Loading...
Note: File does not exist in v4.10.11.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10#include <linux/err.h>
11#include <linux/errno.h>
12#include <linux/delay.h>
13#include <linux/device.h>
14#include <linux/math64.h>
15#include <linux/module.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/spi-nor.h>
18#include <linux/mutex.h>
19#include <linux/of_platform.h>
20#include <linux/sched/task_stack.h>
21#include <linux/sizes.h>
22#include <linux/slab.h>
23#include <linux/spi/flash.h>
24
25#include "core.h"
26
27/* Define max times to check status register before we give up. */
28
29/*
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
32 */
33#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
34
35/*
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37 * for larger flash
38 */
39#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40
41#define SPI_NOR_MAX_ADDR_NBYTES 4
42
43#define SPI_NOR_SRST_SLEEP_MIN 200
44#define SPI_NOR_SRST_SLEEP_MAX 400
45
46/**
47 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48 * extension type.
49 * @nor: pointer to a 'struct spi_nor'
50 * @op: pointer to the 'struct spi_mem_op' whose properties
51 * need to be initialized.
52 *
53 * Right now, only "repeat" and "invert" are supported.
54 *
55 * Return: The opcode extension.
56 */
57static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 const struct spi_mem_op *op)
59{
60 switch (nor->cmd_ext_type) {
61 case SPI_NOR_EXT_INVERT:
62 return ~op->cmd.opcode;
63
64 case SPI_NOR_EXT_REPEAT:
65 return op->cmd.opcode;
66
67 default:
68 dev_err(nor->dev, "Unknown command extension type\n");
69 return 0;
70 }
71}
72
73/**
74 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75 * @nor: pointer to a 'struct spi_nor'
76 * @op: pointer to the 'struct spi_mem_op' whose properties
77 * need to be initialized.
78 * @proto: the protocol from which the properties need to be set.
79 */
80void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 struct spi_mem_op *op,
82 const enum spi_nor_protocol proto)
83{
84 u8 ext;
85
86 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87
88 if (op->addr.nbytes)
89 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90
91 if (op->dummy.nbytes)
92 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93
94 if (op->data.nbytes)
95 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96
97 if (spi_nor_protocol_is_dtr(proto)) {
98 /*
99 * SPIMEM supports mixed DTR modes, but right now we can only
100 * have all phases either DTR or STR. IOW, SPIMEM can have
101 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 * phases to either DTR or STR.
103 */
104 op->cmd.dtr = true;
105 op->addr.dtr = true;
106 op->dummy.dtr = true;
107 op->data.dtr = true;
108
109 /* 2 bytes per clock cycle in DTR mode. */
110 op->dummy.nbytes *= 2;
111
112 ext = spi_nor_get_cmd_ext(nor, op);
113 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 op->cmd.nbytes = 2;
115 }
116}
117
118/**
119 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120 * transfer
121 * @nor: pointer to 'struct spi_nor'
122 * @op: pointer to 'struct spi_mem_op' template for transfer
123 *
124 * If we have to use the bounce buffer, the data field in @op will be updated.
125 *
126 * Return: true if the bounce buffer is needed, false if not
127 */
128static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129{
130 /* op->data.buf.in occupies the same memory as op->data.buf.out */
131 if (object_is_on_stack(op->data.buf.in) ||
132 !virt_addr_valid(op->data.buf.in)) {
133 if (op->data.nbytes > nor->bouncebuf_size)
134 op->data.nbytes = nor->bouncebuf_size;
135 op->data.buf.in = nor->bouncebuf;
136 return true;
137 }
138
139 return false;
140}
141
142/**
143 * spi_nor_spimem_exec_op() - execute a memory operation
144 * @nor: pointer to 'struct spi_nor'
145 * @op: pointer to 'struct spi_mem_op' template for transfer
146 *
147 * Return: 0 on success, -error otherwise.
148 */
149static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150{
151 int error;
152
153 error = spi_mem_adjust_op_size(nor->spimem, op);
154 if (error)
155 return error;
156
157 return spi_mem_exec_op(nor->spimem, op);
158}
159
160int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161 u8 *buf, size_t len)
162{
163 if (spi_nor_protocol_is_dtr(nor->reg_proto))
164 return -EOPNOTSUPP;
165
166 return nor->controller_ops->read_reg(nor, opcode, buf, len);
167}
168
169int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170 const u8 *buf, size_t len)
171{
172 if (spi_nor_protocol_is_dtr(nor->reg_proto))
173 return -EOPNOTSUPP;
174
175 return nor->controller_ops->write_reg(nor, opcode, buf, len);
176}
177
178static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179{
180 if (spi_nor_protocol_is_dtr(nor->reg_proto))
181 return -EOPNOTSUPP;
182
183 return nor->controller_ops->erase(nor, offs);
184}
185
186/**
187 * spi_nor_spimem_read_data() - read data from flash's memory region via
188 * spi-mem
189 * @nor: pointer to 'struct spi_nor'
190 * @from: offset to read from
191 * @len: number of bytes to read
192 * @buf: pointer to dst buffer
193 *
194 * Return: number of bytes read successfully, -errno otherwise
195 */
196static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197 size_t len, u8 *buf)
198{
199 struct spi_mem_op op =
200 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201 SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
202 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203 SPI_MEM_OP_DATA_IN(len, buf, 0));
204 bool usebouncebuf;
205 ssize_t nbytes;
206 int error;
207
208 spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209
210 /* convert the dummy cycles to the number of bytes */
211 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212 if (spi_nor_protocol_is_dtr(nor->read_proto))
213 op.dummy.nbytes *= 2;
214
215 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216
217 if (nor->dirmap.rdesc) {
218 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219 op.data.nbytes, op.data.buf.in);
220 } else {
221 error = spi_nor_spimem_exec_op(nor, &op);
222 if (error)
223 return error;
224 nbytes = op.data.nbytes;
225 }
226
227 if (usebouncebuf && nbytes > 0)
228 memcpy(buf, op.data.buf.in, nbytes);
229
230 return nbytes;
231}
232
233/**
234 * spi_nor_read_data() - read data from flash memory
235 * @nor: pointer to 'struct spi_nor'
236 * @from: offset to read from
237 * @len: number of bytes to read
238 * @buf: pointer to dst buffer
239 *
240 * Return: number of bytes read successfully, -errno otherwise
241 */
242ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243{
244 if (nor->spimem)
245 return spi_nor_spimem_read_data(nor, from, len, buf);
246
247 return nor->controller_ops->read(nor, from, len, buf);
248}
249
250/**
251 * spi_nor_spimem_write_data() - write data to flash memory via
252 * spi-mem
253 * @nor: pointer to 'struct spi_nor'
254 * @to: offset to write to
255 * @len: number of bytes to write
256 * @buf: pointer to src buffer
257 *
258 * Return: number of bytes written successfully, -errno otherwise
259 */
260static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261 size_t len, const u8 *buf)
262{
263 struct spi_mem_op op =
264 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265 SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
266 SPI_MEM_OP_NO_DUMMY,
267 SPI_MEM_OP_DATA_OUT(len, buf, 0));
268 ssize_t nbytes;
269 int error;
270
271 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272 op.addr.nbytes = 0;
273
274 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275
276 if (spi_nor_spimem_bounce(nor, &op))
277 memcpy(nor->bouncebuf, buf, op.data.nbytes);
278
279 if (nor->dirmap.wdesc) {
280 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281 op.data.nbytes, op.data.buf.out);
282 } else {
283 error = spi_nor_spimem_exec_op(nor, &op);
284 if (error)
285 return error;
286 nbytes = op.data.nbytes;
287 }
288
289 return nbytes;
290}
291
292/**
293 * spi_nor_write_data() - write data to flash memory
294 * @nor: pointer to 'struct spi_nor'
295 * @to: offset to write to
296 * @len: number of bytes to write
297 * @buf: pointer to src buffer
298 *
299 * Return: number of bytes written successfully, -errno otherwise
300 */
301ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302 const u8 *buf)
303{
304 if (nor->spimem)
305 return spi_nor_spimem_write_data(nor, to, len, buf);
306
307 return nor->controller_ops->write(nor, to, len, buf);
308}
309
310/**
311 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
312 * volatile.
313 * @nor: pointer to 'struct spi_nor'.
314 * @op: SPI memory operation. op->data.buf must be DMA-able.
315 * @proto: SPI protocol to use for the register operation.
316 *
317 * Return: zero on success, -errno otherwise
318 */
319int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
320 enum spi_nor_protocol proto)
321{
322 if (!nor->spimem)
323 return -EOPNOTSUPP;
324
325 spi_nor_spimem_setup_op(nor, op, proto);
326 return spi_nor_spimem_exec_op(nor, op);
327}
328
329/**
330 * spi_nor_write_any_volatile_reg() - write any volatile register to flash
331 * memory.
332 * @nor: pointer to 'struct spi_nor'
333 * @op: SPI memory operation. op->data.buf must be DMA-able.
334 * @proto: SPI protocol to use for the register operation.
335 *
336 * Writing volatile registers are instant according to some manufacturers
337 * (Cypress, Micron) and do not need any status polling.
338 *
339 * Return: zero on success, -errno otherwise
340 */
341int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
342 enum spi_nor_protocol proto)
343{
344 int ret;
345
346 if (!nor->spimem)
347 return -EOPNOTSUPP;
348
349 ret = spi_nor_write_enable(nor);
350 if (ret)
351 return ret;
352 spi_nor_spimem_setup_op(nor, op, proto);
353 return spi_nor_spimem_exec_op(nor, op);
354}
355
356/**
357 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
358 * @nor: pointer to 'struct spi_nor'.
359 *
360 * Return: 0 on success, -errno otherwise.
361 */
362int spi_nor_write_enable(struct spi_nor *nor)
363{
364 int ret;
365
366 if (nor->spimem) {
367 struct spi_mem_op op = SPI_NOR_WREN_OP;
368
369 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
370
371 ret = spi_mem_exec_op(nor->spimem, &op);
372 } else {
373 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
374 NULL, 0);
375 }
376
377 if (ret)
378 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
379
380 return ret;
381}
382
383/**
384 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
385 * @nor: pointer to 'struct spi_nor'.
386 *
387 * Return: 0 on success, -errno otherwise.
388 */
389int spi_nor_write_disable(struct spi_nor *nor)
390{
391 int ret;
392
393 if (nor->spimem) {
394 struct spi_mem_op op = SPI_NOR_WRDI_OP;
395
396 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
397
398 ret = spi_mem_exec_op(nor->spimem, &op);
399 } else {
400 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
401 NULL, 0);
402 }
403
404 if (ret)
405 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
406
407 return ret;
408}
409
410/**
411 * spi_nor_read_id() - Read the JEDEC ID.
412 * @nor: pointer to 'struct spi_nor'.
413 * @naddr: number of address bytes to send. Can be zero if the operation
414 * does not need to send an address.
415 * @ndummy: number of dummy bytes to send after an opcode or address. Can
416 * be zero if the operation does not require dummy bytes.
417 * @id: pointer to a DMA-able buffer where the value of the JEDEC ID
418 * will be written.
419 * @proto: the SPI protocol for register operation.
420 *
421 * Return: 0 on success, -errno otherwise.
422 */
423int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
424 enum spi_nor_protocol proto)
425{
426 int ret;
427
428 if (nor->spimem) {
429 struct spi_mem_op op =
430 SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
431
432 spi_nor_spimem_setup_op(nor, &op, proto);
433 ret = spi_mem_exec_op(nor->spimem, &op);
434 } else {
435 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
436 SPI_NOR_MAX_ID_LEN);
437 }
438 return ret;
439}
440
441/**
442 * spi_nor_read_sr() - Read the Status Register.
443 * @nor: pointer to 'struct spi_nor'.
444 * @sr: pointer to a DMA-able buffer where the value of the
445 * Status Register will be written. Should be at least 2 bytes.
446 *
447 * Return: 0 on success, -errno otherwise.
448 */
449int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
450{
451 int ret;
452
453 if (nor->spimem) {
454 struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
455
456 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
457 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
458 op.dummy.nbytes = nor->params->rdsr_dummy;
459 /*
460 * We don't want to read only one byte in DTR mode. So,
461 * read 2 and then discard the second byte.
462 */
463 op.data.nbytes = 2;
464 }
465
466 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
467
468 ret = spi_mem_exec_op(nor->spimem, &op);
469 } else {
470 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
471 1);
472 }
473
474 if (ret)
475 dev_dbg(nor->dev, "error %d reading SR\n", ret);
476
477 return ret;
478}
479
480/**
481 * spi_nor_read_cr() - Read the Configuration Register using the
482 * SPINOR_OP_RDCR (35h) command.
483 * @nor: pointer to 'struct spi_nor'
484 * @cr: pointer to a DMA-able buffer where the value of the
485 * Configuration Register will be written.
486 *
487 * Return: 0 on success, -errno otherwise.
488 */
489int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
490{
491 int ret;
492
493 if (nor->spimem) {
494 struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
495
496 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
497
498 ret = spi_mem_exec_op(nor->spimem, &op);
499 } else {
500 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
501 1);
502 }
503
504 if (ret)
505 dev_dbg(nor->dev, "error %d reading CR\n", ret);
506
507 return ret;
508}
509
510/**
511 * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
512 * using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
513 * Winbond and Macronix.
514 * @nor: pointer to 'struct spi_nor'.
515 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
516 * address mode.
517 *
518 * Return: 0 on success, -errno otherwise.
519 */
520int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
521{
522 int ret;
523
524 if (nor->spimem) {
525 struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
526
527 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
528
529 ret = spi_mem_exec_op(nor->spimem, &op);
530 } else {
531 ret = spi_nor_controller_ops_write_reg(nor,
532 enable ? SPINOR_OP_EN4B :
533 SPINOR_OP_EX4B,
534 NULL, 0);
535 }
536
537 if (ret)
538 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
539
540 return ret;
541}
542
543/**
544 * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
545 * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
546 * by ST and Micron flashes.
547 * @nor: pointer to 'struct spi_nor'.
548 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
549 * address mode.
550 *
551 * Return: 0 on success, -errno otherwise.
552 */
553int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
554{
555 int ret;
556
557 ret = spi_nor_write_enable(nor);
558 if (ret)
559 return ret;
560
561 ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
562 if (ret)
563 return ret;
564
565 return spi_nor_write_disable(nor);
566}
567
568/**
569 * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
570 * SPINOR_OP_BRWR. Typically used by Spansion flashes.
571 * @nor: pointer to 'struct spi_nor'.
572 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
573 * address mode.
574 *
575 * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
576 * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
577 * address mode is active and A[30:24] bits are don’t care. Write instruction is
578 * SPINOR_OP_BRWR(17h) with 1 byte of data.
579 *
580 * Return: 0 on success, -errno otherwise.
581 */
582int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
583{
584 int ret;
585
586 nor->bouncebuf[0] = enable << 7;
587
588 if (nor->spimem) {
589 struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
590
591 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
592
593 ret = spi_mem_exec_op(nor->spimem, &op);
594 } else {
595 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
596 nor->bouncebuf, 1);
597 }
598
599 if (ret)
600 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
601
602 return ret;
603}
604
605/**
606 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
607 * for new commands.
608 * @nor: pointer to 'struct spi_nor'.
609 *
610 * Return: 1 if ready, 0 if not ready, -errno on errors.
611 */
612int spi_nor_sr_ready(struct spi_nor *nor)
613{
614 int ret;
615
616 ret = spi_nor_read_sr(nor, nor->bouncebuf);
617 if (ret)
618 return ret;
619
620 return !(nor->bouncebuf[0] & SR_WIP);
621}
622
623/**
624 * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
625 * @nor: pointer to 'struct spi_nor'.
626 *
627 * Return: true if parallel locking is enabled, false otherwise.
628 */
629static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
630{
631 return nor->flags & SNOR_F_RWW;
632}
633
634/* Locking helpers for status read operations */
635static int spi_nor_rww_start_rdst(struct spi_nor *nor)
636{
637 struct spi_nor_rww *rww = &nor->rww;
638 int ret = -EAGAIN;
639
640 mutex_lock(&nor->lock);
641
642 if (rww->ongoing_io || rww->ongoing_rd)
643 goto busy;
644
645 rww->ongoing_io = true;
646 rww->ongoing_rd = true;
647 ret = 0;
648
649busy:
650 mutex_unlock(&nor->lock);
651 return ret;
652}
653
654static void spi_nor_rww_end_rdst(struct spi_nor *nor)
655{
656 struct spi_nor_rww *rww = &nor->rww;
657
658 mutex_lock(&nor->lock);
659
660 rww->ongoing_io = false;
661 rww->ongoing_rd = false;
662
663 mutex_unlock(&nor->lock);
664}
665
666static int spi_nor_lock_rdst(struct spi_nor *nor)
667{
668 if (spi_nor_use_parallel_locking(nor))
669 return spi_nor_rww_start_rdst(nor);
670
671 return 0;
672}
673
674static void spi_nor_unlock_rdst(struct spi_nor *nor)
675{
676 if (spi_nor_use_parallel_locking(nor)) {
677 spi_nor_rww_end_rdst(nor);
678 wake_up(&nor->rww.wait);
679 }
680}
681
682/**
683 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
684 * @nor: pointer to 'struct spi_nor'.
685 *
686 * Return: 1 if ready, 0 if not ready, -errno on errors.
687 */
688static int spi_nor_ready(struct spi_nor *nor)
689{
690 int ret;
691
692 ret = spi_nor_lock_rdst(nor);
693 if (ret)
694 return 0;
695
696 /* Flashes might override the standard routine. */
697 if (nor->params->ready)
698 ret = nor->params->ready(nor);
699 else
700 ret = spi_nor_sr_ready(nor);
701
702 spi_nor_unlock_rdst(nor);
703
704 return ret;
705}
706
707/**
708 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
709 * Status Register until ready, or timeout occurs.
710 * @nor: pointer to "struct spi_nor".
711 * @timeout_jiffies: jiffies to wait until timeout.
712 *
713 * Return: 0 on success, -errno otherwise.
714 */
715static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
716 unsigned long timeout_jiffies)
717{
718 unsigned long deadline;
719 int timeout = 0, ret;
720
721 deadline = jiffies + timeout_jiffies;
722
723 while (!timeout) {
724 if (time_after_eq(jiffies, deadline))
725 timeout = 1;
726
727 ret = spi_nor_ready(nor);
728 if (ret < 0)
729 return ret;
730 if (ret)
731 return 0;
732
733 cond_resched();
734 }
735
736 dev_dbg(nor->dev, "flash operation timed out\n");
737
738 return -ETIMEDOUT;
739}
740
741/**
742 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
743 * flash to be ready, or timeout occurs.
744 * @nor: pointer to "struct spi_nor".
745 *
746 * Return: 0 on success, -errno otherwise.
747 */
748int spi_nor_wait_till_ready(struct spi_nor *nor)
749{
750 return spi_nor_wait_till_ready_with_timeout(nor,
751 DEFAULT_READY_WAIT_JIFFIES);
752}
753
754/**
755 * spi_nor_global_block_unlock() - Unlock Global Block Protection.
756 * @nor: pointer to 'struct spi_nor'.
757 *
758 * Return: 0 on success, -errno otherwise.
759 */
760int spi_nor_global_block_unlock(struct spi_nor *nor)
761{
762 int ret;
763
764 ret = spi_nor_write_enable(nor);
765 if (ret)
766 return ret;
767
768 if (nor->spimem) {
769 struct spi_mem_op op = SPI_NOR_GBULK_OP;
770
771 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
772
773 ret = spi_mem_exec_op(nor->spimem, &op);
774 } else {
775 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
776 NULL, 0);
777 }
778
779 if (ret) {
780 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
781 return ret;
782 }
783
784 return spi_nor_wait_till_ready(nor);
785}
786
787/**
788 * spi_nor_write_sr() - Write the Status Register.
789 * @nor: pointer to 'struct spi_nor'.
790 * @sr: pointer to DMA-able buffer to write to the Status Register.
791 * @len: number of bytes to write to the Status Register.
792 *
793 * Return: 0 on success, -errno otherwise.
794 */
795int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
796{
797 int ret;
798
799 ret = spi_nor_write_enable(nor);
800 if (ret)
801 return ret;
802
803 if (nor->spimem) {
804 struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
805
806 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
807
808 ret = spi_mem_exec_op(nor->spimem, &op);
809 } else {
810 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
811 len);
812 }
813
814 if (ret) {
815 dev_dbg(nor->dev, "error %d writing SR\n", ret);
816 return ret;
817 }
818
819 return spi_nor_wait_till_ready(nor);
820}
821
822/**
823 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
824 * ensure that the byte written match the received value.
825 * @nor: pointer to a 'struct spi_nor'.
826 * @sr1: byte value to be written to the Status Register.
827 *
828 * Return: 0 on success, -errno otherwise.
829 */
830static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
831{
832 int ret;
833
834 nor->bouncebuf[0] = sr1;
835
836 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
837 if (ret)
838 return ret;
839
840 ret = spi_nor_read_sr(nor, nor->bouncebuf);
841 if (ret)
842 return ret;
843
844 if (nor->bouncebuf[0] != sr1) {
845 dev_dbg(nor->dev, "SR1: read back test failed\n");
846 return -EIO;
847 }
848
849 return 0;
850}
851
852/**
853 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
854 * Status Register 2 in one shot. Ensure that the byte written in the Status
855 * Register 1 match the received value, and that the 16-bit Write did not
856 * affect what was already in the Status Register 2.
857 * @nor: pointer to a 'struct spi_nor'.
858 * @sr1: byte value to be written to the Status Register 1.
859 *
860 * Return: 0 on success, -errno otherwise.
861 */
862static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
863{
864 int ret;
865 u8 *sr_cr = nor->bouncebuf;
866 u8 cr_written;
867
868 /* Make sure we don't overwrite the contents of Status Register 2. */
869 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
870 ret = spi_nor_read_cr(nor, &sr_cr[1]);
871 if (ret)
872 return ret;
873 } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
874 spi_nor_get_protocol_width(nor->write_proto) == 4 &&
875 nor->params->quad_enable) {
876 /*
877 * If the Status Register 2 Read command (35h) is not
878 * supported, we should at least be sure we don't
879 * change the value of the SR2 Quad Enable bit.
880 *
881 * When the Quad Enable method is set and the buswidth is 4, we
882 * can safely assume that the value of the QE bit is one, as a
883 * consequence of the nor->params->quad_enable() call.
884 *
885 * According to the JESD216 revB standard, BFPT DWORDS[15],
886 * bits 22:20, the 16-bit Write Status (01h) command is
887 * available just for the cases in which the QE bit is
888 * described in SR2 at BIT(1).
889 */
890 sr_cr[1] = SR2_QUAD_EN_BIT1;
891 } else {
892 sr_cr[1] = 0;
893 }
894
895 sr_cr[0] = sr1;
896
897 ret = spi_nor_write_sr(nor, sr_cr, 2);
898 if (ret)
899 return ret;
900
901 ret = spi_nor_read_sr(nor, sr_cr);
902 if (ret)
903 return ret;
904
905 if (sr1 != sr_cr[0]) {
906 dev_dbg(nor->dev, "SR: Read back test failed\n");
907 return -EIO;
908 }
909
910 if (nor->flags & SNOR_F_NO_READ_CR)
911 return 0;
912
913 cr_written = sr_cr[1];
914
915 ret = spi_nor_read_cr(nor, &sr_cr[1]);
916 if (ret)
917 return ret;
918
919 if (cr_written != sr_cr[1]) {
920 dev_dbg(nor->dev, "CR: read back test failed\n");
921 return -EIO;
922 }
923
924 return 0;
925}
926
927/**
928 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
929 * Configuration Register in one shot. Ensure that the byte written in the
930 * Configuration Register match the received value, and that the 16-bit Write
931 * did not affect what was already in the Status Register 1.
932 * @nor: pointer to a 'struct spi_nor'.
933 * @cr: byte value to be written to the Configuration Register.
934 *
935 * Return: 0 on success, -errno otherwise.
936 */
937int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
938{
939 int ret;
940 u8 *sr_cr = nor->bouncebuf;
941 u8 sr_written;
942
943 /* Keep the current value of the Status Register 1. */
944 ret = spi_nor_read_sr(nor, sr_cr);
945 if (ret)
946 return ret;
947
948 sr_cr[1] = cr;
949
950 ret = spi_nor_write_sr(nor, sr_cr, 2);
951 if (ret)
952 return ret;
953
954 sr_written = sr_cr[0];
955
956 ret = spi_nor_read_sr(nor, sr_cr);
957 if (ret)
958 return ret;
959
960 if (sr_written != sr_cr[0]) {
961 dev_dbg(nor->dev, "SR: Read back test failed\n");
962 return -EIO;
963 }
964
965 if (nor->flags & SNOR_F_NO_READ_CR)
966 return 0;
967
968 ret = spi_nor_read_cr(nor, &sr_cr[1]);
969 if (ret)
970 return ret;
971
972 if (cr != sr_cr[1]) {
973 dev_dbg(nor->dev, "CR: read back test failed\n");
974 return -EIO;
975 }
976
977 return 0;
978}
979
980/**
981 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
982 * the byte written match the received value without affecting other bits in the
983 * Status Register 1 and 2.
984 * @nor: pointer to a 'struct spi_nor'.
985 * @sr1: byte value to be written to the Status Register.
986 *
987 * Return: 0 on success, -errno otherwise.
988 */
989int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
990{
991 if (nor->flags & SNOR_F_HAS_16BIT_SR)
992 return spi_nor_write_16bit_sr_and_check(nor, sr1);
993
994 return spi_nor_write_sr1_and_check(nor, sr1);
995}
996
997/**
998 * spi_nor_write_sr2() - Write the Status Register 2 using the
999 * SPINOR_OP_WRSR2 (3eh) command.
1000 * @nor: pointer to 'struct spi_nor'.
1001 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
1002 *
1003 * Return: 0 on success, -errno otherwise.
1004 */
1005static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1006{
1007 int ret;
1008
1009 ret = spi_nor_write_enable(nor);
1010 if (ret)
1011 return ret;
1012
1013 if (nor->spimem) {
1014 struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
1015
1016 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1017
1018 ret = spi_mem_exec_op(nor->spimem, &op);
1019 } else {
1020 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1021 sr2, 1);
1022 }
1023
1024 if (ret) {
1025 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1026 return ret;
1027 }
1028
1029 return spi_nor_wait_till_ready(nor);
1030}
1031
1032/**
1033 * spi_nor_read_sr2() - Read the Status Register 2 using the
1034 * SPINOR_OP_RDSR2 (3fh) command.
1035 * @nor: pointer to 'struct spi_nor'.
1036 * @sr2: pointer to DMA-able buffer where the value of the
1037 * Status Register 2 will be written.
1038 *
1039 * Return: 0 on success, -errno otherwise.
1040 */
1041static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1042{
1043 int ret;
1044
1045 if (nor->spimem) {
1046 struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
1047
1048 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1049
1050 ret = spi_mem_exec_op(nor->spimem, &op);
1051 } else {
1052 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1053 1);
1054 }
1055
1056 if (ret)
1057 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1058
1059 return ret;
1060}
1061
1062/**
1063 * spi_nor_erase_die() - Erase the entire die.
1064 * @nor: pointer to 'struct spi_nor'.
1065 * @addr: address of the die.
1066 * @die_size: size of the die.
1067 *
1068 * Return: 0 on success, -errno otherwise.
1069 */
1070static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
1071{
1072 bool multi_die = nor->mtd.size != die_size;
1073 int ret;
1074
1075 dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
1076
1077 if (nor->spimem) {
1078 struct spi_mem_op op =
1079 SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
1080 nor->addr_nbytes, addr, multi_die);
1081
1082 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1083
1084 ret = spi_mem_exec_op(nor->spimem, &op);
1085 } else {
1086 if (multi_die)
1087 return -EOPNOTSUPP;
1088
1089 ret = spi_nor_controller_ops_write_reg(nor,
1090 SPINOR_OP_CHIP_ERASE,
1091 NULL, 0);
1092 }
1093
1094 if (ret)
1095 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1096
1097 return ret;
1098}
1099
1100static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1101{
1102 size_t i;
1103
1104 for (i = 0; i < size; i++)
1105 if (table[i][0] == opcode)
1106 return table[i][1];
1107
1108 /* No conversion found, keep input op code. */
1109 return opcode;
1110}
1111
1112u8 spi_nor_convert_3to4_read(u8 opcode)
1113{
1114 static const u8 spi_nor_3to4_read[][2] = {
1115 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1116 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1117 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1118 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1119 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1120 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1121 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1122 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1123
1124 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1125 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1126 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1127 };
1128
1129 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1130 ARRAY_SIZE(spi_nor_3to4_read));
1131}
1132
1133static u8 spi_nor_convert_3to4_program(u8 opcode)
1134{
1135 static const u8 spi_nor_3to4_program[][2] = {
1136 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1137 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1138 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1139 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1140 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1141 };
1142
1143 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1144 ARRAY_SIZE(spi_nor_3to4_program));
1145}
1146
1147static u8 spi_nor_convert_3to4_erase(u8 opcode)
1148{
1149 static const u8 spi_nor_3to4_erase[][2] = {
1150 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1151 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1152 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1153 };
1154
1155 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1156 ARRAY_SIZE(spi_nor_3to4_erase));
1157}
1158
1159static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1160{
1161 return !!nor->params->erase_map.uniform_erase_type;
1162}
1163
1164static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1165{
1166 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1167 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1168 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1169
1170 if (!spi_nor_has_uniform_erase(nor)) {
1171 struct spi_nor_erase_map *map = &nor->params->erase_map;
1172 struct spi_nor_erase_type *erase;
1173 int i;
1174
1175 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1176 erase = &map->erase_type[i];
1177 erase->opcode =
1178 spi_nor_convert_3to4_erase(erase->opcode);
1179 }
1180 }
1181}
1182
1183static int spi_nor_prep(struct spi_nor *nor)
1184{
1185 int ret = 0;
1186
1187 if (nor->controller_ops && nor->controller_ops->prepare)
1188 ret = nor->controller_ops->prepare(nor);
1189
1190 return ret;
1191}
1192
1193static void spi_nor_unprep(struct spi_nor *nor)
1194{
1195 if (nor->controller_ops && nor->controller_ops->unprepare)
1196 nor->controller_ops->unprepare(nor);
1197}
1198
1199static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
1200 u8 *first, u8 *last)
1201{
1202 /* This is currently safe, the number of banks being very small */
1203 *first = DIV_ROUND_DOWN_ULL(start, bank_size);
1204 *last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
1205}
1206
1207/* Generic helpers for internal locking and serialization */
1208static bool spi_nor_rww_start_io(struct spi_nor *nor)
1209{
1210 struct spi_nor_rww *rww = &nor->rww;
1211 bool start = false;
1212
1213 mutex_lock(&nor->lock);
1214
1215 if (rww->ongoing_io)
1216 goto busy;
1217
1218 rww->ongoing_io = true;
1219 start = true;
1220
1221busy:
1222 mutex_unlock(&nor->lock);
1223 return start;
1224}
1225
1226static void spi_nor_rww_end_io(struct spi_nor *nor)
1227{
1228 mutex_lock(&nor->lock);
1229 nor->rww.ongoing_io = false;
1230 mutex_unlock(&nor->lock);
1231}
1232
1233static int spi_nor_lock_device(struct spi_nor *nor)
1234{
1235 if (!spi_nor_use_parallel_locking(nor))
1236 return 0;
1237
1238 return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
1239}
1240
1241static void spi_nor_unlock_device(struct spi_nor *nor)
1242{
1243 if (spi_nor_use_parallel_locking(nor)) {
1244 spi_nor_rww_end_io(nor);
1245 wake_up(&nor->rww.wait);
1246 }
1247}
1248
1249/* Generic helpers for internal locking and serialization */
1250static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
1251{
1252 struct spi_nor_rww *rww = &nor->rww;
1253 bool start = false;
1254
1255 mutex_lock(&nor->lock);
1256
1257 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1258 goto busy;
1259
1260 rww->ongoing_io = true;
1261 rww->ongoing_rd = true;
1262 rww->ongoing_pe = true;
1263 start = true;
1264
1265busy:
1266 mutex_unlock(&nor->lock);
1267 return start;
1268}
1269
1270static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
1271{
1272 struct spi_nor_rww *rww = &nor->rww;
1273
1274 mutex_lock(&nor->lock);
1275 rww->ongoing_io = false;
1276 rww->ongoing_rd = false;
1277 rww->ongoing_pe = false;
1278 mutex_unlock(&nor->lock);
1279}
1280
1281int spi_nor_prep_and_lock(struct spi_nor *nor)
1282{
1283 int ret;
1284
1285 ret = spi_nor_prep(nor);
1286 if (ret)
1287 return ret;
1288
1289 if (!spi_nor_use_parallel_locking(nor))
1290 mutex_lock(&nor->lock);
1291 else
1292 ret = wait_event_killable(nor->rww.wait,
1293 spi_nor_rww_start_exclusive(nor));
1294
1295 return ret;
1296}
1297
1298void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1299{
1300 if (!spi_nor_use_parallel_locking(nor)) {
1301 mutex_unlock(&nor->lock);
1302 } else {
1303 spi_nor_rww_end_exclusive(nor);
1304 wake_up(&nor->rww.wait);
1305 }
1306
1307 spi_nor_unprep(nor);
1308}
1309
1310/* Internal locking helpers for program and erase operations */
1311static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
1312{
1313 struct spi_nor_rww *rww = &nor->rww;
1314 unsigned int used_banks = 0;
1315 bool started = false;
1316 u8 first, last;
1317 int bank;
1318
1319 mutex_lock(&nor->lock);
1320
1321 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1322 goto busy;
1323
1324 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1325 for (bank = first; bank <= last; bank++) {
1326 if (rww->used_banks & BIT(bank))
1327 goto busy;
1328
1329 used_banks |= BIT(bank);
1330 }
1331
1332 rww->used_banks |= used_banks;
1333 rww->ongoing_pe = true;
1334 started = true;
1335
1336busy:
1337 mutex_unlock(&nor->lock);
1338 return started;
1339}
1340
1341static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
1342{
1343 struct spi_nor_rww *rww = &nor->rww;
1344 u8 first, last;
1345 int bank;
1346
1347 mutex_lock(&nor->lock);
1348
1349 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1350 for (bank = first; bank <= last; bank++)
1351 rww->used_banks &= ~BIT(bank);
1352
1353 rww->ongoing_pe = false;
1354
1355 mutex_unlock(&nor->lock);
1356}
1357
1358static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
1359{
1360 int ret;
1361
1362 ret = spi_nor_prep(nor);
1363 if (ret)
1364 return ret;
1365
1366 if (!spi_nor_use_parallel_locking(nor))
1367 mutex_lock(&nor->lock);
1368 else
1369 ret = wait_event_killable(nor->rww.wait,
1370 spi_nor_rww_start_pe(nor, start, len));
1371
1372 return ret;
1373}
1374
1375static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
1376{
1377 if (!spi_nor_use_parallel_locking(nor)) {
1378 mutex_unlock(&nor->lock);
1379 } else {
1380 spi_nor_rww_end_pe(nor, start, len);
1381 wake_up(&nor->rww.wait);
1382 }
1383
1384 spi_nor_unprep(nor);
1385}
1386
1387/* Internal locking helpers for read operations */
1388static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
1389{
1390 struct spi_nor_rww *rww = &nor->rww;
1391 unsigned int used_banks = 0;
1392 bool started = false;
1393 u8 first, last;
1394 int bank;
1395
1396 mutex_lock(&nor->lock);
1397
1398 if (rww->ongoing_io || rww->ongoing_rd)
1399 goto busy;
1400
1401 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1402 for (bank = first; bank <= last; bank++) {
1403 if (rww->used_banks & BIT(bank))
1404 goto busy;
1405
1406 used_banks |= BIT(bank);
1407 }
1408
1409 rww->used_banks |= used_banks;
1410 rww->ongoing_io = true;
1411 rww->ongoing_rd = true;
1412 started = true;
1413
1414busy:
1415 mutex_unlock(&nor->lock);
1416 return started;
1417}
1418
1419static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
1420{
1421 struct spi_nor_rww *rww = &nor->rww;
1422 u8 first, last;
1423 int bank;
1424
1425 mutex_lock(&nor->lock);
1426
1427 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1428 for (bank = first; bank <= last; bank++)
1429 nor->rww.used_banks &= ~BIT(bank);
1430
1431 rww->ongoing_io = false;
1432 rww->ongoing_rd = false;
1433
1434 mutex_unlock(&nor->lock);
1435}
1436
1437static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
1438{
1439 int ret;
1440
1441 ret = spi_nor_prep(nor);
1442 if (ret)
1443 return ret;
1444
1445 if (!spi_nor_use_parallel_locking(nor))
1446 mutex_lock(&nor->lock);
1447 else
1448 ret = wait_event_killable(nor->rww.wait,
1449 spi_nor_rww_start_rd(nor, start, len));
1450
1451 return ret;
1452}
1453
1454static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
1455{
1456 if (!spi_nor_use_parallel_locking(nor)) {
1457 mutex_unlock(&nor->lock);
1458 } else {
1459 spi_nor_rww_end_rd(nor, start, len);
1460 wake_up(&nor->rww.wait);
1461 }
1462
1463 spi_nor_unprep(nor);
1464}
1465
1466static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1467{
1468 if (!nor->params->convert_addr)
1469 return addr;
1470
1471 return nor->params->convert_addr(nor, addr);
1472}
1473
1474/*
1475 * Initiate the erasure of a single sector
1476 */
1477int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1478{
1479 int i;
1480
1481 addr = spi_nor_convert_addr(nor, addr);
1482
1483 if (nor->spimem) {
1484 struct spi_mem_op op =
1485 SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1486 nor->addr_nbytes, addr);
1487
1488 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1489
1490 return spi_mem_exec_op(nor->spimem, &op);
1491 } else if (nor->controller_ops->erase) {
1492 return spi_nor_controller_ops_erase(nor, addr);
1493 }
1494
1495 /*
1496 * Default implementation, if driver doesn't have a specialized HW
1497 * control
1498 */
1499 for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1500 nor->bouncebuf[i] = addr & 0xff;
1501 addr >>= 8;
1502 }
1503
1504 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1505 nor->bouncebuf, nor->addr_nbytes);
1506}
1507
1508/**
1509 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1510 * @erase: pointer to a structure that describes a SPI NOR erase type
1511 * @dividend: dividend value
1512 * @remainder: pointer to u32 remainder (will be updated)
1513 *
1514 * Return: the result of the division
1515 */
1516static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1517 u64 dividend, u32 *remainder)
1518{
1519 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1520 *remainder = (u32)dividend & erase->size_mask;
1521 return dividend >> erase->size_shift;
1522}
1523
1524/**
1525 * spi_nor_find_best_erase_type() - find the best erase type for the given
1526 * offset in the serial flash memory and the
1527 * number of bytes to erase. The region in
1528 * which the address fits is expected to be
1529 * provided.
1530 * @map: the erase map of the SPI NOR
1531 * @region: pointer to a structure that describes a SPI NOR erase region
1532 * @addr: offset in the serial flash memory
1533 * @len: number of bytes to erase
1534 *
1535 * Return: a pointer to the best fitted erase type, NULL otherwise.
1536 */
1537static const struct spi_nor_erase_type *
1538spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1539 const struct spi_nor_erase_region *region,
1540 u64 addr, u32 len)
1541{
1542 const struct spi_nor_erase_type *erase;
1543 u32 rem;
1544 int i;
1545 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1546
1547 /*
1548 * Erase types are ordered by size, with the smallest erase type at
1549 * index 0.
1550 */
1551 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1552 /* Does the erase region support the tested erase type? */
1553 if (!(erase_mask & BIT(i)))
1554 continue;
1555
1556 erase = &map->erase_type[i];
1557 if (!erase->size)
1558 continue;
1559
1560 /* Alignment is not mandatory for overlaid regions */
1561 if (region->offset & SNOR_OVERLAID_REGION &&
1562 region->size <= len)
1563 return erase;
1564
1565 /* Don't erase more than what the user has asked for. */
1566 if (erase->size > len)
1567 continue;
1568
1569 spi_nor_div_by_erase_size(erase, addr, &rem);
1570 if (!rem)
1571 return erase;
1572 }
1573
1574 return NULL;
1575}
1576
1577static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1578{
1579 return region->offset & SNOR_LAST_REGION;
1580}
1581
1582static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1583{
1584 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1585}
1586
1587/**
1588 * spi_nor_region_next() - get the next spi nor region
1589 * @region: pointer to a structure that describes a SPI NOR erase region
1590 *
1591 * Return: the next spi nor region or NULL if last region.
1592 */
1593struct spi_nor_erase_region *
1594spi_nor_region_next(struct spi_nor_erase_region *region)
1595{
1596 if (spi_nor_region_is_last(region))
1597 return NULL;
1598 region++;
1599 return region;
1600}
1601
1602/**
1603 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1604 * which the offset fits
1605 * @map: the erase map of the SPI NOR
1606 * @addr: offset in the serial flash memory
1607 *
1608 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1609 * otherwise.
1610 */
1611static struct spi_nor_erase_region *
1612spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1613{
1614 struct spi_nor_erase_region *region = map->regions;
1615 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1616 u64 region_end = region_start + region->size;
1617
1618 while (addr < region_start || addr >= region_end) {
1619 region = spi_nor_region_next(region);
1620 if (!region)
1621 return ERR_PTR(-EINVAL);
1622
1623 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1624 region_end = region_start + region->size;
1625 }
1626
1627 return region;
1628}
1629
1630/**
1631 * spi_nor_init_erase_cmd() - initialize an erase command
1632 * @region: pointer to a structure that describes a SPI NOR erase region
1633 * @erase: pointer to a structure that describes a SPI NOR erase type
1634 *
1635 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1636 * otherwise.
1637 */
1638static struct spi_nor_erase_command *
1639spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1640 const struct spi_nor_erase_type *erase)
1641{
1642 struct spi_nor_erase_command *cmd;
1643
1644 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1645 if (!cmd)
1646 return ERR_PTR(-ENOMEM);
1647
1648 INIT_LIST_HEAD(&cmd->list);
1649 cmd->opcode = erase->opcode;
1650 cmd->count = 1;
1651
1652 if (region->offset & SNOR_OVERLAID_REGION)
1653 cmd->size = region->size;
1654 else
1655 cmd->size = erase->size;
1656
1657 return cmd;
1658}
1659
1660/**
1661 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1662 * @erase_list: list of erase commands
1663 */
1664static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1665{
1666 struct spi_nor_erase_command *cmd, *next;
1667
1668 list_for_each_entry_safe(cmd, next, erase_list, list) {
1669 list_del(&cmd->list);
1670 kfree(cmd);
1671 }
1672}
1673
1674/**
1675 * spi_nor_init_erase_cmd_list() - initialize erase command list
1676 * @nor: pointer to a 'struct spi_nor'
1677 * @erase_list: list of erase commands to be executed once we validate that the
1678 * erase can be performed
1679 * @addr: offset in the serial flash memory
1680 * @len: number of bytes to erase
1681 *
1682 * Builds the list of best fitted erase commands and verifies if the erase can
1683 * be performed.
1684 *
1685 * Return: 0 on success, -errno otherwise.
1686 */
1687static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1688 struct list_head *erase_list,
1689 u64 addr, u32 len)
1690{
1691 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1692 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1693 struct spi_nor_erase_region *region;
1694 struct spi_nor_erase_command *cmd = NULL;
1695 u64 region_end;
1696 int ret = -EINVAL;
1697
1698 region = spi_nor_find_erase_region(map, addr);
1699 if (IS_ERR(region))
1700 return PTR_ERR(region);
1701
1702 region_end = spi_nor_region_end(region);
1703
1704 while (len) {
1705 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1706 if (!erase)
1707 goto destroy_erase_cmd_list;
1708
1709 if (prev_erase != erase ||
1710 erase->size != cmd->size ||
1711 region->offset & SNOR_OVERLAID_REGION) {
1712 cmd = spi_nor_init_erase_cmd(region, erase);
1713 if (IS_ERR(cmd)) {
1714 ret = PTR_ERR(cmd);
1715 goto destroy_erase_cmd_list;
1716 }
1717
1718 list_add_tail(&cmd->list, erase_list);
1719 } else {
1720 cmd->count++;
1721 }
1722
1723 addr += cmd->size;
1724 len -= cmd->size;
1725
1726 if (len && addr >= region_end) {
1727 region = spi_nor_region_next(region);
1728 if (!region)
1729 goto destroy_erase_cmd_list;
1730 region_end = spi_nor_region_end(region);
1731 }
1732
1733 prev_erase = erase;
1734 }
1735
1736 return 0;
1737
1738destroy_erase_cmd_list:
1739 spi_nor_destroy_erase_cmd_list(erase_list);
1740 return ret;
1741}
1742
1743/**
1744 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1745 * @nor: pointer to a 'struct spi_nor'
1746 * @addr: offset in the serial flash memory
1747 * @len: number of bytes to erase
1748 *
1749 * Build a list of best fitted erase commands and execute it once we validate
1750 * that the erase can be performed.
1751 *
1752 * Return: 0 on success, -errno otherwise.
1753 */
1754static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1755{
1756 LIST_HEAD(erase_list);
1757 struct spi_nor_erase_command *cmd, *next;
1758 int ret;
1759
1760 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1761 if (ret)
1762 return ret;
1763
1764 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1765 nor->erase_opcode = cmd->opcode;
1766 while (cmd->count) {
1767 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1768 cmd->size, cmd->opcode, cmd->count);
1769
1770 ret = spi_nor_lock_device(nor);
1771 if (ret)
1772 goto destroy_erase_cmd_list;
1773
1774 ret = spi_nor_write_enable(nor);
1775 if (ret) {
1776 spi_nor_unlock_device(nor);
1777 goto destroy_erase_cmd_list;
1778 }
1779
1780 ret = spi_nor_erase_sector(nor, addr);
1781 spi_nor_unlock_device(nor);
1782 if (ret)
1783 goto destroy_erase_cmd_list;
1784
1785 ret = spi_nor_wait_till_ready(nor);
1786 if (ret)
1787 goto destroy_erase_cmd_list;
1788
1789 addr += cmd->size;
1790 cmd->count--;
1791 }
1792 list_del(&cmd->list);
1793 kfree(cmd);
1794 }
1795
1796 return 0;
1797
1798destroy_erase_cmd_list:
1799 spi_nor_destroy_erase_cmd_list(&erase_list);
1800 return ret;
1801}
1802
1803static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
1804 size_t len, size_t die_size)
1805{
1806 unsigned long timeout;
1807 int ret;
1808
1809 /*
1810 * Scale the timeout linearly with the size of the flash, with
1811 * a minimum calibrated to an old 2MB flash. We could try to
1812 * pull these from CFI/SFDP, but these values should be good
1813 * enough for now.
1814 */
1815 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1816 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1817 (unsigned long)(nor->mtd.size / SZ_2M));
1818
1819 do {
1820 ret = spi_nor_lock_device(nor);
1821 if (ret)
1822 return ret;
1823
1824 ret = spi_nor_write_enable(nor);
1825 if (ret) {
1826 spi_nor_unlock_device(nor);
1827 return ret;
1828 }
1829
1830 ret = spi_nor_erase_die(nor, addr, die_size);
1831
1832 spi_nor_unlock_device(nor);
1833 if (ret)
1834 return ret;
1835
1836 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1837 if (ret)
1838 return ret;
1839
1840 addr += die_size;
1841 len -= die_size;
1842
1843 } while (len);
1844
1845 return 0;
1846}
1847
1848/*
1849 * Erase an address range on the nor chip. The address range may extend
1850 * one or more erase sectors. Return an error if there is a problem erasing.
1851 */
1852static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1853{
1854 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1855 u8 n_dice = nor->params->n_dice;
1856 bool multi_die_erase = false;
1857 u32 addr, len, rem;
1858 size_t die_size;
1859 int ret;
1860
1861 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1862 (long long)instr->len);
1863
1864 if (spi_nor_has_uniform_erase(nor)) {
1865 div_u64_rem(instr->len, mtd->erasesize, &rem);
1866 if (rem)
1867 return -EINVAL;
1868 }
1869
1870 addr = instr->addr;
1871 len = instr->len;
1872
1873 if (n_dice) {
1874 die_size = div_u64(mtd->size, n_dice);
1875 if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
1876 multi_die_erase = true;
1877 } else {
1878 die_size = mtd->size;
1879 }
1880
1881 ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
1882 if (ret)
1883 return ret;
1884
1885 /* chip (die) erase? */
1886 if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
1887 multi_die_erase) {
1888 ret = spi_nor_erase_dice(nor, addr, len, die_size);
1889 if (ret)
1890 goto erase_err;
1891
1892 /* REVISIT in some cases we could speed up erasing large regions
1893 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1894 * to use "small sector erase", but that's not always optimal.
1895 */
1896
1897 /* "sector"-at-a-time erase */
1898 } else if (spi_nor_has_uniform_erase(nor)) {
1899 while (len) {
1900 ret = spi_nor_lock_device(nor);
1901 if (ret)
1902 goto erase_err;
1903
1904 ret = spi_nor_write_enable(nor);
1905 if (ret) {
1906 spi_nor_unlock_device(nor);
1907 goto erase_err;
1908 }
1909
1910 ret = spi_nor_erase_sector(nor, addr);
1911 spi_nor_unlock_device(nor);
1912 if (ret)
1913 goto erase_err;
1914
1915 ret = spi_nor_wait_till_ready(nor);
1916 if (ret)
1917 goto erase_err;
1918
1919 addr += mtd->erasesize;
1920 len -= mtd->erasesize;
1921 }
1922
1923 /* erase multiple sectors */
1924 } else {
1925 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1926 if (ret)
1927 goto erase_err;
1928 }
1929
1930 ret = spi_nor_write_disable(nor);
1931
1932erase_err:
1933 spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
1934
1935 return ret;
1936}
1937
1938/**
1939 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1940 * Register 1.
1941 * @nor: pointer to a 'struct spi_nor'
1942 *
1943 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1944 *
1945 * Return: 0 on success, -errno otherwise.
1946 */
1947int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1948{
1949 int ret;
1950
1951 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1952 if (ret)
1953 return ret;
1954
1955 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1956 return 0;
1957
1958 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1959
1960 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1961}
1962
1963/**
1964 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1965 * Register 2.
1966 * @nor: pointer to a 'struct spi_nor'.
1967 *
1968 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1969 *
1970 * Return: 0 on success, -errno otherwise.
1971 */
1972int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1973{
1974 int ret;
1975
1976 if (nor->flags & SNOR_F_NO_READ_CR)
1977 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1978
1979 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1980 if (ret)
1981 return ret;
1982
1983 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1984 return 0;
1985
1986 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1987
1988 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1989}
1990
1991/**
1992 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1993 * @nor: pointer to a 'struct spi_nor'
1994 *
1995 * Set the Quad Enable (QE) bit in the Status Register 2.
1996 *
1997 * This is one of the procedures to set the QE bit described in the SFDP
1998 * (JESD216 rev B) specification but no manufacturer using this procedure has
1999 * been identified yet, hence the name of the function.
2000 *
2001 * Return: 0 on success, -errno otherwise.
2002 */
2003int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
2004{
2005 u8 *sr2 = nor->bouncebuf;
2006 int ret;
2007 u8 sr2_written;
2008
2009 /* Check current Quad Enable bit value. */
2010 ret = spi_nor_read_sr2(nor, sr2);
2011 if (ret)
2012 return ret;
2013 if (*sr2 & SR2_QUAD_EN_BIT7)
2014 return 0;
2015
2016 /* Update the Quad Enable bit. */
2017 *sr2 |= SR2_QUAD_EN_BIT7;
2018
2019 ret = spi_nor_write_sr2(nor, sr2);
2020 if (ret)
2021 return ret;
2022
2023 sr2_written = *sr2;
2024
2025 /* Read back and check it. */
2026 ret = spi_nor_read_sr2(nor, sr2);
2027 if (ret)
2028 return ret;
2029
2030 if (*sr2 != sr2_written) {
2031 dev_dbg(nor->dev, "SR2: Read back test failed\n");
2032 return -EIO;
2033 }
2034
2035 return 0;
2036}
2037
2038static const struct spi_nor_manufacturer *manufacturers[] = {
2039 &spi_nor_atmel,
2040 &spi_nor_eon,
2041 &spi_nor_esmt,
2042 &spi_nor_everspin,
2043 &spi_nor_gigadevice,
2044 &spi_nor_intel,
2045 &spi_nor_issi,
2046 &spi_nor_macronix,
2047 &spi_nor_micron,
2048 &spi_nor_st,
2049 &spi_nor_spansion,
2050 &spi_nor_sst,
2051 &spi_nor_winbond,
2052 &spi_nor_xilinx,
2053 &spi_nor_xmc,
2054};
2055
2056static const struct flash_info spi_nor_generic_flash = {
2057 .name = "spi-nor-generic",
2058};
2059
2060static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
2061 const u8 *id)
2062{
2063 const struct flash_info *part;
2064 unsigned int i, j;
2065
2066 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2067 for (j = 0; j < manufacturers[i]->nparts; j++) {
2068 part = &manufacturers[i]->parts[j];
2069 if (part->id &&
2070 !memcmp(part->id->bytes, id, part->id->len)) {
2071 nor->manufacturer = manufacturers[i];
2072 return part;
2073 }
2074 }
2075 }
2076
2077 return NULL;
2078}
2079
2080static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
2081{
2082 const struct flash_info *info;
2083 u8 *id = nor->bouncebuf;
2084 int ret;
2085
2086 ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
2087 if (ret) {
2088 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2089 return ERR_PTR(ret);
2090 }
2091
2092 /* Cache the complete flash ID. */
2093 nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
2094 if (!nor->id)
2095 return ERR_PTR(-ENOMEM);
2096
2097 info = spi_nor_match_id(nor, id);
2098
2099 /* Fallback to a generic flash described only by its SFDP data. */
2100 if (!info) {
2101 ret = spi_nor_check_sfdp_signature(nor);
2102 if (!ret)
2103 info = &spi_nor_generic_flash;
2104 }
2105
2106 if (!info) {
2107 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2108 SPI_NOR_MAX_ID_LEN, id);
2109 return ERR_PTR(-ENODEV);
2110 }
2111 return info;
2112}
2113
2114static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2115 size_t *retlen, u_char *buf)
2116{
2117 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2118 loff_t from_lock = from;
2119 size_t len_lock = len;
2120 ssize_t ret;
2121
2122 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2123
2124 ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
2125 if (ret)
2126 return ret;
2127
2128 while (len) {
2129 loff_t addr = from;
2130
2131 addr = spi_nor_convert_addr(nor, addr);
2132
2133 ret = spi_nor_read_data(nor, addr, len, buf);
2134 if (ret == 0) {
2135 /* We shouldn't see 0-length reads */
2136 ret = -EIO;
2137 goto read_err;
2138 }
2139 if (ret < 0)
2140 goto read_err;
2141
2142 WARN_ON(ret > len);
2143 *retlen += ret;
2144 buf += ret;
2145 from += ret;
2146 len -= ret;
2147 }
2148 ret = 0;
2149
2150read_err:
2151 spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
2152
2153 return ret;
2154}
2155
2156/*
2157 * Write an address range to the nor chip. Data must be written in
2158 * FLASH_PAGESIZE chunks. The address range may be any size provided
2159 * it is within the physical boundaries.
2160 */
2161static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2162 size_t *retlen, const u_char *buf)
2163{
2164 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2165 size_t page_offset, page_remain, i;
2166 ssize_t ret;
2167 u32 page_size = nor->params->page_size;
2168
2169 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2170
2171 ret = spi_nor_prep_and_lock_pe(nor, to, len);
2172 if (ret)
2173 return ret;
2174
2175 for (i = 0; i < len; ) {
2176 ssize_t written;
2177 loff_t addr = to + i;
2178
2179 /*
2180 * If page_size is a power of two, the offset can be quickly
2181 * calculated with an AND operation. On the other cases we
2182 * need to do a modulus operation (more expensive).
2183 */
2184 if (is_power_of_2(page_size)) {
2185 page_offset = addr & (page_size - 1);
2186 } else {
2187 u64 aux = addr;
2188
2189 page_offset = do_div(aux, page_size);
2190 }
2191 /* the size of data remaining on the first page */
2192 page_remain = min_t(size_t, page_size - page_offset, len - i);
2193
2194 addr = spi_nor_convert_addr(nor, addr);
2195
2196 ret = spi_nor_lock_device(nor);
2197 if (ret)
2198 goto write_err;
2199
2200 ret = spi_nor_write_enable(nor);
2201 if (ret) {
2202 spi_nor_unlock_device(nor);
2203 goto write_err;
2204 }
2205
2206 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2207 spi_nor_unlock_device(nor);
2208 if (ret < 0)
2209 goto write_err;
2210 written = ret;
2211
2212 ret = spi_nor_wait_till_ready(nor);
2213 if (ret)
2214 goto write_err;
2215 *retlen += written;
2216 i += written;
2217 }
2218
2219write_err:
2220 spi_nor_unlock_and_unprep_pe(nor, to, len);
2221
2222 return ret;
2223}
2224
2225static int spi_nor_check(struct spi_nor *nor)
2226{
2227 if (!nor->dev ||
2228 (!nor->spimem && !nor->controller_ops) ||
2229 (!nor->spimem && nor->controller_ops &&
2230 (!nor->controller_ops->read ||
2231 !nor->controller_ops->write ||
2232 !nor->controller_ops->read_reg ||
2233 !nor->controller_ops->write_reg))) {
2234 pr_err("spi-nor: please fill all the necessary fields!\n");
2235 return -EINVAL;
2236 }
2237
2238 if (nor->spimem && nor->controller_ops) {
2239 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2240 return -EINVAL;
2241 }
2242
2243 return 0;
2244}
2245
2246void
2247spi_nor_set_read_settings(struct spi_nor_read_command *read,
2248 u8 num_mode_clocks,
2249 u8 num_wait_states,
2250 u8 opcode,
2251 enum spi_nor_protocol proto)
2252{
2253 read->num_mode_clocks = num_mode_clocks;
2254 read->num_wait_states = num_wait_states;
2255 read->opcode = opcode;
2256 read->proto = proto;
2257}
2258
2259void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2260 enum spi_nor_protocol proto)
2261{
2262 pp->opcode = opcode;
2263 pp->proto = proto;
2264}
2265
2266static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2267{
2268 size_t i;
2269
2270 for (i = 0; i < size; i++)
2271 if (table[i][0] == (int)hwcaps)
2272 return table[i][1];
2273
2274 return -EINVAL;
2275}
2276
2277int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2278{
2279 static const int hwcaps_read2cmd[][2] = {
2280 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2281 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2282 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2283 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2284 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2285 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2286 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2287 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2288 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2289 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2290 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2291 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2292 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2293 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2294 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2295 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
2296 };
2297
2298 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2299 ARRAY_SIZE(hwcaps_read2cmd));
2300}
2301
2302int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2303{
2304 static const int hwcaps_pp2cmd[][2] = {
2305 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2306 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2307 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2308 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2309 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2310 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2311 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2312 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
2313 };
2314
2315 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2316 ARRAY_SIZE(hwcaps_pp2cmd));
2317}
2318
2319/**
2320 * spi_nor_spimem_check_op - check if the operation is supported
2321 * by controller
2322 *@nor: pointer to a 'struct spi_nor'
2323 *@op: pointer to op template to be checked
2324 *
2325 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2326 */
2327static int spi_nor_spimem_check_op(struct spi_nor *nor,
2328 struct spi_mem_op *op)
2329{
2330 /*
2331 * First test with 4 address bytes. The opcode itself might
2332 * be a 3B addressing opcode but we don't care, because
2333 * SPI controller implementation should not check the opcode,
2334 * but just the sequence.
2335 */
2336 op->addr.nbytes = 4;
2337 if (!spi_mem_supports_op(nor->spimem, op)) {
2338 if (nor->params->size > SZ_16M)
2339 return -EOPNOTSUPP;
2340
2341 /* If flash size <= 16MB, 3 address bytes are sufficient */
2342 op->addr.nbytes = 3;
2343 if (!spi_mem_supports_op(nor->spimem, op))
2344 return -EOPNOTSUPP;
2345 }
2346
2347 return 0;
2348}
2349
2350/**
2351 * spi_nor_spimem_check_readop - check if the read op is supported
2352 * by controller
2353 *@nor: pointer to a 'struct spi_nor'
2354 *@read: pointer to op template to be checked
2355 *
2356 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2357 */
2358static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2359 const struct spi_nor_read_command *read)
2360{
2361 struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
2362
2363 spi_nor_spimem_setup_op(nor, &op, read->proto);
2364
2365 /* convert the dummy cycles to the number of bytes */
2366 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2367 op.dummy.buswidth / 8;
2368 if (spi_nor_protocol_is_dtr(nor->read_proto))
2369 op.dummy.nbytes *= 2;
2370
2371 return spi_nor_spimem_check_op(nor, &op);
2372}
2373
2374/**
2375 * spi_nor_spimem_check_pp - check if the page program op is supported
2376 * by controller
2377 *@nor: pointer to a 'struct spi_nor'
2378 *@pp: pointer to op template to be checked
2379 *
2380 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2381 */
2382static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2383 const struct spi_nor_pp_command *pp)
2384{
2385 struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
2386
2387 spi_nor_spimem_setup_op(nor, &op, pp->proto);
2388
2389 return spi_nor_spimem_check_op(nor, &op);
2390}
2391
2392/**
2393 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2394 * based on SPI controller capabilities
2395 * @nor: pointer to a 'struct spi_nor'
2396 * @hwcaps: pointer to resulting capabilities after adjusting
2397 * according to controller and flash's capability
2398 */
2399static void
2400spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2401{
2402 struct spi_nor_flash_parameter *params = nor->params;
2403 unsigned int cap;
2404
2405 /* X-X-X modes are not supported yet, mask them all. */
2406 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2407
2408 /*
2409 * If the reset line is broken, we do not want to enter a stateful
2410 * mode.
2411 */
2412 if (nor->flags & SNOR_F_BROKEN_RESET)
2413 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2414
2415 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2416 int rdidx, ppidx;
2417
2418 if (!(*hwcaps & BIT(cap)))
2419 continue;
2420
2421 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2422 if (rdidx >= 0 &&
2423 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2424 *hwcaps &= ~BIT(cap);
2425
2426 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2427 if (ppidx < 0)
2428 continue;
2429
2430 if (spi_nor_spimem_check_pp(nor,
2431 ¶ms->page_programs[ppidx]))
2432 *hwcaps &= ~BIT(cap);
2433 }
2434}
2435
2436/**
2437 * spi_nor_set_erase_type() - set a SPI NOR erase type
2438 * @erase: pointer to a structure that describes a SPI NOR erase type
2439 * @size: the size of the sector/block erased by the erase type
2440 * @opcode: the SPI command op code to erase the sector/block
2441 */
2442void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2443 u8 opcode)
2444{
2445 erase->size = size;
2446 erase->opcode = opcode;
2447 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2448 erase->size_shift = ffs(erase->size) - 1;
2449 erase->size_mask = (1 << erase->size_shift) - 1;
2450}
2451
2452/**
2453 * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2454 * @erase: pointer to a structure that describes a SPI NOR erase type
2455 */
2456void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2457{
2458 erase->size = 0;
2459}
2460
2461/**
2462 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2463 * @map: the erase map of the SPI NOR
2464 * @erase_mask: bitmask encoding erase types that can erase the entire
2465 * flash memory
2466 * @flash_size: the spi nor flash memory size
2467 */
2468void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2469 u8 erase_mask, u64 flash_size)
2470{
2471 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2472 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2473 SNOR_LAST_REGION;
2474 map->uniform_region.size = flash_size;
2475 map->regions = &map->uniform_region;
2476 map->uniform_erase_type = erase_mask;
2477}
2478
2479int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2480 const struct sfdp_parameter_header *bfpt_header,
2481 const struct sfdp_bfpt *bfpt)
2482{
2483 int ret;
2484
2485 if (nor->manufacturer && nor->manufacturer->fixups &&
2486 nor->manufacturer->fixups->post_bfpt) {
2487 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2488 bfpt);
2489 if (ret)
2490 return ret;
2491 }
2492
2493 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2494 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2495
2496 return 0;
2497}
2498
2499static int spi_nor_select_read(struct spi_nor *nor,
2500 u32 shared_hwcaps)
2501{
2502 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2503 const struct spi_nor_read_command *read;
2504
2505 if (best_match < 0)
2506 return -EINVAL;
2507
2508 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2509 if (cmd < 0)
2510 return -EINVAL;
2511
2512 read = &nor->params->reads[cmd];
2513 nor->read_opcode = read->opcode;
2514 nor->read_proto = read->proto;
2515
2516 /*
2517 * In the SPI NOR framework, we don't need to make the difference
2518 * between mode clock cycles and wait state clock cycles.
2519 * Indeed, the value of the mode clock cycles is used by a QSPI
2520 * flash memory to know whether it should enter or leave its 0-4-4
2521 * (Continuous Read / XIP) mode.
2522 * eXecution In Place is out of the scope of the mtd sub-system.
2523 * Hence we choose to merge both mode and wait state clock cycles
2524 * into the so called dummy clock cycles.
2525 */
2526 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2527 return 0;
2528}
2529
2530static int spi_nor_select_pp(struct spi_nor *nor,
2531 u32 shared_hwcaps)
2532{
2533 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2534 const struct spi_nor_pp_command *pp;
2535
2536 if (best_match < 0)
2537 return -EINVAL;
2538
2539 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2540 if (cmd < 0)
2541 return -EINVAL;
2542
2543 pp = &nor->params->page_programs[cmd];
2544 nor->program_opcode = pp->opcode;
2545 nor->write_proto = pp->proto;
2546 return 0;
2547}
2548
2549/**
2550 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2551 * @map: the erase map of the SPI NOR
2552 *
2553 * Once the optimum uniform sector erase command is found, disable all the
2554 * other.
2555 *
2556 * Return: pointer to erase type on success, NULL otherwise.
2557 */
2558static const struct spi_nor_erase_type *
2559spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
2560{
2561 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2562 int i;
2563 u8 uniform_erase_type = map->uniform_erase_type;
2564
2565 /*
2566 * Search for the biggest erase size, except for when compiled
2567 * to use 4k erases.
2568 */
2569 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2570 if (!(uniform_erase_type & BIT(i)))
2571 continue;
2572
2573 tested_erase = &map->erase_type[i];
2574
2575 /* Skip masked erase types. */
2576 if (!tested_erase->size)
2577 continue;
2578
2579 /*
2580 * If the current erase size is the 4k one, stop here,
2581 * we have found the right uniform Sector Erase command.
2582 */
2583 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
2584 tested_erase->size == SZ_4K) {
2585 erase = tested_erase;
2586 break;
2587 }
2588
2589 /*
2590 * Otherwise, the current erase size is still a valid candidate.
2591 * Select the biggest valid candidate.
2592 */
2593 if (!erase && tested_erase->size)
2594 erase = tested_erase;
2595 /* keep iterating to find the wanted_size */
2596 }
2597
2598 if (!erase)
2599 return NULL;
2600
2601 /* Disable all other Sector Erase commands. */
2602 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2603 map->uniform_erase_type |= BIT(erase - map->erase_type);
2604 return erase;
2605}
2606
2607static int spi_nor_select_erase(struct spi_nor *nor)
2608{
2609 struct spi_nor_erase_map *map = &nor->params->erase_map;
2610 const struct spi_nor_erase_type *erase = NULL;
2611 struct mtd_info *mtd = &nor->mtd;
2612 int i;
2613
2614 /*
2615 * The previous implementation handling Sector Erase commands assumed
2616 * that the SPI flash memory has an uniform layout then used only one
2617 * of the supported erase sizes for all Sector Erase commands.
2618 * So to be backward compatible, the new implementation also tries to
2619 * manage the SPI flash memory as uniform with a single erase sector
2620 * size, when possible.
2621 */
2622 if (spi_nor_has_uniform_erase(nor)) {
2623 erase = spi_nor_select_uniform_erase(map);
2624 if (!erase)
2625 return -EINVAL;
2626 nor->erase_opcode = erase->opcode;
2627 mtd->erasesize = erase->size;
2628 return 0;
2629 }
2630
2631 /*
2632 * For non-uniform SPI flash memory, set mtd->erasesize to the
2633 * maximum erase sector size. No need to set nor->erase_opcode.
2634 */
2635 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2636 if (map->erase_type[i].size) {
2637 erase = &map->erase_type[i];
2638 break;
2639 }
2640 }
2641
2642 if (!erase)
2643 return -EINVAL;
2644
2645 mtd->erasesize = erase->size;
2646 return 0;
2647}
2648
2649static int spi_nor_default_setup(struct spi_nor *nor,
2650 const struct spi_nor_hwcaps *hwcaps)
2651{
2652 struct spi_nor_flash_parameter *params = nor->params;
2653 u32 ignored_mask, shared_mask;
2654 int err;
2655
2656 /*
2657 * Keep only the hardware capabilities supported by both the SPI
2658 * controller and the SPI flash memory.
2659 */
2660 shared_mask = hwcaps->mask & params->hwcaps.mask;
2661
2662 if (nor->spimem) {
2663 /*
2664 * When called from spi_nor_probe(), all caps are set and we
2665 * need to discard some of them based on what the SPI
2666 * controller actually supports (using spi_mem_supports_op()).
2667 */
2668 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2669 } else {
2670 /*
2671 * SPI n-n-n protocols are not supported when the SPI
2672 * controller directly implements the spi_nor interface.
2673 * Yet another reason to switch to spi-mem.
2674 */
2675 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2676 if (shared_mask & ignored_mask) {
2677 dev_dbg(nor->dev,
2678 "SPI n-n-n protocols are not supported.\n");
2679 shared_mask &= ~ignored_mask;
2680 }
2681 }
2682
2683 /* Select the (Fast) Read command. */
2684 err = spi_nor_select_read(nor, shared_mask);
2685 if (err) {
2686 dev_dbg(nor->dev,
2687 "can't select read settings supported by both the SPI controller and memory.\n");
2688 return err;
2689 }
2690
2691 /* Select the Page Program command. */
2692 err = spi_nor_select_pp(nor, shared_mask);
2693 if (err) {
2694 dev_dbg(nor->dev,
2695 "can't select write settings supported by both the SPI controller and memory.\n");
2696 return err;
2697 }
2698
2699 /* Select the Sector Erase command. */
2700 err = spi_nor_select_erase(nor);
2701 if (err) {
2702 dev_dbg(nor->dev,
2703 "can't select erase settings supported by both the SPI controller and memory.\n");
2704 return err;
2705 }
2706
2707 return 0;
2708}
2709
2710static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2711{
2712 if (nor->params->addr_nbytes) {
2713 nor->addr_nbytes = nor->params->addr_nbytes;
2714 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2715 /*
2716 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2717 * in this protocol an odd addr_nbytes cannot be used because
2718 * then the address phase would only span a cycle and a half.
2719 * Half a cycle would be left over. We would then have to start
2720 * the dummy phase in the middle of a cycle and so too the data
2721 * phase, and we will end the transaction with half a cycle left
2722 * over.
2723 *
2724 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2725 * avoid this situation.
2726 */
2727 nor->addr_nbytes = 4;
2728 } else if (nor->info->addr_nbytes) {
2729 nor->addr_nbytes = nor->info->addr_nbytes;
2730 } else {
2731 nor->addr_nbytes = 3;
2732 }
2733
2734 if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2735 /* enable 4-byte addressing if the device exceeds 16MiB */
2736 nor->addr_nbytes = 4;
2737 }
2738
2739 if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2740 dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2741 nor->addr_nbytes);
2742 return -EINVAL;
2743 }
2744
2745 /* Set 4byte opcodes when possible. */
2746 if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2747 !(nor->flags & SNOR_F_HAS_4BAIT))
2748 spi_nor_set_4byte_opcodes(nor);
2749
2750 return 0;
2751}
2752
2753static int spi_nor_setup(struct spi_nor *nor,
2754 const struct spi_nor_hwcaps *hwcaps)
2755{
2756 int ret;
2757
2758 if (nor->params->setup)
2759 ret = nor->params->setup(nor, hwcaps);
2760 else
2761 ret = spi_nor_default_setup(nor, hwcaps);
2762 if (ret)
2763 return ret;
2764
2765 return spi_nor_set_addr_nbytes(nor);
2766}
2767
2768/**
2769 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2770 * settings based on MFR register and ->default_init() hook.
2771 * @nor: pointer to a 'struct spi_nor'.
2772 */
2773static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2774{
2775 if (nor->manufacturer && nor->manufacturer->fixups &&
2776 nor->manufacturer->fixups->default_init)
2777 nor->manufacturer->fixups->default_init(nor);
2778
2779 if (nor->info->fixups && nor->info->fixups->default_init)
2780 nor->info->fixups->default_init(nor);
2781}
2782
2783/**
2784 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2785 * settings based on nor->info->sfdp_flags. This method should be called only by
2786 * flashes that do not define SFDP tables. If the flash supports SFDP but the
2787 * information is wrong and the settings from this function can not be retrieved
2788 * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2789 * bits.
2790 * @nor: pointer to a 'struct spi_nor'.
2791 */
2792static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2793{
2794 struct spi_nor_flash_parameter *params = nor->params;
2795 struct spi_nor_erase_map *map = ¶ms->erase_map;
2796 const struct flash_info *info = nor->info;
2797 const u8 no_sfdp_flags = info->no_sfdp_flags;
2798 u8 i, erase_mask;
2799
2800 if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2801 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2802 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2803 0, 8, SPINOR_OP_READ_1_1_2,
2804 SNOR_PROTO_1_1_2);
2805 }
2806
2807 if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2808 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2809 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2810 0, 8, SPINOR_OP_READ_1_1_4,
2811 SNOR_PROTO_1_1_4);
2812 }
2813
2814 if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2815 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2816 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2817 0, 8, SPINOR_OP_READ_1_1_8,
2818 SNOR_PROTO_1_1_8);
2819 }
2820
2821 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2822 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2823 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2824 0, 20, SPINOR_OP_READ_FAST,
2825 SNOR_PROTO_8_8_8_DTR);
2826 }
2827
2828 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2829 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2830 /*
2831 * Since xSPI Page Program opcode is backward compatible with
2832 * Legacy SPI, use Legacy SPI opcode there as well.
2833 */
2834 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2835 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2836 }
2837
2838 /*
2839 * Sector Erase settings. Sort Erase Types in ascending order, with the
2840 * smallest erase size starting at BIT(0).
2841 */
2842 erase_mask = 0;
2843 i = 0;
2844 if (no_sfdp_flags & SECT_4K) {
2845 erase_mask |= BIT(i);
2846 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2847 SPINOR_OP_BE_4K);
2848 i++;
2849 }
2850 erase_mask |= BIT(i);
2851 spi_nor_set_erase_type(&map->erase_type[i],
2852 info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
2853 SPINOR_OP_SE);
2854 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2855}
2856
2857/**
2858 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2859 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2860 * @nor: pointer to a 'struct spi_nor'
2861 */
2862static void spi_nor_init_flags(struct spi_nor *nor)
2863{
2864 struct device_node *np = spi_nor_get_flash_node(nor);
2865 const u16 flags = nor->info->flags;
2866
2867 if (of_property_read_bool(np, "broken-flash-reset"))
2868 nor->flags |= SNOR_F_BROKEN_RESET;
2869
2870 if (of_property_read_bool(np, "no-wp"))
2871 nor->flags |= SNOR_F_NO_WP;
2872
2873 if (flags & SPI_NOR_SWP_IS_VOLATILE)
2874 nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2875
2876 if (flags & SPI_NOR_HAS_LOCK)
2877 nor->flags |= SNOR_F_HAS_LOCK;
2878
2879 if (flags & SPI_NOR_HAS_TB) {
2880 nor->flags |= SNOR_F_HAS_SR_TB;
2881 if (flags & SPI_NOR_TB_SR_BIT6)
2882 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2883 }
2884
2885 if (flags & SPI_NOR_4BIT_BP) {
2886 nor->flags |= SNOR_F_HAS_4BIT_BP;
2887 if (flags & SPI_NOR_BP3_SR_BIT6)
2888 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2889 }
2890
2891 if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
2892 !nor->controller_ops)
2893 nor->flags |= SNOR_F_RWW;
2894}
2895
2896/**
2897 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2898 * be discovered by SFDP for this particular flash because the SFDP table that
2899 * indicates this support is not defined in the flash. In case the table for
2900 * this support is defined but has wrong values, one should instead use a
2901 * post_sfdp() hook to set the SNOR_F equivalent flag.
2902 * @nor: pointer to a 'struct spi_nor'
2903 */
2904static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2905{
2906 const u8 fixup_flags = nor->info->fixup_flags;
2907
2908 if (fixup_flags & SPI_NOR_4B_OPCODES)
2909 nor->flags |= SNOR_F_4B_OPCODES;
2910
2911 if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2912 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2913}
2914
2915/**
2916 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2917 * @nor: pointer to a 'struct spi_nor'
2918 *
2919 * Used to initialize flash parameters that are not declared in the JESD216
2920 * SFDP standard, or where SFDP tables are not defined at all.
2921 * Will replace the spi_nor_manufacturer_init_params() method.
2922 */
2923static int spi_nor_late_init_params(struct spi_nor *nor)
2924{
2925 struct spi_nor_flash_parameter *params = nor->params;
2926 int ret;
2927
2928 if (nor->manufacturer && nor->manufacturer->fixups &&
2929 nor->manufacturer->fixups->late_init) {
2930 ret = nor->manufacturer->fixups->late_init(nor);
2931 if (ret)
2932 return ret;
2933 }
2934
2935 /* Needed by some flashes late_init hooks. */
2936 spi_nor_init_flags(nor);
2937
2938 if (nor->info->fixups && nor->info->fixups->late_init) {
2939 ret = nor->info->fixups->late_init(nor);
2940 if (ret)
2941 return ret;
2942 }
2943
2944 if (!nor->params->die_erase_opcode)
2945 nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
2946
2947 /* Default method kept for backward compatibility. */
2948 if (!params->set_4byte_addr_mode)
2949 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
2950
2951 spi_nor_init_fixup_flags(nor);
2952
2953 /*
2954 * NOR protection support. When locking_ops are not provided, we pick
2955 * the default ones.
2956 */
2957 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2958 spi_nor_init_default_locking_ops(nor);
2959
2960 if (params->n_banks > 1)
2961 params->bank_size = div64_u64(params->size, params->n_banks);
2962
2963 return 0;
2964}
2965
2966/**
2967 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2968 * parameters and settings based on JESD216 SFDP standard.
2969 * @nor: pointer to a 'struct spi_nor'.
2970 *
2971 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2972 * legacy flash parameters and settings will be restored.
2973 */
2974static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2975{
2976 struct spi_nor_flash_parameter sfdp_params;
2977
2978 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2979
2980 if (spi_nor_parse_sfdp(nor)) {
2981 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2982 nor->flags &= ~SNOR_F_4B_OPCODES;
2983 }
2984}
2985
2986/**
2987 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2988 * parameters and settings.
2989 * @nor: pointer to a 'struct spi_nor'.
2990 *
2991 * The method assumes that flash doesn't support SFDP so it initializes flash
2992 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2993 * when parsing SFDP, if supported.
2994 */
2995static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2996{
2997 spi_nor_no_sfdp_init_params(nor);
2998
2999 spi_nor_manufacturer_init_params(nor);
3000
3001 if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
3002 SPI_NOR_QUAD_READ |
3003 SPI_NOR_OCTAL_READ |
3004 SPI_NOR_OCTAL_DTR_READ))
3005 spi_nor_sfdp_init_params_deprecated(nor);
3006}
3007
3008/**
3009 * spi_nor_init_default_params() - Default initialization of flash parameters
3010 * and settings. Done for all flashes, regardless is they define SFDP tables
3011 * or not.
3012 * @nor: pointer to a 'struct spi_nor'.
3013 */
3014static void spi_nor_init_default_params(struct spi_nor *nor)
3015{
3016 struct spi_nor_flash_parameter *params = nor->params;
3017 const struct flash_info *info = nor->info;
3018 struct device_node *np = spi_nor_get_flash_node(nor);
3019
3020 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
3021 params->otp.org = info->otp;
3022
3023 /* Default to 16-bit Write Status (01h) Command */
3024 nor->flags |= SNOR_F_HAS_16BIT_SR;
3025
3026 /* Set SPI NOR sizes. */
3027 params->writesize = 1;
3028 params->size = info->size;
3029 params->bank_size = params->size;
3030 params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
3031 params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
3032
3033 if (!(info->flags & SPI_NOR_NO_FR)) {
3034 /* Default to Fast Read for DT and non-DT platform devices. */
3035 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
3036
3037 /* Mask out Fast Read if not requested at DT instantiation. */
3038 if (np && !of_property_read_bool(np, "m25p,fast-read"))
3039 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
3040 }
3041
3042 /* (Fast) Read settings. */
3043 params->hwcaps.mask |= SNOR_HWCAPS_READ;
3044 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
3045 0, 0, SPINOR_OP_READ,
3046 SNOR_PROTO_1_1_1);
3047
3048 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
3049 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
3050 0, 8, SPINOR_OP_READ_FAST,
3051 SNOR_PROTO_1_1_1);
3052 /* Page Program settings. */
3053 params->hwcaps.mask |= SNOR_HWCAPS_PP;
3054 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
3055 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
3056
3057 if (info->flags & SPI_NOR_QUAD_PP) {
3058 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
3059 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
3060 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
3061 }
3062}
3063
3064/**
3065 * spi_nor_init_params() - Initialize the flash's parameters and settings.
3066 * @nor: pointer to a 'struct spi_nor'.
3067 *
3068 * The flash parameters and settings are initialized based on a sequence of
3069 * calls that are ordered by priority:
3070 *
3071 * 1/ Default flash parameters initialization. The initializations are done
3072 * based on nor->info data:
3073 * spi_nor_info_init_params()
3074 *
3075 * which can be overwritten by:
3076 * 2/ Manufacturer flash parameters initialization. The initializations are
3077 * done based on MFR register, or when the decisions can not be done solely
3078 * based on MFR, by using specific flash_info tweeks, ->default_init():
3079 * spi_nor_manufacturer_init_params()
3080 *
3081 * which can be overwritten by:
3082 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
3083 * should be more accurate that the above.
3084 * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
3085 *
3086 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
3087 * the flash parameters and settings immediately after parsing the Basic
3088 * Flash Parameter Table.
3089 * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
3090 * It is used to tweak various flash parameters when information provided
3091 * by the SFDP tables are wrong.
3092 *
3093 * which can be overwritten by:
3094 * 4/ Late flash parameters initialization, used to initialize flash
3095 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
3096 * tables are not defined at all.
3097 * spi_nor_late_init_params()
3098 *
3099 * Return: 0 on success, -errno otherwise.
3100 */
3101static int spi_nor_init_params(struct spi_nor *nor)
3102{
3103 int ret;
3104
3105 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
3106 if (!nor->params)
3107 return -ENOMEM;
3108
3109 spi_nor_init_default_params(nor);
3110
3111 if (spi_nor_needs_sfdp(nor)) {
3112 ret = spi_nor_parse_sfdp(nor);
3113 if (ret) {
3114 dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
3115 return ret;
3116 }
3117 } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
3118 spi_nor_no_sfdp_init_params(nor);
3119 } else {
3120 spi_nor_init_params_deprecated(nor);
3121 }
3122
3123 return spi_nor_late_init_params(nor);
3124}
3125
3126/** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
3127 * @nor: pointer to a 'struct spi_nor'
3128 * @enable: whether to enable or disable Octal DTR
3129 *
3130 * Return: 0 on success, -errno otherwise.
3131 */
3132static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
3133{
3134 int ret;
3135
3136 if (!nor->params->set_octal_dtr)
3137 return 0;
3138
3139 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3140 nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3141 return 0;
3142
3143 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3144 return 0;
3145
3146 ret = nor->params->set_octal_dtr(nor, enable);
3147 if (ret)
3148 return ret;
3149
3150 if (enable)
3151 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3152 else
3153 nor->reg_proto = SNOR_PROTO_1_1_1;
3154
3155 return 0;
3156}
3157
3158/**
3159 * spi_nor_quad_enable() - enable Quad I/O if needed.
3160 * @nor: pointer to a 'struct spi_nor'
3161 *
3162 * Return: 0 on success, -errno otherwise.
3163 */
3164static int spi_nor_quad_enable(struct spi_nor *nor)
3165{
3166 if (!nor->params->quad_enable)
3167 return 0;
3168
3169 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3170 spi_nor_get_protocol_width(nor->write_proto) == 4))
3171 return 0;
3172
3173 return nor->params->quad_enable(nor);
3174}
3175
3176/**
3177 * spi_nor_set_4byte_addr_mode() - Set address mode.
3178 * @nor: pointer to a 'struct spi_nor'.
3179 * @enable: enable/disable 4 byte address mode.
3180 *
3181 * Return: 0 on success, -errno otherwise.
3182 */
3183int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
3184{
3185 struct spi_nor_flash_parameter *params = nor->params;
3186 int ret;
3187
3188 if (enable) {
3189 /*
3190 * If the RESET# pin isn't hooked up properly, or the system
3191 * otherwise doesn't perform a reset command in the boot
3192 * sequence, it's impossible to 100% protect against unexpected
3193 * reboots (e.g., crashes). Warn the user (or hopefully, system
3194 * designer) that this is bad.
3195 */
3196 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3197 "enabling reset hack; may not recover from unexpected reboots\n");
3198 }
3199
3200 ret = params->set_4byte_addr_mode(nor, enable);
3201 if (ret && ret != -EOPNOTSUPP)
3202 return ret;
3203
3204 if (enable) {
3205 params->addr_nbytes = 4;
3206 params->addr_mode_nbytes = 4;
3207 } else {
3208 params->addr_nbytes = 3;
3209 params->addr_mode_nbytes = 3;
3210 }
3211
3212 return 0;
3213}
3214
3215static int spi_nor_init(struct spi_nor *nor)
3216{
3217 int err;
3218
3219 err = spi_nor_set_octal_dtr(nor, true);
3220 if (err) {
3221 dev_dbg(nor->dev, "octal mode not supported\n");
3222 return err;
3223 }
3224
3225 err = spi_nor_quad_enable(nor);
3226 if (err) {
3227 dev_dbg(nor->dev, "quad mode not supported\n");
3228 return err;
3229 }
3230
3231 /*
3232 * Some SPI NOR flashes are write protected by default after a power-on
3233 * reset cycle, in order to avoid inadvertent writes during power-up.
3234 * Backward compatibility imposes to unlock the entire flash memory
3235 * array at power-up by default. Depending on the kernel configuration
3236 * (1) do nothing, (2) always unlock the entire flash array or (3)
3237 * unlock the entire flash array only when the software write
3238 * protection bits are volatile. The latter is indicated by
3239 * SNOR_F_SWP_IS_VOLATILE.
3240 */
3241 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3242 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3243 nor->flags & SNOR_F_SWP_IS_VOLATILE))
3244 spi_nor_try_unlock_all(nor);
3245
3246 if (nor->addr_nbytes == 4 &&
3247 nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3248 !(nor->flags & SNOR_F_4B_OPCODES))
3249 return spi_nor_set_4byte_addr_mode(nor, true);
3250
3251 return 0;
3252}
3253
3254/**
3255 * spi_nor_soft_reset() - Perform a software reset
3256 * @nor: pointer to 'struct spi_nor'
3257 *
3258 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
3259 * the device to its power-on-reset state. This is useful when the software has
3260 * made some changes to device (volatile) registers and needs to reset it before
3261 * shutting down, for example.
3262 *
3263 * Not every flash supports this sequence. The same set of opcodes might be used
3264 * for some other operation on a flash that does not support this. Support for
3265 * this sequence can be discovered via SFDP in the BFPT table.
3266 *
3267 * Return: 0 on success, -errno otherwise.
3268 */
3269static void spi_nor_soft_reset(struct spi_nor *nor)
3270{
3271 struct spi_mem_op op;
3272 int ret;
3273
3274 op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
3275
3276 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3277
3278 ret = spi_mem_exec_op(nor->spimem, &op);
3279 if (ret) {
3280 if (ret != -EOPNOTSUPP)
3281 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3282 return;
3283 }
3284
3285 op = (struct spi_mem_op)SPINOR_SRST_OP;
3286
3287 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3288
3289 ret = spi_mem_exec_op(nor->spimem, &op);
3290 if (ret) {
3291 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3292 return;
3293 }
3294
3295 /*
3296 * Software Reset is not instant, and the delay varies from flash to
3297 * flash. Looking at a few flashes, most range somewhere below 100
3298 * microseconds. So, sleep for a range of 200-400 us.
3299 */
3300 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3301}
3302
3303/* mtd suspend handler */
3304static int spi_nor_suspend(struct mtd_info *mtd)
3305{
3306 struct spi_nor *nor = mtd_to_spi_nor(mtd);
3307 int ret;
3308
3309 /* Disable octal DTR mode if we enabled it. */
3310 ret = spi_nor_set_octal_dtr(nor, false);
3311 if (ret)
3312 dev_err(nor->dev, "suspend() failed\n");
3313
3314 return ret;
3315}
3316
3317/* mtd resume handler */
3318static void spi_nor_resume(struct mtd_info *mtd)
3319{
3320 struct spi_nor *nor = mtd_to_spi_nor(mtd);
3321 struct device *dev = nor->dev;
3322 int ret;
3323
3324 /* re-initialize the nor chip */
3325 ret = spi_nor_init(nor);
3326 if (ret)
3327 dev_err(dev, "resume() failed\n");
3328}
3329
3330static int spi_nor_get_device(struct mtd_info *mtd)
3331{
3332 struct mtd_info *master = mtd_get_master(mtd);
3333 struct spi_nor *nor = mtd_to_spi_nor(master);
3334 struct device *dev;
3335
3336 if (nor->spimem)
3337 dev = nor->spimem->spi->controller->dev.parent;
3338 else
3339 dev = nor->dev;
3340
3341 if (!try_module_get(dev->driver->owner))
3342 return -ENODEV;
3343
3344 return 0;
3345}
3346
3347static void spi_nor_put_device(struct mtd_info *mtd)
3348{
3349 struct mtd_info *master = mtd_get_master(mtd);
3350 struct spi_nor *nor = mtd_to_spi_nor(master);
3351 struct device *dev;
3352
3353 if (nor->spimem)
3354 dev = nor->spimem->spi->controller->dev.parent;
3355 else
3356 dev = nor->dev;
3357
3358 module_put(dev->driver->owner);
3359}
3360
3361static void spi_nor_restore(struct spi_nor *nor)
3362{
3363 int ret;
3364
3365 /* restore the addressing mode */
3366 if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3367 nor->flags & SNOR_F_BROKEN_RESET) {
3368 ret = spi_nor_set_4byte_addr_mode(nor, false);
3369 if (ret)
3370 /*
3371 * Do not stop the execution in the hope that the flash
3372 * will default to the 3-byte address mode after the
3373 * software reset.
3374 */
3375 dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
3376 }
3377
3378 if (nor->flags & SNOR_F_SOFT_RESET)
3379 spi_nor_soft_reset(nor);
3380}
3381
3382static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
3383 const char *name)
3384{
3385 unsigned int i, j;
3386
3387 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3388 for (j = 0; j < manufacturers[i]->nparts; j++) {
3389 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3390 nor->manufacturer = manufacturers[i];
3391 return &manufacturers[i]->parts[j];
3392 }
3393 }
3394 }
3395
3396 return NULL;
3397}
3398
3399static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3400 const char *name)
3401{
3402 const struct flash_info *info = NULL;
3403
3404 if (name)
3405 info = spi_nor_match_name(nor, name);
3406 /* Try to auto-detect if chip name wasn't specified or not found */
3407 if (!info)
3408 return spi_nor_detect(nor);
3409
3410 /*
3411 * If caller has specified name of flash model that can normally be
3412 * detected using JEDEC, let's verify it.
3413 */
3414 if (name && info->id) {
3415 const struct flash_info *jinfo;
3416
3417 jinfo = spi_nor_detect(nor);
3418 if (IS_ERR(jinfo)) {
3419 return jinfo;
3420 } else if (jinfo != info) {
3421 /*
3422 * JEDEC knows better, so overwrite platform ID. We
3423 * can't trust partitions any longer, but we'll let
3424 * mtd apply them anyway, since some partitions may be
3425 * marked read-only, and we don't want to loose that
3426 * information, even if it's not 100% accurate.
3427 */
3428 dev_warn(nor->dev, "found %s, expected %s\n",
3429 jinfo->name, info->name);
3430 info = jinfo;
3431 }
3432 }
3433
3434 return info;
3435}
3436
3437static void spi_nor_set_mtd_info(struct spi_nor *nor)
3438{
3439 struct mtd_info *mtd = &nor->mtd;
3440 struct device *dev = nor->dev;
3441
3442 spi_nor_set_mtd_locking_ops(nor);
3443 spi_nor_set_mtd_otp_ops(nor);
3444
3445 mtd->dev.parent = dev;
3446 if (!mtd->name)
3447 mtd->name = dev_name(dev);
3448 mtd->type = MTD_NORFLASH;
3449 mtd->flags = MTD_CAP_NORFLASH;
3450 /* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
3451 if (nor->flags & SNOR_F_ECC)
3452 mtd->flags &= ~MTD_BIT_WRITEABLE;
3453 if (nor->info->flags & SPI_NOR_NO_ERASE)
3454 mtd->flags |= MTD_NO_ERASE;
3455 else
3456 mtd->_erase = spi_nor_erase;
3457 mtd->writesize = nor->params->writesize;
3458 mtd->writebufsize = nor->params->page_size;
3459 mtd->size = nor->params->size;
3460 mtd->_read = spi_nor_read;
3461 /* Might be already set by some SST flashes. */
3462 if (!mtd->_write)
3463 mtd->_write = spi_nor_write;
3464 mtd->_suspend = spi_nor_suspend;
3465 mtd->_resume = spi_nor_resume;
3466 mtd->_get_device = spi_nor_get_device;
3467 mtd->_put_device = spi_nor_put_device;
3468}
3469
3470static int spi_nor_hw_reset(struct spi_nor *nor)
3471{
3472 struct gpio_desc *reset;
3473
3474 reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
3475 if (IS_ERR_OR_NULL(reset))
3476 return PTR_ERR_OR_ZERO(reset);
3477
3478 /*
3479 * Experimental delay values by looking at different flash device
3480 * vendors datasheets.
3481 */
3482 usleep_range(1, 5);
3483 gpiod_set_value_cansleep(reset, 1);
3484 usleep_range(100, 150);
3485 gpiod_set_value_cansleep(reset, 0);
3486 usleep_range(1000, 1200);
3487
3488 return 0;
3489}
3490
3491int spi_nor_scan(struct spi_nor *nor, const char *name,
3492 const struct spi_nor_hwcaps *hwcaps)
3493{
3494 const struct flash_info *info;
3495 struct device *dev = nor->dev;
3496 int ret;
3497
3498 ret = spi_nor_check(nor);
3499 if (ret)
3500 return ret;
3501
3502 /* Reset SPI protocol for all commands. */
3503 nor->reg_proto = SNOR_PROTO_1_1_1;
3504 nor->read_proto = SNOR_PROTO_1_1_1;
3505 nor->write_proto = SNOR_PROTO_1_1_1;
3506
3507 /*
3508 * We need the bounce buffer early to read/write registers when going
3509 * through the spi-mem layer (buffers have to be DMA-able).
3510 * For spi-mem drivers, we'll reallocate a new buffer if
3511 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3512 * shouldn't happen before long since NOR pages are usually less
3513 * than 1KB) after spi_nor_scan() returns.
3514 */
3515 nor->bouncebuf_size = PAGE_SIZE;
3516 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3517 GFP_KERNEL);
3518 if (!nor->bouncebuf)
3519 return -ENOMEM;
3520
3521 ret = spi_nor_hw_reset(nor);
3522 if (ret)
3523 return ret;
3524
3525 info = spi_nor_get_flash_info(nor, name);
3526 if (IS_ERR(info))
3527 return PTR_ERR(info);
3528
3529 nor->info = info;
3530
3531 mutex_init(&nor->lock);
3532
3533 /* Init flash parameters based on flash_info struct and SFDP */
3534 ret = spi_nor_init_params(nor);
3535 if (ret)
3536 return ret;
3537
3538 if (spi_nor_use_parallel_locking(nor))
3539 init_waitqueue_head(&nor->rww.wait);
3540
3541 /*
3542 * Configure the SPI memory:
3543 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3544 * - set the number of dummy cycles (mode cycles + wait states).
3545 * - set the SPI protocols for register and memory accesses.
3546 * - set the number of address bytes.
3547 */
3548 ret = spi_nor_setup(nor, hwcaps);
3549 if (ret)
3550 return ret;
3551
3552 /* Send all the required SPI flash commands to initialize device */
3553 ret = spi_nor_init(nor);
3554 if (ret)
3555 return ret;
3556
3557 /* No mtd_info fields should be used up to this point. */
3558 spi_nor_set_mtd_info(nor);
3559
3560 dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
3561 SPI_NOR_MAX_ID_LEN, nor->id);
3562
3563 return 0;
3564}
3565EXPORT_SYMBOL_GPL(spi_nor_scan);
3566
3567static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3568{
3569 struct spi_mem_dirmap_info info = {
3570 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3571 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3572 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3573 SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3574 .offset = 0,
3575 .length = nor->params->size,
3576 };
3577 struct spi_mem_op *op = &info.op_tmpl;
3578
3579 spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3580
3581 /* convert the dummy cycles to the number of bytes */
3582 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3583 if (spi_nor_protocol_is_dtr(nor->read_proto))
3584 op->dummy.nbytes *= 2;
3585
3586 /*
3587 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3588 * of data bytes is non-zero, the data buswidth won't be set here. So,
3589 * do it explicitly.
3590 */
3591 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3592
3593 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3594 &info);
3595 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3596}
3597
3598static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3599{
3600 struct spi_mem_dirmap_info info = {
3601 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3602 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3603 SPI_MEM_OP_NO_DUMMY,
3604 SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3605 .offset = 0,
3606 .length = nor->params->size,
3607 };
3608 struct spi_mem_op *op = &info.op_tmpl;
3609
3610 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3611 op->addr.nbytes = 0;
3612
3613 spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3614
3615 /*
3616 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3617 * of data bytes is non-zero, the data buswidth won't be set here. So,
3618 * do it explicitly.
3619 */
3620 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3621
3622 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3623 &info);
3624 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3625}
3626
3627static int spi_nor_probe(struct spi_mem *spimem)
3628{
3629 struct spi_device *spi = spimem->spi;
3630 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3631 struct spi_nor *nor;
3632 /*
3633 * Enable all caps by default. The core will mask them after
3634 * checking what's really supported using spi_mem_supports_op().
3635 */
3636 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3637 char *flash_name;
3638 int ret;
3639
3640 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3641 if (!nor)
3642 return -ENOMEM;
3643
3644 nor->spimem = spimem;
3645 nor->dev = &spi->dev;
3646 spi_nor_set_flash_node(nor, spi->dev.of_node);
3647
3648 spi_mem_set_drvdata(spimem, nor);
3649
3650 if (data && data->name)
3651 nor->mtd.name = data->name;
3652
3653 if (!nor->mtd.name)
3654 nor->mtd.name = spi_mem_get_name(spimem);
3655
3656 /*
3657 * For some (historical?) reason many platforms provide two different
3658 * names in flash_platform_data: "name" and "type". Quite often name is
3659 * set to "m25p80" and then "type" provides a real chip name.
3660 * If that's the case, respect "type" and ignore a "name".
3661 */
3662 if (data && data->type)
3663 flash_name = data->type;
3664 else if (!strcmp(spi->modalias, "spi-nor"))
3665 flash_name = NULL; /* auto-detect */
3666 else
3667 flash_name = spi->modalias;
3668
3669 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3670 if (ret)
3671 return ret;
3672
3673 spi_nor_debugfs_register(nor);
3674
3675 /*
3676 * None of the existing parts have > 512B pages, but let's play safe
3677 * and add this logic so that if anyone ever adds support for such
3678 * a NOR we don't end up with buffer overflows.
3679 */
3680 if (nor->params->page_size > PAGE_SIZE) {
3681 nor->bouncebuf_size = nor->params->page_size;
3682 devm_kfree(nor->dev, nor->bouncebuf);
3683 nor->bouncebuf = devm_kmalloc(nor->dev,
3684 nor->bouncebuf_size,
3685 GFP_KERNEL);
3686 if (!nor->bouncebuf)
3687 return -ENOMEM;
3688 }
3689
3690 ret = spi_nor_create_read_dirmap(nor);
3691 if (ret)
3692 return ret;
3693
3694 ret = spi_nor_create_write_dirmap(nor);
3695 if (ret)
3696 return ret;
3697
3698 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3699 data ? data->nr_parts : 0);
3700}
3701
3702static int spi_nor_remove(struct spi_mem *spimem)
3703{
3704 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3705
3706 spi_nor_restore(nor);
3707
3708 /* Clean up MTD stuff. */
3709 return mtd_device_unregister(&nor->mtd);
3710}
3711
3712static void spi_nor_shutdown(struct spi_mem *spimem)
3713{
3714 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3715
3716 spi_nor_restore(nor);
3717}
3718
3719/*
3720 * Do NOT add to this array without reading the following:
3721 *
3722 * Historically, many flash devices are bound to this driver by their name. But
3723 * since most of these flash are compatible to some extent, and their
3724 * differences can often be differentiated by the JEDEC read-ID command, we
3725 * encourage new users to add support to the spi-nor library, and simply bind
3726 * against a generic string here (e.g., "jedec,spi-nor").
3727 *
3728 * Many flash names are kept here in this list to keep them available
3729 * as module aliases for existing platforms.
3730 */
3731static const struct spi_device_id spi_nor_dev_ids[] = {
3732 /*
3733 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3734 * hack around the fact that the SPI core does not provide uevent
3735 * matching for .of_match_table
3736 */
3737 {"spi-nor"},
3738
3739 /*
3740 * Entries not used in DTs that should be safe to drop after replacing
3741 * them with "spi-nor" in platform data.
3742 */
3743 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3744
3745 /*
3746 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3747 * should be kept for backward compatibility.
3748 */
3749 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3750 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3751 {"mx25l25635e"},{"mx66l51235l"},
3752 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3753 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3754 {"s25fl064k"},
3755 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3756 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3757 {"m25p64"}, {"m25p128"},
3758 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3759 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3760
3761 /* Flashes that can't be detected using JEDEC */
3762 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3763 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3764 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3765
3766 /* Everspin MRAMs (non-JEDEC) */
3767 { "mr25h128" }, /* 128 Kib, 40 MHz */
3768 { "mr25h256" }, /* 256 Kib, 40 MHz */
3769 { "mr25h10" }, /* 1 Mib, 40 MHz */
3770 { "mr25h40" }, /* 4 Mib, 40 MHz */
3771
3772 { },
3773};
3774MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3775
3776static const struct of_device_id spi_nor_of_table[] = {
3777 /*
3778 * Generic compatibility for SPI NOR that can be identified by the
3779 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3780 */
3781 { .compatible = "jedec,spi-nor" },
3782 { /* sentinel */ },
3783};
3784MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3785
3786/*
3787 * REVISIT: many of these chips have deep power-down modes, which
3788 * should clearly be entered on suspend() to minimize power use.
3789 * And also when they're otherwise idle...
3790 */
3791static struct spi_mem_driver spi_nor_driver = {
3792 .spidrv = {
3793 .driver = {
3794 .name = "spi-nor",
3795 .of_match_table = spi_nor_of_table,
3796 .dev_groups = spi_nor_sysfs_groups,
3797 },
3798 .id_table = spi_nor_dev_ids,
3799 },
3800 .probe = spi_nor_probe,
3801 .remove = spi_nor_remove,
3802 .shutdown = spi_nor_shutdown,
3803};
3804
3805static int __init spi_nor_module_init(void)
3806{
3807 return spi_mem_driver_register(&spi_nor_driver);
3808}
3809module_init(spi_nor_module_init);
3810
3811static void __exit spi_nor_module_exit(void)
3812{
3813 spi_mem_driver_unregister(&spi_nor_driver);
3814 spi_nor_debugfs_shutdown();
3815}
3816module_exit(spi_nor_module_exit);
3817
3818MODULE_LICENSE("GPL v2");
3819MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3820MODULE_AUTHOR("Mike Lavender");
3821MODULE_DESCRIPTION("framework for SPI NOR");