Linux Audio

Check our new training course

Loading...
v6.8
   1/* Agere Systems Inc.
   2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   3 *
   4 * Copyright © 2005 Agere Systems Inc.
   5 * All rights reserved.
   6 *   http://www.agere.com
   7 *
   8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
   9 *
  10 *------------------------------------------------------------------------------
  11 *
  12 * SOFTWARE LICENSE
  13 *
  14 * This software is provided subject to the following terms and conditions,
  15 * which you should read carefully before using the software.  Using this
  16 * software indicates your acceptance of these terms and conditions.  If you do
  17 * not agree with these terms and conditions, do not use the software.
  18 *
  19 * Copyright © 2005 Agere Systems Inc.
  20 * All rights reserved.
  21 *
  22 * Redistribution and use in source or binary forms, with or without
  23 * modifications, are permitted provided that the following conditions are met:
  24 *
  25 * . Redistributions of source code must retain the above copyright notice, this
  26 *    list of conditions and the following Disclaimer as comments in the code as
  27 *    well as in the documentation and/or other materials provided with the
  28 *    distribution.
  29 *
  30 * . Redistributions in binary form must reproduce the above copyright notice,
  31 *    this list of conditions and the following Disclaimer in the documentation
  32 *    and/or other materials provided with the distribution.
  33 *
  34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  35 *    may be used to endorse or promote products derived from this software
  36 *    without specific prior written permission.
  37 *
  38 * Disclaimer
  39 *
  40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  51 * DAMAGE.
  52 */
  53
  54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  55
  56#include <linux/pci.h>
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/kernel.h>
  60
  61#include <linux/sched.h>
  62#include <linux/ptrace.h>
  63#include <linux/slab.h>
  64#include <linux/ctype.h>
  65#include <linux/string.h>
  66#include <linux/timer.h>
  67#include <linux/interrupt.h>
  68#include <linux/in.h>
  69#include <linux/delay.h>
  70#include <linux/bitops.h>
  71#include <linux/io.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/if_arp.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/random.h>
  80#include <linux/phy.h>
  81
  82#include "et131x.h"
  83
  84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  86MODULE_LICENSE("Dual BSD/GPL");
  87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
  88
  89/* EEPROM defines */
  90#define MAX_NUM_REGISTER_POLLS          1000
  91#define MAX_NUM_WRITE_RETRIES           2
  92
  93/* MAC defines */
  94#define COUNTER_WRAP_16_BIT 0x10000
  95#define COUNTER_WRAP_12_BIT 0x1000
  96
  97/* PCI defines */
  98#define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
  99#define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
 100
 101/* ISR defines */
 102/* For interrupts, normal running is:
 103 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 104 *       watchdog_interrupt & txdma_xfer_done
 105 *
 106 * In both cases, when flow control is enabled for either Tx or bi-direction,
 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 108 * buffer rings are running low.
 109 */
 110#define INT_MASK_DISABLE            0xffffffff
 111
 112/* NOTE: Masking out MAC_STAT Interrupt for now...
 113 * #define INT_MASK_ENABLE             0xfff6bf17
 114 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 115 */
 116#define INT_MASK_ENABLE             0xfffebf17
 117#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 118
 119/* General defines */
 120/* Packet and header sizes */
 121#define NIC_MIN_PACKET_SIZE	60
 122
 123/* Multicast list size */
 124#define NIC_MAX_MCAST_LIST	128
 125
 126/* Supported Filters */
 127#define ET131X_PACKET_TYPE_DIRECTED		0x0001
 128#define ET131X_PACKET_TYPE_MULTICAST		0x0002
 129#define ET131X_PACKET_TYPE_BROADCAST		0x0004
 130#define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
 131#define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
 132
 133/* Tx Timeout */
 134#define ET131X_TX_TIMEOUT	(1 * HZ)
 135#define NIC_SEND_HANG_THRESHOLD	0
 136
 137/* MP_ADAPTER flags */
 138#define FMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
 139
 140/* MP_SHARED flags */
 141#define FMP_ADAPTER_LOWER_POWER		0x00200000
 142
 143#define FMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
 144#define FMP_ADAPTER_HARDWARE_ERROR	0x04000000
 145
 146#define FMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
 147
 148/* Some offsets in PCI config space that are actually used. */
 149#define ET1310_PCI_MAC_ADDRESS		0xA4
 150#define ET1310_PCI_EEPROM_STATUS	0xB2
 151#define ET1310_PCI_ACK_NACK		0xC0
 152#define ET1310_PCI_REPLAY		0xC2
 153#define ET1310_PCI_L0L1LATENCY		0xCF
 154
 155/* PCI Product IDs */
 156#define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
 157#define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
 158
 159/* Define order of magnitude converter */
 160#define NANO_IN_A_MICRO	1000
 161
 162#define PARM_RX_NUM_BUFS_DEF    4
 163#define PARM_RX_TIME_INT_DEF    10
 164#define PARM_RX_MEM_END_DEF     0x2bc
 165#define PARM_TX_TIME_INT_DEF    40
 166#define PARM_TX_NUM_BUFS_DEF    4
 167#define PARM_DMA_CACHE_DEF      0
 168
 169/* RX defines */
 170#define FBR_CHUNKS		32
 171#define MAX_DESC_PER_RING_RX	1024
 172
 173/* number of RFDs - default and min */
 174#define RFD_LOW_WATER_MARK	40
 175#define NIC_DEFAULT_NUM_RFD	1024
 176#define NUM_FBRS		2
 177
 178#define MAX_PACKETS_HANDLED	256
 179#define ET131X_MIN_MTU		64
 180#define ET131X_MAX_MTU		9216
 181
 182#define ALCATEL_MULTICAST_PKT	0x01000000
 183#define ALCATEL_BROADCAST_PKT	0x02000000
 184
 185/* typedefs for Free Buffer Descriptors */
 186struct fbr_desc {
 187	u32 addr_lo;
 188	u32 addr_hi;
 189	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
 190};
 191
 192/* Packet Status Ring Descriptors
 193 *
 194 * Word 0:
 195 *
 196 * top 16 bits are from the Alcatel Status Word as enumerated in
 197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 198 *
 199 * 0: hp			hash pass
 200 * 1: ipa			IP checksum assist
 201 * 2: ipp			IP checksum pass
 202 * 3: tcpa			TCP checksum assist
 203 * 4: tcpp			TCP checksum pass
 204 * 5: wol			WOL Event
 205 * 6: rxmac_error		RXMAC Error Indicator
 206 * 7: drop			Drop packet
 207 * 8: ft			Frame Truncated
 208 * 9: jp			Jumbo Packet
 209 * 10: vp			VLAN Packet
 210 * 11-15: unused
 211 * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
 212 * 17: asw_RX_DV_event		short receive event detected
 213 * 18: asw_false_carrier_event	bad carrier since last good packet
 214 * 19: asw_code_err		one or more nibbles signalled as errors
 215 * 20: asw_CRC_err		CRC error
 216 * 21: asw_len_chk_err		frame length field incorrect
 217 * 22: asw_too_long		frame length > 1518 bytes
 218 * 23: asw_OK			valid CRC + no code error
 219 * 24: asw_multicast		has a multicast address
 220 * 25: asw_broadcast		has a broadcast address
 221 * 26: asw_dribble_nibble	spurious bits after EOP
 222 * 27: asw_control_frame	is a control frame
 223 * 28: asw_pause_frame		is a pause frame
 224 * 29: asw_unsupported_op	unsupported OP code
 225 * 30: asw_VLAN_tag		VLAN tag detected
 226 * 31: asw_long_evt		Rx long event
 227 *
 228 * Word 1:
 229 * 0-15: length			length in bytes
 230 * 16-25: bi			Buffer Index
 231 * 26-27: ri			Ring Index
 232 * 28-31: reserved
 233 */
 234struct pkt_stat_desc {
 235	u32 word0;
 236	u32 word1;
 237};
 238
 239/* Typedefs for the RX DMA status word */
 240
 241/* rx status word 0 holds part of the status bits of the Rx DMA engine
 242 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 243 * which contains the Free Buffer ring 0 and 1 available offset.
 244 *
 245 * bit 0-9 FBR1 offset
 246 * bit 10 Wrap flag for FBR1
 247 * bit 16-25 FBR0 offset
 248 * bit 26 Wrap flag for FBR0
 249 */
 250
 251/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 252 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 253 * which contains the Packet Status Ring available offset.
 254 *
 255 * bit 0-15 reserved
 256 * bit 16-27 PSRoffset
 257 * bit 28 PSRwrap
 258 * bit 29-31 unused
 259 */
 260
 261/* struct rx_status_block is a structure representing the status of the Rx
 262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 263 */
 264struct rx_status_block {
 265	u32 word0;
 266	u32 word1;
 267};
 268
 269/* Structure for look-up table holding free buffer ring pointers, addresses
 270 * and state.
 271 */
 272struct fbr_lookup {
 273	void		*virt[MAX_DESC_PER_RING_RX];
 274	u32		 bus_high[MAX_DESC_PER_RING_RX];
 275	u32		 bus_low[MAX_DESC_PER_RING_RX];
 276	void		*ring_virtaddr;
 277	dma_addr_t	 ring_physaddr;
 278	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 279	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 280	u32		 local_full;
 281	u32		 num_entries;
 282	dma_addr_t	 buffsize;
 283};
 284
 285/* struct rx_ring is the structure representing the adaptor's local
 286 * reference(s) to the rings
 287 */
 288struct rx_ring {
 289	struct fbr_lookup *fbr[NUM_FBRS];
 290	void *ps_ring_virtaddr;
 291	dma_addr_t ps_ring_physaddr;
 292	u32 local_psr_full;
 293	u32 psr_entries;
 294
 295	struct rx_status_block *rx_status_block;
 296	dma_addr_t rx_status_bus;
 297
 298	struct list_head recv_list;
 299	u32 num_ready_recv;
 300
 301	u32 num_rfd;
 302
 303	bool unfinished_receives;
 304};
 305
 306/* TX defines */
 307/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 308 *
 309 * 0-15: length of packet
 310 * 16-27: VLAN tag
 311 * 28: VLAN CFI
 312 * 29-31: VLAN priority
 313 *
 314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 315 *
 316 * 0: last packet in the sequence
 317 * 1: first packet in the sequence
 318 * 2: interrupt the processor when this pkt sent
 319 * 3: Control word - no packet data
 320 * 4: Issue half-duplex backpressure : XON/XOFF
 321 * 5: send pause frame
 322 * 6: Tx frame has error
 323 * 7: append CRC
 324 * 8: MAC override
 325 * 9: pad packet
 326 * 10: Packet is a Huge packet
 327 * 11: append VLAN tag
 328 * 12: IP checksum assist
 329 * 13: TCP checksum assist
 330 * 14: UDP checksum assist
 331 */
 332#define TXDESC_FLAG_LASTPKT		0x0001
 333#define TXDESC_FLAG_FIRSTPKT		0x0002
 334#define TXDESC_FLAG_INTPROC		0x0004
 335
 336/* struct tx_desc represents each descriptor on the ring */
 337struct tx_desc {
 338	u32 addr_hi;
 339	u32 addr_lo;
 340	u32 len_vlan;	/* control words how to xmit the */
 341	u32 flags;	/* data (detailed above) */
 342};
 343
 344/* The status of the Tx DMA engine it sits in free memory, and is pointed to
 345 * by 0x101c / 0x1020. This is a DMA10 type
 346 */
 347
 348/* TCB (Transmit Control Block: Host Side) */
 349struct tcb {
 350	struct tcb *next;	/* Next entry in ring */
 351	u32 count;		/* Used to spot stuck/lost packets */
 352	u32 stale;		/* Used to spot stuck/lost packets */
 353	struct sk_buff *skb;	/* Network skb we are tied to */
 354	u32 index;		/* Ring indexes */
 355	u32 index_start;
 356};
 357
 358/* Structure representing our local reference(s) to the ring */
 359struct tx_ring {
 360	/* TCB (Transmit Control Block) memory and lists */
 361	struct tcb *tcb_ring;
 362
 363	/* List of TCBs that are ready to be used */
 364	struct tcb *tcb_qhead;
 365	struct tcb *tcb_qtail;
 366
 367	/* list of TCBs that are currently being sent. */
 368	struct tcb *send_head;
 369	struct tcb *send_tail;
 370	int used;
 371
 372	/* The actual descriptor ring */
 373	struct tx_desc *tx_desc_ring;
 374	dma_addr_t tx_desc_ring_pa;
 375
 376	/* send_idx indicates where we last wrote to in the descriptor ring. */
 377	u32 send_idx;
 378
 379	/* The location of the write-back status block */
 380	u32 *tx_status;
 381	dma_addr_t tx_status_pa;
 382
 383	/* Packets since the last IRQ: used for interrupt coalescing */
 384	int since_irq;
 385};
 386
 387/* Do not change these values: if changed, then change also in respective
 388 * TXdma and Rxdma engines
 389 */
 390#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 391#define NUM_TCB                      64
 392
 393/* These values are all superseded by registry entries to facilitate tuning.
 394 * Once the desired performance has been achieved, the optimal registry values
 395 * should be re-populated to these #defines:
 396 */
 397#define TX_ERROR_PERIOD             1000
 398
 399#define LO_MARK_PERCENT_FOR_PSR     15
 400#define LO_MARK_PERCENT_FOR_RX      15
 401
 402/* RFD (Receive Frame Descriptor) */
 403struct rfd {
 404	struct list_head list_node;
 405	struct sk_buff *skb;
 406	u32 len;	/* total size of receive frame */
 407	u16 bufferindex;
 408	u8 ringindex;
 409};
 410
 411/* Flow Control */
 412#define FLOW_BOTH	0
 413#define FLOW_TXONLY	1
 414#define FLOW_RXONLY	2
 415#define FLOW_NONE	3
 416
 417/* Struct to define some device statistics */
 418struct ce_stats {
 419	u32		multicast_pkts_rcvd;
 420	u32		rcvd_pkts_dropped;
 421
 422	u32		tx_underflows;
 423	u32		tx_collisions;
 424	u32		tx_excessive_collisions;
 425	u32		tx_first_collisions;
 426	u32		tx_late_collisions;
 427	u32		tx_max_pkt_errs;
 428	u32		tx_deferred;
 429
 430	u32		rx_overflows;
 431	u32		rx_length_errs;
 432	u32		rx_align_errs;
 433	u32		rx_crc_errs;
 434	u32		rx_code_violations;
 435	u32		rx_other_errs;
 436
 437	u32		interrupt_status;
 438};
 439
 440/* The private adapter structure */
 441struct et131x_adapter {
 442	struct net_device *netdev;
 443	struct pci_dev *pdev;
 444	struct mii_bus *mii_bus;
 445	struct napi_struct napi;
 446
 447	/* Flags that indicate current state of the adapter */
 448	u32 flags;
 449
 450	/* local link state, to determine if a state change has occurred */
 451	int link;
 452
 453	/* Configuration  */
 454	u8 rom_addr[ETH_ALEN];
 455	u8 addr[ETH_ALEN];
 456	bool has_eeprom;
 457	u8 eeprom_data[2];
 458
 459	spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
 460	spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
 461	spinlock_t rcv_lock; /* protects the rx_ring receive list */
 462
 463	/* Packet Filter and look ahead size */
 464	u32 packet_filter;
 465
 466	/* multicast list */
 467	u32 multicast_addr_count;
 468	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 469
 470	/* Pointer to the device's PCI register space */
 471	struct address_map __iomem *regs;
 472
 473	/* Registry parameters */
 474	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
 475	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
 476
 477	/* Derived from the registry: */
 478	u8 flow;		/* flow control validated by the far-end */
 479
 480	/* Minimize init-time */
 481	struct timer_list error_timer;
 482
 483	/* variable putting the phy into coma mode when boot up with no cable
 484	 * plugged in after 5 seconds
 485	 */
 486	u8 boot_coma;
 487
 488	/* Tx Memory Variables */
 489	struct tx_ring tx_ring;
 490
 491	/* Rx Memory Variables */
 492	struct rx_ring rx_ring;
 493
 494	struct ce_stats stats;
 495};
 496
 497static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 498{
 499	u32 reg;
 500	int i;
 501
 502	/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 503	 *    bits 7,1:0 both equal to 1, at least once after reset.
 504	 *    Subsequent operations need only to check that bits 1:0 are equal
 505	 *    to 1 prior to starting a single byte read/write
 506	 */
 507	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 508		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 509			return -EIO;
 510
 511		/* I2C idle and Phy Queue Avail both true */
 512		if ((reg & 0x3000) == 0x3000) {
 513			if (status)
 514				*status = reg;
 515			return reg & 0xFF;
 516		}
 517	}
 518	return -ETIMEDOUT;
 519}
 520
 521static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 522{
 523	struct pci_dev *pdev = adapter->pdev;
 524	int index = 0;
 525	int retries;
 526	int err = 0;
 527	int writeok = 0;
 528	u32 status;
 529	u32 val = 0;
 530
 531	/* For an EEPROM, an I2C single byte write is defined as a START
 532	 * condition followed by the device address, EEPROM address, one byte
 533	 * of data and a STOP condition.  The STOP condition will trigger the
 534	 * EEPROM's internally timed write cycle to the nonvolatile memory.
 535	 * All inputs are disabled during this write cycle and the EEPROM will
 536	 * not respond to any access until the internal write is complete.
 537	 */
 538	err = eeprom_wait_ready(pdev, NULL);
 539	if (err < 0)
 540		return err;
 541
 542	 /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 543	  *    and bits 1:0 both =0.  Bit 5 should be set according to the
 544	  *    type of EEPROM being accessed (1=two byte addressing, 0=one
 545	  *    byte addressing).
 546	  */
 547	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 548				  LBCIF_CONTROL_LBCIF_ENABLE |
 549					LBCIF_CONTROL_I2C_WRITE))
 550		return -EIO;
 551
 552	/* Prepare EEPROM address for Step 3 */
 553	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 554		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 555			break;
 556		/* Write the data to the LBCIF Data Register (the I2C write
 557		 * will begin).
 558		 */
 559		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 560			break;
 561		/* Monitor bit 1:0 of the LBCIF Status Register.  When bits
 562		 * 1:0 are both equal to 1, the I2C write has completed and the
 563		 * internal write cycle of the EEPROM is about to start.
 564		 * (bits 1:0 = 01 is a legal state while waiting from both
 565		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 566		 * something is broken).
 567		 */
 568		err = eeprom_wait_ready(pdev, &status);
 569		if (err < 0)
 570			return 0;
 571
 572		/* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 573		 * an error has occurred.Don't break here if we are revision
 574		 * 1, this is so we do a blind write for load bug.
 575		 */
 576		if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
 577		    adapter->pdev->revision == 0)
 578			break;
 579
 580		/* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 581		 * ACK error has occurred on the address phase of the write.
 582		 * This could be due to an actual hardware failure or the
 583		 * EEPROM may still be in its internal write cycle from a
 584		 * previous write. This write operation was ignored and must be
 585		  *repeated later.
 586		 */
 587		if (status & LBCIF_STATUS_ACK_ERROR) {
 588			/* This could be due to an actual hardware failure
 589			 * or the EEPROM may still be in its internal write
 590			 * cycle from a previous write. This write operation
 591			 * was ignored and must be repeated later.
 592			 */
 593			udelay(10);
 594			continue;
 595		}
 596
 597		writeok = 1;
 598		break;
 599	}
 600
 601	udelay(10);
 602
 603	while (1) {
 604		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 605					  LBCIF_CONTROL_LBCIF_ENABLE))
 606			writeok = 0;
 607
 608		/* Do read until internal ACK_ERROR goes away meaning write
 609		 * completed
 610		 */
 611		do {
 612			pci_write_config_dword(pdev,
 613					       LBCIF_ADDRESS_REGISTER,
 614					       addr);
 615			do {
 616				pci_read_config_dword(pdev,
 617						      LBCIF_DATA_REGISTER,
 618						      &val);
 619			} while ((val & 0x00010000) == 0);
 620		} while (val & 0x00040000);
 621
 622		if ((val & 0xFF00) != 0xC000 || index == 10000)
 623			break;
 624		index++;
 625	}
 626	return writeok ? 0 : -EIO;
 627}
 628
 629static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 630{
 631	struct pci_dev *pdev = adapter->pdev;
 632	int err;
 633	u32 status;
 634
 635	/* A single byte read is similar to the single byte write, with the
 636	 * exception of the data flow:
 637	 */
 638	err = eeprom_wait_ready(pdev, NULL);
 639	if (err < 0)
 640		return err;
 641	/* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 642	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
 643	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
 644	 * addressing).
 645	 */
 646	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 647				  LBCIF_CONTROL_LBCIF_ENABLE))
 648		return -EIO;
 649	/* Write the address to the LBCIF Address Register (I2C read will
 650	 * begin).
 651	 */
 652	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 653		return -EIO;
 654	/* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 655	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 656	 * has occurred).
 657	 */
 658	err = eeprom_wait_ready(pdev, &status);
 659	if (err < 0)
 660		return err;
 661	/* Regardless of error status, read data byte from LBCIF Data
 662	 * Register.
 663	 */
 664	*pdata = err;
 665
 666	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 667}
 668
 669static int et131x_init_eeprom(struct et131x_adapter *adapter)
 670{
 671	struct pci_dev *pdev = adapter->pdev;
 672	u8 eestatus;
 673
 674	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
 675
 676	/* THIS IS A WORKAROUND:
 677	 * I need to call this function twice to get my card in a
 678	 * LG M1 Express Dual running. I tried also a msleep before this
 679	 * function, because I thought there could be some time conditions
 680	 * but it didn't work. Call the whole function twice also work.
 681	 */
 682	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 683		dev_err(&pdev->dev,
 684			"Could not read PCI config space for EEPROM Status\n");
 685		return -EIO;
 686	}
 687
 688	/* Determine if the error(s) we care about are present. If they are
 689	 * present we need to fail.
 690	 */
 691	if (eestatus & 0x4C) {
 692		int write_failed = 0;
 693
 694		if (pdev->revision == 0x01) {
 695			int	i;
 696			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 697
 698			/* Re-write the first 4 bytes if we have an eeprom
 699			 * present and the revision id is 1, this fixes the
 700			 * corruption seen with 1310 B Silicon
 701			 */
 702			for (i = 0; i < 3; i++)
 703				if (eeprom_write(adapter, i, eedata[i]) < 0)
 704					write_failed = 1;
 705		}
 706		if (pdev->revision  != 0x01 || write_failed) {
 707			dev_err(&pdev->dev,
 708				"Fatal EEPROM Status Error - 0x%04x\n",
 709				eestatus);
 710
 711			/* This error could mean that there was an error
 712			 * reading the eeprom or that the eeprom doesn't exist.
 713			 * We will treat each case the same and not try to
 714			 * gather additional information that normally would
 715			 * come from the eeprom, like MAC Address
 716			 */
 717			adapter->has_eeprom = false;
 718			return -EIO;
 719		}
 720	}
 721	adapter->has_eeprom = true;
 722
 723	/* Read the EEPROM for information regarding LED behavior. Refer to
 724	 * et131x_xcvr_init() for its use.
 725	 */
 726	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 727	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 728
 729	if (adapter->eeprom_data[0] != 0xcd)
 730		/* Disable all optional features */
 731		adapter->eeprom_data[1] = 0x00;
 732
 733	return 0;
 734}
 735
 736static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 737{
 738	/* Setup the receive dma configuration register for normal operation */
 739	u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
 740	struct rx_ring *rx_ring = &adapter->rx_ring;
 741
 742	if (rx_ring->fbr[1]->buffsize == 4096)
 743		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
 744	else if (rx_ring->fbr[1]->buffsize == 8192)
 745		csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
 746	else if (rx_ring->fbr[1]->buffsize == 16384)
 747		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
 748
 749	csr |= ET_RXDMA_CSR_FBR0_ENABLE;
 750	if (rx_ring->fbr[0]->buffsize == 256)
 751		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
 752	else if (rx_ring->fbr[0]->buffsize == 512)
 753		csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
 754	else if (rx_ring->fbr[0]->buffsize == 1024)
 755		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
 756	writel(csr, &adapter->regs->rxdma.csr);
 757
 758	csr = readl(&adapter->regs->rxdma.csr);
 759	if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 760		udelay(5);
 761		csr = readl(&adapter->regs->rxdma.csr);
 762		if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 763			dev_err(&adapter->pdev->dev,
 764				"RX Dma failed to exit halt state. CSR 0x%08x\n",
 765				csr);
 766		}
 767	}
 768}
 769
 770static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 771{
 772	u32 csr;
 773	/* Setup the receive dma configuration register */
 774	writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
 775	       &adapter->regs->rxdma.csr);
 776	csr = readl(&adapter->regs->rxdma.csr);
 777	if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
 778		udelay(5);
 779		csr = readl(&adapter->regs->rxdma.csr);
 780		if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
 781			dev_err(&adapter->pdev->dev,
 782				"RX Dma failed to enter halt state. CSR 0x%08x\n",
 783				csr);
 784	}
 785}
 786
 787static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 788{
 789	/* Setup the transmit dma configuration register for normal
 790	 * operation
 791	 */
 792	writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 793	       &adapter->regs->txdma.csr);
 794}
 795
 796static inline void add_10bit(u32 *v, int n)
 797{
 798	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 799}
 800
 801static inline void add_12bit(u32 *v, int n)
 802{
 803	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 804}
 805
 806static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 807{
 808	struct mac_regs __iomem *macregs = &adapter->regs->mac;
 809	u32 station1;
 810	u32 station2;
 811	u32 ipg;
 812
 813	/* First we need to reset everything.  Write to MAC configuration
 814	 * register 1 to perform reset.
 815	 */
 816	writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
 817	       ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
 818	       ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
 819	       &macregs->cfg1);
 820
 821	/* Next lets configure the MAC Inter-packet gap register */
 822	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 823	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
 824	writel(ipg, &macregs->ipg);
 825
 826	/* Next lets configure the MAC Half Duplex register */
 827	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 828	writel(0x00A1F037, &macregs->hfdp);
 829
 830	/* Next lets configure the MAC Interface Control register */
 831	writel(0, &macregs->if_ctrl);
 832
 833	writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
 834
 835	/* Next lets configure the MAC Station Address register.  These
 836	 * values are read from the EEPROM during initialization and stored
 837	 * in the adapter structure.  We write what is stored in the adapter
 838	 * structure to the MAC Station Address registers high and low.  This
 839	 * station address is used for generating and checking pause control
 840	 * packets.
 841	 */
 842	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
 843		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
 844	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
 845		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
 846		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
 847		    adapter->addr[2];
 848	writel(station1, &macregs->station_addr_1);
 849	writel(station2, &macregs->station_addr_2);
 850
 851	/* Max ethernet packet in bytes that will be passed by the mac without
 852	 * being truncated.  Allow the MAC to pass 4 more than our max packet
 853	 * size.  This is 4 for the Ethernet CRC.
 854	 *
 855	 * Packets larger than (registry_jumbo_packet) that do not contain a
 856	 * VLAN ID will be dropped by the Rx function.
 857	 */
 858	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
 859
 860	/* clear out MAC config reset */
 861	writel(0, &macregs->cfg1);
 862}
 863
 864static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
 865{
 866	int32_t delay = 0;
 867	struct mac_regs __iomem *mac = &adapter->regs->mac;
 868	struct phy_device *phydev = adapter->netdev->phydev;
 869	u32 cfg1;
 870	u32 cfg2;
 871	u32 ifctrl;
 872	u32 ctl;
 873
 874	ctl = readl(&adapter->regs->txmac.ctl);
 875	cfg1 = readl(&mac->cfg1);
 876	cfg2 = readl(&mac->cfg2);
 877	ifctrl = readl(&mac->if_ctrl);
 878
 879	/* Set up the if mode bits */
 880	cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
 881	if (phydev->speed == SPEED_1000) {
 882		cfg2 |= ET_MAC_CFG2_IFMODE_1000;
 883		ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
 884	} else {
 885		cfg2 |= ET_MAC_CFG2_IFMODE_100;
 886		ifctrl |= ET_MAC_IFCTRL_PHYMODE;
 887	}
 888
 889	cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
 890							ET_MAC_CFG1_TX_FLOW;
 891
 892	cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
 893	if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
 894		cfg1 |= ET_MAC_CFG1_RX_FLOW;
 895	writel(cfg1, &mac->cfg1);
 896
 897	/* Now we need to initialize the MAC Configuration 2 register */
 898	/* preamble 7, check length, huge frame off, pad crc, crc enable
 899	 * full duplex off
 900	 */
 901	cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
 902	cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
 903	cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
 904	cfg2 |=	ET_MAC_CFG2_IFMODE_CRC_ENABLE;
 905	cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
 906	cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
 907
 908	if (phydev->duplex == DUPLEX_FULL)
 909		cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
 910
 911	ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
 912	if (phydev->duplex == DUPLEX_HALF)
 913		ifctrl |= ET_MAC_IFCTRL_GHDMODE;
 914
 915	writel(ifctrl, &mac->if_ctrl);
 916	writel(cfg2, &mac->cfg2);
 917
 918	do {
 919		udelay(10);
 920		delay++;
 921		cfg1 = readl(&mac->cfg1);
 922	} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
 923
 924	if (delay == 100) {
 925		dev_warn(&adapter->pdev->dev,
 926			 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
 927			 cfg1);
 928	}
 929
 930	ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
 931	writel(ctl, &adapter->regs->txmac.ctl);
 932
 933	if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
 934		et131x_rx_dma_enable(adapter);
 935		et131x_tx_dma_enable(adapter);
 936	}
 937}
 938
 939static int et1310_in_phy_coma(struct et131x_adapter *adapter)
 940{
 941	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
 942
 943	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
 944}
 945
 946static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
 947{
 948	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 949	u32 hash1 = 0;
 950	u32 hash2 = 0;
 951	u32 hash3 = 0;
 952	u32 hash4 = 0;
 
 953
 954	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
 955	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
 956	 * specified) then we should pass NO multi-cast addresses to the
 957	 * driver.
 958	 */
 959	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
 960		int i;
 961
 962		/* Loop through our multicast array and set up the device */
 963		for (i = 0; i < adapter->multicast_addr_count; i++) {
 964			u32 result;
 965
 966			result = ether_crc(6, adapter->multicast_list[i]);
 967
 968			result = (result & 0x3F800000) >> 23;
 969
 970			if (result < 32) {
 971				hash1 |= (1 << result);
 972			} else if ((31 < result) && (result < 64)) {
 973				result -= 32;
 974				hash2 |= (1 << result);
 975			} else if ((63 < result) && (result < 96)) {
 976				result -= 64;
 977				hash3 |= (1 << result);
 978			} else {
 979				result -= 96;
 980				hash4 |= (1 << result);
 981			}
 982		}
 983	}
 984
 985	/* Write out the new hash to the device */
 
 986	if (!et1310_in_phy_coma(adapter)) {
 987		writel(hash1, &rxmac->multi_hash1);
 988		writel(hash2, &rxmac->multi_hash2);
 989		writel(hash3, &rxmac->multi_hash3);
 990		writel(hash4, &rxmac->multi_hash4);
 991	}
 992}
 993
 994static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
 995{
 996	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 997	u32 uni_pf1;
 998	u32 uni_pf2;
 999	u32 uni_pf3;
 
1000
1001	/* Set up unicast packet filter reg 3 to be the first two octets of
1002	 * the MAC address for both address
1003	 *
1004	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1005	 * MAC address for second address
1006	 *
1007	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1008	 * MAC address for first address
1009	 */
1010	uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1011		  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1012		  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1013		   adapter->addr[1];
1014
1015	uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1016		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1017		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1018		   adapter->addr[5];
1019
1020	uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1021		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1022		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1023		   adapter->addr[5];
1024
 
1025	if (!et1310_in_phy_coma(adapter)) {
1026		writel(uni_pf1, &rxmac->uni_pf_addr1);
1027		writel(uni_pf2, &rxmac->uni_pf_addr2);
1028		writel(uni_pf3, &rxmac->uni_pf_addr3);
1029	}
1030}
1031
1032static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1033{
1034	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1035	struct phy_device *phydev = adapter->netdev->phydev;
1036	u32 sa_lo;
1037	u32 sa_hi = 0;
1038	u32 pf_ctrl = 0;
1039	u32 __iomem *wolw;
1040
1041	/* Disable the MAC while it is being configured (also disable WOL) */
1042	writel(0x8, &rxmac->ctrl);
1043
1044	/* Initialize WOL to disabled. */
1045	writel(0, &rxmac->crc0);
1046	writel(0, &rxmac->crc12);
1047	writel(0, &rxmac->crc34);
1048
1049	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
1050	 * its default Values of 0x00000000 because there are not WOL masks
1051	 * as of this time.
1052	 */
1053	for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1054		writel(0, wolw);
1055
1056	/* Lets setup the WOL Source Address */
1057	sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1058		(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1059		(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1060		 adapter->addr[5];
1061	writel(sa_lo, &rxmac->sa_lo);
1062
1063	sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1064		       adapter->addr[1];
1065	writel(sa_hi, &rxmac->sa_hi);
1066
1067	/* Disable all Packet Filtering */
1068	writel(0, &rxmac->pf_ctrl);
1069
1070	/* Let's initialize the Unicast Packet filtering address */
1071	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1072		et1310_setup_device_for_unicast(adapter);
1073		pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1074	} else {
1075		writel(0, &rxmac->uni_pf_addr1);
1076		writel(0, &rxmac->uni_pf_addr2);
1077		writel(0, &rxmac->uni_pf_addr3);
1078	}
1079
1080	/* Let's initialize the Multicast hash */
1081	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1082		pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1083		et1310_setup_device_for_multicast(adapter);
1084	}
1085
1086	/* Runt packet filtering.  Didn't work in version A silicon. */
1087	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1088	pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1089
1090	if (adapter->registry_jumbo_packet > 8192)
1091		/* In order to transmit jumbo packets greater than 8k, the
1092		 * FIFO between RxMAC and RxDMA needs to be reduced in size
1093		 * to (16k - Jumbo packet size).  In order to implement this,
1094		 * we must use "cut through" mode in the RxMAC, which chops
1095		 * packets down into segments which are (max_size * 16).  In
1096		 * this case we selected 256 bytes, since this is the size of
1097		 * the PCI-Express TLP's that the 1310 uses.
1098		 *
1099		 * seg_en on, fc_en off, size 0x10
1100		 */
1101		writel(0x41, &rxmac->mcif_ctrl_max_seg);
1102	else
1103		writel(0, &rxmac->mcif_ctrl_max_seg);
1104
1105	writel(0, &rxmac->mcif_water_mark);
1106	writel(0, &rxmac->mif_ctrl);
1107	writel(0, &rxmac->space_avail);
1108
1109	/* Initialize the mif_ctrl register
1110	 * bit 3:  Receive code error. One or more nibbles were signaled as
1111	 *	   errors  during the reception of the packet.  Clear this
1112	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
1113	 *	   experimentally at UNH.
1114	 * bit 4:  Receive CRC error. The packet's CRC did not match the
1115	 *	   internally generated CRC.
1116	 * bit 5:  Receive length check error. Indicates that frame length
1117	 *	   field value in the packet does not match the actual data
1118	 *	   byte length and is not a type field.
1119	 * bit 16: Receive frame truncated.
1120	 * bit 17: Drop packet enable
1121	 */
1122	if (phydev && phydev->speed == SPEED_100)
1123		writel(0x30038, &rxmac->mif_ctrl);
1124	else
1125		writel(0x30030, &rxmac->mif_ctrl);
1126
1127	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1128	 * filter is always enabled since it is where the runt packets are
1129	 * supposed to be dropped.  For version A silicon, runt packet
1130	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1131	 * but we still leave the packet filter on.
1132	 */
1133	writel(pf_ctrl, &rxmac->pf_ctrl);
1134	writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1135}
1136
1137static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1138{
1139	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1140
1141	/* We need to update the Control Frame Parameters
1142	 * cfpt - control frame pause timer set to 64 (0x40)
1143	 * cfep - control frame extended pause timer set to 0x0
1144	 */
1145	if (adapter->flow == FLOW_NONE)
1146		writel(0, &txmac->cf_param);
1147	else
1148		writel(0x40, &txmac->cf_param);
1149}
1150
1151static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1152{
1153	struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1154	u32 __iomem *reg;
1155
1156	/* initialize all the macstat registers to zero on the device  */
1157	for (reg = &macstat->txrx_0_64_byte_frames;
1158	     reg <= &macstat->carry_reg2; reg++)
1159		writel(0, reg);
1160
1161	/* Unmask any counters that we want to track the overflow of.
1162	 * Initially this will be all counters.  It may become clear later
1163	 * that we do not need to track all counters.
1164	 */
1165	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1166	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1167}
1168
1169static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1170			       u8 reg, u16 *value)
1171{
1172	struct mac_regs __iomem *mac = &adapter->regs->mac;
1173	int status = 0;
1174	u32 delay = 0;
1175	u32 mii_addr;
1176	u32 mii_cmd;
1177	u32 mii_indicator;
1178
1179	/* Save a local copy of the registers we are dealing with so we can
1180	 * set them back
1181	 */
1182	mii_addr = readl(&mac->mii_mgmt_addr);
1183	mii_cmd = readl(&mac->mii_mgmt_cmd);
1184
1185	/* Stop the current operation */
1186	writel(0, &mac->mii_mgmt_cmd);
1187
1188	/* Set up the register we need to read from on the correct PHY */
1189	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1190
1191	writel(0x1, &mac->mii_mgmt_cmd);
1192
1193	do {
1194		udelay(50);
1195		delay++;
1196		mii_indicator = readl(&mac->mii_mgmt_indicator);
1197	} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1198
1199	/* If we hit the max delay, we could not read the register */
1200	if (delay == 50) {
1201		dev_warn(&adapter->pdev->dev,
1202			 "reg 0x%08x could not be read\n", reg);
1203		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1204			 mii_indicator);
1205
1206		status = -EIO;
1207		goto out;
1208	}
1209
1210	/* If we hit here we were able to read the register and we need to
1211	 * return the value to the caller
1212	 */
1213	*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1214
1215out:
1216	/* Stop the read operation */
1217	writel(0, &mac->mii_mgmt_cmd);
1218
1219	/* set the registers we touched back to the state at which we entered
1220	 * this function
1221	 */
1222	writel(mii_addr, &mac->mii_mgmt_addr);
1223	writel(mii_cmd, &mac->mii_mgmt_cmd);
1224
1225	return status;
1226}
1227
1228static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1229{
1230	struct phy_device *phydev = adapter->netdev->phydev;
1231
1232	if (!phydev)
1233		return -EIO;
1234
1235	return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1236}
1237
1238static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1239			    u16 value)
1240{
1241	struct mac_regs __iomem *mac = &adapter->regs->mac;
1242	int status = 0;
1243	u32 delay = 0;
1244	u32 mii_addr;
1245	u32 mii_cmd;
1246	u32 mii_indicator;
1247
1248	/* Save a local copy of the registers we are dealing with so we can
1249	 * set them back
1250	 */
1251	mii_addr = readl(&mac->mii_mgmt_addr);
1252	mii_cmd = readl(&mac->mii_mgmt_cmd);
1253
1254	/* Stop the current operation */
1255	writel(0, &mac->mii_mgmt_cmd);
1256
1257	/* Set up the register we need to write to on the correct PHY */
1258	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1259
1260	/* Add the value to write to the registers to the mac */
1261	writel(value, &mac->mii_mgmt_ctrl);
1262
1263	do {
1264		udelay(50);
1265		delay++;
1266		mii_indicator = readl(&mac->mii_mgmt_indicator);
1267	} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1268
1269	/* If we hit the max delay, we could not write the register */
1270	if (delay == 100) {
1271		u16 tmp;
1272
1273		dev_warn(&adapter->pdev->dev,
1274			 "reg 0x%08x could not be written", reg);
1275		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1276			 mii_indicator);
1277		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1278			 readl(&mac->mii_mgmt_cmd));
1279
1280		et131x_mii_read(adapter, reg, &tmp);
1281
1282		status = -EIO;
1283	}
1284	/* Stop the write operation */
1285	writel(0, &mac->mii_mgmt_cmd);
1286
1287	/* set the registers we touched back to the state at which we entered
1288	 * this function
1289	 */
1290	writel(mii_addr, &mac->mii_mgmt_addr);
1291	writel(mii_cmd, &mac->mii_mgmt_cmd);
1292
1293	return status;
1294}
1295
1296static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1297				    u16 regnum,
1298				    u16 bitnum,
1299				    u8 *value)
1300{
1301	u16 reg;
1302	u16 mask = 1 << bitnum;
1303
1304	et131x_mii_read(adapter, regnum, &reg);
1305
1306	*value = (reg & mask) >> bitnum;
1307}
1308
1309static void et1310_config_flow_control(struct et131x_adapter *adapter)
1310{
1311	struct phy_device *phydev = adapter->netdev->phydev;
1312
1313	if (phydev->duplex == DUPLEX_HALF) {
1314		adapter->flow = FLOW_NONE;
1315	} else {
1316		char remote_pause, remote_async_pause;
1317
1318		et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1319		et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1320
1321		if (remote_pause && remote_async_pause) {
1322			adapter->flow = adapter->wanted_flow;
1323		} else if (remote_pause && !remote_async_pause) {
1324			if (adapter->wanted_flow == FLOW_BOTH)
1325				adapter->flow = FLOW_BOTH;
1326			else
1327				adapter->flow = FLOW_NONE;
1328		} else if (!remote_pause && !remote_async_pause) {
1329			adapter->flow = FLOW_NONE;
1330		} else {
1331			if (adapter->wanted_flow == FLOW_BOTH)
1332				adapter->flow = FLOW_RXONLY;
1333			else
1334				adapter->flow = FLOW_NONE;
1335		}
1336	}
1337}
1338
1339/* et1310_update_macstat_host_counters - Update local copy of the statistics */
1340static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1341{
1342	struct ce_stats *stats = &adapter->stats;
1343	struct macstat_regs __iomem *macstat =
1344		&adapter->regs->macstat;
1345
1346	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
1347	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1348	stats->tx_deferred	       += readl(&macstat->tx_deferred);
1349	stats->tx_excessive_collisions +=
1350				readl(&macstat->tx_multiple_collisions);
1351	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1352	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
1353	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
1354
1355	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1356	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1357	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1358	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1359	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1360	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1361	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1362}
1363
1364/* et1310_handle_macstat_interrupt
1365 *
1366 * One of the MACSTAT counters has wrapped.  Update the local copy of
1367 * the statistics held in the adapter structure, checking the "wrap"
1368 * bit for each counter.
1369 */
1370static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1371{
1372	u32 carry_reg1;
1373	u32 carry_reg2;
1374
1375	/* Read the interrupt bits from the register(s).  These are Clear On
1376	 * Write.
1377	 */
1378	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1379	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1380
1381	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1382	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1383
1384	/* We need to do update the host copy of all the MAC_STAT counters.
1385	 * For each counter, check it's overflow bit.  If the overflow bit is
1386	 * set, then increment the host version of the count by one complete
1387	 * revolution of the counter.  This routine is called when the counter
1388	 * block indicates that one of the counters has wrapped.
1389	 */
1390	if (carry_reg1 & (1 << 14))
1391		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
1392	if (carry_reg1 & (1 << 8))
1393		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
1394	if (carry_reg1 & (1 << 7))
1395		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
1396	if (carry_reg1 & (1 << 2))
1397		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
1398	if (carry_reg1 & (1 << 6))
1399		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
1400	if (carry_reg1 & (1 << 3))
1401		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
1402	if (carry_reg1 & (1 << 0))
1403		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
1404	if (carry_reg2 & (1 << 16))
1405		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
1406	if (carry_reg2 & (1 << 15))
1407		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
1408	if (carry_reg2 & (1 << 6))
1409		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1410	if (carry_reg2 & (1 << 8))
1411		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
1412	if (carry_reg2 & (1 << 5))
1413		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1414	if (carry_reg2 & (1 << 4))
1415		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
1416	if (carry_reg2 & (1 << 2))
1417		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
1418}
1419
1420static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1421{
1422	struct net_device *netdev = bus->priv;
1423	struct et131x_adapter *adapter = netdev_priv(netdev);
1424	u16 value;
1425	int ret;
1426
1427	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1428
1429	if (ret < 0)
1430		return ret;
1431
1432	return value;
1433}
1434
1435static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1436			     int reg, u16 value)
1437{
1438	struct net_device *netdev = bus->priv;
1439	struct et131x_adapter *adapter = netdev_priv(netdev);
1440
1441	return et131x_mii_write(adapter, phy_addr, reg, value);
1442}
1443
1444/*	et1310_phy_power_switch	-	PHY power control
1445 *	@adapter: device to control
1446 *	@down: true for off/false for back on
1447 *
1448 *	one hundred, ten, one thousand megs
1449 *	How would you like to have your LAN accessed
1450 *	Can't you see that this code processed
1451 *	Phy power, phy power..
1452 */
1453static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1454{
1455	u16 data;
1456	struct  phy_device *phydev = adapter->netdev->phydev;
1457
1458	et131x_mii_read(adapter, MII_BMCR, &data);
1459	data &= ~BMCR_PDOWN;
1460	if (down)
1461		data |= BMCR_PDOWN;
1462	et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1463}
1464
1465/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1466static void et131x_xcvr_init(struct et131x_adapter *adapter)
1467{
1468	u16 lcr2;
1469	struct  phy_device *phydev = adapter->netdev->phydev;
1470
1471	/* Set the LED behavior such that LED 1 indicates speed (off =
1472	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1473	 * link and activity (on for link, blink off for activity).
1474	 *
1475	 * NOTE: Some customizations have been added here for specific
1476	 * vendors; The LED behavior is now determined by vendor data in the
1477	 * EEPROM. However, the above description is the default.
1478	 */
1479	if ((adapter->eeprom_data[1] & 0x4) == 0) {
1480		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1481
1482		lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1483		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1484
1485		if ((adapter->eeprom_data[1] & 0x8) == 0)
1486			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1487		else
1488			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1489
1490		et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1491	}
1492}
1493
1494/* et131x_configure_global_regs	- configure JAGCore global regs */
1495static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1496{
1497	struct global_regs __iomem *regs = &adapter->regs->global;
1498
1499	writel(0, &regs->rxq_start_addr);
1500	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1501
1502	if (adapter->registry_jumbo_packet < 2048) {
1503		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1504		 * block of RAM that the driver can split between Tx
1505		 * and Rx as it desires.  Our default is to split it
1506		 * 50/50:
1507		 */
1508		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1509		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1510	} else if (adapter->registry_jumbo_packet < 8192) {
1511		/* For jumbo packets > 2k but < 8k, split 50-50. */
1512		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1513		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1514	} else {
1515		/* 9216 is the only packet size greater than 8k that
1516		 * is available. The Tx buffer has to be big enough
1517		 * for one whole packet on the Tx side. We'll make
1518		 * the Tx 9408, and give the rest to Rx
1519		 */
1520		writel(0x01b3, &regs->rxq_end_addr);
1521		writel(0x01b4, &regs->txq_start_addr);
1522	}
1523
1524	/* Initialize the loopback register. Disable all loopbacks. */
1525	writel(0, &regs->loopback);
1526
1527	writel(0, &regs->msi_config);
1528
1529	/* By default, disable the watchdog timer.  It will be enabled when
1530	 * a packet is queued.
1531	 */
1532	writel(0, &regs->watchdog_timer);
1533}
1534
1535/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1536static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1537{
1538	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1539	struct rx_ring *rx_local = &adapter->rx_ring;
1540	struct fbr_desc *fbr_entry;
1541	u32 entry;
1542	u32 psr_num_des;
1543	unsigned long flags;
1544	u8 id;
1545
1546	et131x_rx_dma_disable(adapter);
1547
1548	/* Load the completion writeback physical address */
1549	writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1550	writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1551
1552	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1553
1554	/* Set the address and parameters of the packet status ring */
1555	writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1556	writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1557	writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1558	writel(0, &rx_dma->psr_full_offset);
1559
1560	psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1561	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1562	       &rx_dma->psr_min_des);
1563
1564	spin_lock_irqsave(&adapter->rcv_lock, flags);
1565
1566	/* These local variables track the PSR in the adapter structure */
1567	rx_local->local_psr_full = 0;
1568
1569	for (id = 0; id < NUM_FBRS; id++) {
1570		u32 __iomem *num_des;
1571		u32 __iomem *full_offset;
1572		u32 __iomem *min_des;
1573		u32 __iomem *base_hi;
1574		u32 __iomem *base_lo;
1575		struct fbr_lookup *fbr = rx_local->fbr[id];
1576
1577		if (id == 0) {
1578			num_des = &rx_dma->fbr0_num_des;
1579			full_offset = &rx_dma->fbr0_full_offset;
1580			min_des = &rx_dma->fbr0_min_des;
1581			base_hi = &rx_dma->fbr0_base_hi;
1582			base_lo = &rx_dma->fbr0_base_lo;
1583		} else {
1584			num_des = &rx_dma->fbr1_num_des;
1585			full_offset = &rx_dma->fbr1_full_offset;
1586			min_des = &rx_dma->fbr1_min_des;
1587			base_hi = &rx_dma->fbr1_base_hi;
1588			base_lo = &rx_dma->fbr1_base_lo;
1589		}
1590
1591		/* Now's the best time to initialize FBR contents */
1592		fbr_entry = fbr->ring_virtaddr;
1593		for (entry = 0; entry < fbr->num_entries; entry++) {
1594			fbr_entry->addr_hi = fbr->bus_high[entry];
1595			fbr_entry->addr_lo = fbr->bus_low[entry];
1596			fbr_entry->word2 = entry;
1597			fbr_entry++;
1598		}
1599
1600		/* Set the address and parameters of Free buffer ring 1 and 0 */
1601		writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1602		writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1603		writel(fbr->num_entries - 1, num_des);
1604		writel(ET_DMA10_WRAP, full_offset);
1605
1606		/* This variable tracks the free buffer ring 1 full position,
1607		 * so it has to match the above.
1608		 */
1609		fbr->local_full = ET_DMA10_WRAP;
1610		writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1611		       min_des);
1612	}
1613
1614	/* Program the number of packets we will receive before generating an
1615	 * interrupt.
1616	 * For version B silicon, this value gets updated once autoneg is
1617	 *complete.
1618	 */
1619	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1620
1621	/* The "time_done" is not working correctly to coalesce interrupts
1622	 * after a given time period, but rather is giving us an interrupt
1623	 * regardless of whether we have received packets.
1624	 * This value gets updated once autoneg is complete.
1625	 */
1626	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1627
1628	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1629}
1630
1631/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1632 *
1633 * Configure the transmit engine with the ring buffers we have created
1634 * and prepare it for use.
1635 */
1636static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1637{
1638	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1639	struct tx_ring *tx_ring = &adapter->tx_ring;
1640
1641	/* Load the hardware with the start of the transmit descriptor ring. */
1642	writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1643	writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1644
1645	/* Initialise the transmit DMA engine */
1646	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1647
1648	/* Load the completion writeback physical address */
1649	writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1650	writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1651
1652	*tx_ring->tx_status = 0;
1653
1654	writel(0, &txdma->service_request);
1655	tx_ring->send_idx = 0;
1656}
1657
1658/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1659static void et131x_adapter_setup(struct et131x_adapter *adapter)
1660{
1661	et131x_configure_global_regs(adapter);
1662	et1310_config_mac_regs1(adapter);
1663
1664	/* Configure the MMC registers */
1665	/* All we need to do is initialize the Memory Control Register */
1666	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1667
1668	et1310_config_rxmac_regs(adapter);
1669	et1310_config_txmac_regs(adapter);
1670
1671	et131x_config_rx_dma_regs(adapter);
1672	et131x_config_tx_dma_regs(adapter);
1673
1674	et1310_config_macstat_regs(adapter);
1675
1676	et1310_phy_power_switch(adapter, 0);
1677	et131x_xcvr_init(adapter);
1678}
1679
1680/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1681static void et131x_soft_reset(struct et131x_adapter *adapter)
1682{
1683	u32 reg;
1684
1685	/* Disable MAC Core */
1686	reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1687	      ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1688	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1689	writel(reg, &adapter->regs->mac.cfg1);
1690
1691	reg = ET_RESET_ALL;
1692	writel(reg, &adapter->regs->global.sw_reset);
1693
1694	reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1695	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1696	writel(reg, &adapter->regs->mac.cfg1);
1697	writel(0, &adapter->regs->mac.cfg1);
1698}
1699
1700static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1701{
1702	u32 mask;
1703
1704	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1705		mask = INT_MASK_ENABLE;
1706	else
1707		mask = INT_MASK_ENABLE_NO_FLOW;
1708
1709	writel(mask, &adapter->regs->global.int_mask);
1710}
1711
1712static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1713{
1714	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1715}
1716
1717static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1718{
1719	/* Setup the transmit dma configuration register */
1720	writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1721	       &adapter->regs->txdma.csr);
1722}
1723
1724static void et131x_enable_txrx(struct net_device *netdev)
1725{
1726	struct et131x_adapter *adapter = netdev_priv(netdev);
1727
1728	et131x_rx_dma_enable(adapter);
1729	et131x_tx_dma_enable(adapter);
1730
1731	if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1732		et131x_enable_interrupts(adapter);
1733
1734	netif_start_queue(netdev);
1735}
1736
1737static void et131x_disable_txrx(struct net_device *netdev)
1738{
1739	struct et131x_adapter *adapter = netdev_priv(netdev);
1740
1741	netif_stop_queue(netdev);
1742
1743	et131x_rx_dma_disable(adapter);
1744	et131x_tx_dma_disable(adapter);
1745
1746	et131x_disable_interrupts(adapter);
1747}
1748
1749static void et131x_init_send(struct et131x_adapter *adapter)
1750{
1751	int i;
1752	struct tx_ring *tx_ring = &adapter->tx_ring;
1753	struct tcb *tcb = tx_ring->tcb_ring;
1754
1755	tx_ring->tcb_qhead = tcb;
1756
1757	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1758
1759	for (i = 0; i < NUM_TCB; i++) {
1760		tcb->next = tcb + 1;
1761		tcb++;
1762	}
1763
1764	tcb--;
1765	tx_ring->tcb_qtail = tcb;
1766	tcb->next = NULL;
1767	/* Curr send queue should now be empty */
1768	tx_ring->send_head = NULL;
1769	tx_ring->send_tail = NULL;
1770}
1771
1772/* et1310_enable_phy_coma
1773 *
1774 * driver receive an phy status change interrupt while in D0 and check that
1775 * phy_status is down.
1776 *
1777 *          -- gate off JAGCore;
1778 *          -- set gigE PHY in Coma mode
1779 *          -- wake on phy_interrupt; Perform software reset JAGCore,
1780 *             re-initialize jagcore and gigE PHY
1781 */
1782static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1783{
1784	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1785
1786	/* Stop sending packets. */
1787	adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1788
1789	/* Wait for outstanding Receive packets */
1790	et131x_disable_txrx(adapter->netdev);
1791
1792	/* Gate off JAGCore 3 clock domains */
1793	pmcsr &= ~ET_PMCSR_INIT;
1794	writel(pmcsr, &adapter->regs->global.pm_csr);
1795
1796	/* Program gigE PHY in to Coma mode */
1797	pmcsr |= ET_PM_PHY_SW_COMA;
1798	writel(pmcsr, &adapter->regs->global.pm_csr);
1799}
1800
1801static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1802{
1803	u32 pmcsr;
1804
1805	pmcsr = readl(&adapter->regs->global.pm_csr);
1806
1807	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
1808	pmcsr |= ET_PMCSR_INIT;
1809	pmcsr &= ~ET_PM_PHY_SW_COMA;
1810	writel(pmcsr, &adapter->regs->global.pm_csr);
1811
1812	/* Restore the GbE PHY speed and duplex modes;
1813	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1814	 */
1815
1816	/* Re-initialize the send structures */
1817	et131x_init_send(adapter);
1818
1819	/* Bring the device back to the state it was during init prior to
1820	 * autonegotiation being complete.  This way, when we get the auto-neg
1821	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1822	 */
1823	et131x_soft_reset(adapter);
1824
1825	et131x_adapter_setup(adapter);
1826
1827	/* Allow Tx to restart */
1828	adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1829
1830	et131x_enable_txrx(adapter->netdev);
1831}
1832
1833static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1834{
1835	u32 tmp_free_buff_ring = *free_buff_ring;
1836
1837	tmp_free_buff_ring++;
1838	/* This works for all cases where limit < 1024. The 1023 case
1839	 * works because 1023++ is 1024 which means the if condition is not
1840	 * taken but the carry of the bit into the wrap bit toggles the wrap
1841	 * value correctly
1842	 */
1843	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1844		tmp_free_buff_ring &= ~ET_DMA10_MASK;
1845		tmp_free_buff_ring ^= ET_DMA10_WRAP;
1846	}
1847	/* For the 1023 case */
1848	tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1849	*free_buff_ring = tmp_free_buff_ring;
1850	return tmp_free_buff_ring;
1851}
1852
1853/* et131x_rx_dma_memory_alloc
1854 *
1855 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1856 * and the Packet Status Ring.
1857 */
1858static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1859{
1860	u8 id;
1861	u32 i, j;
1862	u32 bufsize;
1863	u32 psr_size;
1864	u32 fbr_chunksize;
1865	struct rx_ring *rx_ring = &adapter->rx_ring;
1866	struct fbr_lookup *fbr;
1867
1868	/* Alloc memory for the lookup table */
1869	rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1870	if (rx_ring->fbr[0] == NULL)
1871		return -ENOMEM;
1872	rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873	if (rx_ring->fbr[1] == NULL)
1874		return -ENOMEM;
1875
1876	/* The first thing we will do is configure the sizes of the buffer
1877	 * rings. These will change based on jumbo packet support.  Larger
1878	 * jumbo packets increases the size of each entry in FBR0, and the
1879	 * number of entries in FBR0, while at the same time decreasing the
1880	 * number of entries in FBR1.
1881	 *
1882	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1883	 * entries are huge in order to accommodate a "jumbo" frame, then it
1884	 * will have less entries.  Conversely, FBR1 will now be relied upon
1885	 * to carry more "normal" frames, thus it's entry size also increases
1886	 * and the number of entries goes up too (since it now carries
1887	 * "small" + "regular" packets.
1888	 *
1889	 * In this scheme, we try to maintain 512 entries between the two
1890	 * rings. Also, FBR1 remains a constant size - when it's size doubles
1891	 * the number of entries halves.  FBR0 increases in size, however.
1892	 */
1893	if (adapter->registry_jumbo_packet < 2048) {
1894		rx_ring->fbr[0]->buffsize = 256;
1895		rx_ring->fbr[0]->num_entries = 512;
1896		rx_ring->fbr[1]->buffsize = 2048;
1897		rx_ring->fbr[1]->num_entries = 512;
1898	} else if (adapter->registry_jumbo_packet < 4096) {
1899		rx_ring->fbr[0]->buffsize = 512;
1900		rx_ring->fbr[0]->num_entries = 1024;
1901		rx_ring->fbr[1]->buffsize = 4096;
1902		rx_ring->fbr[1]->num_entries = 512;
1903	} else {
1904		rx_ring->fbr[0]->buffsize = 1024;
1905		rx_ring->fbr[0]->num_entries = 768;
1906		rx_ring->fbr[1]->buffsize = 16384;
1907		rx_ring->fbr[1]->num_entries = 128;
1908	}
1909
1910	rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1911			       rx_ring->fbr[1]->num_entries;
1912
1913	for (id = 0; id < NUM_FBRS; id++) {
1914		fbr = rx_ring->fbr[id];
1915		/* Allocate an area of memory for Free Buffer Ring */
1916		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1917		fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1918							bufsize,
1919							&fbr->ring_physaddr,
1920							GFP_KERNEL);
1921		if (!fbr->ring_virtaddr) {
1922			dev_err(&adapter->pdev->dev,
1923				"Cannot alloc memory for Free Buffer Ring %d\n",
1924				id);
1925			return -ENOMEM;
1926		}
1927	}
1928
1929	for (id = 0; id < NUM_FBRS; id++) {
1930		fbr = rx_ring->fbr[id];
1931		fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1932
1933		for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1934			dma_addr_t fbr_physaddr;
1935
1936			fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1937					&adapter->pdev->dev, fbr_chunksize,
1938					&fbr->mem_physaddrs[i],
1939					GFP_KERNEL);
1940
1941			if (!fbr->mem_virtaddrs[i]) {
1942				dev_err(&adapter->pdev->dev,
1943					"Could not alloc memory\n");
1944				return -ENOMEM;
1945			}
1946
1947			/* See NOTE in "Save Physical Address" comment above */
1948			fbr_physaddr = fbr->mem_physaddrs[i];
1949
1950			for (j = 0; j < FBR_CHUNKS; j++) {
1951				u32 k = (i * FBR_CHUNKS) + j;
1952
1953				/* Save the Virtual address of this index for
1954				 * quick access later
1955				 */
1956				fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1957						   (j * fbr->buffsize);
1958
1959				/* now store the physical address in the
1960				 * descriptor so the device can access it
1961				 */
1962				fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1963				fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1964				fbr_physaddr += fbr->buffsize;
1965			}
1966		}
1967	}
1968
1969	/* Allocate an area of memory for FIFO of Packet Status ring entries */
1970	psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1971
1972	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1973						  psr_size,
1974						  &rx_ring->ps_ring_physaddr,
1975						  GFP_KERNEL);
1976
1977	if (!rx_ring->ps_ring_virtaddr) {
1978		dev_err(&adapter->pdev->dev,
1979			"Cannot alloc memory for Packet Status Ring\n");
1980		return -ENOMEM;
1981	}
1982
1983	/* Allocate an area of memory for writeback of status information */
1984	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1985					    sizeof(struct rx_status_block),
1986					    &rx_ring->rx_status_bus,
1987					    GFP_KERNEL);
1988	if (!rx_ring->rx_status_block) {
1989		dev_err(&adapter->pdev->dev,
1990			"Cannot alloc memory for Status Block\n");
1991		return -ENOMEM;
1992	}
1993	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1994
1995	/* The RFDs are going to be put on lists later on, so initialize the
1996	 * lists now.
1997	 */
1998	INIT_LIST_HEAD(&rx_ring->recv_list);
1999	return 0;
2000}
2001
2002static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2003{
2004	u8 id;
2005	u32 ii;
2006	u32 bufsize;
2007	u32 psr_size;
2008	struct rfd *rfd;
2009	struct rx_ring *rx_ring = &adapter->rx_ring;
2010	struct fbr_lookup *fbr;
2011
2012	/* Free RFDs and associated packet descriptors */
2013	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2014
2015	while (!list_empty(&rx_ring->recv_list)) {
2016		rfd = list_entry(rx_ring->recv_list.next,
2017				 struct rfd, list_node);
2018
2019		list_del(&rfd->list_node);
2020		rfd->skb = NULL;
2021		kfree(rfd);
2022	}
2023
2024	/* Free Free Buffer Rings */
2025	for (id = 0; id < NUM_FBRS; id++) {
2026		fbr = rx_ring->fbr[id];
2027
2028		if (!fbr || !fbr->ring_virtaddr)
2029			continue;
2030
2031		/* First the packet memory */
2032		for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2033			if (fbr->mem_virtaddrs[ii]) {
2034				bufsize = fbr->buffsize * FBR_CHUNKS;
2035
2036				dma_free_coherent(&adapter->pdev->dev,
2037						  bufsize,
2038						  fbr->mem_virtaddrs[ii],
2039						  fbr->mem_physaddrs[ii]);
2040
2041				fbr->mem_virtaddrs[ii] = NULL;
2042			}
2043		}
2044
2045		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2046
2047		dma_free_coherent(&adapter->pdev->dev,
2048				  bufsize,
2049				  fbr->ring_virtaddr,
2050				  fbr->ring_physaddr);
2051
2052		fbr->ring_virtaddr = NULL;
2053	}
2054
2055	/* Free Packet Status Ring */
2056	if (rx_ring->ps_ring_virtaddr) {
2057		psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2058
2059		dma_free_coherent(&adapter->pdev->dev, psr_size,
2060				  rx_ring->ps_ring_virtaddr,
2061				  rx_ring->ps_ring_physaddr);
2062
2063		rx_ring->ps_ring_virtaddr = NULL;
2064	}
2065
2066	/* Free area of memory for the writeback of status information */
2067	if (rx_ring->rx_status_block) {
2068		dma_free_coherent(&adapter->pdev->dev,
2069				  sizeof(struct rx_status_block),
2070				  rx_ring->rx_status_block,
2071				  rx_ring->rx_status_bus);
2072		rx_ring->rx_status_block = NULL;
2073	}
2074
2075	/* Free the FBR Lookup Table */
2076	kfree(rx_ring->fbr[0]);
2077	kfree(rx_ring->fbr[1]);
2078
2079	/* Reset Counters */
2080	rx_ring->num_ready_recv = 0;
2081}
2082
2083/* et131x_init_recv - Initialize receive data structures */
2084static int et131x_init_recv(struct et131x_adapter *adapter)
2085{
2086	struct rfd *rfd;
2087	u32 rfdct;
2088	struct rx_ring *rx_ring = &adapter->rx_ring;
2089
2090	/* Setup each RFD */
2091	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2092		rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2093		if (!rfd)
2094			return -ENOMEM;
2095
2096		rfd->skb = NULL;
2097
2098		/* Add this RFD to the recv_list */
2099		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2100
2101		/* Increment the available RFD's */
2102		rx_ring->num_ready_recv++;
2103	}
2104
2105	return 0;
2106}
2107
2108/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2109static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2110{
2111	struct phy_device *phydev = adapter->netdev->phydev;
2112
2113	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
2114	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2115	 */
2116	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2117		writel(0, &adapter->regs->rxdma.max_pkt_time);
2118		writel(1, &adapter->regs->rxdma.num_pkt_done);
2119	}
2120}
2121
2122/* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2123static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2124{
2125	struct rx_ring *rx_local = &adapter->rx_ring;
2126	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2127	u16 buff_index = rfd->bufferindex;
2128	u8 ring_index = rfd->ringindex;
2129	unsigned long flags;
2130	struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2131
2132	/* We don't use any of the OOB data besides status. Otherwise, we
2133	 * need to clean up OOB data
2134	 */
2135	if (buff_index < fbr->num_entries) {
2136		u32 free_buff_ring;
2137		u32 __iomem *offset;
2138		struct fbr_desc *next;
2139
2140		if (ring_index == 0)
2141			offset = &rx_dma->fbr0_full_offset;
2142		else
2143			offset = &rx_dma->fbr1_full_offset;
2144
2145		next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2146		       INDEX10(fbr->local_full);
2147
2148		/* Handle the Free Buffer Ring advancement here. Write
2149		 * the PA / Buffer Index for the returned buffer into
2150		 * the oldest (next to be freed)FBR entry
2151		 */
2152		next->addr_hi = fbr->bus_high[buff_index];
2153		next->addr_lo = fbr->bus_low[buff_index];
2154		next->word2 = buff_index;
2155
2156		free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2157						     fbr->num_entries - 1);
2158		writel(free_buff_ring, offset);
2159	} else {
2160		dev_err(&adapter->pdev->dev,
2161			"%s illegal Buffer Index returned\n", __func__);
2162	}
2163
2164	/* The processing on this RFD is done, so put it back on the tail of
2165	 * our list
2166	 */
2167	spin_lock_irqsave(&adapter->rcv_lock, flags);
2168	list_add_tail(&rfd->list_node, &rx_local->recv_list);
2169	rx_local->num_ready_recv++;
2170	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2171
2172	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2173}
2174
2175/* nic_rx_pkts - Checks the hardware for available packets
2176 *
2177 * Checks the hardware for available packets, using completion ring
2178 * If packets are available, it gets an RFD from the recv_list, attaches
2179 * the packet to it, puts the RFD in the RecvPendList, and also returns
2180 * the pointer to the RFD.
2181 */
2182static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2183{
2184	struct rx_ring *rx_local = &adapter->rx_ring;
2185	struct rx_status_block *status;
2186	struct pkt_stat_desc *psr;
2187	struct rfd *rfd;
2188	unsigned long flags;
2189	struct list_head *element;
2190	u8 ring_index;
2191	u16 buff_index;
2192	u32 len;
2193	u32 word0;
2194	u32 word1;
2195	struct sk_buff *skb;
2196	struct fbr_lookup *fbr;
2197
2198	/* RX Status block is written by the DMA engine prior to every
2199	 * interrupt. It contains the next to be used entry in the Packet
2200	 * Status Ring, and also the two Free Buffer rings.
2201	 */
2202	status = rx_local->rx_status_block;
2203	word1 = status->word1 >> 16;
2204
2205	/* Check the PSR and wrap bits do not match */
2206	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2207		return NULL; /* Looks like this ring is not updated yet */
2208
2209	/* The packet status ring indicates that data is available. */
2210	psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2211			(rx_local->local_psr_full & 0xFFF);
2212
2213	/* Grab any information that is required once the PSR is advanced,
2214	 * since we can no longer rely on the memory being accurate
2215	 */
2216	len = psr->word1 & 0xFFFF;
2217	ring_index = (psr->word1 >> 26) & 0x03;
2218	fbr = rx_local->fbr[ring_index];
2219	buff_index = (psr->word1 >> 16) & 0x3FF;
2220	word0 = psr->word0;
2221
2222	/* Indicate that we have used this PSR entry. */
2223	/* FIXME wrap 12 */
2224	add_12bit(&rx_local->local_psr_full, 1);
2225	if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2226		/* Clear psr full and toggle the wrap bit */
2227		rx_local->local_psr_full &=  ~0xFFF;
2228		rx_local->local_psr_full ^= 0x1000;
2229	}
2230
2231	writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2232
2233	if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2234		/* Illegal buffer or ring index cannot be used by S/W*/
2235		dev_err(&adapter->pdev->dev,
2236			"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2237			rx_local->local_psr_full & 0xFFF, len, buff_index);
2238		return NULL;
2239	}
2240
2241	/* Get and fill the RFD. */
2242	spin_lock_irqsave(&adapter->rcv_lock, flags);
2243
2244	element = rx_local->recv_list.next;
2245	rfd = list_entry(element, struct rfd, list_node);
2246
2247	if (!rfd) {
2248		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2249		return NULL;
2250	}
2251
2252	list_del(&rfd->list_node);
2253	rx_local->num_ready_recv--;
2254
2255	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2256
2257	rfd->bufferindex = buff_index;
2258	rfd->ringindex = ring_index;
2259
2260	/* In V1 silicon, there is a bug which screws up filtering of runt
2261	 * packets. Therefore runt packet filtering is disabled in the MAC and
2262	 * the packets are dropped here. They are also counted here.
2263	 */
2264	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2265		adapter->stats.rx_other_errs++;
2266		rfd->len = 0;
2267		goto out;
2268	}
2269
2270	if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2271		adapter->stats.multicast_pkts_rcvd++;
2272
2273	rfd->len = len;
2274
2275	skb = dev_alloc_skb(rfd->len + 2);
2276	if (!skb)
2277		return NULL;
2278
2279	adapter->netdev->stats.rx_bytes += rfd->len;
2280
2281	skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2282
2283	skb->protocol = eth_type_trans(skb, adapter->netdev);
2284	skb->ip_summed = CHECKSUM_NONE;
2285	netif_receive_skb(skb);
2286
2287out:
2288	nic_return_rfd(adapter, rfd);
2289	return rfd;
2290}
2291
2292static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2293{
2294	struct rfd *rfd = NULL;
2295	int count = 0;
2296	int limit = budget;
2297	bool done = true;
2298	struct rx_ring *rx_ring = &adapter->rx_ring;
2299
2300	if (budget > MAX_PACKETS_HANDLED)
2301		limit = MAX_PACKETS_HANDLED;
2302
2303	/* Process up to available RFD's */
2304	while (count < limit) {
2305		if (list_empty(&rx_ring->recv_list)) {
2306			WARN_ON(rx_ring->num_ready_recv != 0);
2307			done = false;
2308			break;
2309		}
2310
2311		rfd = nic_rx_pkts(adapter);
2312
2313		if (rfd == NULL)
2314			break;
2315
2316		/* Do not receive any packets until a filter has been set.
2317		 * Do not receive any packets until we have link.
2318		 * If length is zero, return the RFD in order to advance the
2319		 * Free buffer ring.
2320		 */
2321		if (!adapter->packet_filter ||
2322		    !netif_carrier_ok(adapter->netdev) ||
2323		    rfd->len == 0)
2324			continue;
2325
2326		adapter->netdev->stats.rx_packets++;
2327
2328		if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2329			dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2330
2331		count++;
2332	}
2333
2334	if (count == limit || !done) {
2335		rx_ring->unfinished_receives = true;
2336		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2337		       &adapter->regs->global.watchdog_timer);
2338	} else {
2339		/* Watchdog timer will disable itself if appropriate. */
2340		rx_ring->unfinished_receives = false;
2341	}
2342
2343	return count;
2344}
2345
2346/* et131x_tx_dma_memory_alloc
2347 *
2348 * Allocates memory that will be visible both to the device and to the CPU.
2349 * The OS will pass us packets, pointers to which we will insert in the Tx
2350 * Descriptor queue. The device will read this queue to find the packets in
2351 * memory. The device will update the "status" in memory each time it xmits a
2352 * packet.
2353 */
2354static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2355{
2356	int desc_size = 0;
2357	struct tx_ring *tx_ring = &adapter->tx_ring;
2358
2359	/* Allocate memory for the TCB's (Transmit Control Block) */
2360	tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2361				    GFP_KERNEL | GFP_DMA);
2362	if (!tx_ring->tcb_ring)
2363		return -ENOMEM;
2364
2365	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2366	tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2367						   desc_size,
2368						   &tx_ring->tx_desc_ring_pa,
2369						   GFP_KERNEL);
2370	if (!tx_ring->tx_desc_ring) {
2371		dev_err(&adapter->pdev->dev,
2372			"Cannot alloc memory for Tx Ring\n");
2373		return -ENOMEM;
2374	}
2375
2376	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2377						    sizeof(u32),
2378						    &tx_ring->tx_status_pa,
2379						    GFP_KERNEL);
2380	if (!tx_ring->tx_status) {
2381		dev_err(&adapter->pdev->dev,
2382			"Cannot alloc memory for Tx status block\n");
2383		return -ENOMEM;
2384	}
2385	return 0;
2386}
2387
2388static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2389{
2390	int desc_size = 0;
2391	struct tx_ring *tx_ring = &adapter->tx_ring;
2392
2393	if (tx_ring->tx_desc_ring) {
2394		/* Free memory relating to Tx rings here */
2395		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2396		dma_free_coherent(&adapter->pdev->dev,
2397				  desc_size,
2398				  tx_ring->tx_desc_ring,
2399				  tx_ring->tx_desc_ring_pa);
2400		tx_ring->tx_desc_ring = NULL;
2401	}
2402
2403	/* Free memory for the Tx status block */
2404	if (tx_ring->tx_status) {
2405		dma_free_coherent(&adapter->pdev->dev,
2406				  sizeof(u32),
2407				  tx_ring->tx_status,
2408				  tx_ring->tx_status_pa);
2409
2410		tx_ring->tx_status = NULL;
2411	}
2412	/* Free the memory for the tcb structures */
2413	kfree(tx_ring->tcb_ring);
2414}
2415
2416#define MAX_TX_DESC_PER_PKT 24
2417
2418/* nic_send_packet - NIC specific send handler for version B silicon. */
2419static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2420{
2421	u32 i;
2422	struct tx_desc desc[MAX_TX_DESC_PER_PKT];
2423	u32 frag = 0;
2424	u32 thiscopy, remainder;
2425	struct sk_buff *skb = tcb->skb;
2426	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2427	skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
2428	struct phy_device *phydev = adapter->netdev->phydev;
2429	dma_addr_t dma_addr;
2430	struct tx_ring *tx_ring = &adapter->tx_ring;
2431
2432	/* Part of the optimizations of this send routine restrict us to
2433	 * sending 24 fragments at a pass.  In practice we should never see
2434	 * more than 5 fragments.
2435	 */
2436
 
 
 
2437	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2438
2439	for (i = 0; i < nr_frags; i++) {
2440		/* If there is something in this element, lets get a
2441		 * descriptor from the ring and get the necessary data
2442		 */
2443		if (i == 0) {
2444			/* If the fragments are smaller than a standard MTU,
2445			 * then map them to a single descriptor in the Tx
2446			 * Desc ring. However, if they're larger, as is
2447			 * possible with support for jumbo packets, then
2448			 * split them each across 2 descriptors.
2449			 *
2450			 * This will work until we determine why the hardware
2451			 * doesn't seem to like large fragments.
2452			 */
2453			if (skb_headlen(skb) <= 1514) {
2454				/* Low 16bits are length, high is vlan and
2455				 * unused currently so zero
2456				 */
2457				desc[frag].len_vlan = skb_headlen(skb);
2458				dma_addr = dma_map_single(&adapter->pdev->dev,
2459							  skb->data,
2460							  skb_headlen(skb),
2461							  DMA_TO_DEVICE);
2462				desc[frag].addr_lo = lower_32_bits(dma_addr);
2463				desc[frag].addr_hi = upper_32_bits(dma_addr);
2464				frag++;
2465			} else {
2466				desc[frag].len_vlan = skb_headlen(skb) / 2;
2467				dma_addr = dma_map_single(&adapter->pdev->dev,
2468							  skb->data,
2469							  skb_headlen(skb) / 2,
2470							  DMA_TO_DEVICE);
2471				desc[frag].addr_lo = lower_32_bits(dma_addr);
2472				desc[frag].addr_hi = upper_32_bits(dma_addr);
2473				frag++;
2474
2475				desc[frag].len_vlan = skb_headlen(skb) / 2;
2476				dma_addr = dma_map_single(&adapter->pdev->dev,
2477							  skb->data +
2478							  skb_headlen(skb) / 2,
2479							  skb_headlen(skb) / 2,
2480							  DMA_TO_DEVICE);
2481				desc[frag].addr_lo = lower_32_bits(dma_addr);
2482				desc[frag].addr_hi = upper_32_bits(dma_addr);
2483				frag++;
2484			}
2485		} else {
2486			desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
2487			dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2488						    &frags[i - 1],
2489						    0,
2490						    desc[frag].len_vlan,
2491						    DMA_TO_DEVICE);
2492			desc[frag].addr_lo = lower_32_bits(dma_addr);
2493			desc[frag].addr_hi = upper_32_bits(dma_addr);
2494			frag++;
2495		}
2496	}
2497
2498	if (phydev && phydev->speed == SPEED_1000) {
2499		if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2500			/* Last element & Interrupt flag */
2501			desc[frag - 1].flags =
2502				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2503			tx_ring->since_irq = 0;
2504		} else { /* Last element */
2505			desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2506		}
2507	} else {
2508		desc[frag - 1].flags =
2509				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2510	}
2511
2512	desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2513
2514	tcb->index_start = tx_ring->send_idx;
2515	tcb->stale = 0;
2516
2517	thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2518
2519	if (thiscopy >= frag) {
2520		remainder = 0;
2521		thiscopy = frag;
2522	} else {
2523		remainder = frag - thiscopy;
2524	}
2525
2526	memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2527	       desc,
2528	       sizeof(struct tx_desc) * thiscopy);
2529
2530	add_10bit(&tx_ring->send_idx, thiscopy);
2531
2532	if (INDEX10(tx_ring->send_idx) == 0 ||
2533	    INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2534		tx_ring->send_idx &= ~ET_DMA10_MASK;
2535		tx_ring->send_idx ^= ET_DMA10_WRAP;
2536	}
2537
2538	if (remainder) {
2539		memcpy(tx_ring->tx_desc_ring,
2540		       desc + thiscopy,
2541		       sizeof(struct tx_desc) * remainder);
2542
2543		add_10bit(&tx_ring->send_idx, remainder);
2544	}
2545
2546	if (INDEX10(tx_ring->send_idx) == 0) {
2547		if (tx_ring->send_idx)
2548			tcb->index = NUM_DESC_PER_RING_TX - 1;
2549		else
2550			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2551	} else {
2552		tcb->index = tx_ring->send_idx - 1;
2553	}
2554
2555	spin_lock(&adapter->tcb_send_qlock);
2556
2557	if (tx_ring->send_tail)
2558		tx_ring->send_tail->next = tcb;
2559	else
2560		tx_ring->send_head = tcb;
2561
2562	tx_ring->send_tail = tcb;
2563
2564	WARN_ON(tcb->next != NULL);
2565
2566	tx_ring->used++;
2567
2568	spin_unlock(&adapter->tcb_send_qlock);
2569
2570	/* Write the new write pointer back to the device. */
2571	writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2572
2573	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2574	 * timer to wake us up if this packet isn't followed by N more.
2575	 */
2576	if (phydev && phydev->speed == SPEED_1000) {
2577		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2578		       &adapter->regs->global.watchdog_timer);
2579	}
2580	return 0;
2581}
2582
2583static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2584{
2585	int status;
2586	struct tcb *tcb;
2587	unsigned long flags;
2588	struct tx_ring *tx_ring = &adapter->tx_ring;
2589
2590	/* All packets must have at least a MAC address and a protocol type */
2591	if (skb->len < ETH_HLEN)
2592		return -EIO;
2593
2594	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2595
2596	tcb = tx_ring->tcb_qhead;
2597
2598	if (tcb == NULL) {
2599		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2600		return -ENOMEM;
2601	}
2602
2603	tx_ring->tcb_qhead = tcb->next;
2604
2605	if (tx_ring->tcb_qhead == NULL)
2606		tx_ring->tcb_qtail = NULL;
2607
2608	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2609
2610	tcb->skb = skb;
2611	tcb->next = NULL;
2612
2613	status = nic_send_packet(adapter, tcb);
2614
2615	if (status != 0) {
2616		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2617
2618		if (tx_ring->tcb_qtail)
2619			tx_ring->tcb_qtail->next = tcb;
2620		else
2621			/* Apparently ready Q is empty. */
2622			tx_ring->tcb_qhead = tcb;
2623
2624		tx_ring->tcb_qtail = tcb;
2625		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2626		return status;
2627	}
2628	WARN_ON(tx_ring->used > NUM_TCB);
2629	return 0;
2630}
2631
2632/* free_send_packet - Recycle a struct tcb */
2633static inline void free_send_packet(struct et131x_adapter *adapter,
2634				    struct tcb *tcb)
2635{
2636	unsigned long flags;
2637	struct tx_desc *desc = NULL;
2638	struct net_device_stats *stats = &adapter->netdev->stats;
2639	struct tx_ring *tx_ring = &adapter->tx_ring;
2640	u64  dma_addr;
2641
2642	if (tcb->skb) {
2643		stats->tx_bytes += tcb->skb->len;
2644
2645		/* Iterate through the TX descriptors on the ring
2646		 * corresponding to this packet and umap the fragments
2647		 * they point to
2648		 */
2649		do {
2650			desc = tx_ring->tx_desc_ring +
2651			       INDEX10(tcb->index_start);
2652
2653			dma_addr = desc->addr_lo;
2654			dma_addr |= (u64)desc->addr_hi << 32;
2655
2656			dma_unmap_single(&adapter->pdev->dev,
2657					 dma_addr,
2658					 desc->len_vlan, DMA_TO_DEVICE);
2659
2660			add_10bit(&tcb->index_start, 1);
2661			if (INDEX10(tcb->index_start) >=
2662							NUM_DESC_PER_RING_TX) {
2663				tcb->index_start &= ~ET_DMA10_MASK;
2664				tcb->index_start ^= ET_DMA10_WRAP;
2665			}
2666		} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2667
2668		dev_kfree_skb_any(tcb->skb);
2669	}
2670
2671	memset(tcb, 0, sizeof(struct tcb));
2672
2673	/* Add the TCB to the Ready Q */
2674	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2675
2676	stats->tx_packets++;
2677
2678	if (tx_ring->tcb_qtail)
2679		tx_ring->tcb_qtail->next = tcb;
2680	else /* Apparently ready Q is empty. */
2681		tx_ring->tcb_qhead = tcb;
2682
2683	tx_ring->tcb_qtail = tcb;
2684
2685	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2686	WARN_ON(tx_ring->used < 0);
2687}
2688
2689/* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2690static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2691{
2692	struct tcb *tcb;
2693	unsigned long flags;
2694	u32 freed = 0;
2695	struct tx_ring *tx_ring = &adapter->tx_ring;
2696
2697	/* Any packets being sent? Check the first TCB on the send list */
2698	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2699
2700	tcb = tx_ring->send_head;
2701
2702	while (tcb != NULL && freed < NUM_TCB) {
2703		struct tcb *next = tcb->next;
2704
2705		tx_ring->send_head = next;
2706
2707		if (next == NULL)
2708			tx_ring->send_tail = NULL;
2709
2710		tx_ring->used--;
2711
2712		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2713
2714		freed++;
2715		free_send_packet(adapter, tcb);
2716
2717		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2718
2719		tcb = tx_ring->send_head;
2720	}
2721
2722	WARN_ON(freed == NUM_TCB);
2723
2724	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2725
2726	tx_ring->used = 0;
2727}
2728
2729/* et131x_handle_send_pkts
2730 *
2731 * Re-claim the send resources, complete sends and get more to send from
2732 * the send wait queue.
2733 */
2734static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2735{
2736	unsigned long flags;
2737	u32 serviced;
2738	struct tcb *tcb;
2739	u32 index;
2740	struct tx_ring *tx_ring = &adapter->tx_ring;
2741
2742	serviced = readl(&adapter->regs->txdma.new_service_complete);
2743	index = INDEX10(serviced);
2744
2745	/* Has the ring wrapped?  Process any descriptors that do not have
2746	 * the same "wrap" indicator as the current completion indicator
2747	 */
2748	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2749
2750	tcb = tx_ring->send_head;
2751
2752	while (tcb &&
2753	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2754	       index < INDEX10(tcb->index)) {
2755		tx_ring->used--;
2756		tx_ring->send_head = tcb->next;
2757		if (tcb->next == NULL)
2758			tx_ring->send_tail = NULL;
2759
2760		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2761		free_send_packet(adapter, tcb);
2762		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2763
2764		/* Goto the next packet */
2765		tcb = tx_ring->send_head;
2766	}
2767	while (tcb &&
2768	       !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2769	       index > (tcb->index & ET_DMA10_MASK)) {
2770		tx_ring->used--;
2771		tx_ring->send_head = tcb->next;
2772		if (tcb->next == NULL)
2773			tx_ring->send_tail = NULL;
2774
2775		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2776		free_send_packet(adapter, tcb);
2777		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2778
2779		/* Goto the next packet */
2780		tcb = tx_ring->send_head;
2781	}
2782
2783	/* Wake up the queue when we hit a low-water mark */
2784	if (tx_ring->used <= NUM_TCB / 3)
2785		netif_wake_queue(adapter->netdev);
2786
2787	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2788}
2789
2790static int et131x_get_regs_len(struct net_device *netdev)
2791{
2792#define ET131X_REGS_LEN 256
2793	return ET131X_REGS_LEN * sizeof(u32);
2794}
2795
2796static void et131x_get_regs(struct net_device *netdev,
2797			    struct ethtool_regs *regs, void *regs_data)
2798{
2799	struct et131x_adapter *adapter = netdev_priv(netdev);
2800	struct address_map __iomem *aregs = adapter->regs;
2801	u32 *regs_buff = regs_data;
2802	u32 num = 0;
2803	u16 tmp;
2804
2805	memset(regs_data, 0, et131x_get_regs_len(netdev));
2806
2807	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2808			adapter->pdev->device;
2809
2810	/* PHY regs */
2811	et131x_mii_read(adapter, MII_BMCR, &tmp);
2812	regs_buff[num++] = tmp;
2813	et131x_mii_read(adapter, MII_BMSR, &tmp);
2814	regs_buff[num++] = tmp;
2815	et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2816	regs_buff[num++] = tmp;
2817	et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2818	regs_buff[num++] = tmp;
2819	et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2820	regs_buff[num++] = tmp;
2821	et131x_mii_read(adapter, MII_LPA, &tmp);
2822	regs_buff[num++] = tmp;
2823	et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2824	regs_buff[num++] = tmp;
2825	/* Autoneg next page transmit reg */
2826	et131x_mii_read(adapter, 0x07, &tmp);
2827	regs_buff[num++] = tmp;
2828	/* Link partner next page reg */
2829	et131x_mii_read(adapter, 0x08, &tmp);
2830	regs_buff[num++] = tmp;
2831	et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2832	regs_buff[num++] = tmp;
2833	et131x_mii_read(adapter, MII_STAT1000, &tmp);
2834	regs_buff[num++] = tmp;
2835	et131x_mii_read(adapter, 0x0b, &tmp);
2836	regs_buff[num++] = tmp;
2837	et131x_mii_read(adapter, 0x0c, &tmp);
2838	regs_buff[num++] = tmp;
2839	et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2840	regs_buff[num++] = tmp;
2841	et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2842	regs_buff[num++] = tmp;
2843	et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2844	regs_buff[num++] = tmp;
2845
2846	et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2847	regs_buff[num++] = tmp;
2848	et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2849	regs_buff[num++] = tmp;
2850	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2851	regs_buff[num++] = tmp;
2852	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2853	regs_buff[num++] = tmp;
2854	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2855	regs_buff[num++] = tmp;
2856
2857	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2858	regs_buff[num++] = tmp;
2859	et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2860	regs_buff[num++] = tmp;
2861	et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2862	regs_buff[num++] = tmp;
2863	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2864	regs_buff[num++] = tmp;
2865	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2866	regs_buff[num++] = tmp;
2867	et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2868	regs_buff[num++] = tmp;
2869	et131x_mii_read(adapter, PHY_LED_1, &tmp);
2870	regs_buff[num++] = tmp;
2871	et131x_mii_read(adapter, PHY_LED_2, &tmp);
2872	regs_buff[num++] = tmp;
2873
2874	/* Global regs */
2875	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2876	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2877	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2878	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2879	regs_buff[num++] = readl(&aregs->global.pm_csr);
2880	regs_buff[num++] = adapter->stats.interrupt_status;
2881	regs_buff[num++] = readl(&aregs->global.int_mask);
2882	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2883	regs_buff[num++] = readl(&aregs->global.int_status_alias);
2884	regs_buff[num++] = readl(&aregs->global.sw_reset);
2885	regs_buff[num++] = readl(&aregs->global.slv_timer);
2886	regs_buff[num++] = readl(&aregs->global.msi_config);
2887	regs_buff[num++] = readl(&aregs->global.loopback);
2888	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2889
2890	/* TXDMA regs */
2891	regs_buff[num++] = readl(&aregs->txdma.csr);
2892	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2893	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2894	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2895	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2896	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2897	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2898	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2899	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2900	regs_buff[num++] = readl(&aregs->txdma.service_request);
2901	regs_buff[num++] = readl(&aregs->txdma.service_complete);
2902	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2903	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2904	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2905	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2906	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2907	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2908	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2909	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2910	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2911	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2912	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2913	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2914	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2915	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2916	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2917
2918	/* RXDMA regs */
2919	regs_buff[num++] = readl(&aregs->rxdma.csr);
2920	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2921	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2922	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2923	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2924	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2925	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2926	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2927	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2928	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2929	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2930	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2931	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2932	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2933	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2934	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2935	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2936	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2937	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2938	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2939	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2940	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2941	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2942	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2943	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2944	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2945	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2946	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2947	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2948}
2949
2950static void et131x_get_drvinfo(struct net_device *netdev,
2951			       struct ethtool_drvinfo *info)
2952{
2953	struct et131x_adapter *adapter = netdev_priv(netdev);
2954
2955	strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2956	strscpy(info->bus_info, pci_name(adapter->pdev),
 
2957		sizeof(info->bus_info));
2958}
2959
2960static const struct ethtool_ops et131x_ethtool_ops = {
2961	.get_drvinfo	= et131x_get_drvinfo,
2962	.get_regs_len	= et131x_get_regs_len,
2963	.get_regs	= et131x_get_regs,
2964	.get_link	= ethtool_op_get_link,
2965	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2966	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2967};
2968
2969/* et131x_hwaddr_init - set up the MAC Address */
2970static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2971{
2972	/* If have our default mac from init and no mac address from
2973	 * EEPROM then we need to generate the last octet and set it on the
2974	 * device
2975	 */
2976	if (is_zero_ether_addr(adapter->rom_addr)) {
2977		/* We need to randomly generate the last octet so we
2978		 * decrease our chances of setting the mac address to
2979		 * same as another one of our cards in the system
2980		 */
2981		get_random_bytes(&adapter->addr[5], 1);
2982		/* We have the default value in the register we are
2983		 * working with so we need to copy the current
2984		 * address into the permanent address
2985		 */
2986		ether_addr_copy(adapter->rom_addr, adapter->addr);
2987	} else {
2988		/* We do not have an override address, so set the
2989		 * current address to the permanent address and add
2990		 * it to the device
2991		 */
2992		ether_addr_copy(adapter->addr, adapter->rom_addr);
2993	}
2994}
2995
2996static int et131x_pci_init(struct et131x_adapter *adapter,
2997			   struct pci_dev *pdev)
2998{
2999	u16 max_payload;
3000	int i, rc;
3001
3002	rc = et131x_init_eeprom(adapter);
3003	if (rc < 0)
3004		goto out;
3005
3006	if (!pci_is_pcie(pdev)) {
3007		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3008		goto err_out;
3009	}
3010
3011	/* Program the Ack/Nak latency and replay timers */
3012	max_payload = pdev->pcie_mpss;
3013
3014	if (max_payload < 2) {
3015		static const u16 acknak[2] = { 0x76, 0xD0 };
3016		static const u16 replay[2] = { 0x1E0, 0x2ED };
3017
3018		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3019					  acknak[max_payload])) {
3020			dev_err(&pdev->dev,
3021				"Could not write PCI config space for ACK/NAK\n");
3022			goto err_out;
3023		}
3024		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3025					  replay[max_payload])) {
3026			dev_err(&pdev->dev,
3027				"Could not write PCI config space for Replay Timer\n");
3028			goto err_out;
3029		}
3030	}
3031
3032	/* l0s and l1 latency timers.  We are using default values.
3033	 * Representing 001 for L0s and 010 for L1
3034	 */
3035	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3036		dev_err(&pdev->dev,
3037			"Could not write PCI config space for Latency Timers\n");
3038		goto err_out;
3039	}
3040
3041	/* Change the max read size to 2k */
3042	if (pcie_set_readrq(pdev, 2048)) {
3043		dev_err(&pdev->dev,
3044			"Couldn't change PCI config space for Max read size\n");
3045		goto err_out;
3046	}
3047
3048	/* Get MAC address from config space if an eeprom exists, otherwise
3049	 * the MAC address there will not be valid
3050	 */
3051	if (!adapter->has_eeprom) {
3052		et131x_hwaddr_init(adapter);
3053		return 0;
3054	}
3055
3056	for (i = 0; i < ETH_ALEN; i++) {
3057		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3058					 adapter->rom_addr + i)) {
3059			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3060			goto err_out;
3061		}
3062	}
3063	ether_addr_copy(adapter->addr, adapter->rom_addr);
3064out:
3065	return rc;
3066err_out:
3067	rc = -EIO;
3068	goto out;
3069}
3070
3071/* et131x_error_timer_handler
3072 * @data: timer-specific variable; here a pointer to our adapter structure
3073 *
3074 * The routine called when the error timer expires, to track the number of
3075 * recurring errors.
3076 */
3077static void et131x_error_timer_handler(struct timer_list *t)
3078{
3079	struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3080	struct phy_device *phydev = adapter->netdev->phydev;
3081
3082	if (et1310_in_phy_coma(adapter)) {
3083		/* Bring the device immediately out of coma, to
3084		 * prevent it from sleeping indefinitely, this
3085		 * mechanism could be improved!
3086		 */
3087		et1310_disable_phy_coma(adapter);
3088		adapter->boot_coma = 20;
3089	} else {
3090		et1310_update_macstat_host_counters(adapter);
3091	}
3092
3093	if (!phydev->link && adapter->boot_coma < 11)
3094		adapter->boot_coma++;
3095
3096	if (adapter->boot_coma == 10) {
3097		if (!phydev->link) {
3098			if (!et1310_in_phy_coma(adapter)) {
3099				/* NOTE - This was originally a 'sync with
3100				 *  interrupt'. How to do that under Linux?
3101				 */
3102				et131x_enable_interrupts(adapter);
3103				et1310_enable_phy_coma(adapter);
3104			}
3105		}
3106	}
3107
3108	/* This is a periodic timer, so reschedule */
3109	mod_timer(&adapter->error_timer, jiffies +
3110		  msecs_to_jiffies(TX_ERROR_PERIOD));
3111}
3112
3113static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3114{
3115	et131x_tx_dma_memory_free(adapter);
3116	et131x_rx_dma_memory_free(adapter);
3117}
3118
3119static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3120{
3121	int status;
3122
3123	status = et131x_tx_dma_memory_alloc(adapter);
3124	if (status) {
3125		dev_err(&adapter->pdev->dev,
3126			"et131x_tx_dma_memory_alloc FAILED\n");
3127		et131x_tx_dma_memory_free(adapter);
3128		return status;
3129	}
3130
3131	status = et131x_rx_dma_memory_alloc(adapter);
3132	if (status) {
3133		dev_err(&adapter->pdev->dev,
3134			"et131x_rx_dma_memory_alloc FAILED\n");
3135		et131x_adapter_memory_free(adapter);
3136		return status;
3137	}
3138
3139	status = et131x_init_recv(adapter);
3140	if (status) {
3141		dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3142		et131x_adapter_memory_free(adapter);
3143	}
3144	return status;
3145}
3146
3147static void et131x_adjust_link(struct net_device *netdev)
3148{
3149	struct et131x_adapter *adapter = netdev_priv(netdev);
3150	struct  phy_device *phydev = netdev->phydev;
3151
3152	if (!phydev)
3153		return;
3154	if (phydev->link == adapter->link)
3155		return;
3156
3157	/* Check to see if we are in coma mode and if
3158	 * so, disable it because we will not be able
3159	 * to read PHY values until we are out.
3160	 */
3161	if (et1310_in_phy_coma(adapter))
3162		et1310_disable_phy_coma(adapter);
3163
3164	adapter->link = phydev->link;
3165	phy_print_status(phydev);
3166
3167	if (phydev->link) {
3168		adapter->boot_coma = 20;
3169		if (phydev->speed == SPEED_10) {
3170			u16 register18;
3171
3172			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3173					&register18);
3174			et131x_mii_write(adapter, phydev->mdio.addr,
3175					 PHY_MPHY_CONTROL_REG,
3176					 register18 | 0x4);
3177			et131x_mii_write(adapter, phydev->mdio.addr,
3178					 PHY_INDEX_REG, register18 | 0x8402);
3179			et131x_mii_write(adapter, phydev->mdio.addr,
3180					 PHY_DATA_REG, register18 | 511);
3181			et131x_mii_write(adapter, phydev->mdio.addr,
3182					 PHY_MPHY_CONTROL_REG, register18);
3183		}
3184
3185		et1310_config_flow_control(adapter);
3186
3187		if (phydev->speed == SPEED_1000 &&
3188		    adapter->registry_jumbo_packet > 2048) {
3189			u16 reg;
3190
3191			et131x_mii_read(adapter, PHY_CONFIG, &reg);
3192			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3193			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3194			et131x_mii_write(adapter, phydev->mdio.addr,
3195					 PHY_CONFIG, reg);
3196		}
3197
3198		et131x_set_rx_dma_timer(adapter);
3199		et1310_config_mac_regs2(adapter);
3200	} else {
3201		adapter->boot_coma = 0;
3202
3203		if (phydev->speed == SPEED_10) {
3204			u16 register18;
3205
3206			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3207					&register18);
3208			et131x_mii_write(adapter, phydev->mdio.addr,
3209					 PHY_MPHY_CONTROL_REG,
3210					 register18 | 0x4);
3211			et131x_mii_write(adapter, phydev->mdio.addr,
3212					 PHY_INDEX_REG, register18 | 0x8402);
3213			et131x_mii_write(adapter, phydev->mdio.addr,
3214					 PHY_DATA_REG, register18 | 511);
3215			et131x_mii_write(adapter, phydev->mdio.addr,
3216					 PHY_MPHY_CONTROL_REG, register18);
3217		}
3218
3219		et131x_free_busy_send_packets(adapter);
3220		et131x_init_send(adapter);
3221
3222		/* Bring the device back to the state it was during
3223		 * init prior to autonegotiation being complete. This
3224		 * way, when we get the auto-neg complete interrupt,
3225		 * we can complete init by calling config_mac_regs2.
3226		 */
3227		et131x_soft_reset(adapter);
3228
3229		et131x_adapter_setup(adapter);
3230
3231		et131x_disable_txrx(netdev);
3232		et131x_enable_txrx(netdev);
3233	}
3234}
3235
3236static int et131x_mii_probe(struct net_device *netdev)
3237{
3238	struct et131x_adapter *adapter = netdev_priv(netdev);
3239	struct  phy_device *phydev = NULL;
3240
3241	phydev = phy_find_first(adapter->mii_bus);
3242	if (!phydev) {
3243		dev_err(&adapter->pdev->dev, "no PHY found\n");
3244		return -ENODEV;
3245	}
3246
3247	phydev = phy_connect(netdev, phydev_name(phydev),
3248			     &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3249
3250	if (IS_ERR(phydev)) {
3251		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3252		return PTR_ERR(phydev);
3253	}
3254
3255	phy_set_max_speed(phydev, SPEED_100);
 
 
 
 
 
 
3256
3257	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3258		phy_set_max_speed(phydev, SPEED_1000);
 
3259
 
3260	phydev->autoneg = AUTONEG_ENABLE;
3261
3262	phy_attached_info(phydev);
3263
3264	return 0;
3265}
3266
3267static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3268						  struct pci_dev *pdev)
3269{
3270	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3271
3272	struct et131x_adapter *adapter;
3273
3274	adapter = netdev_priv(netdev);
3275	adapter->pdev = pci_dev_get(pdev);
3276	adapter->netdev = netdev;
3277
3278	spin_lock_init(&adapter->tcb_send_qlock);
3279	spin_lock_init(&adapter->tcb_ready_qlock);
3280	spin_lock_init(&adapter->rcv_lock);
3281
3282	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
3283
3284	ether_addr_copy(adapter->addr, default_mac);
3285
3286	return adapter;
3287}
3288
3289static void et131x_pci_remove(struct pci_dev *pdev)
3290{
3291	struct net_device *netdev = pci_get_drvdata(pdev);
3292	struct et131x_adapter *adapter = netdev_priv(netdev);
3293
3294	unregister_netdev(netdev);
3295	netif_napi_del(&adapter->napi);
3296	phy_disconnect(netdev->phydev);
3297	mdiobus_unregister(adapter->mii_bus);
3298	mdiobus_free(adapter->mii_bus);
3299
3300	et131x_adapter_memory_free(adapter);
3301	iounmap(adapter->regs);
3302	pci_dev_put(pdev);
3303
3304	free_netdev(netdev);
3305	pci_release_regions(pdev);
3306	pci_disable_device(pdev);
3307}
3308
3309static void et131x_up(struct net_device *netdev)
3310{
3311	et131x_enable_txrx(netdev);
3312	phy_start(netdev->phydev);
3313}
3314
3315static void et131x_down(struct net_device *netdev)
3316{
3317	/* Save the timestamp for the TX watchdog, prevent a timeout */
3318	netif_trans_update(netdev);
3319
3320	phy_stop(netdev->phydev);
3321	et131x_disable_txrx(netdev);
3322}
3323
3324#ifdef CONFIG_PM_SLEEP
3325static int et131x_suspend(struct device *dev)
3326{
3327	struct pci_dev *pdev = to_pci_dev(dev);
3328	struct net_device *netdev = pci_get_drvdata(pdev);
3329
3330	if (netif_running(netdev)) {
3331		netif_device_detach(netdev);
3332		et131x_down(netdev);
3333		pci_save_state(pdev);
3334	}
3335
3336	return 0;
3337}
3338
3339static int et131x_resume(struct device *dev)
3340{
3341	struct pci_dev *pdev = to_pci_dev(dev);
3342	struct net_device *netdev = pci_get_drvdata(pdev);
3343
3344	if (netif_running(netdev)) {
3345		pci_restore_state(pdev);
3346		et131x_up(netdev);
3347		netif_device_attach(netdev);
3348	}
3349
3350	return 0;
3351}
3352#endif
3353
3354static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3355
3356static irqreturn_t et131x_isr(int irq, void *dev_id)
3357{
3358	bool handled = true;
3359	bool enable_interrupts = true;
3360	struct net_device *netdev = dev_id;
3361	struct et131x_adapter *adapter = netdev_priv(netdev);
3362	struct address_map __iomem *iomem = adapter->regs;
3363	struct rx_ring *rx_ring = &adapter->rx_ring;
3364	struct tx_ring *tx_ring = &adapter->tx_ring;
3365	u32 status;
3366
3367	if (!netif_device_present(netdev)) {
3368		handled = false;
3369		enable_interrupts = false;
3370		goto out;
3371	}
3372
3373	et131x_disable_interrupts(adapter);
3374
3375	status = readl(&adapter->regs->global.int_status);
3376
3377	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3378		status &= ~INT_MASK_ENABLE;
3379	else
3380		status &= ~INT_MASK_ENABLE_NO_FLOW;
3381
3382	/* Make sure this is our interrupt */
3383	if (!status) {
3384		handled = false;
3385		et131x_enable_interrupts(adapter);
3386		goto out;
3387	}
3388
3389	/* This is our interrupt, so process accordingly */
3390	if (status & ET_INTR_WATCHDOG) {
3391		struct tcb *tcb = tx_ring->send_head;
3392
3393		if (tcb)
3394			if (++tcb->stale > 1)
3395				status |= ET_INTR_TXDMA_ISR;
3396
3397		if (rx_ring->unfinished_receives)
3398			status |= ET_INTR_RXDMA_XFR_DONE;
3399		else if (tcb == NULL)
3400			writel(0, &adapter->regs->global.watchdog_timer);
3401
3402		status &= ~ET_INTR_WATCHDOG;
3403	}
3404
3405	if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3406		enable_interrupts = false;
3407		napi_schedule(&adapter->napi);
3408	}
3409
3410	status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3411
3412	if (!status)
3413		goto out;
3414
3415	if (status & ET_INTR_TXDMA_ERR) {
3416		/* Following read also clears the register (COR) */
3417		u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3418
3419		dev_warn(&adapter->pdev->dev,
3420			 "TXDMA_ERR interrupt, error = %d\n",
3421			 txdma_err);
3422	}
3423
3424	if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3425		/* This indicates the number of unused buffers in RXDMA free
3426		 * buffer ring 0 is <= the limit you programmed. Free buffer
3427		 * resources need to be returned.  Free buffers are consumed as
3428		 * packets are passed from the network to the host. The host
3429		 * becomes aware of the packets from the contents of the packet
3430		 * status ring. This ring is queried when the packet done
3431		 * interrupt occurs. Packets are then passed to the OS. When
3432		 * the OS is done with the packets the resources can be
3433		 * returned to the ET1310 for re-use. This interrupt is one
3434		 * method of returning resources.
3435		 */
3436
3437		/*  If the user has flow control on, then we will
3438		 * send a pause packet, otherwise just exit
3439		 */
3440		if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
 
 
3441			/* Tell the device to send a pause packet via the back
3442			 * pressure register (bp req and bp xon/xoff)
3443			 */
 
3444			if (!et1310_in_phy_coma(adapter))
3445				writel(3, &iomem->txmac.bp_ctrl);
3446		}
3447	}
3448
3449	/* Handle Packet Status Ring Low Interrupt */
3450	if (status & ET_INTR_RXDMA_STAT_LOW) {
3451		/* Same idea as with the two Free Buffer Rings. Packets going
3452		 * from the network to the host each consume a free buffer
3453		 * resource and a packet status resource. These resources are
3454		 * passed to the OS. When the OS is done with the resources,
3455		 * they need to be returned to the ET1310. This is one method
3456		 * of returning the resources.
3457		 */
3458	}
3459
3460	if (status & ET_INTR_RXDMA_ERR) {
3461		/* The rxdma_error interrupt is sent when a time-out on a
3462		 * request issued by the JAGCore has occurred or a completion is
3463		 * returned with an un-successful status. In both cases the
3464		 * request is considered complete. The JAGCore will
3465		 * automatically re-try the request in question. Normally
3466		 * information on events like these are sent to the host using
3467		 * the "Advanced Error Reporting" capability. This interrupt is
3468		 * another way of getting similar information. The only thing
3469		 * required is to clear the interrupt by reading the ISR in the
3470		 * global resources. The JAGCore will do a re-try on the
3471		 * request. Normally you should never see this interrupt. If
3472		 * you start to see this interrupt occurring frequently then
3473		 * something bad has occurred. A reset might be the thing to do.
3474		 */
3475		/* TRAP();*/
3476
3477		dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3478			 readl(&iomem->txmac.tx_test));
3479	}
3480
3481	/* Handle the Wake on LAN Event */
3482	if (status & ET_INTR_WOL) {
3483		/* This is a secondary interrupt for wake on LAN. The driver
3484		 * should never see this, if it does, something serious is
3485		 * wrong.
3486		 */
3487		dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3488	}
3489
3490	if (status & ET_INTR_TXMAC) {
3491		u32 err = readl(&iomem->txmac.err);
3492
3493		/* When any of the errors occur and TXMAC generates an
3494		 * interrupt to report these errors, it usually means that
3495		 * TXMAC has detected an error in the data stream retrieved
3496		 * from the on-chip Tx Q. All of these errors are catastrophic
3497		 * and TXMAC won't be able to recover data when these errors
3498		 * occur. In a nutshell, the whole Tx path will have to be reset
3499		 * and re-configured afterwards.
3500		 */
3501		dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3502			 err);
3503
3504		/* If we are debugging, we want to see this error, otherwise we
3505		 * just want the device to be reset and continue
3506		 */
3507	}
3508
3509	if (status & ET_INTR_RXMAC) {
3510		/* These interrupts are catastrophic to the device, what we need
3511		 * to do is disable the interrupts and set the flag to cause us
3512		 * to reset so we can solve this issue.
3513		 */
3514		dev_warn(&adapter->pdev->dev,
3515			 "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3516			 readl(&iomem->rxmac.err_reg));
3517
3518		dev_warn(&adapter->pdev->dev,
3519			 "Enable 0x%08x, Diag 0x%08x\n",
3520			 readl(&iomem->rxmac.ctrl),
3521			 readl(&iomem->rxmac.rxq_diag));
3522
3523		/* If we are debugging, we want to see this error, otherwise we
3524		 * just want the device to be reset and continue
3525		 */
3526	}
3527
3528	if (status & ET_INTR_MAC_STAT) {
3529		/* This means at least one of the un-masked counters in the
3530		 * MAC_STAT block has rolled over. Use this to maintain the top,
3531		 * software managed bits of the counter(s).
3532		 */
3533		et1310_handle_macstat_interrupt(adapter);
3534	}
3535
3536	if (status & ET_INTR_SLV_TIMEOUT) {
3537		/* This means a timeout has occurred on a read or write request
3538		 * to one of the JAGCore registers. The Global Resources block
3539		 * has terminated the request and on a read request, returned a
3540		 * "fake" value. The most likely reasons are: Bad Address or the
3541		 * addressed module is in a power-down state and can't respond.
3542		 */
3543	}
3544
3545out:
3546	if (enable_interrupts)
3547		et131x_enable_interrupts(adapter);
3548
3549	return IRQ_RETVAL(handled);
3550}
3551
3552static int et131x_poll(struct napi_struct *napi, int budget)
3553{
3554	struct et131x_adapter *adapter =
3555		container_of(napi, struct et131x_adapter, napi);
3556	int work_done = et131x_handle_recv_pkts(adapter, budget);
3557
3558	et131x_handle_send_pkts(adapter);
3559
3560	if (work_done < budget) {
3561		napi_complete_done(&adapter->napi, work_done);
3562		et131x_enable_interrupts(adapter);
3563	}
3564
3565	return work_done;
3566}
3567
3568/* et131x_stats - Return the current device statistics  */
3569static struct net_device_stats *et131x_stats(struct net_device *netdev)
3570{
3571	struct et131x_adapter *adapter = netdev_priv(netdev);
3572	struct net_device_stats *stats = &adapter->netdev->stats;
3573	struct ce_stats *devstat = &adapter->stats;
3574
3575	stats->rx_errors = devstat->rx_length_errs +
3576			   devstat->rx_align_errs +
3577			   devstat->rx_crc_errs +
3578			   devstat->rx_code_violations +
3579			   devstat->rx_other_errs;
3580	stats->tx_errors = devstat->tx_max_pkt_errs;
3581	stats->multicast = devstat->multicast_pkts_rcvd;
3582	stats->collisions = devstat->tx_collisions;
3583
3584	stats->rx_length_errors = devstat->rx_length_errs;
3585	stats->rx_over_errors = devstat->rx_overflows;
3586	stats->rx_crc_errors = devstat->rx_crc_errs;
3587	stats->rx_dropped = devstat->rcvd_pkts_dropped;
3588
3589	/* NOTE: Not used, can't find analogous statistics */
3590	/* stats->rx_frame_errors     = devstat->; */
3591	/* stats->rx_fifo_errors      = devstat->; */
3592	/* stats->rx_missed_errors    = devstat->; */
3593
3594	/* stats->tx_aborted_errors   = devstat->; */
3595	/* stats->tx_carrier_errors   = devstat->; */
3596	/* stats->tx_fifo_errors      = devstat->; */
3597	/* stats->tx_heartbeat_errors = devstat->; */
3598	/* stats->tx_window_errors    = devstat->; */
3599	return stats;
3600}
3601
3602static int et131x_open(struct net_device *netdev)
3603{
3604	struct et131x_adapter *adapter = netdev_priv(netdev);
3605	struct pci_dev *pdev = adapter->pdev;
3606	unsigned int irq = pdev->irq;
3607	int result;
3608
3609	/* Start the timer to track NIC errors */
3610	timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3611	adapter->error_timer.expires = jiffies +
3612		msecs_to_jiffies(TX_ERROR_PERIOD);
 
 
3613	add_timer(&adapter->error_timer);
3614
3615	result = request_irq(irq, et131x_isr,
3616			     IRQF_SHARED, netdev->name, netdev);
3617	if (result) {
3618		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3619		return result;
3620	}
3621
3622	adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3623
3624	napi_enable(&adapter->napi);
3625
3626	et131x_up(netdev);
3627
3628	return result;
3629}
3630
3631static int et131x_close(struct net_device *netdev)
3632{
3633	struct et131x_adapter *adapter = netdev_priv(netdev);
3634
3635	et131x_down(netdev);
3636	napi_disable(&adapter->napi);
3637
3638	adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3639	free_irq(adapter->pdev->irq, netdev);
3640
3641	/* Stop the error timer */
3642	return del_timer_sync(&adapter->error_timer);
3643}
3644
 
 
 
 
 
 
 
 
 
3645/* et131x_set_packet_filter - Configures the Rx Packet filtering */
3646static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3647{
3648	int filter = adapter->packet_filter;
3649	u32 ctrl;
3650	u32 pf_ctrl;
3651
3652	ctrl = readl(&adapter->regs->rxmac.ctrl);
3653	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3654
3655	/* Default to disabled packet filtering */
3656	ctrl |= 0x04;
3657
3658	/* Set us to be in promiscuous mode so we receive everything, this
3659	 * is also true when we get a packet filter of 0
3660	 */
3661	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3662		pf_ctrl &= ~7;	/* Clear filter bits */
3663	else {
3664		/* Set us up with Multicast packet filtering.  Three cases are
3665		 * possible - (1) we have a multi-cast list, (2) we receive ALL
3666		 * multicast entries or (3) we receive none.
3667		 */
3668		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3669			pf_ctrl &= ~2;	/* Multicast filter bit */
3670		else {
3671			et1310_setup_device_for_multicast(adapter);
3672			pf_ctrl |= 2;
3673			ctrl &= ~0x04;
3674		}
3675
3676		/* Set us up with Unicast packet filtering */
3677		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3678			et1310_setup_device_for_unicast(adapter);
3679			pf_ctrl |= 4;
3680			ctrl &= ~0x04;
3681		}
3682
3683		/* Set us up with Broadcast packet filtering */
3684		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3685			pf_ctrl |= 1;	/* Broadcast filter bit */
3686			ctrl &= ~0x04;
3687		} else {
3688			pf_ctrl &= ~1;
3689		}
3690
3691		/* Setup the receive mac configuration registers - Packet
3692		 * Filter control + the enable / disable for packet filter
3693		 * in the control reg.
3694		 */
3695		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3696		writel(ctrl, &adapter->regs->rxmac.ctrl);
3697	}
3698	return 0;
3699}
3700
3701static void et131x_multicast(struct net_device *netdev)
3702{
3703	struct et131x_adapter *adapter = netdev_priv(netdev);
3704	int packet_filter;
3705	struct netdev_hw_addr *ha;
3706	int i;
3707
3708	/* Before we modify the platform-independent filter flags, store them
3709	 * locally. This allows us to determine if anything's changed and if
3710	 * we even need to bother the hardware
3711	 */
3712	packet_filter = adapter->packet_filter;
3713
3714	/* Clear the 'multicast' flag locally; because we only have a single
3715	 * flag to check multicast, and multiple multicast addresses can be
3716	 * set, this is the easiest way to determine if more than one
3717	 * multicast address is being set.
3718	 */
3719	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3720
3721	/* Check the net_device flags and set the device independent flags
3722	 * accordingly
3723	 */
3724	if (netdev->flags & IFF_PROMISC)
3725		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3726	else
3727		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3728
3729	if ((netdev->flags & IFF_ALLMULTI) ||
3730	    (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3731		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3732
3733	if (netdev_mc_count(netdev) < 1) {
3734		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3735		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3736	} else {
3737		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3738	}
3739
3740	/* Set values in the private adapter struct */
3741	i = 0;
3742	netdev_for_each_mc_addr(ha, netdev) {
3743		if (i == NIC_MAX_MCAST_LIST)
3744			break;
3745		ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3746	}
3747	adapter->multicast_addr_count = i;
3748
3749	/* Are the new flags different from the previous ones? If not, then no
3750	 * action is required
3751	 *
3752	 * NOTE - This block will always update the multicast_list with the
3753	 *        hardware, even if the addresses aren't the same.
3754	 */
3755	if (packet_filter != adapter->packet_filter)
3756		et131x_set_packet_filter(adapter);
3757}
3758
3759static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3760{
3761	struct et131x_adapter *adapter = netdev_priv(netdev);
3762	struct tx_ring *tx_ring = &adapter->tx_ring;
3763
3764	/* This driver does not support TSO, it is very unlikely
3765	 * this condition is true.
3766	 */
3767	if (unlikely(skb_shinfo(skb)->nr_frags > MAX_TX_DESC_PER_PKT - 2)) {
3768		if (skb_linearize(skb))
3769			goto drop_err;
3770	}
3771	/* stop the queue if it's getting full */
3772	if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3773		netif_stop_queue(netdev);
3774
3775	/* Save the timestamp for the TX timeout watchdog */
3776	netif_trans_update(netdev);
3777
3778	/* TCB is not available */
3779	if (tx_ring->used >= NUM_TCB)
3780		goto drop_err;
3781
3782	if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3783	    !netif_carrier_ok(netdev))
3784		goto drop_err;
3785
3786	if (send_packet(skb, adapter))
3787		goto drop_err;
3788
3789	return NETDEV_TX_OK;
3790
3791drop_err:
3792	dev_kfree_skb_any(skb);
3793	adapter->netdev->stats.tx_dropped++;
3794	return NETDEV_TX_OK;
3795}
3796
3797/* et131x_tx_timeout - Timeout handler
3798 *
3799 * The handler called when a Tx request times out. The timeout period is
3800 * specified by the 'tx_timeo" element in the net_device structure (see
3801 * et131x_alloc_device() to see how this value is set).
3802 */
3803static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3804{
3805	struct et131x_adapter *adapter = netdev_priv(netdev);
3806	struct tx_ring *tx_ring = &adapter->tx_ring;
3807	struct tcb *tcb;
3808	unsigned long flags;
3809
3810	/* If the device is closed, ignore the timeout */
3811	if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3812		return;
3813
3814	/* Any nonrecoverable hardware error?
3815	 * Checks adapter->flags for any failure in phy reading
3816	 */
3817	if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3818		return;
3819
3820	/* Hardware failure? */
3821	if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3822		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3823		return;
3824	}
3825
3826	/* Is send stuck? */
3827	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3828	tcb = tx_ring->send_head;
3829	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3830
3831	if (tcb) {
3832		tcb->count++;
3833
3834		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3835			dev_warn(&adapter->pdev->dev,
3836				 "Send stuck - reset. tcb->WrIndex %x\n",
3837				 tcb->index);
3838
3839			adapter->netdev->stats.tx_errors++;
3840
3841			/* perform reset of tx/rx */
3842			et131x_disable_txrx(netdev);
3843			et131x_enable_txrx(netdev);
3844		}
3845	}
3846}
3847
3848static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3849{
3850	int result = 0;
3851	struct et131x_adapter *adapter = netdev_priv(netdev);
3852
3853	et131x_disable_txrx(netdev);
3854
3855	netdev->mtu = new_mtu;
3856
3857	et131x_adapter_memory_free(adapter);
3858
3859	/* Set the config parameter for Jumbo Packet support */
3860	adapter->registry_jumbo_packet = new_mtu + 14;
3861	et131x_soft_reset(adapter);
3862
3863	result = et131x_adapter_memory_alloc(adapter);
3864	if (result != 0) {
3865		dev_warn(&adapter->pdev->dev,
3866			 "Change MTU failed; couldn't re-alloc DMA memory\n");
3867		return result;
3868	}
3869
3870	et131x_init_send(adapter);
3871	et131x_hwaddr_init(adapter);
3872	eth_hw_addr_set(netdev, adapter->addr);
3873
3874	/* Init the device with the new settings */
3875	et131x_adapter_setup(adapter);
3876	et131x_enable_txrx(netdev);
3877
3878	return result;
3879}
3880
3881static const struct net_device_ops et131x_netdev_ops = {
3882	.ndo_open		= et131x_open,
3883	.ndo_stop		= et131x_close,
3884	.ndo_start_xmit		= et131x_tx,
3885	.ndo_set_rx_mode	= et131x_multicast,
3886	.ndo_tx_timeout		= et131x_tx_timeout,
3887	.ndo_change_mtu		= et131x_change_mtu,
3888	.ndo_set_mac_address	= eth_mac_addr,
3889	.ndo_validate_addr	= eth_validate_addr,
3890	.ndo_get_stats		= et131x_stats,
3891	.ndo_eth_ioctl		= phy_do_ioctl,
3892};
3893
3894static int et131x_pci_setup(struct pci_dev *pdev,
3895			    const struct pci_device_id *ent)
3896{
3897	struct net_device *netdev;
3898	struct et131x_adapter *adapter;
3899	int rc;
3900
3901	rc = pci_enable_device(pdev);
3902	if (rc < 0) {
3903		dev_err(&pdev->dev, "pci_enable_device() failed\n");
3904		goto out;
3905	}
3906
3907	/* Perform some basic PCI checks */
3908	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3909		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3910		rc = -ENODEV;
3911		goto err_disable;
3912	}
3913
3914	rc = pci_request_regions(pdev, DRIVER_NAME);
3915	if (rc < 0) {
3916		dev_err(&pdev->dev, "Can't get PCI resources\n");
3917		goto err_disable;
3918	}
3919
3920	pci_set_master(pdev);
3921
3922	/* Check the DMA addressing support of this device */
3923	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3924	if (rc) {
3925		dev_err(&pdev->dev, "No usable DMA addressing method\n");
 
3926		goto err_release_res;
3927	}
3928
3929	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3930	if (!netdev) {
3931		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3932		rc = -ENOMEM;
3933		goto err_release_res;
3934	}
3935
3936	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3937	netdev->netdev_ops     = &et131x_netdev_ops;
3938	netdev->min_mtu        = ET131X_MIN_MTU;
3939	netdev->max_mtu        = ET131X_MAX_MTU;
3940
3941	SET_NETDEV_DEV(netdev, &pdev->dev);
3942	netdev->ethtool_ops = &et131x_ethtool_ops;
3943
3944	adapter = et131x_adapter_init(netdev, pdev);
3945
3946	rc = et131x_pci_init(adapter, pdev);
3947	if (rc < 0)
3948		goto err_free_dev;
3949
3950	/* Map the bus-relative registers to system virtual memory */
3951	adapter->regs = pci_ioremap_bar(pdev, 0);
3952	if (!adapter->regs) {
3953		dev_err(&pdev->dev, "Cannot map device registers\n");
3954		rc = -ENOMEM;
3955		goto err_free_dev;
3956	}
3957
3958	/* If Phy COMA mode was enabled when we went down, disable it here. */
3959	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3960
3961	et131x_soft_reset(adapter);
3962	et131x_disable_interrupts(adapter);
3963
3964	rc = et131x_adapter_memory_alloc(adapter);
3965	if (rc < 0) {
3966		dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3967		goto err_iounmap;
3968	}
3969
3970	et131x_init_send(adapter);
3971
3972	netif_napi_add(netdev, &adapter->napi, et131x_poll);
3973
3974	eth_hw_addr_set(netdev, adapter->addr);
3975
3976	rc = -ENOMEM;
3977
3978	adapter->mii_bus = mdiobus_alloc();
3979	if (!adapter->mii_bus) {
3980		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3981		goto err_mem_free;
3982	}
3983
3984	adapter->mii_bus->name = "et131x_eth_mii";
3985	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(adapter->pdev));
 
3986	adapter->mii_bus->priv = netdev;
3987	adapter->mii_bus->read = et131x_mdio_read;
3988	adapter->mii_bus->write = et131x_mdio_write;
3989
3990	rc = mdiobus_register(adapter->mii_bus);
3991	if (rc < 0) {
3992		dev_err(&pdev->dev, "failed to register MII bus\n");
3993		goto err_mdio_free;
3994	}
3995
3996	rc = et131x_mii_probe(netdev);
3997	if (rc < 0) {
3998		dev_err(&pdev->dev, "failed to probe MII bus\n");
3999		goto err_mdio_unregister;
4000	}
4001
4002	et131x_adapter_setup(adapter);
4003
4004	/* Init variable for counting how long we do not have link status */
4005	adapter->boot_coma = 0;
4006	et1310_disable_phy_coma(adapter);
4007
4008	/* We can enable interrupts now
4009	 *
4010	 *  NOTE - Because registration of interrupt handler is done in the
4011	 *         device's open(), defer enabling device interrupts to that
4012	 *         point
4013	 */
4014
4015	rc = register_netdev(netdev);
4016	if (rc < 0) {
4017		dev_err(&pdev->dev, "register_netdev() failed\n");
4018		goto err_phy_disconnect;
4019	}
4020
4021	/* Register the net_device struct with the PCI subsystem. Save a copy
4022	 * of the PCI config space for this device now that the device has
4023	 * been initialized, just in case it needs to be quickly restored.
4024	 */
4025	pci_set_drvdata(pdev, netdev);
4026out:
4027	return rc;
4028
4029err_phy_disconnect:
4030	phy_disconnect(netdev->phydev);
4031err_mdio_unregister:
4032	mdiobus_unregister(adapter->mii_bus);
4033err_mdio_free:
4034	mdiobus_free(adapter->mii_bus);
4035err_mem_free:
4036	et131x_adapter_memory_free(adapter);
4037err_iounmap:
4038	iounmap(adapter->regs);
4039err_free_dev:
4040	pci_dev_put(pdev);
4041	free_netdev(netdev);
4042err_release_res:
4043	pci_release_regions(pdev);
4044err_disable:
4045	pci_disable_device(pdev);
4046	goto out;
4047}
4048
4049static const struct pci_device_id et131x_pci_table[] = {
4050	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4051	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4052	{ 0,}
4053};
4054MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4055
4056static struct pci_driver et131x_driver = {
4057	.name		= DRIVER_NAME,
4058	.id_table	= et131x_pci_table,
4059	.probe		= et131x_pci_setup,
4060	.remove		= et131x_pci_remove,
4061	.driver.pm	= &et131x_pm_ops,
4062};
4063
4064module_pci_driver(et131x_driver);
v4.10.11
   1/* Agere Systems Inc.
   2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   3 *
   4 * Copyright © 2005 Agere Systems Inc.
   5 * All rights reserved.
   6 *   http://www.agere.com
   7 *
   8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
   9 *
  10 *------------------------------------------------------------------------------
  11 *
  12 * SOFTWARE LICENSE
  13 *
  14 * This software is provided subject to the following terms and conditions,
  15 * which you should read carefully before using the software.  Using this
  16 * software indicates your acceptance of these terms and conditions.  If you do
  17 * not agree with these terms and conditions, do not use the software.
  18 *
  19 * Copyright © 2005 Agere Systems Inc.
  20 * All rights reserved.
  21 *
  22 * Redistribution and use in source or binary forms, with or without
  23 * modifications, are permitted provided that the following conditions are met:
  24 *
  25 * . Redistributions of source code must retain the above copyright notice, this
  26 *    list of conditions and the following Disclaimer as comments in the code as
  27 *    well as in the documentation and/or other materials provided with the
  28 *    distribution.
  29 *
  30 * . Redistributions in binary form must reproduce the above copyright notice,
  31 *    this list of conditions and the following Disclaimer in the documentation
  32 *    and/or other materials provided with the distribution.
  33 *
  34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  35 *    may be used to endorse or promote products derived from this software
  36 *    without specific prior written permission.
  37 *
  38 * Disclaimer
  39 *
  40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  51 * DAMAGE.
  52 */
  53
  54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  55
  56#include <linux/pci.h>
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/kernel.h>
  60
  61#include <linux/sched.h>
  62#include <linux/ptrace.h>
  63#include <linux/slab.h>
  64#include <linux/ctype.h>
  65#include <linux/string.h>
  66#include <linux/timer.h>
  67#include <linux/interrupt.h>
  68#include <linux/in.h>
  69#include <linux/delay.h>
  70#include <linux/bitops.h>
  71#include <linux/io.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/if_arp.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/random.h>
  80#include <linux/phy.h>
  81
  82#include "et131x.h"
  83
  84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  86MODULE_LICENSE("Dual BSD/GPL");
  87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
  88
  89/* EEPROM defines */
  90#define MAX_NUM_REGISTER_POLLS          1000
  91#define MAX_NUM_WRITE_RETRIES           2
  92
  93/* MAC defines */
  94#define COUNTER_WRAP_16_BIT 0x10000
  95#define COUNTER_WRAP_12_BIT 0x1000
  96
  97/* PCI defines */
  98#define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
  99#define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
 100
 101/* ISR defines */
 102/* For interrupts, normal running is:
 103 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 104 *       watchdog_interrupt & txdma_xfer_done
 105 *
 106 * In both cases, when flow control is enabled for either Tx or bi-direction,
 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 108 * buffer rings are running low.
 109 */
 110#define INT_MASK_DISABLE            0xffffffff
 111
 112/* NOTE: Masking out MAC_STAT Interrupt for now...
 113 * #define INT_MASK_ENABLE             0xfff6bf17
 114 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 115 */
 116#define INT_MASK_ENABLE             0xfffebf17
 117#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 118
 119/* General defines */
 120/* Packet and header sizes */
 121#define NIC_MIN_PACKET_SIZE	60
 122
 123/* Multicast list size */
 124#define NIC_MAX_MCAST_LIST	128
 125
 126/* Supported Filters */
 127#define ET131X_PACKET_TYPE_DIRECTED		0x0001
 128#define ET131X_PACKET_TYPE_MULTICAST		0x0002
 129#define ET131X_PACKET_TYPE_BROADCAST		0x0004
 130#define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
 131#define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
 132
 133/* Tx Timeout */
 134#define ET131X_TX_TIMEOUT	(1 * HZ)
 135#define NIC_SEND_HANG_THRESHOLD	0
 136
 137/* MP_ADAPTER flags */
 138#define FMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
 139
 140/* MP_SHARED flags */
 141#define FMP_ADAPTER_LOWER_POWER		0x00200000
 142
 143#define FMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
 144#define FMP_ADAPTER_HARDWARE_ERROR	0x04000000
 145
 146#define FMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
 147
 148/* Some offsets in PCI config space that are actually used. */
 149#define ET1310_PCI_MAC_ADDRESS		0xA4
 150#define ET1310_PCI_EEPROM_STATUS	0xB2
 151#define ET1310_PCI_ACK_NACK		0xC0
 152#define ET1310_PCI_REPLAY		0xC2
 153#define ET1310_PCI_L0L1LATENCY		0xCF
 154
 155/* PCI Product IDs */
 156#define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
 157#define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
 158
 159/* Define order of magnitude converter */
 160#define NANO_IN_A_MICRO	1000
 161
 162#define PARM_RX_NUM_BUFS_DEF    4
 163#define PARM_RX_TIME_INT_DEF    10
 164#define PARM_RX_MEM_END_DEF     0x2bc
 165#define PARM_TX_TIME_INT_DEF    40
 166#define PARM_TX_NUM_BUFS_DEF    4
 167#define PARM_DMA_CACHE_DEF      0
 168
 169/* RX defines */
 170#define FBR_CHUNKS		32
 171#define MAX_DESC_PER_RING_RX	1024
 172
 173/* number of RFDs - default and min */
 174#define RFD_LOW_WATER_MARK	40
 175#define NIC_DEFAULT_NUM_RFD	1024
 176#define NUM_FBRS		2
 177
 178#define MAX_PACKETS_HANDLED	256
 179#define ET131X_MIN_MTU		64
 180#define ET131X_MAX_MTU		9216
 181
 182#define ALCATEL_MULTICAST_PKT	0x01000000
 183#define ALCATEL_BROADCAST_PKT	0x02000000
 184
 185/* typedefs for Free Buffer Descriptors */
 186struct fbr_desc {
 187	u32 addr_lo;
 188	u32 addr_hi;
 189	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
 190};
 191
 192/* Packet Status Ring Descriptors
 193 *
 194 * Word 0:
 195 *
 196 * top 16 bits are from the Alcatel Status Word as enumerated in
 197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 198 *
 199 * 0: hp			hash pass
 200 * 1: ipa			IP checksum assist
 201 * 2: ipp			IP checksum pass
 202 * 3: tcpa			TCP checksum assist
 203 * 4: tcpp			TCP checksum pass
 204 * 5: wol			WOL Event
 205 * 6: rxmac_error		RXMAC Error Indicator
 206 * 7: drop			Drop packet
 207 * 8: ft			Frame Truncated
 208 * 9: jp			Jumbo Packet
 209 * 10: vp			VLAN Packet
 210 * 11-15: unused
 211 * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
 212 * 17: asw_RX_DV_event		short receive event detected
 213 * 18: asw_false_carrier_event	bad carrier since last good packet
 214 * 19: asw_code_err		one or more nibbles signalled as errors
 215 * 20: asw_CRC_err		CRC error
 216 * 21: asw_len_chk_err		frame length field incorrect
 217 * 22: asw_too_long		frame length > 1518 bytes
 218 * 23: asw_OK			valid CRC + no code error
 219 * 24: asw_multicast		has a multicast address
 220 * 25: asw_broadcast		has a broadcast address
 221 * 26: asw_dribble_nibble	spurious bits after EOP
 222 * 27: asw_control_frame	is a control frame
 223 * 28: asw_pause_frame		is a pause frame
 224 * 29: asw_unsupported_op	unsupported OP code
 225 * 30: asw_VLAN_tag		VLAN tag detected
 226 * 31: asw_long_evt		Rx long event
 227 *
 228 * Word 1:
 229 * 0-15: length			length in bytes
 230 * 16-25: bi			Buffer Index
 231 * 26-27: ri			Ring Index
 232 * 28-31: reserved
 233 */
 234struct pkt_stat_desc {
 235	u32 word0;
 236	u32 word1;
 237};
 238
 239/* Typedefs for the RX DMA status word */
 240
 241/* rx status word 0 holds part of the status bits of the Rx DMA engine
 242 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 243 * which contains the Free Buffer ring 0 and 1 available offset.
 244 *
 245 * bit 0-9 FBR1 offset
 246 * bit 10 Wrap flag for FBR1
 247 * bit 16-25 FBR0 offset
 248 * bit 26 Wrap flag for FBR0
 249 */
 250
 251/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 252 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 253 * which contains the Packet Status Ring available offset.
 254 *
 255 * bit 0-15 reserved
 256 * bit 16-27 PSRoffset
 257 * bit 28 PSRwrap
 258 * bit 29-31 unused
 259 */
 260
 261/* struct rx_status_block is a structure representing the status of the Rx
 262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 263 */
 264struct rx_status_block {
 265	u32 word0;
 266	u32 word1;
 267};
 268
 269/* Structure for look-up table holding free buffer ring pointers, addresses
 270 * and state.
 271 */
 272struct fbr_lookup {
 273	void		*virt[MAX_DESC_PER_RING_RX];
 274	u32		 bus_high[MAX_DESC_PER_RING_RX];
 275	u32		 bus_low[MAX_DESC_PER_RING_RX];
 276	void		*ring_virtaddr;
 277	dma_addr_t	 ring_physaddr;
 278	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 279	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 280	u32		 local_full;
 281	u32		 num_entries;
 282	dma_addr_t	 buffsize;
 283};
 284
 285/* struct rx_ring is the structure representing the adaptor's local
 286 * reference(s) to the rings
 287 */
 288struct rx_ring {
 289	struct fbr_lookup *fbr[NUM_FBRS];
 290	void *ps_ring_virtaddr;
 291	dma_addr_t ps_ring_physaddr;
 292	u32 local_psr_full;
 293	u32 psr_entries;
 294
 295	struct rx_status_block *rx_status_block;
 296	dma_addr_t rx_status_bus;
 297
 298	struct list_head recv_list;
 299	u32 num_ready_recv;
 300
 301	u32 num_rfd;
 302
 303	bool unfinished_receives;
 304};
 305
 306/* TX defines */
 307/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 308 *
 309 * 0-15: length of packet
 310 * 16-27: VLAN tag
 311 * 28: VLAN CFI
 312 * 29-31: VLAN priority
 313 *
 314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 315 *
 316 * 0: last packet in the sequence
 317 * 1: first packet in the sequence
 318 * 2: interrupt the processor when this pkt sent
 319 * 3: Control word - no packet data
 320 * 4: Issue half-duplex backpressure : XON/XOFF
 321 * 5: send pause frame
 322 * 6: Tx frame has error
 323 * 7: append CRC
 324 * 8: MAC override
 325 * 9: pad packet
 326 * 10: Packet is a Huge packet
 327 * 11: append VLAN tag
 328 * 12: IP checksum assist
 329 * 13: TCP checksum assist
 330 * 14: UDP checksum assist
 331 */
 332#define TXDESC_FLAG_LASTPKT		0x0001
 333#define TXDESC_FLAG_FIRSTPKT		0x0002
 334#define TXDESC_FLAG_INTPROC		0x0004
 335
 336/* struct tx_desc represents each descriptor on the ring */
 337struct tx_desc {
 338	u32 addr_hi;
 339	u32 addr_lo;
 340	u32 len_vlan;	/* control words how to xmit the */
 341	u32 flags;	/* data (detailed above) */
 342};
 343
 344/* The status of the Tx DMA engine it sits in free memory, and is pointed to
 345 * by 0x101c / 0x1020. This is a DMA10 type
 346 */
 347
 348/* TCB (Transmit Control Block: Host Side) */
 349struct tcb {
 350	struct tcb *next;	/* Next entry in ring */
 351	u32 count;		/* Used to spot stuck/lost packets */
 352	u32 stale;		/* Used to spot stuck/lost packets */
 353	struct sk_buff *skb;	/* Network skb we are tied to */
 354	u32 index;		/* Ring indexes */
 355	u32 index_start;
 356};
 357
 358/* Structure representing our local reference(s) to the ring */
 359struct tx_ring {
 360	/* TCB (Transmit Control Block) memory and lists */
 361	struct tcb *tcb_ring;
 362
 363	/* List of TCBs that are ready to be used */
 364	struct tcb *tcb_qhead;
 365	struct tcb *tcb_qtail;
 366
 367	/* list of TCBs that are currently being sent. */
 368	struct tcb *send_head;
 369	struct tcb *send_tail;
 370	int used;
 371
 372	/* The actual descriptor ring */
 373	struct tx_desc *tx_desc_ring;
 374	dma_addr_t tx_desc_ring_pa;
 375
 376	/* send_idx indicates where we last wrote to in the descriptor ring. */
 377	u32 send_idx;
 378
 379	/* The location of the write-back status block */
 380	u32 *tx_status;
 381	dma_addr_t tx_status_pa;
 382
 383	/* Packets since the last IRQ: used for interrupt coalescing */
 384	int since_irq;
 385};
 386
 387/* Do not change these values: if changed, then change also in respective
 388 * TXdma and Rxdma engines
 389 */
 390#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 391#define NUM_TCB                      64
 392
 393/* These values are all superseded by registry entries to facilitate tuning.
 394 * Once the desired performance has been achieved, the optimal registry values
 395 * should be re-populated to these #defines:
 396 */
 397#define TX_ERROR_PERIOD             1000
 398
 399#define LO_MARK_PERCENT_FOR_PSR     15
 400#define LO_MARK_PERCENT_FOR_RX      15
 401
 402/* RFD (Receive Frame Descriptor) */
 403struct rfd {
 404	struct list_head list_node;
 405	struct sk_buff *skb;
 406	u32 len;	/* total size of receive frame */
 407	u16 bufferindex;
 408	u8 ringindex;
 409};
 410
 411/* Flow Control */
 412#define FLOW_BOTH	0
 413#define FLOW_TXONLY	1
 414#define FLOW_RXONLY	2
 415#define FLOW_NONE	3
 416
 417/* Struct to define some device statistics */
 418struct ce_stats {
 419	u32		multicast_pkts_rcvd;
 420	u32		rcvd_pkts_dropped;
 421
 422	u32		tx_underflows;
 423	u32		tx_collisions;
 424	u32		tx_excessive_collisions;
 425	u32		tx_first_collisions;
 426	u32		tx_late_collisions;
 427	u32		tx_max_pkt_errs;
 428	u32		tx_deferred;
 429
 430	u32		rx_overflows;
 431	u32		rx_length_errs;
 432	u32		rx_align_errs;
 433	u32		rx_crc_errs;
 434	u32		rx_code_violations;
 435	u32		rx_other_errs;
 436
 437	u32		interrupt_status;
 438};
 439
 440/* The private adapter structure */
 441struct et131x_adapter {
 442	struct net_device *netdev;
 443	struct pci_dev *pdev;
 444	struct mii_bus *mii_bus;
 445	struct napi_struct napi;
 446
 447	/* Flags that indicate current state of the adapter */
 448	u32 flags;
 449
 450	/* local link state, to determine if a state change has occurred */
 451	int link;
 452
 453	/* Configuration  */
 454	u8 rom_addr[ETH_ALEN];
 455	u8 addr[ETH_ALEN];
 456	bool has_eeprom;
 457	u8 eeprom_data[2];
 458
 459	spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
 460	spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
 461	spinlock_t rcv_lock; /* protects the rx_ring receive list */
 462
 463	/* Packet Filter and look ahead size */
 464	u32 packet_filter;
 465
 466	/* multicast list */
 467	u32 multicast_addr_count;
 468	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 469
 470	/* Pointer to the device's PCI register space */
 471	struct address_map __iomem *regs;
 472
 473	/* Registry parameters */
 474	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
 475	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
 476
 477	/* Derived from the registry: */
 478	u8 flow;		/* flow control validated by the far-end */
 479
 480	/* Minimize init-time */
 481	struct timer_list error_timer;
 482
 483	/* variable putting the phy into coma mode when boot up with no cable
 484	 * plugged in after 5 seconds
 485	 */
 486	u8 boot_coma;
 487
 488	/* Tx Memory Variables */
 489	struct tx_ring tx_ring;
 490
 491	/* Rx Memory Variables */
 492	struct rx_ring rx_ring;
 493
 494	struct ce_stats stats;
 495};
 496
 497static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 498{
 499	u32 reg;
 500	int i;
 501
 502	/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 503	 *    bits 7,1:0 both equal to 1, at least once after reset.
 504	 *    Subsequent operations need only to check that bits 1:0 are equal
 505	 *    to 1 prior to starting a single byte read/write
 506	 */
 507	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 508		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 509			return -EIO;
 510
 511		/* I2C idle and Phy Queue Avail both true */
 512		if ((reg & 0x3000) == 0x3000) {
 513			if (status)
 514				*status = reg;
 515			return reg & 0xFF;
 516		}
 517	}
 518	return -ETIMEDOUT;
 519}
 520
 521static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 522{
 523	struct pci_dev *pdev = adapter->pdev;
 524	int index = 0;
 525	int retries;
 526	int err = 0;
 527	int writeok = 0;
 528	u32 status;
 529	u32 val = 0;
 530
 531	/* For an EEPROM, an I2C single byte write is defined as a START
 532	 * condition followed by the device address, EEPROM address, one byte
 533	 * of data and a STOP condition.  The STOP condition will trigger the
 534	 * EEPROM's internally timed write cycle to the nonvolatile memory.
 535	 * All inputs are disabled during this write cycle and the EEPROM will
 536	 * not respond to any access until the internal write is complete.
 537	 */
 538	err = eeprom_wait_ready(pdev, NULL);
 539	if (err < 0)
 540		return err;
 541
 542	 /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 543	  *    and bits 1:0 both =0.  Bit 5 should be set according to the
 544	  *    type of EEPROM being accessed (1=two byte addressing, 0=one
 545	  *    byte addressing).
 546	  */
 547	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 548				  LBCIF_CONTROL_LBCIF_ENABLE |
 549					LBCIF_CONTROL_I2C_WRITE))
 550		return -EIO;
 551
 552	/* Prepare EEPROM address for Step 3 */
 553	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 554		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 555			break;
 556		/* Write the data to the LBCIF Data Register (the I2C write
 557		 * will begin).
 558		 */
 559		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 560			break;
 561		/* Monitor bit 1:0 of the LBCIF Status Register.  When bits
 562		 * 1:0 are both equal to 1, the I2C write has completed and the
 563		 * internal write cycle of the EEPROM is about to start.
 564		 * (bits 1:0 = 01 is a legal state while waiting from both
 565		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 566		 * something is broken).
 567		 */
 568		err = eeprom_wait_ready(pdev, &status);
 569		if (err < 0)
 570			return 0;
 571
 572		/* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 573		 * an error has occurred.Don't break here if we are revision
 574		 * 1, this is so we do a blind write for load bug.
 575		 */
 576		if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
 577		    adapter->pdev->revision == 0)
 578			break;
 579
 580		/* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 581		 * ACK error has occurred on the address phase of the write.
 582		 * This could be due to an actual hardware failure or the
 583		 * EEPROM may still be in its internal write cycle from a
 584		 * previous write. This write operation was ignored and must be
 585		  *repeated later.
 586		 */
 587		if (status & LBCIF_STATUS_ACK_ERROR) {
 588			/* This could be due to an actual hardware failure
 589			 * or the EEPROM may still be in its internal write
 590			 * cycle from a previous write. This write operation
 591			 * was ignored and must be repeated later.
 592			 */
 593			udelay(10);
 594			continue;
 595		}
 596
 597		writeok = 1;
 598		break;
 599	}
 600
 601	udelay(10);
 602
 603	while (1) {
 604		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 605					  LBCIF_CONTROL_LBCIF_ENABLE))
 606			writeok = 0;
 607
 608		/* Do read until internal ACK_ERROR goes away meaning write
 609		 * completed
 610		 */
 611		do {
 612			pci_write_config_dword(pdev,
 613					       LBCIF_ADDRESS_REGISTER,
 614					       addr);
 615			do {
 616				pci_read_config_dword(pdev,
 617						      LBCIF_DATA_REGISTER,
 618						      &val);
 619			} while ((val & 0x00010000) == 0);
 620		} while (val & 0x00040000);
 621
 622		if ((val & 0xFF00) != 0xC000 || index == 10000)
 623			break;
 624		index++;
 625	}
 626	return writeok ? 0 : -EIO;
 627}
 628
 629static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 630{
 631	struct pci_dev *pdev = adapter->pdev;
 632	int err;
 633	u32 status;
 634
 635	/* A single byte read is similar to the single byte write, with the
 636	 * exception of the data flow:
 637	 */
 638	err = eeprom_wait_ready(pdev, NULL);
 639	if (err < 0)
 640		return err;
 641	/* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 642	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
 643	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
 644	 * addressing).
 645	 */
 646	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 647				  LBCIF_CONTROL_LBCIF_ENABLE))
 648		return -EIO;
 649	/* Write the address to the LBCIF Address Register (I2C read will
 650	 * begin).
 651	 */
 652	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 653		return -EIO;
 654	/* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 655	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 656	 * has occurred).
 657	 */
 658	err = eeprom_wait_ready(pdev, &status);
 659	if (err < 0)
 660		return err;
 661	/* Regardless of error status, read data byte from LBCIF Data
 662	 * Register.
 663	 */
 664	*pdata = err;
 665
 666	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 667}
 668
 669static int et131x_init_eeprom(struct et131x_adapter *adapter)
 670{
 671	struct pci_dev *pdev = adapter->pdev;
 672	u8 eestatus;
 673
 674	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
 675
 676	/* THIS IS A WORKAROUND:
 677	 * I need to call this function twice to get my card in a
 678	 * LG M1 Express Dual running. I tried also a msleep before this
 679	 * function, because I thought there could be some time conditions
 680	 * but it didn't work. Call the whole function twice also work.
 681	 */
 682	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 683		dev_err(&pdev->dev,
 684			"Could not read PCI config space for EEPROM Status\n");
 685		return -EIO;
 686	}
 687
 688	/* Determine if the error(s) we care about are present. If they are
 689	 * present we need to fail.
 690	 */
 691	if (eestatus & 0x4C) {
 692		int write_failed = 0;
 693
 694		if (pdev->revision == 0x01) {
 695			int	i;
 696			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 697
 698			/* Re-write the first 4 bytes if we have an eeprom
 699			 * present and the revision id is 1, this fixes the
 700			 * corruption seen with 1310 B Silicon
 701			 */
 702			for (i = 0; i < 3; i++)
 703				if (eeprom_write(adapter, i, eedata[i]) < 0)
 704					write_failed = 1;
 705		}
 706		if (pdev->revision  != 0x01 || write_failed) {
 707			dev_err(&pdev->dev,
 708				"Fatal EEPROM Status Error - 0x%04x\n",
 709				eestatus);
 710
 711			/* This error could mean that there was an error
 712			 * reading the eeprom or that the eeprom doesn't exist.
 713			 * We will treat each case the same and not try to
 714			 * gather additional information that normally would
 715			 * come from the eeprom, like MAC Address
 716			 */
 717			adapter->has_eeprom = 0;
 718			return -EIO;
 719		}
 720	}
 721	adapter->has_eeprom = 1;
 722
 723	/* Read the EEPROM for information regarding LED behavior. Refer to
 724	 * et131x_xcvr_init() for its use.
 725	 */
 726	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 727	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 728
 729	if (adapter->eeprom_data[0] != 0xcd)
 730		/* Disable all optional features */
 731		adapter->eeprom_data[1] = 0x00;
 732
 733	return 0;
 734}
 735
 736static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 737{
 738	/* Setup the receive dma configuration register for normal operation */
 739	u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
 740	struct rx_ring *rx_ring = &adapter->rx_ring;
 741
 742	if (rx_ring->fbr[1]->buffsize == 4096)
 743		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
 744	else if (rx_ring->fbr[1]->buffsize == 8192)
 745		csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
 746	else if (rx_ring->fbr[1]->buffsize == 16384)
 747		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
 748
 749	csr |= ET_RXDMA_CSR_FBR0_ENABLE;
 750	if (rx_ring->fbr[0]->buffsize == 256)
 751		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
 752	else if (rx_ring->fbr[0]->buffsize == 512)
 753		csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
 754	else if (rx_ring->fbr[0]->buffsize == 1024)
 755		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
 756	writel(csr, &adapter->regs->rxdma.csr);
 757
 758	csr = readl(&adapter->regs->rxdma.csr);
 759	if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 760		udelay(5);
 761		csr = readl(&adapter->regs->rxdma.csr);
 762		if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 763			dev_err(&adapter->pdev->dev,
 764				"RX Dma failed to exit halt state. CSR 0x%08x\n",
 765				csr);
 766		}
 767	}
 768}
 769
 770static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 771{
 772	u32 csr;
 773	/* Setup the receive dma configuration register */
 774	writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
 775	       &adapter->regs->rxdma.csr);
 776	csr = readl(&adapter->regs->rxdma.csr);
 777	if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
 778		udelay(5);
 779		csr = readl(&adapter->regs->rxdma.csr);
 780		if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
 781			dev_err(&adapter->pdev->dev,
 782				"RX Dma failed to enter halt state. CSR 0x%08x\n",
 783				csr);
 784	}
 785}
 786
 787static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 788{
 789	/* Setup the transmit dma configuration register for normal
 790	 * operation
 791	 */
 792	writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 793	       &adapter->regs->txdma.csr);
 794}
 795
 796static inline void add_10bit(u32 *v, int n)
 797{
 798	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 799}
 800
 801static inline void add_12bit(u32 *v, int n)
 802{
 803	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 804}
 805
 806static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 807{
 808	struct mac_regs __iomem *macregs = &adapter->regs->mac;
 809	u32 station1;
 810	u32 station2;
 811	u32 ipg;
 812
 813	/* First we need to reset everything.  Write to MAC configuration
 814	 * register 1 to perform reset.
 815	 */
 816	writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
 817	       ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
 818	       ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
 819	       &macregs->cfg1);
 820
 821	/* Next lets configure the MAC Inter-packet gap register */
 822	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 823	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
 824	writel(ipg, &macregs->ipg);
 825
 826	/* Next lets configure the MAC Half Duplex register */
 827	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 828	writel(0x00A1F037, &macregs->hfdp);
 829
 830	/* Next lets configure the MAC Interface Control register */
 831	writel(0, &macregs->if_ctrl);
 832
 833	writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
 834
 835	/* Next lets configure the MAC Station Address register.  These
 836	 * values are read from the EEPROM during initialization and stored
 837	 * in the adapter structure.  We write what is stored in the adapter
 838	 * structure to the MAC Station Address registers high and low.  This
 839	 * station address is used for generating and checking pause control
 840	 * packets.
 841	 */
 842	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
 843		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
 844	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
 845		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
 846		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
 847		    adapter->addr[2];
 848	writel(station1, &macregs->station_addr_1);
 849	writel(station2, &macregs->station_addr_2);
 850
 851	/* Max ethernet packet in bytes that will be passed by the mac without
 852	 * being truncated.  Allow the MAC to pass 4 more than our max packet
 853	 * size.  This is 4 for the Ethernet CRC.
 854	 *
 855	 * Packets larger than (registry_jumbo_packet) that do not contain a
 856	 * VLAN ID will be dropped by the Rx function.
 857	 */
 858	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
 859
 860	/* clear out MAC config reset */
 861	writel(0, &macregs->cfg1);
 862}
 863
 864static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
 865{
 866	int32_t delay = 0;
 867	struct mac_regs __iomem *mac = &adapter->regs->mac;
 868	struct phy_device *phydev = adapter->netdev->phydev;
 869	u32 cfg1;
 870	u32 cfg2;
 871	u32 ifctrl;
 872	u32 ctl;
 873
 874	ctl = readl(&adapter->regs->txmac.ctl);
 875	cfg1 = readl(&mac->cfg1);
 876	cfg2 = readl(&mac->cfg2);
 877	ifctrl = readl(&mac->if_ctrl);
 878
 879	/* Set up the if mode bits */
 880	cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
 881	if (phydev->speed == SPEED_1000) {
 882		cfg2 |= ET_MAC_CFG2_IFMODE_1000;
 883		ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
 884	} else {
 885		cfg2 |= ET_MAC_CFG2_IFMODE_100;
 886		ifctrl |= ET_MAC_IFCTRL_PHYMODE;
 887	}
 888
 889	cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
 890							ET_MAC_CFG1_TX_FLOW;
 891
 892	cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
 893	if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
 894		cfg1 |= ET_MAC_CFG1_RX_FLOW;
 895	writel(cfg1, &mac->cfg1);
 896
 897	/* Now we need to initialize the MAC Configuration 2 register */
 898	/* preamble 7, check length, huge frame off, pad crc, crc enable
 899	 * full duplex off
 900	 */
 901	cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
 902	cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
 903	cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
 904	cfg2 |=	ET_MAC_CFG2_IFMODE_CRC_ENABLE;
 905	cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
 906	cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
 907
 908	if (phydev->duplex == DUPLEX_FULL)
 909		cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
 910
 911	ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
 912	if (phydev->duplex == DUPLEX_HALF)
 913		ifctrl |= ET_MAC_IFCTRL_GHDMODE;
 914
 915	writel(ifctrl, &mac->if_ctrl);
 916	writel(cfg2, &mac->cfg2);
 917
 918	do {
 919		udelay(10);
 920		delay++;
 921		cfg1 = readl(&mac->cfg1);
 922	} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
 923
 924	if (delay == 100) {
 925		dev_warn(&adapter->pdev->dev,
 926			 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
 927			 cfg1);
 928	}
 929
 930	ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
 931	writel(ctl, &adapter->regs->txmac.ctl);
 932
 933	if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
 934		et131x_rx_dma_enable(adapter);
 935		et131x_tx_dma_enable(adapter);
 936	}
 937}
 938
 939static int et1310_in_phy_coma(struct et131x_adapter *adapter)
 940{
 941	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
 942
 943	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
 944}
 945
 946static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
 947{
 948	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 949	u32 hash1 = 0;
 950	u32 hash2 = 0;
 951	u32 hash3 = 0;
 952	u32 hash4 = 0;
 953	u32 pm_csr;
 954
 955	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
 956	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
 957	 * specified) then we should pass NO multi-cast addresses to the
 958	 * driver.
 959	 */
 960	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
 961		int i;
 962
 963		/* Loop through our multicast array and set up the device */
 964		for (i = 0; i < adapter->multicast_addr_count; i++) {
 965			u32 result;
 966
 967			result = ether_crc(6, adapter->multicast_list[i]);
 968
 969			result = (result & 0x3F800000) >> 23;
 970
 971			if (result < 32) {
 972				hash1 |= (1 << result);
 973			} else if ((31 < result) && (result < 64)) {
 974				result -= 32;
 975				hash2 |= (1 << result);
 976			} else if ((63 < result) && (result < 96)) {
 977				result -= 64;
 978				hash3 |= (1 << result);
 979			} else {
 980				result -= 96;
 981				hash4 |= (1 << result);
 982			}
 983		}
 984	}
 985
 986	/* Write out the new hash to the device */
 987	pm_csr = readl(&adapter->regs->global.pm_csr);
 988	if (!et1310_in_phy_coma(adapter)) {
 989		writel(hash1, &rxmac->multi_hash1);
 990		writel(hash2, &rxmac->multi_hash2);
 991		writel(hash3, &rxmac->multi_hash3);
 992		writel(hash4, &rxmac->multi_hash4);
 993	}
 994}
 995
 996static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
 997{
 998	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 999	u32 uni_pf1;
1000	u32 uni_pf2;
1001	u32 uni_pf3;
1002	u32 pm_csr;
1003
1004	/* Set up unicast packet filter reg 3 to be the first two octets of
1005	 * the MAC address for both address
1006	 *
1007	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1008	 * MAC address for second address
1009	 *
1010	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1011	 * MAC address for first address
1012	 */
1013	uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1014		  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1015		  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1016		   adapter->addr[1];
1017
1018	uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1019		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1020		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1021		   adapter->addr[5];
1022
1023	uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1024		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1025		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1026		   adapter->addr[5];
1027
1028	pm_csr = readl(&adapter->regs->global.pm_csr);
1029	if (!et1310_in_phy_coma(adapter)) {
1030		writel(uni_pf1, &rxmac->uni_pf_addr1);
1031		writel(uni_pf2, &rxmac->uni_pf_addr2);
1032		writel(uni_pf3, &rxmac->uni_pf_addr3);
1033	}
1034}
1035
1036static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1037{
1038	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1039	struct phy_device *phydev = adapter->netdev->phydev;
1040	u32 sa_lo;
1041	u32 sa_hi = 0;
1042	u32 pf_ctrl = 0;
1043	u32 __iomem *wolw;
1044
1045	/* Disable the MAC while it is being configured (also disable WOL) */
1046	writel(0x8, &rxmac->ctrl);
1047
1048	/* Initialize WOL to disabled. */
1049	writel(0, &rxmac->crc0);
1050	writel(0, &rxmac->crc12);
1051	writel(0, &rxmac->crc34);
1052
1053	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
1054	 * its default Values of 0x00000000 because there are not WOL masks
1055	 * as of this time.
1056	 */
1057	for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1058		writel(0, wolw);
1059
1060	/* Lets setup the WOL Source Address */
1061	sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1062		(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1063		(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1064		 adapter->addr[5];
1065	writel(sa_lo, &rxmac->sa_lo);
1066
1067	sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1068		       adapter->addr[1];
1069	writel(sa_hi, &rxmac->sa_hi);
1070
1071	/* Disable all Packet Filtering */
1072	writel(0, &rxmac->pf_ctrl);
1073
1074	/* Let's initialize the Unicast Packet filtering address */
1075	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1076		et1310_setup_device_for_unicast(adapter);
1077		pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1078	} else {
1079		writel(0, &rxmac->uni_pf_addr1);
1080		writel(0, &rxmac->uni_pf_addr2);
1081		writel(0, &rxmac->uni_pf_addr3);
1082	}
1083
1084	/* Let's initialize the Multicast hash */
1085	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1086		pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1087		et1310_setup_device_for_multicast(adapter);
1088	}
1089
1090	/* Runt packet filtering.  Didn't work in version A silicon. */
1091	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1092	pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1093
1094	if (adapter->registry_jumbo_packet > 8192)
1095		/* In order to transmit jumbo packets greater than 8k, the
1096		 * FIFO between RxMAC and RxDMA needs to be reduced in size
1097		 * to (16k - Jumbo packet size).  In order to implement this,
1098		 * we must use "cut through" mode in the RxMAC, which chops
1099		 * packets down into segments which are (max_size * 16).  In
1100		 * this case we selected 256 bytes, since this is the size of
1101		 * the PCI-Express TLP's that the 1310 uses.
1102		 *
1103		 * seg_en on, fc_en off, size 0x10
1104		 */
1105		writel(0x41, &rxmac->mcif_ctrl_max_seg);
1106	else
1107		writel(0, &rxmac->mcif_ctrl_max_seg);
1108
1109	writel(0, &rxmac->mcif_water_mark);
1110	writel(0, &rxmac->mif_ctrl);
1111	writel(0, &rxmac->space_avail);
1112
1113	/* Initialize the the mif_ctrl register
1114	 * bit 3:  Receive code error. One or more nibbles were signaled as
1115	 *	   errors  during the reception of the packet.  Clear this
1116	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
1117	 *	   experimentally at UNH.
1118	 * bit 4:  Receive CRC error. The packet's CRC did not match the
1119	 *	   internally generated CRC.
1120	 * bit 5:  Receive length check error. Indicates that frame length
1121	 *	   field value in the packet does not match the actual data
1122	 *	   byte length and is not a type field.
1123	 * bit 16: Receive frame truncated.
1124	 * bit 17: Drop packet enable
1125	 */
1126	if (phydev && phydev->speed == SPEED_100)
1127		writel(0x30038, &rxmac->mif_ctrl);
1128	else
1129		writel(0x30030, &rxmac->mif_ctrl);
1130
1131	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1132	 * filter is always enabled since it is where the runt packets are
1133	 * supposed to be dropped.  For version A silicon, runt packet
1134	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1135	 * but we still leave the packet filter on.
1136	 */
1137	writel(pf_ctrl, &rxmac->pf_ctrl);
1138	writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1139}
1140
1141static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1142{
1143	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1144
1145	/* We need to update the Control Frame Parameters
1146	 * cfpt - control frame pause timer set to 64 (0x40)
1147	 * cfep - control frame extended pause timer set to 0x0
1148	 */
1149	if (adapter->flow == FLOW_NONE)
1150		writel(0, &txmac->cf_param);
1151	else
1152		writel(0x40, &txmac->cf_param);
1153}
1154
1155static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1156{
1157	struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1158	u32 __iomem *reg;
1159
1160	/* initialize all the macstat registers to zero on the device  */
1161	for (reg = &macstat->txrx_0_64_byte_frames;
1162	     reg <= &macstat->carry_reg2; reg++)
1163		writel(0, reg);
1164
1165	/* Unmask any counters that we want to track the overflow of.
1166	 * Initially this will be all counters.  It may become clear later
1167	 * that we do not need to track all counters.
1168	 */
1169	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1170	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1171}
1172
1173static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1174			       u8 reg, u16 *value)
1175{
1176	struct mac_regs __iomem *mac = &adapter->regs->mac;
1177	int status = 0;
1178	u32 delay = 0;
1179	u32 mii_addr;
1180	u32 mii_cmd;
1181	u32 mii_indicator;
1182
1183	/* Save a local copy of the registers we are dealing with so we can
1184	 * set them back
1185	 */
1186	mii_addr = readl(&mac->mii_mgmt_addr);
1187	mii_cmd = readl(&mac->mii_mgmt_cmd);
1188
1189	/* Stop the current operation */
1190	writel(0, &mac->mii_mgmt_cmd);
1191
1192	/* Set up the register we need to read from on the correct PHY */
1193	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1194
1195	writel(0x1, &mac->mii_mgmt_cmd);
1196
1197	do {
1198		udelay(50);
1199		delay++;
1200		mii_indicator = readl(&mac->mii_mgmt_indicator);
1201	} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1202
1203	/* If we hit the max delay, we could not read the register */
1204	if (delay == 50) {
1205		dev_warn(&adapter->pdev->dev,
1206			 "reg 0x%08x could not be read\n", reg);
1207		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1208			 mii_indicator);
1209
1210		status = -EIO;
1211		goto out;
1212	}
1213
1214	/* If we hit here we were able to read the register and we need to
1215	 * return the value to the caller
1216	 */
1217	*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1218
1219out:
1220	/* Stop the read operation */
1221	writel(0, &mac->mii_mgmt_cmd);
1222
1223	/* set the registers we touched back to the state at which we entered
1224	 * this function
1225	 */
1226	writel(mii_addr, &mac->mii_mgmt_addr);
1227	writel(mii_cmd, &mac->mii_mgmt_cmd);
1228
1229	return status;
1230}
1231
1232static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1233{
1234	struct phy_device *phydev = adapter->netdev->phydev;
1235
1236	if (!phydev)
1237		return -EIO;
1238
1239	return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1240}
1241
1242static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1243			    u16 value)
1244{
1245	struct mac_regs __iomem *mac = &adapter->regs->mac;
1246	int status = 0;
1247	u32 delay = 0;
1248	u32 mii_addr;
1249	u32 mii_cmd;
1250	u32 mii_indicator;
1251
1252	/* Save a local copy of the registers we are dealing with so we can
1253	 * set them back
1254	 */
1255	mii_addr = readl(&mac->mii_mgmt_addr);
1256	mii_cmd = readl(&mac->mii_mgmt_cmd);
1257
1258	/* Stop the current operation */
1259	writel(0, &mac->mii_mgmt_cmd);
1260
1261	/* Set up the register we need to write to on the correct PHY */
1262	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1263
1264	/* Add the value to write to the registers to the mac */
1265	writel(value, &mac->mii_mgmt_ctrl);
1266
1267	do {
1268		udelay(50);
1269		delay++;
1270		mii_indicator = readl(&mac->mii_mgmt_indicator);
1271	} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1272
1273	/* If we hit the max delay, we could not write the register */
1274	if (delay == 100) {
1275		u16 tmp;
1276
1277		dev_warn(&adapter->pdev->dev,
1278			 "reg 0x%08x could not be written", reg);
1279		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1280			 mii_indicator);
1281		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1282			 readl(&mac->mii_mgmt_cmd));
1283
1284		et131x_mii_read(adapter, reg, &tmp);
1285
1286		status = -EIO;
1287	}
1288	/* Stop the write operation */
1289	writel(0, &mac->mii_mgmt_cmd);
1290
1291	/* set the registers we touched back to the state at which we entered
1292	 * this function
1293	 */
1294	writel(mii_addr, &mac->mii_mgmt_addr);
1295	writel(mii_cmd, &mac->mii_mgmt_cmd);
1296
1297	return status;
1298}
1299
1300static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1301				    u16 regnum,
1302				    u16 bitnum,
1303				    u8 *value)
1304{
1305	u16 reg;
1306	u16 mask = 1 << bitnum;
1307
1308	et131x_mii_read(adapter, regnum, &reg);
1309
1310	*value = (reg & mask) >> bitnum;
1311}
1312
1313static void et1310_config_flow_control(struct et131x_adapter *adapter)
1314{
1315	struct phy_device *phydev = adapter->netdev->phydev;
1316
1317	if (phydev->duplex == DUPLEX_HALF) {
1318		adapter->flow = FLOW_NONE;
1319	} else {
1320		char remote_pause, remote_async_pause;
1321
1322		et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1323		et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1324
1325		if (remote_pause && remote_async_pause) {
1326			adapter->flow = adapter->wanted_flow;
1327		} else if (remote_pause && !remote_async_pause) {
1328			if (adapter->wanted_flow == FLOW_BOTH)
1329				adapter->flow = FLOW_BOTH;
1330			else
1331				adapter->flow = FLOW_NONE;
1332		} else if (!remote_pause && !remote_async_pause) {
1333			adapter->flow = FLOW_NONE;
1334		} else {
1335			if (adapter->wanted_flow == FLOW_BOTH)
1336				adapter->flow = FLOW_RXONLY;
1337			else
1338				adapter->flow = FLOW_NONE;
1339		}
1340	}
1341}
1342
1343/* et1310_update_macstat_host_counters - Update local copy of the statistics */
1344static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1345{
1346	struct ce_stats *stats = &adapter->stats;
1347	struct macstat_regs __iomem *macstat =
1348		&adapter->regs->macstat;
1349
1350	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
1351	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1352	stats->tx_deferred	       += readl(&macstat->tx_deferred);
1353	stats->tx_excessive_collisions +=
1354				readl(&macstat->tx_multiple_collisions);
1355	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1356	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
1357	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
1358
1359	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1360	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1361	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1362	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1363	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1364	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1365	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1366}
1367
1368/* et1310_handle_macstat_interrupt
1369 *
1370 * One of the MACSTAT counters has wrapped.  Update the local copy of
1371 * the statistics held in the adapter structure, checking the "wrap"
1372 * bit for each counter.
1373 */
1374static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1375{
1376	u32 carry_reg1;
1377	u32 carry_reg2;
1378
1379	/* Read the interrupt bits from the register(s).  These are Clear On
1380	 * Write.
1381	 */
1382	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1383	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1384
1385	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1386	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1387
1388	/* We need to do update the host copy of all the MAC_STAT counters.
1389	 * For each counter, check it's overflow bit.  If the overflow bit is
1390	 * set, then increment the host version of the count by one complete
1391	 * revolution of the counter.  This routine is called when the counter
1392	 * block indicates that one of the counters has wrapped.
1393	 */
1394	if (carry_reg1 & (1 << 14))
1395		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
1396	if (carry_reg1 & (1 << 8))
1397		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
1398	if (carry_reg1 & (1 << 7))
1399		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
1400	if (carry_reg1 & (1 << 2))
1401		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
1402	if (carry_reg1 & (1 << 6))
1403		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
1404	if (carry_reg1 & (1 << 3))
1405		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
1406	if (carry_reg1 & (1 << 0))
1407		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
1408	if (carry_reg2 & (1 << 16))
1409		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
1410	if (carry_reg2 & (1 << 15))
1411		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
1412	if (carry_reg2 & (1 << 6))
1413		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1414	if (carry_reg2 & (1 << 8))
1415		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
1416	if (carry_reg2 & (1 << 5))
1417		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1418	if (carry_reg2 & (1 << 4))
1419		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
1420	if (carry_reg2 & (1 << 2))
1421		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
1422}
1423
1424static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1425{
1426	struct net_device *netdev = bus->priv;
1427	struct et131x_adapter *adapter = netdev_priv(netdev);
1428	u16 value;
1429	int ret;
1430
1431	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1432
1433	if (ret < 0)
1434		return ret;
1435
1436	return value;
1437}
1438
1439static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1440			     int reg, u16 value)
1441{
1442	struct net_device *netdev = bus->priv;
1443	struct et131x_adapter *adapter = netdev_priv(netdev);
1444
1445	return et131x_mii_write(adapter, phy_addr, reg, value);
1446}
1447
1448/*	et1310_phy_power_switch	-	PHY power control
1449 *	@adapter: device to control
1450 *	@down: true for off/false for back on
1451 *
1452 *	one hundred, ten, one thousand megs
1453 *	How would you like to have your LAN accessed
1454 *	Can't you see that this code processed
1455 *	Phy power, phy power..
1456 */
1457static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1458{
1459	u16 data;
1460	struct  phy_device *phydev = adapter->netdev->phydev;
1461
1462	et131x_mii_read(adapter, MII_BMCR, &data);
1463	data &= ~BMCR_PDOWN;
1464	if (down)
1465		data |= BMCR_PDOWN;
1466	et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1467}
1468
1469/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1470static void et131x_xcvr_init(struct et131x_adapter *adapter)
1471{
1472	u16 lcr2;
1473	struct  phy_device *phydev = adapter->netdev->phydev;
1474
1475	/* Set the LED behavior such that LED 1 indicates speed (off =
1476	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1477	 * link and activity (on for link, blink off for activity).
1478	 *
1479	 * NOTE: Some customizations have been added here for specific
1480	 * vendors; The LED behavior is now determined by vendor data in the
1481	 * EEPROM. However, the above description is the default.
1482	 */
1483	if ((adapter->eeprom_data[1] & 0x4) == 0) {
1484		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1485
1486		lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1487		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1488
1489		if ((adapter->eeprom_data[1] & 0x8) == 0)
1490			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1491		else
1492			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1493
1494		et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1495	}
1496}
1497
1498/* et131x_configure_global_regs	- configure JAGCore global regs */
1499static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1500{
1501	struct global_regs __iomem *regs = &adapter->regs->global;
1502
1503	writel(0, &regs->rxq_start_addr);
1504	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1505
1506	if (adapter->registry_jumbo_packet < 2048) {
1507		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1508		 * block of RAM that the driver can split between Tx
1509		 * and Rx as it desires.  Our default is to split it
1510		 * 50/50:
1511		 */
1512		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1513		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1514	} else if (adapter->registry_jumbo_packet < 8192) {
1515		/* For jumbo packets > 2k but < 8k, split 50-50. */
1516		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1517		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1518	} else {
1519		/* 9216 is the only packet size greater than 8k that
1520		 * is available. The Tx buffer has to be big enough
1521		 * for one whole packet on the Tx side. We'll make
1522		 * the Tx 9408, and give the rest to Rx
1523		 */
1524		writel(0x01b3, &regs->rxq_end_addr);
1525		writel(0x01b4, &regs->txq_start_addr);
1526	}
1527
1528	/* Initialize the loopback register. Disable all loopbacks. */
1529	writel(0, &regs->loopback);
1530
1531	writel(0, &regs->msi_config);
1532
1533	/* By default, disable the watchdog timer.  It will be enabled when
1534	 * a packet is queued.
1535	 */
1536	writel(0, &regs->watchdog_timer);
1537}
1538
1539/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1540static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1541{
1542	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1543	struct rx_ring *rx_local = &adapter->rx_ring;
1544	struct fbr_desc *fbr_entry;
1545	u32 entry;
1546	u32 psr_num_des;
1547	unsigned long flags;
1548	u8 id;
1549
1550	et131x_rx_dma_disable(adapter);
1551
1552	/* Load the completion writeback physical address */
1553	writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1554	writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1555
1556	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1557
1558	/* Set the address and parameters of the packet status ring */
1559	writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1560	writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1561	writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1562	writel(0, &rx_dma->psr_full_offset);
1563
1564	psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1565	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1566	       &rx_dma->psr_min_des);
1567
1568	spin_lock_irqsave(&adapter->rcv_lock, flags);
1569
1570	/* These local variables track the PSR in the adapter structure */
1571	rx_local->local_psr_full = 0;
1572
1573	for (id = 0; id < NUM_FBRS; id++) {
1574		u32 __iomem *num_des;
1575		u32 __iomem *full_offset;
1576		u32 __iomem *min_des;
1577		u32 __iomem *base_hi;
1578		u32 __iomem *base_lo;
1579		struct fbr_lookup *fbr = rx_local->fbr[id];
1580
1581		if (id == 0) {
1582			num_des = &rx_dma->fbr0_num_des;
1583			full_offset = &rx_dma->fbr0_full_offset;
1584			min_des = &rx_dma->fbr0_min_des;
1585			base_hi = &rx_dma->fbr0_base_hi;
1586			base_lo = &rx_dma->fbr0_base_lo;
1587		} else {
1588			num_des = &rx_dma->fbr1_num_des;
1589			full_offset = &rx_dma->fbr1_full_offset;
1590			min_des = &rx_dma->fbr1_min_des;
1591			base_hi = &rx_dma->fbr1_base_hi;
1592			base_lo = &rx_dma->fbr1_base_lo;
1593		}
1594
1595		/* Now's the best time to initialize FBR contents */
1596		fbr_entry = fbr->ring_virtaddr;
1597		for (entry = 0; entry < fbr->num_entries; entry++) {
1598			fbr_entry->addr_hi = fbr->bus_high[entry];
1599			fbr_entry->addr_lo = fbr->bus_low[entry];
1600			fbr_entry->word2 = entry;
1601			fbr_entry++;
1602		}
1603
1604		/* Set the address and parameters of Free buffer ring 1 and 0 */
1605		writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1606		writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1607		writel(fbr->num_entries - 1, num_des);
1608		writel(ET_DMA10_WRAP, full_offset);
1609
1610		/* This variable tracks the free buffer ring 1 full position,
1611		 * so it has to match the above.
1612		 */
1613		fbr->local_full = ET_DMA10_WRAP;
1614		writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1615		       min_des);
1616	}
1617
1618	/* Program the number of packets we will receive before generating an
1619	 * interrupt.
1620	 * For version B silicon, this value gets updated once autoneg is
1621	 *complete.
1622	 */
1623	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1624
1625	/* The "time_done" is not working correctly to coalesce interrupts
1626	 * after a given time period, but rather is giving us an interrupt
1627	 * regardless of whether we have received packets.
1628	 * This value gets updated once autoneg is complete.
1629	 */
1630	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1631
1632	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1633}
1634
1635/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1636 *
1637 * Configure the transmit engine with the ring buffers we have created
1638 * and prepare it for use.
1639 */
1640static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1641{
1642	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1643	struct tx_ring *tx_ring = &adapter->tx_ring;
1644
1645	/* Load the hardware with the start of the transmit descriptor ring. */
1646	writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1647	writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1648
1649	/* Initialise the transmit DMA engine */
1650	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1651
1652	/* Load the completion writeback physical address */
1653	writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1654	writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1655
1656	*tx_ring->tx_status = 0;
1657
1658	writel(0, &txdma->service_request);
1659	tx_ring->send_idx = 0;
1660}
1661
1662/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1663static void et131x_adapter_setup(struct et131x_adapter *adapter)
1664{
1665	et131x_configure_global_regs(adapter);
1666	et1310_config_mac_regs1(adapter);
1667
1668	/* Configure the MMC registers */
1669	/* All we need to do is initialize the Memory Control Register */
1670	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1671
1672	et1310_config_rxmac_regs(adapter);
1673	et1310_config_txmac_regs(adapter);
1674
1675	et131x_config_rx_dma_regs(adapter);
1676	et131x_config_tx_dma_regs(adapter);
1677
1678	et1310_config_macstat_regs(adapter);
1679
1680	et1310_phy_power_switch(adapter, 0);
1681	et131x_xcvr_init(adapter);
1682}
1683
1684/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1685static void et131x_soft_reset(struct et131x_adapter *adapter)
1686{
1687	u32 reg;
1688
1689	/* Disable MAC Core */
1690	reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1691	      ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1692	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1693	writel(reg, &adapter->regs->mac.cfg1);
1694
1695	reg = ET_RESET_ALL;
1696	writel(reg, &adapter->regs->global.sw_reset);
1697
1698	reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1699	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1700	writel(reg, &adapter->regs->mac.cfg1);
1701	writel(0, &adapter->regs->mac.cfg1);
1702}
1703
1704static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1705{
1706	u32 mask;
1707
1708	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1709		mask = INT_MASK_ENABLE;
1710	else
1711		mask = INT_MASK_ENABLE_NO_FLOW;
1712
1713	writel(mask, &adapter->regs->global.int_mask);
1714}
1715
1716static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1717{
1718	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1719}
1720
1721static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1722{
1723	/* Setup the transmit dma configuration register */
1724	writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1725	       &adapter->regs->txdma.csr);
1726}
1727
1728static void et131x_enable_txrx(struct net_device *netdev)
1729{
1730	struct et131x_adapter *adapter = netdev_priv(netdev);
1731
1732	et131x_rx_dma_enable(adapter);
1733	et131x_tx_dma_enable(adapter);
1734
1735	if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1736		et131x_enable_interrupts(adapter);
1737
1738	netif_start_queue(netdev);
1739}
1740
1741static void et131x_disable_txrx(struct net_device *netdev)
1742{
1743	struct et131x_adapter *adapter = netdev_priv(netdev);
1744
1745	netif_stop_queue(netdev);
1746
1747	et131x_rx_dma_disable(adapter);
1748	et131x_tx_dma_disable(adapter);
1749
1750	et131x_disable_interrupts(adapter);
1751}
1752
1753static void et131x_init_send(struct et131x_adapter *adapter)
1754{
1755	int i;
1756	struct tx_ring *tx_ring = &adapter->tx_ring;
1757	struct tcb *tcb = tx_ring->tcb_ring;
1758
1759	tx_ring->tcb_qhead = tcb;
1760
1761	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1762
1763	for (i = 0; i < NUM_TCB; i++) {
1764		tcb->next = tcb + 1;
1765		tcb++;
1766	}
1767
1768	tcb--;
1769	tx_ring->tcb_qtail = tcb;
1770	tcb->next = NULL;
1771	/* Curr send queue should now be empty */
1772	tx_ring->send_head = NULL;
1773	tx_ring->send_tail = NULL;
1774}
1775
1776/* et1310_enable_phy_coma
1777 *
1778 * driver receive an phy status change interrupt while in D0 and check that
1779 * phy_status is down.
1780 *
1781 *          -- gate off JAGCore;
1782 *          -- set gigE PHY in Coma mode
1783 *          -- wake on phy_interrupt; Perform software reset JAGCore,
1784 *             re-initialize jagcore and gigE PHY
1785 */
1786static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1787{
1788	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1789
1790	/* Stop sending packets. */
1791	adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1792
1793	/* Wait for outstanding Receive packets */
1794	et131x_disable_txrx(adapter->netdev);
1795
1796	/* Gate off JAGCore 3 clock domains */
1797	pmcsr &= ~ET_PMCSR_INIT;
1798	writel(pmcsr, &adapter->regs->global.pm_csr);
1799
1800	/* Program gigE PHY in to Coma mode */
1801	pmcsr |= ET_PM_PHY_SW_COMA;
1802	writel(pmcsr, &adapter->regs->global.pm_csr);
1803}
1804
1805static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1806{
1807	u32 pmcsr;
1808
1809	pmcsr = readl(&adapter->regs->global.pm_csr);
1810
1811	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
1812	pmcsr |= ET_PMCSR_INIT;
1813	pmcsr &= ~ET_PM_PHY_SW_COMA;
1814	writel(pmcsr, &adapter->regs->global.pm_csr);
1815
1816	/* Restore the GbE PHY speed and duplex modes;
1817	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1818	 */
1819
1820	/* Re-initialize the send structures */
1821	et131x_init_send(adapter);
1822
1823	/* Bring the device back to the state it was during init prior to
1824	 * autonegotiation being complete.  This way, when we get the auto-neg
1825	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1826	 */
1827	et131x_soft_reset(adapter);
1828
1829	et131x_adapter_setup(adapter);
1830
1831	/* Allow Tx to restart */
1832	adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1833
1834	et131x_enable_txrx(adapter->netdev);
1835}
1836
1837static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1838{
1839	u32 tmp_free_buff_ring = *free_buff_ring;
1840
1841	tmp_free_buff_ring++;
1842	/* This works for all cases where limit < 1024. The 1023 case
1843	 * works because 1023++ is 1024 which means the if condition is not
1844	 * taken but the carry of the bit into the wrap bit toggles the wrap
1845	 * value correctly
1846	 */
1847	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1848		tmp_free_buff_ring &= ~ET_DMA10_MASK;
1849		tmp_free_buff_ring ^= ET_DMA10_WRAP;
1850	}
1851	/* For the 1023 case */
1852	tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1853	*free_buff_ring = tmp_free_buff_ring;
1854	return tmp_free_buff_ring;
1855}
1856
1857/* et131x_rx_dma_memory_alloc
1858 *
1859 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1860 * and the Packet Status Ring.
1861 */
1862static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1863{
1864	u8 id;
1865	u32 i, j;
1866	u32 bufsize;
1867	u32 psr_size;
1868	u32 fbr_chunksize;
1869	struct rx_ring *rx_ring = &adapter->rx_ring;
1870	struct fbr_lookup *fbr;
1871
1872	/* Alloc memory for the lookup table */
1873	rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1874	if (rx_ring->fbr[0] == NULL)
1875		return -ENOMEM;
1876	rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1877	if (rx_ring->fbr[1] == NULL)
1878		return -ENOMEM;
1879
1880	/* The first thing we will do is configure the sizes of the buffer
1881	 * rings. These will change based on jumbo packet support.  Larger
1882	 * jumbo packets increases the size of each entry in FBR0, and the
1883	 * number of entries in FBR0, while at the same time decreasing the
1884	 * number of entries in FBR1.
1885	 *
1886	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1887	 * entries are huge in order to accommodate a "jumbo" frame, then it
1888	 * will have less entries.  Conversely, FBR1 will now be relied upon
1889	 * to carry more "normal" frames, thus it's entry size also increases
1890	 * and the number of entries goes up too (since it now carries
1891	 * "small" + "regular" packets.
1892	 *
1893	 * In this scheme, we try to maintain 512 entries between the two
1894	 * rings. Also, FBR1 remains a constant size - when it's size doubles
1895	 * the number of entries halves.  FBR0 increases in size, however.
1896	 */
1897	if (adapter->registry_jumbo_packet < 2048) {
1898		rx_ring->fbr[0]->buffsize = 256;
1899		rx_ring->fbr[0]->num_entries = 512;
1900		rx_ring->fbr[1]->buffsize = 2048;
1901		rx_ring->fbr[1]->num_entries = 512;
1902	} else if (adapter->registry_jumbo_packet < 4096) {
1903		rx_ring->fbr[0]->buffsize = 512;
1904		rx_ring->fbr[0]->num_entries = 1024;
1905		rx_ring->fbr[1]->buffsize = 4096;
1906		rx_ring->fbr[1]->num_entries = 512;
1907	} else {
1908		rx_ring->fbr[0]->buffsize = 1024;
1909		rx_ring->fbr[0]->num_entries = 768;
1910		rx_ring->fbr[1]->buffsize = 16384;
1911		rx_ring->fbr[1]->num_entries = 128;
1912	}
1913
1914	rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1915			       rx_ring->fbr[1]->num_entries;
1916
1917	for (id = 0; id < NUM_FBRS; id++) {
1918		fbr = rx_ring->fbr[id];
1919		/* Allocate an area of memory for Free Buffer Ring */
1920		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1921		fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1922							bufsize,
1923							&fbr->ring_physaddr,
1924							GFP_KERNEL);
1925		if (!fbr->ring_virtaddr) {
1926			dev_err(&adapter->pdev->dev,
1927				"Cannot alloc memory for Free Buffer Ring %d\n",
1928				id);
1929			return -ENOMEM;
1930		}
1931	}
1932
1933	for (id = 0; id < NUM_FBRS; id++) {
1934		fbr = rx_ring->fbr[id];
1935		fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1936
1937		for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1938			dma_addr_t fbr_physaddr;
1939
1940			fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1941					&adapter->pdev->dev, fbr_chunksize,
1942					&fbr->mem_physaddrs[i],
1943					GFP_KERNEL);
1944
1945			if (!fbr->mem_virtaddrs[i]) {
1946				dev_err(&adapter->pdev->dev,
1947					"Could not alloc memory\n");
1948				return -ENOMEM;
1949			}
1950
1951			/* See NOTE in "Save Physical Address" comment above */
1952			fbr_physaddr = fbr->mem_physaddrs[i];
1953
1954			for (j = 0; j < FBR_CHUNKS; j++) {
1955				u32 k = (i * FBR_CHUNKS) + j;
1956
1957				/* Save the Virtual address of this index for
1958				 * quick access later
1959				 */
1960				fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1961						   (j * fbr->buffsize);
1962
1963				/* now store the physical address in the
1964				 * descriptor so the device can access it
1965				 */
1966				fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1967				fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1968				fbr_physaddr += fbr->buffsize;
1969			}
1970		}
1971	}
1972
1973	/* Allocate an area of memory for FIFO of Packet Status ring entries */
1974	psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1975
1976	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1977						  psr_size,
1978						  &rx_ring->ps_ring_physaddr,
1979						  GFP_KERNEL);
1980
1981	if (!rx_ring->ps_ring_virtaddr) {
1982		dev_err(&adapter->pdev->dev,
1983			"Cannot alloc memory for Packet Status Ring\n");
1984		return -ENOMEM;
1985	}
1986
1987	/* Allocate an area of memory for writeback of status information */
1988	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1989					    sizeof(struct rx_status_block),
1990					    &rx_ring->rx_status_bus,
1991					    GFP_KERNEL);
1992	if (!rx_ring->rx_status_block) {
1993		dev_err(&adapter->pdev->dev,
1994			"Cannot alloc memory for Status Block\n");
1995		return -ENOMEM;
1996	}
1997	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1998
1999	/* The RFDs are going to be put on lists later on, so initialize the
2000	 * lists now.
2001	 */
2002	INIT_LIST_HEAD(&rx_ring->recv_list);
2003	return 0;
2004}
2005
2006static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2007{
2008	u8 id;
2009	u32 ii;
2010	u32 bufsize;
2011	u32 psr_size;
2012	struct rfd *rfd;
2013	struct rx_ring *rx_ring = &adapter->rx_ring;
2014	struct fbr_lookup *fbr;
2015
2016	/* Free RFDs and associated packet descriptors */
2017	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2018
2019	while (!list_empty(&rx_ring->recv_list)) {
2020		rfd = list_entry(rx_ring->recv_list.next,
2021				 struct rfd, list_node);
2022
2023		list_del(&rfd->list_node);
2024		rfd->skb = NULL;
2025		kfree(rfd);
2026	}
2027
2028	/* Free Free Buffer Rings */
2029	for (id = 0; id < NUM_FBRS; id++) {
2030		fbr = rx_ring->fbr[id];
2031
2032		if (!fbr || !fbr->ring_virtaddr)
2033			continue;
2034
2035		/* First the packet memory */
2036		for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2037			if (fbr->mem_virtaddrs[ii]) {
2038				bufsize = fbr->buffsize * FBR_CHUNKS;
2039
2040				dma_free_coherent(&adapter->pdev->dev,
2041						  bufsize,
2042						  fbr->mem_virtaddrs[ii],
2043						  fbr->mem_physaddrs[ii]);
2044
2045				fbr->mem_virtaddrs[ii] = NULL;
2046			}
2047		}
2048
2049		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2050
2051		dma_free_coherent(&adapter->pdev->dev,
2052				  bufsize,
2053				  fbr->ring_virtaddr,
2054				  fbr->ring_physaddr);
2055
2056		fbr->ring_virtaddr = NULL;
2057	}
2058
2059	/* Free Packet Status Ring */
2060	if (rx_ring->ps_ring_virtaddr) {
2061		psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2062
2063		dma_free_coherent(&adapter->pdev->dev, psr_size,
2064				  rx_ring->ps_ring_virtaddr,
2065				  rx_ring->ps_ring_physaddr);
2066
2067		rx_ring->ps_ring_virtaddr = NULL;
2068	}
2069
2070	/* Free area of memory for the writeback of status information */
2071	if (rx_ring->rx_status_block) {
2072		dma_free_coherent(&adapter->pdev->dev,
2073				  sizeof(struct rx_status_block),
2074				  rx_ring->rx_status_block,
2075				  rx_ring->rx_status_bus);
2076		rx_ring->rx_status_block = NULL;
2077	}
2078
2079	/* Free the FBR Lookup Table */
2080	kfree(rx_ring->fbr[0]);
2081	kfree(rx_ring->fbr[1]);
2082
2083	/* Reset Counters */
2084	rx_ring->num_ready_recv = 0;
2085}
2086
2087/* et131x_init_recv - Initialize receive data structures */
2088static int et131x_init_recv(struct et131x_adapter *adapter)
2089{
2090	struct rfd *rfd;
2091	u32 rfdct;
2092	struct rx_ring *rx_ring = &adapter->rx_ring;
2093
2094	/* Setup each RFD */
2095	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2096		rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2097		if (!rfd)
2098			return -ENOMEM;
2099
2100		rfd->skb = NULL;
2101
2102		/* Add this RFD to the recv_list */
2103		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2104
2105		/* Increment the available RFD's */
2106		rx_ring->num_ready_recv++;
2107	}
2108
2109	return 0;
2110}
2111
2112/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2113static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2114{
2115	struct phy_device *phydev = adapter->netdev->phydev;
2116
2117	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
2118	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2119	 */
2120	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2121		writel(0, &adapter->regs->rxdma.max_pkt_time);
2122		writel(1, &adapter->regs->rxdma.num_pkt_done);
2123	}
2124}
2125
2126/* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2127static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2128{
2129	struct rx_ring *rx_local = &adapter->rx_ring;
2130	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2131	u16 buff_index = rfd->bufferindex;
2132	u8 ring_index = rfd->ringindex;
2133	unsigned long flags;
2134	struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2135
2136	/* We don't use any of the OOB data besides status. Otherwise, we
2137	 * need to clean up OOB data
2138	 */
2139	if (buff_index < fbr->num_entries) {
2140		u32 free_buff_ring;
2141		u32 __iomem *offset;
2142		struct fbr_desc *next;
2143
2144		if (ring_index == 0)
2145			offset = &rx_dma->fbr0_full_offset;
2146		else
2147			offset = &rx_dma->fbr1_full_offset;
2148
2149		next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2150		       INDEX10(fbr->local_full);
2151
2152		/* Handle the Free Buffer Ring advancement here. Write
2153		 * the PA / Buffer Index for the returned buffer into
2154		 * the oldest (next to be freed)FBR entry
2155		 */
2156		next->addr_hi = fbr->bus_high[buff_index];
2157		next->addr_lo = fbr->bus_low[buff_index];
2158		next->word2 = buff_index;
2159
2160		free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2161						     fbr->num_entries - 1);
2162		writel(free_buff_ring, offset);
2163	} else {
2164		dev_err(&adapter->pdev->dev,
2165			"%s illegal Buffer Index returned\n", __func__);
2166	}
2167
2168	/* The processing on this RFD is done, so put it back on the tail of
2169	 * our list
2170	 */
2171	spin_lock_irqsave(&adapter->rcv_lock, flags);
2172	list_add_tail(&rfd->list_node, &rx_local->recv_list);
2173	rx_local->num_ready_recv++;
2174	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2175
2176	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2177}
2178
2179/* nic_rx_pkts - Checks the hardware for available packets
2180 *
2181 * Checks the hardware for available packets, using completion ring
2182 * If packets are available, it gets an RFD from the recv_list, attaches
2183 * the packet to it, puts the RFD in the RecvPendList, and also returns
2184 * the pointer to the RFD.
2185 */
2186static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2187{
2188	struct rx_ring *rx_local = &adapter->rx_ring;
2189	struct rx_status_block *status;
2190	struct pkt_stat_desc *psr;
2191	struct rfd *rfd;
2192	unsigned long flags;
2193	struct list_head *element;
2194	u8 ring_index;
2195	u16 buff_index;
2196	u32 len;
2197	u32 word0;
2198	u32 word1;
2199	struct sk_buff *skb;
2200	struct fbr_lookup *fbr;
2201
2202	/* RX Status block is written by the DMA engine prior to every
2203	 * interrupt. It contains the next to be used entry in the Packet
2204	 * Status Ring, and also the two Free Buffer rings.
2205	 */
2206	status = rx_local->rx_status_block;
2207	word1 = status->word1 >> 16;
2208
2209	/* Check the PSR and wrap bits do not match */
2210	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2211		return NULL; /* Looks like this ring is not updated yet */
2212
2213	/* The packet status ring indicates that data is available. */
2214	psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2215			(rx_local->local_psr_full & 0xFFF);
2216
2217	/* Grab any information that is required once the PSR is advanced,
2218	 * since we can no longer rely on the memory being accurate
2219	 */
2220	len = psr->word1 & 0xFFFF;
2221	ring_index = (psr->word1 >> 26) & 0x03;
2222	fbr = rx_local->fbr[ring_index];
2223	buff_index = (psr->word1 >> 16) & 0x3FF;
2224	word0 = psr->word0;
2225
2226	/* Indicate that we have used this PSR entry. */
2227	/* FIXME wrap 12 */
2228	add_12bit(&rx_local->local_psr_full, 1);
2229	if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2230		/* Clear psr full and toggle the wrap bit */
2231		rx_local->local_psr_full &=  ~0xFFF;
2232		rx_local->local_psr_full ^= 0x1000;
2233	}
2234
2235	writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2236
2237	if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2238		/* Illegal buffer or ring index cannot be used by S/W*/
2239		dev_err(&adapter->pdev->dev,
2240			"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2241			rx_local->local_psr_full & 0xFFF, len, buff_index);
2242		return NULL;
2243	}
2244
2245	/* Get and fill the RFD. */
2246	spin_lock_irqsave(&adapter->rcv_lock, flags);
2247
2248	element = rx_local->recv_list.next;
2249	rfd = list_entry(element, struct rfd, list_node);
2250
2251	if (!rfd) {
2252		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2253		return NULL;
2254	}
2255
2256	list_del(&rfd->list_node);
2257	rx_local->num_ready_recv--;
2258
2259	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2260
2261	rfd->bufferindex = buff_index;
2262	rfd->ringindex = ring_index;
2263
2264	/* In V1 silicon, there is a bug which screws up filtering of runt
2265	 * packets. Therefore runt packet filtering is disabled in the MAC and
2266	 * the packets are dropped here. They are also counted here.
2267	 */
2268	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2269		adapter->stats.rx_other_errs++;
2270		rfd->len = 0;
2271		goto out;
2272	}
2273
2274	if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2275		adapter->stats.multicast_pkts_rcvd++;
2276
2277	rfd->len = len;
2278
2279	skb = dev_alloc_skb(rfd->len + 2);
2280	if (!skb)
2281		return NULL;
2282
2283	adapter->netdev->stats.rx_bytes += rfd->len;
2284
2285	memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2286
2287	skb->protocol = eth_type_trans(skb, adapter->netdev);
2288	skb->ip_summed = CHECKSUM_NONE;
2289	netif_receive_skb(skb);
2290
2291out:
2292	nic_return_rfd(adapter, rfd);
2293	return rfd;
2294}
2295
2296static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2297{
2298	struct rfd *rfd = NULL;
2299	int count = 0;
2300	int limit = budget;
2301	bool done = true;
2302	struct rx_ring *rx_ring = &adapter->rx_ring;
2303
2304	if (budget > MAX_PACKETS_HANDLED)
2305		limit = MAX_PACKETS_HANDLED;
2306
2307	/* Process up to available RFD's */
2308	while (count < limit) {
2309		if (list_empty(&rx_ring->recv_list)) {
2310			WARN_ON(rx_ring->num_ready_recv != 0);
2311			done = false;
2312			break;
2313		}
2314
2315		rfd = nic_rx_pkts(adapter);
2316
2317		if (rfd == NULL)
2318			break;
2319
2320		/* Do not receive any packets until a filter has been set.
2321		 * Do not receive any packets until we have link.
2322		 * If length is zero, return the RFD in order to advance the
2323		 * Free buffer ring.
2324		 */
2325		if (!adapter->packet_filter ||
2326		    !netif_carrier_ok(adapter->netdev) ||
2327		    rfd->len == 0)
2328			continue;
2329
2330		adapter->netdev->stats.rx_packets++;
2331
2332		if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2333			dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2334
2335		count++;
2336	}
2337
2338	if (count == limit || !done) {
2339		rx_ring->unfinished_receives = true;
2340		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2341		       &adapter->regs->global.watchdog_timer);
2342	} else {
2343		/* Watchdog timer will disable itself if appropriate. */
2344		rx_ring->unfinished_receives = false;
2345	}
2346
2347	return count;
2348}
2349
2350/* et131x_tx_dma_memory_alloc
2351 *
2352 * Allocates memory that will be visible both to the device and to the CPU.
2353 * The OS will pass us packets, pointers to which we will insert in the Tx
2354 * Descriptor queue. The device will read this queue to find the packets in
2355 * memory. The device will update the "status" in memory each time it xmits a
2356 * packet.
2357 */
2358static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2359{
2360	int desc_size = 0;
2361	struct tx_ring *tx_ring = &adapter->tx_ring;
2362
2363	/* Allocate memory for the TCB's (Transmit Control Block) */
2364	tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2365				    GFP_ATOMIC | GFP_DMA);
2366	if (!tx_ring->tcb_ring)
2367		return -ENOMEM;
2368
2369	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2370	tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2371						   desc_size,
2372						   &tx_ring->tx_desc_ring_pa,
2373						   GFP_KERNEL);
2374	if (!tx_ring->tx_desc_ring) {
2375		dev_err(&adapter->pdev->dev,
2376			"Cannot alloc memory for Tx Ring\n");
2377		return -ENOMEM;
2378	}
2379
2380	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2381						    sizeof(u32),
2382						    &tx_ring->tx_status_pa,
2383						    GFP_KERNEL);
2384	if (!tx_ring->tx_status) {
2385		dev_err(&adapter->pdev->dev,
2386			"Cannot alloc memory for Tx status block\n");
2387		return -ENOMEM;
2388	}
2389	return 0;
2390}
2391
2392static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2393{
2394	int desc_size = 0;
2395	struct tx_ring *tx_ring = &adapter->tx_ring;
2396
2397	if (tx_ring->tx_desc_ring) {
2398		/* Free memory relating to Tx rings here */
2399		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2400		dma_free_coherent(&adapter->pdev->dev,
2401				  desc_size,
2402				  tx_ring->tx_desc_ring,
2403				  tx_ring->tx_desc_ring_pa);
2404		tx_ring->tx_desc_ring = NULL;
2405	}
2406
2407	/* Free memory for the Tx status block */
2408	if (tx_ring->tx_status) {
2409		dma_free_coherent(&adapter->pdev->dev,
2410				  sizeof(u32),
2411				  tx_ring->tx_status,
2412				  tx_ring->tx_status_pa);
2413
2414		tx_ring->tx_status = NULL;
2415	}
2416	/* Free the memory for the tcb structures */
2417	kfree(tx_ring->tcb_ring);
2418}
2419
 
 
2420/* nic_send_packet - NIC specific send handler for version B silicon. */
2421static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2422{
2423	u32 i;
2424	struct tx_desc desc[24];
2425	u32 frag = 0;
2426	u32 thiscopy, remainder;
2427	struct sk_buff *skb = tcb->skb;
2428	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2429	struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2430	struct phy_device *phydev = adapter->netdev->phydev;
2431	dma_addr_t dma_addr;
2432	struct tx_ring *tx_ring = &adapter->tx_ring;
2433
2434	/* Part of the optimizations of this send routine restrict us to
2435	 * sending 24 fragments at a pass.  In practice we should never see
2436	 * more than 5 fragments.
2437	 */
2438
2439	/* nr_frags should be no more than 18. */
2440	BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2441
2442	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2443
2444	for (i = 0; i < nr_frags; i++) {
2445		/* If there is something in this element, lets get a
2446		 * descriptor from the ring and get the necessary data
2447		 */
2448		if (i == 0) {
2449			/* If the fragments are smaller than a standard MTU,
2450			 * then map them to a single descriptor in the Tx
2451			 * Desc ring. However, if they're larger, as is
2452			 * possible with support for jumbo packets, then
2453			 * split them each across 2 descriptors.
2454			 *
2455			 * This will work until we determine why the hardware
2456			 * doesn't seem to like large fragments.
2457			 */
2458			if (skb_headlen(skb) <= 1514) {
2459				/* Low 16bits are length, high is vlan and
2460				 * unused currently so zero
2461				 */
2462				desc[frag].len_vlan = skb_headlen(skb);
2463				dma_addr = dma_map_single(&adapter->pdev->dev,
2464							  skb->data,
2465							  skb_headlen(skb),
2466							  DMA_TO_DEVICE);
2467				desc[frag].addr_lo = lower_32_bits(dma_addr);
2468				desc[frag].addr_hi = upper_32_bits(dma_addr);
2469				frag++;
2470			} else {
2471				desc[frag].len_vlan = skb_headlen(skb) / 2;
2472				dma_addr = dma_map_single(&adapter->pdev->dev,
2473							  skb->data,
2474							  skb_headlen(skb) / 2,
2475							  DMA_TO_DEVICE);
2476				desc[frag].addr_lo = lower_32_bits(dma_addr);
2477				desc[frag].addr_hi = upper_32_bits(dma_addr);
2478				frag++;
2479
2480				desc[frag].len_vlan = skb_headlen(skb) / 2;
2481				dma_addr = dma_map_single(&adapter->pdev->dev,
2482							  skb->data +
2483							  skb_headlen(skb) / 2,
2484							  skb_headlen(skb) / 2,
2485							  DMA_TO_DEVICE);
2486				desc[frag].addr_lo = lower_32_bits(dma_addr);
2487				desc[frag].addr_hi = upper_32_bits(dma_addr);
2488				frag++;
2489			}
2490		} else {
2491			desc[frag].len_vlan = frags[i - 1].size;
2492			dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2493						    &frags[i - 1],
2494						    0,
2495						    frags[i - 1].size,
2496						    DMA_TO_DEVICE);
2497			desc[frag].addr_lo = lower_32_bits(dma_addr);
2498			desc[frag].addr_hi = upper_32_bits(dma_addr);
2499			frag++;
2500		}
2501	}
2502
2503	if (phydev && phydev->speed == SPEED_1000) {
2504		if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2505			/* Last element & Interrupt flag */
2506			desc[frag - 1].flags =
2507				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2508			tx_ring->since_irq = 0;
2509		} else { /* Last element */
2510			desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2511		}
2512	} else {
2513		desc[frag - 1].flags =
2514				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2515	}
2516
2517	desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2518
2519	tcb->index_start = tx_ring->send_idx;
2520	tcb->stale = 0;
2521
2522	thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2523
2524	if (thiscopy >= frag) {
2525		remainder = 0;
2526		thiscopy = frag;
2527	} else {
2528		remainder = frag - thiscopy;
2529	}
2530
2531	memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2532	       desc,
2533	       sizeof(struct tx_desc) * thiscopy);
2534
2535	add_10bit(&tx_ring->send_idx, thiscopy);
2536
2537	if (INDEX10(tx_ring->send_idx) == 0 ||
2538	    INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2539		tx_ring->send_idx &= ~ET_DMA10_MASK;
2540		tx_ring->send_idx ^= ET_DMA10_WRAP;
2541	}
2542
2543	if (remainder) {
2544		memcpy(tx_ring->tx_desc_ring,
2545		       desc + thiscopy,
2546		       sizeof(struct tx_desc) * remainder);
2547
2548		add_10bit(&tx_ring->send_idx, remainder);
2549	}
2550
2551	if (INDEX10(tx_ring->send_idx) == 0) {
2552		if (tx_ring->send_idx)
2553			tcb->index = NUM_DESC_PER_RING_TX - 1;
2554		else
2555			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2556	} else {
2557		tcb->index = tx_ring->send_idx - 1;
2558	}
2559
2560	spin_lock(&adapter->tcb_send_qlock);
2561
2562	if (tx_ring->send_tail)
2563		tx_ring->send_tail->next = tcb;
2564	else
2565		tx_ring->send_head = tcb;
2566
2567	tx_ring->send_tail = tcb;
2568
2569	WARN_ON(tcb->next != NULL);
2570
2571	tx_ring->used++;
2572
2573	spin_unlock(&adapter->tcb_send_qlock);
2574
2575	/* Write the new write pointer back to the device. */
2576	writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2577
2578	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2579	 * timer to wake us up if this packet isn't followed by N more.
2580	 */
2581	if (phydev && phydev->speed == SPEED_1000) {
2582		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2583		       &adapter->regs->global.watchdog_timer);
2584	}
2585	return 0;
2586}
2587
2588static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2589{
2590	int status;
2591	struct tcb *tcb;
2592	unsigned long flags;
2593	struct tx_ring *tx_ring = &adapter->tx_ring;
2594
2595	/* All packets must have at least a MAC address and a protocol type */
2596	if (skb->len < ETH_HLEN)
2597		return -EIO;
2598
2599	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2600
2601	tcb = tx_ring->tcb_qhead;
2602
2603	if (tcb == NULL) {
2604		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2605		return -ENOMEM;
2606	}
2607
2608	tx_ring->tcb_qhead = tcb->next;
2609
2610	if (tx_ring->tcb_qhead == NULL)
2611		tx_ring->tcb_qtail = NULL;
2612
2613	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2614
2615	tcb->skb = skb;
2616	tcb->next = NULL;
2617
2618	status = nic_send_packet(adapter, tcb);
2619
2620	if (status != 0) {
2621		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2622
2623		if (tx_ring->tcb_qtail)
2624			tx_ring->tcb_qtail->next = tcb;
2625		else
2626			/* Apparently ready Q is empty. */
2627			tx_ring->tcb_qhead = tcb;
2628
2629		tx_ring->tcb_qtail = tcb;
2630		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2631		return status;
2632	}
2633	WARN_ON(tx_ring->used > NUM_TCB);
2634	return 0;
2635}
2636
2637/* free_send_packet - Recycle a struct tcb */
2638static inline void free_send_packet(struct et131x_adapter *adapter,
2639				    struct tcb *tcb)
2640{
2641	unsigned long flags;
2642	struct tx_desc *desc = NULL;
2643	struct net_device_stats *stats = &adapter->netdev->stats;
2644	struct tx_ring *tx_ring = &adapter->tx_ring;
2645	u64  dma_addr;
2646
2647	if (tcb->skb) {
2648		stats->tx_bytes += tcb->skb->len;
2649
2650		/* Iterate through the TX descriptors on the ring
2651		 * corresponding to this packet and umap the fragments
2652		 * they point to
2653		 */
2654		do {
2655			desc = tx_ring->tx_desc_ring +
2656			       INDEX10(tcb->index_start);
2657
2658			dma_addr = desc->addr_lo;
2659			dma_addr |= (u64)desc->addr_hi << 32;
2660
2661			dma_unmap_single(&adapter->pdev->dev,
2662					 dma_addr,
2663					 desc->len_vlan, DMA_TO_DEVICE);
2664
2665			add_10bit(&tcb->index_start, 1);
2666			if (INDEX10(tcb->index_start) >=
2667							NUM_DESC_PER_RING_TX) {
2668				tcb->index_start &= ~ET_DMA10_MASK;
2669				tcb->index_start ^= ET_DMA10_WRAP;
2670			}
2671		} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2672
2673		dev_kfree_skb_any(tcb->skb);
2674	}
2675
2676	memset(tcb, 0, sizeof(struct tcb));
2677
2678	/* Add the TCB to the Ready Q */
2679	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2680
2681	stats->tx_packets++;
2682
2683	if (tx_ring->tcb_qtail)
2684		tx_ring->tcb_qtail->next = tcb;
2685	else /* Apparently ready Q is empty. */
2686		tx_ring->tcb_qhead = tcb;
2687
2688	tx_ring->tcb_qtail = tcb;
2689
2690	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2691	WARN_ON(tx_ring->used < 0);
2692}
2693
2694/* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2695static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2696{
2697	struct tcb *tcb;
2698	unsigned long flags;
2699	u32 freed = 0;
2700	struct tx_ring *tx_ring = &adapter->tx_ring;
2701
2702	/* Any packets being sent? Check the first TCB on the send list */
2703	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2704
2705	tcb = tx_ring->send_head;
2706
2707	while (tcb != NULL && freed < NUM_TCB) {
2708		struct tcb *next = tcb->next;
2709
2710		tx_ring->send_head = next;
2711
2712		if (next == NULL)
2713			tx_ring->send_tail = NULL;
2714
2715		tx_ring->used--;
2716
2717		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2718
2719		freed++;
2720		free_send_packet(adapter, tcb);
2721
2722		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2723
2724		tcb = tx_ring->send_head;
2725	}
2726
2727	WARN_ON(freed == NUM_TCB);
2728
2729	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2730
2731	tx_ring->used = 0;
2732}
2733
2734/* et131x_handle_send_pkts
2735 *
2736 * Re-claim the send resources, complete sends and get more to send from
2737 * the send wait queue.
2738 */
2739static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2740{
2741	unsigned long flags;
2742	u32 serviced;
2743	struct tcb *tcb;
2744	u32 index;
2745	struct tx_ring *tx_ring = &adapter->tx_ring;
2746
2747	serviced = readl(&adapter->regs->txdma.new_service_complete);
2748	index = INDEX10(serviced);
2749
2750	/* Has the ring wrapped?  Process any descriptors that do not have
2751	 * the same "wrap" indicator as the current completion indicator
2752	 */
2753	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2754
2755	tcb = tx_ring->send_head;
2756
2757	while (tcb &&
2758	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2759	       index < INDEX10(tcb->index)) {
2760		tx_ring->used--;
2761		tx_ring->send_head = tcb->next;
2762		if (tcb->next == NULL)
2763			tx_ring->send_tail = NULL;
2764
2765		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2766		free_send_packet(adapter, tcb);
2767		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2768
2769		/* Goto the next packet */
2770		tcb = tx_ring->send_head;
2771	}
2772	while (tcb &&
2773	       !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2774	       index > (tcb->index & ET_DMA10_MASK)) {
2775		tx_ring->used--;
2776		tx_ring->send_head = tcb->next;
2777		if (tcb->next == NULL)
2778			tx_ring->send_tail = NULL;
2779
2780		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2781		free_send_packet(adapter, tcb);
2782		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2783
2784		/* Goto the next packet */
2785		tcb = tx_ring->send_head;
2786	}
2787
2788	/* Wake up the queue when we hit a low-water mark */
2789	if (tx_ring->used <= NUM_TCB / 3)
2790		netif_wake_queue(adapter->netdev);
2791
2792	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2793}
2794
2795static int et131x_get_regs_len(struct net_device *netdev)
2796{
2797#define ET131X_REGS_LEN 256
2798	return ET131X_REGS_LEN * sizeof(u32);
2799}
2800
2801static void et131x_get_regs(struct net_device *netdev,
2802			    struct ethtool_regs *regs, void *regs_data)
2803{
2804	struct et131x_adapter *adapter = netdev_priv(netdev);
2805	struct address_map __iomem *aregs = adapter->regs;
2806	u32 *regs_buff = regs_data;
2807	u32 num = 0;
2808	u16 tmp;
2809
2810	memset(regs_data, 0, et131x_get_regs_len(netdev));
2811
2812	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2813			adapter->pdev->device;
2814
2815	/* PHY regs */
2816	et131x_mii_read(adapter, MII_BMCR, &tmp);
2817	regs_buff[num++] = tmp;
2818	et131x_mii_read(adapter, MII_BMSR, &tmp);
2819	regs_buff[num++] = tmp;
2820	et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2821	regs_buff[num++] = tmp;
2822	et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2823	regs_buff[num++] = tmp;
2824	et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2825	regs_buff[num++] = tmp;
2826	et131x_mii_read(adapter, MII_LPA, &tmp);
2827	regs_buff[num++] = tmp;
2828	et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2829	regs_buff[num++] = tmp;
2830	/* Autoneg next page transmit reg */
2831	et131x_mii_read(adapter, 0x07, &tmp);
2832	regs_buff[num++] = tmp;
2833	/* Link partner next page reg */
2834	et131x_mii_read(adapter, 0x08, &tmp);
2835	regs_buff[num++] = tmp;
2836	et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2837	regs_buff[num++] = tmp;
2838	et131x_mii_read(adapter, MII_STAT1000, &tmp);
2839	regs_buff[num++] = tmp;
2840	et131x_mii_read(adapter, 0x0b, &tmp);
2841	regs_buff[num++] = tmp;
2842	et131x_mii_read(adapter, 0x0c, &tmp);
2843	regs_buff[num++] = tmp;
2844	et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2845	regs_buff[num++] = tmp;
2846	et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2847	regs_buff[num++] = tmp;
2848	et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2849	regs_buff[num++] = tmp;
2850
2851	et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2852	regs_buff[num++] = tmp;
2853	et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2854	regs_buff[num++] = tmp;
2855	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2856	regs_buff[num++] = tmp;
2857	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2858	regs_buff[num++] = tmp;
2859	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2860	regs_buff[num++] = tmp;
2861
2862	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2863	regs_buff[num++] = tmp;
2864	et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2865	regs_buff[num++] = tmp;
2866	et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2867	regs_buff[num++] = tmp;
2868	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2869	regs_buff[num++] = tmp;
2870	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2871	regs_buff[num++] = tmp;
2872	et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2873	regs_buff[num++] = tmp;
2874	et131x_mii_read(adapter, PHY_LED_1, &tmp);
2875	regs_buff[num++] = tmp;
2876	et131x_mii_read(adapter, PHY_LED_2, &tmp);
2877	regs_buff[num++] = tmp;
2878
2879	/* Global regs */
2880	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2881	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2882	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2883	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2884	regs_buff[num++] = readl(&aregs->global.pm_csr);
2885	regs_buff[num++] = adapter->stats.interrupt_status;
2886	regs_buff[num++] = readl(&aregs->global.int_mask);
2887	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2888	regs_buff[num++] = readl(&aregs->global.int_status_alias);
2889	regs_buff[num++] = readl(&aregs->global.sw_reset);
2890	regs_buff[num++] = readl(&aregs->global.slv_timer);
2891	regs_buff[num++] = readl(&aregs->global.msi_config);
2892	regs_buff[num++] = readl(&aregs->global.loopback);
2893	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2894
2895	/* TXDMA regs */
2896	regs_buff[num++] = readl(&aregs->txdma.csr);
2897	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2898	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2899	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2900	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2901	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2902	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2903	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2904	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2905	regs_buff[num++] = readl(&aregs->txdma.service_request);
2906	regs_buff[num++] = readl(&aregs->txdma.service_complete);
2907	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2908	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2909	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2910	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2911	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2912	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2913	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2914	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2915	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2916	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2917	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2918	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2919	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2920	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2921	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2922
2923	/* RXDMA regs */
2924	regs_buff[num++] = readl(&aregs->rxdma.csr);
2925	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2926	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2927	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2928	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2929	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2930	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2931	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2932	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2933	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2934	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2935	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2936	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2937	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2938	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2939	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2940	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2941	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2942	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2943	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2944	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2945	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2946	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2947	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2948	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2949	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2950	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2951	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2952	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2953}
2954
2955static void et131x_get_drvinfo(struct net_device *netdev,
2956			       struct ethtool_drvinfo *info)
2957{
2958	struct et131x_adapter *adapter = netdev_priv(netdev);
2959
2960	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2961	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2962	strlcpy(info->bus_info, pci_name(adapter->pdev),
2963		sizeof(info->bus_info));
2964}
2965
2966static const struct ethtool_ops et131x_ethtool_ops = {
2967	.get_drvinfo	= et131x_get_drvinfo,
2968	.get_regs_len	= et131x_get_regs_len,
2969	.get_regs	= et131x_get_regs,
2970	.get_link	= ethtool_op_get_link,
2971	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2972	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2973};
2974
2975/* et131x_hwaddr_init - set up the MAC Address */
2976static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2977{
2978	/* If have our default mac from init and no mac address from
2979	 * EEPROM then we need to generate the last octet and set it on the
2980	 * device
2981	 */
2982	if (is_zero_ether_addr(adapter->rom_addr)) {
2983		/* We need to randomly generate the last octet so we
2984		 * decrease our chances of setting the mac address to
2985		 * same as another one of our cards in the system
2986		 */
2987		get_random_bytes(&adapter->addr[5], 1);
2988		/* We have the default value in the register we are
2989		 * working with so we need to copy the current
2990		 * address into the permanent address
2991		 */
2992		ether_addr_copy(adapter->rom_addr, adapter->addr);
2993	} else {
2994		/* We do not have an override address, so set the
2995		 * current address to the permanent address and add
2996		 * it to the device
2997		 */
2998		ether_addr_copy(adapter->addr, adapter->rom_addr);
2999	}
3000}
3001
3002static int et131x_pci_init(struct et131x_adapter *adapter,
3003			   struct pci_dev *pdev)
3004{
3005	u16 max_payload;
3006	int i, rc;
3007
3008	rc = et131x_init_eeprom(adapter);
3009	if (rc < 0)
3010		goto out;
3011
3012	if (!pci_is_pcie(pdev)) {
3013		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3014		goto err_out;
3015	}
3016
3017	/* Program the Ack/Nak latency and replay timers */
3018	max_payload = pdev->pcie_mpss;
3019
3020	if (max_payload < 2) {
3021		static const u16 acknak[2] = { 0x76, 0xD0 };
3022		static const u16 replay[2] = { 0x1E0, 0x2ED };
3023
3024		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3025					  acknak[max_payload])) {
3026			dev_err(&pdev->dev,
3027				"Could not write PCI config space for ACK/NAK\n");
3028			goto err_out;
3029		}
3030		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3031					  replay[max_payload])) {
3032			dev_err(&pdev->dev,
3033				"Could not write PCI config space for Replay Timer\n");
3034			goto err_out;
3035		}
3036	}
3037
3038	/* l0s and l1 latency timers.  We are using default values.
3039	 * Representing 001 for L0s and 010 for L1
3040	 */
3041	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3042		dev_err(&pdev->dev,
3043			"Could not write PCI config space for Latency Timers\n");
3044		goto err_out;
3045	}
3046
3047	/* Change the max read size to 2k */
3048	if (pcie_set_readrq(pdev, 2048)) {
3049		dev_err(&pdev->dev,
3050			"Couldn't change PCI config space for Max read size\n");
3051		goto err_out;
3052	}
3053
3054	/* Get MAC address from config space if an eeprom exists, otherwise
3055	 * the MAC address there will not be valid
3056	 */
3057	if (!adapter->has_eeprom) {
3058		et131x_hwaddr_init(adapter);
3059		return 0;
3060	}
3061
3062	for (i = 0; i < ETH_ALEN; i++) {
3063		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3064					 adapter->rom_addr + i)) {
3065			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3066			goto err_out;
3067		}
3068	}
3069	ether_addr_copy(adapter->addr, adapter->rom_addr);
3070out:
3071	return rc;
3072err_out:
3073	rc = -EIO;
3074	goto out;
3075}
3076
3077/* et131x_error_timer_handler
3078 * @data: timer-specific variable; here a pointer to our adapter structure
3079 *
3080 * The routine called when the error timer expires, to track the number of
3081 * recurring errors.
3082 */
3083static void et131x_error_timer_handler(unsigned long data)
3084{
3085	struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3086	struct phy_device *phydev = adapter->netdev->phydev;
3087
3088	if (et1310_in_phy_coma(adapter)) {
3089		/* Bring the device immediately out of coma, to
3090		 * prevent it from sleeping indefinitely, this
3091		 * mechanism could be improved!
3092		 */
3093		et1310_disable_phy_coma(adapter);
3094		adapter->boot_coma = 20;
3095	} else {
3096		et1310_update_macstat_host_counters(adapter);
3097	}
3098
3099	if (!phydev->link && adapter->boot_coma < 11)
3100		adapter->boot_coma++;
3101
3102	if (adapter->boot_coma == 10) {
3103		if (!phydev->link) {
3104			if (!et1310_in_phy_coma(adapter)) {
3105				/* NOTE - This was originally a 'sync with
3106				 *  interrupt'. How to do that under Linux?
3107				 */
3108				et131x_enable_interrupts(adapter);
3109				et1310_enable_phy_coma(adapter);
3110			}
3111		}
3112	}
3113
3114	/* This is a periodic timer, so reschedule */
3115	mod_timer(&adapter->error_timer, jiffies +
3116		  msecs_to_jiffies(TX_ERROR_PERIOD));
3117}
3118
3119static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3120{
3121	et131x_tx_dma_memory_free(adapter);
3122	et131x_rx_dma_memory_free(adapter);
3123}
3124
3125static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3126{
3127	int status;
3128
3129	status = et131x_tx_dma_memory_alloc(adapter);
3130	if (status) {
3131		dev_err(&adapter->pdev->dev,
3132			"et131x_tx_dma_memory_alloc FAILED\n");
3133		et131x_tx_dma_memory_free(adapter);
3134		return status;
3135	}
3136
3137	status = et131x_rx_dma_memory_alloc(adapter);
3138	if (status) {
3139		dev_err(&adapter->pdev->dev,
3140			"et131x_rx_dma_memory_alloc FAILED\n");
3141		et131x_adapter_memory_free(adapter);
3142		return status;
3143	}
3144
3145	status = et131x_init_recv(adapter);
3146	if (status) {
3147		dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3148		et131x_adapter_memory_free(adapter);
3149	}
3150	return status;
3151}
3152
3153static void et131x_adjust_link(struct net_device *netdev)
3154{
3155	struct et131x_adapter *adapter = netdev_priv(netdev);
3156	struct  phy_device *phydev = netdev->phydev;
3157
3158	if (!phydev)
3159		return;
3160	if (phydev->link == adapter->link)
3161		return;
3162
3163	/* Check to see if we are in coma mode and if
3164	 * so, disable it because we will not be able
3165	 * to read PHY values until we are out.
3166	 */
3167	if (et1310_in_phy_coma(adapter))
3168		et1310_disable_phy_coma(adapter);
3169
3170	adapter->link = phydev->link;
3171	phy_print_status(phydev);
3172
3173	if (phydev->link) {
3174		adapter->boot_coma = 20;
3175		if (phydev->speed == SPEED_10) {
3176			u16 register18;
3177
3178			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3179					&register18);
3180			et131x_mii_write(adapter, phydev->mdio.addr,
3181					 PHY_MPHY_CONTROL_REG,
3182					 register18 | 0x4);
3183			et131x_mii_write(adapter, phydev->mdio.addr,
3184					 PHY_INDEX_REG, register18 | 0x8402);
3185			et131x_mii_write(adapter, phydev->mdio.addr,
3186					 PHY_DATA_REG, register18 | 511);
3187			et131x_mii_write(adapter, phydev->mdio.addr,
3188					 PHY_MPHY_CONTROL_REG, register18);
3189		}
3190
3191		et1310_config_flow_control(adapter);
3192
3193		if (phydev->speed == SPEED_1000 &&
3194		    adapter->registry_jumbo_packet > 2048) {
3195			u16 reg;
3196
3197			et131x_mii_read(adapter, PHY_CONFIG, &reg);
3198			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3199			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3200			et131x_mii_write(adapter, phydev->mdio.addr,
3201					 PHY_CONFIG, reg);
3202		}
3203
3204		et131x_set_rx_dma_timer(adapter);
3205		et1310_config_mac_regs2(adapter);
3206	} else {
3207		adapter->boot_coma = 0;
3208
3209		if (phydev->speed == SPEED_10) {
3210			u16 register18;
3211
3212			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3213					&register18);
3214			et131x_mii_write(adapter, phydev->mdio.addr,
3215					 PHY_MPHY_CONTROL_REG,
3216					 register18 | 0x4);
3217			et131x_mii_write(adapter, phydev->mdio.addr,
3218					 PHY_INDEX_REG, register18 | 0x8402);
3219			et131x_mii_write(adapter, phydev->mdio.addr,
3220					 PHY_DATA_REG, register18 | 511);
3221			et131x_mii_write(adapter, phydev->mdio.addr,
3222					 PHY_MPHY_CONTROL_REG, register18);
3223		}
3224
3225		et131x_free_busy_send_packets(adapter);
3226		et131x_init_send(adapter);
3227
3228		/* Bring the device back to the state it was during
3229		 * init prior to autonegotiation being complete. This
3230		 * way, when we get the auto-neg complete interrupt,
3231		 * we can complete init by calling config_mac_regs2.
3232		 */
3233		et131x_soft_reset(adapter);
3234
3235		et131x_adapter_setup(adapter);
3236
3237		et131x_disable_txrx(netdev);
3238		et131x_enable_txrx(netdev);
3239	}
3240}
3241
3242static int et131x_mii_probe(struct net_device *netdev)
3243{
3244	struct et131x_adapter *adapter = netdev_priv(netdev);
3245	struct  phy_device *phydev = NULL;
3246
3247	phydev = phy_find_first(adapter->mii_bus);
3248	if (!phydev) {
3249		dev_err(&adapter->pdev->dev, "no PHY found\n");
3250		return -ENODEV;
3251	}
3252
3253	phydev = phy_connect(netdev, phydev_name(phydev),
3254			     &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3255
3256	if (IS_ERR(phydev)) {
3257		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3258		return PTR_ERR(phydev);
3259	}
3260
3261	phydev->supported &= (SUPPORTED_10baseT_Half |
3262			      SUPPORTED_10baseT_Full |
3263			      SUPPORTED_100baseT_Half |
3264			      SUPPORTED_100baseT_Full |
3265			      SUPPORTED_Autoneg |
3266			      SUPPORTED_MII |
3267			      SUPPORTED_TP);
3268
3269	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3270		phydev->supported |= SUPPORTED_1000baseT_Half |
3271				     SUPPORTED_1000baseT_Full;
3272
3273	phydev->advertising = phydev->supported;
3274	phydev->autoneg = AUTONEG_ENABLE;
3275
3276	phy_attached_info(phydev);
3277
3278	return 0;
3279}
3280
3281static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3282						  struct pci_dev *pdev)
3283{
3284	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3285
3286	struct et131x_adapter *adapter;
3287
3288	adapter = netdev_priv(netdev);
3289	adapter->pdev = pci_dev_get(pdev);
3290	adapter->netdev = netdev;
3291
3292	spin_lock_init(&adapter->tcb_send_qlock);
3293	spin_lock_init(&adapter->tcb_ready_qlock);
3294	spin_lock_init(&adapter->rcv_lock);
3295
3296	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
3297
3298	ether_addr_copy(adapter->addr, default_mac);
3299
3300	return adapter;
3301}
3302
3303static void et131x_pci_remove(struct pci_dev *pdev)
3304{
3305	struct net_device *netdev = pci_get_drvdata(pdev);
3306	struct et131x_adapter *adapter = netdev_priv(netdev);
3307
3308	unregister_netdev(netdev);
3309	netif_napi_del(&adapter->napi);
3310	phy_disconnect(netdev->phydev);
3311	mdiobus_unregister(adapter->mii_bus);
3312	mdiobus_free(adapter->mii_bus);
3313
3314	et131x_adapter_memory_free(adapter);
3315	iounmap(adapter->regs);
3316	pci_dev_put(pdev);
3317
3318	free_netdev(netdev);
3319	pci_release_regions(pdev);
3320	pci_disable_device(pdev);
3321}
3322
3323static void et131x_up(struct net_device *netdev)
3324{
3325	et131x_enable_txrx(netdev);
3326	phy_start(netdev->phydev);
3327}
3328
3329static void et131x_down(struct net_device *netdev)
3330{
3331	/* Save the timestamp for the TX watchdog, prevent a timeout */
3332	netif_trans_update(netdev);
3333
3334	phy_stop(netdev->phydev);
3335	et131x_disable_txrx(netdev);
3336}
3337
3338#ifdef CONFIG_PM_SLEEP
3339static int et131x_suspend(struct device *dev)
3340{
3341	struct pci_dev *pdev = to_pci_dev(dev);
3342	struct net_device *netdev = pci_get_drvdata(pdev);
3343
3344	if (netif_running(netdev)) {
3345		netif_device_detach(netdev);
3346		et131x_down(netdev);
3347		pci_save_state(pdev);
3348	}
3349
3350	return 0;
3351}
3352
3353static int et131x_resume(struct device *dev)
3354{
3355	struct pci_dev *pdev = to_pci_dev(dev);
3356	struct net_device *netdev = pci_get_drvdata(pdev);
3357
3358	if (netif_running(netdev)) {
3359		pci_restore_state(pdev);
3360		et131x_up(netdev);
3361		netif_device_attach(netdev);
3362	}
3363
3364	return 0;
3365}
3366#endif
3367
3368static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3369
3370static irqreturn_t et131x_isr(int irq, void *dev_id)
3371{
3372	bool handled = true;
3373	bool enable_interrupts = true;
3374	struct net_device *netdev = dev_id;
3375	struct et131x_adapter *adapter = netdev_priv(netdev);
3376	struct address_map __iomem *iomem = adapter->regs;
3377	struct rx_ring *rx_ring = &adapter->rx_ring;
3378	struct tx_ring *tx_ring = &adapter->tx_ring;
3379	u32 status;
3380
3381	if (!netif_device_present(netdev)) {
3382		handled = false;
3383		enable_interrupts = false;
3384		goto out;
3385	}
3386
3387	et131x_disable_interrupts(adapter);
3388
3389	status = readl(&adapter->regs->global.int_status);
3390
3391	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3392		status &= ~INT_MASK_ENABLE;
3393	else
3394		status &= ~INT_MASK_ENABLE_NO_FLOW;
3395
3396	/* Make sure this is our interrupt */
3397	if (!status) {
3398		handled = false;
3399		et131x_enable_interrupts(adapter);
3400		goto out;
3401	}
3402
3403	/* This is our interrupt, so process accordingly */
3404	if (status & ET_INTR_WATCHDOG) {
3405		struct tcb *tcb = tx_ring->send_head;
3406
3407		if (tcb)
3408			if (++tcb->stale > 1)
3409				status |= ET_INTR_TXDMA_ISR;
3410
3411		if (rx_ring->unfinished_receives)
3412			status |= ET_INTR_RXDMA_XFR_DONE;
3413		else if (tcb == NULL)
3414			writel(0, &adapter->regs->global.watchdog_timer);
3415
3416		status &= ~ET_INTR_WATCHDOG;
3417	}
3418
3419	if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3420		enable_interrupts = false;
3421		napi_schedule(&adapter->napi);
3422	}
3423
3424	status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3425
3426	if (!status)
3427		goto out;
3428
3429	if (status & ET_INTR_TXDMA_ERR) {
3430		/* Following read also clears the register (COR) */
3431		u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3432
3433		dev_warn(&adapter->pdev->dev,
3434			 "TXDMA_ERR interrupt, error = %d\n",
3435			 txdma_err);
3436	}
3437
3438	if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3439		/* This indicates the number of unused buffers in RXDMA free
3440		 * buffer ring 0 is <= the limit you programmed. Free buffer
3441		 * resources need to be returned.  Free buffers are consumed as
3442		 * packets are passed from the network to the host. The host
3443		 * becomes aware of the packets from the contents of the packet
3444		 * status ring. This ring is queried when the packet done
3445		 * interrupt occurs. Packets are then passed to the OS. When
3446		 * the OS is done with the packets the resources can be
3447		 * returned to the ET1310 for re-use. This interrupt is one
3448		 * method of returning resources.
3449		 */
3450
3451		/*  If the user has flow control on, then we will
3452		 * send a pause packet, otherwise just exit
3453		 */
3454		if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3455			u32 pm_csr;
3456
3457			/* Tell the device to send a pause packet via the back
3458			 * pressure register (bp req and bp xon/xoff)
3459			 */
3460			pm_csr = readl(&iomem->global.pm_csr);
3461			if (!et1310_in_phy_coma(adapter))
3462				writel(3, &iomem->txmac.bp_ctrl);
3463		}
3464	}
3465
3466	/* Handle Packet Status Ring Low Interrupt */
3467	if (status & ET_INTR_RXDMA_STAT_LOW) {
3468		/* Same idea as with the two Free Buffer Rings. Packets going
3469		 * from the network to the host each consume a free buffer
3470		 * resource and a packet status resource. These resources are
3471		 * passed to the OS. When the OS is done with the resources,
3472		 * they need to be returned to the ET1310. This is one method
3473		 * of returning the resources.
3474		 */
3475	}
3476
3477	if (status & ET_INTR_RXDMA_ERR) {
3478		/* The rxdma_error interrupt is sent when a time-out on a
3479		 * request issued by the JAGCore has occurred or a completion is
3480		 * returned with an un-successful status. In both cases the
3481		 * request is considered complete. The JAGCore will
3482		 * automatically re-try the request in question. Normally
3483		 * information on events like these are sent to the host using
3484		 * the "Advanced Error Reporting" capability. This interrupt is
3485		 * another way of getting similar information. The only thing
3486		 * required is to clear the interrupt by reading the ISR in the
3487		 * global resources. The JAGCore will do a re-try on the
3488		 * request. Normally you should never see this interrupt. If
3489		 * you start to see this interrupt occurring frequently then
3490		 * something bad has occurred. A reset might be the thing to do.
3491		 */
3492		/* TRAP();*/
3493
3494		dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3495			 readl(&iomem->txmac.tx_test));
3496	}
3497
3498	/* Handle the Wake on LAN Event */
3499	if (status & ET_INTR_WOL) {
3500		/* This is a secondary interrupt for wake on LAN. The driver
3501		 * should never see this, if it does, something serious is
3502		 * wrong.
3503		 */
3504		dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3505	}
3506
3507	if (status & ET_INTR_TXMAC) {
3508		u32 err = readl(&iomem->txmac.err);
3509
3510		/* When any of the errors occur and TXMAC generates an
3511		 * interrupt to report these errors, it usually means that
3512		 * TXMAC has detected an error in the data stream retrieved
3513		 * from the on-chip Tx Q. All of these errors are catastrophic
3514		 * and TXMAC won't be able to recover data when these errors
3515		 * occur. In a nutshell, the whole Tx path will have to be reset
3516		 * and re-configured afterwards.
3517		 */
3518		dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3519			 err);
3520
3521		/* If we are debugging, we want to see this error, otherwise we
3522		 * just want the device to be reset and continue
3523		 */
3524	}
3525
3526	if (status & ET_INTR_RXMAC) {
3527		/* These interrupts are catastrophic to the device, what we need
3528		 * to do is disable the interrupts and set the flag to cause us
3529		 * to reset so we can solve this issue.
3530		 */
3531		dev_warn(&adapter->pdev->dev,
3532			 "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3533			 readl(&iomem->rxmac.err_reg));
3534
3535		dev_warn(&adapter->pdev->dev,
3536			 "Enable 0x%08x, Diag 0x%08x\n",
3537			 readl(&iomem->rxmac.ctrl),
3538			 readl(&iomem->rxmac.rxq_diag));
3539
3540		/* If we are debugging, we want to see this error, otherwise we
3541		 * just want the device to be reset and continue
3542		 */
3543	}
3544
3545	if (status & ET_INTR_MAC_STAT) {
3546		/* This means at least one of the un-masked counters in the
3547		 * MAC_STAT block has rolled over. Use this to maintain the top,
3548		 * software managed bits of the counter(s).
3549		 */
3550		et1310_handle_macstat_interrupt(adapter);
3551	}
3552
3553	if (status & ET_INTR_SLV_TIMEOUT) {
3554		/* This means a timeout has occurred on a read or write request
3555		 * to one of the JAGCore registers. The Global Resources block
3556		 * has terminated the request and on a read request, returned a
3557		 * "fake" value. The most likely reasons are: Bad Address or the
3558		 * addressed module is in a power-down state and can't respond.
3559		 */
3560	}
3561
3562out:
3563	if (enable_interrupts)
3564		et131x_enable_interrupts(adapter);
3565
3566	return IRQ_RETVAL(handled);
3567}
3568
3569static int et131x_poll(struct napi_struct *napi, int budget)
3570{
3571	struct et131x_adapter *adapter =
3572		container_of(napi, struct et131x_adapter, napi);
3573	int work_done = et131x_handle_recv_pkts(adapter, budget);
3574
3575	et131x_handle_send_pkts(adapter);
3576
3577	if (work_done < budget) {
3578		napi_complete(&adapter->napi);
3579		et131x_enable_interrupts(adapter);
3580	}
3581
3582	return work_done;
3583}
3584
3585/* et131x_stats - Return the current device statistics  */
3586static struct net_device_stats *et131x_stats(struct net_device *netdev)
3587{
3588	struct et131x_adapter *adapter = netdev_priv(netdev);
3589	struct net_device_stats *stats = &adapter->netdev->stats;
3590	struct ce_stats *devstat = &adapter->stats;
3591
3592	stats->rx_errors = devstat->rx_length_errs +
3593			   devstat->rx_align_errs +
3594			   devstat->rx_crc_errs +
3595			   devstat->rx_code_violations +
3596			   devstat->rx_other_errs;
3597	stats->tx_errors = devstat->tx_max_pkt_errs;
3598	stats->multicast = devstat->multicast_pkts_rcvd;
3599	stats->collisions = devstat->tx_collisions;
3600
3601	stats->rx_length_errors = devstat->rx_length_errs;
3602	stats->rx_over_errors = devstat->rx_overflows;
3603	stats->rx_crc_errors = devstat->rx_crc_errs;
3604	stats->rx_dropped = devstat->rcvd_pkts_dropped;
3605
3606	/* NOTE: Not used, can't find analogous statistics */
3607	/* stats->rx_frame_errors     = devstat->; */
3608	/* stats->rx_fifo_errors      = devstat->; */
3609	/* stats->rx_missed_errors    = devstat->; */
3610
3611	/* stats->tx_aborted_errors   = devstat->; */
3612	/* stats->tx_carrier_errors   = devstat->; */
3613	/* stats->tx_fifo_errors      = devstat->; */
3614	/* stats->tx_heartbeat_errors = devstat->; */
3615	/* stats->tx_window_errors    = devstat->; */
3616	return stats;
3617}
3618
3619static int et131x_open(struct net_device *netdev)
3620{
3621	struct et131x_adapter *adapter = netdev_priv(netdev);
3622	struct pci_dev *pdev = adapter->pdev;
3623	unsigned int irq = pdev->irq;
3624	int result;
3625
3626	/* Start the timer to track NIC errors */
3627	init_timer(&adapter->error_timer);
3628	adapter->error_timer.expires = jiffies +
3629		msecs_to_jiffies(TX_ERROR_PERIOD);
3630	adapter->error_timer.function = et131x_error_timer_handler;
3631	adapter->error_timer.data = (unsigned long)adapter;
3632	add_timer(&adapter->error_timer);
3633
3634	result = request_irq(irq, et131x_isr,
3635			     IRQF_SHARED, netdev->name, netdev);
3636	if (result) {
3637		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3638		return result;
3639	}
3640
3641	adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3642
3643	napi_enable(&adapter->napi);
3644
3645	et131x_up(netdev);
3646
3647	return result;
3648}
3649
3650static int et131x_close(struct net_device *netdev)
3651{
3652	struct et131x_adapter *adapter = netdev_priv(netdev);
3653
3654	et131x_down(netdev);
3655	napi_disable(&adapter->napi);
3656
3657	adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3658	free_irq(adapter->pdev->irq, netdev);
3659
3660	/* Stop the error timer */
3661	return del_timer_sync(&adapter->error_timer);
3662}
3663
3664static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3665			int cmd)
3666{
3667	if (!netdev->phydev)
3668		return -EINVAL;
3669
3670	return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
3671}
3672
3673/* et131x_set_packet_filter - Configures the Rx Packet filtering */
3674static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3675{
3676	int filter = adapter->packet_filter;
3677	u32 ctrl;
3678	u32 pf_ctrl;
3679
3680	ctrl = readl(&adapter->regs->rxmac.ctrl);
3681	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3682
3683	/* Default to disabled packet filtering */
3684	ctrl |= 0x04;
3685
3686	/* Set us to be in promiscuous mode so we receive everything, this
3687	 * is also true when we get a packet filter of 0
3688	 */
3689	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3690		pf_ctrl &= ~7;	/* Clear filter bits */
3691	else {
3692		/* Set us up with Multicast packet filtering.  Three cases are
3693		 * possible - (1) we have a multi-cast list, (2) we receive ALL
3694		 * multicast entries or (3) we receive none.
3695		 */
3696		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3697			pf_ctrl &= ~2;	/* Multicast filter bit */
3698		else {
3699			et1310_setup_device_for_multicast(adapter);
3700			pf_ctrl |= 2;
3701			ctrl &= ~0x04;
3702		}
3703
3704		/* Set us up with Unicast packet filtering */
3705		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3706			et1310_setup_device_for_unicast(adapter);
3707			pf_ctrl |= 4;
3708			ctrl &= ~0x04;
3709		}
3710
3711		/* Set us up with Broadcast packet filtering */
3712		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3713			pf_ctrl |= 1;	/* Broadcast filter bit */
3714			ctrl &= ~0x04;
3715		} else {
3716			pf_ctrl &= ~1;
3717		}
3718
3719		/* Setup the receive mac configuration registers - Packet
3720		 * Filter control + the enable / disable for packet filter
3721		 * in the control reg.
3722		 */
3723		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3724		writel(ctrl, &adapter->regs->rxmac.ctrl);
3725	}
3726	return 0;
3727}
3728
3729static void et131x_multicast(struct net_device *netdev)
3730{
3731	struct et131x_adapter *adapter = netdev_priv(netdev);
3732	int packet_filter;
3733	struct netdev_hw_addr *ha;
3734	int i;
3735
3736	/* Before we modify the platform-independent filter flags, store them
3737	 * locally. This allows us to determine if anything's changed and if
3738	 * we even need to bother the hardware
3739	 */
3740	packet_filter = adapter->packet_filter;
3741
3742	/* Clear the 'multicast' flag locally; because we only have a single
3743	 * flag to check multicast, and multiple multicast addresses can be
3744	 * set, this is the easiest way to determine if more than one
3745	 * multicast address is being set.
3746	 */
3747	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3748
3749	/* Check the net_device flags and set the device independent flags
3750	 * accordingly
3751	 */
3752	if (netdev->flags & IFF_PROMISC)
3753		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3754	else
3755		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3756
3757	if ((netdev->flags & IFF_ALLMULTI) ||
3758	    (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3759		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3760
3761	if (netdev_mc_count(netdev) < 1) {
3762		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3763		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3764	} else {
3765		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3766	}
3767
3768	/* Set values in the private adapter struct */
3769	i = 0;
3770	netdev_for_each_mc_addr(ha, netdev) {
3771		if (i == NIC_MAX_MCAST_LIST)
3772			break;
3773		ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3774	}
3775	adapter->multicast_addr_count = i;
3776
3777	/* Are the new flags different from the previous ones? If not, then no
3778	 * action is required
3779	 *
3780	 * NOTE - This block will always update the multicast_list with the
3781	 *        hardware, even if the addresses aren't the same.
3782	 */
3783	if (packet_filter != adapter->packet_filter)
3784		et131x_set_packet_filter(adapter);
3785}
3786
3787static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3788{
3789	struct et131x_adapter *adapter = netdev_priv(netdev);
3790	struct tx_ring *tx_ring = &adapter->tx_ring;
3791
 
 
 
 
 
 
 
3792	/* stop the queue if it's getting full */
3793	if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3794		netif_stop_queue(netdev);
3795
3796	/* Save the timestamp for the TX timeout watchdog */
3797	netif_trans_update(netdev);
3798
3799	/* TCB is not available */
3800	if (tx_ring->used >= NUM_TCB)
3801		goto drop_err;
3802
3803	if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3804	    !netif_carrier_ok(netdev))
3805		goto drop_err;
3806
3807	if (send_packet(skb, adapter))
3808		goto drop_err;
3809
3810	return NETDEV_TX_OK;
3811
3812drop_err:
3813	dev_kfree_skb_any(skb);
3814	adapter->netdev->stats.tx_dropped++;
3815	return NETDEV_TX_OK;
3816}
3817
3818/* et131x_tx_timeout - Timeout handler
3819 *
3820 * The handler called when a Tx request times out. The timeout period is
3821 * specified by the 'tx_timeo" element in the net_device structure (see
3822 * et131x_alloc_device() to see how this value is set).
3823 */
3824static void et131x_tx_timeout(struct net_device *netdev)
3825{
3826	struct et131x_adapter *adapter = netdev_priv(netdev);
3827	struct tx_ring *tx_ring = &adapter->tx_ring;
3828	struct tcb *tcb;
3829	unsigned long flags;
3830
3831	/* If the device is closed, ignore the timeout */
3832	if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3833		return;
3834
3835	/* Any nonrecoverable hardware error?
3836	 * Checks adapter->flags for any failure in phy reading
3837	 */
3838	if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3839		return;
3840
3841	/* Hardware failure? */
3842	if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3843		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3844		return;
3845	}
3846
3847	/* Is send stuck? */
3848	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3849	tcb = tx_ring->send_head;
3850	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3851
3852	if (tcb) {
3853		tcb->count++;
3854
3855		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3856			dev_warn(&adapter->pdev->dev,
3857				 "Send stuck - reset. tcb->WrIndex %x\n",
3858				 tcb->index);
3859
3860			adapter->netdev->stats.tx_errors++;
3861
3862			/* perform reset of tx/rx */
3863			et131x_disable_txrx(netdev);
3864			et131x_enable_txrx(netdev);
3865		}
3866	}
3867}
3868
3869static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3870{
3871	int result = 0;
3872	struct et131x_adapter *adapter = netdev_priv(netdev);
3873
3874	et131x_disable_txrx(netdev);
3875
3876	netdev->mtu = new_mtu;
3877
3878	et131x_adapter_memory_free(adapter);
3879
3880	/* Set the config parameter for Jumbo Packet support */
3881	adapter->registry_jumbo_packet = new_mtu + 14;
3882	et131x_soft_reset(adapter);
3883
3884	result = et131x_adapter_memory_alloc(adapter);
3885	if (result != 0) {
3886		dev_warn(&adapter->pdev->dev,
3887			 "Change MTU failed; couldn't re-alloc DMA memory\n");
3888		return result;
3889	}
3890
3891	et131x_init_send(adapter);
3892	et131x_hwaddr_init(adapter);
3893	ether_addr_copy(netdev->dev_addr, adapter->addr);
3894
3895	/* Init the device with the new settings */
3896	et131x_adapter_setup(adapter);
3897	et131x_enable_txrx(netdev);
3898
3899	return result;
3900}
3901
3902static const struct net_device_ops et131x_netdev_ops = {
3903	.ndo_open		= et131x_open,
3904	.ndo_stop		= et131x_close,
3905	.ndo_start_xmit		= et131x_tx,
3906	.ndo_set_rx_mode	= et131x_multicast,
3907	.ndo_tx_timeout		= et131x_tx_timeout,
3908	.ndo_change_mtu		= et131x_change_mtu,
3909	.ndo_set_mac_address	= eth_mac_addr,
3910	.ndo_validate_addr	= eth_validate_addr,
3911	.ndo_get_stats		= et131x_stats,
3912	.ndo_do_ioctl		= et131x_ioctl,
3913};
3914
3915static int et131x_pci_setup(struct pci_dev *pdev,
3916			    const struct pci_device_id *ent)
3917{
3918	struct net_device *netdev;
3919	struct et131x_adapter *adapter;
3920	int rc;
3921
3922	rc = pci_enable_device(pdev);
3923	if (rc < 0) {
3924		dev_err(&pdev->dev, "pci_enable_device() failed\n");
3925		goto out;
3926	}
3927
3928	/* Perform some basic PCI checks */
3929	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3930		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3931		rc = -ENODEV;
3932		goto err_disable;
3933	}
3934
3935	rc = pci_request_regions(pdev, DRIVER_NAME);
3936	if (rc < 0) {
3937		dev_err(&pdev->dev, "Can't get PCI resources\n");
3938		goto err_disable;
3939	}
3940
3941	pci_set_master(pdev);
3942
3943	/* Check the DMA addressing support of this device */
3944	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3945	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3946		dev_err(&pdev->dev, "No usable DMA addressing method\n");
3947		rc = -EIO;
3948		goto err_release_res;
3949	}
3950
3951	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3952	if (!netdev) {
3953		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3954		rc = -ENOMEM;
3955		goto err_release_res;
3956	}
3957
3958	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3959	netdev->netdev_ops     = &et131x_netdev_ops;
3960	netdev->min_mtu        = ET131X_MIN_MTU;
3961	netdev->max_mtu        = ET131X_MAX_MTU;
3962
3963	SET_NETDEV_DEV(netdev, &pdev->dev);
3964	netdev->ethtool_ops = &et131x_ethtool_ops;
3965
3966	adapter = et131x_adapter_init(netdev, pdev);
3967
3968	rc = et131x_pci_init(adapter, pdev);
3969	if (rc < 0)
3970		goto err_free_dev;
3971
3972	/* Map the bus-relative registers to system virtual memory */
3973	adapter->regs = pci_ioremap_bar(pdev, 0);
3974	if (!adapter->regs) {
3975		dev_err(&pdev->dev, "Cannot map device registers\n");
3976		rc = -ENOMEM;
3977		goto err_free_dev;
3978	}
3979
3980	/* If Phy COMA mode was enabled when we went down, disable it here. */
3981	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3982
3983	et131x_soft_reset(adapter);
3984	et131x_disable_interrupts(adapter);
3985
3986	rc = et131x_adapter_memory_alloc(adapter);
3987	if (rc < 0) {
3988		dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3989		goto err_iounmap;
3990	}
3991
3992	et131x_init_send(adapter);
3993
3994	netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3995
3996	ether_addr_copy(netdev->dev_addr, adapter->addr);
3997
3998	rc = -ENOMEM;
3999
4000	adapter->mii_bus = mdiobus_alloc();
4001	if (!adapter->mii_bus) {
4002		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4003		goto err_mem_free;
4004	}
4005
4006	adapter->mii_bus->name = "et131x_eth_mii";
4007	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4008		 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4009	adapter->mii_bus->priv = netdev;
4010	adapter->mii_bus->read = et131x_mdio_read;
4011	adapter->mii_bus->write = et131x_mdio_write;
4012
4013	rc = mdiobus_register(adapter->mii_bus);
4014	if (rc < 0) {
4015		dev_err(&pdev->dev, "failed to register MII bus\n");
4016		goto err_mdio_free;
4017	}
4018
4019	rc = et131x_mii_probe(netdev);
4020	if (rc < 0) {
4021		dev_err(&pdev->dev, "failed to probe MII bus\n");
4022		goto err_mdio_unregister;
4023	}
4024
4025	et131x_adapter_setup(adapter);
4026
4027	/* Init variable for counting how long we do not have link status */
4028	adapter->boot_coma = 0;
4029	et1310_disable_phy_coma(adapter);
4030
4031	/* We can enable interrupts now
4032	 *
4033	 *  NOTE - Because registration of interrupt handler is done in the
4034	 *         device's open(), defer enabling device interrupts to that
4035	 *         point
4036	 */
4037
4038	rc = register_netdev(netdev);
4039	if (rc < 0) {
4040		dev_err(&pdev->dev, "register_netdev() failed\n");
4041		goto err_phy_disconnect;
4042	}
4043
4044	/* Register the net_device struct with the PCI subsystem. Save a copy
4045	 * of the PCI config space for this device now that the device has
4046	 * been initialized, just in case it needs to be quickly restored.
4047	 */
4048	pci_set_drvdata(pdev, netdev);
4049out:
4050	return rc;
4051
4052err_phy_disconnect:
4053	phy_disconnect(netdev->phydev);
4054err_mdio_unregister:
4055	mdiobus_unregister(adapter->mii_bus);
4056err_mdio_free:
4057	mdiobus_free(adapter->mii_bus);
4058err_mem_free:
4059	et131x_adapter_memory_free(adapter);
4060err_iounmap:
4061	iounmap(adapter->regs);
4062err_free_dev:
4063	pci_dev_put(pdev);
4064	free_netdev(netdev);
4065err_release_res:
4066	pci_release_regions(pdev);
4067err_disable:
4068	pci_disable_device(pdev);
4069	goto out;
4070}
4071
4072static const struct pci_device_id et131x_pci_table[] = {
4073	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4074	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4075	{ 0,}
4076};
4077MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4078
4079static struct pci_driver et131x_driver = {
4080	.name		= DRIVER_NAME,
4081	.id_table	= et131x_pci_table,
4082	.probe		= et131x_pci_setup,
4083	.remove		= et131x_pci_remove,
4084	.driver.pm	= &et131x_pm_ops,
4085};
4086
4087module_pci_driver(et131x_driver);