Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  4 *
  5 * Uses a block device as cache for other block devices; optimized for SSDs.
  6 * All allocation is done in buckets, which should match the erase block size
  7 * of the device.
  8 *
  9 * Buckets containing cached data are kept on a heap sorted by priority;
 10 * bucket priority is increased on cache hit, and periodically all the buckets
 11 * on the heap have their priority scaled down. This currently is just used as
 12 * an LRU but in the future should allow for more intelligent heuristics.
 13 *
 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
 15 * counter. Garbage collection is used to remove stale pointers.
 16 *
 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
 18 * as keys are inserted we only sort the pages that have not yet been written.
 19 * When garbage collection is run, we resort the entire node.
 20 *
 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
 22 */
 23
 24#include "bcache.h"
 25#include "btree.h"
 26#include "debug.h"
 27#include "extents.h"
 28#include "writeback.h"
 29
 30static void sort_key_next(struct btree_iter *iter,
 31			  struct btree_iter_set *i)
 32{
 33	i->k = bkey_next(i->k);
 34
 35	if (i->k == i->end)
 36		*i = iter->data[--iter->used];
 37}
 38
 39static bool bch_key_sort_cmp(struct btree_iter_set l,
 40			     struct btree_iter_set r)
 41{
 42	int64_t c = bkey_cmp(l.k, r.k);
 43
 44	return c ? c > 0 : l.k < r.k;
 45}
 46
 47static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
 48{
 49	unsigned int i;
 50
 51	for (i = 0; i < KEY_PTRS(k); i++)
 52		if (ptr_available(c, k, i)) {
 53			struct cache *ca = c->cache;
 54			size_t bucket = PTR_BUCKET_NR(c, k, i);
 55			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
 56
 57			if (KEY_SIZE(k) + r > c->cache->sb.bucket_size ||
 58			    bucket <  ca->sb.first_bucket ||
 59			    bucket >= ca->sb.nbuckets)
 60				return true;
 61		}
 62
 63	return false;
 64}
 65
 66/* Common among btree and extent ptrs */
 67
 68static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
 69{
 70	unsigned int i;
 71
 72	for (i = 0; i < KEY_PTRS(k); i++)
 73		if (ptr_available(c, k, i)) {
 74			struct cache *ca = c->cache;
 75			size_t bucket = PTR_BUCKET_NR(c, k, i);
 76			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
 77
 78			if (KEY_SIZE(k) + r > c->cache->sb.bucket_size)
 79				return "bad, length too big";
 80			if (bucket <  ca->sb.first_bucket)
 81				return "bad, short offset";
 82			if (bucket >= ca->sb.nbuckets)
 83				return "bad, offset past end of device";
 84			if (ptr_stale(c, k, i))
 85				return "stale";
 86		}
 87
 88	if (!bkey_cmp(k, &ZERO_KEY))
 89		return "bad, null key";
 90	if (!KEY_PTRS(k))
 91		return "bad, no pointers";
 92	if (!KEY_SIZE(k))
 93		return "zeroed key";
 94	return "";
 95}
 96
 97void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
 98{
 99	unsigned int i = 0;
100	char *out = buf, *end = buf + size;
101
102#define p(...)	(out += scnprintf(out, end - out, __VA_ARGS__))
103
104	p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
105
106	for (i = 0; i < KEY_PTRS(k); i++) {
107		if (i)
108			p(", ");
109
110		if (PTR_DEV(k, i) == PTR_CHECK_DEV)
111			p("check dev");
112		else
113			p("%llu:%llu gen %llu", PTR_DEV(k, i),
114			  PTR_OFFSET(k, i), PTR_GEN(k, i));
115	}
116
117	p("]");
118
119	if (KEY_DIRTY(k))
120		p(" dirty");
121	if (KEY_CSUM(k))
122		p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
123#undef p
124}
125
126static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
127{
128	struct btree *b = container_of(keys, struct btree, keys);
129	unsigned int j;
130	char buf[80];
131
132	bch_extent_to_text(buf, sizeof(buf), k);
133	pr_cont(" %s", buf);
134
135	for (j = 0; j < KEY_PTRS(k); j++) {
136		size_t n = PTR_BUCKET_NR(b->c, k, j);
 
137
138		pr_cont(" bucket %zu", n);
139		if (n >= b->c->cache->sb.first_bucket && n < b->c->cache->sb.nbuckets)
140			pr_cont(" prio %i",
141				PTR_BUCKET(b->c, k, j)->prio);
142	}
143
144	pr_cont(" %s\n", bch_ptr_status(b->c, k));
145}
146
147/* Btree ptrs */
148
149bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
150{
151	char buf[80];
152
153	if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
154		goto bad;
155
156	if (__ptr_invalid(c, k))
157		goto bad;
158
159	return false;
160bad:
161	bch_extent_to_text(buf, sizeof(buf), k);
162	cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
163	return true;
164}
165
166static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
167{
168	struct btree *b = container_of(bk, struct btree, keys);
169
170	return __bch_btree_ptr_invalid(b->c, k);
171}
172
173static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
174{
175	unsigned int i;
176	char buf[80];
177	struct bucket *g;
178
179	if (mutex_trylock(&b->c->bucket_lock)) {
180		for (i = 0; i < KEY_PTRS(k); i++)
181			if (ptr_available(b->c, k, i)) {
182				g = PTR_BUCKET(b->c, k, i);
183
184				if (KEY_DIRTY(k) ||
185				    g->prio != BTREE_PRIO ||
186				    (b->c->gc_mark_valid &&
187				     GC_MARK(g) != GC_MARK_METADATA))
188					goto err;
189			}
190
191		mutex_unlock(&b->c->bucket_lock);
192	}
193
194	return false;
195err:
196	mutex_unlock(&b->c->bucket_lock);
197	bch_extent_to_text(buf, sizeof(buf), k);
198	btree_bug(b,
199"inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
200		  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
201		  g->prio, g->gen, g->last_gc, GC_MARK(g));
202	return true;
203}
204
205static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
206{
207	struct btree *b = container_of(bk, struct btree, keys);
208	unsigned int i;
209
210	if (!bkey_cmp(k, &ZERO_KEY) ||
211	    !KEY_PTRS(k) ||
212	    bch_ptr_invalid(bk, k))
213		return true;
214
215	for (i = 0; i < KEY_PTRS(k); i++)
216		if (!ptr_available(b->c, k, i) ||
217		    ptr_stale(b->c, k, i))
218			return true;
219
220	if (expensive_debug_checks(b->c) &&
221	    btree_ptr_bad_expensive(b, k))
222		return true;
223
224	return false;
225}
226
227static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
228				       struct bkey *insert,
229				       struct btree_iter *iter,
230				       struct bkey *replace_key)
231{
232	struct btree *b = container_of(bk, struct btree, keys);
233
234	if (!KEY_OFFSET(insert))
235		btree_current_write(b)->prio_blocked++;
236
237	return false;
238}
239
240const struct btree_keys_ops bch_btree_keys_ops = {
241	.sort_cmp	= bch_key_sort_cmp,
242	.insert_fixup	= bch_btree_ptr_insert_fixup,
243	.key_invalid	= bch_btree_ptr_invalid,
244	.key_bad	= bch_btree_ptr_bad,
245	.key_to_text	= bch_extent_to_text,
246	.key_dump	= bch_bkey_dump,
247};
248
249/* Extents */
250
251/*
252 * Returns true if l > r - unless l == r, in which case returns true if l is
253 * older than r.
254 *
255 * Necessary for btree_sort_fixup() - if there are multiple keys that compare
256 * equal in different sets, we have to process them newest to oldest.
257 */
258static bool bch_extent_sort_cmp(struct btree_iter_set l,
259				struct btree_iter_set r)
260{
261	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
262
263	return c ? c > 0 : l.k < r.k;
264}
265
266static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
267					  struct bkey *tmp)
268{
269	while (iter->used > 1) {
270		struct btree_iter_set *top = iter->data, *i = top + 1;
271
272		if (iter->used > 2 &&
273		    bch_extent_sort_cmp(i[0], i[1]))
274			i++;
275
276		if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
277			break;
278
279		if (!KEY_SIZE(i->k)) {
280			sort_key_next(iter, i);
281			heap_sift(iter, i - top, bch_extent_sort_cmp);
282			continue;
283		}
284
285		if (top->k > i->k) {
286			if (bkey_cmp(top->k, i->k) >= 0)
287				sort_key_next(iter, i);
288			else
289				bch_cut_front(top->k, i->k);
290
291			heap_sift(iter, i - top, bch_extent_sort_cmp);
292		} else {
293			/* can't happen because of comparison func */
294			BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
295
296			if (bkey_cmp(i->k, top->k) < 0) {
297				bkey_copy(tmp, top->k);
298
299				bch_cut_back(&START_KEY(i->k), tmp);
300				bch_cut_front(i->k, top->k);
301				heap_sift(iter, 0, bch_extent_sort_cmp);
302
303				return tmp;
304			} else {
305				bch_cut_back(&START_KEY(i->k), top->k);
306			}
307		}
308	}
309
310	return NULL;
311}
312
313static void bch_subtract_dirty(struct bkey *k,
314			   struct cache_set *c,
315			   uint64_t offset,
316			   int sectors)
317{
318	if (KEY_DIRTY(k))
319		bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
320					     offset, -sectors);
321}
322
323static bool bch_extent_insert_fixup(struct btree_keys *b,
324				    struct bkey *insert,
325				    struct btree_iter *iter,
326				    struct bkey *replace_key)
327{
328	struct cache_set *c = container_of(b, struct btree, keys)->c;
329
330	uint64_t old_offset;
331	unsigned int old_size, sectors_found = 0;
332
333	BUG_ON(!KEY_OFFSET(insert));
334	BUG_ON(!KEY_SIZE(insert));
335
336	while (1) {
337		struct bkey *k = bch_btree_iter_next(iter);
338
339		if (!k)
340			break;
341
342		if (bkey_cmp(&START_KEY(k), insert) >= 0) {
343			if (KEY_SIZE(k))
344				break;
345			else
346				continue;
347		}
348
349		if (bkey_cmp(k, &START_KEY(insert)) <= 0)
350			continue;
351
352		old_offset = KEY_START(k);
353		old_size = KEY_SIZE(k);
354
355		/*
356		 * We might overlap with 0 size extents; we can't skip these
357		 * because if they're in the set we're inserting to we have to
358		 * adjust them so they don't overlap with the key we're
359		 * inserting. But we don't want to check them for replace
360		 * operations.
361		 */
362
363		if (replace_key && KEY_SIZE(k)) {
364			/*
365			 * k might have been split since we inserted/found the
366			 * key we're replacing
367			 */
368			unsigned int i;
369			uint64_t offset = KEY_START(k) -
370				KEY_START(replace_key);
371
372			/* But it must be a subset of the replace key */
373			if (KEY_START(k) < KEY_START(replace_key) ||
374			    KEY_OFFSET(k) > KEY_OFFSET(replace_key))
375				goto check_failed;
376
377			/* We didn't find a key that we were supposed to */
378			if (KEY_START(k) > KEY_START(insert) + sectors_found)
379				goto check_failed;
380
381			if (!bch_bkey_equal_header(k, replace_key))
382				goto check_failed;
383
384			/* skip past gen */
385			offset <<= 8;
386
387			BUG_ON(!KEY_PTRS(replace_key));
388
389			for (i = 0; i < KEY_PTRS(replace_key); i++)
390				if (k->ptr[i] != replace_key->ptr[i] + offset)
391					goto check_failed;
392
393			sectors_found = KEY_OFFSET(k) - KEY_START(insert);
394		}
395
396		if (bkey_cmp(insert, k) < 0 &&
397		    bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
398			/*
399			 * We overlapped in the middle of an existing key: that
400			 * means we have to split the old key. But we have to do
401			 * slightly different things depending on whether the
402			 * old key has been written out yet.
403			 */
404
405			struct bkey *top;
406
407			bch_subtract_dirty(k, c, KEY_START(insert),
408				       KEY_SIZE(insert));
409
410			if (bkey_written(b, k)) {
411				/*
412				 * We insert a new key to cover the top of the
413				 * old key, and the old key is modified in place
414				 * to represent the bottom split.
415				 *
416				 * It's completely arbitrary whether the new key
417				 * is the top or the bottom, but it has to match
418				 * up with what btree_sort_fixup() does - it
419				 * doesn't check for this kind of overlap, it
420				 * depends on us inserting a new key for the top
421				 * here.
422				 */
423				top = bch_bset_search(b, bset_tree_last(b),
424						      insert);
425				bch_bset_insert(b, top, k);
426			} else {
427				BKEY_PADDED(key) temp;
428				bkey_copy(&temp.key, k);
429				bch_bset_insert(b, k, &temp.key);
430				top = bkey_next(k);
431			}
432
433			bch_cut_front(insert, top);
434			bch_cut_back(&START_KEY(insert), k);
435			bch_bset_fix_invalidated_key(b, k);
436			goto out;
437		}
438
439		if (bkey_cmp(insert, k) < 0) {
440			bch_cut_front(insert, k);
441		} else {
442			if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
443				old_offset = KEY_START(insert);
444
445			if (bkey_written(b, k) &&
446			    bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
447				/*
448				 * Completely overwrote, so we don't have to
449				 * invalidate the binary search tree
450				 */
451				bch_cut_front(k, k);
452			} else {
453				__bch_cut_back(&START_KEY(insert), k);
454				bch_bset_fix_invalidated_key(b, k);
455			}
456		}
457
458		bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
459	}
460
461check_failed:
462	if (replace_key) {
463		if (!sectors_found) {
464			return true;
465		} else if (sectors_found < KEY_SIZE(insert)) {
466			SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
467				       (KEY_SIZE(insert) - sectors_found));
468			SET_KEY_SIZE(insert, sectors_found);
469		}
470	}
471out:
472	if (KEY_DIRTY(insert))
473		bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
474					     KEY_START(insert),
475					     KEY_SIZE(insert));
476
477	return false;
478}
479
480bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
481{
482	char buf[80];
483
484	if (!KEY_SIZE(k))
485		return true;
486
487	if (KEY_SIZE(k) > KEY_OFFSET(k))
488		goto bad;
489
490	if (__ptr_invalid(c, k))
491		goto bad;
492
493	return false;
494bad:
495	bch_extent_to_text(buf, sizeof(buf), k);
496	cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
497	return true;
498}
499
500static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
501{
502	struct btree *b = container_of(bk, struct btree, keys);
503
504	return __bch_extent_invalid(b->c, k);
505}
506
507static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
508				     unsigned int ptr)
509{
510	struct bucket *g = PTR_BUCKET(b->c, k, ptr);
511	char buf[80];
512
513	if (mutex_trylock(&b->c->bucket_lock)) {
514		if (b->c->gc_mark_valid &&
515		    (!GC_MARK(g) ||
516		     GC_MARK(g) == GC_MARK_METADATA ||
517		     (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
518			goto err;
519
520		if (g->prio == BTREE_PRIO)
521			goto err;
522
523		mutex_unlock(&b->c->bucket_lock);
524	}
525
526	return false;
527err:
528	mutex_unlock(&b->c->bucket_lock);
529	bch_extent_to_text(buf, sizeof(buf), k);
530	btree_bug(b,
531"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
532		  buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
533		  g->prio, g->gen, g->last_gc, GC_MARK(g));
534	return true;
535}
536
537static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
538{
539	struct btree *b = container_of(bk, struct btree, keys);
540	unsigned int i, stale;
541	char buf[80];
542
543	if (!KEY_PTRS(k) ||
544	    bch_extent_invalid(bk, k))
545		return true;
546
547	for (i = 0; i < KEY_PTRS(k); i++)
548		if (!ptr_available(b->c, k, i))
549			return true;
550
 
 
 
551	for (i = 0; i < KEY_PTRS(k); i++) {
 
552		stale = ptr_stale(b->c, k, i);
553
554		if (stale && KEY_DIRTY(k)) {
555			bch_extent_to_text(buf, sizeof(buf), k);
556			pr_info("stale dirty pointer, stale %u, key: %s\n",
557				stale, buf);
558		}
559
560		btree_bug_on(stale > BUCKET_GC_GEN_MAX, b,
561			     "key too stale: %i, need_gc %u",
562			     stale, b->c->need_gc);
563
 
 
 
564		if (stale)
565			return true;
566
567		if (expensive_debug_checks(b->c) &&
568		    bch_extent_bad_expensive(b, k, i))
569			return true;
570	}
571
572	return false;
573}
574
575static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
576{
577	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
578		~((uint64_t)1 << 63);
579}
580
581static bool bch_extent_merge(struct btree_keys *bk,
582			     struct bkey *l,
583			     struct bkey *r)
584{
585	struct btree *b = container_of(bk, struct btree, keys);
586	unsigned int i;
587
588	if (key_merging_disabled(b->c))
589		return false;
590
591	for (i = 0; i < KEY_PTRS(l); i++)
592		if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
593		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
594			return false;
595
596	/* Keys with no pointers aren't restricted to one bucket and could
597	 * overflow KEY_SIZE
598	 */
599	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
600		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
601		SET_KEY_SIZE(l, USHRT_MAX);
602
603		bch_cut_front(l, r);
604		return false;
605	}
606
607	if (KEY_CSUM(l)) {
608		if (KEY_CSUM(r))
609			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
610		else
611			SET_KEY_CSUM(l, 0);
612	}
613
614	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
615	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
616
617	return true;
618}
619
620const struct btree_keys_ops bch_extent_keys_ops = {
621	.sort_cmp	= bch_extent_sort_cmp,
622	.sort_fixup	= bch_extent_sort_fixup,
623	.insert_fixup	= bch_extent_insert_fixup,
624	.key_invalid	= bch_extent_invalid,
625	.key_bad	= bch_extent_bad,
626	.key_merge	= bch_extent_merge,
627	.key_to_text	= bch_extent_to_text,
628	.key_dump	= bch_bkey_dump,
629	.is_extents	= true,
630};
v4.10.11
 
  1/*
  2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3 *
  4 * Uses a block device as cache for other block devices; optimized for SSDs.
  5 * All allocation is done in buckets, which should match the erase block size
  6 * of the device.
  7 *
  8 * Buckets containing cached data are kept on a heap sorted by priority;
  9 * bucket priority is increased on cache hit, and periodically all the buckets
 10 * on the heap have their priority scaled down. This currently is just used as
 11 * an LRU but in the future should allow for more intelligent heuristics.
 12 *
 13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
 14 * counter. Garbage collection is used to remove stale pointers.
 15 *
 16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
 17 * as keys are inserted we only sort the pages that have not yet been written.
 18 * When garbage collection is run, we resort the entire node.
 19 *
 20 * All configuration is done via sysfs; see Documentation/bcache.txt.
 21 */
 22
 23#include "bcache.h"
 24#include "btree.h"
 25#include "debug.h"
 26#include "extents.h"
 27#include "writeback.h"
 28
 29static void sort_key_next(struct btree_iter *iter,
 30			  struct btree_iter_set *i)
 31{
 32	i->k = bkey_next(i->k);
 33
 34	if (i->k == i->end)
 35		*i = iter->data[--iter->used];
 36}
 37
 38static bool bch_key_sort_cmp(struct btree_iter_set l,
 39			     struct btree_iter_set r)
 40{
 41	int64_t c = bkey_cmp(l.k, r.k);
 42
 43	return c ? c > 0 : l.k < r.k;
 44}
 45
 46static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
 47{
 48	unsigned i;
 49
 50	for (i = 0; i < KEY_PTRS(k); i++)
 51		if (ptr_available(c, k, i)) {
 52			struct cache *ca = PTR_CACHE(c, k, i);
 53			size_t bucket = PTR_BUCKET_NR(c, k, i);
 54			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
 55
 56			if (KEY_SIZE(k) + r > c->sb.bucket_size ||
 57			    bucket <  ca->sb.first_bucket ||
 58			    bucket >= ca->sb.nbuckets)
 59				return true;
 60		}
 61
 62	return false;
 63}
 64
 65/* Common among btree and extent ptrs */
 66
 67static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
 68{
 69	unsigned i;
 70
 71	for (i = 0; i < KEY_PTRS(k); i++)
 72		if (ptr_available(c, k, i)) {
 73			struct cache *ca = PTR_CACHE(c, k, i);
 74			size_t bucket = PTR_BUCKET_NR(c, k, i);
 75			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
 76
 77			if (KEY_SIZE(k) + r > c->sb.bucket_size)
 78				return "bad, length too big";
 79			if (bucket <  ca->sb.first_bucket)
 80				return "bad, short offset";
 81			if (bucket >= ca->sb.nbuckets)
 82				return "bad, offset past end of device";
 83			if (ptr_stale(c, k, i))
 84				return "stale";
 85		}
 86
 87	if (!bkey_cmp(k, &ZERO_KEY))
 88		return "bad, null key";
 89	if (!KEY_PTRS(k))
 90		return "bad, no pointers";
 91	if (!KEY_SIZE(k))
 92		return "zeroed key";
 93	return "";
 94}
 95
 96void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
 97{
 98	unsigned i = 0;
 99	char *out = buf, *end = buf + size;
100
101#define p(...)	(out += scnprintf(out, end - out, __VA_ARGS__))
102
103	p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
104
105	for (i = 0; i < KEY_PTRS(k); i++) {
106		if (i)
107			p(", ");
108
109		if (PTR_DEV(k, i) == PTR_CHECK_DEV)
110			p("check dev");
111		else
112			p("%llu:%llu gen %llu", PTR_DEV(k, i),
113			  PTR_OFFSET(k, i), PTR_GEN(k, i));
114	}
115
116	p("]");
117
118	if (KEY_DIRTY(k))
119		p(" dirty");
120	if (KEY_CSUM(k))
121		p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
122#undef p
123}
124
125static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
126{
127	struct btree *b = container_of(keys, struct btree, keys);
128	unsigned j;
129	char buf[80];
130
131	bch_extent_to_text(buf, sizeof(buf), k);
132	printk(" %s", buf);
133
134	for (j = 0; j < KEY_PTRS(k); j++) {
135		size_t n = PTR_BUCKET_NR(b->c, k, j);
136		printk(" bucket %zu", n);
137
138		if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
139			printk(" prio %i",
140			       PTR_BUCKET(b->c, k, j)->prio);
 
141	}
142
143	printk(" %s\n", bch_ptr_status(b->c, k));
144}
145
146/* Btree ptrs */
147
148bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
149{
150	char buf[80];
151
152	if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
153		goto bad;
154
155	if (__ptr_invalid(c, k))
156		goto bad;
157
158	return false;
159bad:
160	bch_extent_to_text(buf, sizeof(buf), k);
161	cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
162	return true;
163}
164
165static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
166{
167	struct btree *b = container_of(bk, struct btree, keys);
 
168	return __bch_btree_ptr_invalid(b->c, k);
169}
170
171static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
172{
173	unsigned i;
174	char buf[80];
175	struct bucket *g;
176
177	if (mutex_trylock(&b->c->bucket_lock)) {
178		for (i = 0; i < KEY_PTRS(k); i++)
179			if (ptr_available(b->c, k, i)) {
180				g = PTR_BUCKET(b->c, k, i);
181
182				if (KEY_DIRTY(k) ||
183				    g->prio != BTREE_PRIO ||
184				    (b->c->gc_mark_valid &&
185				     GC_MARK(g) != GC_MARK_METADATA))
186					goto err;
187			}
188
189		mutex_unlock(&b->c->bucket_lock);
190	}
191
192	return false;
193err:
194	mutex_unlock(&b->c->bucket_lock);
195	bch_extent_to_text(buf, sizeof(buf), k);
196	btree_bug(b,
197"inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
198		  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
199		  g->prio, g->gen, g->last_gc, GC_MARK(g));
200	return true;
201}
202
203static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
204{
205	struct btree *b = container_of(bk, struct btree, keys);
206	unsigned i;
207
208	if (!bkey_cmp(k, &ZERO_KEY) ||
209	    !KEY_PTRS(k) ||
210	    bch_ptr_invalid(bk, k))
211		return true;
212
213	for (i = 0; i < KEY_PTRS(k); i++)
214		if (!ptr_available(b->c, k, i) ||
215		    ptr_stale(b->c, k, i))
216			return true;
217
218	if (expensive_debug_checks(b->c) &&
219	    btree_ptr_bad_expensive(b, k))
220		return true;
221
222	return false;
223}
224
225static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
226				       struct bkey *insert,
227				       struct btree_iter *iter,
228				       struct bkey *replace_key)
229{
230	struct btree *b = container_of(bk, struct btree, keys);
231
232	if (!KEY_OFFSET(insert))
233		btree_current_write(b)->prio_blocked++;
234
235	return false;
236}
237
238const struct btree_keys_ops bch_btree_keys_ops = {
239	.sort_cmp	= bch_key_sort_cmp,
240	.insert_fixup	= bch_btree_ptr_insert_fixup,
241	.key_invalid	= bch_btree_ptr_invalid,
242	.key_bad	= bch_btree_ptr_bad,
243	.key_to_text	= bch_extent_to_text,
244	.key_dump	= bch_bkey_dump,
245};
246
247/* Extents */
248
249/*
250 * Returns true if l > r - unless l == r, in which case returns true if l is
251 * older than r.
252 *
253 * Necessary for btree_sort_fixup() - if there are multiple keys that compare
254 * equal in different sets, we have to process them newest to oldest.
255 */
256static bool bch_extent_sort_cmp(struct btree_iter_set l,
257				struct btree_iter_set r)
258{
259	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
260
261	return c ? c > 0 : l.k < r.k;
262}
263
264static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
265					  struct bkey *tmp)
266{
267	while (iter->used > 1) {
268		struct btree_iter_set *top = iter->data, *i = top + 1;
269
270		if (iter->used > 2 &&
271		    bch_extent_sort_cmp(i[0], i[1]))
272			i++;
273
274		if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
275			break;
276
277		if (!KEY_SIZE(i->k)) {
278			sort_key_next(iter, i);
279			heap_sift(iter, i - top, bch_extent_sort_cmp);
280			continue;
281		}
282
283		if (top->k > i->k) {
284			if (bkey_cmp(top->k, i->k) >= 0)
285				sort_key_next(iter, i);
286			else
287				bch_cut_front(top->k, i->k);
288
289			heap_sift(iter, i - top, bch_extent_sort_cmp);
290		} else {
291			/* can't happen because of comparison func */
292			BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
293
294			if (bkey_cmp(i->k, top->k) < 0) {
295				bkey_copy(tmp, top->k);
296
297				bch_cut_back(&START_KEY(i->k), tmp);
298				bch_cut_front(i->k, top->k);
299				heap_sift(iter, 0, bch_extent_sort_cmp);
300
301				return tmp;
302			} else {
303				bch_cut_back(&START_KEY(i->k), top->k);
304			}
305		}
306	}
307
308	return NULL;
309}
310
311static void bch_subtract_dirty(struct bkey *k,
312			   struct cache_set *c,
313			   uint64_t offset,
314			   int sectors)
315{
316	if (KEY_DIRTY(k))
317		bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
318					     offset, -sectors);
319}
320
321static bool bch_extent_insert_fixup(struct btree_keys *b,
322				    struct bkey *insert,
323				    struct btree_iter *iter,
324				    struct bkey *replace_key)
325{
326	struct cache_set *c = container_of(b, struct btree, keys)->c;
327
328	uint64_t old_offset;
329	unsigned old_size, sectors_found = 0;
330
331	BUG_ON(!KEY_OFFSET(insert));
332	BUG_ON(!KEY_SIZE(insert));
333
334	while (1) {
335		struct bkey *k = bch_btree_iter_next(iter);
 
336		if (!k)
337			break;
338
339		if (bkey_cmp(&START_KEY(k), insert) >= 0) {
340			if (KEY_SIZE(k))
341				break;
342			else
343				continue;
344		}
345
346		if (bkey_cmp(k, &START_KEY(insert)) <= 0)
347			continue;
348
349		old_offset = KEY_START(k);
350		old_size = KEY_SIZE(k);
351
352		/*
353		 * We might overlap with 0 size extents; we can't skip these
354		 * because if they're in the set we're inserting to we have to
355		 * adjust them so they don't overlap with the key we're
356		 * inserting. But we don't want to check them for replace
357		 * operations.
358		 */
359
360		if (replace_key && KEY_SIZE(k)) {
361			/*
362			 * k might have been split since we inserted/found the
363			 * key we're replacing
364			 */
365			unsigned i;
366			uint64_t offset = KEY_START(k) -
367				KEY_START(replace_key);
368
369			/* But it must be a subset of the replace key */
370			if (KEY_START(k) < KEY_START(replace_key) ||
371			    KEY_OFFSET(k) > KEY_OFFSET(replace_key))
372				goto check_failed;
373
374			/* We didn't find a key that we were supposed to */
375			if (KEY_START(k) > KEY_START(insert) + sectors_found)
376				goto check_failed;
377
378			if (!bch_bkey_equal_header(k, replace_key))
379				goto check_failed;
380
381			/* skip past gen */
382			offset <<= 8;
383
384			BUG_ON(!KEY_PTRS(replace_key));
385
386			for (i = 0; i < KEY_PTRS(replace_key); i++)
387				if (k->ptr[i] != replace_key->ptr[i] + offset)
388					goto check_failed;
389
390			sectors_found = KEY_OFFSET(k) - KEY_START(insert);
391		}
392
393		if (bkey_cmp(insert, k) < 0 &&
394		    bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
395			/*
396			 * We overlapped in the middle of an existing key: that
397			 * means we have to split the old key. But we have to do
398			 * slightly different things depending on whether the
399			 * old key has been written out yet.
400			 */
401
402			struct bkey *top;
403
404			bch_subtract_dirty(k, c, KEY_START(insert),
405				       KEY_SIZE(insert));
406
407			if (bkey_written(b, k)) {
408				/*
409				 * We insert a new key to cover the top of the
410				 * old key, and the old key is modified in place
411				 * to represent the bottom split.
412				 *
413				 * It's completely arbitrary whether the new key
414				 * is the top or the bottom, but it has to match
415				 * up with what btree_sort_fixup() does - it
416				 * doesn't check for this kind of overlap, it
417				 * depends on us inserting a new key for the top
418				 * here.
419				 */
420				top = bch_bset_search(b, bset_tree_last(b),
421						      insert);
422				bch_bset_insert(b, top, k);
423			} else {
424				BKEY_PADDED(key) temp;
425				bkey_copy(&temp.key, k);
426				bch_bset_insert(b, k, &temp.key);
427				top = bkey_next(k);
428			}
429
430			bch_cut_front(insert, top);
431			bch_cut_back(&START_KEY(insert), k);
432			bch_bset_fix_invalidated_key(b, k);
433			goto out;
434		}
435
436		if (bkey_cmp(insert, k) < 0) {
437			bch_cut_front(insert, k);
438		} else {
439			if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
440				old_offset = KEY_START(insert);
441
442			if (bkey_written(b, k) &&
443			    bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
444				/*
445				 * Completely overwrote, so we don't have to
446				 * invalidate the binary search tree
447				 */
448				bch_cut_front(k, k);
449			} else {
450				__bch_cut_back(&START_KEY(insert), k);
451				bch_bset_fix_invalidated_key(b, k);
452			}
453		}
454
455		bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
456	}
457
458check_failed:
459	if (replace_key) {
460		if (!sectors_found) {
461			return true;
462		} else if (sectors_found < KEY_SIZE(insert)) {
463			SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
464				       (KEY_SIZE(insert) - sectors_found));
465			SET_KEY_SIZE(insert, sectors_found);
466		}
467	}
468out:
469	if (KEY_DIRTY(insert))
470		bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
471					     KEY_START(insert),
472					     KEY_SIZE(insert));
473
474	return false;
475}
476
477bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
478{
479	char buf[80];
480
481	if (!KEY_SIZE(k))
482		return true;
483
484	if (KEY_SIZE(k) > KEY_OFFSET(k))
485		goto bad;
486
487	if (__ptr_invalid(c, k))
488		goto bad;
489
490	return false;
491bad:
492	bch_extent_to_text(buf, sizeof(buf), k);
493	cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
494	return true;
495}
496
497static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
498{
499	struct btree *b = container_of(bk, struct btree, keys);
 
500	return __bch_extent_invalid(b->c, k);
501}
502
503static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
504				     unsigned ptr)
505{
506	struct bucket *g = PTR_BUCKET(b->c, k, ptr);
507	char buf[80];
508
509	if (mutex_trylock(&b->c->bucket_lock)) {
510		if (b->c->gc_mark_valid &&
511		    (!GC_MARK(g) ||
512		     GC_MARK(g) == GC_MARK_METADATA ||
513		     (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
514			goto err;
515
516		if (g->prio == BTREE_PRIO)
517			goto err;
518
519		mutex_unlock(&b->c->bucket_lock);
520	}
521
522	return false;
523err:
524	mutex_unlock(&b->c->bucket_lock);
525	bch_extent_to_text(buf, sizeof(buf), k);
526	btree_bug(b,
527"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
528		  buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
529		  g->prio, g->gen, g->last_gc, GC_MARK(g));
530	return true;
531}
532
533static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
534{
535	struct btree *b = container_of(bk, struct btree, keys);
536	struct bucket *g;
537	unsigned i, stale;
538
539	if (!KEY_PTRS(k) ||
540	    bch_extent_invalid(bk, k))
541		return true;
542
543	for (i = 0; i < KEY_PTRS(k); i++)
544		if (!ptr_available(b->c, k, i))
545			return true;
546
547	if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
548		return false;
549
550	for (i = 0; i < KEY_PTRS(k); i++) {
551		g = PTR_BUCKET(b->c, k, i);
552		stale = ptr_stale(b->c, k, i);
553
554		btree_bug_on(stale > 96, b,
 
 
 
 
 
 
555			     "key too stale: %i, need_gc %u",
556			     stale, b->c->need_gc);
557
558		btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
559			     b, "stale dirty pointer");
560
561		if (stale)
562			return true;
563
564		if (expensive_debug_checks(b->c) &&
565		    bch_extent_bad_expensive(b, k, i))
566			return true;
567	}
568
569	return false;
570}
571
572static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
573{
574	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
575		~((uint64_t)1 << 63);
576}
577
578static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
 
 
579{
580	struct btree *b = container_of(bk, struct btree, keys);
581	unsigned i;
582
583	if (key_merging_disabled(b->c))
584		return false;
585
586	for (i = 0; i < KEY_PTRS(l); i++)
587		if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
588		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
589			return false;
590
591	/* Keys with no pointers aren't restricted to one bucket and could
592	 * overflow KEY_SIZE
593	 */
594	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
595		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
596		SET_KEY_SIZE(l, USHRT_MAX);
597
598		bch_cut_front(l, r);
599		return false;
600	}
601
602	if (KEY_CSUM(l)) {
603		if (KEY_CSUM(r))
604			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
605		else
606			SET_KEY_CSUM(l, 0);
607	}
608
609	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
610	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
611
612	return true;
613}
614
615const struct btree_keys_ops bch_extent_keys_ops = {
616	.sort_cmp	= bch_extent_sort_cmp,
617	.sort_fixup	= bch_extent_sort_fixup,
618	.insert_fixup	= bch_extent_insert_fixup,
619	.key_invalid	= bch_extent_invalid,
620	.key_bad	= bch_extent_bad,
621	.key_merge	= bch_extent_merge,
622	.key_to_text	= bch_extent_to_text,
623	.key_dump	= bch_bkey_dump,
624	.is_extents	= true,
625};