Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Main bcache entry point - handle a read or a write request and decide what to
   4 * do with it; the make_request functions are called by the block layer.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/module.h>
  17#include <linux/hash.h>
  18#include <linux/random.h>
  19#include <linux/backing-dev.h>
  20
  21#include <trace/events/bcache.h>
  22
  23#define CUTOFF_CACHE_ADD	95
  24#define CUTOFF_CACHE_READA	90
  25
  26struct kmem_cache *bch_search_cache;
  27
  28static CLOSURE_CALLBACK(bch_data_insert_start);
  29
  30static unsigned int cache_mode(struct cached_dev *dc)
  31{
  32	return BDEV_CACHE_MODE(&dc->sb);
  33}
  34
  35static bool verify(struct cached_dev *dc)
  36{
  37	return dc->verify;
  38}
  39
  40static void bio_csum(struct bio *bio, struct bkey *k)
  41{
  42	struct bio_vec bv;
  43	struct bvec_iter iter;
  44	uint64_t csum = 0;
  45
  46	bio_for_each_segment(bv, bio, iter) {
  47		void *d = bvec_kmap_local(&bv);
  48
  49		csum = crc64_be(csum, d, bv.bv_len);
  50		kunmap_local(d);
  51	}
  52
  53	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  54}
  55
  56/* Insert data into cache */
  57
  58static CLOSURE_CALLBACK(bch_data_insert_keys)
  59{
  60	closure_type(op, struct data_insert_op, cl);
  61	atomic_t *journal_ref = NULL;
  62	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  63	int ret;
  64
 
 
 
 
 
 
 
 
 
 
 
 
  65	if (!op->replace)
  66		journal_ref = bch_journal(op->c, &op->insert_keys,
  67					  op->flush_journal ? cl : NULL);
  68
  69	ret = bch_btree_insert(op->c, &op->insert_keys,
  70			       journal_ref, replace_key);
  71	if (ret == -ESRCH) {
  72		op->replace_collision = true;
  73	} else if (ret) {
  74		op->status		= BLK_STS_RESOURCE;
  75		op->insert_data_done	= true;
  76	}
  77
  78	if (journal_ref)
  79		atomic_dec_bug(journal_ref);
  80
  81	if (!op->insert_data_done) {
  82		continue_at(cl, bch_data_insert_start, op->wq);
  83		return;
  84	}
  85
  86	bch_keylist_free(&op->insert_keys);
  87	closure_return(cl);
  88}
  89
  90static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
  91			       struct cache_set *c)
  92{
  93	size_t oldsize = bch_keylist_nkeys(l);
  94	size_t newsize = oldsize + u64s;
  95
  96	/*
  97	 * The journalling code doesn't handle the case where the keys to insert
  98	 * is bigger than an empty write: If we just return -ENOMEM here,
  99	 * bch_data_insert_keys() will insert the keys created so far
 100	 * and finish the rest when the keylist is empty.
 101	 */
 102	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
 103		return -ENOMEM;
 104
 105	return __bch_keylist_realloc(l, u64s);
 106}
 107
 108static void bch_data_invalidate(struct closure *cl)
 109{
 110	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 111	struct bio *bio = op->bio;
 112
 113	pr_debug("invalidating %i sectors from %llu\n",
 114		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 115
 116	while (bio_sectors(bio)) {
 117		unsigned int sectors = min(bio_sectors(bio),
 118				       1U << (KEY_SIZE_BITS - 1));
 119
 120		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 121			goto out;
 122
 123		bio->bi_iter.bi_sector	+= sectors;
 124		bio->bi_iter.bi_size	-= sectors << 9;
 125
 126		bch_keylist_add(&op->insert_keys,
 127				&KEY(op->inode,
 128				     bio->bi_iter.bi_sector,
 129				     sectors));
 130	}
 131
 132	op->insert_data_done = true;
 133	/* get in bch_data_insert() */
 134	bio_put(bio);
 135out:
 136	continue_at(cl, bch_data_insert_keys, op->wq);
 137}
 138
 139static CLOSURE_CALLBACK(bch_data_insert_error)
 140{
 141	closure_type(op, struct data_insert_op, cl);
 142
 143	/*
 144	 * Our data write just errored, which means we've got a bunch of keys to
 145	 * insert that point to data that wasn't successfully written.
 146	 *
 147	 * We don't have to insert those keys but we still have to invalidate
 148	 * that region of the cache - so, if we just strip off all the pointers
 149	 * from the keys we'll accomplish just that.
 150	 */
 151
 152	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 153
 154	while (src != op->insert_keys.top) {
 155		struct bkey *n = bkey_next(src);
 156
 157		SET_KEY_PTRS(src, 0);
 158		memmove(dst, src, bkey_bytes(src));
 159
 160		dst = bkey_next(dst);
 161		src = n;
 162	}
 163
 164	op->insert_keys.top = dst;
 165
 166	bch_data_insert_keys(&cl->work);
 167}
 168
 169static void bch_data_insert_endio(struct bio *bio)
 170{
 171	struct closure *cl = bio->bi_private;
 172	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 173
 174	if (bio->bi_status) {
 175		/* TODO: We could try to recover from this. */
 176		if (op->writeback)
 177			op->status = bio->bi_status;
 178		else if (!op->replace)
 179			set_closure_fn(cl, bch_data_insert_error, op->wq);
 180		else
 181			set_closure_fn(cl, NULL, NULL);
 182	}
 183
 184	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
 185}
 186
 187static CLOSURE_CALLBACK(bch_data_insert_start)
 188{
 189	closure_type(op, struct data_insert_op, cl);
 190	struct bio *bio = op->bio, *n;
 191
 192	if (op->bypass)
 193		return bch_data_invalidate(cl);
 194
 195	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 196		wake_up_gc(op->c);
 197
 
 
 
 198	/*
 199	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
 200	 * flush, it'll wait on the journal write.
 201	 */
 202	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 203
 204	do {
 205		unsigned int i;
 206		struct bkey *k;
 207		struct bio_set *split = &op->c->bio_split;
 208
 209		/* 1 for the device pointer and 1 for the chksum */
 210		if (bch_keylist_realloc(&op->insert_keys,
 211					3 + (op->csum ? 1 : 0),
 212					op->c)) {
 213			continue_at(cl, bch_data_insert_keys, op->wq);
 214			return;
 215		}
 216
 217		k = op->insert_keys.top;
 218		bkey_init(k);
 219		SET_KEY_INODE(k, op->inode);
 220		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 221
 222		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 223				       op->write_point, op->write_prio,
 224				       op->writeback))
 225			goto err;
 226
 227		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 228
 229		n->bi_end_io	= bch_data_insert_endio;
 230		n->bi_private	= cl;
 231
 232		if (op->writeback) {
 233			SET_KEY_DIRTY(k, true);
 234
 235			for (i = 0; i < KEY_PTRS(k); i++)
 236				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 237					    GC_MARK_DIRTY);
 238		}
 239
 240		SET_KEY_CSUM(k, op->csum);
 241		if (KEY_CSUM(k))
 242			bio_csum(n, k);
 243
 244		trace_bcache_cache_insert(k);
 245		bch_keylist_push(&op->insert_keys);
 246
 247		n->bi_opf = REQ_OP_WRITE;
 248		bch_submit_bbio(n, op->c, k, 0);
 249	} while (n != bio);
 250
 251	op->insert_data_done = true;
 252	continue_at(cl, bch_data_insert_keys, op->wq);
 253	return;
 254err:
 255	/* bch_alloc_sectors() blocks if s->writeback = true */
 256	BUG_ON(op->writeback);
 257
 258	/*
 259	 * But if it's not a writeback write we'd rather just bail out if
 260	 * there aren't any buckets ready to write to - it might take awhile and
 261	 * we might be starving btree writes for gc or something.
 262	 */
 263
 264	if (!op->replace) {
 265		/*
 266		 * Writethrough write: We can't complete the write until we've
 267		 * updated the index. But we don't want to delay the write while
 268		 * we wait for buckets to be freed up, so just invalidate the
 269		 * rest of the write.
 270		 */
 271		op->bypass = true;
 272		return bch_data_invalidate(cl);
 273	} else {
 274		/*
 275		 * From a cache miss, we can just insert the keys for the data
 276		 * we have written or bail out if we didn't do anything.
 277		 */
 278		op->insert_data_done = true;
 279		bio_put(bio);
 280
 281		if (!bch_keylist_empty(&op->insert_keys))
 282			continue_at(cl, bch_data_insert_keys, op->wq);
 283		else
 284			closure_return(cl);
 285	}
 286}
 287
 288/**
 289 * bch_data_insert - stick some data in the cache
 290 * @cl: closure pointer.
 291 *
 292 * This is the starting point for any data to end up in a cache device; it could
 293 * be from a normal write, or a writeback write, or a write to a flash only
 294 * volume - it's also used by the moving garbage collector to compact data in
 295 * mostly empty buckets.
 296 *
 297 * It first writes the data to the cache, creating a list of keys to be inserted
 298 * (if the data had to be fragmented there will be multiple keys); after the
 299 * data is written it calls bch_journal, and after the keys have been added to
 300 * the next journal write they're inserted into the btree.
 301 *
 302 * It inserts the data in op->bio; bi_sector is used for the key offset,
 303 * and op->inode is used for the key inode.
 304 *
 305 * If op->bypass is true, instead of inserting the data it invalidates the
 306 * region of the cache represented by op->bio and op->inode.
 307 */
 308CLOSURE_CALLBACK(bch_data_insert)
 309{
 310	closure_type(op, struct data_insert_op, cl);
 311
 312	trace_bcache_write(op->c, op->inode, op->bio,
 313			   op->writeback, op->bypass);
 314
 315	bch_keylist_init(&op->insert_keys);
 316	bio_get(op->bio);
 317	bch_data_insert_start(&cl->work);
 318}
 319
 320/*
 321 * Congested?  Return 0 (not congested) or the limit (in sectors)
 322 * beyond which we should bypass the cache due to congestion.
 323 */
 324unsigned int bch_get_congested(const struct cache_set *c)
 325{
 326	int i;
 
 327
 328	if (!c->congested_read_threshold_us &&
 329	    !c->congested_write_threshold_us)
 330		return 0;
 331
 332	i = (local_clock_us() - c->congested_last_us) / 1024;
 333	if (i < 0)
 334		return 0;
 335
 336	i += atomic_read(&c->congested);
 337	if (i >= 0)
 338		return 0;
 339
 340	i += CONGESTED_MAX;
 341
 342	if (i > 0)
 343		i = fract_exp_two(i, 6);
 344
 345	i -= hweight32(get_random_u32());
 
 346
 347	return i > 0 ? i : 1;
 348}
 349
 350static void add_sequential(struct task_struct *t)
 351{
 352	ewma_add(t->sequential_io_avg,
 353		 t->sequential_io, 8, 0);
 354
 355	t->sequential_io = 0;
 356}
 357
 358static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 359{
 360	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 361}
 362
 363static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 364{
 365	struct cache_set *c = dc->disk.c;
 366	unsigned int mode = cache_mode(dc);
 367	unsigned int sectors, congested;
 368	struct task_struct *task = current;
 369	struct io *i;
 370
 371	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 372	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 373	    (bio_op(bio) == REQ_OP_DISCARD))
 374		goto skip;
 375
 376	if (mode == CACHE_MODE_NONE ||
 377	    (mode == CACHE_MODE_WRITEAROUND &&
 378	     op_is_write(bio_op(bio))))
 379		goto skip;
 380
 381	/*
 382	 * If the bio is for read-ahead or background IO, bypass it or
 383	 * not depends on the following situations,
 384	 * - If the IO is for meta data, always cache it and no bypass
 385	 * - If the IO is not meta data, check dc->cache_reada_policy,
 386	 *      BCH_CACHE_READA_ALL: cache it and not bypass
 387	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
 388	 * That is, read-ahead request for metadata always get cached
 389	 * (eg, for gfs2 or xfs).
 390	 */
 391	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
 392		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
 393		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
 394			goto skip;
 395	}
 396
 397	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
 398	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
 399		pr_debug("skipping unaligned io\n");
 400		goto skip;
 401	}
 402
 403	if (bypass_torture_test(dc)) {
 404		if (get_random_u32_below(4) == 3)
 405			goto skip;
 406		else
 407			goto rescale;
 408	}
 409
 410	congested = bch_get_congested(c);
 411	if (!congested && !dc->sequential_cutoff)
 412		goto rescale;
 413
 
 
 
 
 
 
 414	spin_lock(&dc->io_lock);
 415
 416	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 417		if (i->last == bio->bi_iter.bi_sector &&
 418		    time_before(jiffies, i->jiffies))
 419			goto found;
 420
 421	i = list_first_entry(&dc->io_lru, struct io, lru);
 422
 423	add_sequential(task);
 424	i->sequential = 0;
 425found:
 426	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 427		i->sequential	+= bio->bi_iter.bi_size;
 428
 429	i->last			 = bio_end_sector(bio);
 430	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
 431	task->sequential_io	 = i->sequential;
 432
 433	hlist_del(&i->hash);
 434	hlist_add_head(&i->hash, iohash(dc, i->last));
 435	list_move_tail(&i->lru, &dc->io_lru);
 436
 437	spin_unlock(&dc->io_lock);
 438
 439	sectors = max(task->sequential_io,
 440		      task->sequential_io_avg) >> 9;
 441
 442	if (dc->sequential_cutoff &&
 443	    sectors >= dc->sequential_cutoff >> 9) {
 444		trace_bcache_bypass_sequential(bio);
 445		goto skip;
 446	}
 447
 448	if (congested && sectors >= congested) {
 449		trace_bcache_bypass_congested(bio);
 450		goto skip;
 451	}
 452
 453rescale:
 454	bch_rescale_priorities(c, bio_sectors(bio));
 455	return false;
 456skip:
 457	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 458	return true;
 459}
 460
 461/* Cache lookup */
 462
 463struct search {
 464	/* Stack frame for bio_complete */
 465	struct closure		cl;
 466
 467	struct bbio		bio;
 468	struct bio		*orig_bio;
 469	struct bio		*cache_miss;
 470	struct bcache_device	*d;
 471
 472	unsigned int		insert_bio_sectors;
 473	unsigned int		recoverable:1;
 474	unsigned int		write:1;
 475	unsigned int		read_dirty_data:1;
 476	unsigned int		cache_missed:1;
 477
 478	struct block_device	*orig_bdev;
 479	unsigned long		start_time;
 480
 481	struct btree_op		op;
 482	struct data_insert_op	iop;
 483};
 484
 485static void bch_cache_read_endio(struct bio *bio)
 486{
 487	struct bbio *b = container_of(bio, struct bbio, bio);
 488	struct closure *cl = bio->bi_private;
 489	struct search *s = container_of(cl, struct search, cl);
 490
 491	/*
 492	 * If the bucket was reused while our bio was in flight, we might have
 493	 * read the wrong data. Set s->error but not error so it doesn't get
 494	 * counted against the cache device, but we'll still reread the data
 495	 * from the backing device.
 496	 */
 497
 498	if (bio->bi_status)
 499		s->iop.status = bio->bi_status;
 500	else if (!KEY_DIRTY(&b->key) &&
 501		 ptr_stale(s->iop.c, &b->key, 0)) {
 502		atomic_long_inc(&s->iop.c->cache_read_races);
 503		s->iop.status = BLK_STS_IOERR;
 504	}
 505
 506	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
 507}
 508
 509/*
 510 * Read from a single key, handling the initial cache miss if the key starts in
 511 * the middle of the bio
 512 */
 513static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 514{
 515	struct search *s = container_of(op, struct search, op);
 516	struct bio *n, *bio = &s->bio.bio;
 517	struct bkey *bio_key;
 518	unsigned int ptr;
 519
 520	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 521		return MAP_CONTINUE;
 522
 523	if (KEY_INODE(k) != s->iop.inode ||
 524	    KEY_START(k) > bio->bi_iter.bi_sector) {
 525		unsigned int bio_sectors = bio_sectors(bio);
 526		unsigned int sectors = KEY_INODE(k) == s->iop.inode
 527			? min_t(uint64_t, INT_MAX,
 528				KEY_START(k) - bio->bi_iter.bi_sector)
 529			: INT_MAX;
 530		int ret = s->d->cache_miss(b, s, bio, sectors);
 531
 
 532		if (ret != MAP_CONTINUE)
 533			return ret;
 534
 535		/* if this was a complete miss we shouldn't get here */
 536		BUG_ON(bio_sectors <= sectors);
 537	}
 538
 539	if (!KEY_SIZE(k))
 540		return MAP_CONTINUE;
 541
 542	/* XXX: figure out best pointer - for multiple cache devices */
 543	ptr = 0;
 544
 545	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 546
 547	if (KEY_DIRTY(k))
 548		s->read_dirty_data = true;
 549
 550	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 551				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 552			   GFP_NOIO, &s->d->bio_split);
 553
 554	bio_key = &container_of(n, struct bbio, bio)->key;
 555	bch_bkey_copy_single_ptr(bio_key, k, ptr);
 556
 557	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 558	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 559
 560	n->bi_end_io	= bch_cache_read_endio;
 561	n->bi_private	= &s->cl;
 562
 563	/*
 564	 * The bucket we're reading from might be reused while our bio
 565	 * is in flight, and we could then end up reading the wrong
 566	 * data.
 567	 *
 568	 * We guard against this by checking (in cache_read_endio()) if
 569	 * the pointer is stale again; if so, we treat it as an error
 570	 * and reread from the backing device (but we don't pass that
 571	 * error up anywhere).
 572	 */
 573
 574	__bch_submit_bbio(n, b->c);
 575	return n == bio ? MAP_DONE : MAP_CONTINUE;
 576}
 577
 578static CLOSURE_CALLBACK(cache_lookup)
 579{
 580	closure_type(s, struct search, iop.cl);
 581	struct bio *bio = &s->bio.bio;
 582	struct cached_dev *dc;
 583	int ret;
 584
 585	bch_btree_op_init(&s->op, -1);
 586
 587	ret = bch_btree_map_keys(&s->op, s->iop.c,
 588				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 589				 cache_lookup_fn, MAP_END_KEY);
 590	if (ret == -EAGAIN) {
 591		continue_at(cl, cache_lookup, bcache_wq);
 592		return;
 593	}
 594
 595	/*
 596	 * We might meet err when searching the btree, If that happens, we will
 597	 * get negative ret, in this scenario we should not recover data from
 598	 * backing device (when cache device is dirty) because we don't know
 599	 * whether bkeys the read request covered are all clean.
 600	 *
 601	 * And after that happened, s->iop.status is still its initial value
 602	 * before we submit s->bio.bio
 603	 */
 604	if (ret < 0) {
 605		BUG_ON(ret == -EINTR);
 606		if (s->d && s->d->c &&
 607				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
 608			dc = container_of(s->d, struct cached_dev, disk);
 609			if (dc && atomic_read(&dc->has_dirty))
 610				s->recoverable = false;
 611		}
 612		if (!s->iop.status)
 613			s->iop.status = BLK_STS_IOERR;
 614	}
 615
 616	closure_return(cl);
 617}
 618
 619/* Common code for the make_request functions */
 620
 621static void request_endio(struct bio *bio)
 622{
 623	struct closure *cl = bio->bi_private;
 624
 625	if (bio->bi_status) {
 626		struct search *s = container_of(cl, struct search, cl);
 627
 628		s->iop.status = bio->bi_status;
 629		/* Only cache read errors are recoverable */
 630		s->recoverable = false;
 631	}
 632
 633	bio_put(bio);
 634	closure_put(cl);
 635}
 636
 637static void backing_request_endio(struct bio *bio)
 638{
 639	struct closure *cl = bio->bi_private;
 640
 641	if (bio->bi_status) {
 642		struct search *s = container_of(cl, struct search, cl);
 643		struct cached_dev *dc = container_of(s->d,
 644						     struct cached_dev, disk);
 645		/*
 646		 * If a bio has REQ_PREFLUSH for writeback mode, it is
 647		 * speically assembled in cached_dev_write() for a non-zero
 648		 * write request which has REQ_PREFLUSH. we don't set
 649		 * s->iop.status by this failure, the status will be decided
 650		 * by result of bch_data_insert() operation.
 651		 */
 652		if (unlikely(s->iop.writeback &&
 653			     bio->bi_opf & REQ_PREFLUSH)) {
 654			pr_err("Can't flush %pg: returned bi_status %i\n",
 655				dc->bdev, bio->bi_status);
 656		} else {
 657			/* set to orig_bio->bi_status in bio_complete() */
 658			s->iop.status = bio->bi_status;
 659		}
 660		s->recoverable = false;
 661		/* should count I/O error for backing device here */
 662		bch_count_backing_io_errors(dc, bio);
 663	}
 664
 665	bio_put(bio);
 666	closure_put(cl);
 667}
 668
 669static void bio_complete(struct search *s)
 670{
 671	if (s->orig_bio) {
 672		/* Count on bcache device */
 673		bio_end_io_acct_remapped(s->orig_bio, s->start_time,
 674					 s->orig_bdev);
 675		trace_bcache_request_end(s->d, s->orig_bio);
 676		s->orig_bio->bi_status = s->iop.status;
 677		bio_endio(s->orig_bio);
 678		s->orig_bio = NULL;
 679	}
 680}
 681
 682static void do_bio_hook(struct search *s,
 683			struct bio *orig_bio,
 684			bio_end_io_t *end_io_fn)
 685{
 686	struct bio *bio = &s->bio.bio;
 687
 688	bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
 689	/*
 690	 * bi_end_io can be set separately somewhere else, e.g. the
 691	 * variants in,
 692	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
 693	 * - n->bi_end_io from cache_lookup_fn()
 694	 */
 695	bio->bi_end_io		= end_io_fn;
 696	bio->bi_private		= &s->cl;
 697
 698	bio_cnt_set(bio, 3);
 699}
 700
 701static CLOSURE_CALLBACK(search_free)
 702{
 703	closure_type(s, struct search, cl);
 704
 705	atomic_dec(&s->iop.c->search_inflight);
 706
 707	if (s->iop.bio)
 708		bio_put(s->iop.bio);
 709
 710	bio_complete(s);
 711	closure_debug_destroy(cl);
 712	mempool_free(s, &s->iop.c->search);
 713}
 714
 715static inline struct search *search_alloc(struct bio *bio,
 716		struct bcache_device *d, struct block_device *orig_bdev,
 717		unsigned long start_time)
 718{
 719	struct search *s;
 720
 721	s = mempool_alloc(&d->c->search, GFP_NOIO);
 722
 723	closure_init(&s->cl, NULL);
 724	do_bio_hook(s, bio, request_endio);
 725	atomic_inc(&d->c->search_inflight);
 726
 727	s->orig_bio		= bio;
 728	s->cache_miss		= NULL;
 729	s->cache_missed		= 0;
 730	s->d			= d;
 731	s->recoverable		= 1;
 732	s->write		= op_is_write(bio_op(bio));
 733	s->read_dirty_data	= 0;
 734	/* Count on the bcache device */
 735	s->orig_bdev		= orig_bdev;
 736	s->start_time		= start_time;
 737	s->iop.c		= d->c;
 738	s->iop.bio		= NULL;
 739	s->iop.inode		= d->id;
 740	s->iop.write_point	= hash_long((unsigned long) current, 16);
 741	s->iop.write_prio	= 0;
 742	s->iop.status		= 0;
 743	s->iop.flags		= 0;
 744	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
 745	s->iop.wq		= bcache_wq;
 746
 747	return s;
 748}
 749
 750/* Cached devices */
 751
 752static CLOSURE_CALLBACK(cached_dev_bio_complete)
 753{
 754	closure_type(s, struct search, cl);
 755	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 756
 
 757	cached_dev_put(dc);
 758	search_free(&cl->work);
 759}
 760
 761/* Process reads */
 762
 763static CLOSURE_CALLBACK(cached_dev_read_error_done)
 764{
 765	closure_type(s, struct search, cl);
 766
 767	if (s->iop.replace_collision)
 768		bch_mark_cache_miss_collision(s->iop.c, s->d);
 769
 770	if (s->iop.bio)
 771		bio_free_pages(s->iop.bio);
 772
 773	cached_dev_bio_complete(&cl->work);
 774}
 775
 776static CLOSURE_CALLBACK(cached_dev_read_error)
 777{
 778	closure_type(s, struct search, cl);
 779	struct bio *bio = &s->bio.bio;
 780
 781	/*
 782	 * If read request hit dirty data (s->read_dirty_data is true),
 783	 * then recovery a failed read request from cached device may
 784	 * get a stale data back. So read failure recovery is only
 785	 * permitted when read request hit clean data in cache device,
 786	 * or when cache read race happened.
 787	 */
 788	if (s->recoverable && !s->read_dirty_data) {
 789		/* Retry from the backing device: */
 790		trace_bcache_read_retry(s->orig_bio);
 791
 792		s->iop.status = 0;
 793		do_bio_hook(s, s->orig_bio, backing_request_endio);
 794
 795		/* XXX: invalidate cache */
 796
 797		/* I/O request sent to backing device */
 798		closure_bio_submit(s->iop.c, bio, cl);
 799	}
 800
 801	continue_at(cl, cached_dev_read_error_done, NULL);
 802}
 803
 804static CLOSURE_CALLBACK(cached_dev_cache_miss_done)
 805{
 806	closure_type(s, struct search, cl);
 807	struct bcache_device *d = s->d;
 808
 809	if (s->iop.replace_collision)
 810		bch_mark_cache_miss_collision(s->iop.c, s->d);
 811
 812	if (s->iop.bio)
 813		bio_free_pages(s->iop.bio);
 814
 815	cached_dev_bio_complete(&cl->work);
 816	closure_put(&d->cl);
 817}
 818
 819static CLOSURE_CALLBACK(cached_dev_read_done)
 820{
 821	closure_type(s, struct search, cl);
 822	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 823
 824	/*
 825	 * We had a cache miss; cache_bio now contains data ready to be inserted
 826	 * into the cache.
 827	 *
 828	 * First, we copy the data we just read from cache_bio's bounce buffers
 829	 * to the buffers the original bio pointed to:
 830	 */
 831
 832	if (s->iop.bio) {
 833		bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
 834		s->iop.bio->bi_iter.bi_sector =
 835			s->cache_miss->bi_iter.bi_sector;
 836		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 837		bio_clone_blkg_association(s->iop.bio, s->cache_miss);
 838		bch_bio_map(s->iop.bio, NULL);
 839
 840		bio_copy_data(s->cache_miss, s->iop.bio);
 841
 842		bio_put(s->cache_miss);
 843		s->cache_miss = NULL;
 844	}
 845
 846	if (verify(dc) && s->recoverable && !s->read_dirty_data)
 847		bch_data_verify(dc, s->orig_bio);
 848
 849	closure_get(&dc->disk.cl);
 850	bio_complete(s);
 851
 852	if (s->iop.bio &&
 853	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 854		BUG_ON(!s->iop.replace);
 855		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 856	}
 857
 858	continue_at(cl, cached_dev_cache_miss_done, NULL);
 859}
 860
 861static CLOSURE_CALLBACK(cached_dev_read_done_bh)
 862{
 863	closure_type(s, struct search, cl);
 864	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 865
 866	bch_mark_cache_accounting(s->iop.c, s->d,
 867				  !s->cache_missed, s->iop.bypass);
 868	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
 869
 870	if (s->iop.status)
 871		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 872	else if (s->iop.bio || verify(dc))
 873		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 874	else
 875		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 876}
 877
 878static int cached_dev_cache_miss(struct btree *b, struct search *s,
 879				 struct bio *bio, unsigned int sectors)
 880{
 881	int ret = MAP_CONTINUE;
 
 882	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 883	struct bio *miss, *cache_bio;
 884	unsigned int size_limit;
 885
 886	s->cache_missed = 1;
 887
 888	if (s->cache_miss || s->iop.bypass) {
 889		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 890		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 891		goto out_submit;
 892	}
 893
 894	/* Limitation for valid replace key size and cache_bio bvecs number */
 895	size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
 896			   (1 << KEY_SIZE_BITS) - 1);
 897	s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
 
 
 
 898
 899	s->iop.replace_key = KEY(s->iop.inode,
 900				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 901				 s->insert_bio_sectors);
 902
 903	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 904	if (ret)
 905		return ret;
 906
 907	s->iop.replace = true;
 908
 909	miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
 910			      &s->d->bio_split);
 911
 912	/* btree_search_recurse()'s btree iterator is no good anymore */
 913	ret = miss == bio ? MAP_DONE : -EINTR;
 914
 915	cache_bio = bio_alloc_bioset(miss->bi_bdev,
 916			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 917			0, GFP_NOWAIT, &dc->disk.bio_split);
 918	if (!cache_bio)
 919		goto out_submit;
 920
 921	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
 
 922	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
 923
 924	cache_bio->bi_end_io	= backing_request_endio;
 925	cache_bio->bi_private	= &s->cl;
 926
 927	bch_bio_map(cache_bio, NULL);
 928	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 929		goto out_put;
 930
 
 
 
 931	s->cache_miss	= miss;
 932	s->iop.bio	= cache_bio;
 933	bio_get(cache_bio);
 934	/* I/O request sent to backing device */
 935	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
 936
 937	return ret;
 938out_put:
 939	bio_put(cache_bio);
 940out_submit:
 941	miss->bi_end_io		= backing_request_endio;
 942	miss->bi_private	= &s->cl;
 943	/* I/O request sent to backing device */
 944	closure_bio_submit(s->iop.c, miss, &s->cl);
 945	return ret;
 946}
 947
 948static void cached_dev_read(struct cached_dev *dc, struct search *s)
 949{
 950	struct closure *cl = &s->cl;
 951
 952	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 953	continue_at(cl, cached_dev_read_done_bh, NULL);
 954}
 955
 956/* Process writes */
 957
 958static CLOSURE_CALLBACK(cached_dev_write_complete)
 959{
 960	closure_type(s, struct search, cl);
 961	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 962
 963	up_read_non_owner(&dc->writeback_lock);
 964	cached_dev_bio_complete(&cl->work);
 965}
 966
 967static void cached_dev_write(struct cached_dev *dc, struct search *s)
 968{
 969	struct closure *cl = &s->cl;
 970	struct bio *bio = &s->bio.bio;
 971	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 972	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 973
 974	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 975
 976	down_read_non_owner(&dc->writeback_lock);
 977	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 978		/*
 979		 * We overlap with some dirty data undergoing background
 980		 * writeback, force this write to writeback
 981		 */
 982		s->iop.bypass = false;
 983		s->iop.writeback = true;
 984	}
 985
 986	/*
 987	 * Discards aren't _required_ to do anything, so skipping if
 988	 * check_overlapping returned true is ok
 989	 *
 990	 * But check_overlapping drops dirty keys for which io hasn't started,
 991	 * so we still want to call it.
 992	 */
 993	if (bio_op(bio) == REQ_OP_DISCARD)
 994		s->iop.bypass = true;
 995
 996	if (should_writeback(dc, s->orig_bio,
 997			     cache_mode(dc),
 998			     s->iop.bypass)) {
 999		s->iop.bypass = false;
1000		s->iop.writeback = true;
1001	}
1002
1003	if (s->iop.bypass) {
1004		s->iop.bio = s->orig_bio;
1005		bio_get(s->iop.bio);
1006
1007		if (bio_op(bio) == REQ_OP_DISCARD &&
1008		    !bdev_max_discard_sectors(dc->bdev))
1009			goto insert_data;
1010
1011		/* I/O request sent to backing device */
1012		bio->bi_end_io = backing_request_endio;
1013		closure_bio_submit(s->iop.c, bio, cl);
1014
1015	} else if (s->iop.writeback) {
1016		bch_writeback_add(dc);
1017		s->iop.bio = bio;
1018
1019		if (bio->bi_opf & REQ_PREFLUSH) {
1020			/*
1021			 * Also need to send a flush to the backing
1022			 * device.
1023			 */
1024			struct bio *flush;
1025
1026			flush = bio_alloc_bioset(bio->bi_bdev, 0,
1027						 REQ_OP_WRITE | REQ_PREFLUSH,
1028						 GFP_NOIO, &dc->disk.bio_split);
1029			if (!flush) {
1030				s->iop.status = BLK_STS_RESOURCE;
1031				goto insert_data;
1032			}
1033			flush->bi_end_io = backing_request_endio;
1034			flush->bi_private = cl;
1035			/* I/O request sent to backing device */
1036			closure_bio_submit(s->iop.c, flush, cl);
 
1037		}
1038	} else {
1039		s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1040					     &dc->disk.bio_split);
1041		/* I/O request sent to backing device */
1042		bio->bi_end_io = backing_request_endio;
1043		closure_bio_submit(s->iop.c, bio, cl);
1044	}
1045
1046insert_data:
1047	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1048	continue_at(cl, cached_dev_write_complete, NULL);
1049}
1050
1051static CLOSURE_CALLBACK(cached_dev_nodata)
1052{
1053	closure_type(s, struct search, cl);
1054	struct bio *bio = &s->bio.bio;
1055
1056	if (s->iop.flush_journal)
1057		bch_journal_meta(s->iop.c, cl);
1058
1059	/* If it's a flush, we send the flush to the backing device too */
1060	bio->bi_end_io = backing_request_endio;
1061	closure_bio_submit(s->iop.c, bio, cl);
1062
1063	continue_at(cl, cached_dev_bio_complete, NULL);
1064}
1065
1066struct detached_dev_io_private {
1067	struct bcache_device	*d;
1068	unsigned long		start_time;
1069	bio_end_io_t		*bi_end_io;
1070	void			*bi_private;
1071	struct block_device	*orig_bdev;
1072};
1073
1074static void detached_dev_end_io(struct bio *bio)
1075{
1076	struct detached_dev_io_private *ddip;
1077
1078	ddip = bio->bi_private;
1079	bio->bi_end_io = ddip->bi_end_io;
1080	bio->bi_private = ddip->bi_private;
1081
1082	/* Count on the bcache device */
1083	bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1084
1085	if (bio->bi_status) {
1086		struct cached_dev *dc = container_of(ddip->d,
1087						     struct cached_dev, disk);
1088		/* should count I/O error for backing device here */
1089		bch_count_backing_io_errors(dc, bio);
1090	}
1091
1092	kfree(ddip);
1093	bio->bi_end_io(bio);
1094}
1095
1096static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1097		struct block_device *orig_bdev, unsigned long start_time)
1098{
1099	struct detached_dev_io_private *ddip;
1100	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1101
1102	/*
1103	 * no need to call closure_get(&dc->disk.cl),
1104	 * because upper layer had already opened bcache device,
1105	 * which would call closure_get(&dc->disk.cl)
1106	 */
1107	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1108	if (!ddip) {
1109		bio->bi_status = BLK_STS_RESOURCE;
1110		bio->bi_end_io(bio);
1111		return;
1112	}
1113
1114	ddip->d = d;
1115	/* Count on the bcache device */
1116	ddip->orig_bdev = orig_bdev;
1117	ddip->start_time = start_time;
1118	ddip->bi_end_io = bio->bi_end_io;
1119	ddip->bi_private = bio->bi_private;
1120	bio->bi_end_io = detached_dev_end_io;
1121	bio->bi_private = ddip;
1122
1123	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1124	    !bdev_max_discard_sectors(dc->bdev))
1125		bio->bi_end_io(bio);
1126	else
1127		submit_bio_noacct(bio);
1128}
1129
1130static void quit_max_writeback_rate(struct cache_set *c,
1131				    struct cached_dev *this_dc)
1132{
1133	int i;
1134	struct bcache_device *d;
1135	struct cached_dev *dc;
1136
1137	/*
1138	 * mutex bch_register_lock may compete with other parallel requesters,
1139	 * or attach/detach operations on other backing device. Waiting to
1140	 * the mutex lock may increase I/O request latency for seconds or more.
1141	 * To avoid such situation, if mutext_trylock() failed, only writeback
1142	 * rate of current cached device is set to 1, and __update_write_back()
1143	 * will decide writeback rate of other cached devices (remember now
1144	 * c->idle_counter is 0 already).
1145	 */
1146	if (mutex_trylock(&bch_register_lock)) {
1147		for (i = 0; i < c->devices_max_used; i++) {
1148			if (!c->devices[i])
1149				continue;
1150
1151			if (UUID_FLASH_ONLY(&c->uuids[i]))
1152				continue;
1153
1154			d = c->devices[i];
1155			dc = container_of(d, struct cached_dev, disk);
1156			/*
1157			 * set writeback rate to default minimum value,
1158			 * then let update_writeback_rate() to decide the
1159			 * upcoming rate.
1160			 */
1161			atomic_long_set(&dc->writeback_rate.rate, 1);
1162		}
1163		mutex_unlock(&bch_register_lock);
1164	} else
1165		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1166}
1167
1168/* Cached devices - read & write stuff */
1169
1170void cached_dev_submit_bio(struct bio *bio)
 
1171{
1172	struct search *s;
1173	struct block_device *orig_bdev = bio->bi_bdev;
1174	struct bcache_device *d = orig_bdev->bd_disk->private_data;
1175	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1176	unsigned long start_time;
1177	int rw = bio_data_dir(bio);
1178
1179	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1180		     dc->io_disable)) {
1181		bio->bi_status = BLK_STS_IOERR;
1182		bio_endio(bio);
1183		return;
1184	}
1185
1186	if (likely(d->c)) {
1187		if (atomic_read(&d->c->idle_counter))
1188			atomic_set(&d->c->idle_counter, 0);
1189		/*
1190		 * If at_max_writeback_rate of cache set is true and new I/O
1191		 * comes, quit max writeback rate of all cached devices
1192		 * attached to this cache set, and set at_max_writeback_rate
1193		 * to false.
1194		 */
1195		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1196			atomic_set(&d->c->at_max_writeback_rate, 0);
1197			quit_max_writeback_rate(d->c, dc);
1198		}
1199	}
1200
1201	start_time = bio_start_io_acct(bio);
1202
1203	bio_set_dev(bio, dc->bdev);
1204	bio->bi_iter.bi_sector += dc->sb.data_offset;
1205
1206	if (cached_dev_get(dc)) {
1207		s = search_alloc(bio, d, orig_bdev, start_time);
1208		trace_bcache_request_start(s->d, bio);
1209
1210		if (!bio->bi_iter.bi_size) {
1211			/*
1212			 * can't call bch_journal_meta from under
1213			 * submit_bio_noacct
1214			 */
1215			continue_at_nobarrier(&s->cl,
1216					      cached_dev_nodata,
1217					      bcache_wq);
1218		} else {
1219			s->iop.bypass = check_should_bypass(dc, bio);
1220
1221			if (rw)
1222				cached_dev_write(dc, s);
1223			else
1224				cached_dev_read(dc, s);
1225		}
1226	} else
1227		/* I/O request sent to backing device */
1228		detached_dev_do_request(d, bio, orig_bdev, start_time);
 
 
 
 
 
 
1229}
1230
1231static int cached_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1232			    unsigned int cmd, unsigned long arg)
1233{
1234	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 
 
 
 
 
 
 
 
 
1235
1236	if (dc->io_disable)
1237		return -EIO;
1238	if (!dc->bdev->bd_disk->fops->ioctl)
1239		return -ENOTTY;
1240	return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243void bch_cached_dev_request_init(struct cached_dev *dc)
1244{
 
 
 
 
1245	dc->disk.cache_miss			= cached_dev_cache_miss;
1246	dc->disk.ioctl				= cached_dev_ioctl;
1247}
1248
1249/* Flash backed devices */
1250
1251static int flash_dev_cache_miss(struct btree *b, struct search *s,
1252				struct bio *bio, unsigned int sectors)
1253{
1254	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1255
1256	swap(bio->bi_iter.bi_size, bytes);
1257	zero_fill_bio(bio);
1258	swap(bio->bi_iter.bi_size, bytes);
1259
1260	bio_advance(bio, bytes);
1261
1262	if (!bio->bi_iter.bi_size)
1263		return MAP_DONE;
1264
1265	return MAP_CONTINUE;
1266}
1267
1268static CLOSURE_CALLBACK(flash_dev_nodata)
1269{
1270	closure_type(s, struct search, cl);
1271
1272	if (s->iop.flush_journal)
1273		bch_journal_meta(s->iop.c, cl);
1274
1275	continue_at(cl, search_free, NULL);
1276}
1277
1278void flash_dev_submit_bio(struct bio *bio)
 
1279{
1280	struct search *s;
1281	struct closure *cl;
1282	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
 
1283
1284	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1285		bio->bi_status = BLK_STS_IOERR;
1286		bio_endio(bio);
1287		return;
1288	}
1289
1290	s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1291	cl = &s->cl;
1292	bio = &s->bio.bio;
1293
1294	trace_bcache_request_start(s->d, bio);
1295
1296	if (!bio->bi_iter.bi_size) {
1297		/*
1298		 * can't call bch_journal_meta from under submit_bio_noacct
 
1299		 */
1300		continue_at_nobarrier(&s->cl,
1301				      flash_dev_nodata,
1302				      bcache_wq);
1303		return;
1304	} else if (bio_data_dir(bio)) {
1305		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1306					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1307					&KEY(d->id, bio_end_sector(bio), 0));
1308
1309		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1310		s->iop.writeback	= true;
1311		s->iop.bio		= bio;
1312
1313		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1314	} else {
1315		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1316	}
1317
1318	continue_at(cl, search_free, NULL);
 
1319}
1320
1321static int flash_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1322			   unsigned int cmd, unsigned long arg)
1323{
1324	return -ENOTTY;
1325}
1326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327void bch_flash_dev_request_init(struct bcache_device *d)
1328{
 
 
 
 
1329	d->cache_miss				= flash_dev_cache_miss;
1330	d->ioctl				= flash_dev_ioctl;
1331}
1332
1333void bch_request_exit(void)
1334{
1335	kmem_cache_destroy(bch_search_cache);
 
1336}
1337
1338int __init bch_request_init(void)
1339{
1340	bch_search_cache = KMEM_CACHE(search, 0);
1341	if (!bch_search_cache)
1342		return -ENOMEM;
1343
1344	return 0;
1345}
v4.10.11
 
   1/*
   2 * Main bcache entry point - handle a read or a write request and decide what to
   3 * do with it; the make_request functions are called by the block layer.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "request.h"
  13#include "writeback.h"
  14
  15#include <linux/module.h>
  16#include <linux/hash.h>
  17#include <linux/random.h>
  18#include <linux/backing-dev.h>
  19
  20#include <trace/events/bcache.h>
  21
  22#define CUTOFF_CACHE_ADD	95
  23#define CUTOFF_CACHE_READA	90
  24
  25struct kmem_cache *bch_search_cache;
  26
  27static void bch_data_insert_start(struct closure *);
  28
  29static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  30{
  31	return BDEV_CACHE_MODE(&dc->sb);
  32}
  33
  34static bool verify(struct cached_dev *dc, struct bio *bio)
  35{
  36	return dc->verify;
  37}
  38
  39static void bio_csum(struct bio *bio, struct bkey *k)
  40{
  41	struct bio_vec bv;
  42	struct bvec_iter iter;
  43	uint64_t csum = 0;
  44
  45	bio_for_each_segment(bv, bio, iter) {
  46		void *d = kmap(bv.bv_page) + bv.bv_offset;
  47		csum = bch_crc64_update(csum, d, bv.bv_len);
  48		kunmap(bv.bv_page);
 
  49	}
  50
  51	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  52}
  53
  54/* Insert data into cache */
  55
  56static void bch_data_insert_keys(struct closure *cl)
  57{
  58	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  59	atomic_t *journal_ref = NULL;
  60	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  61	int ret;
  62
  63	/*
  64	 * If we're looping, might already be waiting on
  65	 * another journal write - can't wait on more than one journal write at
  66	 * a time
  67	 *
  68	 * XXX: this looks wrong
  69	 */
  70#if 0
  71	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  72		closure_sync(&s->cl);
  73#endif
  74
  75	if (!op->replace)
  76		journal_ref = bch_journal(op->c, &op->insert_keys,
  77					  op->flush_journal ? cl : NULL);
  78
  79	ret = bch_btree_insert(op->c, &op->insert_keys,
  80			       journal_ref, replace_key);
  81	if (ret == -ESRCH) {
  82		op->replace_collision = true;
  83	} else if (ret) {
  84		op->error		= -ENOMEM;
  85		op->insert_data_done	= true;
  86	}
  87
  88	if (journal_ref)
  89		atomic_dec_bug(journal_ref);
  90
  91	if (!op->insert_data_done) {
  92		continue_at(cl, bch_data_insert_start, op->wq);
  93		return;
  94	}
  95
  96	bch_keylist_free(&op->insert_keys);
  97	closure_return(cl);
  98}
  99
 100static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
 101			       struct cache_set *c)
 102{
 103	size_t oldsize = bch_keylist_nkeys(l);
 104	size_t newsize = oldsize + u64s;
 105
 106	/*
 107	 * The journalling code doesn't handle the case where the keys to insert
 108	 * is bigger than an empty write: If we just return -ENOMEM here,
 109	 * bio_insert() and bio_invalidate() will insert the keys created so far
 110	 * and finish the rest when the keylist is empty.
 111	 */
 112	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
 113		return -ENOMEM;
 114
 115	return __bch_keylist_realloc(l, u64s);
 116}
 117
 118static void bch_data_invalidate(struct closure *cl)
 119{
 120	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 121	struct bio *bio = op->bio;
 122
 123	pr_debug("invalidating %i sectors from %llu",
 124		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 125
 126	while (bio_sectors(bio)) {
 127		unsigned sectors = min(bio_sectors(bio),
 128				       1U << (KEY_SIZE_BITS - 1));
 129
 130		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 131			goto out;
 132
 133		bio->bi_iter.bi_sector	+= sectors;
 134		bio->bi_iter.bi_size	-= sectors << 9;
 135
 136		bch_keylist_add(&op->insert_keys,
 137				&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
 
 
 138	}
 139
 140	op->insert_data_done = true;
 
 141	bio_put(bio);
 142out:
 143	continue_at(cl, bch_data_insert_keys, op->wq);
 144}
 145
 146static void bch_data_insert_error(struct closure *cl)
 147{
 148	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 149
 150	/*
 151	 * Our data write just errored, which means we've got a bunch of keys to
 152	 * insert that point to data that wasn't succesfully written.
 153	 *
 154	 * We don't have to insert those keys but we still have to invalidate
 155	 * that region of the cache - so, if we just strip off all the pointers
 156	 * from the keys we'll accomplish just that.
 157	 */
 158
 159	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 160
 161	while (src != op->insert_keys.top) {
 162		struct bkey *n = bkey_next(src);
 163
 164		SET_KEY_PTRS(src, 0);
 165		memmove(dst, src, bkey_bytes(src));
 166
 167		dst = bkey_next(dst);
 168		src = n;
 169	}
 170
 171	op->insert_keys.top = dst;
 172
 173	bch_data_insert_keys(cl);
 174}
 175
 176static void bch_data_insert_endio(struct bio *bio)
 177{
 178	struct closure *cl = bio->bi_private;
 179	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 180
 181	if (bio->bi_error) {
 182		/* TODO: We could try to recover from this. */
 183		if (op->writeback)
 184			op->error = bio->bi_error;
 185		else if (!op->replace)
 186			set_closure_fn(cl, bch_data_insert_error, op->wq);
 187		else
 188			set_closure_fn(cl, NULL, NULL);
 189	}
 190
 191	bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache");
 192}
 193
 194static void bch_data_insert_start(struct closure *cl)
 195{
 196	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 197	struct bio *bio = op->bio, *n;
 198
 
 
 
 199	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 200		wake_up_gc(op->c);
 201
 202	if (op->bypass)
 203		return bch_data_invalidate(cl);
 204
 205	/*
 206	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
 207	 * flush, it'll wait on the journal write.
 208	 */
 209	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 210
 211	do {
 212		unsigned i;
 213		struct bkey *k;
 214		struct bio_set *split = op->c->bio_split;
 215
 216		/* 1 for the device pointer and 1 for the chksum */
 217		if (bch_keylist_realloc(&op->insert_keys,
 218					3 + (op->csum ? 1 : 0),
 219					op->c)) {
 220			continue_at(cl, bch_data_insert_keys, op->wq);
 221			return;
 222		}
 223
 224		k = op->insert_keys.top;
 225		bkey_init(k);
 226		SET_KEY_INODE(k, op->inode);
 227		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 228
 229		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 230				       op->write_point, op->write_prio,
 231				       op->writeback))
 232			goto err;
 233
 234		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 235
 236		n->bi_end_io	= bch_data_insert_endio;
 237		n->bi_private	= cl;
 238
 239		if (op->writeback) {
 240			SET_KEY_DIRTY(k, true);
 241
 242			for (i = 0; i < KEY_PTRS(k); i++)
 243				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 244					    GC_MARK_DIRTY);
 245		}
 246
 247		SET_KEY_CSUM(k, op->csum);
 248		if (KEY_CSUM(k))
 249			bio_csum(n, k);
 250
 251		trace_bcache_cache_insert(k);
 252		bch_keylist_push(&op->insert_keys);
 253
 254		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
 255		bch_submit_bbio(n, op->c, k, 0);
 256	} while (n != bio);
 257
 258	op->insert_data_done = true;
 259	continue_at(cl, bch_data_insert_keys, op->wq);
 260	return;
 261err:
 262	/* bch_alloc_sectors() blocks if s->writeback = true */
 263	BUG_ON(op->writeback);
 264
 265	/*
 266	 * But if it's not a writeback write we'd rather just bail out if
 267	 * there aren't any buckets ready to write to - it might take awhile and
 268	 * we might be starving btree writes for gc or something.
 269	 */
 270
 271	if (!op->replace) {
 272		/*
 273		 * Writethrough write: We can't complete the write until we've
 274		 * updated the index. But we don't want to delay the write while
 275		 * we wait for buckets to be freed up, so just invalidate the
 276		 * rest of the write.
 277		 */
 278		op->bypass = true;
 279		return bch_data_invalidate(cl);
 280	} else {
 281		/*
 282		 * From a cache miss, we can just insert the keys for the data
 283		 * we have written or bail out if we didn't do anything.
 284		 */
 285		op->insert_data_done = true;
 286		bio_put(bio);
 287
 288		if (!bch_keylist_empty(&op->insert_keys))
 289			continue_at(cl, bch_data_insert_keys, op->wq);
 290		else
 291			closure_return(cl);
 292	}
 293}
 294
 295/**
 296 * bch_data_insert - stick some data in the cache
 
 297 *
 298 * This is the starting point for any data to end up in a cache device; it could
 299 * be from a normal write, or a writeback write, or a write to a flash only
 300 * volume - it's also used by the moving garbage collector to compact data in
 301 * mostly empty buckets.
 302 *
 303 * It first writes the data to the cache, creating a list of keys to be inserted
 304 * (if the data had to be fragmented there will be multiple keys); after the
 305 * data is written it calls bch_journal, and after the keys have been added to
 306 * the next journal write they're inserted into the btree.
 307 *
 308 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
 309 * and op->inode is used for the key inode.
 310 *
 311 * If s->bypass is true, instead of inserting the data it invalidates the
 312 * region of the cache represented by s->cache_bio and op->inode.
 313 */
 314void bch_data_insert(struct closure *cl)
 315{
 316	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 317
 318	trace_bcache_write(op->c, op->inode, op->bio,
 319			   op->writeback, op->bypass);
 320
 321	bch_keylist_init(&op->insert_keys);
 322	bio_get(op->bio);
 323	bch_data_insert_start(cl);
 324}
 325
 326/* Congested? */
 327
 328unsigned bch_get_congested(struct cache_set *c)
 
 
 329{
 330	int i;
 331	long rand;
 332
 333	if (!c->congested_read_threshold_us &&
 334	    !c->congested_write_threshold_us)
 335		return 0;
 336
 337	i = (local_clock_us() - c->congested_last_us) / 1024;
 338	if (i < 0)
 339		return 0;
 340
 341	i += atomic_read(&c->congested);
 342	if (i >= 0)
 343		return 0;
 344
 345	i += CONGESTED_MAX;
 346
 347	if (i > 0)
 348		i = fract_exp_two(i, 6);
 349
 350	rand = get_random_int();
 351	i -= bitmap_weight(&rand, BITS_PER_LONG);
 352
 353	return i > 0 ? i : 1;
 354}
 355
 356static void add_sequential(struct task_struct *t)
 357{
 358	ewma_add(t->sequential_io_avg,
 359		 t->sequential_io, 8, 0);
 360
 361	t->sequential_io = 0;
 362}
 363
 364static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 365{
 366	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 367}
 368
 369static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 370{
 371	struct cache_set *c = dc->disk.c;
 372	unsigned mode = cache_mode(dc, bio);
 373	unsigned sectors, congested = bch_get_congested(c);
 374	struct task_struct *task = current;
 375	struct io *i;
 376
 377	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 378	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 379	    (bio_op(bio) == REQ_OP_DISCARD))
 380		goto skip;
 381
 382	if (mode == CACHE_MODE_NONE ||
 383	    (mode == CACHE_MODE_WRITEAROUND &&
 384	     op_is_write(bio_op(bio))))
 385		goto skip;
 386
 387	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
 388	    bio_sectors(bio) & (c->sb.block_size - 1)) {
 389		pr_debug("skipping unaligned io");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390		goto skip;
 391	}
 392
 393	if (bypass_torture_test(dc)) {
 394		if ((get_random_int() & 3) == 3)
 395			goto skip;
 396		else
 397			goto rescale;
 398	}
 399
 
 400	if (!congested && !dc->sequential_cutoff)
 401		goto rescale;
 402
 403	if (!congested &&
 404	    mode == CACHE_MODE_WRITEBACK &&
 405	    op_is_write(bio->bi_opf) &&
 406	    op_is_sync(bio->bi_opf))
 407		goto rescale;
 408
 409	spin_lock(&dc->io_lock);
 410
 411	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 412		if (i->last == bio->bi_iter.bi_sector &&
 413		    time_before(jiffies, i->jiffies))
 414			goto found;
 415
 416	i = list_first_entry(&dc->io_lru, struct io, lru);
 417
 418	add_sequential(task);
 419	i->sequential = 0;
 420found:
 421	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 422		i->sequential	+= bio->bi_iter.bi_size;
 423
 424	i->last			 = bio_end_sector(bio);
 425	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
 426	task->sequential_io	 = i->sequential;
 427
 428	hlist_del(&i->hash);
 429	hlist_add_head(&i->hash, iohash(dc, i->last));
 430	list_move_tail(&i->lru, &dc->io_lru);
 431
 432	spin_unlock(&dc->io_lock);
 433
 434	sectors = max(task->sequential_io,
 435		      task->sequential_io_avg) >> 9;
 436
 437	if (dc->sequential_cutoff &&
 438	    sectors >= dc->sequential_cutoff >> 9) {
 439		trace_bcache_bypass_sequential(bio);
 440		goto skip;
 441	}
 442
 443	if (congested && sectors >= congested) {
 444		trace_bcache_bypass_congested(bio);
 445		goto skip;
 446	}
 447
 448rescale:
 449	bch_rescale_priorities(c, bio_sectors(bio));
 450	return false;
 451skip:
 452	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 453	return true;
 454}
 455
 456/* Cache lookup */
 457
 458struct search {
 459	/* Stack frame for bio_complete */
 460	struct closure		cl;
 461
 462	struct bbio		bio;
 463	struct bio		*orig_bio;
 464	struct bio		*cache_miss;
 465	struct bcache_device	*d;
 466
 467	unsigned		insert_bio_sectors;
 468	unsigned		recoverable:1;
 469	unsigned		write:1;
 470	unsigned		read_dirty_data:1;
 
 471
 
 472	unsigned long		start_time;
 473
 474	struct btree_op		op;
 475	struct data_insert_op	iop;
 476};
 477
 478static void bch_cache_read_endio(struct bio *bio)
 479{
 480	struct bbio *b = container_of(bio, struct bbio, bio);
 481	struct closure *cl = bio->bi_private;
 482	struct search *s = container_of(cl, struct search, cl);
 483
 484	/*
 485	 * If the bucket was reused while our bio was in flight, we might have
 486	 * read the wrong data. Set s->error but not error so it doesn't get
 487	 * counted against the cache device, but we'll still reread the data
 488	 * from the backing device.
 489	 */
 490
 491	if (bio->bi_error)
 492		s->iop.error = bio->bi_error;
 493	else if (!KEY_DIRTY(&b->key) &&
 494		 ptr_stale(s->iop.c, &b->key, 0)) {
 495		atomic_long_inc(&s->iop.c->cache_read_races);
 496		s->iop.error = -EINTR;
 497	}
 498
 499	bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache");
 500}
 501
 502/*
 503 * Read from a single key, handling the initial cache miss if the key starts in
 504 * the middle of the bio
 505 */
 506static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 507{
 508	struct search *s = container_of(op, struct search, op);
 509	struct bio *n, *bio = &s->bio.bio;
 510	struct bkey *bio_key;
 511	unsigned ptr;
 512
 513	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 514		return MAP_CONTINUE;
 515
 516	if (KEY_INODE(k) != s->iop.inode ||
 517	    KEY_START(k) > bio->bi_iter.bi_sector) {
 518		unsigned bio_sectors = bio_sectors(bio);
 519		unsigned sectors = KEY_INODE(k) == s->iop.inode
 520			? min_t(uint64_t, INT_MAX,
 521				KEY_START(k) - bio->bi_iter.bi_sector)
 522			: INT_MAX;
 
 523
 524		int ret = s->d->cache_miss(b, s, bio, sectors);
 525		if (ret != MAP_CONTINUE)
 526			return ret;
 527
 528		/* if this was a complete miss we shouldn't get here */
 529		BUG_ON(bio_sectors <= sectors);
 530	}
 531
 532	if (!KEY_SIZE(k))
 533		return MAP_CONTINUE;
 534
 535	/* XXX: figure out best pointer - for multiple cache devices */
 536	ptr = 0;
 537
 538	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 539
 540	if (KEY_DIRTY(k))
 541		s->read_dirty_data = true;
 542
 543	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 544				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 545			   GFP_NOIO, s->d->bio_split);
 546
 547	bio_key = &container_of(n, struct bbio, bio)->key;
 548	bch_bkey_copy_single_ptr(bio_key, k, ptr);
 549
 550	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 551	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 552
 553	n->bi_end_io	= bch_cache_read_endio;
 554	n->bi_private	= &s->cl;
 555
 556	/*
 557	 * The bucket we're reading from might be reused while our bio
 558	 * is in flight, and we could then end up reading the wrong
 559	 * data.
 560	 *
 561	 * We guard against this by checking (in cache_read_endio()) if
 562	 * the pointer is stale again; if so, we treat it as an error
 563	 * and reread from the backing device (but we don't pass that
 564	 * error up anywhere).
 565	 */
 566
 567	__bch_submit_bbio(n, b->c);
 568	return n == bio ? MAP_DONE : MAP_CONTINUE;
 569}
 570
 571static void cache_lookup(struct closure *cl)
 572{
 573	struct search *s = container_of(cl, struct search, iop.cl);
 574	struct bio *bio = &s->bio.bio;
 
 575	int ret;
 576
 577	bch_btree_op_init(&s->op, -1);
 578
 579	ret = bch_btree_map_keys(&s->op, s->iop.c,
 580				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 581				 cache_lookup_fn, MAP_END_KEY);
 582	if (ret == -EAGAIN) {
 583		continue_at(cl, cache_lookup, bcache_wq);
 584		return;
 585	}
 586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587	closure_return(cl);
 588}
 589
 590/* Common code for the make_request functions */
 591
 592static void request_endio(struct bio *bio)
 593{
 594	struct closure *cl = bio->bi_private;
 595
 596	if (bio->bi_error) {
 597		struct search *s = container_of(cl, struct search, cl);
 598		s->iop.error = bio->bi_error;
 
 599		/* Only cache read errors are recoverable */
 600		s->recoverable = false;
 601	}
 602
 603	bio_put(bio);
 604	closure_put(cl);
 605}
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607static void bio_complete(struct search *s)
 608{
 609	if (s->orig_bio) {
 610		generic_end_io_acct(bio_data_dir(s->orig_bio),
 611				    &s->d->disk->part0, s->start_time);
 612
 613		trace_bcache_request_end(s->d, s->orig_bio);
 614		s->orig_bio->bi_error = s->iop.error;
 615		bio_endio(s->orig_bio);
 616		s->orig_bio = NULL;
 617	}
 618}
 619
 620static void do_bio_hook(struct search *s, struct bio *orig_bio)
 
 
 621{
 622	struct bio *bio = &s->bio.bio;
 623
 624	bio_init(bio, NULL, 0);
 625	__bio_clone_fast(bio, orig_bio);
 626	bio->bi_end_io		= request_endio;
 
 
 
 
 
 627	bio->bi_private		= &s->cl;
 628
 629	bio_cnt_set(bio, 3);
 630}
 631
 632static void search_free(struct closure *cl)
 633{
 634	struct search *s = container_of(cl, struct search, cl);
 635	bio_complete(s);
 
 636
 637	if (s->iop.bio)
 638		bio_put(s->iop.bio);
 639
 
 640	closure_debug_destroy(cl);
 641	mempool_free(s, s->d->c->search);
 642}
 643
 644static inline struct search *search_alloc(struct bio *bio,
 645					  struct bcache_device *d)
 
 646{
 647	struct search *s;
 648
 649	s = mempool_alloc(d->c->search, GFP_NOIO);
 650
 651	closure_init(&s->cl, NULL);
 652	do_bio_hook(s, bio);
 
 653
 654	s->orig_bio		= bio;
 655	s->cache_miss		= NULL;
 
 656	s->d			= d;
 657	s->recoverable		= 1;
 658	s->write		= op_is_write(bio_op(bio));
 659	s->read_dirty_data	= 0;
 660	s->start_time		= jiffies;
 661
 
 662	s->iop.c		= d->c;
 663	s->iop.bio		= NULL;
 664	s->iop.inode		= d->id;
 665	s->iop.write_point	= hash_long((unsigned long) current, 16);
 666	s->iop.write_prio	= 0;
 667	s->iop.error		= 0;
 668	s->iop.flags		= 0;
 669	s->iop.flush_journal	= (bio->bi_opf & (REQ_PREFLUSH|REQ_FUA)) != 0;
 670	s->iop.wq		= bcache_wq;
 671
 672	return s;
 673}
 674
 675/* Cached devices */
 676
 677static void cached_dev_bio_complete(struct closure *cl)
 678{
 679	struct search *s = container_of(cl, struct search, cl);
 680	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 681
 682	search_free(cl);
 683	cached_dev_put(dc);
 
 684}
 685
 686/* Process reads */
 687
 688static void cached_dev_cache_miss_done(struct closure *cl)
 689{
 690	struct search *s = container_of(cl, struct search, cl);
 691
 692	if (s->iop.replace_collision)
 693		bch_mark_cache_miss_collision(s->iop.c, s->d);
 694
 695	if (s->iop.bio)
 696		bio_free_pages(s->iop.bio);
 697
 698	cached_dev_bio_complete(cl);
 699}
 700
 701static void cached_dev_read_error(struct closure *cl)
 702{
 703	struct search *s = container_of(cl, struct search, cl);
 704	struct bio *bio = &s->bio.bio;
 705
 706	if (s->recoverable) {
 
 
 
 
 
 
 
 707		/* Retry from the backing device: */
 708		trace_bcache_read_retry(s->orig_bio);
 709
 710		s->iop.error = 0;
 711		do_bio_hook(s, s->orig_bio);
 712
 713		/* XXX: invalidate cache */
 714
 715		closure_bio_submit(bio, cl);
 
 716	}
 717
 718	continue_at(cl, cached_dev_cache_miss_done, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721static void cached_dev_read_done(struct closure *cl)
 722{
 723	struct search *s = container_of(cl, struct search, cl);
 724	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 725
 726	/*
 727	 * We had a cache miss; cache_bio now contains data ready to be inserted
 728	 * into the cache.
 729	 *
 730	 * First, we copy the data we just read from cache_bio's bounce buffers
 731	 * to the buffers the original bio pointed to:
 732	 */
 733
 734	if (s->iop.bio) {
 735		bio_reset(s->iop.bio);
 736		s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
 737		s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
 738		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 
 739		bch_bio_map(s->iop.bio, NULL);
 740
 741		bio_copy_data(s->cache_miss, s->iop.bio);
 742
 743		bio_put(s->cache_miss);
 744		s->cache_miss = NULL;
 745	}
 746
 747	if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
 748		bch_data_verify(dc, s->orig_bio);
 749
 
 750	bio_complete(s);
 751
 752	if (s->iop.bio &&
 753	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 754		BUG_ON(!s->iop.replace);
 755		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 756	}
 757
 758	continue_at(cl, cached_dev_cache_miss_done, NULL);
 759}
 760
 761static void cached_dev_read_done_bh(struct closure *cl)
 762{
 763	struct search *s = container_of(cl, struct search, cl);
 764	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 765
 766	bch_mark_cache_accounting(s->iop.c, s->d,
 767				  !s->cache_miss, s->iop.bypass);
 768	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
 769
 770	if (s->iop.error)
 771		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 772	else if (s->iop.bio || verify(dc, &s->bio.bio))
 773		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 774	else
 775		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 776}
 777
 778static int cached_dev_cache_miss(struct btree *b, struct search *s,
 779				 struct bio *bio, unsigned sectors)
 780{
 781	int ret = MAP_CONTINUE;
 782	unsigned reada = 0;
 783	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 784	struct bio *miss, *cache_bio;
 
 
 
 785
 786	if (s->cache_miss || s->iop.bypass) {
 787		miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 788		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 789		goto out_submit;
 790	}
 791
 792	if (!(bio->bi_opf & REQ_RAHEAD) &&
 793	    !(bio->bi_opf & REQ_META) &&
 794	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
 795		reada = min_t(sector_t, dc->readahead >> 9,
 796			      bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
 797
 798	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
 799
 800	s->iop.replace_key = KEY(s->iop.inode,
 801				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 802				 s->insert_bio_sectors);
 803
 804	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 805	if (ret)
 806		return ret;
 807
 808	s->iop.replace = true;
 809
 810	miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 
 811
 812	/* btree_search_recurse()'s btree iterator is no good anymore */
 813	ret = miss == bio ? MAP_DONE : -EINTR;
 814
 815	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
 816			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 817			dc->disk.bio_split);
 818	if (!cache_bio)
 819		goto out_submit;
 820
 821	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
 822	cache_bio->bi_bdev		= miss->bi_bdev;
 823	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
 824
 825	cache_bio->bi_end_io	= request_endio;
 826	cache_bio->bi_private	= &s->cl;
 827
 828	bch_bio_map(cache_bio, NULL);
 829	if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 830		goto out_put;
 831
 832	if (reada)
 833		bch_mark_cache_readahead(s->iop.c, s->d);
 834
 835	s->cache_miss	= miss;
 836	s->iop.bio	= cache_bio;
 837	bio_get(cache_bio);
 838	closure_bio_submit(cache_bio, &s->cl);
 
 839
 840	return ret;
 841out_put:
 842	bio_put(cache_bio);
 843out_submit:
 844	miss->bi_end_io		= request_endio;
 845	miss->bi_private	= &s->cl;
 846	closure_bio_submit(miss, &s->cl);
 
 847	return ret;
 848}
 849
 850static void cached_dev_read(struct cached_dev *dc, struct search *s)
 851{
 852	struct closure *cl = &s->cl;
 853
 854	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 855	continue_at(cl, cached_dev_read_done_bh, NULL);
 856}
 857
 858/* Process writes */
 859
 860static void cached_dev_write_complete(struct closure *cl)
 861{
 862	struct search *s = container_of(cl, struct search, cl);
 863	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 864
 865	up_read_non_owner(&dc->writeback_lock);
 866	cached_dev_bio_complete(cl);
 867}
 868
 869static void cached_dev_write(struct cached_dev *dc, struct search *s)
 870{
 871	struct closure *cl = &s->cl;
 872	struct bio *bio = &s->bio.bio;
 873	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 874	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 875
 876	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 877
 878	down_read_non_owner(&dc->writeback_lock);
 879	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 880		/*
 881		 * We overlap with some dirty data undergoing background
 882		 * writeback, force this write to writeback
 883		 */
 884		s->iop.bypass = false;
 885		s->iop.writeback = true;
 886	}
 887
 888	/*
 889	 * Discards aren't _required_ to do anything, so skipping if
 890	 * check_overlapping returned true is ok
 891	 *
 892	 * But check_overlapping drops dirty keys for which io hasn't started,
 893	 * so we still want to call it.
 894	 */
 895	if (bio_op(bio) == REQ_OP_DISCARD)
 896		s->iop.bypass = true;
 897
 898	if (should_writeback(dc, s->orig_bio,
 899			     cache_mode(dc, bio),
 900			     s->iop.bypass)) {
 901		s->iop.bypass = false;
 902		s->iop.writeback = true;
 903	}
 904
 905	if (s->iop.bypass) {
 906		s->iop.bio = s->orig_bio;
 907		bio_get(s->iop.bio);
 908
 909		if ((bio_op(bio) != REQ_OP_DISCARD) ||
 910		    blk_queue_discard(bdev_get_queue(dc->bdev)))
 911			closure_bio_submit(bio, cl);
 
 
 
 
 
 912	} else if (s->iop.writeback) {
 913		bch_writeback_add(dc);
 914		s->iop.bio = bio;
 915
 916		if (bio->bi_opf & REQ_PREFLUSH) {
 917			/* Also need to send a flush to the backing device */
 918			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
 919							     dc->disk.bio_split);
 
 
 920
 921			flush->bi_bdev	= bio->bi_bdev;
 922			flush->bi_end_io = request_endio;
 
 
 
 
 
 
 923			flush->bi_private = cl;
 924			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 925
 926			closure_bio_submit(flush, cl);
 927		}
 928	} else {
 929		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
 930
 931		closure_bio_submit(bio, cl);
 
 
 932	}
 933
 
 934	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 935	continue_at(cl, cached_dev_write_complete, NULL);
 936}
 937
 938static void cached_dev_nodata(struct closure *cl)
 939{
 940	struct search *s = container_of(cl, struct search, cl);
 941	struct bio *bio = &s->bio.bio;
 942
 943	if (s->iop.flush_journal)
 944		bch_journal_meta(s->iop.c, cl);
 945
 946	/* If it's a flush, we send the flush to the backing device too */
 947	closure_bio_submit(bio, cl);
 
 948
 949	continue_at(cl, cached_dev_bio_complete, NULL);
 950}
 951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952/* Cached devices - read & write stuff */
 953
 954static blk_qc_t cached_dev_make_request(struct request_queue *q,
 955					struct bio *bio)
 956{
 957	struct search *s;
 958	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
 
 959	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 
 960	int rw = bio_data_dir(bio);
 961
 962	generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963
 964	bio->bi_bdev = dc->bdev;
 965	bio->bi_iter.bi_sector += dc->sb.data_offset;
 966
 967	if (cached_dev_get(dc)) {
 968		s = search_alloc(bio, d);
 969		trace_bcache_request_start(s->d, bio);
 970
 971		if (!bio->bi_iter.bi_size) {
 972			/*
 973			 * can't call bch_journal_meta from under
 974			 * generic_make_request
 975			 */
 976			continue_at_nobarrier(&s->cl,
 977					      cached_dev_nodata,
 978					      bcache_wq);
 979		} else {
 980			s->iop.bypass = check_should_bypass(dc, bio);
 981
 982			if (rw)
 983				cached_dev_write(dc, s);
 984			else
 985				cached_dev_read(dc, s);
 986		}
 987	} else {
 988		if ((bio_op(bio) == REQ_OP_DISCARD) &&
 989		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
 990			bio_endio(bio);
 991		else
 992			generic_make_request(bio);
 993	}
 994
 995	return BLK_QC_T_NONE;
 996}
 997
 998static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
 999			    unsigned int cmd, unsigned long arg)
1000{
1001	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1002	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1003}
1004
1005static int cached_dev_congested(void *data, int bits)
1006{
1007	struct bcache_device *d = data;
1008	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1009	struct request_queue *q = bdev_get_queue(dc->bdev);
1010	int ret = 0;
1011
1012	if (bdi_congested(&q->backing_dev_info, bits))
1013		return 1;
1014
1015	if (cached_dev_get(dc)) {
1016		unsigned i;
1017		struct cache *ca;
1018
1019		for_each_cache(ca, d->c, i) {
1020			q = bdev_get_queue(ca->bdev);
1021			ret |= bdi_congested(&q->backing_dev_info, bits);
1022		}
1023
1024		cached_dev_put(dc);
1025	}
1026
1027	return ret;
1028}
1029
1030void bch_cached_dev_request_init(struct cached_dev *dc)
1031{
1032	struct gendisk *g = dc->disk.disk;
1033
1034	g->queue->make_request_fn		= cached_dev_make_request;
1035	g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1036	dc->disk.cache_miss			= cached_dev_cache_miss;
1037	dc->disk.ioctl				= cached_dev_ioctl;
1038}
1039
1040/* Flash backed devices */
1041
1042static int flash_dev_cache_miss(struct btree *b, struct search *s,
1043				struct bio *bio, unsigned sectors)
1044{
1045	unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1046
1047	swap(bio->bi_iter.bi_size, bytes);
1048	zero_fill_bio(bio);
1049	swap(bio->bi_iter.bi_size, bytes);
1050
1051	bio_advance(bio, bytes);
1052
1053	if (!bio->bi_iter.bi_size)
1054		return MAP_DONE;
1055
1056	return MAP_CONTINUE;
1057}
1058
1059static void flash_dev_nodata(struct closure *cl)
1060{
1061	struct search *s = container_of(cl, struct search, cl);
1062
1063	if (s->iop.flush_journal)
1064		bch_journal_meta(s->iop.c, cl);
1065
1066	continue_at(cl, search_free, NULL);
1067}
1068
1069static blk_qc_t flash_dev_make_request(struct request_queue *q,
1070					     struct bio *bio)
1071{
1072	struct search *s;
1073	struct closure *cl;
1074	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1075	int rw = bio_data_dir(bio);
1076
1077	generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
 
 
 
 
1078
1079	s = search_alloc(bio, d);
1080	cl = &s->cl;
1081	bio = &s->bio.bio;
1082
1083	trace_bcache_request_start(s->d, bio);
1084
1085	if (!bio->bi_iter.bi_size) {
1086		/*
1087		 * can't call bch_journal_meta from under
1088		 * generic_make_request
1089		 */
1090		continue_at_nobarrier(&s->cl,
1091				      flash_dev_nodata,
1092				      bcache_wq);
1093		return BLK_QC_T_NONE;
1094	} else if (rw) {
1095		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1096					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1097					&KEY(d->id, bio_end_sector(bio), 0));
1098
1099		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1100		s->iop.writeback	= true;
1101		s->iop.bio		= bio;
1102
1103		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1104	} else {
1105		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1106	}
1107
1108	continue_at(cl, search_free, NULL);
1109	return BLK_QC_T_NONE;
1110}
1111
1112static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1113			   unsigned int cmd, unsigned long arg)
1114{
1115	return -ENOTTY;
1116}
1117
1118static int flash_dev_congested(void *data, int bits)
1119{
1120	struct bcache_device *d = data;
1121	struct request_queue *q;
1122	struct cache *ca;
1123	unsigned i;
1124	int ret = 0;
1125
1126	for_each_cache(ca, d->c, i) {
1127		q = bdev_get_queue(ca->bdev);
1128		ret |= bdi_congested(&q->backing_dev_info, bits);
1129	}
1130
1131	return ret;
1132}
1133
1134void bch_flash_dev_request_init(struct bcache_device *d)
1135{
1136	struct gendisk *g = d->disk;
1137
1138	g->queue->make_request_fn		= flash_dev_make_request;
1139	g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1140	d->cache_miss				= flash_dev_cache_miss;
1141	d->ioctl				= flash_dev_ioctl;
1142}
1143
1144void bch_request_exit(void)
1145{
1146	if (bch_search_cache)
1147		kmem_cache_destroy(bch_search_cache);
1148}
1149
1150int __init bch_request_init(void)
1151{
1152	bch_search_cache = KMEM_CACHE(search, 0);
1153	if (!bch_search_cache)
1154		return -ENOMEM;
1155
1156	return 0;
1157}