Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * NXP LPC32XX NAND SLC driver
   3 *
   4 * Authors:
   5 *    Kevin Wells <kevin.wells@nxp.com>
   6 *    Roland Stigge <stigge@antcom.de>
   7 *
   8 * Copyright © 2011 NXP Semiconductors
   9 * Copyright © 2012 Roland Stigge
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/slab.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/mtd/mtd.h>
  26#include <linux/mtd/nand.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/clk.h>
  29#include <linux/err.h>
  30#include <linux/delay.h>
  31#include <linux/io.h>
  32#include <linux/mm.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/dmaengine.h>
  35#include <linux/mtd/nand_ecc.h>
  36#include <linux/gpio.h>
  37#include <linux/of.h>
  38#include <linux/of_gpio.h>
  39#include <linux/mtd/lpc32xx_slc.h>
  40
  41#define LPC32XX_MODNAME		"lpc32xx-nand"
  42
  43/**********************************************************************
  44* SLC NAND controller register offsets
  45**********************************************************************/
  46
  47#define SLC_DATA(x)		(x + 0x000)
  48#define SLC_ADDR(x)		(x + 0x004)
  49#define SLC_CMD(x)		(x + 0x008)
  50#define SLC_STOP(x)		(x + 0x00C)
  51#define SLC_CTRL(x)		(x + 0x010)
  52#define SLC_CFG(x)		(x + 0x014)
  53#define SLC_STAT(x)		(x + 0x018)
  54#define SLC_INT_STAT(x)		(x + 0x01C)
  55#define SLC_IEN(x)		(x + 0x020)
  56#define SLC_ISR(x)		(x + 0x024)
  57#define SLC_ICR(x)		(x + 0x028)
  58#define SLC_TAC(x)		(x + 0x02C)
  59#define SLC_TC(x)		(x + 0x030)
  60#define SLC_ECC(x)		(x + 0x034)
  61#define SLC_DMA_DATA(x)		(x + 0x038)
  62
  63/**********************************************************************
  64* slc_ctrl register definitions
  65**********************************************************************/
  66#define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
  67#define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
  68#define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
  69
  70/**********************************************************************
  71* slc_cfg register definitions
  72**********************************************************************/
  73#define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
  74#define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
  75#define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
  76#define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
  77#define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
  78#define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
  79
  80/**********************************************************************
  81* slc_stat register definitions
  82**********************************************************************/
  83#define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
  84#define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
  85#define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
  86
  87/**********************************************************************
  88* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  89**********************************************************************/
  90#define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
  91#define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
  92
  93/**********************************************************************
  94* slc_tac register definitions
  95**********************************************************************/
  96/* Computation of clock cycles on basis of controller and device clock rates */
  97#define SLCTAC_CLOCKS(c, n, s)	(min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
  98
  99/* Clock setting for RDY write sample wait time in 2*n clocks */
 100#define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
 101/* Write pulse width in clock cycles, 1 to 16 clocks */
 102#define SLCTAC_WWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 24))
 103/* Write hold time of control and data signals, 1 to 16 clocks */
 104#define SLCTAC_WHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 20))
 105/* Write setup time of control and data signals, 1 to 16 clocks */
 106#define SLCTAC_WSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 16))
 107/* Clock setting for RDY read sample wait time in 2*n clocks */
 108#define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
 109/* Read pulse width in clock cycles, 1 to 16 clocks */
 110#define SLCTAC_RWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 8))
 111/* Read hold time of control and data signals, 1 to 16 clocks */
 112#define SLCTAC_RHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 4))
 113/* Read setup time of control and data signals, 1 to 16 clocks */
 114#define SLCTAC_RSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 0))
 115
 116/**********************************************************************
 117* slc_ecc register definitions
 118**********************************************************************/
 119/* ECC line party fetch macro */
 120#define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
 121#define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
 122
 123/*
 124 * DMA requires storage space for the DMA local buffer and the hardware ECC
 125 * storage area. The DMA local buffer is only used if DMA mapping fails
 126 * during runtime.
 127 */
 128#define LPC32XX_DMA_DATA_SIZE		4096
 129#define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
 130
 131/* Number of bytes used for ECC stored in NAND per 256 bytes */
 132#define LPC32XX_SLC_DEV_ECC_BYTES	3
 133
 134/*
 135 * If the NAND base clock frequency can't be fetched, this frequency will be
 136 * used instead as the base. This rate is used to setup the timing registers
 137 * used for NAND accesses.
 138 */
 139#define LPC32XX_DEF_BUS_RATE		133250000
 140
 141/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 142#define LPC32XX_DMA_TIMEOUT		100
 143
 144/*
 145 * NAND ECC Layout for small page NAND devices
 146 * Note: For large and huge page devices, the default layouts are used
 147 */
 148static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
 149				 struct mtd_oob_region *oobregion)
 150{
 151	if (section)
 152		return -ERANGE;
 153
 154	oobregion->length = 6;
 155	oobregion->offset = 10;
 156
 157	return 0;
 158}
 159
 160static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
 161				  struct mtd_oob_region *oobregion)
 162{
 163	if (section > 1)
 164		return -ERANGE;
 165
 166	if (!section) {
 167		oobregion->offset = 0;
 168		oobregion->length = 4;
 169	} else {
 170		oobregion->offset = 6;
 171		oobregion->length = 4;
 172	}
 173
 174	return 0;
 175}
 176
 177static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
 178	.ecc = lpc32xx_ooblayout_ecc,
 179	.free = lpc32xx_ooblayout_free,
 180};
 181
 182static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 183static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 184
 185/*
 186 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 187 * Note: Large page devices used the default layout
 188 */
 189static struct nand_bbt_descr bbt_smallpage_main_descr = {
 190	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 191		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 192	.offs =	0,
 193	.len = 4,
 194	.veroffs = 6,
 195	.maxblocks = 4,
 196	.pattern = bbt_pattern
 197};
 198
 199static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 200	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 201		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 202	.offs =	0,
 203	.len = 4,
 204	.veroffs = 6,
 205	.maxblocks = 4,
 206	.pattern = mirror_pattern
 207};
 208
 209/*
 210 * NAND platform configuration structure
 211 */
 212struct lpc32xx_nand_cfg_slc {
 213	uint32_t wdr_clks;
 214	uint32_t wwidth;
 215	uint32_t whold;
 216	uint32_t wsetup;
 217	uint32_t rdr_clks;
 218	uint32_t rwidth;
 219	uint32_t rhold;
 220	uint32_t rsetup;
 221	int wp_gpio;
 222	struct mtd_partition *parts;
 223	unsigned num_parts;
 224};
 225
 226struct lpc32xx_nand_host {
 227	struct nand_chip	nand_chip;
 228	struct lpc32xx_slc_platform_data *pdata;
 229	struct clk		*clk;
 230	void __iomem		*io_base;
 231	struct lpc32xx_nand_cfg_slc *ncfg;
 232
 233	struct completion	comp;
 234	struct dma_chan		*dma_chan;
 235	uint32_t		dma_buf_len;
 236	struct dma_slave_config	dma_slave_config;
 237	struct scatterlist	sgl;
 238
 239	/*
 240	 * DMA and CPU addresses of ECC work area and data buffer
 241	 */
 242	uint32_t		*ecc_buf;
 243	uint8_t			*data_buf;
 244	dma_addr_t		io_base_dma;
 245};
 246
 247static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 248{
 249	uint32_t clkrate, tmp;
 250
 251	/* Reset SLC controller */
 252	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 253	udelay(1000);
 254
 255	/* Basic setup */
 256	writel(0, SLC_CFG(host->io_base));
 257	writel(0, SLC_IEN(host->io_base));
 258	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 259		SLC_ICR(host->io_base));
 260
 261	/* Get base clock for SLC block */
 262	clkrate = clk_get_rate(host->clk);
 263	if (clkrate == 0)
 264		clkrate = LPC32XX_DEF_BUS_RATE;
 265
 266	/* Compute clock setup values */
 267	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 268		SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
 269		SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
 270		SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
 271		SLCTAC_RDR(host->ncfg->rdr_clks) |
 272		SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
 273		SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
 274		SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
 275	writel(tmp, SLC_TAC(host->io_base));
 276}
 277
 278/*
 279 * Hardware specific access to control lines
 280 */
 281static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
 282	unsigned int ctrl)
 283{
 284	uint32_t tmp;
 285	struct nand_chip *chip = mtd_to_nand(mtd);
 286	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 287
 288	/* Does CE state need to be changed? */
 289	tmp = readl(SLC_CFG(host->io_base));
 290	if (ctrl & NAND_NCE)
 291		tmp |= SLCCFG_CE_LOW;
 292	else
 293		tmp &= ~SLCCFG_CE_LOW;
 294	writel(tmp, SLC_CFG(host->io_base));
 295
 296	if (cmd != NAND_CMD_NONE) {
 297		if (ctrl & NAND_CLE)
 298			writel(cmd, SLC_CMD(host->io_base));
 299		else
 300			writel(cmd, SLC_ADDR(host->io_base));
 301	}
 302}
 303
 304/*
 305 * Read the Device Ready pin
 306 */
 307static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
 308{
 309	struct nand_chip *chip = mtd_to_nand(mtd);
 310	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 311	int rdy = 0;
 312
 313	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 314		rdy = 1;
 315
 316	return rdy;
 317}
 318
 319/*
 320 * Enable NAND write protect
 321 */
 322static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 323{
 324	if (gpio_is_valid(host->ncfg->wp_gpio))
 325		gpio_set_value(host->ncfg->wp_gpio, 0);
 326}
 327
 328/*
 329 * Disable NAND write protect
 330 */
 331static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 332{
 333	if (gpio_is_valid(host->ncfg->wp_gpio))
 334		gpio_set_value(host->ncfg->wp_gpio, 1);
 335}
 336
 337/*
 338 * Prepares SLC for transfers with H/W ECC enabled
 339 */
 340static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
 341{
 342	/* Hardware ECC is enabled automatically in hardware as needed */
 343}
 344
 345/*
 346 * Calculates the ECC for the data
 347 */
 348static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
 349				      const unsigned char *buf,
 350				      unsigned char *code)
 351{
 352	/*
 353	 * ECC is calculated automatically in hardware during syndrome read
 354	 * and write operations, so it doesn't need to be calculated here.
 355	 */
 356	return 0;
 357}
 358
 359/*
 360 * Read a single byte from NAND device
 361 */
 362static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
 363{
 364	struct nand_chip *chip = mtd_to_nand(mtd);
 365	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 366
 367	return (uint8_t)readl(SLC_DATA(host->io_base));
 368}
 369
 370/*
 371 * Simple device read without ECC
 372 */
 373static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 374{
 375	struct nand_chip *chip = mtd_to_nand(mtd);
 376	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 377
 378	/* Direct device read with no ECC */
 379	while (len-- > 0)
 380		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 381}
 382
 383/*
 384 * Simple device write without ECC
 385 */
 386static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 387{
 388	struct nand_chip *chip = mtd_to_nand(mtd);
 389	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 390
 391	/* Direct device write with no ECC */
 392	while (len-- > 0)
 393		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 394}
 395
 396/*
 397 * Read the OOB data from the device without ECC using FIFO method
 398 */
 399static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
 400					  struct nand_chip *chip, int page)
 401{
 402	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 403	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 404
 405	return 0;
 406}
 407
 408/*
 409 * Write the OOB data to the device without ECC using FIFO method
 410 */
 411static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
 412	struct nand_chip *chip, int page)
 413{
 414	int status;
 415
 416	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 417	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 418
 419	/* Send command to program the OOB data */
 420	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 421
 422	status = chip->waitfunc(mtd, chip);
 423
 424	return status & NAND_STATUS_FAIL ? -EIO : 0;
 425}
 426
 427/*
 428 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 429 */
 430static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 431{
 432	int i;
 433
 434	for (i = 0; i < (count * 3); i += 3) {
 435		uint32_t ce = ecc[i / 3];
 436		ce = ~(ce << 2) & 0xFFFFFF;
 437		spare[i + 2] = (uint8_t)(ce & 0xFF);
 438		ce >>= 8;
 439		spare[i + 1] = (uint8_t)(ce & 0xFF);
 440		ce >>= 8;
 441		spare[i] = (uint8_t)(ce & 0xFF);
 442	}
 443}
 444
 445static void lpc32xx_dma_complete_func(void *completion)
 446{
 447	complete(completion);
 448}
 449
 450static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 451			    void *mem, int len, enum dma_transfer_direction dir)
 452{
 453	struct nand_chip *chip = mtd_to_nand(mtd);
 454	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 455	struct dma_async_tx_descriptor *desc;
 456	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 457	int res;
 458
 459	host->dma_slave_config.direction = dir;
 460	host->dma_slave_config.src_addr = dma;
 461	host->dma_slave_config.dst_addr = dma;
 462	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 463	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 464	host->dma_slave_config.src_maxburst = 4;
 465	host->dma_slave_config.dst_maxburst = 4;
 466	/* DMA controller does flow control: */
 467	host->dma_slave_config.device_fc = false;
 468	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 469		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 470		return -ENXIO;
 471	}
 472
 473	sg_init_one(&host->sgl, mem, len);
 474
 475	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 476			 DMA_BIDIRECTIONAL);
 477	if (res != 1) {
 478		dev_err(mtd->dev.parent, "Failed to map sg list\n");
 479		return -ENXIO;
 480	}
 481	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 482				       flags);
 483	if (!desc) {
 484		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 485		goto out1;
 486	}
 487
 488	init_completion(&host->comp);
 489	desc->callback = lpc32xx_dma_complete_func;
 490	desc->callback_param = &host->comp;
 491
 492	dmaengine_submit(desc);
 493	dma_async_issue_pending(host->dma_chan);
 494
 495	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 496
 497	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 498		     DMA_BIDIRECTIONAL);
 499
 500	return 0;
 501out1:
 502	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 503		     DMA_BIDIRECTIONAL);
 504	return -ENXIO;
 505}
 506
 507/*
 508 * DMA read/write transfers with ECC support
 509 */
 510static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 511			int read)
 512{
 513	struct nand_chip *chip = mtd_to_nand(mtd);
 514	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 515	int i, status = 0;
 516	unsigned long timeout;
 517	int res;
 518	enum dma_transfer_direction dir =
 519		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 520	uint8_t *dma_buf;
 521	bool dma_mapped;
 522
 523	if ((void *)buf <= high_memory) {
 524		dma_buf = buf;
 525		dma_mapped = true;
 526	} else {
 527		dma_buf = host->data_buf;
 528		dma_mapped = false;
 529		if (!read)
 530			memcpy(host->data_buf, buf, mtd->writesize);
 531	}
 532
 533	if (read) {
 534		writel(readl(SLC_CFG(host->io_base)) |
 535		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 536		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 537	} else {
 538		writel((readl(SLC_CFG(host->io_base)) |
 539			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 540		       ~SLCCFG_DMA_DIR,
 541			SLC_CFG(host->io_base));
 542	}
 543
 544	/* Clear initial ECC */
 545	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 546
 547	/* Transfer size is data area only */
 548	writel(mtd->writesize, SLC_TC(host->io_base));
 549
 550	/* Start transfer in the NAND controller */
 551	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 552	       SLC_CTRL(host->io_base));
 553
 554	for (i = 0; i < chip->ecc.steps; i++) {
 555		/* Data */
 556		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 557				       dma_buf + i * chip->ecc.size,
 558				       mtd->writesize / chip->ecc.steps, dir);
 559		if (res)
 560			return res;
 561
 562		/* Always _read_ ECC */
 563		if (i == chip->ecc.steps - 1)
 564			break;
 565		if (!read) /* ECC availability delayed on write */
 566			udelay(10);
 567		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 568				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 569		if (res)
 570			return res;
 571	}
 572
 573	/*
 574	 * According to NXP, the DMA can be finished here, but the NAND
 575	 * controller may still have buffered data. After porting to using the
 576	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 577	 * appears to be always true, according to tests. Keeping the check for
 578	 * safety reasons for now.
 579	 */
 580	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 581		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 582		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 583		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 584		       time_before(jiffies, timeout))
 585			cpu_relax();
 586		if (!time_before(jiffies, timeout)) {
 587			dev_err(mtd->dev.parent, "FIFO held data too long\n");
 588			status = -EIO;
 589		}
 590	}
 591
 592	/* Read last calculated ECC value */
 593	if (!read)
 594		udelay(10);
 595	host->ecc_buf[chip->ecc.steps - 1] =
 596		readl(SLC_ECC(host->io_base));
 597
 598	/* Flush DMA */
 599	dmaengine_terminate_all(host->dma_chan);
 600
 601	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 602	    readl(SLC_TC(host->io_base))) {
 603		/* Something is left in the FIFO, something is wrong */
 604		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 605		status = -EIO;
 606	}
 607
 608	/* Stop DMA & HW ECC */
 609	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 610	       SLC_CTRL(host->io_base));
 611	writel(readl(SLC_CFG(host->io_base)) &
 612	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 613		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 614
 615	if (!dma_mapped && read)
 616		memcpy(buf, host->data_buf, mtd->writesize);
 617
 618	return status;
 619}
 620
 621/*
 622 * Read the data and OOB data from the device, use ECC correction with the
 623 * data, disable ECC for the OOB data
 624 */
 625static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
 626					   struct nand_chip *chip, uint8_t *buf,
 627					   int oob_required, int page)
 628{
 629	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 630	struct mtd_oob_region oobregion = { };
 631	int stat, i, status, error;
 632	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 633
 634	/* Issue read command */
 635	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 636
 637	/* Read data and oob, calculate ECC */
 638	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 639
 640	/* Get OOB data */
 641	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 642
 643	/* Convert to stored ECC format */
 644	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 645
 646	/* Pointer to ECC data retrieved from NAND spare area */
 647	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 648	if (error)
 649		return error;
 650
 651	oobecc = chip->oob_poi + oobregion.offset;
 652
 653	for (i = 0; i < chip->ecc.steps; i++) {
 654		stat = chip->ecc.correct(mtd, buf, oobecc,
 655					 &tmpecc[i * chip->ecc.bytes]);
 656		if (stat < 0)
 657			mtd->ecc_stats.failed++;
 658		else
 659			mtd->ecc_stats.corrected += stat;
 660
 661		buf += chip->ecc.size;
 662		oobecc += chip->ecc.bytes;
 663	}
 664
 665	return status;
 666}
 667
 668/*
 669 * Read the data and OOB data from the device, no ECC correction with the
 670 * data or OOB data
 671 */
 672static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
 673					       struct nand_chip *chip,
 674					       uint8_t *buf, int oob_required,
 675					       int page)
 676{
 677	/* Issue read command */
 678	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 679
 680	/* Raw reads can just use the FIFO interface */
 681	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 682	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 683
 684	return 0;
 685}
 686
 687/*
 688 * Write the data and OOB data to the device, use ECC with the data,
 689 * disable ECC for the OOB data
 690 */
 691static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
 692					    struct nand_chip *chip,
 693					    const uint8_t *buf,
 694					    int oob_required, int page)
 695{
 696	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 697	struct mtd_oob_region oobregion = { };
 698	uint8_t *pb;
 699	int error;
 700
 701	/* Write data, calculate ECC on outbound data */
 702	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 703	if (error)
 704		return error;
 705
 706	/*
 707	 * The calculated ECC needs some manual work done to it before
 708	 * committing it to NAND. Process the calculated ECC and place
 709	 * the resultant values directly into the OOB buffer. */
 710	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 711	if (error)
 712		return error;
 713
 714	pb = chip->oob_poi + oobregion.offset;
 715	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 716
 717	/* Write ECC data to device */
 718	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 719	return 0;
 720}
 721
 722/*
 723 * Write the data and OOB data to the device, no ECC correction with the
 724 * data or OOB data
 725 */
 726static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
 727						struct nand_chip *chip,
 728						const uint8_t *buf,
 729						int oob_required, int page)
 730{
 731	/* Raw writes can just use the FIFO interface */
 732	chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 733	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 734	return 0;
 735}
 736
 737static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 738{
 739	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 740	dma_cap_mask_t mask;
 741
 742	if (!host->pdata || !host->pdata->dma_filter) {
 743		dev_err(mtd->dev.parent, "no DMA platform data\n");
 744		return -ENOENT;
 745	}
 746
 747	dma_cap_zero(mask);
 748	dma_cap_set(DMA_SLAVE, mask);
 749	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 750					     "nand-slc");
 751	if (!host->dma_chan) {
 752		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 753		return -EBUSY;
 754	}
 755
 756	return 0;
 757}
 758
 759static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 760{
 761	struct lpc32xx_nand_cfg_slc *ncfg;
 762	struct device_node *np = dev->of_node;
 763
 764	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 765	if (!ncfg)
 766		return NULL;
 767
 768	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 769	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 770	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 771	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 772	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 773	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 774	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 775	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 776
 777	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 778	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 779	    !ncfg->rhold || !ncfg->rsetup) {
 780		dev_err(dev, "chip parameters not specified correctly\n");
 781		return NULL;
 782	}
 783
 784	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 785
 786	return ncfg;
 787}
 788
 789/*
 790 * Probe for NAND controller
 791 */
 792static int lpc32xx_nand_probe(struct platform_device *pdev)
 793{
 794	struct lpc32xx_nand_host *host;
 795	struct mtd_info *mtd;
 796	struct nand_chip *chip;
 797	struct resource *rc;
 798	int res;
 799
 800	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 801	if (rc == NULL) {
 802		dev_err(&pdev->dev, "No memory resource found for device\n");
 803		return -EBUSY;
 804	}
 805
 806	/* Allocate memory for the device structure (and zero it) */
 807	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 808	if (!host)
 809		return -ENOMEM;
 810	host->io_base_dma = rc->start;
 811
 812	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 813	if (IS_ERR(host->io_base))
 814		return PTR_ERR(host->io_base);
 815
 816	if (pdev->dev.of_node)
 817		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 818	if (!host->ncfg) {
 819		dev_err(&pdev->dev,
 820			"Missing or bad NAND config from device tree\n");
 821		return -ENOENT;
 822	}
 823	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 824		return -EPROBE_DEFER;
 825	if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 826			host->ncfg->wp_gpio, "NAND WP")) {
 827		dev_err(&pdev->dev, "GPIO not available\n");
 828		return -EBUSY;
 829	}
 830	lpc32xx_wp_disable(host);
 831
 832	host->pdata = dev_get_platdata(&pdev->dev);
 833
 834	chip = &host->nand_chip;
 835	mtd = nand_to_mtd(chip);
 836	nand_set_controller_data(chip, host);
 837	nand_set_flash_node(chip, pdev->dev.of_node);
 838	mtd->owner = THIS_MODULE;
 839	mtd->dev.parent = &pdev->dev;
 840
 841	/* Get NAND clock */
 842	host->clk = devm_clk_get(&pdev->dev, NULL);
 843	if (IS_ERR(host->clk)) {
 844		dev_err(&pdev->dev, "Clock failure\n");
 845		res = -ENOENT;
 846		goto err_exit1;
 847	}
 848	clk_prepare_enable(host->clk);
 849
 850	/* Set NAND IO addresses and command/ready functions */
 851	chip->IO_ADDR_R = SLC_DATA(host->io_base);
 852	chip->IO_ADDR_W = SLC_DATA(host->io_base);
 853	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 854	chip->dev_ready = lpc32xx_nand_device_ready;
 855	chip->chip_delay = 20; /* 20us command delay time */
 856
 857	/* Init NAND controller */
 858	lpc32xx_nand_setup(host);
 859
 860	platform_set_drvdata(pdev, host);
 861
 862	/* NAND callbacks for LPC32xx SLC hardware */
 863	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 864	chip->read_byte = lpc32xx_nand_read_byte;
 865	chip->read_buf = lpc32xx_nand_read_buf;
 866	chip->write_buf = lpc32xx_nand_write_buf;
 867	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 868	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 869	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 870	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 871	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 872	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 873	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 874	chip->ecc.correct = nand_correct_data;
 875	chip->ecc.strength = 1;
 876	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 877
 878	/*
 879	 * Allocate a large enough buffer for a single huge page plus
 880	 * extra space for the spare area and ECC storage area
 881	 */
 882	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 883	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 884				      GFP_KERNEL);
 885	if (host->data_buf == NULL) {
 886		res = -ENOMEM;
 887		goto err_exit2;
 888	}
 889
 890	res = lpc32xx_nand_dma_setup(host);
 891	if (res) {
 892		res = -EIO;
 893		goto err_exit2;
 894	}
 895
 896	/* Find NAND device */
 897	res = nand_scan_ident(mtd, 1, NULL);
 898	if (res)
 899		goto err_exit3;
 900
 901	/* OOB and ECC CPU and DMA work areas */
 902	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 903
 904	/*
 905	 * Small page FLASH has a unique OOB layout, but large and huge
 906	 * page FLASH use the standard layout. Small page FLASH uses a
 907	 * custom BBT marker layout.
 908	 */
 909	if (mtd->writesize <= 512)
 910		mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
 911
 912	/* These sizes remain the same regardless of page size */
 913	chip->ecc.size = 256;
 914	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 915	chip->ecc.prepad = chip->ecc.postpad = 0;
 916
 917	/*
 918	 * Use a custom BBT marker setup for small page FLASH that
 919	 * won't interfere with the ECC layout. Large and huge page
 920	 * FLASH use the standard layout.
 921	 */
 922	if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
 923	    mtd->writesize <= 512) {
 924		chip->bbt_td = &bbt_smallpage_main_descr;
 925		chip->bbt_md = &bbt_smallpage_mirror_descr;
 926	}
 927
 928	/*
 929	 * Fills out all the uninitialized function pointers with the defaults
 930	 */
 931	res = nand_scan_tail(mtd);
 932	if (res)
 933		goto err_exit3;
 934
 935	mtd->name = "nxp_lpc3220_slc";
 936	res = mtd_device_register(mtd, host->ncfg->parts,
 937				  host->ncfg->num_parts);
 938	if (!res)
 939		return res;
 940
 941	nand_release(mtd);
 942
 943err_exit3:
 944	dma_release_channel(host->dma_chan);
 945err_exit2:
 946	clk_disable_unprepare(host->clk);
 947err_exit1:
 948	lpc32xx_wp_enable(host);
 949
 950	return res;
 951}
 952
 953/*
 954 * Remove NAND device.
 955 */
 956static int lpc32xx_nand_remove(struct platform_device *pdev)
 957{
 958	uint32_t tmp;
 959	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 960	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 961
 962	nand_release(mtd);
 963	dma_release_channel(host->dma_chan);
 964
 965	/* Force CE high */
 966	tmp = readl(SLC_CTRL(host->io_base));
 967	tmp &= ~SLCCFG_CE_LOW;
 968	writel(tmp, SLC_CTRL(host->io_base));
 969
 970	clk_disable_unprepare(host->clk);
 971	lpc32xx_wp_enable(host);
 972
 973	return 0;
 974}
 975
 976#ifdef CONFIG_PM
 977static int lpc32xx_nand_resume(struct platform_device *pdev)
 978{
 979	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 980
 981	/* Re-enable NAND clock */
 982	clk_prepare_enable(host->clk);
 983
 984	/* Fresh init of NAND controller */
 985	lpc32xx_nand_setup(host);
 986
 987	/* Disable write protect */
 988	lpc32xx_wp_disable(host);
 989
 990	return 0;
 991}
 992
 993static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 994{
 995	uint32_t tmp;
 996	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 997
 998	/* Force CE high */
 999	tmp = readl(SLC_CTRL(host->io_base));
1000	tmp &= ~SLCCFG_CE_LOW;
1001	writel(tmp, SLC_CTRL(host->io_base));
1002
1003	/* Enable write protect for safety */
1004	lpc32xx_wp_enable(host);
1005
1006	/* Disable clock */
1007	clk_disable_unprepare(host->clk);
1008
1009	return 0;
1010}
1011
1012#else
1013#define lpc32xx_nand_resume NULL
1014#define lpc32xx_nand_suspend NULL
1015#endif
1016
1017static const struct of_device_id lpc32xx_nand_match[] = {
1018	{ .compatible = "nxp,lpc3220-slc" },
1019	{ /* sentinel */ },
1020};
1021MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1022
1023static struct platform_driver lpc32xx_nand_driver = {
1024	.probe		= lpc32xx_nand_probe,
1025	.remove		= lpc32xx_nand_remove,
1026	.resume		= lpc32xx_nand_resume,
1027	.suspend	= lpc32xx_nand_suspend,
1028	.driver		= {
1029		.name	= LPC32XX_MODNAME,
1030		.of_match_table = lpc32xx_nand_match,
1031	},
1032};
1033
1034module_platform_driver(lpc32xx_nand_driver);
1035
1036MODULE_LICENSE("GPL");
1037MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1038MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1039MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");