Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
Note: File does not exist in v6.8.
  1/*
  2 * General Purpose functions for the global management of the
  3 * Communication Processor Module.
  4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
  5 *
  6 * In addition to the individual control of the communication
  7 * channels, there are a few functions that globally affect the
  8 * communication processor.
  9 *
 10 * Buffer descriptors must be allocated from the dual ported memory
 11 * space.  The allocator for that is here.  When the communication
 12 * process is reset, we reclaim the memory available.  There is
 13 * currently no deallocator for this memory.
 14 * The amount of space available is platform dependent.  On the
 15 * MBX, the EPPC software loads additional microcode into the
 16 * communication processor, and uses some of the DP ram for this
 17 * purpose.  Current, the first 512 bytes and the last 256 bytes of
 18 * memory are used.  Right now I am conservative and only use the
 19 * memory that can never be used for microcode.  If there are
 20 * applications that require more DP ram, we can expand the boundaries
 21 * but then we have to be careful of any downloaded microcode.
 22 */
 23#include <linux/errno.h>
 24#include <linux/sched.h>
 25#include <linux/kernel.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/param.h>
 28#include <linux/string.h>
 29#include <linux/mm.h>
 30#include <linux/interrupt.h>
 31#include <linux/irq.h>
 32#include <linux/module.h>
 33#include <linux/spinlock.h>
 34#include <linux/slab.h>
 35#include <asm/page.h>
 36#include <asm/pgtable.h>
 37#include <asm/8xx_immap.h>
 38#include <asm/cpm1.h>
 39#include <asm/io.h>
 40#include <asm/tlbflush.h>
 41#include <asm/rheap.h>
 42#include <asm/prom.h>
 43#include <asm/cpm.h>
 44
 45#include <asm/fs_pd.h>
 46
 47#ifdef CONFIG_8xx_GPIO
 48#include <linux/of_gpio.h>
 49#endif
 50
 51#define CPM_MAP_SIZE    (0x4000)
 52
 53cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
 54immap_t __iomem *mpc8xx_immr;
 55static cpic8xx_t __iomem *cpic_reg;
 56
 57static struct irq_domain *cpm_pic_host;
 58
 59static void cpm_mask_irq(struct irq_data *d)
 60{
 61	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
 62
 63	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
 64}
 65
 66static void cpm_unmask_irq(struct irq_data *d)
 67{
 68	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
 69
 70	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
 71}
 72
 73static void cpm_end_irq(struct irq_data *d)
 74{
 75	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
 76
 77	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
 78}
 79
 80static struct irq_chip cpm_pic = {
 81	.name = "CPM PIC",
 82	.irq_mask = cpm_mask_irq,
 83	.irq_unmask = cpm_unmask_irq,
 84	.irq_eoi = cpm_end_irq,
 85};
 86
 87int cpm_get_irq(void)
 88{
 89	int cpm_vec;
 90
 91	/* Get the vector by setting the ACK bit and then reading
 92	 * the register.
 93	 */
 94	out_be16(&cpic_reg->cpic_civr, 1);
 95	cpm_vec = in_be16(&cpic_reg->cpic_civr);
 96	cpm_vec >>= 11;
 97
 98	return irq_linear_revmap(cpm_pic_host, cpm_vec);
 99}
100
101static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102			  irq_hw_number_t hw)
103{
104	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106	irq_set_status_flags(virq, IRQ_LEVEL);
107	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108	return 0;
109}
110
111/* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts.  All we have to do is ACK it
113 * and return.  This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
115 */
116static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117{
118	return IRQ_HANDLED;
119}
120
121static struct irqaction cpm_error_irqaction = {
122	.handler = cpm_error_interrupt,
123	.flags = IRQF_NO_THREAD,
124	.name = "error",
125};
126
127static const struct irq_domain_ops cpm_pic_host_ops = {
128	.map = cpm_pic_host_map,
129};
130
131unsigned int cpm_pic_init(void)
132{
133	struct device_node *np = NULL;
134	struct resource res;
135	unsigned int sirq = 0, hwirq, eirq;
136	int ret;
137
138	pr_debug("cpm_pic_init\n");
139
140	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141	if (np == NULL)
142		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143	if (np == NULL) {
144		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145		return sirq;
146	}
147
148	ret = of_address_to_resource(np, 0, &res);
149	if (ret)
150		goto end;
151
152	cpic_reg = ioremap(res.start, resource_size(&res));
153	if (cpic_reg == NULL)
154		goto end;
155
156	sirq = irq_of_parse_and_map(np, 0);
157	if (!sirq)
158		goto end;
159
160	/* Initialize the CPM interrupt controller. */
161	hwirq = (unsigned int)virq_to_hw(sirq);
162	out_be32(&cpic_reg->cpic_cicr,
163	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164		((hwirq/2) << 13) | CICR_HP_MASK);
165
166	out_be32(&cpic_reg->cpic_cimr, 0);
167
168	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
169	if (cpm_pic_host == NULL) {
170		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171		sirq = 0;
172		goto end;
173	}
174
175	/* Install our own error handler. */
176	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177	if (np == NULL)
178		np = of_find_node_by_type(NULL, "cpm");
179	if (np == NULL) {
180		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181		goto end;
182	}
183
184	eirq = irq_of_parse_and_map(np, 0);
185	if (!eirq)
186		goto end;
187
188	if (setup_irq(eirq, &cpm_error_irqaction))
189		printk(KERN_ERR "Could not allocate CPM error IRQ!");
190
191	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192
193end:
194	of_node_put(np);
195	return sirq;
196}
197
198void __init cpm_reset(void)
199{
200	sysconf8xx_t __iomem *siu_conf;
201
202	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203	if (!mpc8xx_immr) {
204		printk(KERN_CRIT "Could not map IMMR\n");
205		return;
206	}
207
208	cpmp = &mpc8xx_immr->im_cpm;
209
210#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211	/* Perform a reset.
212	*/
213	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214
215	/* Wait for it.
216	*/
217	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218#endif
219
220#ifdef CONFIG_UCODE_PATCH
221	cpm_load_patch(cpmp);
222#endif
223
224	/* Set SDMA Bus Request priority 5.
225	 * On 860T, this also enables FEC priority 6.  I am not sure
226	 * this is what we really want for some applications, but the
227	 * manual recommends it.
228	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229	 */
230	siu_conf = immr_map(im_siu_conf);
231	if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
232		out_be32(&siu_conf->sc_sdcr, 0x40);
233	else
234		out_be32(&siu_conf->sc_sdcr, 1);
235	immr_unmap(siu_conf);
236}
237
238static DEFINE_SPINLOCK(cmd_lock);
239
240#define MAX_CR_CMD_LOOPS        10000
241
242int cpm_command(u32 command, u8 opcode)
243{
244	int i, ret;
245	unsigned long flags;
246
247	if (command & 0xffffff0f)
248		return -EINVAL;
249
250	spin_lock_irqsave(&cmd_lock, flags);
251
252	ret = 0;
253	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
254	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
255		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
256			goto out;
257
258	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
259	ret = -EIO;
260out:
261	spin_unlock_irqrestore(&cmd_lock, flags);
262	return ret;
263}
264EXPORT_SYMBOL(cpm_command);
265
266/* Set a baud rate generator.  This needs lots of work.  There are
267 * four BRGs, any of which can be wired to any channel.
268 * The internal baud rate clock is the system clock divided by 16.
269 * This assumes the baudrate is 16x oversampled by the uart.
270 */
271#define BRG_INT_CLK		(get_brgfreq())
272#define BRG_UART_CLK		(BRG_INT_CLK/16)
273#define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
274
275void
276cpm_setbrg(uint brg, uint rate)
277{
278	u32 __iomem *bp;
279
280	/* This is good enough to get SMCs running.....
281	*/
282	bp = &cpmp->cp_brgc1;
283	bp += brg;
284	/* The BRG has a 12-bit counter.  For really slow baud rates (or
285	 * really fast processors), we may have to further divide by 16.
286	 */
287	if (((BRG_UART_CLK / rate) - 1) < 4096)
288		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
289	else
290		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
291			      CPM_BRG_EN | CPM_BRG_DIV16);
292}
293
294struct cpm_ioport16 {
295	__be16 dir, par, odr_sor, dat, intr;
296	__be16 res[3];
297};
298
299struct cpm_ioport32b {
300	__be32 dir, par, odr, dat;
301};
302
303struct cpm_ioport32e {
304	__be32 dir, par, sor, odr, dat;
305};
306
307static void cpm1_set_pin32(int port, int pin, int flags)
308{
309	struct cpm_ioport32e __iomem *iop;
310	pin = 1 << (31 - pin);
311
312	if (port == CPM_PORTB)
313		iop = (struct cpm_ioport32e __iomem *)
314		      &mpc8xx_immr->im_cpm.cp_pbdir;
315	else
316		iop = (struct cpm_ioport32e __iomem *)
317		      &mpc8xx_immr->im_cpm.cp_pedir;
318
319	if (flags & CPM_PIN_OUTPUT)
320		setbits32(&iop->dir, pin);
321	else
322		clrbits32(&iop->dir, pin);
323
324	if (!(flags & CPM_PIN_GPIO))
325		setbits32(&iop->par, pin);
326	else
327		clrbits32(&iop->par, pin);
328
329	if (port == CPM_PORTB) {
330		if (flags & CPM_PIN_OPENDRAIN)
331			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
332		else
333			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334	}
335
336	if (port == CPM_PORTE) {
337		if (flags & CPM_PIN_SECONDARY)
338			setbits32(&iop->sor, pin);
339		else
340			clrbits32(&iop->sor, pin);
341
342		if (flags & CPM_PIN_OPENDRAIN)
343			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
344		else
345			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
346	}
347}
348
349static void cpm1_set_pin16(int port, int pin, int flags)
350{
351	struct cpm_ioport16 __iomem *iop =
352		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
353
354	pin = 1 << (15 - pin);
355
356	if (port != 0)
357		iop += port - 1;
358
359	if (flags & CPM_PIN_OUTPUT)
360		setbits16(&iop->dir, pin);
361	else
362		clrbits16(&iop->dir, pin);
363
364	if (!(flags & CPM_PIN_GPIO))
365		setbits16(&iop->par, pin);
366	else
367		clrbits16(&iop->par, pin);
368
369	if (port == CPM_PORTA) {
370		if (flags & CPM_PIN_OPENDRAIN)
371			setbits16(&iop->odr_sor, pin);
372		else
373			clrbits16(&iop->odr_sor, pin);
374	}
375	if (port == CPM_PORTC) {
376		if (flags & CPM_PIN_SECONDARY)
377			setbits16(&iop->odr_sor, pin);
378		else
379			clrbits16(&iop->odr_sor, pin);
380	}
381}
382
383void cpm1_set_pin(enum cpm_port port, int pin, int flags)
384{
385	if (port == CPM_PORTB || port == CPM_PORTE)
386		cpm1_set_pin32(port, pin, flags);
387	else
388		cpm1_set_pin16(port, pin, flags);
389}
390
391int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
392{
393	int shift;
394	int i, bits = 0;
395	u32 __iomem *reg;
396	u32 mask = 7;
397
398	u8 clk_map[][3] = {
399		{CPM_CLK_SCC1, CPM_BRG1, 0},
400		{CPM_CLK_SCC1, CPM_BRG2, 1},
401		{CPM_CLK_SCC1, CPM_BRG3, 2},
402		{CPM_CLK_SCC1, CPM_BRG4, 3},
403		{CPM_CLK_SCC1, CPM_CLK1, 4},
404		{CPM_CLK_SCC1, CPM_CLK2, 5},
405		{CPM_CLK_SCC1, CPM_CLK3, 6},
406		{CPM_CLK_SCC1, CPM_CLK4, 7},
407
408		{CPM_CLK_SCC2, CPM_BRG1, 0},
409		{CPM_CLK_SCC2, CPM_BRG2, 1},
410		{CPM_CLK_SCC2, CPM_BRG3, 2},
411		{CPM_CLK_SCC2, CPM_BRG4, 3},
412		{CPM_CLK_SCC2, CPM_CLK1, 4},
413		{CPM_CLK_SCC2, CPM_CLK2, 5},
414		{CPM_CLK_SCC2, CPM_CLK3, 6},
415		{CPM_CLK_SCC2, CPM_CLK4, 7},
416
417		{CPM_CLK_SCC3, CPM_BRG1, 0},
418		{CPM_CLK_SCC3, CPM_BRG2, 1},
419		{CPM_CLK_SCC3, CPM_BRG3, 2},
420		{CPM_CLK_SCC3, CPM_BRG4, 3},
421		{CPM_CLK_SCC3, CPM_CLK5, 4},
422		{CPM_CLK_SCC3, CPM_CLK6, 5},
423		{CPM_CLK_SCC3, CPM_CLK7, 6},
424		{CPM_CLK_SCC3, CPM_CLK8, 7},
425
426		{CPM_CLK_SCC4, CPM_BRG1, 0},
427		{CPM_CLK_SCC4, CPM_BRG2, 1},
428		{CPM_CLK_SCC4, CPM_BRG3, 2},
429		{CPM_CLK_SCC4, CPM_BRG4, 3},
430		{CPM_CLK_SCC4, CPM_CLK5, 4},
431		{CPM_CLK_SCC4, CPM_CLK6, 5},
432		{CPM_CLK_SCC4, CPM_CLK7, 6},
433		{CPM_CLK_SCC4, CPM_CLK8, 7},
434
435		{CPM_CLK_SMC1, CPM_BRG1, 0},
436		{CPM_CLK_SMC1, CPM_BRG2, 1},
437		{CPM_CLK_SMC1, CPM_BRG3, 2},
438		{CPM_CLK_SMC1, CPM_BRG4, 3},
439		{CPM_CLK_SMC1, CPM_CLK1, 4},
440		{CPM_CLK_SMC1, CPM_CLK2, 5},
441		{CPM_CLK_SMC1, CPM_CLK3, 6},
442		{CPM_CLK_SMC1, CPM_CLK4, 7},
443
444		{CPM_CLK_SMC2, CPM_BRG1, 0},
445		{CPM_CLK_SMC2, CPM_BRG2, 1},
446		{CPM_CLK_SMC2, CPM_BRG3, 2},
447		{CPM_CLK_SMC2, CPM_BRG4, 3},
448		{CPM_CLK_SMC2, CPM_CLK5, 4},
449		{CPM_CLK_SMC2, CPM_CLK6, 5},
450		{CPM_CLK_SMC2, CPM_CLK7, 6},
451		{CPM_CLK_SMC2, CPM_CLK8, 7},
452	};
453
454	switch (target) {
455	case CPM_CLK_SCC1:
456		reg = &mpc8xx_immr->im_cpm.cp_sicr;
457		shift = 0;
458		break;
459
460	case CPM_CLK_SCC2:
461		reg = &mpc8xx_immr->im_cpm.cp_sicr;
462		shift = 8;
463		break;
464
465	case CPM_CLK_SCC3:
466		reg = &mpc8xx_immr->im_cpm.cp_sicr;
467		shift = 16;
468		break;
469
470	case CPM_CLK_SCC4:
471		reg = &mpc8xx_immr->im_cpm.cp_sicr;
472		shift = 24;
473		break;
474
475	case CPM_CLK_SMC1:
476		reg = &mpc8xx_immr->im_cpm.cp_simode;
477		shift = 12;
478		break;
479
480	case CPM_CLK_SMC2:
481		reg = &mpc8xx_immr->im_cpm.cp_simode;
482		shift = 28;
483		break;
484
485	default:
486		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
487		return -EINVAL;
488	}
489
490	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
491		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
492			bits = clk_map[i][2];
493			break;
494		}
495	}
496
497	if (i == ARRAY_SIZE(clk_map)) {
498		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
499		return -EINVAL;
500	}
501
502	bits <<= shift;
503	mask <<= shift;
504
505	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
506		if (mode == CPM_CLK_RTX) {
507			bits |= bits << 3;
508			mask |= mask << 3;
509		} else if (mode == CPM_CLK_RX) {
510			bits <<= 3;
511			mask <<= 3;
512		}
513	}
514
515	out_be32(reg, (in_be32(reg) & ~mask) | bits);
516
517	return 0;
518}
519
520/*
521 * GPIO LIB API implementation
522 */
523#ifdef CONFIG_8xx_GPIO
524
525struct cpm1_gpio16_chip {
526	struct of_mm_gpio_chip mm_gc;
527	spinlock_t lock;
528
529	/* shadowed data register to clear/set bits safely */
530	u16 cpdata;
531};
532
533static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
534{
535	struct cpm1_gpio16_chip *cpm1_gc =
536		container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
537	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
538
539	cpm1_gc->cpdata = in_be16(&iop->dat);
540}
541
542static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
543{
544	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
545	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
546	u16 pin_mask;
547
548	pin_mask = 1 << (15 - gpio);
549
550	return !!(in_be16(&iop->dat) & pin_mask);
551}
552
553static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
554	int value)
555{
556	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
557	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
558
559	if (value)
560		cpm1_gc->cpdata |= pin_mask;
561	else
562		cpm1_gc->cpdata &= ~pin_mask;
563
564	out_be16(&iop->dat, cpm1_gc->cpdata);
565}
566
567static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
568{
569	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
570	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
571	unsigned long flags;
572	u16 pin_mask = 1 << (15 - gpio);
573
574	spin_lock_irqsave(&cpm1_gc->lock, flags);
575
576	__cpm1_gpio16_set(mm_gc, pin_mask, value);
577
578	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
579}
580
581static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
582{
583	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
584	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
585	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
586	unsigned long flags;
587	u16 pin_mask = 1 << (15 - gpio);
588
589	spin_lock_irqsave(&cpm1_gc->lock, flags);
590
591	setbits16(&iop->dir, pin_mask);
592	__cpm1_gpio16_set(mm_gc, pin_mask, val);
593
594	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
595
596	return 0;
597}
598
599static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
600{
601	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
602	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
603	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
604	unsigned long flags;
605	u16 pin_mask = 1 << (15 - gpio);
606
607	spin_lock_irqsave(&cpm1_gc->lock, flags);
608
609	clrbits16(&iop->dir, pin_mask);
610
611	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
612
613	return 0;
614}
615
616int cpm1_gpiochip_add16(struct device_node *np)
617{
618	struct cpm1_gpio16_chip *cpm1_gc;
619	struct of_mm_gpio_chip *mm_gc;
620	struct gpio_chip *gc;
621
622	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
623	if (!cpm1_gc)
624		return -ENOMEM;
625
626	spin_lock_init(&cpm1_gc->lock);
627
628	mm_gc = &cpm1_gc->mm_gc;
629	gc = &mm_gc->gc;
630
631	mm_gc->save_regs = cpm1_gpio16_save_regs;
632	gc->ngpio = 16;
633	gc->direction_input = cpm1_gpio16_dir_in;
634	gc->direction_output = cpm1_gpio16_dir_out;
635	gc->get = cpm1_gpio16_get;
636	gc->set = cpm1_gpio16_set;
637
638	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
639}
640
641struct cpm1_gpio32_chip {
642	struct of_mm_gpio_chip mm_gc;
643	spinlock_t lock;
644
645	/* shadowed data register to clear/set bits safely */
646	u32 cpdata;
647};
648
649static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
650{
651	struct cpm1_gpio32_chip *cpm1_gc =
652		container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
653	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
654
655	cpm1_gc->cpdata = in_be32(&iop->dat);
656}
657
658static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
659{
660	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
661	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
662	u32 pin_mask;
663
664	pin_mask = 1 << (31 - gpio);
665
666	return !!(in_be32(&iop->dat) & pin_mask);
667}
668
669static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
670	int value)
671{
672	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
673	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
674
675	if (value)
676		cpm1_gc->cpdata |= pin_mask;
677	else
678		cpm1_gc->cpdata &= ~pin_mask;
679
680	out_be32(&iop->dat, cpm1_gc->cpdata);
681}
682
683static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
684{
685	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
686	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
687	unsigned long flags;
688	u32 pin_mask = 1 << (31 - gpio);
689
690	spin_lock_irqsave(&cpm1_gc->lock, flags);
691
692	__cpm1_gpio32_set(mm_gc, pin_mask, value);
693
694	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
695}
696
697static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
698{
699	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
700	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
701	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
702	unsigned long flags;
703	u32 pin_mask = 1 << (31 - gpio);
704
705	spin_lock_irqsave(&cpm1_gc->lock, flags);
706
707	setbits32(&iop->dir, pin_mask);
708	__cpm1_gpio32_set(mm_gc, pin_mask, val);
709
710	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
711
712	return 0;
713}
714
715static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
716{
717	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
718	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
719	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
720	unsigned long flags;
721	u32 pin_mask = 1 << (31 - gpio);
722
723	spin_lock_irqsave(&cpm1_gc->lock, flags);
724
725	clrbits32(&iop->dir, pin_mask);
726
727	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
728
729	return 0;
730}
731
732int cpm1_gpiochip_add32(struct device_node *np)
733{
734	struct cpm1_gpio32_chip *cpm1_gc;
735	struct of_mm_gpio_chip *mm_gc;
736	struct gpio_chip *gc;
737
738	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
739	if (!cpm1_gc)
740		return -ENOMEM;
741
742	spin_lock_init(&cpm1_gc->lock);
743
744	mm_gc = &cpm1_gc->mm_gc;
745	gc = &mm_gc->gc;
746
747	mm_gc->save_regs = cpm1_gpio32_save_regs;
748	gc->ngpio = 32;
749	gc->direction_input = cpm1_gpio32_dir_in;
750	gc->direction_output = cpm1_gpio32_dir_out;
751	gc->get = cpm1_gpio32_get;
752	gc->set = cpm1_gpio32_set;
753
754	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
755}
756
757static int cpm_init_par_io(void)
758{
759	struct device_node *np;
760
761	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
762		cpm1_gpiochip_add16(np);
763
764	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
765		cpm1_gpiochip_add32(np);
766
767	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
768		cpm1_gpiochip_add16(np);
769
770	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
771		cpm1_gpiochip_add16(np);
772
773	/* Port E uses CPM2 layout */
774	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
775		cpm2_gpiochip_add32(np);
776	return 0;
777}
778arch_initcall(cpm_init_par_io);
779
780#endif /* CONFIG_8xx_GPIO */