdec, dglortmap;
525
526 /* verify the dglort pointer */
527 if (!dglort)
528 return FM10K_ERR_PARAM;
529
530 /* verify the dglort values */
531 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
532 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
533 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
534 return FM10K_ERR_PARAM;
535
536 /* determine count of VSIs and queues */
537 queue_count = BIT(dglort->rss_l + dglort->pc_l);
538 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
539 glort = dglort->glort;
540 q_idx = dglort->queue_b;
541
542 /* configure SGLORT for queues */
543 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
544 for (queue = 0; queue < queue_count; queue++, q_idx++) {
545 if (q_idx >= FM10K_MAX_QUEUES)
546 break;
547
548 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
549 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
550 }
551 }
552
553 /* determine count of PCs and queues */
554 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
555 pc_count = BIT(dglort->pc_l);
556
557 /* configure PC for Tx queues */
558 for (pc = 0; pc < pc_count; pc++) {
559 q_idx = pc + dglort->queue_b;
560 for (queue = 0; queue < queue_count; queue++) {
561 if (q_idx >= FM10K_MAX_QUEUES)
562 break;
563
564 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
565 txqctl &= ~FM10K_TXQCTL_PC_MASK;
566 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
567 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
568
569 q_idx += pc_count;
570 }
571 }
572
573 /* configure DGLORTDEC */
574 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
575 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
576 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
577 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
578 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
579 ((u32)(dglort->queue_l));
580 if (dglort->inner_rss)
581 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
582
583 /* configure DGLORTMAP */
584 dglortmap = (dglort->idx == fm10k_dglort_default) ?
585 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
586 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
587 dglortmap |= dglort->glort;
588
589 /* write values to hardware */
590 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
591 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
592
593 return 0;
594}
595
596u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
597{
598 u16 num_pools = hw->iov.num_pools;
599
600 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
601 8 : FM10K_MAX_QUEUES_POOL;
602}
603
604u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
605{
606 u16 num_vfs = hw->iov.num_vfs;
607 u16 vf_q_idx = FM10K_MAX_QUEUES;
608
609 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
610
611 return vf_q_idx;
612}
613
614static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
615{
616 u16 num_pools = hw->iov.num_pools;
617
618 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
619 FM10K_MAX_VECTORS_POOL;
620}
621
622static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
623{
624 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
625
626 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
627
628 return vf_v_idx;
629}
630
631/**
632 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
633 * @hw: pointer to the HW structure
634 * @num_vfs: number of VFs to be allocated
635 * @num_pools: number of virtualization pools to be allocated
636 *
637 * Allocates queues and traffic classes to virtualization entities to prepare
638 * the PF for SR-IOV and VMDq
639 **/
640static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
641 u16 num_pools)
642{
643 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
644 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
645 int i, j;
646
647 /* hardware only supports up to 64 pools */
648 if (num_pools > 64)
649 return FM10K_ERR_PARAM;
650
651 /* the number of VFs cannot exceed the number of pools */
652 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
653 return FM10K_ERR_PARAM;
654
655 /* record number of virtualization entities */
656 hw->iov.num_vfs = num_vfs;
657 hw->iov.num_pools = num_pools;
658
659 /* determine qmap offsets and counts */
660 qmap_stride = (num_vfs > 8) ? 32 : 256;
661 qpp = fm10k_queues_per_pool(hw);
662 vpp = fm10k_vectors_per_pool(hw);
663
664 /* calculate starting index for queues */
665 vf_q_idx = fm10k_vf_queue_index(hw, 0);
666 qmap_idx = 0;
667
668 /* establish TCs with -1 credits and no quanta to prevent transmit */
669 for (i = 0; i < num_vfs; i++) {
670 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
671 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
672 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
673 FM10K_TC_CREDIT_CREDIT_MASK);
674 }
675
676 /* zero out all mbmem registers */
677 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
678 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
679
680 /* clear event notification of VF FLR */
681 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
682 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
683
684 /* loop through unallocated rings assigning them back to PF */
685 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
686 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
687 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
688 FM10K_TXQCTL_UNLIMITED_BW | vid);
689 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
690 }
691
692 /* PF should have already updated VFITR2[0] */
693
694 /* update all ITR registers to flow to VFITR2[0] */
695 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
696 if (!(i & (vpp - 1)))
697 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
698 else
699 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
700 }
701
702 /* update PF ITR2[0] to reference the last vector */
703 fm10k_write_reg(hw, FM10K_ITR2(0),
704 fm10k_vf_vector_index(hw, num_vfs - 1));
705
706 /* loop through rings populating rings and TCs */
707 for (i = 0; i < num_vfs; i++) {
708 /* record index for VF queue 0 for use in end of loop */
709 vf_q_idx0 = vf_q_idx;
710
711 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
712 /* assign VF and locked TC to queues */
713 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
714 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
715 (i << FM10K_TXQCTL_TC_SHIFT) | i |
716 FM10K_TXQCTL_VF | vid);
717 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
718 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
719 FM10K_RXDCTL_DROP_ON_EMPTY);
720 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
721 (i << FM10K_RXQCTL_VF_SHIFT) |
722 FM10K_RXQCTL_VF);
723
724 /* map queue pair to VF */
725 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
726 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
727 }
728
729 /* repeat the first ring for all of the remaining VF rings */
730 for (; j < qmap_stride; j++, qmap_idx++) {
731 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
732 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
733 }
734 }
735
736 /* loop through remaining indexes assigning all to queue 0 */
737 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
738 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
739 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
740 qmap_idx++;
741 }
742
743 return 0;
744}
745
746/**
747 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
748 * @hw: pointer to the HW structure
749 * @vf_idx: index of VF receiving GLORT
750 * @rate: Rate indicated in Mb/s
751 *
752 * Configured the TC for a given VF to allow only up to a given number
753 * of Mb/s of outgoing Tx throughput.
754 **/
755static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
756{
757 /* configure defaults */
758 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
759 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
760
761 /* verify vf is in range */
762 if (vf_idx >= hw->iov.num_vfs)
763 return FM10K_ERR_PARAM;
764
765 /* set interval to align with 4.096 usec in all modes */
766 switch (hw->bus.speed) {
767 case fm10k_bus_speed_2500:
768 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
769 break;
770 case fm10k_bus_speed_5000:
771 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
772 break;
773 default:
774 break;
775 }
776
777 if (rate) {
778 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
779 return FM10K_ERR_PARAM;
780
781 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
782 * The rate is provided in Mbits per second
783 * To tralslate from rate to quanta we need to multiply the
784 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
785 * dealing with floating point we can round the values up
786 * to the nearest whole number ratio which gives us 128 / 125.
787 */
788 tc_rate = (rate * 128) / 125;
789
790 /* try to keep the rate limiting accurate by increasing
791 * the number of credits and interval for rates less than 4Gb/s
792 */
793 if (rate < 4000)
794 interval <<= 1;
795 else
796 tc_rate >>= 1;
797 }
798
799 /* update rate limiter with new values */
800 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
801 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
802 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
803
804 return 0;
805}
806
807/**
808 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
809 * @hw: pointer to the HW structure
810 * @vf_idx: index of VF receiving GLORT
811 *
812 * Update the interrupt moderator linked list to include any MSI-X
813 * interrupts which the VF has enabled in the MSI-X vector table.
814 **/
815static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
816{
817 u16 vf_v_idx, vf_v_limit, i;
818
819 /* verify vf is in range */
820 if (vf_idx >= hw->iov.num_vfs)
821 return FM10K_ERR_PARAM;
822
823 /* determine vector offset and count */
824 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
825 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
826
827 /* search for first vector that is not masked */
828 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
829 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
830 break;
831 }
832
833 /* reset linked list so it now includes our active vectors */
834 if (vf_idx == (hw->iov.num_vfs - 1))
835 fm10k_write_reg(hw, FM10K_ITR2(0), i);
836 else
837 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
838
839 return 0;
840}
841
842/**
843 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
844 * @hw: pointer to the HW structure
845 * @vf_info: pointer to VF information structure
846 *
847 * Assign a MAC address and default VLAN to a VF and notify it of the update
848 **/
849static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
850 struct fm10k_vf_info *vf_info)
851{
852 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
853 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
854 s32 err = 0;
855 u16 vf_idx, vf_vid;
856
857 /* verify vf is in range */
858 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
859 return FM10K_ERR_PARAM;
860
861 /* determine qmap offsets and counts */
862 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
863 queues_per_pool = fm10k_queues_per_pool(hw);
864
865 /* calculate starting index for queues */
866 vf_idx = vf_info->vf_idx;
867 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
868 qmap_idx = qmap_stride * vf_idx;
869
870 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
871 * used here to indicate to the VF that it will not have privilege to
872 * write VLAN_TABLE. All policy is enforced on the PF but this allows
873 * the VF to correctly report errors to userspace rqeuests.
874 */
875 if (vf_info->pf_vid)
876 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
877 else
878 vf_vid = vf_info->sw_vid;
879
880 /* generate MAC_ADDR request */
881 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
882 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
883 vf_info->mac, vf_vid);
884
885 /* Configure Queue control register with new VLAN ID. The TXQCTL
886 * register is RO from the VF, so the PF must do this even in the
887 * case of notifying the VF of a new VID via the mailbox.
888 */
889 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
890 FM10K_TXQCTL_VID_MASK;
891 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
892 FM10K_TXQCTL_VF | vf_idx;
893
894 for (i = 0; i < queues_per_pool; i++)
895 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
896
897 /* try loading a message onto outgoing mailbox first */
898 if (vf_info->mbx.ops.enqueue_tx) {
899 err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
900 if (err != FM10K_MBX_ERR_NO_MBX)
901 return err;
902 err = 0;
903 }
904
905 /* If we aren't connected to a mailbox, this is most likely because
906 * the VF driver is not running. It should thus be safe to re-map
907 * queues and use the registers to pass the MAC address so that the VF
908 * driver gets correct information during its initialization.
909 */
910
911 /* MAP Tx queue back to 0 temporarily, and disable it */
912 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
913 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
914
915 /* verify ring has disabled before modifying base address registers */
916 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
917 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
918 /* limit ourselves to a 1ms timeout */
919 if (timeout == 10) {
920 err = FM10K_ERR_DMA_PENDING;
921 goto err_out;
922 }
923
924 usleep_range(100, 200);
925 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
926 }
927
928 /* Update base address registers to contain MAC address */
929 if (is_valid_ether_addr(vf_info->mac)) {
930 tdbal = (((u32)vf_info->mac[3]) << 24) |
931 (((u32)vf_info->mac[4]) << 16) |
932 (((u32)vf_info->mac[5]) << 8);
933
934 tdbah = (((u32)0xFF) << 24) |
935 (((u32)vf_info->mac[0]) << 16) |
936 (((u32)vf_info->mac[1]) << 8) |
937 ((u32)vf_info->mac[2]);
938 }
939
940 /* Record the base address into queue 0 */
941 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
942 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
943
944 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
945 * to pass the information during VF initialization. See definition of
946 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
947 */
948 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
949 FM10K_TDLEN_ITR_SCALE_SHIFT);
950
951err_out:
952 /* restore the queue back to VF ownership */
953 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
954 return err;
955}
956
957/**
958 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
959 * @hw: pointer to the HW structure
960 * @vf_info: pointer to VF information structure
961 *
962 * Reassign the interrupts and queues to a VF following an FLR
963 **/
964static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
965 struct fm10k_vf_info *vf_info)
966{
967 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
968 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
969 u16 vf_v_idx, vf_v_limit, vf_vid;
970 u8 vf_idx = vf_info->vf_idx;
971 int i;
972
973 /* verify vf is in range */
974 if (vf_idx >= hw->iov.num_vfs)
975 return FM10K_ERR_PARAM;
976
977 /* clear event notification of VF FLR */
978 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
979
980 /* force timeout and then disconnect the mailbox */
981 vf_info->mbx.timeout = 0;
982 if (vf_info->mbx.ops.disconnect)
983 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
984
985 /* determine vector offset and count */
986 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
987 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
988
989 /* determine qmap offsets and counts */
990 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
991 queues_per_pool = fm10k_queues_per_pool(hw);
992 qmap_idx = qmap_stride * vf_idx;
993
994 /* make all the queues inaccessible to the VF */
995 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
996 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
997 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
998 }
999
1000 /* calculate starting index for queues */
1001 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
1002
1003 /* determine correct default VLAN ID */
1004 if (vf_info->pf_vid)
1005 vf_vid = vf_info->pf_vid;
1006 else
1007 vf_vid = vf_info->sw_vid;
1008
1009 /* configure Queue control register */
1010 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1011 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1012 FM10K_TXQCTL_VF | vf_idx;
1013 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1014
1015 /* stop further DMA and reset queue ownership back to VF */
1016 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1017 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1018 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1019 fm10k_write_reg(hw, FM10K_RXDCTL(i),
1020 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1021 FM10K_RXDCTL_DROP_ON_EMPTY);
1022 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1023 }
1024
1025 /* reset TC with -1 credits and no quanta to prevent transmit */
1026 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1027 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1028 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1029 FM10K_TC_CREDIT_CREDIT_MASK);
1030
1031 /* update our first entry in the table based on previous VF */
1032 if (!vf_idx)
1033 hw->mac.ops.update_int_moderator(hw);
1034 else
1035 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1036
1037 /* reset linked list so it now includes our active vectors */
1038 if (vf_idx == (hw->iov.num_vfs - 1))
1039 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1040 else
1041 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1042
1043 /* link remaining vectors so that next points to previous */
1044 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1045 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1046
1047 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1048 for (i = FM10K_VFMBMEM_LEN; i--;)
1049 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1050 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1051 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1052 for (i = FM10K_RETA_SIZE; i--;)
1053 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1054 for (i = FM10K_RSSRK_SIZE; i--;)
1055 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1056 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1057
1058 /* Update base address registers to contain MAC address */
1059 if (is_valid_ether_addr(vf_info->mac)) {
1060 tdbal = (((u32)vf_info->mac[3]) << 24) |
1061 (((u32)vf_info->mac[4]) << 16) |
1062 (((u32)vf_info->mac[5]) << 8);
1063 tdbah = (((u32)0xFF) << 24) |
1064 (((u32)vf_info->mac[0]) << 16) |
1065 (((u32)vf_info->mac[1]) << 8) |
1066 ((u32)vf_info->mac[2]);
1067 }
1068
1069 /* map queue pairs back to VF from last to first */
1070 for (i = queues_per_pool; i--;) {
1071 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1072 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1073 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1074 * explanation of how TDLEN is used.
1075 */
1076 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1077 hw->mac.itr_scale <<
1078 FM10K_TDLEN_ITR_SCALE_SHIFT);
1079 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1080 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1081 }
1082
1083 /* repeat the first ring for all the remaining VF rings */
1084 for (i = queues_per_pool; i < qmap_stride; i++) {
1085 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1086 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1087 }
1088
1089 return 0;
1090}
1091
1092/**
1093 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1094 * @hw: pointer to hardware structure
1095 * @vf_info: pointer to VF information structure
1096 * @lport_idx: Logical port offset from the hardware glort
1097 * @flags: Set of capability flags to extend port beyond basic functionality
1098 *
1099 * This function allows enabling a VF port by assigning it a GLORT and
1100 * setting the flags so that it can enable an Rx mode.
1101 **/
1102static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1103 struct fm10k_vf_info *vf_info,
1104 u16 lport_idx, u8 flags)
1105{
1106 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1107
1108 /* if glort is not valid return error */
1109 if (!fm10k_glort_valid_pf(hw, glort))
1110 return FM10K_ERR_PARAM;
1111
1112 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1113 vf_info->glort = glort;
1114
1115 return 0;
1116}
1117
1118/**
1119 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1120 * @hw: pointer to hardware structure
1121 * @vf_info: pointer to VF information structure
1122 *
1123 * This function disables a VF port by stripping it of a GLORT and
1124 * setting the flags so that it cannot enable any Rx mode.
1125 **/
1126static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1127 struct fm10k_vf_info *vf_info)
1128{
1129 u32 msg[1];
1130
1131 /* need to disable the port if it is already enabled */
1132 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1133 /* notify switch that this port has been disabled */
1134 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1135
1136 /* generate port state response to notify VF it is not ready */
1137 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1138 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1139 }
1140
1141 /* clear flags and glort if it exists */
1142 vf_info->vf_flags = 0;
1143 vf_info->glort = 0;
1144}
1145
1146/**
1147 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1148 * @hw: pointer to hardware structure
1149 * @q: stats for all queues of a VF
1150 * @vf_idx: index of VF
1151 *
1152 * This function collects queue stats for VFs.
1153 **/
1154static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1155 struct fm10k_hw_stats_q *q,
1156 u16 vf_idx)
1157{
1158 u32 idx, qpp;
1159
1160 /* get stats for all of the queues */
1161 qpp = fm10k_queues_per_pool(hw);
1162 idx = fm10k_vf_queue_index(hw, vf_idx);
1163 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1164}
1165
1166/**
1167 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1168 * @hw: Pointer to hardware structure
1169 * @results: Pointer array to message, results[0] is pointer to message
1170 * @mbx: Pointer to mailbox information structure
1171 *
1172 * This function is a default handler for MSI-X requests from the VF. The
1173 * assumption is that in this case it is acceptable to just directly
1174 * hand off the message from the VF to the underlying shared code.
1175 **/
1176s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1177 struct fm10k_mbx_info *mbx)
1178{
1179 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1180 u8 vf_idx = vf_info->vf_idx;
1181
1182 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1183}
1184
1185/**
1186 * fm10k_iov_select_vid - Select correct default VLAN ID
1187 * @hw: Pointer to hardware structure
1188 * @vid: VLAN ID to correct
1189 *
1190 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1191 * return either the pf_vid or sw_vid depending on which one is set.
1192 */
1193static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1194{
1195 if (!vid)
1196 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1197 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1198 return FM10K_ERR_PARAM;
1199 else
1200 return vid;
1201}
1202
1203/**
1204 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1205 * @hw: Pointer to hardware structure
1206 * @results: Pointer array to message, results[0] is pointer to message
1207 * @mbx: Pointer to mailbox information structure
1208 *
1209 * This function is a default handler for MAC/VLAN requests from the VF.
1210 * The assumption is that in this case it is acceptable to just directly
1211 * hand off the message from the VF to the underlying shared code.
1212 **/
1213s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1214 struct fm10k_mbx_info *mbx)
1215{
1216 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1217 u8 mac[ETH_ALEN];
1218 u32 *result;
1219 int err = 0;
1220 bool set;
1221 u16 vlan;
1222 u32 vid;
1223
1224 /* we shouldn't be updating rules on a disabled interface */
1225 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1226 err = FM10K_ERR_PARAM;
1227
1228 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1229 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1230
1231 /* record VLAN id requested */
1232 err = fm10k_tlv_attr_get_u32(result, &vid);
1233 if (err)
1234 return err;
1235
1236 set = !(vid & FM10K_VLAN_CLEAR);
1237 vid &= ~FM10K_VLAN_CLEAR;
1238
1239 /* if the length field has been set, this is a multi-bit
1240 * update request. For multi-bit requests, simply disallow
1241 * them when the pf_vid has been set. In this case, the PF
1242 * should have already cleared the VLAN_TABLE, and if we
1243 * allowed them, it could allow a rogue VF to receive traffic
1244 * on a VLAN it was not assigned. In the single-bit case, we
1245 * need to modify requests for VLAN 0 to use the default PF or
1246 * SW vid when assigned.
1247 */
1248
1249 if (vid >> 16) {
1250 /* prevent multi-bit requests when PF has
1251 * administratively set the VLAN for this VF
1252 */
1253 if (vf_info->pf_vid)
1254 return FM10K_ERR_PARAM;
1255 } else {
1256 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1257 if (err < 0)
1258 return err;
1259
1260 vid = err;
1261 }
1262
1263 /* update VSI info for VF in regards to VLAN table */
1264 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1265 }
1266
1267 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1268 result = results[FM10K_MAC_VLAN_MSG_MAC];
1269
1270 /* record unicast MAC address requested */
1271 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1272 if (err)
1273 return err;
1274
1275 /* block attempts to set MAC for a locked device */
1276 if (is_valid_ether_addr(vf_info->mac) &&
1277 !ether_addr_equal(mac, vf_info->mac))
1278 return FM10K_ERR_PARAM;
1279
1280 set = !(vlan & FM10K_VLAN_CLEAR);
1281 vlan &= ~FM10K_VLAN_CLEAR;
1282
1283 err = fm10k_iov_select_vid(vf_info, vlan);
1284 if (err < 0)
1285 return err;
1286
1287 vlan = (u16)err;
1288
1289 /* notify switch of request for new unicast address */
1290 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1291 mac, vlan, set, 0);
1292 }
1293
1294 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1295 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1296
1297 /* record multicast MAC address requested */
1298 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1299 if (err)
1300 return err;
1301
1302 /* verify that the VF is allowed to request multicast */
1303 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1304 return FM10K_ERR_PARAM;
1305
1306 set = !(vlan & FM10K_VLAN_CLEAR);
1307 vlan &= ~FM10K_VLAN_CLEAR;
1308
1309 err = fm10k_iov_select_vid(vf_info, vlan);
1310 if (err < 0)
1311 return err;
1312
1313 vlan = (u16)err;
1314
1315 /* notify switch of request for new multicast address */
1316 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1317 mac, vlan, set);
1318 }
1319
1320 return err;
1321}
1322
1323/**
1324 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1325 * @vf_info: VF info structure containing capability flags
1326 * @mode: Requested xcast mode
1327 *
1328 * This function outputs the mode that most closely matches the requested
1329 * mode. If not modes match it will request we disable the port
1330 **/
1331static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1332 u8 mode)
1333{
1334 u8 vf_flags = vf_info->vf_flags;
1335
1336 /* match up mode to capabilities as best as possible */
1337 switch (mode) {
1338 case FM10K_XCAST_MODE_PROMISC:
1339 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1340 return FM10K_XCAST_MODE_PROMISC;
1341 /* fallthough */
1342 case FM10K_XCAST_MODE_ALLMULTI:
1343 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1344 return FM10K_XCAST_MODE_ALLMULTI;
1345 /* fallthough */
1346 case FM10K_XCAST_MODE_MULTI:
1347 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1348 return FM10K_XCAST_MODE_MULTI;
1349 /* fallthough */
1350 case FM10K_XCAST_MODE_NONE:
1351 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1352 return FM10K_XCAST_MODE_NONE;
1353 /* fallthough */
1354 default:
1355 break;
1356 }
1357
1358 /* disable interface as it should not be able to request any */
1359 return FM10K_XCAST_MODE_DISABLE;
1360}
1361
1362/**
1363 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1364 * @hw: Pointer to hardware structure
1365 * @results: Pointer array to message, results[0] is pointer to message
1366 * @mbx: Pointer to mailbox information structure
1367 *
1368 * This function is a default handler for port state requests. The port
1369 * state requests for now are basic and consist of enabling or disabling
1370 * the port.
1371 **/
1372s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1373 struct fm10k_mbx_info *mbx)
1374{
1375 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1376 u32 *result;
1377 s32 err = 0;
1378 u32 msg[2];
1379 u8 mode = 0;
1380
1381 /* verify VF is allowed to enable even minimal mode */
1382 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1383 return FM10K_ERR_PARAM;
1384
1385 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1386 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1387
1388 /* XCAST mode update requested */
1389 err = fm10k_tlv_attr_get_u8(result, &mode);
1390 if (err)
1391 return FM10K_ERR_PARAM;
1392
1393 /* prep for possible demotion depending on capabilities */
1394 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1395
1396 /* if mode is not currently enabled, enable it */
1397 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1398 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1399
1400 /* swap mode back to a bit flag */
1401 mode = FM10K_VF_FLAG_SET_MODE(mode);
1402 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1403 /* need to disable the port if it is already enabled */
1404 if (FM10K_VF_FLAG_ENABLED(vf_info))
1405 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1406 1, false);
1407
1408 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1409 * that we actually re-enable the LPORT state below. Note that
1410 * this has no impact if the VF is already disabled, as the
1411 * flags are already cleared.
1412 */
1413 if (!err)
1414 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1415
1416 /* when enabling the port we should reset the rate limiters */
1417 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1418
1419 /* set mode for minimal functionality */
1420 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1421
1422 /* generate port state response to notify VF it is ready */
1423 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1424 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1425 mbx->ops.enqueue_tx(hw, mbx, msg);
1426 }
1427
1428 /* if enable state toggled note the update */
1429 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1430 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1431 !!mode);
1432
1433 /* if state change succeeded, then update our stored state */
1434 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1435 if (!err)
1436 vf_info->vf_flags = mode;
1437
1438 return err;
1439}
1440
1441/**
1442 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1443 * @hw: pointer to hardware structure
1444 * @stats: pointer to the stats structure to update
1445 *
1446 * This function collects and aggregates global and per queue hardware
1447 * statistics.
1448 **/
1449static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1450 struct fm10k_hw_stats *stats)
1451{
1452 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1453 u32 id, id_prev;
1454
1455 /* Use Tx queue 0 as a canary to detect a reset */
1456 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1457
1458 /* Read Global Statistics */
1459 do {
1460 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1461 &stats->timeout);
1462 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1463 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1464 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1465 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1466 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1467 &stats->vlan_drop);
1468 loopback_drop =
1469 fm10k_read_hw_stats_32b(hw,
1470 FM10K_STATS_LOOPBACK_DROP,
1471 &stats->loopback_drop);
1472 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1473 FM10K_STATS_NODESC_DROP,
1474 &stats->nodesc_drop);
1475
1476 /* if value has not changed then we have consistent data */
1477 id_prev = id;
1478 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1479 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1480
1481 /* drop non-ID bits and set VALID ID bit */
1482 id &= FM10K_TXQCTL_ID_MASK;
1483 id |= FM10K_STAT_VALID;
1484
1485 /* Update Global Statistics */
1486 if (stats->stats_idx == id) {
1487 stats->timeout.count += timeout;
1488 stats->ur.count += ur;
1489 stats->ca.count += ca;
1490 stats->um.count += um;
1491 stats->xec.count += xec;
1492 stats->vlan_drop.count += vlan_drop;
1493 stats->loopback_drop.count += loopback_drop;
1494 stats->nodesc_drop.count += nodesc_drop;
1495 }
1496
1497 /* Update bases and record current PF id */
1498 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1499 fm10k_update_hw_base_32b(&stats->ur, ur);
1500 fm10k_update_hw_base_32b(&stats->ca, ca);
1501 fm10k_update_hw_base_32b(&stats->um, um);
1502 fm10k_update_hw_base_32b(&stats->xec, xec);
1503 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1504 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1505 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1506 stats->stats_idx = id;
1507
1508 /* Update Queue Statistics */
1509 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1510}
1511
1512/**
1513 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1514 * @hw: pointer to hardware structure
1515 * @stats: pointer to the stats structure to update
1516 *
1517 * This function resets the base for global and per queue hardware
1518 * statistics.
1519 **/
1520static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1521 struct fm10k_hw_stats *stats)
1522{
1523 /* Unbind Global Statistics */
1524 fm10k_unbind_hw_stats_32b(&stats->timeout);
1525 fm10k_unbind_hw_stats_32b(&stats->ur);
1526 fm10k_unbind_hw_stats_32b(&stats->ca);
1527 fm10k_unbind_hw_stats_32b(&stats->um);
1528 fm10k_unbind_hw_stats_32b(&stats->xec);
1529 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1530 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1531 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1532
1533 /* Unbind Queue Statistics */
1534 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1535
1536 /* Reinitialize bases for all stats */
1537 fm10k_update_hw_stats_pf(hw, stats);
1538}
1539
1540/**
1541 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1542 * @hw: pointer to hardware structure
1543 * @dma_mask: 64 bit DMA mask required for platform
1544 *
1545 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1546 * to limit the access to memory beyond what is physically in the system.
1547 **/
1548static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1549{
1550 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1551 u32 phyaddr = (u32)(dma_mask >> 32);
1552
1553 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1554}
1555
1556/**
1557 * fm10k_get_fault_pf - Record a fault in one of the interface units
1558 * @hw: pointer to hardware structure
1559 * @type: pointer to fault type register offset
1560 * @fault: pointer to memory location to record the fault
1561 *
1562 * Record the fault register contents to the fault data structure and
1563 * clear the entry from the register.
1564 *
1565 * Returns ERR_PARAM if invalid register is specified or no error is present.
1566 **/
1567static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1568 struct fm10k_fault *fault)
1569{
1570 u32 func;
1571
1572 /* verify the fault register is in range and is aligned */
1573 switch (type) {
1574 case FM10K_PCA_FAULT:
1575 case FM10K_THI_FAULT:
1576 case FM10K_FUM_FAULT:
1577 break;
1578 default:
1579 return FM10K_ERR_PARAM;
1580 }
1581
1582 /* only service faults that are valid */
1583 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1584 if (!(func & FM10K_FAULT_FUNC_VALID))
1585 return FM10K_ERR_PARAM;
1586
1587 /* read remaining fields */
1588 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1589 fault->address <<= 32;
1590 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1591 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1592
1593 /* clear valid bit to allow for next error */
1594 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1595
1596 /* Record which function triggered the error */
1597 if (func & FM10K_FAULT_FUNC_PF)
1598 fault->func = 0;
1599 else
1600 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1601 FM10K_FAULT_FUNC_VF_SHIFT);
1602
1603 /* record fault type */
1604 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1605
1606 return 0;
1607}
1608
1609/**
1610 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1611 * @hw: pointer to hardware structure
1612 *
1613 **/
1614static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1615{
1616 struct fm10k_mbx_info *mbx = &hw->mbx;
1617 u32 msg[1];
1618
1619 /* issue request asking for LPORT map */
1620 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1621
1622 /* load onto outgoing mailbox */
1623 return mbx->ops.enqueue_tx(hw, mbx, msg);
1624}
1625
1626/**
1627 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1628 * @hw: pointer to hardware structure
1629 * @switch_ready: pointer to boolean value that will record switch state
1630 *
1631 * This function will check the DMA_CTRL2 register and mailbox in order
1632 * to determine if the switch is ready for the PF to begin requesting
1633 * addresses and mapping traffic to the local interface.
1634 **/
1635static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1636{
1637 u32 dma_ctrl2;
1638
1639 /* verify the switch is ready for interaction */
1640 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1641 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1642 return 0;
1643
1644 /* retrieve generic host state info */
1645 return fm10k_get_host_state_generic(hw, switch_ready);
1646}
1647
1648/* This structure defines the attibutes to be parsed below */
1649const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1650 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1651 sizeof(struct fm10k_swapi_error)),
1652 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1653 FM10K_TLV_ATTR_LAST
1654};
1655
1656/**
1657 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1658 * @hw: Pointer to hardware structure
1659 * @results: pointer array containing parsed data
1660 * @mbx: Pointer to mailbox information structure
1661 *
1662 * This handler configures the lport mapping based on the reply from the
1663 * switch API.
1664 **/
1665s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1666 struct fm10k_mbx_info *mbx)
1667{
1668 u16 glort, mask;
1669 u32 dglort_map;
1670 s32 err;
1671
1672 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1673 &dglort_map);
1674 if (err)
1675 return err;
1676
1677 /* extract values out of the header */
1678 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1679 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1680
1681 /* verify mask is set and none of the masked bits in glort are set */
1682 if (!mask || (glort & ~mask))
1683 return FM10K_ERR_PARAM;
1684
1685 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1686 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1687 return FM10K_ERR_PARAM;
1688
1689 /* record the glort, mask, and port count */
1690 hw->mac.dglort_map = dglort_map;
1691
1692 return 0;
1693}
1694
1695const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1696 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1697 FM10K_TLV_ATTR_LAST
1698};
1699
1700/**
1701 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1702 * @hw: Pointer to hardware structure
1703 * @results: pointer array containing parsed data
1704 * @mbx: Pointer to mailbox information structure
1705 *
1706 * This handler configures the default VLAN for the PF
1707 **/
1708static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1709 struct fm10k_mbx_info *mbx)
1710{
1711 u16 glort, pvid;
1712 u32 pvid_update;
1713 s32 err;
1714
1715 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1716 &pvid_update);
1717 if (err)
1718 return err;
1719
1720 /* extract values from the pvid update */
1721 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1722 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1723
1724 /* if glort is not valid return error */
1725 if (!fm10k_glort_valid_pf(hw, glort))
1726 return FM10K_ERR_PARAM;
1727
1728 /* verify VLAN ID is valid */
1729 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1730 return FM10K_ERR_PARAM;
1731
1732 /* record the port VLAN ID value */
1733 hw->mac.default_vid = pvid;
1734
1735 return 0;
1736}
1737
1738/**
1739 * fm10k_record_global_table_data - Move global table data to swapi table info
1740 * @from: pointer to source table data structure
1741 * @to: pointer to destination table info structure
1742 *
1743 * This function is will copy table_data to the table_info contained in
1744 * the hw struct.
1745 **/
1746static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1747 struct fm10k_swapi_table_info *to)
1748{
1749 /* convert from le32 struct to CPU byte ordered values */
1750 to->used = le32_to_cpu(from->used);
1751 to->avail = le32_to_cpu(from->avail);
1752}
1753
1754const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1755 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1756 sizeof(struct fm10k_swapi_error)),
1757 FM10K_TLV_ATTR_LAST
1758};
1759
1760/**
1761 * fm10k_msg_err_pf - Message handler for error reply
1762 * @hw: Pointer to hardware structure
1763 * @results: pointer array containing parsed data
1764 * @mbx: Pointer to mailbox information structure
1765 *
1766 * This handler will capture the data for any error replies to previous
1767 * messages that the PF has sent.
1768 **/
1769s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1770 struct fm10k_mbx_info *mbx)
1771{
1772 struct fm10k_swapi_error err_msg;
1773 s32 err;
1774
1775 /* extract structure from message */
1776 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1777 &err_msg, sizeof(err_msg));
1778 if (err)
1779 return err;
1780
1781 /* record table status */
1782 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1783 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1784 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1785
1786 /* record SW API status value */
1787 hw->swapi.status = le32_to_cpu(err_msg.status);
1788
1789 return 0;
1790}
1791
1792static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1793 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1794 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1795 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1796 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1797 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1798 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1799 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1800};
1801
1802static const struct fm10k_mac_ops mac_ops_pf = {
1803 .get_bus_info = fm10k_get_bus_info_generic,
1804 .reset_hw = fm10k_reset_hw_pf,
1805 .init_hw = fm10k_init_hw_pf,
1806 .start_hw = fm10k_start_hw_generic,
1807 .stop_hw = fm10k_stop_hw_generic,
1808 .update_vlan = fm10k_update_vlan_pf,
1809 .read_mac_addr = fm10k_read_mac_addr_pf,
1810 .update_uc_addr = fm10k_update_uc_addr_pf,
1811 .update_mc_addr = fm10k_update_mc_addr_pf,
1812 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1813 .update_int_moderator = fm10k_update_int_moderator_pf,
1814 .update_lport_state = fm10k_update_lport_state_pf,
1815 .update_hw_stats = fm10k_update_hw_stats_pf,
1816 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1817 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1818 .set_dma_mask = fm10k_set_dma_mask_pf,
1819 .get_fault = fm10k_get_fault_pf,
1820 .get_host_state = fm10k_get_host_state_pf,
1821 .request_lport_map = fm10k_request_lport_map_pf,
1822};
1823
1824static const struct fm10k_iov_ops iov_ops_pf = {
1825 .assign_resources = fm10k_iov_assign_resources_pf,
1826 .configure_tc = fm10k_iov_configure_tc_pf,
1827 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
1828 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1829 .reset_resources = fm10k_iov_reset_resources_pf,
1830 .set_lport = fm10k_iov_set_lport_pf,
1831 .reset_lport = fm10k_iov_reset_lport_pf,
1832 .update_stats = fm10k_iov_update_stats_pf,
1833};
1834
1835static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1836{
1837 fm10k_get_invariants_generic(hw);
1838
1839 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1840}
1841
1842const struct fm10k_info fm10k_pf_info = {
1843 .mac = fm10k_mac_pf,
1844 .get_invariants = fm10k_get_invariants_pf,
1845 .mac_ops = &mac_ops_pf,
1846 .iov_ops = &iov_ops_pf,
1847};