Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v6.8.
   1/*
   2 * drivers/mtd/nand/fsmc_nand.c
   3 *
   4 * ST Microelectronics
   5 * Flexible Static Memory Controller (FSMC)
   6 * Driver for NAND portions
   7 *
   8 * Copyright © 2010 ST Microelectronics
   9 * Vipin Kumar <vipin.kumar@st.com>
  10 * Ashish Priyadarshi
  11 *
  12 * Based on drivers/mtd/nand/nomadik_nand.c
  13 *
  14 * This file is licensed under the terms of the GNU General Public
  15 * License version 2. This program is licensed "as is" without any
  16 * warranty of any kind, whether express or implied.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/dmaengine.h>
  22#include <linux/dma-direction.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/err.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/resource.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/nand.h>
  32#include <linux/mtd/nand_ecc.h>
  33#include <linux/platform_device.h>
  34#include <linux/of.h>
  35#include <linux/mtd/partitions.h>
  36#include <linux/io.h>
  37#include <linux/slab.h>
  38#include <linux/mtd/fsmc.h>
  39#include <linux/amba/bus.h>
  40#include <mtd/mtd-abi.h>
  41
  42static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
  43				   struct mtd_oob_region *oobregion)
  44{
  45	struct nand_chip *chip = mtd_to_nand(mtd);
  46
  47	if (section >= chip->ecc.steps)
  48		return -ERANGE;
  49
  50	oobregion->offset = (section * 16) + 2;
  51	oobregion->length = 3;
  52
  53	return 0;
  54}
  55
  56static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
  57				    struct mtd_oob_region *oobregion)
  58{
  59	struct nand_chip *chip = mtd_to_nand(mtd);
  60
  61	if (section >= chip->ecc.steps)
  62		return -ERANGE;
  63
  64	oobregion->offset = (section * 16) + 8;
  65
  66	if (section < chip->ecc.steps - 1)
  67		oobregion->length = 8;
  68	else
  69		oobregion->length = mtd->oobsize - oobregion->offset;
  70
  71	return 0;
  72}
  73
  74static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
  75	.ecc = fsmc_ecc1_ooblayout_ecc,
  76	.free = fsmc_ecc1_ooblayout_free,
  77};
  78
  79/*
  80 * ECC placement definitions in oobfree type format.
  81 * There are 13 bytes of ecc for every 512 byte block and it has to be read
  82 * consecutively and immediately after the 512 byte data block for hardware to
  83 * generate the error bit offsets in 512 byte data.
  84 */
  85static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
  86				   struct mtd_oob_region *oobregion)
  87{
  88	struct nand_chip *chip = mtd_to_nand(mtd);
  89
  90	if (section >= chip->ecc.steps)
  91		return -ERANGE;
  92
  93	oobregion->length = chip->ecc.bytes;
  94
  95	if (!section && mtd->writesize <= 512)
  96		oobregion->offset = 0;
  97	else
  98		oobregion->offset = (section * 16) + 2;
  99
 100	return 0;
 101}
 102
 103static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
 104				    struct mtd_oob_region *oobregion)
 105{
 106	struct nand_chip *chip = mtd_to_nand(mtd);
 107
 108	if (section >= chip->ecc.steps)
 109		return -ERANGE;
 110
 111	oobregion->offset = (section * 16) + 15;
 112
 113	if (section < chip->ecc.steps - 1)
 114		oobregion->length = 3;
 115	else
 116		oobregion->length = mtd->oobsize - oobregion->offset;
 117
 118	return 0;
 119}
 120
 121static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
 122	.ecc = fsmc_ecc4_ooblayout_ecc,
 123	.free = fsmc_ecc4_ooblayout_free,
 124};
 125
 126/**
 127 * struct fsmc_nand_data - structure for FSMC NAND device state
 128 *
 129 * @pid:		Part ID on the AMBA PrimeCell format
 130 * @mtd:		MTD info for a NAND flash.
 131 * @nand:		Chip related info for a NAND flash.
 132 * @partitions:		Partition info for a NAND Flash.
 133 * @nr_partitions:	Total number of partition of a NAND flash.
 134 *
 135 * @bank:		Bank number for probed device.
 136 * @clk:		Clock structure for FSMC.
 137 *
 138 * @read_dma_chan:	DMA channel for read access
 139 * @write_dma_chan:	DMA channel for write access to NAND
 140 * @dma_access_complete: Completion structure
 141 *
 142 * @data_pa:		NAND Physical port for Data.
 143 * @data_va:		NAND port for Data.
 144 * @cmd_va:		NAND port for Command.
 145 * @addr_va:		NAND port for Address.
 146 * @regs_va:		FSMC regs base address.
 147 */
 148struct fsmc_nand_data {
 149	u32			pid;
 150	struct nand_chip	nand;
 151	struct mtd_partition	*partitions;
 152	unsigned int		nr_partitions;
 153
 154	unsigned int		bank;
 155	struct device		*dev;
 156	enum access_mode	mode;
 157	struct clk		*clk;
 158
 159	/* DMA related objects */
 160	struct dma_chan		*read_dma_chan;
 161	struct dma_chan		*write_dma_chan;
 162	struct completion	dma_access_complete;
 163
 164	struct fsmc_nand_timings *dev_timings;
 165
 166	dma_addr_t		data_pa;
 167	void __iomem		*data_va;
 168	void __iomem		*cmd_va;
 169	void __iomem		*addr_va;
 170	void __iomem		*regs_va;
 171
 172	void			(*select_chip)(uint32_t bank, uint32_t busw);
 173};
 174
 175static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
 176{
 177	return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
 178}
 179
 180/* Assert CS signal based on chipnr */
 181static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
 182{
 183	struct nand_chip *chip = mtd_to_nand(mtd);
 184	struct fsmc_nand_data *host;
 185
 186	host = mtd_to_fsmc(mtd);
 187
 188	switch (chipnr) {
 189	case -1:
 190		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 191		break;
 192	case 0:
 193	case 1:
 194	case 2:
 195	case 3:
 196		if (host->select_chip)
 197			host->select_chip(chipnr,
 198					chip->options & NAND_BUSWIDTH_16);
 199		break;
 200
 201	default:
 202		dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
 203	}
 204}
 205
 206/*
 207 * fsmc_cmd_ctrl - For facilitaing Hardware access
 208 * This routine allows hardware specific access to control-lines(ALE,CLE)
 209 */
 210static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 211{
 212	struct nand_chip *this = mtd_to_nand(mtd);
 213	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 214	void __iomem *regs = host->regs_va;
 215	unsigned int bank = host->bank;
 216
 217	if (ctrl & NAND_CTRL_CHANGE) {
 218		u32 pc;
 219
 220		if (ctrl & NAND_CLE) {
 221			this->IO_ADDR_R = host->cmd_va;
 222			this->IO_ADDR_W = host->cmd_va;
 223		} else if (ctrl & NAND_ALE) {
 224			this->IO_ADDR_R = host->addr_va;
 225			this->IO_ADDR_W = host->addr_va;
 226		} else {
 227			this->IO_ADDR_R = host->data_va;
 228			this->IO_ADDR_W = host->data_va;
 229		}
 230
 231		pc = readl(FSMC_NAND_REG(regs, bank, PC));
 232		if (ctrl & NAND_NCE)
 233			pc |= FSMC_ENABLE;
 234		else
 235			pc &= ~FSMC_ENABLE;
 236		writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
 237	}
 238
 239	mb();
 240
 241	if (cmd != NAND_CMD_NONE)
 242		writeb_relaxed(cmd, this->IO_ADDR_W);
 243}
 244
 245/*
 246 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 247 *
 248 * This routine initializes timing parameters related to NAND memory access in
 249 * FSMC registers
 250 */
 251static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
 252			   uint32_t busw, struct fsmc_nand_timings *timings)
 253{
 254	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 255	uint32_t tclr, tar, thiz, thold, twait, tset;
 256	struct fsmc_nand_timings *tims;
 257	struct fsmc_nand_timings default_timings = {
 258		.tclr	= FSMC_TCLR_1,
 259		.tar	= FSMC_TAR_1,
 260		.thiz	= FSMC_THIZ_1,
 261		.thold	= FSMC_THOLD_4,
 262		.twait	= FSMC_TWAIT_6,
 263		.tset	= FSMC_TSET_0,
 264	};
 265
 266	if (timings)
 267		tims = timings;
 268	else
 269		tims = &default_timings;
 270
 271	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 272	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 273	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 274	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 275	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 276	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 277
 278	if (busw)
 279		writel_relaxed(value | FSMC_DEVWID_16,
 280				FSMC_NAND_REG(regs, bank, PC));
 281	else
 282		writel_relaxed(value | FSMC_DEVWID_8,
 283				FSMC_NAND_REG(regs, bank, PC));
 284
 285	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
 286			FSMC_NAND_REG(regs, bank, PC));
 287	writel_relaxed(thiz | thold | twait | tset,
 288			FSMC_NAND_REG(regs, bank, COMM));
 289	writel_relaxed(thiz | thold | twait | tset,
 290			FSMC_NAND_REG(regs, bank, ATTRIB));
 291}
 292
 293/*
 294 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 295 */
 296static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 297{
 298	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 299	void __iomem *regs = host->regs_va;
 300	uint32_t bank = host->bank;
 301
 302	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
 303			FSMC_NAND_REG(regs, bank, PC));
 304	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
 305			FSMC_NAND_REG(regs, bank, PC));
 306	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
 307			FSMC_NAND_REG(regs, bank, PC));
 308}
 309
 310/*
 311 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 312 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 313 * max of 8-bits)
 314 */
 315static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
 316				uint8_t *ecc)
 317{
 318	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 319	void __iomem *regs = host->regs_va;
 320	uint32_t bank = host->bank;
 321	uint32_t ecc_tmp;
 322	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 323
 324	do {
 325		if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
 326			break;
 327		else
 328			cond_resched();
 329	} while (!time_after_eq(jiffies, deadline));
 330
 331	if (time_after_eq(jiffies, deadline)) {
 332		dev_err(host->dev, "calculate ecc timed out\n");
 333		return -ETIMEDOUT;
 334	}
 335
 336	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 337	ecc[0] = (uint8_t) (ecc_tmp >> 0);
 338	ecc[1] = (uint8_t) (ecc_tmp >> 8);
 339	ecc[2] = (uint8_t) (ecc_tmp >> 16);
 340	ecc[3] = (uint8_t) (ecc_tmp >> 24);
 341
 342	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 343	ecc[4] = (uint8_t) (ecc_tmp >> 0);
 344	ecc[5] = (uint8_t) (ecc_tmp >> 8);
 345	ecc[6] = (uint8_t) (ecc_tmp >> 16);
 346	ecc[7] = (uint8_t) (ecc_tmp >> 24);
 347
 348	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 349	ecc[8] = (uint8_t) (ecc_tmp >> 0);
 350	ecc[9] = (uint8_t) (ecc_tmp >> 8);
 351	ecc[10] = (uint8_t) (ecc_tmp >> 16);
 352	ecc[11] = (uint8_t) (ecc_tmp >> 24);
 353
 354	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 355	ecc[12] = (uint8_t) (ecc_tmp >> 16);
 356
 357	return 0;
 358}
 359
 360/*
 361 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 362 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 363 * max of 1-bit)
 364 */
 365static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
 366				uint8_t *ecc)
 367{
 368	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 369	void __iomem *regs = host->regs_va;
 370	uint32_t bank = host->bank;
 371	uint32_t ecc_tmp;
 372
 373	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 374	ecc[0] = (uint8_t) (ecc_tmp >> 0);
 375	ecc[1] = (uint8_t) (ecc_tmp >> 8);
 376	ecc[2] = (uint8_t) (ecc_tmp >> 16);
 377
 378	return 0;
 379}
 380
 381/* Count the number of 0's in buff upto a max of max_bits */
 382static int count_written_bits(uint8_t *buff, int size, int max_bits)
 383{
 384	int k, written_bits = 0;
 385
 386	for (k = 0; k < size; k++) {
 387		written_bits += hweight8(~buff[k]);
 388		if (written_bits > max_bits)
 389			break;
 390	}
 391
 392	return written_bits;
 393}
 394
 395static void dma_complete(void *param)
 396{
 397	struct fsmc_nand_data *host = param;
 398
 399	complete(&host->dma_access_complete);
 400}
 401
 402static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 403		enum dma_data_direction direction)
 404{
 405	struct dma_chan *chan;
 406	struct dma_device *dma_dev;
 407	struct dma_async_tx_descriptor *tx;
 408	dma_addr_t dma_dst, dma_src, dma_addr;
 409	dma_cookie_t cookie;
 410	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 411	int ret;
 412	unsigned long time_left;
 413
 414	if (direction == DMA_TO_DEVICE)
 415		chan = host->write_dma_chan;
 416	else if (direction == DMA_FROM_DEVICE)
 417		chan = host->read_dma_chan;
 418	else
 419		return -EINVAL;
 420
 421	dma_dev = chan->device;
 422	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 423
 424	if (direction == DMA_TO_DEVICE) {
 425		dma_src = dma_addr;
 426		dma_dst = host->data_pa;
 427	} else {
 428		dma_src = host->data_pa;
 429		dma_dst = dma_addr;
 430	}
 431
 432	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 433			len, flags);
 434	if (!tx) {
 435		dev_err(host->dev, "device_prep_dma_memcpy error\n");
 436		ret = -EIO;
 437		goto unmap_dma;
 438	}
 439
 440	tx->callback = dma_complete;
 441	tx->callback_param = host;
 442	cookie = tx->tx_submit(tx);
 443
 444	ret = dma_submit_error(cookie);
 445	if (ret) {
 446		dev_err(host->dev, "dma_submit_error %d\n", cookie);
 447		goto unmap_dma;
 448	}
 449
 450	dma_async_issue_pending(chan);
 451
 452	time_left =
 453	wait_for_completion_timeout(&host->dma_access_complete,
 454				msecs_to_jiffies(3000));
 455	if (time_left == 0) {
 456		dmaengine_terminate_all(chan);
 457		dev_err(host->dev, "wait_for_completion_timeout\n");
 458		ret = -ETIMEDOUT;
 459		goto unmap_dma;
 460	}
 461
 462	ret = 0;
 463
 464unmap_dma:
 465	dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 466
 467	return ret;
 468}
 469
 470/*
 471 * fsmc_write_buf - write buffer to chip
 472 * @mtd:	MTD device structure
 473 * @buf:	data buffer
 474 * @len:	number of bytes to write
 475 */
 476static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 477{
 478	int i;
 479	struct nand_chip *chip = mtd_to_nand(mtd);
 480
 481	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 482			IS_ALIGNED(len, sizeof(uint32_t))) {
 483		uint32_t *p = (uint32_t *)buf;
 484		len = len >> 2;
 485		for (i = 0; i < len; i++)
 486			writel_relaxed(p[i], chip->IO_ADDR_W);
 487	} else {
 488		for (i = 0; i < len; i++)
 489			writeb_relaxed(buf[i], chip->IO_ADDR_W);
 490	}
 491}
 492
 493/*
 494 * fsmc_read_buf - read chip data into buffer
 495 * @mtd:	MTD device structure
 496 * @buf:	buffer to store date
 497 * @len:	number of bytes to read
 498 */
 499static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 500{
 501	int i;
 502	struct nand_chip *chip = mtd_to_nand(mtd);
 503
 504	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 505			IS_ALIGNED(len, sizeof(uint32_t))) {
 506		uint32_t *p = (uint32_t *)buf;
 507		len = len >> 2;
 508		for (i = 0; i < len; i++)
 509			p[i] = readl_relaxed(chip->IO_ADDR_R);
 510	} else {
 511		for (i = 0; i < len; i++)
 512			buf[i] = readb_relaxed(chip->IO_ADDR_R);
 513	}
 514}
 515
 516/*
 517 * fsmc_read_buf_dma - read chip data into buffer
 518 * @mtd:	MTD device structure
 519 * @buf:	buffer to store date
 520 * @len:	number of bytes to read
 521 */
 522static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
 523{
 524	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 525
 526	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 527}
 528
 529/*
 530 * fsmc_write_buf_dma - write buffer to chip
 531 * @mtd:	MTD device structure
 532 * @buf:	data buffer
 533 * @len:	number of bytes to write
 534 */
 535static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
 536		int len)
 537{
 538	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 539
 540	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 541}
 542
 543/*
 544 * fsmc_read_page_hwecc
 545 * @mtd:	mtd info structure
 546 * @chip:	nand chip info structure
 547 * @buf:	buffer to store read data
 548 * @oob_required:	caller expects OOB data read to chip->oob_poi
 549 * @page:	page number to read
 550 *
 551 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 552 * performed in a strict sequence as follows:
 553 * data(512 byte) -> ecc(13 byte)
 554 * After this read, fsmc hardware generates and reports error data bits(up to a
 555 * max of 8 bits)
 556 */
 557static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 558				 uint8_t *buf, int oob_required, int page)
 559{
 560	int i, j, s, stat, eccsize = chip->ecc.size;
 561	int eccbytes = chip->ecc.bytes;
 562	int eccsteps = chip->ecc.steps;
 563	uint8_t *p = buf;
 564	uint8_t *ecc_calc = chip->buffers->ecccalc;
 565	uint8_t *ecc_code = chip->buffers->ecccode;
 566	int off, len, group = 0;
 567	/*
 568	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
 569	 * end up reading 14 bytes (7 words) from oob. The local array is
 570	 * to maintain word alignment
 571	 */
 572	uint16_t ecc_oob[7];
 573	uint8_t *oob = (uint8_t *)&ecc_oob[0];
 574	unsigned int max_bitflips = 0;
 575
 576	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 577		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
 578		chip->ecc.hwctl(mtd, NAND_ECC_READ);
 579		chip->read_buf(mtd, p, eccsize);
 580
 581		for (j = 0; j < eccbytes;) {
 582			struct mtd_oob_region oobregion;
 583			int ret;
 584
 585			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 586			if (ret)
 587				return ret;
 588
 589			off = oobregion.offset;
 590			len = oobregion.length;
 591
 592			/*
 593			 * length is intentionally kept a higher multiple of 2
 594			 * to read at least 13 bytes even in case of 16 bit NAND
 595			 * devices
 596			 */
 597			if (chip->options & NAND_BUSWIDTH_16)
 598				len = roundup(len, 2);
 599
 600			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
 601			chip->read_buf(mtd, oob + j, len);
 602			j += len;
 603		}
 604
 605		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 606		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 607
 608		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 609		if (stat < 0) {
 610			mtd->ecc_stats.failed++;
 611		} else {
 612			mtd->ecc_stats.corrected += stat;
 613			max_bitflips = max_t(unsigned int, max_bitflips, stat);
 614		}
 615	}
 616
 617	return max_bitflips;
 618}
 619
 620/*
 621 * fsmc_bch8_correct_data
 622 * @mtd:	mtd info structure
 623 * @dat:	buffer of read data
 624 * @read_ecc:	ecc read from device spare area
 625 * @calc_ecc:	ecc calculated from read data
 626 *
 627 * calc_ecc is a 104 bit information containing maximum of 8 error
 628 * offset informations of 13 bits each in 512 bytes of read data.
 629 */
 630static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
 631			     uint8_t *read_ecc, uint8_t *calc_ecc)
 632{
 633	struct nand_chip *chip = mtd_to_nand(mtd);
 634	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 635	void __iomem *regs = host->regs_va;
 636	unsigned int bank = host->bank;
 637	uint32_t err_idx[8];
 638	uint32_t num_err, i;
 639	uint32_t ecc1, ecc2, ecc3, ecc4;
 640
 641	num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
 642
 643	/* no bit flipping */
 644	if (likely(num_err == 0))
 645		return 0;
 646
 647	/* too many errors */
 648	if (unlikely(num_err > 8)) {
 649		/*
 650		 * This is a temporary erase check. A newly erased page read
 651		 * would result in an ecc error because the oob data is also
 652		 * erased to FF and the calculated ecc for an FF data is not
 653		 * FF..FF.
 654		 * This is a workaround to skip performing correction in case
 655		 * data is FF..FF
 656		 *
 657		 * Logic:
 658		 * For every page, each bit written as 0 is counted until these
 659		 * number of bits are greater than 8 (the maximum correction
 660		 * capability of FSMC for each 512 + 13 bytes)
 661		 */
 662
 663		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 664		int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 665
 666		if ((bits_ecc + bits_data) <= 8) {
 667			if (bits_data)
 668				memset(dat, 0xff, chip->ecc.size);
 669			return bits_data;
 670		}
 671
 672		return -EBADMSG;
 673	}
 674
 675	/*
 676	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 677	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 678	 *
 679	 * calc_ecc is a 104 bit information containing maximum of 8 error
 680	 * offset informations of 13 bits each. calc_ecc is copied into a
 681	 * uint64_t array and error offset indexes are populated in err_idx
 682	 * array
 683	 */
 684	ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 685	ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 686	ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 687	ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 688
 689	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 690	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 691	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 692	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 693	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 694	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 695	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 696	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 697
 698	i = 0;
 699	while (num_err--) {
 700		change_bit(0, (unsigned long *)&err_idx[i]);
 701		change_bit(1, (unsigned long *)&err_idx[i]);
 702
 703		if (err_idx[i] < chip->ecc.size * 8) {
 704			change_bit(err_idx[i], (unsigned long *)dat);
 705			i++;
 706		}
 707	}
 708	return i;
 709}
 710
 711static bool filter(struct dma_chan *chan, void *slave)
 712{
 713	chan->private = slave;
 714	return true;
 715}
 716
 717#ifdef CONFIG_OF
 718static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 719				     struct device_node *np)
 720{
 721	struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
 722	u32 val;
 723	int ret;
 724
 725	/* Set default NAND width to 8 bits */
 726	pdata->width = 8;
 727	if (!of_property_read_u32(np, "bank-width", &val)) {
 728		if (val == 2) {
 729			pdata->width = 16;
 730		} else if (val != 1) {
 731			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 732			return -EINVAL;
 733		}
 734	}
 735	if (of_get_property(np, "nand-skip-bbtscan", NULL))
 736		pdata->options = NAND_SKIP_BBTSCAN;
 737
 738	pdata->nand_timings = devm_kzalloc(&pdev->dev,
 739				sizeof(*pdata->nand_timings), GFP_KERNEL);
 740	if (!pdata->nand_timings)
 741		return -ENOMEM;
 742	ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
 743						sizeof(*pdata->nand_timings));
 744	if (ret) {
 745		dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
 746		pdata->nand_timings = NULL;
 747	}
 748
 749	/* Set default NAND bank to 0 */
 750	pdata->bank = 0;
 751	if (!of_property_read_u32(np, "bank", &val)) {
 752		if (val > 3) {
 753			dev_err(&pdev->dev, "invalid bank %u\n", val);
 754			return -EINVAL;
 755		}
 756		pdata->bank = val;
 757	}
 758	return 0;
 759}
 760#else
 761static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 762				     struct device_node *np)
 763{
 764	return -ENOSYS;
 765}
 766#endif
 767
 768/*
 769 * fsmc_nand_probe - Probe function
 770 * @pdev:       platform device structure
 771 */
 772static int __init fsmc_nand_probe(struct platform_device *pdev)
 773{
 774	struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
 775	struct device_node __maybe_unused *np = pdev->dev.of_node;
 776	struct fsmc_nand_data *host;
 777	struct mtd_info *mtd;
 778	struct nand_chip *nand;
 779	struct resource *res;
 780	dma_cap_mask_t mask;
 781	int ret = 0;
 782	u32 pid;
 783	int i;
 784
 785	if (np) {
 786		pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
 787		pdev->dev.platform_data = pdata;
 788		ret = fsmc_nand_probe_config_dt(pdev, np);
 789		if (ret) {
 790			dev_err(&pdev->dev, "no platform data\n");
 791			return -ENODEV;
 792		}
 793	}
 794
 795	if (!pdata) {
 796		dev_err(&pdev->dev, "platform data is NULL\n");
 797		return -EINVAL;
 798	}
 799
 800	/* Allocate memory for the device structure (and zero it) */
 801	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 802	if (!host)
 803		return -ENOMEM;
 804
 805	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
 806	host->data_va = devm_ioremap_resource(&pdev->dev, res);
 807	if (IS_ERR(host->data_va))
 808		return PTR_ERR(host->data_va);
 809
 810	host->data_pa = (dma_addr_t)res->start;
 811
 812	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
 813	host->addr_va = devm_ioremap_resource(&pdev->dev, res);
 814	if (IS_ERR(host->addr_va))
 815		return PTR_ERR(host->addr_va);
 816
 817	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
 818	host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
 819	if (IS_ERR(host->cmd_va))
 820		return PTR_ERR(host->cmd_va);
 821
 822	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
 823	host->regs_va = devm_ioremap_resource(&pdev->dev, res);
 824	if (IS_ERR(host->regs_va))
 825		return PTR_ERR(host->regs_va);
 826
 827	host->clk = clk_get(&pdev->dev, NULL);
 828	if (IS_ERR(host->clk)) {
 829		dev_err(&pdev->dev, "failed to fetch block clock\n");
 830		return PTR_ERR(host->clk);
 831	}
 832
 833	ret = clk_prepare_enable(host->clk);
 834	if (ret)
 835		goto err_clk_prepare_enable;
 836
 837	/*
 838	 * This device ID is actually a common AMBA ID as used on the
 839	 * AMBA PrimeCell bus. However it is not a PrimeCell.
 840	 */
 841	for (pid = 0, i = 0; i < 4; i++)
 842		pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
 843	host->pid = pid;
 844	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
 845		 "revision %02x, config %02x\n",
 846		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
 847		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
 848
 849	host->bank = pdata->bank;
 850	host->select_chip = pdata->select_bank;
 851	host->partitions = pdata->partitions;
 852	host->nr_partitions = pdata->nr_partitions;
 853	host->dev = &pdev->dev;
 854	host->dev_timings = pdata->nand_timings;
 855	host->mode = pdata->mode;
 856
 857	if (host->mode == USE_DMA_ACCESS)
 858		init_completion(&host->dma_access_complete);
 859
 860	/* Link all private pointers */
 861	mtd = nand_to_mtd(&host->nand);
 862	nand = &host->nand;
 863	nand_set_controller_data(nand, host);
 864	nand_set_flash_node(nand, np);
 865
 866	mtd->dev.parent = &pdev->dev;
 867	nand->IO_ADDR_R = host->data_va;
 868	nand->IO_ADDR_W = host->data_va;
 869	nand->cmd_ctrl = fsmc_cmd_ctrl;
 870	nand->chip_delay = 30;
 871
 872	/*
 873	 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
 874	 * can overwrite this value if the DT provides a different value.
 875	 */
 876	nand->ecc.mode = NAND_ECC_HW;
 877	nand->ecc.hwctl = fsmc_enable_hwecc;
 878	nand->ecc.size = 512;
 879	nand->options = pdata->options;
 880	nand->select_chip = fsmc_select_chip;
 881	nand->badblockbits = 7;
 882	nand_set_flash_node(nand, np);
 883
 884	if (pdata->width == FSMC_NAND_BW16)
 885		nand->options |= NAND_BUSWIDTH_16;
 886
 887	switch (host->mode) {
 888	case USE_DMA_ACCESS:
 889		dma_cap_zero(mask);
 890		dma_cap_set(DMA_MEMCPY, mask);
 891		host->read_dma_chan = dma_request_channel(mask, filter,
 892				pdata->read_dma_priv);
 893		if (!host->read_dma_chan) {
 894			dev_err(&pdev->dev, "Unable to get read dma channel\n");
 895			goto err_req_read_chnl;
 896		}
 897		host->write_dma_chan = dma_request_channel(mask, filter,
 898				pdata->write_dma_priv);
 899		if (!host->write_dma_chan) {
 900			dev_err(&pdev->dev, "Unable to get write dma channel\n");
 901			goto err_req_write_chnl;
 902		}
 903		nand->read_buf = fsmc_read_buf_dma;
 904		nand->write_buf = fsmc_write_buf_dma;
 905		break;
 906
 907	default:
 908	case USE_WORD_ACCESS:
 909		nand->read_buf = fsmc_read_buf;
 910		nand->write_buf = fsmc_write_buf;
 911		break;
 912	}
 913
 914	fsmc_nand_setup(host->regs_va, host->bank,
 915			nand->options & NAND_BUSWIDTH_16,
 916			host->dev_timings);
 917
 918	if (AMBA_REV_BITS(host->pid) >= 8) {
 919		nand->ecc.read_page = fsmc_read_page_hwecc;
 920		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
 921		nand->ecc.correct = fsmc_bch8_correct_data;
 922		nand->ecc.bytes = 13;
 923		nand->ecc.strength = 8;
 924	}
 925
 926	/*
 927	 * Scan to find existence of the device
 928	 */
 929	ret = nand_scan_ident(mtd, 1, NULL);
 930	if (ret) {
 931		dev_err(&pdev->dev, "No NAND Device found!\n");
 932		goto err_scan_ident;
 933	}
 934
 935	if (AMBA_REV_BITS(host->pid) >= 8) {
 936		switch (mtd->oobsize) {
 937		case 16:
 938		case 64:
 939		case 128:
 940		case 224:
 941		case 256:
 942			break;
 943		default:
 944			dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
 945				 mtd->oobsize);
 946			ret = -EINVAL;
 947			goto err_probe;
 948		}
 949
 950		mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
 951	} else {
 952		switch (nand->ecc.mode) {
 953		case NAND_ECC_HW:
 954			dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
 955			nand->ecc.calculate = fsmc_read_hwecc_ecc1;
 956			nand->ecc.correct = nand_correct_data;
 957			nand->ecc.bytes = 3;
 958			nand->ecc.strength = 1;
 959			break;
 960
 961		case NAND_ECC_SOFT:
 962			if (nand->ecc.algo == NAND_ECC_BCH) {
 963				dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
 964				break;
 965			}
 966
 967		default:
 968			dev_err(&pdev->dev, "Unsupported ECC mode!\n");
 969			goto err_probe;
 970		}
 971
 972		/*
 973		 * Don't set layout for BCH4 SW ECC. This will be
 974		 * generated later in nand_bch_init() later.
 975		 */
 976		if (nand->ecc.mode == NAND_ECC_HW) {
 977			switch (mtd->oobsize) {
 978			case 16:
 979			case 64:
 980			case 128:
 981				mtd_set_ooblayout(mtd,
 982						  &fsmc_ecc1_ooblayout_ops);
 983				break;
 984			default:
 985				dev_warn(&pdev->dev,
 986					 "No oob scheme defined for oobsize %d\n",
 987					 mtd->oobsize);
 988				ret = -EINVAL;
 989				goto err_probe;
 990			}
 991		}
 992	}
 993
 994	/* Second stage of scan to fill MTD data-structures */
 995	ret = nand_scan_tail(mtd);
 996	if (ret)
 997		goto err_probe;
 998
 999	/*
1000	 * The partition information can is accessed by (in the same precedence)
1001	 *
1002	 * command line through Bootloader,
1003	 * platform data,
1004	 * default partition information present in driver.
1005	 */
1006	/*
1007	 * Check for partition info passed
1008	 */
1009	mtd->name = "nand";
1010	ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
1011	if (ret)
1012		goto err_probe;
1013
1014	platform_set_drvdata(pdev, host);
1015	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1016	return 0;
1017
1018err_probe:
1019err_scan_ident:
1020	if (host->mode == USE_DMA_ACCESS)
1021		dma_release_channel(host->write_dma_chan);
1022err_req_write_chnl:
1023	if (host->mode == USE_DMA_ACCESS)
1024		dma_release_channel(host->read_dma_chan);
1025err_req_read_chnl:
1026	clk_disable_unprepare(host->clk);
1027err_clk_prepare_enable:
1028	clk_put(host->clk);
1029	return ret;
1030}
1031
1032/*
1033 * Clean up routine
1034 */
1035static int fsmc_nand_remove(struct platform_device *pdev)
1036{
1037	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1038
1039	if (host) {
1040		nand_release(nand_to_mtd(&host->nand));
1041
1042		if (host->mode == USE_DMA_ACCESS) {
1043			dma_release_channel(host->write_dma_chan);
1044			dma_release_channel(host->read_dma_chan);
1045		}
1046		clk_disable_unprepare(host->clk);
1047		clk_put(host->clk);
1048	}
1049
1050	return 0;
1051}
1052
1053#ifdef CONFIG_PM_SLEEP
1054static int fsmc_nand_suspend(struct device *dev)
1055{
1056	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1057	if (host)
1058		clk_disable_unprepare(host->clk);
1059	return 0;
1060}
1061
1062static int fsmc_nand_resume(struct device *dev)
1063{
1064	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1065	if (host) {
1066		clk_prepare_enable(host->clk);
1067		fsmc_nand_setup(host->regs_va, host->bank,
1068				host->nand.options & NAND_BUSWIDTH_16,
1069				host->dev_timings);
1070	}
1071	return 0;
1072}
1073#endif
1074
1075static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1076
1077#ifdef CONFIG_OF
1078static const struct of_device_id fsmc_nand_id_table[] = {
1079	{ .compatible = "st,spear600-fsmc-nand" },
1080	{ .compatible = "stericsson,fsmc-nand" },
1081	{}
1082};
1083MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1084#endif
1085
1086static struct platform_driver fsmc_nand_driver = {
1087	.remove = fsmc_nand_remove,
1088	.driver = {
1089		.name = "fsmc-nand",
1090		.of_match_table = of_match_ptr(fsmc_nand_id_table),
1091		.pm = &fsmc_nand_pm_ops,
1092	},
1093};
1094
1095module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1096
1097MODULE_LICENSE("GPL");
1098MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1099MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");