Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2019 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "fm10k.h"
   5#include <linux/vmalloc.h>
   6#include <net/udp_tunnel.h>
   7#include <linux/if_macvlan.h>
   8
   9/**
  10 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
  11 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
  12 *
  13 * Return 0 on success, negative on failure
  14 **/
  15int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
  16{
  17	struct device *dev = tx_ring->dev;
  18	int size;
  19
  20	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
  21
  22	tx_ring->tx_buffer = vzalloc(size);
  23	if (!tx_ring->tx_buffer)
  24		goto err;
  25
  26	u64_stats_init(&tx_ring->syncp);
  27
  28	/* round up to nearest 4K */
  29	tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
  30	tx_ring->size = ALIGN(tx_ring->size, 4096);
  31
  32	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  33					   &tx_ring->dma, GFP_KERNEL);
  34	if (!tx_ring->desc)
  35		goto err;
  36
  37	return 0;
  38
  39err:
  40	vfree(tx_ring->tx_buffer);
  41	tx_ring->tx_buffer = NULL;
  42	return -ENOMEM;
  43}
  44
  45/**
  46 * fm10k_setup_all_tx_resources - allocate all queues Tx resources
  47 * @interface: board private structure
  48 *
  49 * If this function returns with an error, then it's possible one or
  50 * more of the rings is populated (while the rest are not).  It is the
  51 * callers duty to clean those orphaned rings.
  52 *
  53 * Return 0 on success, negative on failure
  54 **/
  55static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
  56{
  57	int i, err;
  58
  59	for (i = 0; i < interface->num_tx_queues; i++) {
  60		err = fm10k_setup_tx_resources(interface->tx_ring[i]);
  61		if (!err)
  62			continue;
  63
  64		netif_err(interface, probe, interface->netdev,
  65			  "Allocation for Tx Queue %u failed\n", i);
  66		goto err_setup_tx;
  67	}
  68
  69	return 0;
  70err_setup_tx:
  71	/* rewind the index freeing the rings as we go */
  72	while (i--)
  73		fm10k_free_tx_resources(interface->tx_ring[i]);
  74	return err;
  75}
  76
  77/**
  78 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
  79 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
  80 *
  81 * Returns 0 on success, negative on failure
  82 **/
  83int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
  84{
  85	struct device *dev = rx_ring->dev;
  86	int size;
  87
  88	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
  89
  90	rx_ring->rx_buffer = vzalloc(size);
  91	if (!rx_ring->rx_buffer)
  92		goto err;
  93
  94	u64_stats_init(&rx_ring->syncp);
  95
  96	/* Round up to nearest 4K */
  97	rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
  98	rx_ring->size = ALIGN(rx_ring->size, 4096);
  99
 100	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 101					   &rx_ring->dma, GFP_KERNEL);
 102	if (!rx_ring->desc)
 103		goto err;
 104
 105	return 0;
 106err:
 107	vfree(rx_ring->rx_buffer);
 108	rx_ring->rx_buffer = NULL;
 109	return -ENOMEM;
 110}
 111
 112/**
 113 * fm10k_setup_all_rx_resources - allocate all queues Rx resources
 114 * @interface: board private structure
 115 *
 116 * If this function returns with an error, then it's possible one or
 117 * more of the rings is populated (while the rest are not).  It is the
 118 * callers duty to clean those orphaned rings.
 119 *
 120 * Return 0 on success, negative on failure
 121 **/
 122static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
 123{
 124	int i, err;
 125
 126	for (i = 0; i < interface->num_rx_queues; i++) {
 127		err = fm10k_setup_rx_resources(interface->rx_ring[i]);
 128		if (!err)
 129			continue;
 130
 131		netif_err(interface, probe, interface->netdev,
 132			  "Allocation for Rx Queue %u failed\n", i);
 133		goto err_setup_rx;
 134	}
 135
 136	return 0;
 137err_setup_rx:
 138	/* rewind the index freeing the rings as we go */
 139	while (i--)
 140		fm10k_free_rx_resources(interface->rx_ring[i]);
 141	return err;
 142}
 143
 144void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
 145				      struct fm10k_tx_buffer *tx_buffer)
 146{
 147	if (tx_buffer->skb) {
 148		dev_kfree_skb_any(tx_buffer->skb);
 149		if (dma_unmap_len(tx_buffer, len))
 150			dma_unmap_single(ring->dev,
 151					 dma_unmap_addr(tx_buffer, dma),
 152					 dma_unmap_len(tx_buffer, len),
 153					 DMA_TO_DEVICE);
 154	} else if (dma_unmap_len(tx_buffer, len)) {
 155		dma_unmap_page(ring->dev,
 156			       dma_unmap_addr(tx_buffer, dma),
 157			       dma_unmap_len(tx_buffer, len),
 158			       DMA_TO_DEVICE);
 159	}
 160	tx_buffer->next_to_watch = NULL;
 161	tx_buffer->skb = NULL;
 162	dma_unmap_len_set(tx_buffer, len, 0);
 163	/* tx_buffer must be completely set up in the transmit path */
 164}
 165
 166/**
 167 * fm10k_clean_tx_ring - Free Tx Buffers
 168 * @tx_ring: ring to be cleaned
 169 **/
 170static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
 171{
 
 172	unsigned long size;
 173	u16 i;
 174
 175	/* ring already cleared, nothing to do */
 176	if (!tx_ring->tx_buffer)
 177		return;
 178
 179	/* Free all the Tx ring sk_buffs */
 180	for (i = 0; i < tx_ring->count; i++) {
 181		struct fm10k_tx_buffer *tx_buffer = &tx_ring->tx_buffer[i];
 182
 183		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
 184	}
 185
 186	/* reset BQL values */
 187	netdev_tx_reset_queue(txring_txq(tx_ring));
 188
 189	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
 190	memset(tx_ring->tx_buffer, 0, size);
 191
 192	/* Zero out the descriptor ring */
 193	memset(tx_ring->desc, 0, tx_ring->size);
 194}
 195
 196/**
 197 * fm10k_free_tx_resources - Free Tx Resources per Queue
 198 * @tx_ring: Tx descriptor ring for a specific queue
 199 *
 200 * Free all transmit software resources
 201 **/
 202void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
 203{
 204	fm10k_clean_tx_ring(tx_ring);
 205
 206	vfree(tx_ring->tx_buffer);
 207	tx_ring->tx_buffer = NULL;
 208
 209	/* if not set, then don't free */
 210	if (!tx_ring->desc)
 211		return;
 212
 213	dma_free_coherent(tx_ring->dev, tx_ring->size,
 214			  tx_ring->desc, tx_ring->dma);
 215	tx_ring->desc = NULL;
 216}
 217
 218/**
 219 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
 220 * @interface: board private structure
 221 **/
 222void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
 223{
 224	int i;
 225
 226	for (i = 0; i < interface->num_tx_queues; i++)
 227		fm10k_clean_tx_ring(interface->tx_ring[i]);
 228}
 229
 230/**
 231 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
 232 * @interface: board private structure
 233 *
 234 * Free all transmit software resources
 235 **/
 236static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
 237{
 238	int i = interface->num_tx_queues;
 239
 240	while (i--)
 241		fm10k_free_tx_resources(interface->tx_ring[i]);
 242}
 243
 244/**
 245 * fm10k_clean_rx_ring - Free Rx Buffers per Queue
 246 * @rx_ring: ring to free buffers from
 247 **/
 248static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
 249{
 250	unsigned long size;
 251	u16 i;
 252
 253	if (!rx_ring->rx_buffer)
 254		return;
 255
 256	dev_kfree_skb(rx_ring->skb);
 
 257	rx_ring->skb = NULL;
 258
 259	/* Free all the Rx ring sk_buffs */
 260	for (i = 0; i < rx_ring->count; i++) {
 261		struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
 262		/* clean-up will only set page pointer to NULL */
 263		if (!buffer->page)
 264			continue;
 265
 266		dma_unmap_page(rx_ring->dev, buffer->dma,
 267			       PAGE_SIZE, DMA_FROM_DEVICE);
 268		__free_page(buffer->page);
 269
 270		buffer->page = NULL;
 271	}
 272
 273	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
 274	memset(rx_ring->rx_buffer, 0, size);
 275
 276	/* Zero out the descriptor ring */
 277	memset(rx_ring->desc, 0, rx_ring->size);
 278
 279	rx_ring->next_to_alloc = 0;
 280	rx_ring->next_to_clean = 0;
 281	rx_ring->next_to_use = 0;
 282}
 283
 284/**
 285 * fm10k_free_rx_resources - Free Rx Resources
 286 * @rx_ring: ring to clean the resources from
 287 *
 288 * Free all receive software resources
 289 **/
 290void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
 291{
 292	fm10k_clean_rx_ring(rx_ring);
 293
 294	vfree(rx_ring->rx_buffer);
 295	rx_ring->rx_buffer = NULL;
 296
 297	/* if not set, then don't free */
 298	if (!rx_ring->desc)
 299		return;
 300
 301	dma_free_coherent(rx_ring->dev, rx_ring->size,
 302			  rx_ring->desc, rx_ring->dma);
 303
 304	rx_ring->desc = NULL;
 305}
 306
 307/**
 308 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
 309 * @interface: board private structure
 310 **/
 311void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
 312{
 313	int i;
 314
 315	for (i = 0; i < interface->num_rx_queues; i++)
 316		fm10k_clean_rx_ring(interface->rx_ring[i]);
 317}
 318
 319/**
 320 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
 321 * @interface: board private structure
 322 *
 323 * Free all receive software resources
 324 **/
 325static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
 326{
 327	int i = interface->num_rx_queues;
 328
 329	while (i--)
 330		fm10k_free_rx_resources(interface->rx_ring[i]);
 331}
 332
 333/**
 334 * fm10k_request_glort_range - Request GLORTs for use in configuring rules
 335 * @interface: board private structure
 336 *
 337 * This function allocates a range of glorts for this interface to use.
 338 **/
 339static void fm10k_request_glort_range(struct fm10k_intfc *interface)
 340{
 341	struct fm10k_hw *hw = &interface->hw;
 342	u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
 343
 344	/* establish GLORT base */
 345	interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
 346	interface->glort_count = 0;
 347
 348	/* nothing we can do until mask is allocated */
 349	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
 350		return;
 351
 352	/* we support 3 possible GLORT configurations.
 353	 * 1: VFs consume all but the last 1
 354	 * 2: VFs and PF split glorts with possible gap between
 355	 * 3: VFs allocated first 64, all others belong to PF
 356	 */
 357	if (mask <= hw->iov.total_vfs) {
 358		interface->glort_count = 1;
 359		interface->glort += mask;
 360	} else if (mask < 64) {
 361		interface->glort_count = (mask + 1) / 2;
 362		interface->glort += interface->glort_count;
 363	} else {
 364		interface->glort_count = mask - 63;
 365		interface->glort += 64;
 366	}
 367}
 368
 369/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370 * fm10k_restore_udp_port_info
 371 * @interface: board private structure
 372 *
 373 * This function restores the value in the tunnel_cfg register(s) after reset
 374 **/
 375static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
 376{
 377	struct fm10k_hw *hw = &interface->hw;
 
 378
 379	/* only the PF supports configuring tunnels */
 380	if (hw->mac.type != fm10k_mac_pf)
 381		return;
 382
 
 
 
 383	/* restore tunnel configuration register */
 384	fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
 385			ntohs(interface->vxlan_port) |
 386			(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
 387
 
 
 
 388	/* restore Geneve tunnel configuration register */
 389	fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
 390			ntohs(interface->geneve_port));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391}
 392
 393/**
 394 * fm10k_udp_tunnel_sync - Called when UDP tunnel ports change
 395 * @dev: network interface device structure
 396 * @table: Tunnel table (according to tables of @fm10k_udp_tunnels)
 397 *
 398 * This function is called when a new UDP tunnel port is added or deleted.
 399 * Due to hardware restrictions, only one port per type can be offloaded at
 400 * once. Core will send to the driver a port of its choice.
 401 **/
 402static int fm10k_udp_tunnel_sync(struct net_device *dev, unsigned int table)
 
 403{
 404	struct fm10k_intfc *interface = netdev_priv(dev);
 405	struct udp_tunnel_info ti;
 406
 407	udp_tunnel_nic_get_port(dev, table, 0, &ti);
 408	if (!table)
 409		interface->vxlan_port = ti.port;
 410	else
 411		interface->geneve_port = ti.port;
 
 
 
 
 
 
 
 
 
 412
 413	fm10k_restore_udp_port_info(interface);
 414	return 0;
 415}
 416
 417static const struct udp_tunnel_nic_info fm10k_udp_tunnels = {
 418	.sync_table	= fm10k_udp_tunnel_sync,
 419	.tables		= {
 420		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
 421		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
 422	},
 423};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425/**
 426 * fm10k_open - Called when a network interface is made active
 427 * @netdev: network interface device structure
 428 *
 429 * Returns 0 on success, negative value on failure
 430 *
 431 * The open entry point is called when a network interface is made
 432 * active by the system (IFF_UP).  At this point all resources needed
 433 * for transmit and receive operations are allocated, the interrupt
 434 * handler is registered with the OS, the watchdog timer is started,
 435 * and the stack is notified that the interface is ready.
 436 **/
 437int fm10k_open(struct net_device *netdev)
 438{
 439	struct fm10k_intfc *interface = netdev_priv(netdev);
 440	int err;
 441
 442	/* allocate transmit descriptors */
 443	err = fm10k_setup_all_tx_resources(interface);
 444	if (err)
 445		goto err_setup_tx;
 446
 447	/* allocate receive descriptors */
 448	err = fm10k_setup_all_rx_resources(interface);
 449	if (err)
 450		goto err_setup_rx;
 451
 452	/* allocate interrupt resources */
 453	err = fm10k_qv_request_irq(interface);
 454	if (err)
 455		goto err_req_irq;
 456
 457	/* setup GLORT assignment for this port */
 458	fm10k_request_glort_range(interface);
 459
 460	/* Notify the stack of the actual queue counts */
 461	err = netif_set_real_num_tx_queues(netdev,
 462					   interface->num_tx_queues);
 463	if (err)
 464		goto err_set_queues;
 465
 466	err = netif_set_real_num_rx_queues(netdev,
 467					   interface->num_rx_queues);
 468	if (err)
 469		goto err_set_queues;
 470
 
 
 471	fm10k_up(interface);
 472
 473	return 0;
 474
 475err_set_queues:
 476	fm10k_qv_free_irq(interface);
 477err_req_irq:
 478	fm10k_free_all_rx_resources(interface);
 479err_setup_rx:
 480	fm10k_free_all_tx_resources(interface);
 481err_setup_tx:
 482	return err;
 483}
 484
 485/**
 486 * fm10k_close - Disables a network interface
 487 * @netdev: network interface device structure
 488 *
 489 * Returns 0, this is not allowed to fail
 490 *
 491 * The close entry point is called when an interface is de-activated
 492 * by the OS.  The hardware is still under the drivers control, but
 493 * needs to be disabled.  A global MAC reset is issued to stop the
 494 * hardware, and all transmit and receive resources are freed.
 495 **/
 496int fm10k_close(struct net_device *netdev)
 497{
 498	struct fm10k_intfc *interface = netdev_priv(netdev);
 499
 500	fm10k_down(interface);
 501
 502	fm10k_qv_free_irq(interface);
 503
 
 
 504	fm10k_free_all_tx_resources(interface);
 505	fm10k_free_all_rx_resources(interface);
 506
 507	return 0;
 508}
 509
 510static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
 511{
 512	struct fm10k_intfc *interface = netdev_priv(dev);
 513	int num_tx_queues = READ_ONCE(interface->num_tx_queues);
 514	unsigned int r_idx = skb->queue_mapping;
 515	int err;
 516
 517	if (!num_tx_queues)
 518		return NETDEV_TX_BUSY;
 519
 520	if ((skb->protocol == htons(ETH_P_8021Q)) &&
 521	    !skb_vlan_tag_present(skb)) {
 522		/* FM10K only supports hardware tagging, any tags in frame
 523		 * are considered 2nd level or "outer" tags
 524		 */
 525		struct vlan_hdr *vhdr;
 526		__be16 proto;
 527
 528		/* make sure skb is not shared */
 529		skb = skb_share_check(skb, GFP_ATOMIC);
 530		if (!skb)
 531			return NETDEV_TX_OK;
 532
 533		/* make sure there is enough room to move the ethernet header */
 534		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
 535			return NETDEV_TX_OK;
 536
 537		/* verify the skb head is not shared */
 538		err = skb_cow_head(skb, 0);
 539		if (err) {
 540			dev_kfree_skb(skb);
 541			return NETDEV_TX_OK;
 542		}
 543
 544		/* locate VLAN header */
 545		vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
 546
 547		/* pull the 2 key pieces of data out of it */
 548		__vlan_hwaccel_put_tag(skb,
 549				       htons(ETH_P_8021Q),
 550				       ntohs(vhdr->h_vlan_TCI));
 551		proto = vhdr->h_vlan_encapsulated_proto;
 552		skb->protocol = (ntohs(proto) >= 1536) ? proto :
 553							 htons(ETH_P_802_2);
 554
 555		/* squash it by moving the ethernet addresses up 4 bytes */
 556		memmove(skb->data + VLAN_HLEN, skb->data, 12);
 557		__skb_pull(skb, VLAN_HLEN);
 558		skb_reset_mac_header(skb);
 559	}
 560
 561	/* The minimum packet size for a single buffer is 17B so pad the skb
 562	 * in order to meet this minimum size requirement.
 563	 */
 564	if (unlikely(skb->len < 17)) {
 565		int pad_len = 17 - skb->len;
 566
 567		if (skb_pad(skb, pad_len))
 568			return NETDEV_TX_OK;
 569		__skb_put(skb, pad_len);
 570	}
 571
 572	if (r_idx >= num_tx_queues)
 573		r_idx %= num_tx_queues;
 574
 575	err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
 576
 577	return err;
 578}
 579
 580/**
 581 * fm10k_tx_timeout - Respond to a Tx Hang
 582 * @netdev: network interface device structure
 583 * @txqueue: the index of the Tx queue that timed out
 584 **/
 585static void fm10k_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 586{
 587	struct fm10k_intfc *interface = netdev_priv(netdev);
 588	struct fm10k_ring *tx_ring;
 589	bool real_tx_hang = false;
 
 590
 591	if (txqueue >= interface->num_tx_queues) {
 592		WARN(1, "invalid Tx queue index %d", txqueue);
 593		return;
 594	}
 595
 596	tx_ring = interface->tx_ring[txqueue];
 597	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
 598		real_tx_hang = true;
 599
 600#define TX_TIMEO_LIMIT 16000
 601	if (real_tx_hang) {
 602		fm10k_tx_timeout_reset(interface);
 603	} else {
 604		netif_info(interface, drv, netdev,
 605			   "Fake Tx hang detected with timeout of %d seconds\n",
 606			   netdev->watchdog_timeo / HZ);
 607
 608		/* fake Tx hang - increase the kernel timeout */
 609		if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
 610			netdev->watchdog_timeo *= 2;
 611	}
 612}
 613
 614/**
 615 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness
 616 * @interface: board private structure
 617 *
 618 * This function checks if the PF interface's mailbox is ready before queueing
 619 * mailbox messages for transmission. This will prevent filling the TX mailbox
 620 * queue when the receiver is not ready. VF interfaces are exempt from this
 621 * check since it will block all PF-VF mailbox messages from being sent from
 622 * the VF to the PF at initialization.
 623 **/
 624static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
 625{
 626	struct fm10k_hw *hw = &interface->hw;
 627
 628	return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
 629}
 630
 631/**
 632 * fm10k_queue_vlan_request - Queue a VLAN update request
 633 * @interface: the fm10k interface structure
 634 * @vid: the VLAN vid
 635 * @vsi: VSI index number
 636 * @set: whether to set or clear
 637 *
 638 * This function queues up a VLAN update. For VFs, this must be sent to the
 639 * managing PF over the mailbox. For PFs, we'll use the same handling so that
 640 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too
 641 * many VLAN updates during reset.
 642 */
 643int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
 644			     u32 vid, u8 vsi, bool set)
 645{
 646	struct fm10k_macvlan_request *request;
 647	unsigned long flags;
 648
 649	/* This must be atomic since we may be called while the netdev
 650	 * addr_list_lock is held
 651	 */
 652	request = kzalloc(sizeof(*request), GFP_ATOMIC);
 653	if (!request)
 654		return -ENOMEM;
 655
 656	request->type = FM10K_VLAN_REQUEST;
 657	request->vlan.vid = vid;
 658	request->vlan.vsi = vsi;
 659	request->set = set;
 660
 661	spin_lock_irqsave(&interface->macvlan_lock, flags);
 662	list_add_tail(&request->list, &interface->macvlan_requests);
 663	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
 664
 665	fm10k_macvlan_schedule(interface);
 666
 667	return 0;
 668}
 669
 670/**
 671 * fm10k_queue_mac_request - Queue a MAC update request
 672 * @interface: the fm10k interface structure
 673 * @glort: the target glort for this update
 674 * @addr: the address to update
 675 * @vid: the vid to update
 676 * @set: whether to add or remove
 677 *
 678 * This function queues up a MAC request for sending to the switch manager.
 679 * A separate thread monitors the queue and sends updates to the switch
 680 * manager. Return 0 on success, and negative error code on failure.
 681 **/
 682int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
 683			    const unsigned char *addr, u16 vid, bool set)
 684{
 685	struct fm10k_macvlan_request *request;
 686	unsigned long flags;
 687
 688	/* This must be atomic since we may be called while the netdev
 689	 * addr_list_lock is held
 690	 */
 691	request = kzalloc(sizeof(*request), GFP_ATOMIC);
 692	if (!request)
 693		return -ENOMEM;
 694
 695	if (is_multicast_ether_addr(addr))
 696		request->type = FM10K_MC_MAC_REQUEST;
 697	else
 698		request->type = FM10K_UC_MAC_REQUEST;
 699
 700	ether_addr_copy(request->mac.addr, addr);
 701	request->mac.glort = glort;
 702	request->mac.vid = vid;
 703	request->set = set;
 704
 705	spin_lock_irqsave(&interface->macvlan_lock, flags);
 706	list_add_tail(&request->list, &interface->macvlan_requests);
 707	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
 708
 709	fm10k_macvlan_schedule(interface);
 710
 711	return 0;
 712}
 713
 714/**
 715 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
 716 * @interface: the fm10k interface structure
 717 * @glort: the target glort to clear
 718 * @vlans: true to clear VLAN messages, false to ignore them
 719 *
 720 * Cancel any outstanding MAC/VLAN requests for a given glort. This is
 721 * expected to be called when a logical port goes down.
 722 **/
 723void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
 724			       u16 glort, bool vlans)
 725
 726{
 727	struct fm10k_macvlan_request *r, *tmp;
 728	unsigned long flags;
 729
 730	spin_lock_irqsave(&interface->macvlan_lock, flags);
 731
 732	/* Free any outstanding MAC/VLAN requests for this interface */
 733	list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
 734		switch (r->type) {
 735		case FM10K_MC_MAC_REQUEST:
 736		case FM10K_UC_MAC_REQUEST:
 737			/* Don't free requests for other interfaces */
 738			if (r->mac.glort != glort)
 739				break;
 740			fallthrough;
 741		case FM10K_VLAN_REQUEST:
 742			if (vlans) {
 743				list_del(&r->list);
 744				kfree(r);
 745			}
 746			break;
 747		}
 748	}
 749
 750	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
 751}
 752
 753static int fm10k_uc_vlan_unsync(struct net_device *netdev,
 754				const unsigned char *uc_addr)
 755{
 756	struct fm10k_intfc *interface = netdev_priv(netdev);
 
 757	u16 glort = interface->glort;
 758	u16 vid = interface->vid;
 759	bool set = !!(vid / VLAN_N_VID);
 760	int err;
 761
 762	/* drop any leading bits on the VLAN ID */
 763	vid &= VLAN_N_VID - 1;
 764
 765	err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
 766	if (err)
 767		return err;
 768
 769	/* return non-zero value as we are only doing a partial sync/unsync */
 770	return 1;
 771}
 772
 773static int fm10k_mc_vlan_unsync(struct net_device *netdev,
 774				const unsigned char *mc_addr)
 775{
 776	struct fm10k_intfc *interface = netdev_priv(netdev);
 
 777	u16 glort = interface->glort;
 778	u16 vid = interface->vid;
 779	bool set = !!(vid / VLAN_N_VID);
 780	int err;
 781
 782	/* drop any leading bits on the VLAN ID */
 783	vid &= VLAN_N_VID - 1;
 784
 785	err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
 786	if (err)
 787		return err;
 788
 789	/* return non-zero value as we are only doing a partial sync/unsync */
 790	return 1;
 791}
 792
 793static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
 794{
 795	struct fm10k_intfc *interface = netdev_priv(netdev);
 796	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
 797	struct fm10k_hw *hw = &interface->hw;
 798	u16 glort;
 799	s32 err;
 800	int i;
 801
 802	/* updates do not apply to VLAN 0 */
 803	if (!vid)
 804		return 0;
 805
 806	if (vid >= VLAN_N_VID)
 807		return -EINVAL;
 808
 809	/* Verify that we have permission to add VLANs. If this is a request
 810	 * to remove a VLAN, we still want to allow the user to remove the
 811	 * VLAN device. In that case, we need to clear the bit in the
 812	 * active_vlans bitmask.
 813	 */
 814	if (set && hw->mac.vlan_override)
 815		return -EACCES;
 816
 817	/* update active_vlans bitmask */
 818	set_bit(vid, interface->active_vlans);
 819	if (!set)
 820		clear_bit(vid, interface->active_vlans);
 821
 822	/* disable the default VLAN ID on ring if we have an active VLAN */
 823	for (i = 0; i < interface->num_rx_queues; i++) {
 824		struct fm10k_ring *rx_ring = interface->rx_ring[i];
 825		u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
 826
 827		if (test_bit(rx_vid, interface->active_vlans))
 828			rx_ring->vid |= FM10K_VLAN_CLEAR;
 829		else
 830			rx_ring->vid &= ~FM10K_VLAN_CLEAR;
 831	}
 832
 833	/* If our VLAN has been overridden, there is no reason to send VLAN
 834	 * removal requests as they will be silently ignored.
 835	 */
 836	if (hw->mac.vlan_override)
 837		return 0;
 838
 839	/* Do not remove default VLAN ID related entries from VLAN and MAC
 840	 * tables
 841	 */
 842	if (!set && vid == hw->mac.default_vid)
 843		return 0;
 844
 845	/* Do not throw an error if the interface is down. We will sync once
 846	 * we come up
 847	 */
 848	if (test_bit(__FM10K_DOWN, interface->state))
 849		return 0;
 850
 851	fm10k_mbx_lock(interface);
 852
 853	/* only need to update the VLAN if not in promiscuous mode */
 854	if (!(netdev->flags & IFF_PROMISC)) {
 855		err = fm10k_queue_vlan_request(interface, vid, 0, set);
 856		if (err)
 857			goto err_out;
 858	}
 859
 860	/* Update our base MAC address */
 861	err = fm10k_queue_mac_request(interface, interface->glort,
 862				      hw->mac.addr, vid, set);
 863	if (err)
 864		goto err_out;
 865
 866	/* Update L2 accelerated macvlan addresses */
 867	if (l2_accel) {
 868		for (i = 0; i < l2_accel->size; i++) {
 869			struct net_device *sdev = l2_accel->macvlan[i];
 870
 871			if (!sdev)
 872				continue;
 873
 874			glort = l2_accel->dglort + 1 + i;
 875
 876			fm10k_queue_mac_request(interface, glort,
 877						sdev->dev_addr,
 878						vid, set);
 879		}
 880	}
 881
 882	/* set VLAN ID prior to syncing/unsyncing the VLAN */
 883	interface->vid = vid + (set ? VLAN_N_VID : 0);
 884
 885	/* Update the unicast and multicast address list to add/drop VLAN */
 886	__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
 887	__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
 888
 889err_out:
 890	fm10k_mbx_unlock(interface);
 891
 892	return err;
 893}
 894
 895static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
 896				 __always_unused __be16 proto, u16 vid)
 897{
 898	/* update VLAN and address table based on changes */
 899	return fm10k_update_vid(netdev, vid, true);
 900}
 901
 902static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
 903				  __always_unused __be16 proto, u16 vid)
 904{
 905	/* update VLAN and address table based on changes */
 906	return fm10k_update_vid(netdev, vid, false);
 907}
 908
 909static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
 910{
 911	struct fm10k_hw *hw = &interface->hw;
 912	u16 default_vid = hw->mac.default_vid;
 913	u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
 914
 915	vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
 916
 917	return vid;
 918}
 919
 920static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
 921{
 
 922	u32 vid, prev_vid;
 923
 924	/* loop through and find any gaps in the table */
 925	for (vid = 0, prev_vid = 0;
 926	     prev_vid < VLAN_N_VID;
 927	     prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
 928		if (prev_vid == vid)
 929			continue;
 930
 931		/* send request to clear multiple bits at a time */
 932		prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
 933		fm10k_queue_vlan_request(interface, prev_vid, 0, false);
 934	}
 935}
 936
 937static int __fm10k_uc_sync(struct net_device *dev,
 938			   const unsigned char *addr, bool sync)
 939{
 940	struct fm10k_intfc *interface = netdev_priv(dev);
 
 941	u16 vid, glort = interface->glort;
 942	s32 err;
 943
 944	if (!is_valid_ether_addr(addr))
 945		return -EADDRNOTAVAIL;
 946
 947	for (vid = fm10k_find_next_vlan(interface, 0);
 
 948	     vid < VLAN_N_VID;
 949	     vid = fm10k_find_next_vlan(interface, vid)) {
 950		err = fm10k_queue_mac_request(interface, glort,
 951					      addr, vid, sync);
 952		if (err)
 953			return err;
 954	}
 955
 956	return 0;
 957}
 958
 959static int fm10k_uc_sync(struct net_device *dev,
 960			 const unsigned char *addr)
 961{
 962	return __fm10k_uc_sync(dev, addr, true);
 963}
 964
 965static int fm10k_uc_unsync(struct net_device *dev,
 966			   const unsigned char *addr)
 967{
 968	return __fm10k_uc_sync(dev, addr, false);
 969}
 970
 971static int fm10k_set_mac(struct net_device *dev, void *p)
 972{
 973	struct fm10k_intfc *interface = netdev_priv(dev);
 974	struct fm10k_hw *hw = &interface->hw;
 975	struct sockaddr *addr = p;
 976	s32 err = 0;
 977
 978	if (!is_valid_ether_addr(addr->sa_data))
 979		return -EADDRNOTAVAIL;
 980
 981	if (dev->flags & IFF_UP) {
 982		/* setting MAC address requires mailbox */
 983		fm10k_mbx_lock(interface);
 984
 985		err = fm10k_uc_sync(dev, addr->sa_data);
 986		if (!err)
 987			fm10k_uc_unsync(dev, hw->mac.addr);
 988
 989		fm10k_mbx_unlock(interface);
 990	}
 991
 992	if (!err) {
 993		eth_hw_addr_set(dev, addr->sa_data);
 994		ether_addr_copy(hw->mac.addr, addr->sa_data);
 995		dev->addr_assign_type &= ~NET_ADDR_RANDOM;
 996	}
 997
 998	/* if we had a mailbox error suggest trying again */
 999	return err ? -EAGAIN : 0;
1000}
1001
1002static int __fm10k_mc_sync(struct net_device *dev,
1003			   const unsigned char *addr, bool sync)
1004{
1005	struct fm10k_intfc *interface = netdev_priv(dev);
 
1006	u16 vid, glort = interface->glort;
1007	s32 err;
1008
1009	if (!is_multicast_ether_addr(addr))
1010		return -EADDRNOTAVAIL;
1011
1012	for (vid = fm10k_find_next_vlan(interface, 0);
 
1013	     vid < VLAN_N_VID;
1014	     vid = fm10k_find_next_vlan(interface, vid)) {
1015		err = fm10k_queue_mac_request(interface, glort,
1016					      addr, vid, sync);
1017		if (err)
1018			return err;
1019	}
1020
1021	return 0;
1022}
1023
1024static int fm10k_mc_sync(struct net_device *dev,
1025			 const unsigned char *addr)
1026{
1027	return __fm10k_mc_sync(dev, addr, true);
1028}
1029
1030static int fm10k_mc_unsync(struct net_device *dev,
1031			   const unsigned char *addr)
1032{
1033	return __fm10k_mc_sync(dev, addr, false);
1034}
1035
1036static void fm10k_set_rx_mode(struct net_device *dev)
1037{
1038	struct fm10k_intfc *interface = netdev_priv(dev);
1039	struct fm10k_hw *hw = &interface->hw;
1040	int xcast_mode;
1041
1042	/* no need to update the harwdare if we are not running */
1043	if (!(dev->flags & IFF_UP))
1044		return;
1045
1046	/* determine new mode based on flags */
1047	xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
1048		     (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
1049		     (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1050		     FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
1051
1052	fm10k_mbx_lock(interface);
1053
1054	/* update xcast mode first, but only if it changed */
1055	if (interface->xcast_mode != xcast_mode) {
1056		/* update VLAN table when entering promiscuous mode */
1057		if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
1058			fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
1059						 0, true);
1060
1061		/* clear VLAN table when exiting promiscuous mode */
1062		if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
1063			fm10k_clear_unused_vlans(interface);
1064
1065		/* update xcast mode if host's mailbox is ready */
1066		if (fm10k_host_mbx_ready(interface))
1067			hw->mac.ops.update_xcast_mode(hw, interface->glort,
1068						      xcast_mode);
1069
1070		/* record updated xcast mode state */
1071		interface->xcast_mode = xcast_mode;
1072	}
1073
1074	/* synchronize all of the addresses */
1075	__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
1076	__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1077
1078	fm10k_mbx_unlock(interface);
1079}
1080
1081void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1082{
1083	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1084	struct net_device *netdev = interface->netdev;
1085	struct fm10k_hw *hw = &interface->hw;
1086	int xcast_mode, i;
1087	u16 vid, glort;
1088
1089	/* record glort for this interface */
1090	glort = interface->glort;
1091
1092	/* convert interface flags to xcast mode */
1093	if (netdev->flags & IFF_PROMISC)
1094		xcast_mode = FM10K_XCAST_MODE_PROMISC;
1095	else if (netdev->flags & IFF_ALLMULTI)
1096		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1097	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1098		xcast_mode = FM10K_XCAST_MODE_MULTI;
1099	else
1100		xcast_mode = FM10K_XCAST_MODE_NONE;
1101
1102	fm10k_mbx_lock(interface);
1103
1104	/* Enable logical port if host's mailbox is ready */
1105	if (fm10k_host_mbx_ready(interface))
1106		hw->mac.ops.update_lport_state(hw, glort,
1107					       interface->glort_count, true);
1108
1109	/* update VLAN table */
1110	fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
1111				 xcast_mode == FM10K_XCAST_MODE_PROMISC);
 
 
 
1112
1113	/* update table with current entries */
1114	for (vid = fm10k_find_next_vlan(interface, 0);
1115	     vid < VLAN_N_VID;
1116	     vid = fm10k_find_next_vlan(interface, vid)) {
1117		fm10k_queue_vlan_request(interface, vid, 0, true);
1118
1119		fm10k_queue_mac_request(interface, glort,
1120					hw->mac.addr, vid, true);
1121
1122		/* synchronize macvlan addresses */
1123		if (l2_accel) {
1124			for (i = 0; i < l2_accel->size; i++) {
1125				struct net_device *sdev = l2_accel->macvlan[i];
1126
1127				if (!sdev)
1128					continue;
1129
1130				glort = l2_accel->dglort + 1 + i;
1131
1132				fm10k_queue_mac_request(interface, glort,
1133							sdev->dev_addr,
1134							vid, true);
1135			}
1136		}
1137	}
1138
1139	/* update xcast mode before synchronizing addresses if host's mailbox
1140	 * is ready
1141	 */
1142	if (fm10k_host_mbx_ready(interface))
1143		hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1144
1145	/* synchronize all of the addresses */
1146	__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1147	__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1148
1149	/* synchronize macvlan addresses */
1150	if (l2_accel) {
1151		for (i = 0; i < l2_accel->size; i++) {
1152			struct net_device *sdev = l2_accel->macvlan[i];
1153
1154			if (!sdev)
1155				continue;
1156
1157			glort = l2_accel->dglort + 1 + i;
1158
1159			hw->mac.ops.update_xcast_mode(hw, glort,
1160						      FM10K_XCAST_MODE_NONE);
1161			fm10k_queue_mac_request(interface, glort,
1162						sdev->dev_addr,
1163						hw->mac.default_vid, true);
1164		}
1165	}
1166
1167	fm10k_mbx_unlock(interface);
1168
1169	/* record updated xcast mode state */
1170	interface->xcast_mode = xcast_mode;
1171
1172	/* Restore tunnel configuration */
1173	fm10k_restore_udp_port_info(interface);
1174}
1175
1176void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1177{
1178	struct net_device *netdev = interface->netdev;
1179	struct fm10k_hw *hw = &interface->hw;
1180
1181	/* Wait for MAC/VLAN work to finish */
1182	while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
1183		usleep_range(1000, 2000);
1184
1185	/* Cancel pending MAC/VLAN requests */
1186	fm10k_clear_macvlan_queue(interface, interface->glort, true);
1187
1188	fm10k_mbx_lock(interface);
1189
1190	/* clear the logical port state on lower device if host's mailbox is
1191	 * ready
1192	 */
1193	if (fm10k_host_mbx_ready(interface))
1194		hw->mac.ops.update_lport_state(hw, interface->glort,
1195					       interface->glort_count, false);
1196
1197	fm10k_mbx_unlock(interface);
1198
1199	/* reset flags to default state */
1200	interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1201
1202	/* clear the sync flag since the lport has been dropped */
1203	__dev_uc_unsync(netdev, NULL);
1204	__dev_mc_unsync(netdev, NULL);
1205}
1206
1207/**
1208 * fm10k_get_stats64 - Get System Network Statistics
1209 * @netdev: network interface device structure
1210 * @stats: storage space for 64bit statistics
1211 *
1212 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
1213 * architectures.
1214 */
1215static void fm10k_get_stats64(struct net_device *netdev,
1216			      struct rtnl_link_stats64 *stats)
1217{
1218	struct fm10k_intfc *interface = netdev_priv(netdev);
1219	struct fm10k_ring *ring;
1220	unsigned int start, i;
1221	u64 bytes, packets;
1222
1223	rcu_read_lock();
1224
1225	for (i = 0; i < interface->num_rx_queues; i++) {
1226		ring = READ_ONCE(interface->rx_ring[i]);
1227
1228		if (!ring)
1229			continue;
1230
1231		do {
1232			start = u64_stats_fetch_begin(&ring->syncp);
1233			packets = ring->stats.packets;
1234			bytes   = ring->stats.bytes;
1235		} while (u64_stats_fetch_retry(&ring->syncp, start));
1236
1237		stats->rx_packets += packets;
1238		stats->rx_bytes   += bytes;
1239	}
1240
1241	for (i = 0; i < interface->num_tx_queues; i++) {
1242		ring = READ_ONCE(interface->tx_ring[i]);
1243
1244		if (!ring)
1245			continue;
1246
1247		do {
1248			start = u64_stats_fetch_begin(&ring->syncp);
1249			packets = ring->stats.packets;
1250			bytes   = ring->stats.bytes;
1251		} while (u64_stats_fetch_retry(&ring->syncp, start));
1252
1253		stats->tx_packets += packets;
1254		stats->tx_bytes   += bytes;
1255	}
1256
1257	rcu_read_unlock();
1258
1259	/* following stats updated by fm10k_service_task() */
1260	stats->rx_missed_errors	= netdev->stats.rx_missed_errors;
 
 
1261}
1262
1263int fm10k_setup_tc(struct net_device *dev, u8 tc)
1264{
1265	struct fm10k_intfc *interface = netdev_priv(dev);
1266	int err;
1267
1268	/* Currently only the PF supports priority classes */
1269	if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1270		return -EINVAL;
1271
1272	/* Hardware supports up to 8 traffic classes */
1273	if (tc > 8)
1274		return -EINVAL;
1275
1276	/* Hardware has to reinitialize queues to match packet
1277	 * buffer alignment. Unfortunately, the hardware is not
1278	 * flexible enough to do this dynamically.
1279	 */
1280	if (netif_running(dev))
1281		fm10k_close(dev);
1282
1283	fm10k_mbx_free_irq(interface);
1284
1285	fm10k_clear_queueing_scheme(interface);
1286
1287	/* we expect the prio_tc map to be repopulated later */
1288	netdev_reset_tc(dev);
1289	netdev_set_num_tc(dev, tc);
1290
1291	err = fm10k_init_queueing_scheme(interface);
1292	if (err)
1293		goto err_queueing_scheme;
1294
1295	err = fm10k_mbx_request_irq(interface);
1296	if (err)
1297		goto err_mbx_irq;
1298
1299	err = netif_running(dev) ? fm10k_open(dev) : 0;
1300	if (err)
1301		goto err_open;
1302
1303	/* flag to indicate SWPRI has yet to be updated */
1304	set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
1305
1306	return 0;
1307err_open:
1308	fm10k_mbx_free_irq(interface);
1309err_mbx_irq:
1310	fm10k_clear_queueing_scheme(interface);
1311err_queueing_scheme:
1312	netif_device_detach(dev);
1313
1314	return err;
1315}
1316
1317static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
1318			    void *type_data)
1319{
1320	struct tc_mqprio_qopt *mqprio = type_data;
1321
1322	if (type != TC_SETUP_QDISC_MQPRIO)
1323		return -EOPNOTSUPP;
1324
1325	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1326
1327	return fm10k_setup_tc(dev, mqprio->num_tc);
1328}
1329
1330static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1331				  struct fm10k_l2_accel *l2_accel)
1332{
 
1333	int i;
1334
1335	for (i = 0; i < interface->num_rx_queues; i++) {
1336		struct fm10k_ring *ring = interface->rx_ring[i];
1337
1338		rcu_assign_pointer(ring->l2_accel, l2_accel);
1339	}
1340
1341	interface->l2_accel = l2_accel;
1342}
1343
1344static void *fm10k_dfwd_add_station(struct net_device *dev,
1345				    struct net_device *sdev)
1346{
1347	struct fm10k_intfc *interface = netdev_priv(dev);
1348	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1349	struct fm10k_l2_accel *old_l2_accel = NULL;
1350	struct fm10k_dglort_cfg dglort = { 0 };
1351	struct fm10k_hw *hw = &interface->hw;
1352	int size, i;
1353	u16 vid, glort;
1354
1355	/* The hardware supported by fm10k only filters on the destination MAC
1356	 * address. In order to avoid issues we only support offloading modes
1357	 * where the hardware can actually provide the functionality.
1358	 */
1359	if (!macvlan_supports_dest_filter(sdev))
1360		return ERR_PTR(-EMEDIUMTYPE);
1361
1362	/* allocate l2 accel structure if it is not available */
1363	if (!l2_accel) {
1364		/* verify there is enough free GLORTs to support l2_accel */
1365		if (interface->glort_count < 7)
1366			return ERR_PTR(-EBUSY);
1367
1368		size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1369		l2_accel = kzalloc(size, GFP_KERNEL);
1370		if (!l2_accel)
1371			return ERR_PTR(-ENOMEM);
1372
1373		l2_accel->size = 7;
1374		l2_accel->dglort = interface->glort;
1375
1376		/* update pointers */
1377		fm10k_assign_l2_accel(interface, l2_accel);
1378	/* do not expand if we are at our limit */
1379	} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1380		   (l2_accel->count == (interface->glort_count - 1))) {
1381		return ERR_PTR(-EBUSY);
1382	/* expand if we have hit the size limit */
1383	} else if (l2_accel->count == l2_accel->size) {
1384		old_l2_accel = l2_accel;
1385		size = offsetof(struct fm10k_l2_accel,
1386				macvlan[(l2_accel->size * 2) + 1]);
1387		l2_accel = kzalloc(size, GFP_KERNEL);
1388		if (!l2_accel)
1389			return ERR_PTR(-ENOMEM);
1390
1391		memcpy(l2_accel, old_l2_accel,
1392		       offsetof(struct fm10k_l2_accel,
1393				macvlan[old_l2_accel->size]));
1394
1395		l2_accel->size = (old_l2_accel->size * 2) + 1;
1396
1397		/* update pointers */
1398		fm10k_assign_l2_accel(interface, l2_accel);
1399		kfree_rcu(old_l2_accel, rcu);
1400	}
1401
1402	/* add macvlan to accel table, and record GLORT for position */
1403	for (i = 0; i < l2_accel->size; i++) {
1404		if (!l2_accel->macvlan[i])
1405			break;
1406	}
1407
1408	/* record station */
1409	l2_accel->macvlan[i] = sdev;
1410	l2_accel->count++;
1411
1412	/* configure default DGLORT mapping for RSS/DCB */
1413	dglort.idx = fm10k_dglort_pf_rss;
1414	dglort.inner_rss = 1;
1415	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1416	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1417	dglort.glort = interface->glort;
1418	dglort.shared_l = fls(l2_accel->size);
1419	hw->mac.ops.configure_dglort_map(hw, &dglort);
1420
1421	/* Add rules for this specific dglort to the switch */
1422	fm10k_mbx_lock(interface);
1423
1424	glort = l2_accel->dglort + 1 + i;
1425
1426	if (fm10k_host_mbx_ready(interface))
1427		hw->mac.ops.update_xcast_mode(hw, glort,
1428					      FM10K_XCAST_MODE_NONE);
1429
1430	fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1431				hw->mac.default_vid, true);
1432
1433	for (vid = fm10k_find_next_vlan(interface, 0);
1434	     vid < VLAN_N_VID;
1435	     vid = fm10k_find_next_vlan(interface, vid))
1436		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1437					vid, true);
1438
1439	fm10k_mbx_unlock(interface);
1440
1441	return sdev;
1442}
1443
1444static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1445{
1446	struct fm10k_intfc *interface = netdev_priv(dev);
1447	struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
1448	struct fm10k_dglort_cfg dglort = { 0 };
1449	struct fm10k_hw *hw = &interface->hw;
1450	struct net_device *sdev = priv;
1451	u16 vid, glort;
1452	int i;
 
1453
1454	if (!l2_accel)
1455		return;
1456
1457	/* search table for matching interface */
1458	for (i = 0; i < l2_accel->size; i++) {
1459		if (l2_accel->macvlan[i] == sdev)
1460			break;
1461	}
1462
1463	/* exit if macvlan not found */
1464	if (i == l2_accel->size)
1465		return;
1466
1467	/* Remove any rules specific to this dglort */
1468	fm10k_mbx_lock(interface);
1469
1470	glort = l2_accel->dglort + 1 + i;
1471
1472	if (fm10k_host_mbx_ready(interface))
1473		hw->mac.ops.update_xcast_mode(hw, glort,
1474					      FM10K_XCAST_MODE_NONE);
1475
1476	fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1477				hw->mac.default_vid, false);
1478
1479	for (vid = fm10k_find_next_vlan(interface, 0);
1480	     vid < VLAN_N_VID;
1481	     vid = fm10k_find_next_vlan(interface, vid))
1482		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1483					vid, false);
1484
1485	fm10k_mbx_unlock(interface);
1486
1487	/* record removal */
1488	l2_accel->macvlan[i] = NULL;
1489	l2_accel->count--;
1490
1491	/* configure default DGLORT mapping for RSS/DCB */
1492	dglort.idx = fm10k_dglort_pf_rss;
1493	dglort.inner_rss = 1;
1494	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1495	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1496	dglort.glort = interface->glort;
1497	dglort.shared_l = fls(l2_accel->size);
1498	hw->mac.ops.configure_dglort_map(hw, &dglort);
1499
1500	/* If table is empty remove it */
1501	if (l2_accel->count == 0) {
1502		fm10k_assign_l2_accel(interface, NULL);
1503		kfree_rcu(l2_accel, rcu);
1504	}
1505}
1506
1507static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1508					      struct net_device *dev,
1509					      netdev_features_t features)
1510{
1511	if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1512		return features;
1513
1514	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1515}
1516
1517static const struct net_device_ops fm10k_netdev_ops = {
1518	.ndo_open		= fm10k_open,
1519	.ndo_stop		= fm10k_close,
1520	.ndo_validate_addr	= eth_validate_addr,
1521	.ndo_start_xmit		= fm10k_xmit_frame,
1522	.ndo_set_mac_address	= fm10k_set_mac,
1523	.ndo_tx_timeout		= fm10k_tx_timeout,
1524	.ndo_vlan_rx_add_vid	= fm10k_vlan_rx_add_vid,
1525	.ndo_vlan_rx_kill_vid	= fm10k_vlan_rx_kill_vid,
1526	.ndo_set_rx_mode	= fm10k_set_rx_mode,
1527	.ndo_get_stats64	= fm10k_get_stats64,
1528	.ndo_setup_tc		= __fm10k_setup_tc,
1529	.ndo_set_vf_mac		= fm10k_ndo_set_vf_mac,
1530	.ndo_set_vf_vlan	= fm10k_ndo_set_vf_vlan,
1531	.ndo_set_vf_rate	= fm10k_ndo_set_vf_bw,
1532	.ndo_get_vf_config	= fm10k_ndo_get_vf_config,
1533	.ndo_get_vf_stats	= fm10k_ndo_get_vf_stats,
 
1534	.ndo_dfwd_add_station	= fm10k_dfwd_add_station,
1535	.ndo_dfwd_del_station	= fm10k_dfwd_del_station,
 
 
 
1536	.ndo_features_check	= fm10k_features_check,
1537};
1538
1539#define DEFAULT_DEBUG_LEVEL_SHIFT 3
1540
1541struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1542{
1543	netdev_features_t hw_features;
1544	struct fm10k_intfc *interface;
1545	struct net_device *dev;
1546
1547	dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1548	if (!dev)
1549		return NULL;
1550
1551	/* set net device and ethtool ops */
1552	dev->netdev_ops = &fm10k_netdev_ops;
1553	fm10k_set_ethtool_ops(dev);
1554
1555	/* configure default debug level */
1556	interface = netdev_priv(dev);
1557	interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1558
1559	/* configure default features */
1560	dev->features |= NETIF_F_IP_CSUM |
1561			 NETIF_F_IPV6_CSUM |
1562			 NETIF_F_SG |
1563			 NETIF_F_TSO |
1564			 NETIF_F_TSO6 |
1565			 NETIF_F_TSO_ECN |
1566			 NETIF_F_RXHASH |
1567			 NETIF_F_RXCSUM;
1568
1569	/* Only the PF can support VXLAN and NVGRE tunnel offloads */
1570	if (info->mac == fm10k_mac_pf) {
1571		dev->hw_enc_features = NETIF_F_IP_CSUM |
1572				       NETIF_F_TSO |
1573				       NETIF_F_TSO6 |
1574				       NETIF_F_TSO_ECN |
1575				       NETIF_F_GSO_UDP_TUNNEL |
1576				       NETIF_F_IPV6_CSUM |
1577				       NETIF_F_SG;
1578
1579		dev->features |= NETIF_F_GSO_UDP_TUNNEL;
1580
1581		dev->udp_tunnel_nic_info = &fm10k_udp_tunnels;
1582	}
1583
1584	/* all features defined to this point should be changeable */
1585	hw_features = dev->features;
1586
1587	/* allow user to enable L2 forwarding acceleration */
1588	hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1589
1590	/* configure VLAN features */
1591	dev->vlan_features |= dev->features;
1592
1593	/* we want to leave these both on as we cannot disable VLAN tag
1594	 * insertion or stripping on the hardware since it is contained
1595	 * in the FTAG and not in the frame itself.
1596	 */
1597	dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1598			 NETIF_F_HW_VLAN_CTAG_RX |
1599			 NETIF_F_HW_VLAN_CTAG_FILTER;
1600
1601	dev->priv_flags |= IFF_UNICAST_FLT;
1602
1603	dev->hw_features |= hw_features;
1604
1605	/* MTU range: 68 - 15342 */
1606	dev->min_mtu = ETH_MIN_MTU;
1607	dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
1608
1609	return dev;
1610}
v4.10.11
   1/* Intel(R) Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2016 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include "fm10k.h"
  22#include <linux/vmalloc.h>
  23#include <net/udp_tunnel.h>
 
  24
  25/**
  26 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
  27 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
  28 *
  29 * Return 0 on success, negative on failure
  30 **/
  31int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
  32{
  33	struct device *dev = tx_ring->dev;
  34	int size;
  35
  36	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
  37
  38	tx_ring->tx_buffer = vzalloc(size);
  39	if (!tx_ring->tx_buffer)
  40		goto err;
  41
  42	u64_stats_init(&tx_ring->syncp);
  43
  44	/* round up to nearest 4K */
  45	tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
  46	tx_ring->size = ALIGN(tx_ring->size, 4096);
  47
  48	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  49					   &tx_ring->dma, GFP_KERNEL);
  50	if (!tx_ring->desc)
  51		goto err;
  52
  53	return 0;
  54
  55err:
  56	vfree(tx_ring->tx_buffer);
  57	tx_ring->tx_buffer = NULL;
  58	return -ENOMEM;
  59}
  60
  61/**
  62 * fm10k_setup_all_tx_resources - allocate all queues Tx resources
  63 * @interface: board private structure
  64 *
  65 * If this function returns with an error, then it's possible one or
  66 * more of the rings is populated (while the rest are not).  It is the
  67 * callers duty to clean those orphaned rings.
  68 *
  69 * Return 0 on success, negative on failure
  70 **/
  71static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
  72{
  73	int i, err = 0;
  74
  75	for (i = 0; i < interface->num_tx_queues; i++) {
  76		err = fm10k_setup_tx_resources(interface->tx_ring[i]);
  77		if (!err)
  78			continue;
  79
  80		netif_err(interface, probe, interface->netdev,
  81			  "Allocation for Tx Queue %u failed\n", i);
  82		goto err_setup_tx;
  83	}
  84
  85	return 0;
  86err_setup_tx:
  87	/* rewind the index freeing the rings as we go */
  88	while (i--)
  89		fm10k_free_tx_resources(interface->tx_ring[i]);
  90	return err;
  91}
  92
  93/**
  94 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
  95 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
  96 *
  97 * Returns 0 on success, negative on failure
  98 **/
  99int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
 100{
 101	struct device *dev = rx_ring->dev;
 102	int size;
 103
 104	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
 105
 106	rx_ring->rx_buffer = vzalloc(size);
 107	if (!rx_ring->rx_buffer)
 108		goto err;
 109
 110	u64_stats_init(&rx_ring->syncp);
 111
 112	/* Round up to nearest 4K */
 113	rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
 114	rx_ring->size = ALIGN(rx_ring->size, 4096);
 115
 116	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 117					   &rx_ring->dma, GFP_KERNEL);
 118	if (!rx_ring->desc)
 119		goto err;
 120
 121	return 0;
 122err:
 123	vfree(rx_ring->rx_buffer);
 124	rx_ring->rx_buffer = NULL;
 125	return -ENOMEM;
 126}
 127
 128/**
 129 * fm10k_setup_all_rx_resources - allocate all queues Rx resources
 130 * @interface: board private structure
 131 *
 132 * If this function returns with an error, then it's possible one or
 133 * more of the rings is populated (while the rest are not).  It is the
 134 * callers duty to clean those orphaned rings.
 135 *
 136 * Return 0 on success, negative on failure
 137 **/
 138static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
 139{
 140	int i, err = 0;
 141
 142	for (i = 0; i < interface->num_rx_queues; i++) {
 143		err = fm10k_setup_rx_resources(interface->rx_ring[i]);
 144		if (!err)
 145			continue;
 146
 147		netif_err(interface, probe, interface->netdev,
 148			  "Allocation for Rx Queue %u failed\n", i);
 149		goto err_setup_rx;
 150	}
 151
 152	return 0;
 153err_setup_rx:
 154	/* rewind the index freeing the rings as we go */
 155	while (i--)
 156		fm10k_free_rx_resources(interface->rx_ring[i]);
 157	return err;
 158}
 159
 160void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
 161				      struct fm10k_tx_buffer *tx_buffer)
 162{
 163	if (tx_buffer->skb) {
 164		dev_kfree_skb_any(tx_buffer->skb);
 165		if (dma_unmap_len(tx_buffer, len))
 166			dma_unmap_single(ring->dev,
 167					 dma_unmap_addr(tx_buffer, dma),
 168					 dma_unmap_len(tx_buffer, len),
 169					 DMA_TO_DEVICE);
 170	} else if (dma_unmap_len(tx_buffer, len)) {
 171		dma_unmap_page(ring->dev,
 172			       dma_unmap_addr(tx_buffer, dma),
 173			       dma_unmap_len(tx_buffer, len),
 174			       DMA_TO_DEVICE);
 175	}
 176	tx_buffer->next_to_watch = NULL;
 177	tx_buffer->skb = NULL;
 178	dma_unmap_len_set(tx_buffer, len, 0);
 179	/* tx_buffer must be completely set up in the transmit path */
 180}
 181
 182/**
 183 * fm10k_clean_tx_ring - Free Tx Buffers
 184 * @tx_ring: ring to be cleaned
 185 **/
 186static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
 187{
 188	struct fm10k_tx_buffer *tx_buffer;
 189	unsigned long size;
 190	u16 i;
 191
 192	/* ring already cleared, nothing to do */
 193	if (!tx_ring->tx_buffer)
 194		return;
 195
 196	/* Free all the Tx ring sk_buffs */
 197	for (i = 0; i < tx_ring->count; i++) {
 198		tx_buffer = &tx_ring->tx_buffer[i];
 
 199		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
 200	}
 201
 202	/* reset BQL values */
 203	netdev_tx_reset_queue(txring_txq(tx_ring));
 204
 205	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
 206	memset(tx_ring->tx_buffer, 0, size);
 207
 208	/* Zero out the descriptor ring */
 209	memset(tx_ring->desc, 0, tx_ring->size);
 210}
 211
 212/**
 213 * fm10k_free_tx_resources - Free Tx Resources per Queue
 214 * @tx_ring: Tx descriptor ring for a specific queue
 215 *
 216 * Free all transmit software resources
 217 **/
 218void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
 219{
 220	fm10k_clean_tx_ring(tx_ring);
 221
 222	vfree(tx_ring->tx_buffer);
 223	tx_ring->tx_buffer = NULL;
 224
 225	/* if not set, then don't free */
 226	if (!tx_ring->desc)
 227		return;
 228
 229	dma_free_coherent(tx_ring->dev, tx_ring->size,
 230			  tx_ring->desc, tx_ring->dma);
 231	tx_ring->desc = NULL;
 232}
 233
 234/**
 235 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
 236 * @interface: board private structure
 237 **/
 238void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
 239{
 240	int i;
 241
 242	for (i = 0; i < interface->num_tx_queues; i++)
 243		fm10k_clean_tx_ring(interface->tx_ring[i]);
 244}
 245
 246/**
 247 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
 248 * @interface: board private structure
 249 *
 250 * Free all transmit software resources
 251 **/
 252static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
 253{
 254	int i = interface->num_tx_queues;
 255
 256	while (i--)
 257		fm10k_free_tx_resources(interface->tx_ring[i]);
 258}
 259
 260/**
 261 * fm10k_clean_rx_ring - Free Rx Buffers per Queue
 262 * @rx_ring: ring to free buffers from
 263 **/
 264static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
 265{
 266	unsigned long size;
 267	u16 i;
 268
 269	if (!rx_ring->rx_buffer)
 270		return;
 271
 272	if (rx_ring->skb)
 273		dev_kfree_skb(rx_ring->skb);
 274	rx_ring->skb = NULL;
 275
 276	/* Free all the Rx ring sk_buffs */
 277	for (i = 0; i < rx_ring->count; i++) {
 278		struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
 279		/* clean-up will only set page pointer to NULL */
 280		if (!buffer->page)
 281			continue;
 282
 283		dma_unmap_page(rx_ring->dev, buffer->dma,
 284			       PAGE_SIZE, DMA_FROM_DEVICE);
 285		__free_page(buffer->page);
 286
 287		buffer->page = NULL;
 288	}
 289
 290	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
 291	memset(rx_ring->rx_buffer, 0, size);
 292
 293	/* Zero out the descriptor ring */
 294	memset(rx_ring->desc, 0, rx_ring->size);
 295
 296	rx_ring->next_to_alloc = 0;
 297	rx_ring->next_to_clean = 0;
 298	rx_ring->next_to_use = 0;
 299}
 300
 301/**
 302 * fm10k_free_rx_resources - Free Rx Resources
 303 * @rx_ring: ring to clean the resources from
 304 *
 305 * Free all receive software resources
 306 **/
 307void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
 308{
 309	fm10k_clean_rx_ring(rx_ring);
 310
 311	vfree(rx_ring->rx_buffer);
 312	rx_ring->rx_buffer = NULL;
 313
 314	/* if not set, then don't free */
 315	if (!rx_ring->desc)
 316		return;
 317
 318	dma_free_coherent(rx_ring->dev, rx_ring->size,
 319			  rx_ring->desc, rx_ring->dma);
 320
 321	rx_ring->desc = NULL;
 322}
 323
 324/**
 325 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
 326 * @interface: board private structure
 327 **/
 328void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
 329{
 330	int i;
 331
 332	for (i = 0; i < interface->num_rx_queues; i++)
 333		fm10k_clean_rx_ring(interface->rx_ring[i]);
 334}
 335
 336/**
 337 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
 338 * @interface: board private structure
 339 *
 340 * Free all receive software resources
 341 **/
 342static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
 343{
 344	int i = interface->num_rx_queues;
 345
 346	while (i--)
 347		fm10k_free_rx_resources(interface->rx_ring[i]);
 348}
 349
 350/**
 351 * fm10k_request_glort_range - Request GLORTs for use in configuring rules
 352 * @interface: board private structure
 353 *
 354 * This function allocates a range of glorts for this interface to use.
 355 **/
 356static void fm10k_request_glort_range(struct fm10k_intfc *interface)
 357{
 358	struct fm10k_hw *hw = &interface->hw;
 359	u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
 360
 361	/* establish GLORT base */
 362	interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
 363	interface->glort_count = 0;
 364
 365	/* nothing we can do until mask is allocated */
 366	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
 367		return;
 368
 369	/* we support 3 possible GLORT configurations.
 370	 * 1: VFs consume all but the last 1
 371	 * 2: VFs and PF split glorts with possible gap between
 372	 * 3: VFs allocated first 64, all others belong to PF
 373	 */
 374	if (mask <= hw->iov.total_vfs) {
 375		interface->glort_count = 1;
 376		interface->glort += mask;
 377	} else if (mask < 64) {
 378		interface->glort_count = (mask + 1) / 2;
 379		interface->glort += interface->glort_count;
 380	} else {
 381		interface->glort_count = mask - 63;
 382		interface->glort += 64;
 383	}
 384}
 385
 386/**
 387 * fm10k_free_udp_port_info
 388 * @interface: board private structure
 389 *
 390 * This function frees both geneve_port and vxlan_port structures
 391 **/
 392static void fm10k_free_udp_port_info(struct fm10k_intfc *interface)
 393{
 394	struct fm10k_udp_port *port;
 395
 396	/* flush all entries from vxlan list */
 397	port = list_first_entry_or_null(&interface->vxlan_port,
 398					struct fm10k_udp_port, list);
 399	while (port) {
 400		list_del(&port->list);
 401		kfree(port);
 402		port = list_first_entry_or_null(&interface->vxlan_port,
 403						struct fm10k_udp_port,
 404						list);
 405	}
 406
 407	/* flush all entries from geneve list */
 408	port = list_first_entry_or_null(&interface->geneve_port,
 409					struct fm10k_udp_port, list);
 410	while (port) {
 411		list_del(&port->list);
 412		kfree(port);
 413		port = list_first_entry_or_null(&interface->vxlan_port,
 414						struct fm10k_udp_port,
 415						list);
 416	}
 417}
 418
 419/**
 420 * fm10k_restore_udp_port_info
 421 * @interface: board private structure
 422 *
 423 * This function restores the value in the tunnel_cfg register(s) after reset
 424 **/
 425static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
 426{
 427	struct fm10k_hw *hw = &interface->hw;
 428	struct fm10k_udp_port *port;
 429
 430	/* only the PF supports configuring tunnels */
 431	if (hw->mac.type != fm10k_mac_pf)
 432		return;
 433
 434	port = list_first_entry_or_null(&interface->vxlan_port,
 435					struct fm10k_udp_port, list);
 436
 437	/* restore tunnel configuration register */
 438	fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
 439			(port ? ntohs(port->port) : 0) |
 440			(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
 441
 442	port = list_first_entry_or_null(&interface->geneve_port,
 443					struct fm10k_udp_port, list);
 444
 445	/* restore Geneve tunnel configuration register */
 446	fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
 447			(port ? ntohs(port->port) : 0));
 448}
 449
 450static struct fm10k_udp_port *
 451fm10k_remove_tunnel_port(struct list_head *ports,
 452			 struct udp_tunnel_info *ti)
 453{
 454	struct fm10k_udp_port *port;
 455
 456	list_for_each_entry(port, ports, list) {
 457		if ((port->port == ti->port) &&
 458		    (port->sa_family == ti->sa_family)) {
 459			list_del(&port->list);
 460			return port;
 461		}
 462	}
 463
 464	return NULL;
 465}
 466
 467static void fm10k_insert_tunnel_port(struct list_head *ports,
 468				     struct udp_tunnel_info *ti)
 469{
 470	struct fm10k_udp_port *port;
 471
 472	/* remove existing port entry from the list so that the newest items
 473	 * are always at the tail of the list.
 474	 */
 475	port = fm10k_remove_tunnel_port(ports, ti);
 476	if (!port) {
 477		port = kmalloc(sizeof(*port), GFP_ATOMIC);
 478		if  (!port)
 479			return;
 480		port->port = ti->port;
 481		port->sa_family = ti->sa_family;
 482	}
 483
 484	list_add_tail(&port->list, ports);
 485}
 486
 487/**
 488 * fm10k_udp_tunnel_add
 489 * @netdev: network interface device structure
 490 * @ti: Tunnel endpoint information
 491 *
 492 * This function is called when a new UDP tunnel port has been added.
 493 * Due to hardware restrictions, only one port per type can be offloaded at
 494 * once.
 495 **/
 496static void fm10k_udp_tunnel_add(struct net_device *dev,
 497				 struct udp_tunnel_info *ti)
 498{
 499	struct fm10k_intfc *interface = netdev_priv(dev);
 
 500
 501	/* only the PF supports configuring tunnels */
 502	if (interface->hw.mac.type != fm10k_mac_pf)
 503		return;
 504
 505	switch (ti->type) {
 506	case UDP_TUNNEL_TYPE_VXLAN:
 507		fm10k_insert_tunnel_port(&interface->vxlan_port, ti);
 508		break;
 509	case UDP_TUNNEL_TYPE_GENEVE:
 510		fm10k_insert_tunnel_port(&interface->geneve_port, ti);
 511		break;
 512	default:
 513		return;
 514	}
 515
 516	fm10k_restore_udp_port_info(interface);
 
 517}
 518
 519/**
 520 * fm10k_udp_tunnel_del
 521 * @netdev: network interface device structure
 522 * @ti: Tunnel endpoint information
 523 *
 524 * This function is called when a new UDP tunnel port is deleted. The freed
 525 * port will be removed from the list, then we reprogram the offloaded port
 526 * based on the head of the list.
 527 **/
 528static void fm10k_udp_tunnel_del(struct net_device *dev,
 529				 struct udp_tunnel_info *ti)
 530{
 531	struct fm10k_intfc *interface = netdev_priv(dev);
 532	struct fm10k_udp_port *port = NULL;
 533
 534	if (interface->hw.mac.type != fm10k_mac_pf)
 535		return;
 536
 537	switch (ti->type) {
 538	case UDP_TUNNEL_TYPE_VXLAN:
 539		port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti);
 540		break;
 541	case UDP_TUNNEL_TYPE_GENEVE:
 542		port = fm10k_remove_tunnel_port(&interface->geneve_port, ti);
 543		break;
 544	default:
 545		return;
 546	}
 547
 548	/* if we did remove a port we need to free its memory */
 549	kfree(port);
 550
 551	fm10k_restore_udp_port_info(interface);
 552}
 553
 554/**
 555 * fm10k_open - Called when a network interface is made active
 556 * @netdev: network interface device structure
 557 *
 558 * Returns 0 on success, negative value on failure
 559 *
 560 * The open entry point is called when a network interface is made
 561 * active by the system (IFF_UP).  At this point all resources needed
 562 * for transmit and receive operations are allocated, the interrupt
 563 * handler is registered with the OS, the watchdog timer is started,
 564 * and the stack is notified that the interface is ready.
 565 **/
 566int fm10k_open(struct net_device *netdev)
 567{
 568	struct fm10k_intfc *interface = netdev_priv(netdev);
 569	int err;
 570
 571	/* allocate transmit descriptors */
 572	err = fm10k_setup_all_tx_resources(interface);
 573	if (err)
 574		goto err_setup_tx;
 575
 576	/* allocate receive descriptors */
 577	err = fm10k_setup_all_rx_resources(interface);
 578	if (err)
 579		goto err_setup_rx;
 580
 581	/* allocate interrupt resources */
 582	err = fm10k_qv_request_irq(interface);
 583	if (err)
 584		goto err_req_irq;
 585
 586	/* setup GLORT assignment for this port */
 587	fm10k_request_glort_range(interface);
 588
 589	/* Notify the stack of the actual queue counts */
 590	err = netif_set_real_num_tx_queues(netdev,
 591					   interface->num_tx_queues);
 592	if (err)
 593		goto err_set_queues;
 594
 595	err = netif_set_real_num_rx_queues(netdev,
 596					   interface->num_rx_queues);
 597	if (err)
 598		goto err_set_queues;
 599
 600	udp_tunnel_get_rx_info(netdev);
 601
 602	fm10k_up(interface);
 603
 604	return 0;
 605
 606err_set_queues:
 607	fm10k_qv_free_irq(interface);
 608err_req_irq:
 609	fm10k_free_all_rx_resources(interface);
 610err_setup_rx:
 611	fm10k_free_all_tx_resources(interface);
 612err_setup_tx:
 613	return err;
 614}
 615
 616/**
 617 * fm10k_close - Disables a network interface
 618 * @netdev: network interface device structure
 619 *
 620 * Returns 0, this is not allowed to fail
 621 *
 622 * The close entry point is called when an interface is de-activated
 623 * by the OS.  The hardware is still under the drivers control, but
 624 * needs to be disabled.  A global MAC reset is issued to stop the
 625 * hardware, and all transmit and receive resources are freed.
 626 **/
 627int fm10k_close(struct net_device *netdev)
 628{
 629	struct fm10k_intfc *interface = netdev_priv(netdev);
 630
 631	fm10k_down(interface);
 632
 633	fm10k_qv_free_irq(interface);
 634
 635	fm10k_free_udp_port_info(interface);
 636
 637	fm10k_free_all_tx_resources(interface);
 638	fm10k_free_all_rx_resources(interface);
 639
 640	return 0;
 641}
 642
 643static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
 644{
 645	struct fm10k_intfc *interface = netdev_priv(dev);
 
 646	unsigned int r_idx = skb->queue_mapping;
 647	int err;
 648
 
 
 
 649	if ((skb->protocol == htons(ETH_P_8021Q)) &&
 650	    !skb_vlan_tag_present(skb)) {
 651		/* FM10K only supports hardware tagging, any tags in frame
 652		 * are considered 2nd level or "outer" tags
 653		 */
 654		struct vlan_hdr *vhdr;
 655		__be16 proto;
 656
 657		/* make sure skb is not shared */
 658		skb = skb_share_check(skb, GFP_ATOMIC);
 659		if (!skb)
 660			return NETDEV_TX_OK;
 661
 662		/* make sure there is enough room to move the ethernet header */
 663		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
 664			return NETDEV_TX_OK;
 665
 666		/* verify the skb head is not shared */
 667		err = skb_cow_head(skb, 0);
 668		if (err) {
 669			dev_kfree_skb(skb);
 670			return NETDEV_TX_OK;
 671		}
 672
 673		/* locate VLAN header */
 674		vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
 675
 676		/* pull the 2 key pieces of data out of it */
 677		__vlan_hwaccel_put_tag(skb,
 678				       htons(ETH_P_8021Q),
 679				       ntohs(vhdr->h_vlan_TCI));
 680		proto = vhdr->h_vlan_encapsulated_proto;
 681		skb->protocol = (ntohs(proto) >= 1536) ? proto :
 682							 htons(ETH_P_802_2);
 683
 684		/* squash it by moving the ethernet addresses up 4 bytes */
 685		memmove(skb->data + VLAN_HLEN, skb->data, 12);
 686		__skb_pull(skb, VLAN_HLEN);
 687		skb_reset_mac_header(skb);
 688	}
 689
 690	/* The minimum packet size for a single buffer is 17B so pad the skb
 691	 * in order to meet this minimum size requirement.
 692	 */
 693	if (unlikely(skb->len < 17)) {
 694		int pad_len = 17 - skb->len;
 695
 696		if (skb_pad(skb, pad_len))
 697			return NETDEV_TX_OK;
 698		__skb_put(skb, pad_len);
 699	}
 700
 701	if (r_idx >= interface->num_tx_queues)
 702		r_idx %= interface->num_tx_queues;
 703
 704	err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
 705
 706	return err;
 707}
 708
 709/**
 710 * fm10k_tx_timeout - Respond to a Tx Hang
 711 * @netdev: network interface device structure
 
 712 **/
 713static void fm10k_tx_timeout(struct net_device *netdev)
 714{
 715	struct fm10k_intfc *interface = netdev_priv(netdev);
 
 716	bool real_tx_hang = false;
 717	int i;
 718
 719#define TX_TIMEO_LIMIT 16000
 720	for (i = 0; i < interface->num_tx_queues; i++) {
 721		struct fm10k_ring *tx_ring = interface->tx_ring[i];
 
 722
 723		if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
 724			real_tx_hang = true;
 725	}
 726
 
 727	if (real_tx_hang) {
 728		fm10k_tx_timeout_reset(interface);
 729	} else {
 730		netif_info(interface, drv, netdev,
 731			   "Fake Tx hang detected with timeout of %d seconds\n",
 732			   netdev->watchdog_timeo / HZ);
 733
 734		/* fake Tx hang - increase the kernel timeout */
 735		if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
 736			netdev->watchdog_timeo *= 2;
 737	}
 738}
 739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740static int fm10k_uc_vlan_unsync(struct net_device *netdev,
 741				const unsigned char *uc_addr)
 742{
 743	struct fm10k_intfc *interface = netdev_priv(netdev);
 744	struct fm10k_hw *hw = &interface->hw;
 745	u16 glort = interface->glort;
 746	u16 vid = interface->vid;
 747	bool set = !!(vid / VLAN_N_VID);
 748	int err;
 749
 750	/* drop any leading bits on the VLAN ID */
 751	vid &= VLAN_N_VID - 1;
 752
 753	err = hw->mac.ops.update_uc_addr(hw, glort, uc_addr, vid, set, 0);
 754	if (err)
 755		return err;
 756
 757	/* return non-zero value as we are only doing a partial sync/unsync */
 758	return 1;
 759}
 760
 761static int fm10k_mc_vlan_unsync(struct net_device *netdev,
 762				const unsigned char *mc_addr)
 763{
 764	struct fm10k_intfc *interface = netdev_priv(netdev);
 765	struct fm10k_hw *hw = &interface->hw;
 766	u16 glort = interface->glort;
 767	u16 vid = interface->vid;
 768	bool set = !!(vid / VLAN_N_VID);
 769	int err;
 770
 771	/* drop any leading bits on the VLAN ID */
 772	vid &= VLAN_N_VID - 1;
 773
 774	err = hw->mac.ops.update_mc_addr(hw, glort, mc_addr, vid, set);
 775	if (err)
 776		return err;
 777
 778	/* return non-zero value as we are only doing a partial sync/unsync */
 779	return 1;
 780}
 781
 782static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
 783{
 784	struct fm10k_intfc *interface = netdev_priv(netdev);
 
 785	struct fm10k_hw *hw = &interface->hw;
 
 786	s32 err;
 787	int i;
 788
 789	/* updates do not apply to VLAN 0 */
 790	if (!vid)
 791		return 0;
 792
 793	if (vid >= VLAN_N_VID)
 794		return -EINVAL;
 795
 796	/* Verify we have permission to add VLANs */
 797	if (hw->mac.vlan_override)
 
 
 
 
 798		return -EACCES;
 799
 800	/* update active_vlans bitmask */
 801	set_bit(vid, interface->active_vlans);
 802	if (!set)
 803		clear_bit(vid, interface->active_vlans);
 804
 805	/* disable the default VLAN ID on ring if we have an active VLAN */
 806	for (i = 0; i < interface->num_rx_queues; i++) {
 807		struct fm10k_ring *rx_ring = interface->rx_ring[i];
 808		u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
 809
 810		if (test_bit(rx_vid, interface->active_vlans))
 811			rx_ring->vid |= FM10K_VLAN_CLEAR;
 812		else
 813			rx_ring->vid &= ~FM10K_VLAN_CLEAR;
 814	}
 815
 
 
 
 
 
 
 816	/* Do not remove default VLAN ID related entries from VLAN and MAC
 817	 * tables
 818	 */
 819	if (!set && vid == hw->mac.default_vid)
 820		return 0;
 821
 822	/* Do not throw an error if the interface is down. We will sync once
 823	 * we come up
 824	 */
 825	if (test_bit(__FM10K_DOWN, &interface->state))
 826		return 0;
 827
 828	fm10k_mbx_lock(interface);
 829
 830	/* only need to update the VLAN if not in promiscuous mode */
 831	if (!(netdev->flags & IFF_PROMISC)) {
 832		err = hw->mac.ops.update_vlan(hw, vid, 0, set);
 833		if (err)
 834			goto err_out;
 835	}
 836
 837	/* update our base MAC address */
 838	err = hw->mac.ops.update_uc_addr(hw, interface->glort, hw->mac.addr,
 839					 vid, set, 0);
 840	if (err)
 841		goto err_out;
 842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843	/* set VLAN ID prior to syncing/unsyncing the VLAN */
 844	interface->vid = vid + (set ? VLAN_N_VID : 0);
 845
 846	/* Update the unicast and multicast address list to add/drop VLAN */
 847	__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
 848	__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
 849
 850err_out:
 851	fm10k_mbx_unlock(interface);
 852
 853	return err;
 854}
 855
 856static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
 857				 __always_unused __be16 proto, u16 vid)
 858{
 859	/* update VLAN and address table based on changes */
 860	return fm10k_update_vid(netdev, vid, true);
 861}
 862
 863static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
 864				  __always_unused __be16 proto, u16 vid)
 865{
 866	/* update VLAN and address table based on changes */
 867	return fm10k_update_vid(netdev, vid, false);
 868}
 869
 870static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
 871{
 872	struct fm10k_hw *hw = &interface->hw;
 873	u16 default_vid = hw->mac.default_vid;
 874	u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
 875
 876	vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
 877
 878	return vid;
 879}
 880
 881static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
 882{
 883	struct fm10k_hw *hw = &interface->hw;
 884	u32 vid, prev_vid;
 885
 886	/* loop through and find any gaps in the table */
 887	for (vid = 0, prev_vid = 0;
 888	     prev_vid < VLAN_N_VID;
 889	     prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
 890		if (prev_vid == vid)
 891			continue;
 892
 893		/* send request to clear multiple bits at a time */
 894		prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
 895		hw->mac.ops.update_vlan(hw, prev_vid, 0, false);
 896	}
 897}
 898
 899static int __fm10k_uc_sync(struct net_device *dev,
 900			   const unsigned char *addr, bool sync)
 901{
 902	struct fm10k_intfc *interface = netdev_priv(dev);
 903	struct fm10k_hw *hw = &interface->hw;
 904	u16 vid, glort = interface->glort;
 905	s32 err;
 906
 907	if (!is_valid_ether_addr(addr))
 908		return -EADDRNOTAVAIL;
 909
 910	/* update table with current entries */
 911	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
 912	     vid < VLAN_N_VID;
 913	     vid = fm10k_find_next_vlan(interface, vid)) {
 914		err = hw->mac.ops.update_uc_addr(hw, glort, addr,
 915						  vid, sync, 0);
 916		if (err)
 917			return err;
 918	}
 919
 920	return 0;
 921}
 922
 923static int fm10k_uc_sync(struct net_device *dev,
 924			 const unsigned char *addr)
 925{
 926	return __fm10k_uc_sync(dev, addr, true);
 927}
 928
 929static int fm10k_uc_unsync(struct net_device *dev,
 930			   const unsigned char *addr)
 931{
 932	return __fm10k_uc_sync(dev, addr, false);
 933}
 934
 935static int fm10k_set_mac(struct net_device *dev, void *p)
 936{
 937	struct fm10k_intfc *interface = netdev_priv(dev);
 938	struct fm10k_hw *hw = &interface->hw;
 939	struct sockaddr *addr = p;
 940	s32 err = 0;
 941
 942	if (!is_valid_ether_addr(addr->sa_data))
 943		return -EADDRNOTAVAIL;
 944
 945	if (dev->flags & IFF_UP) {
 946		/* setting MAC address requires mailbox */
 947		fm10k_mbx_lock(interface);
 948
 949		err = fm10k_uc_sync(dev, addr->sa_data);
 950		if (!err)
 951			fm10k_uc_unsync(dev, hw->mac.addr);
 952
 953		fm10k_mbx_unlock(interface);
 954	}
 955
 956	if (!err) {
 957		ether_addr_copy(dev->dev_addr, addr->sa_data);
 958		ether_addr_copy(hw->mac.addr, addr->sa_data);
 959		dev->addr_assign_type &= ~NET_ADDR_RANDOM;
 960	}
 961
 962	/* if we had a mailbox error suggest trying again */
 963	return err ? -EAGAIN : 0;
 964}
 965
 966static int __fm10k_mc_sync(struct net_device *dev,
 967			   const unsigned char *addr, bool sync)
 968{
 969	struct fm10k_intfc *interface = netdev_priv(dev);
 970	struct fm10k_hw *hw = &interface->hw;
 971	u16 vid, glort = interface->glort;
 
 
 
 
 972
 973	/* update table with current entries */
 974	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
 975	     vid < VLAN_N_VID;
 976	     vid = fm10k_find_next_vlan(interface, vid)) {
 977		hw->mac.ops.update_mc_addr(hw, glort, addr, vid, sync);
 
 
 
 978	}
 979
 980	return 0;
 981}
 982
 983static int fm10k_mc_sync(struct net_device *dev,
 984			 const unsigned char *addr)
 985{
 986	return __fm10k_mc_sync(dev, addr, true);
 987}
 988
 989static int fm10k_mc_unsync(struct net_device *dev,
 990			   const unsigned char *addr)
 991{
 992	return __fm10k_mc_sync(dev, addr, false);
 993}
 994
 995static void fm10k_set_rx_mode(struct net_device *dev)
 996{
 997	struct fm10k_intfc *interface = netdev_priv(dev);
 998	struct fm10k_hw *hw = &interface->hw;
 999	int xcast_mode;
1000
1001	/* no need to update the harwdare if we are not running */
1002	if (!(dev->flags & IFF_UP))
1003		return;
1004
1005	/* determine new mode based on flags */
1006	xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
1007		     (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
1008		     (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1009		     FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
1010
1011	fm10k_mbx_lock(interface);
1012
1013	/* update xcast mode first, but only if it changed */
1014	if (interface->xcast_mode != xcast_mode) {
1015		/* update VLAN table */
1016		if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
1017			hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, true);
 
 
 
1018		if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
1019			fm10k_clear_unused_vlans(interface);
1020
1021		/* update xcast mode */
1022		hw->mac.ops.update_xcast_mode(hw, interface->glort, xcast_mode);
 
 
1023
1024		/* record updated xcast mode state */
1025		interface->xcast_mode = xcast_mode;
1026	}
1027
1028	/* synchronize all of the addresses */
1029	__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
1030	__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1031
1032	fm10k_mbx_unlock(interface);
1033}
1034
1035void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1036{
 
1037	struct net_device *netdev = interface->netdev;
1038	struct fm10k_hw *hw = &interface->hw;
1039	int xcast_mode;
1040	u16 vid, glort;
1041
1042	/* record glort for this interface */
1043	glort = interface->glort;
1044
1045	/* convert interface flags to xcast mode */
1046	if (netdev->flags & IFF_PROMISC)
1047		xcast_mode = FM10K_XCAST_MODE_PROMISC;
1048	else if (netdev->flags & IFF_ALLMULTI)
1049		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1050	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1051		xcast_mode = FM10K_XCAST_MODE_MULTI;
1052	else
1053		xcast_mode = FM10K_XCAST_MODE_NONE;
1054
1055	fm10k_mbx_lock(interface);
1056
1057	/* Enable logical port */
1058	hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true);
 
 
1059
1060	/* update VLAN table */
1061	hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0,
1062				xcast_mode == FM10K_XCAST_MODE_PROMISC);
1063
1064	/* Add filter for VLAN 0 */
1065	hw->mac.ops.update_vlan(hw, 0, 0, true);
1066
1067	/* update table with current entries */
1068	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
1069	     vid < VLAN_N_VID;
1070	     vid = fm10k_find_next_vlan(interface, vid)) {
1071		hw->mac.ops.update_vlan(hw, vid, 0, true);
1072		hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr,
1073					   vid, true, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	}
1075
1076	/* update xcast mode before synchronizing addresses */
1077	hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
 
 
 
1078
1079	/* synchronize all of the addresses */
1080	__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1081	__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083	fm10k_mbx_unlock(interface);
1084
1085	/* record updated xcast mode state */
1086	interface->xcast_mode = xcast_mode;
1087
1088	/* Restore tunnel configuration */
1089	fm10k_restore_udp_port_info(interface);
1090}
1091
1092void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1093{
1094	struct net_device *netdev = interface->netdev;
1095	struct fm10k_hw *hw = &interface->hw;
1096
 
 
 
 
 
 
 
1097	fm10k_mbx_lock(interface);
1098
1099	/* clear the logical port state on lower device */
1100	hw->mac.ops.update_lport_state(hw, interface->glort,
1101				       interface->glort_count, false);
 
 
 
1102
1103	fm10k_mbx_unlock(interface);
1104
1105	/* reset flags to default state */
1106	interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1107
1108	/* clear the sync flag since the lport has been dropped */
1109	__dev_uc_unsync(netdev, NULL);
1110	__dev_mc_unsync(netdev, NULL);
1111}
1112
1113/**
1114 * fm10k_get_stats64 - Get System Network Statistics
1115 * @netdev: network interface device structure
1116 * @stats: storage space for 64bit statistics
1117 *
1118 * Returns 64bit statistics, for use in the ndo_get_stats64 callback. This
1119 * function replaces fm10k_get_stats for kernels which support it.
1120 */
1121static struct rtnl_link_stats64 *fm10k_get_stats64(struct net_device *netdev,
1122						   struct rtnl_link_stats64 *stats)
1123{
1124	struct fm10k_intfc *interface = netdev_priv(netdev);
1125	struct fm10k_ring *ring;
1126	unsigned int start, i;
1127	u64 bytes, packets;
1128
1129	rcu_read_lock();
1130
1131	for (i = 0; i < interface->num_rx_queues; i++) {
1132		ring = READ_ONCE(interface->rx_ring[i]);
1133
1134		if (!ring)
1135			continue;
1136
1137		do {
1138			start = u64_stats_fetch_begin_irq(&ring->syncp);
1139			packets = ring->stats.packets;
1140			bytes   = ring->stats.bytes;
1141		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1142
1143		stats->rx_packets += packets;
1144		stats->rx_bytes   += bytes;
1145	}
1146
1147	for (i = 0; i < interface->num_tx_queues; i++) {
1148		ring = READ_ONCE(interface->tx_ring[i]);
1149
1150		if (!ring)
1151			continue;
1152
1153		do {
1154			start = u64_stats_fetch_begin_irq(&ring->syncp);
1155			packets = ring->stats.packets;
1156			bytes   = ring->stats.bytes;
1157		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1158
1159		stats->tx_packets += packets;
1160		stats->tx_bytes   += bytes;
1161	}
1162
1163	rcu_read_unlock();
1164
1165	/* following stats updated by fm10k_service_task() */
1166	stats->rx_missed_errors	= netdev->stats.rx_missed_errors;
1167
1168	return stats;
1169}
1170
1171int fm10k_setup_tc(struct net_device *dev, u8 tc)
1172{
1173	struct fm10k_intfc *interface = netdev_priv(dev);
1174	int err;
1175
1176	/* Currently only the PF supports priority classes */
1177	if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1178		return -EINVAL;
1179
1180	/* Hardware supports up to 8 traffic classes */
1181	if (tc > 8)
1182		return -EINVAL;
1183
1184	/* Hardware has to reinitialize queues to match packet
1185	 * buffer alignment. Unfortunately, the hardware is not
1186	 * flexible enough to do this dynamically.
1187	 */
1188	if (netif_running(dev))
1189		fm10k_close(dev);
1190
1191	fm10k_mbx_free_irq(interface);
1192
1193	fm10k_clear_queueing_scheme(interface);
1194
1195	/* we expect the prio_tc map to be repopulated later */
1196	netdev_reset_tc(dev);
1197	netdev_set_num_tc(dev, tc);
1198
1199	err = fm10k_init_queueing_scheme(interface);
1200	if (err)
1201		goto err_queueing_scheme;
1202
1203	err = fm10k_mbx_request_irq(interface);
1204	if (err)
1205		goto err_mbx_irq;
1206
1207	err = netif_running(dev) ? fm10k_open(dev) : 0;
1208	if (err)
1209		goto err_open;
1210
1211	/* flag to indicate SWPRI has yet to be updated */
1212	interface->flags |= FM10K_FLAG_SWPRI_CONFIG;
1213
1214	return 0;
1215err_open:
1216	fm10k_mbx_free_irq(interface);
1217err_mbx_irq:
1218	fm10k_clear_queueing_scheme(interface);
1219err_queueing_scheme:
1220	netif_device_detach(dev);
1221
1222	return err;
1223}
1224
1225static int __fm10k_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1226			    struct tc_to_netdev *tc)
1227{
1228	if (tc->type != TC_SETUP_MQPRIO)
1229		return -EINVAL;
 
 
 
 
1230
1231	return fm10k_setup_tc(dev, tc->tc);
1232}
1233
1234static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1235				  struct fm10k_l2_accel *l2_accel)
1236{
1237	struct fm10k_ring *ring;
1238	int i;
1239
1240	for (i = 0; i < interface->num_rx_queues; i++) {
1241		ring = interface->rx_ring[i];
 
1242		rcu_assign_pointer(ring->l2_accel, l2_accel);
1243	}
1244
1245	interface->l2_accel = l2_accel;
1246}
1247
1248static void *fm10k_dfwd_add_station(struct net_device *dev,
1249				    struct net_device *sdev)
1250{
1251	struct fm10k_intfc *interface = netdev_priv(dev);
1252	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1253	struct fm10k_l2_accel *old_l2_accel = NULL;
1254	struct fm10k_dglort_cfg dglort = { 0 };
1255	struct fm10k_hw *hw = &interface->hw;
1256	int size = 0, i;
1257	u16 glort;
 
 
 
 
 
 
 
1258
1259	/* allocate l2 accel structure if it is not available */
1260	if (!l2_accel) {
1261		/* verify there is enough free GLORTs to support l2_accel */
1262		if (interface->glort_count < 7)
1263			return ERR_PTR(-EBUSY);
1264
1265		size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1266		l2_accel = kzalloc(size, GFP_KERNEL);
1267		if (!l2_accel)
1268			return ERR_PTR(-ENOMEM);
1269
1270		l2_accel->size = 7;
1271		l2_accel->dglort = interface->glort;
1272
1273		/* update pointers */
1274		fm10k_assign_l2_accel(interface, l2_accel);
1275	/* do not expand if we are at our limit */
1276	} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1277		   (l2_accel->count == (interface->glort_count - 1))) {
1278		return ERR_PTR(-EBUSY);
1279	/* expand if we have hit the size limit */
1280	} else if (l2_accel->count == l2_accel->size) {
1281		old_l2_accel = l2_accel;
1282		size = offsetof(struct fm10k_l2_accel,
1283				macvlan[(l2_accel->size * 2) + 1]);
1284		l2_accel = kzalloc(size, GFP_KERNEL);
1285		if (!l2_accel)
1286			return ERR_PTR(-ENOMEM);
1287
1288		memcpy(l2_accel, old_l2_accel,
1289		       offsetof(struct fm10k_l2_accel,
1290				macvlan[old_l2_accel->size]));
1291
1292		l2_accel->size = (old_l2_accel->size * 2) + 1;
1293
1294		/* update pointers */
1295		fm10k_assign_l2_accel(interface, l2_accel);
1296		kfree_rcu(old_l2_accel, rcu);
1297	}
1298
1299	/* add macvlan to accel table, and record GLORT for position */
1300	for (i = 0; i < l2_accel->size; i++) {
1301		if (!l2_accel->macvlan[i])
1302			break;
1303	}
1304
1305	/* record station */
1306	l2_accel->macvlan[i] = sdev;
1307	l2_accel->count++;
1308
1309	/* configure default DGLORT mapping for RSS/DCB */
1310	dglort.idx = fm10k_dglort_pf_rss;
1311	dglort.inner_rss = 1;
1312	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1313	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1314	dglort.glort = interface->glort;
1315	dglort.shared_l = fls(l2_accel->size);
1316	hw->mac.ops.configure_dglort_map(hw, &dglort);
1317
1318	/* Add rules for this specific dglort to the switch */
1319	fm10k_mbx_lock(interface);
1320
1321	glort = l2_accel->dglort + 1 + i;
1322	hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_MULTI);
1323	hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, true, 0);
 
 
 
 
 
 
 
 
 
 
 
1324
1325	fm10k_mbx_unlock(interface);
1326
1327	return sdev;
1328}
1329
1330static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1331{
1332	struct fm10k_intfc *interface = netdev_priv(dev);
1333	struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
1334	struct fm10k_dglort_cfg dglort = { 0 };
1335	struct fm10k_hw *hw = &interface->hw;
1336	struct net_device *sdev = priv;
 
1337	int i;
1338	u16 glort;
1339
1340	if (!l2_accel)
1341		return;
1342
1343	/* search table for matching interface */
1344	for (i = 0; i < l2_accel->size; i++) {
1345		if (l2_accel->macvlan[i] == sdev)
1346			break;
1347	}
1348
1349	/* exit if macvlan not found */
1350	if (i == l2_accel->size)
1351		return;
1352
1353	/* Remove any rules specific to this dglort */
1354	fm10k_mbx_lock(interface);
1355
1356	glort = l2_accel->dglort + 1 + i;
1357	hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_NONE);
1358	hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, false, 0);
 
 
 
 
 
 
 
 
 
 
 
1359
1360	fm10k_mbx_unlock(interface);
1361
1362	/* record removal */
1363	l2_accel->macvlan[i] = NULL;
1364	l2_accel->count--;
1365
1366	/* configure default DGLORT mapping for RSS/DCB */
1367	dglort.idx = fm10k_dglort_pf_rss;
1368	dglort.inner_rss = 1;
1369	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1370	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1371	dglort.glort = interface->glort;
1372	dglort.shared_l = fls(l2_accel->size);
1373	hw->mac.ops.configure_dglort_map(hw, &dglort);
1374
1375	/* If table is empty remove it */
1376	if (l2_accel->count == 0) {
1377		fm10k_assign_l2_accel(interface, NULL);
1378		kfree_rcu(l2_accel, rcu);
1379	}
1380}
1381
1382static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1383					      struct net_device *dev,
1384					      netdev_features_t features)
1385{
1386	if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1387		return features;
1388
1389	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1390}
1391
1392static const struct net_device_ops fm10k_netdev_ops = {
1393	.ndo_open		= fm10k_open,
1394	.ndo_stop		= fm10k_close,
1395	.ndo_validate_addr	= eth_validate_addr,
1396	.ndo_start_xmit		= fm10k_xmit_frame,
1397	.ndo_set_mac_address	= fm10k_set_mac,
1398	.ndo_tx_timeout		= fm10k_tx_timeout,
1399	.ndo_vlan_rx_add_vid	= fm10k_vlan_rx_add_vid,
1400	.ndo_vlan_rx_kill_vid	= fm10k_vlan_rx_kill_vid,
1401	.ndo_set_rx_mode	= fm10k_set_rx_mode,
1402	.ndo_get_stats64	= fm10k_get_stats64,
1403	.ndo_setup_tc		= __fm10k_setup_tc,
1404	.ndo_set_vf_mac		= fm10k_ndo_set_vf_mac,
1405	.ndo_set_vf_vlan	= fm10k_ndo_set_vf_vlan,
1406	.ndo_set_vf_rate	= fm10k_ndo_set_vf_bw,
1407	.ndo_get_vf_config	= fm10k_ndo_get_vf_config,
1408	.ndo_udp_tunnel_add	= fm10k_udp_tunnel_add,
1409	.ndo_udp_tunnel_del	= fm10k_udp_tunnel_del,
1410	.ndo_dfwd_add_station	= fm10k_dfwd_add_station,
1411	.ndo_dfwd_del_station	= fm10k_dfwd_del_station,
1412#ifdef CONFIG_NET_POLL_CONTROLLER
1413	.ndo_poll_controller	= fm10k_netpoll,
1414#endif
1415	.ndo_features_check	= fm10k_features_check,
1416};
1417
1418#define DEFAULT_DEBUG_LEVEL_SHIFT 3
1419
1420struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1421{
1422	netdev_features_t hw_features;
1423	struct fm10k_intfc *interface;
1424	struct net_device *dev;
1425
1426	dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1427	if (!dev)
1428		return NULL;
1429
1430	/* set net device and ethtool ops */
1431	dev->netdev_ops = &fm10k_netdev_ops;
1432	fm10k_set_ethtool_ops(dev);
1433
1434	/* configure default debug level */
1435	interface = netdev_priv(dev);
1436	interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1437
1438	/* configure default features */
1439	dev->features |= NETIF_F_IP_CSUM |
1440			 NETIF_F_IPV6_CSUM |
1441			 NETIF_F_SG |
1442			 NETIF_F_TSO |
1443			 NETIF_F_TSO6 |
1444			 NETIF_F_TSO_ECN |
1445			 NETIF_F_RXHASH |
1446			 NETIF_F_RXCSUM;
1447
1448	/* Only the PF can support VXLAN and NVGRE tunnel offloads */
1449	if (info->mac == fm10k_mac_pf) {
1450		dev->hw_enc_features = NETIF_F_IP_CSUM |
1451				       NETIF_F_TSO |
1452				       NETIF_F_TSO6 |
1453				       NETIF_F_TSO_ECN |
1454				       NETIF_F_GSO_UDP_TUNNEL |
1455				       NETIF_F_IPV6_CSUM |
1456				       NETIF_F_SG;
1457
1458		dev->features |= NETIF_F_GSO_UDP_TUNNEL;
 
 
1459	}
1460
1461	/* all features defined to this point should be changeable */
1462	hw_features = dev->features;
1463
1464	/* allow user to enable L2 forwarding acceleration */
1465	hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1466
1467	/* configure VLAN features */
1468	dev->vlan_features |= dev->features;
1469
1470	/* we want to leave these both on as we cannot disable VLAN tag
1471	 * insertion or stripping on the hardware since it is contained
1472	 * in the FTAG and not in the frame itself.
1473	 */
1474	dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1475			 NETIF_F_HW_VLAN_CTAG_RX |
1476			 NETIF_F_HW_VLAN_CTAG_FILTER;
1477
1478	dev->priv_flags |= IFF_UNICAST_FLT;
1479
1480	dev->hw_features |= hw_features;
1481
1482	/* MTU range: 68 - 15342 */
1483	dev->min_mtu = ETH_MIN_MTU;
1484	dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
1485
1486	return dev;
1487}