Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2005, Intec Automation Inc.
   4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   5 */
   6
   7#include <linux/bitfield.h>
   8#include <linux/mtd/spi-nor.h>
   9#include <linux/slab.h>
  10#include <linux/sort.h>
  11
  12#include "core.h"
  13
  14#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
  15#define SFDP_PARAM_HEADER_PTP(p) \
  16	(((p)->parameter_table_pointer[2] << 16) | \
  17	 ((p)->parameter_table_pointer[1] <<  8) | \
  18	 ((p)->parameter_table_pointer[0] <<  0))
  19#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
  20
  21#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
  22#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
  23#define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
  24#define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
  25#define SFDP_SCCR_MAP_ID	0xff87	/*
  26					 * Status, Control and Configuration
  27					 * Register Map.
  28					 */
  29#define SFDP_SCCR_MAP_MC_ID	0xff88	/*
  30					 * Status, Control and Configuration
  31					 * Register Map Offsets for Multi-Chip
  32					 * SPI Memory Devices.
  33					 */
  34
  35#define SFDP_SIGNATURE		0x50444653U
  36
  37struct sfdp_header {
  38	u32		signature; /* Ox50444653U <=> "SFDP" */
  39	u8		minor;
  40	u8		major;
  41	u8		nph; /* 0-base number of parameter headers */
  42	u8		unused;
  43
  44	/* Basic Flash Parameter Table. */
  45	struct sfdp_parameter_header	bfpt_header;
  46};
  47
  48/* Fast Read settings. */
  49struct sfdp_bfpt_read {
  50	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
  51	u32			hwcaps;
  52
  53	/*
  54	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
  55	 * whether the Fast Read x-y-z command is supported.
  56	 */
  57	u32			supported_dword;
  58	u32			supported_bit;
  59
  60	/*
  61	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
  62	 * encodes the op code, the number of mode clocks and the number of wait
  63	 * states to be used by Fast Read x-y-z command.
  64	 */
  65	u32			settings_dword;
  66	u32			settings_shift;
  67
  68	/* The SPI protocol for this Fast Read x-y-z command. */
  69	enum spi_nor_protocol	proto;
  70};
  71
  72struct sfdp_bfpt_erase {
  73	/*
  74	 * The half-word at offset <shift> in DWORD <dword> encodes the
  75	 * op code and erase sector size to be used by Sector Erase commands.
  76	 */
  77	u32			dword;
  78	u32			shift;
  79};
  80
  81#define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
  82#define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
  83#define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
  84#define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
  85#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
  86
  87#define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
  88#define SMPT_CMD_READ_DUMMY_SHIFT		16
  89#define SMPT_CMD_READ_DUMMY(_cmd) \
  90	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
  91#define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
  92
  93#define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
  94#define SMPT_CMD_READ_DATA_SHIFT		24
  95#define SMPT_CMD_READ_DATA(_cmd) \
  96	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
  97
  98#define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
  99#define SMPT_CMD_OPCODE_SHIFT			8
 100#define SMPT_CMD_OPCODE(_cmd) \
 101	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
 102
 103#define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
 104#define SMPT_MAP_REGION_COUNT_SHIFT		16
 105#define SMPT_MAP_REGION_COUNT(_header) \
 106	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
 107	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
 108
 109#define SMPT_MAP_ID_MASK			GENMASK(15, 8)
 110#define SMPT_MAP_ID_SHIFT			8
 111#define SMPT_MAP_ID(_header) \
 112	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
 113
 114#define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
 115#define SMPT_MAP_REGION_SIZE_SHIFT		8
 116#define SMPT_MAP_REGION_SIZE(_region) \
 117	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
 118	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
 119
 120#define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
 121#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
 122	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
 123
 124#define SMPT_DESC_TYPE_MAP			BIT(1)
 125#define SMPT_DESC_END				BIT(0)
 126
 127#define SFDP_4BAIT_DWORD_MAX	2
 128
 129struct sfdp_4bait {
 130	/* The hardware capability. */
 131	u32		hwcaps;
 132
 133	/*
 134	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
 135	 * the associated 4-byte address op code is supported.
 136	 */
 137	u32		supported_bit;
 138};
 139
 140/**
 141 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
 142 *			addr_nbytes and read_dummy members of the struct spi_nor
 143 *			should be previously set.
 144 * @nor:	pointer to a 'struct spi_nor'
 145 * @addr:	offset in the serial flash memory
 146 * @len:	number of bytes to read
 147 * @buf:	buffer where the data is copied into (dma-safe memory)
 148 *
 149 * Return: 0 on success, -errno otherwise.
 150 */
 151static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
 152{
 153	ssize_t ret;
 154
 155	while (len) {
 156		ret = spi_nor_read_data(nor, addr, len, buf);
 157		if (ret < 0)
 158			return ret;
 159		if (!ret || ret > len)
 160			return -EIO;
 161
 162		buf += ret;
 163		addr += ret;
 164		len -= ret;
 165	}
 166	return 0;
 167}
 168
 169/**
 170 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 171 * @nor:	pointer to a 'struct spi_nor'
 172 * @addr:	offset in the SFDP area to start reading data from
 173 * @len:	number of bytes to read
 174 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
 175 *
 176 * Whatever the actual numbers of bytes for address and dummy cycles are
 177 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 178 * followed by a 3-byte address and 8 dummy clock cycles.
 179 *
 180 * Return: 0 on success, -errno otherwise.
 181 */
 182static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
 183			     size_t len, void *buf)
 184{
 185	u8 addr_nbytes, read_opcode, read_dummy;
 186	int ret;
 187
 188	read_opcode = nor->read_opcode;
 189	addr_nbytes = nor->addr_nbytes;
 190	read_dummy = nor->read_dummy;
 191
 192	nor->read_opcode = SPINOR_OP_RDSFDP;
 193	nor->addr_nbytes = 3;
 194	nor->read_dummy = 8;
 195
 196	ret = spi_nor_read_raw(nor, addr, len, buf);
 197
 198	nor->read_opcode = read_opcode;
 199	nor->addr_nbytes = addr_nbytes;
 200	nor->read_dummy = read_dummy;
 201
 202	return ret;
 203}
 204
 205/**
 206 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 207 * @nor:	pointer to a 'struct spi_nor'
 208 * @addr:	offset in the SFDP area to start reading data from
 209 * @len:	number of bytes to read
 210 * @buf:	buffer where the SFDP data are copied into
 211 *
 212 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 213 * guaranteed to be dma-safe.
 214 *
 215 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 216 *          otherwise.
 217 */
 218static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
 219					size_t len, void *buf)
 220{
 221	void *dma_safe_buf;
 222	int ret;
 223
 224	dma_safe_buf = kmalloc(len, GFP_KERNEL);
 225	if (!dma_safe_buf)
 226		return -ENOMEM;
 227
 228	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
 229	memcpy(buf, dma_safe_buf, len);
 230	kfree(dma_safe_buf);
 231
 232	return ret;
 233}
 234
 235static void
 236spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
 237				    u16 half,
 238				    enum spi_nor_protocol proto)
 239{
 240	read->num_mode_clocks = (half >> 5) & 0x07;
 241	read->num_wait_states = (half >> 0) & 0x1f;
 242	read->opcode = (half >> 8) & 0xff;
 243	read->proto = proto;
 244}
 245
 246static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
 247	/* Fast Read 1-1-2 */
 248	{
 249		SNOR_HWCAPS_READ_1_1_2,
 250		SFDP_DWORD(1), BIT(16),	/* Supported bit */
 251		SFDP_DWORD(4), 0,	/* Settings */
 252		SNOR_PROTO_1_1_2,
 253	},
 254
 255	/* Fast Read 1-2-2 */
 256	{
 257		SNOR_HWCAPS_READ_1_2_2,
 258		SFDP_DWORD(1), BIT(20),	/* Supported bit */
 259		SFDP_DWORD(4), 16,	/* Settings */
 260		SNOR_PROTO_1_2_2,
 261	},
 262
 263	/* Fast Read 2-2-2 */
 264	{
 265		SNOR_HWCAPS_READ_2_2_2,
 266		SFDP_DWORD(5),  BIT(0),	/* Supported bit */
 267		SFDP_DWORD(6), 16,	/* Settings */
 268		SNOR_PROTO_2_2_2,
 269	},
 270
 271	/* Fast Read 1-1-4 */
 272	{
 273		SNOR_HWCAPS_READ_1_1_4,
 274		SFDP_DWORD(1), BIT(22),	/* Supported bit */
 275		SFDP_DWORD(3), 16,	/* Settings */
 276		SNOR_PROTO_1_1_4,
 277	},
 278
 279	/* Fast Read 1-4-4 */
 280	{
 281		SNOR_HWCAPS_READ_1_4_4,
 282		SFDP_DWORD(1), BIT(21),	/* Supported bit */
 283		SFDP_DWORD(3), 0,	/* Settings */
 284		SNOR_PROTO_1_4_4,
 285	},
 286
 287	/* Fast Read 4-4-4 */
 288	{
 289		SNOR_HWCAPS_READ_4_4_4,
 290		SFDP_DWORD(5), BIT(4),	/* Supported bit */
 291		SFDP_DWORD(7), 16,	/* Settings */
 292		SNOR_PROTO_4_4_4,
 293	},
 294};
 295
 296static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
 297	/* Erase Type 1 in DWORD8 bits[15:0] */
 298	{SFDP_DWORD(8), 0},
 299
 300	/* Erase Type 2 in DWORD8 bits[31:16] */
 301	{SFDP_DWORD(8), 16},
 302
 303	/* Erase Type 3 in DWORD9 bits[15:0] */
 304	{SFDP_DWORD(9), 0},
 305
 306	/* Erase Type 4 in DWORD9 bits[31:16] */
 307	{SFDP_DWORD(9), 16},
 308};
 309
 310/**
 311 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
 312 * @erase:	pointer to a structure that describes a SPI NOR erase type
 313 * @size:	the size of the sector/block erased by the erase type
 314 * @opcode:	the SPI command op code to erase the sector/block
 315 * @i:		erase type index as sorted in the Basic Flash Parameter Table
 316 *
 317 * The supported Erase Types will be sorted at init in ascending order, with
 318 * the smallest Erase Type size being the first member in the erase_type array
 319 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
 320 * the Basic Flash Parameter Table since it will be used later on to
 321 * synchronize with the supported Erase Types defined in SFDP optional tables.
 322 */
 323static void
 324spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
 325				     u32 size, u8 opcode, u8 i)
 326{
 327	erase->idx = i;
 328	spi_nor_set_erase_type(erase, size, opcode);
 329}
 330
 331/**
 332 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
 333 * @l:	member in the left half of the map's erase_type array
 334 * @r:	member in the right half of the map's erase_type array
 335 *
 336 * Comparison function used in the sort() call to sort in ascending order the
 337 * map's erase types, the smallest erase type size being the first member in the
 338 * sorted erase_type array.
 339 *
 340 * Return: the result of @l->size - @r->size
 341 */
 342static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
 343{
 344	const struct spi_nor_erase_type *left = l, *right = r;
 345
 346	return left->size - right->size;
 347}
 348
 349/**
 350 * spi_nor_sort_erase_mask() - sort erase mask
 351 * @map:	the erase map of the SPI NOR
 352 * @erase_mask:	the erase type mask to be sorted
 353 *
 354 * Replicate the sort done for the map's erase types in BFPT: sort the erase
 355 * mask in ascending order with the smallest erase type size starting from
 356 * BIT(0) in the sorted erase mask.
 357 *
 358 * Return: sorted erase mask.
 359 */
 360static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
 361{
 362	struct spi_nor_erase_type *erase_type = map->erase_type;
 363	int i;
 364	u8 sorted_erase_mask = 0;
 365
 366	if (!erase_mask)
 367		return 0;
 368
 369	/* Replicate the sort done for the map's erase types. */
 370	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
 371		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
 372			sorted_erase_mask |= BIT(i);
 373
 374	return sorted_erase_mask;
 375}
 376
 377/**
 378 * spi_nor_regions_sort_erase_types() - sort erase types in each region
 379 * @map:	the erase map of the SPI NOR
 380 *
 381 * Function assumes that the erase types defined in the erase map are already
 382 * sorted in ascending order, with the smallest erase type size being the first
 383 * member in the erase_type array. It replicates the sort done for the map's
 384 * erase types. Each region's erase bitmask will indicate which erase types are
 385 * supported from the sorted erase types defined in the erase map.
 386 * Sort the all region's erase type at init in order to speed up the process of
 387 * finding the best erase command at runtime.
 388 */
 389static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
 390{
 391	struct spi_nor_erase_region *region = map->regions;
 392	u8 region_erase_mask, sorted_erase_mask;
 393
 394	while (region) {
 395		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
 396
 397		sorted_erase_mask = spi_nor_sort_erase_mask(map,
 398							    region_erase_mask);
 399
 400		/* Overwrite erase mask. */
 401		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
 402				 sorted_erase_mask;
 403
 404		region = spi_nor_region_next(region);
 405	}
 406}
 407
 408/**
 409 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 410 * @nor:		pointer to a 'struct spi_nor'
 411 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 412 *			the Basic Flash Parameter Table length and version
 413 *
 414 * The Basic Flash Parameter Table is the main and only mandatory table as
 415 * defined by the SFDP (JESD216) specification.
 416 * It provides us with the total size (memory density) of the data array and
 417 * the number of address bytes for Fast Read, Page Program and Sector Erase
 418 * commands.
 419 * For Fast READ commands, it also gives the number of mode clock cycles and
 420 * wait states (regrouped in the number of dummy clock cycles) for each
 421 * supported instruction op code.
 422 * For Page Program, the page size is now available since JESD216 rev A, however
 423 * the supported instruction op codes are still not provided.
 424 * For Sector Erase commands, this table stores the supported instruction op
 425 * codes and the associated sector sizes.
 426 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 427 * rev A. The QER bits encode the manufacturer dependent procedure to be
 428 * executed to set the Quad Enable (QE) bit in some internal register of the
 429 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 430 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 431 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 432 * and IO3 hence enabling 4 (Quad) I/O lines.
 433 *
 434 * Return: 0 on success, -errno otherwise.
 435 */
 436static int spi_nor_parse_bfpt(struct spi_nor *nor,
 437			      const struct sfdp_parameter_header *bfpt_header)
 438{
 439	struct spi_nor_flash_parameter *params = nor->params;
 440	struct spi_nor_erase_map *map = &params->erase_map;
 441	struct spi_nor_erase_type *erase_type = map->erase_type;
 442	struct sfdp_bfpt bfpt;
 443	size_t len;
 444	int i, cmd, err;
 445	u32 addr, val;
 446	u32 dword;
 447	u16 half;
 448	u8 erase_mask;
 449	u8 wait_states, mode_clocks, opcode;
 450
 451	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
 452	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
 453		return -EINVAL;
 454
 455	/* Read the Basic Flash Parameter Table. */
 456	len = min_t(size_t, sizeof(bfpt),
 457		    bfpt_header->length * sizeof(u32));
 458	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
 459	memset(&bfpt, 0, sizeof(bfpt));
 460	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
 461	if (err < 0)
 462		return err;
 463
 464	/* Fix endianness of the BFPT DWORDs. */
 465	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
 466
 467	/* Number of address bytes. */
 468	switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
 469	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
 470	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
 471		params->addr_nbytes = 3;
 472		params->addr_mode_nbytes = 3;
 473		break;
 474
 475	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
 476		params->addr_nbytes = 4;
 477		params->addr_mode_nbytes = 4;
 478		break;
 479
 480	default:
 481		break;
 482	}
 483
 484	/* Flash Memory Density (in bits). */
 485	val = bfpt.dwords[SFDP_DWORD(2)];
 486	if (val & BIT(31)) {
 487		val &= ~BIT(31);
 488
 489		/*
 490		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
 491		 * bits is unlikely to exist so this error probably means
 492		 * the BFPT we are reading is corrupted/wrong.
 493		 */
 494		if (val > 63)
 495			return -EINVAL;
 496
 497		params->size = 1ULL << val;
 498	} else {
 499		params->size = val + 1;
 500	}
 501	params->size >>= 3; /* Convert to bytes. */
 502
 503	/* Fast Read settings. */
 504	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
 505		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
 506		struct spi_nor_read_command *read;
 507
 508		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
 509			params->hwcaps.mask &= ~rd->hwcaps;
 510			continue;
 511		}
 512
 513		params->hwcaps.mask |= rd->hwcaps;
 514		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
 515		read = &params->reads[cmd];
 516		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
 517		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
 518	}
 519
 520	/*
 521	 * Sector Erase settings. Reinitialize the uniform erase map using the
 522	 * Erase Types defined in the bfpt table.
 523	 */
 524	erase_mask = 0;
 525	memset(&params->erase_map, 0, sizeof(params->erase_map));
 526	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
 527		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
 528		u32 erasesize;
 529		u8 opcode;
 530
 531		half = bfpt.dwords[er->dword] >> er->shift;
 532		erasesize = half & 0xff;
 533
 534		/* erasesize == 0 means this Erase Type is not supported. */
 535		if (!erasesize)
 536			continue;
 537
 538		erasesize = 1U << erasesize;
 539		opcode = (half >> 8) & 0xff;
 540		erase_mask |= BIT(i);
 541		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
 542						     opcode, i);
 543	}
 544	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
 545	/*
 546	 * Sort all the map's Erase Types in ascending order with the smallest
 547	 * erase size being the first member in the erase_type array.
 548	 */
 549	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
 550	     spi_nor_map_cmp_erase_type, NULL);
 551	/*
 552	 * Sort the erase types in the uniform region in order to update the
 553	 * uniform_erase_type bitmask. The bitmask will be used later on when
 554	 * selecting the uniform erase.
 555	 */
 556	spi_nor_regions_sort_erase_types(map);
 557	map->uniform_erase_type = map->uniform_region.offset &
 558				  SNOR_ERASE_TYPE_MASK;
 559
 560	/* Stop here if not JESD216 rev A or later. */
 561	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
 562		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 563
 564	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
 565	val = bfpt.dwords[SFDP_DWORD(11)];
 566	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
 567	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
 568	params->page_size = 1U << val;
 569
 570	/* Quad Enable Requirements. */
 571	switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
 572	case BFPT_DWORD15_QER_NONE:
 573		params->quad_enable = NULL;
 574		break;
 575
 576	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
 577		/*
 578		 * Writing only one byte to the Status Register has the
 579		 * side-effect of clearing Status Register 2.
 580		 */
 581	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
 582		/*
 583		 * Read Configuration Register (35h) instruction is not
 584		 * supported.
 585		 */
 586		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
 587		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
 588		break;
 589
 590	case BFPT_DWORD15_QER_SR1_BIT6:
 591		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
 592		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
 593		break;
 594
 595	case BFPT_DWORD15_QER_SR2_BIT7:
 596		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
 597		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
 598		break;
 599
 600	case BFPT_DWORD15_QER_SR2_BIT1:
 601		/*
 602		 * JESD216 rev B or later does not specify if writing only one
 603		 * byte to the Status Register clears or not the Status
 604		 * Register 2, so let's be cautious and keep the default
 605		 * assumption of a 16-bit Write Status (01h) command.
 606		 */
 607		nor->flags |= SNOR_F_HAS_16BIT_SR;
 608
 609		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
 610		break;
 611
 612	default:
 613		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
 614		break;
 615	}
 616
 617	dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
 618	if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
 619		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
 620	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
 621		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
 622	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
 623		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
 624	else
 625		dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
 626
 627	/* Soft Reset support. */
 628	if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
 629		nor->flags |= SNOR_F_SOFT_RESET;
 630
 631	/* Stop here if not JESD216 rev C or later. */
 632	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
 633		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 634
 635	/* Parse 1-1-8 read instruction */
 636	opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
 637	if (opcode) {
 638		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS,
 639					bfpt.dwords[SFDP_DWORD(17)]);
 640		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES,
 641					bfpt.dwords[SFDP_DWORD(17)]);
 642		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
 643		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
 644					  mode_clocks, wait_states, opcode,
 645					  SNOR_PROTO_1_1_8);
 646	}
 647
 648	/* Parse 1-8-8 read instruction */
 649	opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
 650	if (opcode) {
 651		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS,
 652					bfpt.dwords[SFDP_DWORD(17)]);
 653		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES,
 654					bfpt.dwords[SFDP_DWORD(17)]);
 655		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8;
 656		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_8_8],
 657					  mode_clocks, wait_states, opcode,
 658					  SNOR_PROTO_1_8_8);
 659	}
 660
 661	/* 8D-8D-8D command extension. */
 662	switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
 663	case BFPT_DWORD18_CMD_EXT_REP:
 664		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
 665		break;
 666
 667	case BFPT_DWORD18_CMD_EXT_INV:
 668		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
 669		break;
 670
 671	case BFPT_DWORD18_CMD_EXT_RES:
 672		dev_dbg(nor->dev, "Reserved command extension used\n");
 673		break;
 674
 675	case BFPT_DWORD18_CMD_EXT_16B:
 676		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
 677		return -EOPNOTSUPP;
 678	}
 679
 680	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 681}
 682
 683/**
 684 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
 685 *			       configuration detection command.
 686 * @nor:	pointer to a 'struct spi_nor'
 687 * @settings:	configuration detection command descriptor, dword1
 688 */
 689static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
 690{
 691	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
 692	case SMPT_CMD_ADDRESS_LEN_0:
 693		return 0;
 694	case SMPT_CMD_ADDRESS_LEN_3:
 695		return 3;
 696	case SMPT_CMD_ADDRESS_LEN_4:
 697		return 4;
 698	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
 699	default:
 700		return nor->params->addr_mode_nbytes;
 701	}
 702}
 703
 704/**
 705 * spi_nor_smpt_read_dummy() - return the configuration detection command read
 706 *			       latency, in clock cycles.
 707 * @nor:	pointer to a 'struct spi_nor'
 708 * @settings:	configuration detection command descriptor, dword1
 709 *
 710 * Return: the number of dummy cycles for an SMPT read
 711 */
 712static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
 713{
 714	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
 715
 716	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
 717		return nor->read_dummy;
 718	return read_dummy;
 719}
 720
 721/**
 722 * spi_nor_get_map_in_use() - get the configuration map in use
 723 * @nor:	pointer to a 'struct spi_nor'
 724 * @smpt:	pointer to the sector map parameter table
 725 * @smpt_len:	sector map parameter table length
 726 *
 727 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
 728 */
 729static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
 730					 u8 smpt_len)
 731{
 732	const u32 *ret;
 733	u8 *buf;
 734	u32 addr;
 735	int err;
 736	u8 i;
 737	u8 addr_nbytes, read_opcode, read_dummy;
 738	u8 read_data_mask, map_id;
 739
 740	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
 741	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
 742	if (!buf)
 743		return ERR_PTR(-ENOMEM);
 744
 745	addr_nbytes = nor->addr_nbytes;
 746	read_dummy = nor->read_dummy;
 747	read_opcode = nor->read_opcode;
 748
 749	map_id = 0;
 750	/* Determine if there are any optional Detection Command Descriptors */
 751	for (i = 0; i < smpt_len; i += 2) {
 752		if (smpt[i] & SMPT_DESC_TYPE_MAP)
 753			break;
 754
 755		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
 756		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
 757		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
 758		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
 759		addr = smpt[i + 1];
 760
 761		err = spi_nor_read_raw(nor, addr, 1, buf);
 762		if (err) {
 763			ret = ERR_PTR(err);
 764			goto out;
 765		}
 766
 767		/*
 768		 * Build an index value that is used to select the Sector Map
 769		 * Configuration that is currently in use.
 770		 */
 771		map_id = map_id << 1 | !!(*buf & read_data_mask);
 772	}
 773
 774	/*
 775	 * If command descriptors are provided, they always precede map
 776	 * descriptors in the table. There is no need to start the iteration
 777	 * over smpt array all over again.
 778	 *
 779	 * Find the matching configuration map.
 780	 */
 781	ret = ERR_PTR(-EINVAL);
 782	while (i < smpt_len) {
 783		if (SMPT_MAP_ID(smpt[i]) == map_id) {
 784			ret = smpt + i;
 785			break;
 786		}
 787
 788		/*
 789		 * If there are no more configuration map descriptors and no
 790		 * configuration ID matched the configuration identifier, the
 791		 * sector address map is unknown.
 792		 */
 793		if (smpt[i] & SMPT_DESC_END)
 794			break;
 795
 796		/* increment the table index to the next map */
 797		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
 798	}
 799
 800	/* fall through */
 801out:
 802	kfree(buf);
 803	nor->addr_nbytes = addr_nbytes;
 804	nor->read_dummy = read_dummy;
 805	nor->read_opcode = read_opcode;
 806	return ret;
 807}
 808
 809static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
 810{
 811	region->offset |= SNOR_LAST_REGION;
 812}
 813
 814static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
 815{
 816	region->offset |= SNOR_OVERLAID_REGION;
 817}
 818
 819/**
 820 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
 821 * @region:	pointer to a structure that describes a SPI NOR erase region
 822 * @erase:	pointer to a structure that describes a SPI NOR erase type
 823 * @erase_type:	erase type bitmask
 824 */
 825static void
 826spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
 827			     const struct spi_nor_erase_type *erase,
 828			     const u8 erase_type)
 829{
 830	int i;
 831
 832	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
 833		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
 834			continue;
 835		if (region->size & erase[i].size_mask) {
 836			spi_nor_region_mark_overlay(region);
 837			return;
 838		}
 839	}
 840}
 841
 842/**
 843 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
 844 * @nor:	pointer to a 'struct spi_nor'
 845 * @smpt:	pointer to the sector map parameter table
 846 *
 847 * Return: 0 on success, -errno otherwise.
 848 */
 849static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
 850					      const u32 *smpt)
 851{
 852	struct spi_nor_erase_map *map = &nor->params->erase_map;
 853	struct spi_nor_erase_type *erase = map->erase_type;
 854	struct spi_nor_erase_region *region;
 855	u64 offset;
 856	u32 region_count;
 857	int i, j;
 858	u8 uniform_erase_type, save_uniform_erase_type;
 859	u8 erase_type, regions_erase_type;
 860
 861	region_count = SMPT_MAP_REGION_COUNT(*smpt);
 862	/*
 863	 * The regions will be freed when the driver detaches from the
 864	 * device.
 865	 */
 866	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
 867			      GFP_KERNEL);
 868	if (!region)
 869		return -ENOMEM;
 870	map->regions = region;
 871
 872	uniform_erase_type = 0xff;
 873	regions_erase_type = 0;
 874	offset = 0;
 875	/* Populate regions. */
 876	for (i = 0; i < region_count; i++) {
 877		j = i + 1; /* index for the region dword */
 878		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
 879		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
 880		region[i].offset = offset | erase_type;
 881
 882		spi_nor_region_check_overlay(&region[i], erase, erase_type);
 883
 884		/*
 885		 * Save the erase types that are supported in all regions and
 886		 * can erase the entire flash memory.
 887		 */
 888		uniform_erase_type &= erase_type;
 889
 890		/*
 891		 * regions_erase_type mask will indicate all the erase types
 892		 * supported in this configuration map.
 893		 */
 894		regions_erase_type |= erase_type;
 895
 896		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
 897			 region[i].size;
 898	}
 899	spi_nor_region_mark_end(&region[i - 1]);
 900
 901	save_uniform_erase_type = map->uniform_erase_type;
 902	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
 903							  uniform_erase_type);
 904
 905	if (!regions_erase_type) {
 906		/*
 907		 * Roll back to the previous uniform_erase_type mask, SMPT is
 908		 * broken.
 909		 */
 910		map->uniform_erase_type = save_uniform_erase_type;
 911		return -EINVAL;
 912	}
 913
 914	/*
 915	 * BFPT advertises all the erase types supported by all the possible
 916	 * map configurations. Mask out the erase types that are not supported
 917	 * by the current map configuration.
 918	 */
 919	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
 920		if (!(regions_erase_type & BIT(erase[i].idx)))
 921			spi_nor_mask_erase_type(&erase[i]);
 922
 923	return 0;
 924}
 925
 926/**
 927 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
 928 * @nor:		pointer to a 'struct spi_nor'
 929 * @smpt_header:	sector map parameter table header
 930 *
 931 * This table is optional, but when available, we parse it to identify the
 932 * location and size of sectors within the main data array of the flash memory
 933 * device and to identify which Erase Types are supported by each sector.
 934 *
 935 * Return: 0 on success, -errno otherwise.
 936 */
 937static int spi_nor_parse_smpt(struct spi_nor *nor,
 938			      const struct sfdp_parameter_header *smpt_header)
 939{
 940	const u32 *sector_map;
 941	u32 *smpt;
 942	size_t len;
 943	u32 addr;
 944	int ret;
 945
 946	/* Read the Sector Map Parameter Table. */
 947	len = smpt_header->length * sizeof(*smpt);
 948	smpt = kmalloc(len, GFP_KERNEL);
 949	if (!smpt)
 950		return -ENOMEM;
 951
 952	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
 953	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
 954	if (ret)
 955		goto out;
 956
 957	/* Fix endianness of the SMPT DWORDs. */
 958	le32_to_cpu_array(smpt, smpt_header->length);
 959
 960	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
 961	if (IS_ERR(sector_map)) {
 962		ret = PTR_ERR(sector_map);
 963		goto out;
 964	}
 965
 966	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
 967	if (ret)
 968		goto out;
 969
 970	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
 971	/* fall through */
 972out:
 973	kfree(smpt);
 974	return ret;
 975}
 976
 977/**
 978 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
 979 * @nor:		pointer to a 'struct spi_nor'.
 980 * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
 981 *			the 4-Byte Address Instruction Table length and version.
 982 *
 983 * Return: 0 on success, -errno otherwise.
 984 */
 985static int spi_nor_parse_4bait(struct spi_nor *nor,
 986			       const struct sfdp_parameter_header *param_header)
 987{
 988	static const struct sfdp_4bait reads[] = {
 989		{ SNOR_HWCAPS_READ,		BIT(0) },
 990		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
 991		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
 992		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
 993		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
 994		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
 995		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
 996		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
 997		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
 998		{ SNOR_HWCAPS_READ_1_1_8,	BIT(20) },
 999		{ SNOR_HWCAPS_READ_1_8_8,	BIT(21) },
1000	};
1001	static const struct sfdp_4bait programs[] = {
1002		{ SNOR_HWCAPS_PP,		BIT(6) },
1003		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
1004		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
1005	};
1006	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
1007		{ 0u /* not used */,		BIT(9) },
1008		{ 0u /* not used */,		BIT(10) },
1009		{ 0u /* not used */,		BIT(11) },
1010		{ 0u /* not used */,		BIT(12) },
1011	};
1012	struct spi_nor_flash_parameter *params = nor->params;
1013	struct spi_nor_pp_command *params_pp = params->page_programs;
1014	struct spi_nor_erase_map *map = &params->erase_map;
1015	struct spi_nor_erase_type *erase_type = map->erase_type;
1016	u32 *dwords;
1017	size_t len;
1018	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
1019	int i, ret;
1020
1021	if (param_header->major != SFDP_JESD216_MAJOR ||
1022	    param_header->length < SFDP_4BAIT_DWORD_MAX)
1023		return -EINVAL;
1024
1025	/* Read the 4-byte Address Instruction Table. */
1026	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
1027
1028	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
1029	dwords = kmalloc(len, GFP_KERNEL);
1030	if (!dwords)
1031		return -ENOMEM;
1032
1033	addr = SFDP_PARAM_HEADER_PTP(param_header);
1034	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1035	if (ret)
1036		goto out;
1037
1038	/* Fix endianness of the 4BAIT DWORDs. */
1039	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1040
1041	/*
1042	 * Compute the subset of (Fast) Read commands for which the 4-byte
1043	 * version is supported.
1044	 */
1045	discard_hwcaps = 0;
1046	read_hwcaps = 0;
1047	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1048		const struct sfdp_4bait *read = &reads[i];
1049
1050		discard_hwcaps |= read->hwcaps;
1051		if ((params->hwcaps.mask & read->hwcaps) &&
1052		    (dwords[SFDP_DWORD(1)] & read->supported_bit))
1053			read_hwcaps |= read->hwcaps;
1054	}
1055
1056	/*
1057	 * Compute the subset of Page Program commands for which the 4-byte
1058	 * version is supported.
1059	 */
1060	pp_hwcaps = 0;
1061	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1062		const struct sfdp_4bait *program = &programs[i];
1063
1064		/*
1065		 * The 4 Byte Address Instruction (Optional) Table is the only
1066		 * SFDP table that indicates support for Page Program Commands.
1067		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1068		 * authority for specifying Page Program support.
1069		 */
1070		discard_hwcaps |= program->hwcaps;
1071		if (dwords[SFDP_DWORD(1)] & program->supported_bit)
1072			pp_hwcaps |= program->hwcaps;
1073	}
1074
1075	/*
1076	 * Compute the subset of Sector Erase commands for which the 4-byte
1077	 * version is supported.
1078	 */
1079	erase_mask = 0;
1080	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1081		const struct sfdp_4bait *erase = &erases[i];
1082
1083		if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
1084			erase_mask |= BIT(i);
1085	}
1086
1087	/* Replicate the sort done for the map's erase types in BFPT. */
1088	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1089
1090	/*
1091	 * We need at least one 4-byte op code per read, program and erase
1092	 * operation; the .read(), .write() and .erase() hooks share the
1093	 * nor->addr_nbytes value.
1094	 */
1095	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1096		goto out;
1097
1098	/*
1099	 * Discard all operations from the 4-byte instruction set which are
1100	 * not supported by this memory.
1101	 */
1102	params->hwcaps.mask &= ~discard_hwcaps;
1103	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1104
1105	/* Use the 4-byte address instruction set. */
1106	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1107		struct spi_nor_read_command *read_cmd = &params->reads[i];
1108
1109		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1110	}
1111
1112	/* 4BAIT is the only SFDP table that indicates page program support. */
1113	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1114		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1115					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1116		/*
1117		 * Since xSPI Page Program opcode is backward compatible with
1118		 * Legacy SPI, use Legacy SPI opcode there as well.
1119		 */
1120		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1121					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1122	}
1123	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1124		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1125					SPINOR_OP_PP_1_1_4_4B,
1126					SNOR_PROTO_1_1_4);
1127	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1128		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1129					SPINOR_OP_PP_1_4_4_4B,
1130					SNOR_PROTO_1_4_4);
1131
1132	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1133		if (erase_mask & BIT(i))
1134			erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
1135						erase_type[i].idx * 8) & 0xFF;
1136		else
1137			spi_nor_mask_erase_type(&erase_type[i]);
1138	}
1139
1140	/*
1141	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1142	 * later because we already did the conversion to 4byte opcodes. Also,
1143	 * this latest function implements a legacy quirk for the erase size of
1144	 * Spansion memory. However this quirk is no longer needed with new
1145	 * SFDP compliant memories.
1146	 */
1147	params->addr_nbytes = 4;
1148	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1149
1150	/* fall through */
1151out:
1152	kfree(dwords);
1153	return ret;
1154}
1155
1156#define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1157#define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1158#define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1159#define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1160#define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1161#define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1162#define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1163
1164/**
1165 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1166 * @nor:		pointer to a 'struct spi_nor'
1167 * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1168 *			the Profile 1.0 Table length and version.
1169 *
1170 * Return: 0 on success, -errno otherwise.
1171 */
1172static int spi_nor_parse_profile1(struct spi_nor *nor,
1173				  const struct sfdp_parameter_header *profile1_header)
1174{
1175	u32 *dwords, addr;
1176	size_t len;
1177	int ret;
1178	u8 dummy, opcode;
1179
1180	len = profile1_header->length * sizeof(*dwords);
1181	dwords = kmalloc(len, GFP_KERNEL);
1182	if (!dwords)
1183		return -ENOMEM;
1184
1185	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1186	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1187	if (ret)
1188		goto out;
1189
1190	le32_to_cpu_array(dwords, profile1_header->length);
1191
1192	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1193	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
1194
1195	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1196	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
1197		nor->params->rdsr_dummy = 8;
1198	else
1199		nor->params->rdsr_dummy = 4;
1200
1201	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1202		nor->params->rdsr_addr_nbytes = 4;
1203	else
1204		nor->params->rdsr_addr_nbytes = 0;
1205
1206	/*
1207	 * We don't know what speed the controller is running at. Find the
1208	 * dummy cycles for the fastest frequency the flash can run at to be
1209	 * sure we are never short of dummy cycles. A value of 0 means the
1210	 * frequency is not supported.
1211	 *
1212	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1213	 * flashes set the correct value if needed in their fixup hooks.
1214	 */
1215	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
1216	if (!dummy)
1217		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
1218				  dwords[SFDP_DWORD(5)]);
1219	if (!dummy)
1220		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
1221				  dwords[SFDP_DWORD(5)]);
1222	if (!dummy)
1223		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
1224				  dwords[SFDP_DWORD(5)]);
1225	if (!dummy)
1226		dev_dbg(nor->dev,
1227			"Can't find dummy cycles from Profile 1.0 table\n");
1228
1229	/* Round up to an even value to avoid tripping controllers up. */
1230	dummy = round_up(dummy, 2);
1231
1232	/* Update the fast read settings. */
1233	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1234	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1235				  0, dummy, opcode,
1236				  SNOR_PROTO_8_8_8_DTR);
1237
1238	/*
1239	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1240	 * the params->hwcaps.mask here.
1241	 */
1242	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1243
1244out:
1245	kfree(dwords);
1246	return ret;
1247}
1248
1249#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1250
1251/**
1252 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1253 *                        Map.
1254 * @nor:		pointer to a 'struct spi_nor'
1255 * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1256 *			the SCCR Map table length and version.
1257 *
1258 * Return: 0 on success, -errno otherwise.
1259 */
1260static int spi_nor_parse_sccr(struct spi_nor *nor,
1261			      const struct sfdp_parameter_header *sccr_header)
1262{
1263	struct spi_nor_flash_parameter *params = nor->params;
1264	u32 *dwords, addr;
1265	size_t len;
1266	int ret;
1267
1268	len = sccr_header->length * sizeof(*dwords);
1269	dwords = kmalloc(len, GFP_KERNEL);
1270	if (!dwords)
1271		return -ENOMEM;
1272
1273	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1274	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1275	if (ret)
1276		goto out;
1277
1278	le32_to_cpu_array(dwords, sccr_header->length);
1279
1280	/* Address offset for volatile registers (die 0) */
1281	if (!params->vreg_offset) {
1282		params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
1283						   GFP_KERNEL);
1284		if (!params->vreg_offset) {
1285			ret = -ENOMEM;
1286			goto out;
1287		}
1288	}
1289	params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
1290	params->n_dice = 1;
1291
1292	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
1293		      dwords[SFDP_DWORD(22)]))
1294		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1295
1296out:
1297	kfree(dwords);
1298	return ret;
1299}
1300
1301/**
1302 * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
1303 *                           Register Map Offsets for Multi-Chip SPI Memory
1304 *                           Devices.
1305 * @nor:		pointer to a 'struct spi_nor'
1306 * @sccr_mc_header:	pointer to the 'struct sfdp_parameter_header' describing
1307 *			the SCCR Map offsets table length and version.
1308 *
1309 * Return: 0 on success, -errno otherwise.
1310 */
1311static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
1312				 const struct sfdp_parameter_header *sccr_mc_header)
1313{
1314	struct spi_nor_flash_parameter *params = nor->params;
1315	u32 *dwords, addr;
1316	u8 i, n_dice;
1317	size_t len;
1318	int ret;
1319
1320	len = sccr_mc_header->length * sizeof(*dwords);
1321	dwords = kmalloc(len, GFP_KERNEL);
1322	if (!dwords)
1323		return -ENOMEM;
1324
1325	addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
1326	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1327	if (ret)
1328		goto out;
1329
1330	le32_to_cpu_array(dwords, sccr_mc_header->length);
1331
1332	/*
1333	 * Pair of DOWRDs (volatile and non-volatile register offsets) per
1334	 * additional die. Hence, length = 2 * (number of additional dice).
1335	 */
1336	n_dice = 1 + sccr_mc_header->length / 2;
1337
1338	/* Address offset for volatile registers of additional dice */
1339	params->vreg_offset =
1340			devm_krealloc(nor->dev, params->vreg_offset,
1341				      n_dice * sizeof(*dwords),
1342				      GFP_KERNEL);
1343	if (!params->vreg_offset) {
1344		ret = -ENOMEM;
1345		goto out;
1346	}
1347
1348	for (i = 1; i < n_dice; i++)
1349		params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
1350
1351	params->n_dice = n_dice;
1352
1353out:
1354	kfree(dwords);
1355	return ret;
1356}
1357
1358/**
1359 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1360 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1361 * tables.
1362 * @nor:	pointer to a 'struct spi_nor'
1363 *
1364 * Used to tweak various flash parameters when information provided by the SFDP
1365 * tables are wrong.
1366 */
1367static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1368{
1369	int ret;
1370
1371	if (nor->manufacturer && nor->manufacturer->fixups &&
1372	    nor->manufacturer->fixups->post_sfdp) {
1373		ret = nor->manufacturer->fixups->post_sfdp(nor);
1374		if (ret)
1375			return ret;
1376	}
1377
1378	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1379		return nor->info->fixups->post_sfdp(nor);
1380
1381	return 0;
1382}
1383
1384/**
1385 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1386 * @nor:	pointer to a 'struct spi_nor'
1387 *
1388 * Used to detect if the flash supports the RDSFDP command as well as the
1389 * presence of a valid SFDP table.
1390 *
1391 * Return: 0 on success, -errno otherwise.
1392 */
1393int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1394{
1395	u32 signature;
1396	int err;
1397
1398	/* Get the SFDP header. */
1399	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1400					   &signature);
1401	if (err < 0)
1402		return err;
1403
1404	/* Check the SFDP signature. */
1405	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1406		return -EINVAL;
1407
1408	return 0;
1409}
1410
1411/**
1412 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1413 * @nor:		pointer to a 'struct spi_nor'
1414 *
1415 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1416 * specification. This is a standard which tends to supported by almost all
1417 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1418 * runtime the main parameters needed to perform basic SPI flash operations such
1419 * as Fast Read, Page Program or Sector Erase commands.
1420 *
1421 * Return: 0 on success, -errno otherwise.
1422 */
1423int spi_nor_parse_sfdp(struct spi_nor *nor)
1424{
1425	const struct sfdp_parameter_header *param_header, *bfpt_header;
1426	struct sfdp_parameter_header *param_headers = NULL;
1427	struct sfdp_header header;
1428	struct device *dev = nor->dev;
1429	struct sfdp *sfdp;
1430	size_t sfdp_size;
1431	size_t psize;
1432	int i, err;
1433
1434	/* Get the SFDP header. */
1435	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1436	if (err < 0)
1437		return err;
1438
1439	/* Check the SFDP header version. */
1440	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1441	    header.major != SFDP_JESD216_MAJOR)
1442		return -EINVAL;
1443
1444	/*
1445	 * Verify that the first and only mandatory parameter header is a
1446	 * Basic Flash Parameter Table header as specified in JESD216.
1447	 */
1448	bfpt_header = &header.bfpt_header;
1449	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1450	    bfpt_header->major != SFDP_JESD216_MAJOR)
1451		return -EINVAL;
1452
1453	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1454		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1455
1456	/*
1457	 * Allocate memory then read all parameter headers with a single
1458	 * Read SFDP command. These parameter headers will actually be parsed
1459	 * twice: a first time to get the latest revision of the basic flash
1460	 * parameter table, then a second time to handle the supported optional
1461	 * tables.
1462	 * Hence we read the parameter headers once for all to reduce the
1463	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1464	 * because we don't need to keep these parameter headers: the allocated
1465	 * memory is always released with kfree() before exiting this function.
1466	 */
1467	if (header.nph) {
1468		psize = header.nph * sizeof(*param_headers);
1469
1470		param_headers = kmalloc(psize, GFP_KERNEL);
1471		if (!param_headers)
1472			return -ENOMEM;
1473
1474		err = spi_nor_read_sfdp(nor, sizeof(header),
1475					psize, param_headers);
1476		if (err < 0) {
1477			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1478			goto exit;
1479		}
1480	}
1481
1482	/*
1483	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1484	 * SFDP after probe time and we need it for the sysfs access.
1485	 */
1486	for (i = 0; i < header.nph; i++) {
1487		param_header = &param_headers[i];
1488		sfdp_size = max_t(size_t, sfdp_size,
1489				  SFDP_PARAM_HEADER_PTP(param_header) +
1490				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1491	}
1492
1493	/*
1494	 * Limit the total size to a reasonable value to avoid allocating too
1495	 * much memory just of because the flash returned some insane values.
1496	 */
1497	if (sfdp_size > PAGE_SIZE) {
1498		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1499			sfdp_size);
1500		sfdp_size = PAGE_SIZE;
1501	}
1502
1503	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1504	if (!sfdp) {
1505		err = -ENOMEM;
1506		goto exit;
1507	}
1508
1509	/*
1510	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1511	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1512	 * is not spec compliant, make sure that we have enough space to store
1513	 * the complete SFDP data.
1514	 */
1515	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1516	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1517				    sizeof(*sfdp->dwords), GFP_KERNEL);
1518	if (!sfdp->dwords) {
1519		err = -ENOMEM;
1520		devm_kfree(dev, sfdp);
1521		goto exit;
1522	}
1523
1524	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1525	if (err < 0) {
1526		dev_dbg(dev, "failed to read SFDP data\n");
1527		devm_kfree(dev, sfdp->dwords);
1528		devm_kfree(dev, sfdp);
1529		goto exit;
1530	}
1531
1532	nor->sfdp = sfdp;
1533
1534	/*
1535	 * Check other parameter headers to get the latest revision of
1536	 * the basic flash parameter table.
1537	 */
1538	for (i = 0; i < header.nph; i++) {
1539		param_header = &param_headers[i];
1540
1541		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1542		    param_header->major == SFDP_JESD216_MAJOR &&
1543		    (param_header->minor > bfpt_header->minor ||
1544		     (param_header->minor == bfpt_header->minor &&
1545		      param_header->length > bfpt_header->length)))
1546			bfpt_header = param_header;
1547	}
1548
1549	err = spi_nor_parse_bfpt(nor, bfpt_header);
1550	if (err)
1551		goto exit;
1552
1553	/* Parse optional parameter tables. */
1554	for (i = 0; i < header.nph; i++) {
1555		param_header = &param_headers[i];
1556
1557		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1558		case SFDP_SECTOR_MAP_ID:
1559			err = spi_nor_parse_smpt(nor, param_header);
1560			break;
1561
1562		case SFDP_4BAIT_ID:
1563			err = spi_nor_parse_4bait(nor, param_header);
1564			break;
1565
1566		case SFDP_PROFILE1_ID:
1567			err = spi_nor_parse_profile1(nor, param_header);
1568			break;
1569
1570		case SFDP_SCCR_MAP_ID:
1571			err = spi_nor_parse_sccr(nor, param_header);
1572			break;
1573
1574		case SFDP_SCCR_MAP_MC_ID:
1575			err = spi_nor_parse_sccr_mc(nor, param_header);
1576			break;
1577
1578		default:
1579			break;
1580		}
1581
1582		if (err) {
1583			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1584				 SFDP_PARAM_HEADER_ID(param_header));
1585			/*
1586			 * Let's not drop all information we extracted so far
1587			 * if optional table parsers fail. In case of failing,
1588			 * each optional parser is responsible to roll back to
1589			 * the previously known spi_nor data.
1590			 */
1591			err = 0;
1592		}
1593	}
1594
1595	err = spi_nor_post_sfdp_fixups(nor);
1596exit:
1597	kfree(param_headers);
1598	return err;
1599}