Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/netdevice.h>
  23#include <linux/if_arp.h>
  24#include <linux/workqueue.h>
  25#include <linux/can.h>
  26#include <linux/can/dev.h>
  27#include <linux/can/skb.h>
  28#include <linux/can/netlink.h>
  29#include <linux/can/led.h>
  30#include <net/rtnetlink.h>
  31
  32#define MOD_DESC "CAN device driver interface"
  33
  34MODULE_DESCRIPTION(MOD_DESC);
  35MODULE_LICENSE("GPL v2");
  36MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  37
  38/* CAN DLC to real data length conversion helpers */
  39
  40static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  41			     8, 12, 16, 20, 24, 32, 48, 64};
  42
  43/* get data length from can_dlc with sanitized can_dlc */
  44u8 can_dlc2len(u8 can_dlc)
  45{
  46	return dlc2len[can_dlc & 0x0F];
  47}
  48EXPORT_SYMBOL_GPL(can_dlc2len);
  49
  50static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  51			     9, 9, 9, 9,			/* 9 - 12 */
  52			     10, 10, 10, 10,			/* 13 - 16 */
  53			     11, 11, 11, 11,			/* 17 - 20 */
  54			     12, 12, 12, 12,			/* 21 - 24 */
  55			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  57			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  58			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  59			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  60
  61/* map the sanitized data length to an appropriate data length code */
  62u8 can_len2dlc(u8 len)
  63{
  64	if (unlikely(len > 64))
  65		return 0xF;
  66
  67	return len2dlc[len];
  68}
  69EXPORT_SYMBOL_GPL(can_len2dlc);
  70
  71#ifdef CONFIG_CAN_CALC_BITTIMING
  72#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  73#define CAN_CALC_SYNC_SEG 1
  74
  75/*
  76 * Bit-timing calculation derived from:
  77 *
  78 * Code based on LinCAN sources and H8S2638 project
  79 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  80 * Copyright 2005      Stanislav Marek
  81 * email: pisa@cmp.felk.cvut.cz
  82 *
  83 * Calculates proper bit-timing parameters for a specified bit-rate
  84 * and sample-point, which can then be used to set the bit-timing
  85 * registers of the CAN controller. You can find more information
  86 * in the header file linux/can/netlink.h.
  87 */
  88static int can_update_sample_point(const struct can_bittiming_const *btc,
  89			  unsigned int sample_point_nominal, unsigned int tseg,
  90			  unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
  91			  unsigned int *sample_point_error_ptr)
  92{
  93	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
  94	unsigned int sample_point, best_sample_point = 0;
  95	unsigned int tseg1, tseg2;
  96	int i;
  97
  98	for (i = 0; i <= 1; i++) {
  99		tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
 100		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
 101		tseg1 = tseg - tseg2;
 102		if (tseg1 > btc->tseg1_max) {
 103			tseg1 = btc->tseg1_max;
 104			tseg2 = tseg - tseg1;
 105		}
 106
 107		sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
 108		sample_point_error = abs(sample_point_nominal - sample_point);
 109
 110		if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
 111			best_sample_point = sample_point;
 112			best_sample_point_error = sample_point_error;
 113			*tseg1_ptr = tseg1;
 114			*tseg2_ptr = tseg2;
 115		}
 116	}
 117
 118	if (sample_point_error_ptr)
 119		*sample_point_error_ptr = best_sample_point_error;
 120
 121	return best_sample_point;
 122}
 123
 124static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 125			      const struct can_bittiming_const *btc)
 126{
 127	struct can_priv *priv = netdev_priv(dev);
 128	unsigned int bitrate;			/* current bitrate */
 129	unsigned int bitrate_error;		/* difference between current and nominal value */
 130	unsigned int best_bitrate_error = UINT_MAX;
 131	unsigned int sample_point_error;	/* difference between current and nominal value */
 132	unsigned int best_sample_point_error = UINT_MAX;
 133	unsigned int sample_point_nominal;	/* nominal sample point */
 134	unsigned int best_tseg = 0;		/* current best value for tseg */
 135	unsigned int best_brp = 0;		/* current best value for brp */
 136	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
 137	u64 v64;
 138
 139	/* Use CiA recommended sample points */
 140	if (bt->sample_point) {
 141		sample_point_nominal = bt->sample_point;
 142	} else {
 143		if (bt->bitrate > 800000)
 144			sample_point_nominal = 750;
 145		else if (bt->bitrate > 500000)
 146			sample_point_nominal = 800;
 147		else
 148			sample_point_nominal = 875;
 149	}
 150
 151	/* tseg even = round down, odd = round up */
 152	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 153	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 154		tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
 155
 156		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 157		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 158
 159		/* choose brp step which is possible in system */
 160		brp = (brp / btc->brp_inc) * btc->brp_inc;
 161		if ((brp < btc->brp_min) || (brp > btc->brp_max))
 162			continue;
 163
 164		bitrate = priv->clock.freq / (brp * tsegall);
 165		bitrate_error = abs(bt->bitrate - bitrate);
 166
 167		/* tseg brp biterror */
 168		if (bitrate_error > best_bitrate_error)
 169			continue;
 170
 171		/* reset sample point error if we have a better bitrate */
 172		if (bitrate_error < best_bitrate_error)
 173			best_sample_point_error = UINT_MAX;
 174
 175		can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
 176		if (sample_point_error > best_sample_point_error)
 177			continue;
 178
 179		best_sample_point_error = sample_point_error;
 180		best_bitrate_error = bitrate_error;
 181		best_tseg = tseg / 2;
 182		best_brp = brp;
 183
 184		if (bitrate_error == 0 && sample_point_error == 0)
 185			break;
 186	}
 187
 188	if (best_bitrate_error) {
 189		/* Error in one-tenth of a percent */
 190		v64 = (u64)best_bitrate_error * 1000;
 191		do_div(v64, bt->bitrate);
 192		bitrate_error = (u32)v64;
 193		if (bitrate_error > CAN_CALC_MAX_ERROR) {
 194			netdev_err(dev,
 195				   "bitrate error %d.%d%% too high\n",
 196				   bitrate_error / 10, bitrate_error % 10);
 197			return -EDOM;
 198		}
 199		netdev_warn(dev, "bitrate error %d.%d%%\n",
 200			    bitrate_error / 10, bitrate_error % 10);
 201	}
 202
 203	/* real sample point */
 204	bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
 205					  &tseg1, &tseg2, NULL);
 206
 207	v64 = (u64)best_brp * 1000 * 1000 * 1000;
 208	do_div(v64, priv->clock.freq);
 209	bt->tq = (u32)v64;
 210	bt->prop_seg = tseg1 / 2;
 211	bt->phase_seg1 = tseg1 - bt->prop_seg;
 212	bt->phase_seg2 = tseg2;
 213
 214	/* check for sjw user settings */
 215	if (!bt->sjw || !btc->sjw_max) {
 216		bt->sjw = 1;
 217	} else {
 218		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 219		if (bt->sjw > btc->sjw_max)
 220			bt->sjw = btc->sjw_max;
 221		/* bt->sjw must not be higher than tseg2 */
 222		if (tseg2 < bt->sjw)
 223			bt->sjw = tseg2;
 224	}
 225
 226	bt->brp = best_brp;
 227
 228	/* real bitrate */
 229	bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
 230
 231	return 0;
 232}
 233#else /* !CONFIG_CAN_CALC_BITTIMING */
 234static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 235			      const struct can_bittiming_const *btc)
 236{
 237	netdev_err(dev, "bit-timing calculation not available\n");
 238	return -EINVAL;
 239}
 240#endif /* CONFIG_CAN_CALC_BITTIMING */
 241
 242/*
 243 * Checks the validity of the specified bit-timing parameters prop_seg,
 244 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 245 * prescaler value brp. You can find more information in the header
 246 * file linux/can/netlink.h.
 247 */
 248static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 249			       const struct can_bittiming_const *btc)
 250{
 251	struct can_priv *priv = netdev_priv(dev);
 252	int tseg1, alltseg;
 253	u64 brp64;
 254
 255	tseg1 = bt->prop_seg + bt->phase_seg1;
 256	if (!bt->sjw)
 257		bt->sjw = 1;
 258	if (bt->sjw > btc->sjw_max ||
 259	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 260	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 261		return -ERANGE;
 262
 263	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 264	if (btc->brp_inc > 1)
 265		do_div(brp64, btc->brp_inc);
 266	brp64 += 500000000UL - 1;
 267	do_div(brp64, 1000000000UL); /* the practicable BRP */
 268	if (btc->brp_inc > 1)
 269		brp64 *= btc->brp_inc;
 270	bt->brp = (u32)brp64;
 271
 272	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 273		return -EINVAL;
 274
 275	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 276	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 277	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 278
 279	return 0;
 280}
 281
 282static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 283			     const struct can_bittiming_const *btc)
 284{
 285	int err;
 286
 287	/* Check if the CAN device has bit-timing parameters */
 288	if (!btc)
 289		return -EOPNOTSUPP;
 290
 291	/*
 292	 * Depending on the given can_bittiming parameter structure the CAN
 293	 * timing parameters are calculated based on the provided bitrate OR
 294	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 295	 * provided directly which are then checked and fixed up.
 296	 */
 297	if (!bt->tq && bt->bitrate)
 298		err = can_calc_bittiming(dev, bt, btc);
 299	else if (bt->tq && !bt->bitrate)
 300		err = can_fixup_bittiming(dev, bt, btc);
 301	else
 302		err = -EINVAL;
 303
 304	return err;
 305}
 306
 307static void can_update_state_error_stats(struct net_device *dev,
 308					 enum can_state new_state)
 309{
 310	struct can_priv *priv = netdev_priv(dev);
 311
 312	if (new_state <= priv->state)
 313		return;
 314
 315	switch (new_state) {
 316	case CAN_STATE_ERROR_WARNING:
 317		priv->can_stats.error_warning++;
 318		break;
 319	case CAN_STATE_ERROR_PASSIVE:
 320		priv->can_stats.error_passive++;
 321		break;
 322	case CAN_STATE_BUS_OFF:
 323		priv->can_stats.bus_off++;
 324		break;
 325	default:
 326		break;
 327	}
 328}
 329
 330static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 331{
 332	switch (state) {
 333	case CAN_STATE_ERROR_ACTIVE:
 334		return CAN_ERR_CRTL_ACTIVE;
 335	case CAN_STATE_ERROR_WARNING:
 336		return CAN_ERR_CRTL_TX_WARNING;
 337	case CAN_STATE_ERROR_PASSIVE:
 338		return CAN_ERR_CRTL_TX_PASSIVE;
 339	default:
 340		return 0;
 341	}
 342}
 343
 344static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 345{
 346	switch (state) {
 347	case CAN_STATE_ERROR_ACTIVE:
 348		return CAN_ERR_CRTL_ACTIVE;
 349	case CAN_STATE_ERROR_WARNING:
 350		return CAN_ERR_CRTL_RX_WARNING;
 351	case CAN_STATE_ERROR_PASSIVE:
 352		return CAN_ERR_CRTL_RX_PASSIVE;
 353	default:
 354		return 0;
 355	}
 356}
 357
 358void can_change_state(struct net_device *dev, struct can_frame *cf,
 359		      enum can_state tx_state, enum can_state rx_state)
 360{
 361	struct can_priv *priv = netdev_priv(dev);
 362	enum can_state new_state = max(tx_state, rx_state);
 363
 364	if (unlikely(new_state == priv->state)) {
 365		netdev_warn(dev, "%s: oops, state did not change", __func__);
 366		return;
 367	}
 368
 369	netdev_dbg(dev, "New error state: %d\n", new_state);
 370
 371	can_update_state_error_stats(dev, new_state);
 372	priv->state = new_state;
 373
 374	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 375		cf->can_id |= CAN_ERR_BUSOFF;
 376		return;
 377	}
 378
 379	cf->can_id |= CAN_ERR_CRTL;
 380	cf->data[1] |= tx_state >= rx_state ?
 381		       can_tx_state_to_frame(dev, tx_state) : 0;
 382	cf->data[1] |= tx_state <= rx_state ?
 383		       can_rx_state_to_frame(dev, rx_state) : 0;
 384}
 385EXPORT_SYMBOL_GPL(can_change_state);
 386
 387/*
 388 * Local echo of CAN messages
 389 *
 390 * CAN network devices *should* support a local echo functionality
 391 * (see Documentation/networking/can.txt). To test the handling of CAN
 392 * interfaces that do not support the local echo both driver types are
 393 * implemented. In the case that the driver does not support the echo
 394 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 395 * to perform the echo as a fallback solution.
 396 */
 397static void can_flush_echo_skb(struct net_device *dev)
 398{
 399	struct can_priv *priv = netdev_priv(dev);
 400	struct net_device_stats *stats = &dev->stats;
 401	int i;
 402
 403	for (i = 0; i < priv->echo_skb_max; i++) {
 404		if (priv->echo_skb[i]) {
 405			kfree_skb(priv->echo_skb[i]);
 406			priv->echo_skb[i] = NULL;
 407			stats->tx_dropped++;
 408			stats->tx_aborted_errors++;
 409		}
 410	}
 411}
 412
 413/*
 414 * Put the skb on the stack to be looped backed locally lateron
 415 *
 416 * The function is typically called in the start_xmit function
 417 * of the device driver. The driver must protect access to
 418 * priv->echo_skb, if necessary.
 419 */
 420void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 421		      unsigned int idx)
 422{
 423	struct can_priv *priv = netdev_priv(dev);
 424
 425	BUG_ON(idx >= priv->echo_skb_max);
 426
 427	/* check flag whether this packet has to be looped back */
 428	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 429	    (skb->protocol != htons(ETH_P_CAN) &&
 430	     skb->protocol != htons(ETH_P_CANFD))) {
 431		kfree_skb(skb);
 432		return;
 433	}
 434
 435	if (!priv->echo_skb[idx]) {
 436
 437		skb = can_create_echo_skb(skb);
 438		if (!skb)
 439			return;
 440
 441		/* make settings for echo to reduce code in irq context */
 442		skb->pkt_type = PACKET_BROADCAST;
 443		skb->ip_summed = CHECKSUM_UNNECESSARY;
 444		skb->dev = dev;
 445
 446		/* save this skb for tx interrupt echo handling */
 447		priv->echo_skb[idx] = skb;
 448	} else {
 449		/* locking problem with netif_stop_queue() ?? */
 450		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 451		kfree_skb(skb);
 452	}
 453}
 454EXPORT_SYMBOL_GPL(can_put_echo_skb);
 455
 456/*
 457 * Get the skb from the stack and loop it back locally
 458 *
 459 * The function is typically called when the TX done interrupt
 460 * is handled in the device driver. The driver must protect
 461 * access to priv->echo_skb, if necessary.
 462 */
 463unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 464{
 465	struct can_priv *priv = netdev_priv(dev);
 466
 467	BUG_ON(idx >= priv->echo_skb_max);
 468
 469	if (priv->echo_skb[idx]) {
 470		struct sk_buff *skb = priv->echo_skb[idx];
 471		struct can_frame *cf = (struct can_frame *)skb->data;
 472		u8 dlc = cf->can_dlc;
 473
 474		netif_rx(priv->echo_skb[idx]);
 475		priv->echo_skb[idx] = NULL;
 476
 477		return dlc;
 478	}
 479
 480	return 0;
 481}
 482EXPORT_SYMBOL_GPL(can_get_echo_skb);
 483
 484/*
 485  * Remove the skb from the stack and free it.
 486  *
 487  * The function is typically called when TX failed.
 488  */
 489void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 490{
 491	struct can_priv *priv = netdev_priv(dev);
 492
 493	BUG_ON(idx >= priv->echo_skb_max);
 494
 495	if (priv->echo_skb[idx]) {
 496		dev_kfree_skb_any(priv->echo_skb[idx]);
 497		priv->echo_skb[idx] = NULL;
 498	}
 499}
 500EXPORT_SYMBOL_GPL(can_free_echo_skb);
 501
 502/*
 503 * CAN device restart for bus-off recovery
 504 */
 505static void can_restart(struct net_device *dev)
 506{
 507	struct can_priv *priv = netdev_priv(dev);
 508	struct net_device_stats *stats = &dev->stats;
 509	struct sk_buff *skb;
 510	struct can_frame *cf;
 511	int err;
 512
 513	BUG_ON(netif_carrier_ok(dev));
 514
 515	/*
 516	 * No synchronization needed because the device is bus-off and
 517	 * no messages can come in or go out.
 518	 */
 519	can_flush_echo_skb(dev);
 520
 521	/* send restart message upstream */
 522	skb = alloc_can_err_skb(dev, &cf);
 523	if (skb == NULL) {
 524		err = -ENOMEM;
 525		goto restart;
 526	}
 527	cf->can_id |= CAN_ERR_RESTARTED;
 528
 529	netif_rx(skb);
 530
 531	stats->rx_packets++;
 532	stats->rx_bytes += cf->can_dlc;
 533
 534restart:
 535	netdev_dbg(dev, "restarted\n");
 536	priv->can_stats.restarts++;
 537
 538	/* Now restart the device */
 539	err = priv->do_set_mode(dev, CAN_MODE_START);
 540
 541	netif_carrier_on(dev);
 542	if (err)
 543		netdev_err(dev, "Error %d during restart", err);
 544}
 545
 546static void can_restart_work(struct work_struct *work)
 547{
 548	struct delayed_work *dwork = to_delayed_work(work);
 549	struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
 550
 551	can_restart(priv->dev);
 552}
 553
 554int can_restart_now(struct net_device *dev)
 555{
 556	struct can_priv *priv = netdev_priv(dev);
 557
 558	/*
 559	 * A manual restart is only permitted if automatic restart is
 560	 * disabled and the device is in the bus-off state
 561	 */
 562	if (priv->restart_ms)
 563		return -EINVAL;
 564	if (priv->state != CAN_STATE_BUS_OFF)
 565		return -EBUSY;
 566
 567	cancel_delayed_work_sync(&priv->restart_work);
 568	can_restart(dev);
 569
 570	return 0;
 571}
 572
 573/*
 574 * CAN bus-off
 575 *
 576 * This functions should be called when the device goes bus-off to
 577 * tell the netif layer that no more packets can be sent or received.
 578 * If enabled, a timer is started to trigger bus-off recovery.
 579 */
 580void can_bus_off(struct net_device *dev)
 581{
 582	struct can_priv *priv = netdev_priv(dev);
 583
 584	netdev_dbg(dev, "bus-off\n");
 585
 586	netif_carrier_off(dev);
 587
 588	if (priv->restart_ms)
 589		schedule_delayed_work(&priv->restart_work,
 590				      msecs_to_jiffies(priv->restart_ms));
 591}
 592EXPORT_SYMBOL_GPL(can_bus_off);
 593
 594static void can_setup(struct net_device *dev)
 595{
 596	dev->type = ARPHRD_CAN;
 597	dev->mtu = CAN_MTU;
 598	dev->hard_header_len = 0;
 599	dev->addr_len = 0;
 600	dev->tx_queue_len = 10;
 601
 602	/* New-style flags. */
 603	dev->flags = IFF_NOARP;
 604	dev->features = NETIF_F_HW_CSUM;
 605}
 606
 607struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 608{
 609	struct sk_buff *skb;
 610
 611	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 612			       sizeof(struct can_frame));
 613	if (unlikely(!skb))
 614		return NULL;
 615
 616	skb->protocol = htons(ETH_P_CAN);
 617	skb->pkt_type = PACKET_BROADCAST;
 618	skb->ip_summed = CHECKSUM_UNNECESSARY;
 619
 620	skb_reset_mac_header(skb);
 621	skb_reset_network_header(skb);
 622	skb_reset_transport_header(skb);
 623
 624	can_skb_reserve(skb);
 625	can_skb_prv(skb)->ifindex = dev->ifindex;
 626	can_skb_prv(skb)->skbcnt = 0;
 627
 628	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
 629	memset(*cf, 0, sizeof(struct can_frame));
 630
 631	return skb;
 632}
 633EXPORT_SYMBOL_GPL(alloc_can_skb);
 634
 635struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 636				struct canfd_frame **cfd)
 637{
 638	struct sk_buff *skb;
 639
 640	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 641			       sizeof(struct canfd_frame));
 642	if (unlikely(!skb))
 643		return NULL;
 644
 645	skb->protocol = htons(ETH_P_CANFD);
 646	skb->pkt_type = PACKET_BROADCAST;
 647	skb->ip_summed = CHECKSUM_UNNECESSARY;
 648
 649	skb_reset_mac_header(skb);
 650	skb_reset_network_header(skb);
 651	skb_reset_transport_header(skb);
 652
 653	can_skb_reserve(skb);
 654	can_skb_prv(skb)->ifindex = dev->ifindex;
 655	can_skb_prv(skb)->skbcnt = 0;
 656
 657	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
 658	memset(*cfd, 0, sizeof(struct canfd_frame));
 659
 660	return skb;
 661}
 662EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 663
 664struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 665{
 666	struct sk_buff *skb;
 667
 668	skb = alloc_can_skb(dev, cf);
 669	if (unlikely(!skb))
 670		return NULL;
 671
 672	(*cf)->can_id = CAN_ERR_FLAG;
 673	(*cf)->can_dlc = CAN_ERR_DLC;
 674
 675	return skb;
 676}
 677EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 678
 679/*
 680 * Allocate and setup space for the CAN network device
 681 */
 682struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 683{
 684	struct net_device *dev;
 685	struct can_priv *priv;
 686	int size;
 687
 688	if (echo_skb_max)
 689		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 690			echo_skb_max * sizeof(struct sk_buff *);
 691	else
 692		size = sizeof_priv;
 693
 694	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 695	if (!dev)
 696		return NULL;
 697
 698	priv = netdev_priv(dev);
 699	priv->dev = dev;
 700
 701	if (echo_skb_max) {
 702		priv->echo_skb_max = echo_skb_max;
 703		priv->echo_skb = (void *)priv +
 704			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 705	}
 706
 707	priv->state = CAN_STATE_STOPPED;
 708
 709	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
 710
 711	return dev;
 712}
 713EXPORT_SYMBOL_GPL(alloc_candev);
 714
 715/*
 716 * Free space of the CAN network device
 717 */
 718void free_candev(struct net_device *dev)
 719{
 720	free_netdev(dev);
 721}
 722EXPORT_SYMBOL_GPL(free_candev);
 723
 724/*
 725 * changing MTU and control mode for CAN/CANFD devices
 726 */
 727int can_change_mtu(struct net_device *dev, int new_mtu)
 728{
 729	struct can_priv *priv = netdev_priv(dev);
 730
 731	/* Do not allow changing the MTU while running */
 732	if (dev->flags & IFF_UP)
 733		return -EBUSY;
 734
 735	/* allow change of MTU according to the CANFD ability of the device */
 736	switch (new_mtu) {
 737	case CAN_MTU:
 738		/* 'CANFD-only' controllers can not switch to CAN_MTU */
 739		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
 740			return -EINVAL;
 741
 742		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 743		break;
 744
 745	case CANFD_MTU:
 746		/* check for potential CANFD ability */
 747		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
 748		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
 749			return -EINVAL;
 750
 751		priv->ctrlmode |= CAN_CTRLMODE_FD;
 752		break;
 753
 754	default:
 755		return -EINVAL;
 756	}
 757
 758	dev->mtu = new_mtu;
 759	return 0;
 760}
 761EXPORT_SYMBOL_GPL(can_change_mtu);
 762
 763/*
 764 * Common open function when the device gets opened.
 765 *
 766 * This function should be called in the open function of the device
 767 * driver.
 768 */
 769int open_candev(struct net_device *dev)
 770{
 771	struct can_priv *priv = netdev_priv(dev);
 772
 773	if (!priv->bittiming.bitrate) {
 774		netdev_err(dev, "bit-timing not yet defined\n");
 775		return -EINVAL;
 776	}
 777
 778	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 779	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 780	    (!priv->data_bittiming.bitrate ||
 781	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 782		netdev_err(dev, "incorrect/missing data bit-timing\n");
 783		return -EINVAL;
 784	}
 785
 786	/* Switch carrier on if device was stopped while in bus-off state */
 787	if (!netif_carrier_ok(dev))
 788		netif_carrier_on(dev);
 789
 790	return 0;
 791}
 792EXPORT_SYMBOL_GPL(open_candev);
 793
 794/*
 795 * Common close function for cleanup before the device gets closed.
 796 *
 797 * This function should be called in the close function of the device
 798 * driver.
 799 */
 800void close_candev(struct net_device *dev)
 801{
 802	struct can_priv *priv = netdev_priv(dev);
 803
 804	cancel_delayed_work_sync(&priv->restart_work);
 805	can_flush_echo_skb(dev);
 806}
 807EXPORT_SYMBOL_GPL(close_candev);
 808
 809/*
 810 * CAN netlink interface
 811 */
 812static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 813	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 814	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 815	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 816	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 817	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 818	[IFLA_CAN_BITTIMING_CONST]
 819				= { .len = sizeof(struct can_bittiming_const) },
 820	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 821	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 822	[IFLA_CAN_DATA_BITTIMING]
 823				= { .len = sizeof(struct can_bittiming) },
 824	[IFLA_CAN_DATA_BITTIMING_CONST]
 825				= { .len = sizeof(struct can_bittiming_const) },
 826};
 827
 828static int can_validate(struct nlattr *tb[], struct nlattr *data[])
 829{
 830	bool is_can_fd = false;
 831
 832	/* Make sure that valid CAN FD configurations always consist of
 833	 * - nominal/arbitration bittiming
 834	 * - data bittiming
 835	 * - control mode with CAN_CTRLMODE_FD set
 836	 */
 837
 838	if (!data)
 839		return 0;
 840
 841	if (data[IFLA_CAN_CTRLMODE]) {
 842		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 843
 844		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
 845	}
 846
 847	if (is_can_fd) {
 848		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
 849			return -EOPNOTSUPP;
 850	}
 851
 852	if (data[IFLA_CAN_DATA_BITTIMING]) {
 853		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
 854			return -EOPNOTSUPP;
 855	}
 856
 857	return 0;
 858}
 859
 860static int can_changelink(struct net_device *dev,
 861			  struct nlattr *tb[], struct nlattr *data[])
 862{
 863	struct can_priv *priv = netdev_priv(dev);
 864	int err;
 865
 866	/* We need synchronization with dev->stop() */
 867	ASSERT_RTNL();
 868
 869	if (data[IFLA_CAN_BITTIMING]) {
 870		struct can_bittiming bt;
 871
 872		/* Do not allow changing bittiming while running */
 873		if (dev->flags & IFF_UP)
 874			return -EBUSY;
 875		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 876		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
 877		if (err)
 878			return err;
 879		memcpy(&priv->bittiming, &bt, sizeof(bt));
 880
 881		if (priv->do_set_bittiming) {
 882			/* Finally, set the bit-timing registers */
 883			err = priv->do_set_bittiming(dev);
 884			if (err)
 885				return err;
 886		}
 887	}
 888
 889	if (data[IFLA_CAN_CTRLMODE]) {
 890		struct can_ctrlmode *cm;
 891		u32 ctrlstatic;
 892		u32 maskedflags;
 893
 894		/* Do not allow changing controller mode while running */
 895		if (dev->flags & IFF_UP)
 896			return -EBUSY;
 897		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 898		ctrlstatic = priv->ctrlmode_static;
 899		maskedflags = cm->flags & cm->mask;
 900
 901		/* check whether provided bits are allowed to be passed */
 902		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
 903			return -EOPNOTSUPP;
 904
 905		/* do not check for static fd-non-iso if 'fd' is disabled */
 906		if (!(maskedflags & CAN_CTRLMODE_FD))
 907			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
 908
 909		/* make sure static options are provided by configuration */
 910		if ((maskedflags & ctrlstatic) != ctrlstatic)
 911			return -EOPNOTSUPP;
 912
 913		/* clear bits to be modified and copy the flag values */
 914		priv->ctrlmode &= ~cm->mask;
 915		priv->ctrlmode |= maskedflags;
 916
 917		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
 918		if (priv->ctrlmode & CAN_CTRLMODE_FD)
 919			dev->mtu = CANFD_MTU;
 920		else
 921			dev->mtu = CAN_MTU;
 922	}
 923
 924	if (data[IFLA_CAN_RESTART_MS]) {
 925		/* Do not allow changing restart delay while running */
 926		if (dev->flags & IFF_UP)
 927			return -EBUSY;
 928		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 929	}
 930
 931	if (data[IFLA_CAN_RESTART]) {
 932		/* Do not allow a restart while not running */
 933		if (!(dev->flags & IFF_UP))
 934			return -EINVAL;
 935		err = can_restart_now(dev);
 936		if (err)
 937			return err;
 938	}
 939
 940	if (data[IFLA_CAN_DATA_BITTIMING]) {
 941		struct can_bittiming dbt;
 942
 943		/* Do not allow changing bittiming while running */
 944		if (dev->flags & IFF_UP)
 945			return -EBUSY;
 946		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
 947		       sizeof(dbt));
 948		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
 949		if (err)
 950			return err;
 951		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
 952
 953		if (priv->do_set_data_bittiming) {
 954			/* Finally, set the bit-timing registers */
 955			err = priv->do_set_data_bittiming(dev);
 956			if (err)
 957				return err;
 958		}
 959	}
 960
 961	return 0;
 962}
 963
 964static size_t can_get_size(const struct net_device *dev)
 965{
 966	struct can_priv *priv = netdev_priv(dev);
 967	size_t size = 0;
 968
 969	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
 970		size += nla_total_size(sizeof(struct can_bittiming));
 971	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
 972		size += nla_total_size(sizeof(struct can_bittiming_const));
 973	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
 974	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
 975	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
 976	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
 977	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
 978		size += nla_total_size(sizeof(struct can_berr_counter));
 979	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
 980		size += nla_total_size(sizeof(struct can_bittiming));
 981	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
 982		size += nla_total_size(sizeof(struct can_bittiming_const));
 983
 984	return size;
 985}
 986
 987static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
 988{
 989	struct can_priv *priv = netdev_priv(dev);
 990	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
 991	struct can_berr_counter bec;
 992	enum can_state state = priv->state;
 993
 994	if (priv->do_get_state)
 995		priv->do_get_state(dev, &state);
 996
 997	if ((priv->bittiming.bitrate &&
 998	     nla_put(skb, IFLA_CAN_BITTIMING,
 999		     sizeof(priv->bittiming), &priv->bittiming)) ||
1000
1001	    (priv->bittiming_const &&
1002	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1003		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1004
1005	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1006	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1007	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1008	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1009
1010	    (priv->do_get_berr_counter &&
1011	     !priv->do_get_berr_counter(dev, &bec) &&
1012	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1013
1014	    (priv->data_bittiming.bitrate &&
1015	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1016		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1017
1018	    (priv->data_bittiming_const &&
1019	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1020		     sizeof(*priv->data_bittiming_const),
1021		     priv->data_bittiming_const)))
1022		return -EMSGSIZE;
1023
1024	return 0;
1025}
1026
1027static size_t can_get_xstats_size(const struct net_device *dev)
1028{
1029	return sizeof(struct can_device_stats);
1030}
1031
1032static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1033{
1034	struct can_priv *priv = netdev_priv(dev);
1035
1036	if (nla_put(skb, IFLA_INFO_XSTATS,
1037		    sizeof(priv->can_stats), &priv->can_stats))
1038		goto nla_put_failure;
1039	return 0;
1040
1041nla_put_failure:
1042	return -EMSGSIZE;
1043}
1044
1045static int can_newlink(struct net *src_net, struct net_device *dev,
1046		       struct nlattr *tb[], struct nlattr *data[])
1047{
1048	return -EOPNOTSUPP;
1049}
1050
1051static void can_dellink(struct net_device *dev, struct list_head *head)
1052{
1053	return;
1054}
1055
1056static struct rtnl_link_ops can_link_ops __read_mostly = {
1057	.kind		= "can",
1058	.maxtype	= IFLA_CAN_MAX,
1059	.policy		= can_policy,
1060	.setup		= can_setup,
1061	.validate	= can_validate,
1062	.newlink	= can_newlink,
1063	.changelink	= can_changelink,
1064	.dellink	= can_dellink,
1065	.get_size	= can_get_size,
1066	.fill_info	= can_fill_info,
1067	.get_xstats_size = can_get_xstats_size,
1068	.fill_xstats	= can_fill_xstats,
1069};
1070
1071/*
1072 * Register the CAN network device
1073 */
1074int register_candev(struct net_device *dev)
1075{
1076	dev->rtnl_link_ops = &can_link_ops;
1077	return register_netdev(dev);
1078}
1079EXPORT_SYMBOL_GPL(register_candev);
1080
1081/*
1082 * Unregister the CAN network device
1083 */
1084void unregister_candev(struct net_device *dev)
1085{
1086	unregister_netdev(dev);
1087}
1088EXPORT_SYMBOL_GPL(unregister_candev);
1089
1090/*
1091 * Test if a network device is a candev based device
1092 * and return the can_priv* if so.
1093 */
1094struct can_priv *safe_candev_priv(struct net_device *dev)
1095{
1096	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1097		return NULL;
1098
1099	return netdev_priv(dev);
1100}
1101EXPORT_SYMBOL_GPL(safe_candev_priv);
1102
1103static __init int can_dev_init(void)
1104{
1105	int err;
1106
1107	can_led_notifier_init();
1108
1109	err = rtnl_link_register(&can_link_ops);
1110	if (!err)
1111		printk(KERN_INFO MOD_DESC "\n");
1112
1113	return err;
1114}
1115module_init(can_dev_init);
1116
1117static __exit void can_dev_exit(void)
1118{
1119	rtnl_link_unregister(&can_link_ops);
1120
1121	can_led_notifier_exit();
1122}
1123module_exit(can_dev_exit);
1124
1125MODULE_ALIAS_RTNL_LINK("can");