Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3  Red Black Trees
  4  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  5  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  6  (C) 2012  Michel Lespinasse <walken@google.com>
  7
 
 
 
 
 
 
 
 
 
 
 
 
 
  8
  9  linux/lib/rbtree.c
 10*/
 11
 12#include <linux/rbtree_augmented.h>
 13#include <linux/export.h>
 14
 15/*
 16 * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree
 17 *
 18 *  1) A node is either red or black
 19 *  2) The root is black
 20 *  3) All leaves (NULL) are black
 21 *  4) Both children of every red node are black
 22 *  5) Every simple path from root to leaves contains the same number
 23 *     of black nodes.
 24 *
 25 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 26 *  consecutive red nodes in a path and every red node is therefore followed by
 27 *  a black. So if B is the number of black nodes on every simple path (as per
 28 *  5), then the longest possible path due to 4 is 2B.
 29 *
 30 *  We shall indicate color with case, where black nodes are uppercase and red
 31 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 32 *  parentheses and have some accompanying text comment.
 33 */
 34
 35/*
 36 * Notes on lockless lookups:
 37 *
 38 * All stores to the tree structure (rb_left and rb_right) must be done using
 39 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 40 * tree structure as seen in program order.
 41 *
 42 * These two requirements will allow lockless iteration of the tree -- not
 43 * correct iteration mind you, tree rotations are not atomic so a lookup might
 44 * miss entire subtrees.
 45 *
 46 * But they do guarantee that any such traversal will only see valid elements
 47 * and that it will indeed complete -- does not get stuck in a loop.
 48 *
 49 * It also guarantees that if the lookup returns an element it is the 'correct'
 50 * one. But not returning an element does _NOT_ mean it's not present.
 51 *
 52 * NOTE:
 53 *
 54 * Stores to __rb_parent_color are not important for simple lookups so those
 55 * are left undone as of now. Nor did I check for loops involving parent
 56 * pointers.
 57 */
 58
 59static inline void rb_set_black(struct rb_node *rb)
 60{
 61	rb->__rb_parent_color += RB_BLACK;
 62}
 63
 64static inline struct rb_node *rb_red_parent(struct rb_node *red)
 65{
 66	return (struct rb_node *)red->__rb_parent_color;
 67}
 68
 69/*
 70 * Helper function for rotations:
 71 * - old's parent and color get assigned to new
 72 * - old gets assigned new as a parent and 'color' as a color.
 73 */
 74static inline void
 75__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 76			struct rb_root *root, int color)
 77{
 78	struct rb_node *parent = rb_parent(old);
 79	new->__rb_parent_color = old->__rb_parent_color;
 80	rb_set_parent_color(old, new, color);
 81	__rb_change_child(old, new, parent, root);
 82}
 83
 84static __always_inline void
 85__rb_insert(struct rb_node *node, struct rb_root *root,
 86	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 87{
 88	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
 89
 90	while (true) {
 91		/*
 92		 * Loop invariant: node is red.
 
 
 
 
 93		 */
 94		if (unlikely(!parent)) {
 95			/*
 96			 * The inserted node is root. Either this is the
 97			 * first node, or we recursed at Case 1 below and
 98			 * are no longer violating 4).
 99			 */
100			rb_set_parent_color(node, NULL, RB_BLACK);
101			break;
102		}
103
104		/*
105		 * If there is a black parent, we are done.
106		 * Otherwise, take some corrective action as,
107		 * per 4), we don't want a red root or two
108		 * consecutive red nodes.
109		 */
110		if(rb_is_black(parent))
111			break;
112
113		gparent = rb_red_parent(parent);
114
115		tmp = gparent->rb_right;
116		if (parent != tmp) {	/* parent == gparent->rb_left */
117			if (tmp && rb_is_red(tmp)) {
118				/*
119				 * Case 1 - node's uncle is red (color flips).
120				 *
121				 *       G            g
122				 *      / \          / \
123				 *     p   u  -->   P   U
124				 *    /            /
125				 *   n            n
126				 *
127				 * However, since g's parent might be red, and
128				 * 4) does not allow this, we need to recurse
129				 * at g.
130				 */
131				rb_set_parent_color(tmp, gparent, RB_BLACK);
132				rb_set_parent_color(parent, gparent, RB_BLACK);
133				node = gparent;
134				parent = rb_parent(node);
135				rb_set_parent_color(node, parent, RB_RED);
136				continue;
137			}
138
139			tmp = parent->rb_right;
140			if (node == tmp) {
141				/*
142				 * Case 2 - node's uncle is black and node is
143				 * the parent's right child (left rotate at parent).
144				 *
145				 *      G             G
146				 *     / \           / \
147				 *    p   U  -->    n   U
148				 *     \           /
149				 *      n         p
150				 *
151				 * This still leaves us in violation of 4), the
152				 * continuation into Case 3 will fix that.
153				 */
154				tmp = node->rb_left;
155				WRITE_ONCE(parent->rb_right, tmp);
156				WRITE_ONCE(node->rb_left, parent);
157				if (tmp)
158					rb_set_parent_color(tmp, parent,
159							    RB_BLACK);
160				rb_set_parent_color(parent, node, RB_RED);
161				augment_rotate(parent, node);
162				parent = node;
163				tmp = node->rb_right;
164			}
165
166			/*
167			 * Case 3 - node's uncle is black and node is
168			 * the parent's left child (right rotate at gparent).
169			 *
170			 *        G           P
171			 *       / \         / \
172			 *      p   U  -->  n   g
173			 *     /                 \
174			 *    n                   U
175			 */
176			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
177			WRITE_ONCE(parent->rb_right, gparent);
178			if (tmp)
179				rb_set_parent_color(tmp, gparent, RB_BLACK);
180			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
181			augment_rotate(gparent, parent);
182			break;
183		} else {
184			tmp = gparent->rb_left;
185			if (tmp && rb_is_red(tmp)) {
186				/* Case 1 - color flips */
187				rb_set_parent_color(tmp, gparent, RB_BLACK);
188				rb_set_parent_color(parent, gparent, RB_BLACK);
189				node = gparent;
190				parent = rb_parent(node);
191				rb_set_parent_color(node, parent, RB_RED);
192				continue;
193			}
194
195			tmp = parent->rb_left;
196			if (node == tmp) {
197				/* Case 2 - right rotate at parent */
198				tmp = node->rb_right;
199				WRITE_ONCE(parent->rb_left, tmp);
200				WRITE_ONCE(node->rb_right, parent);
201				if (tmp)
202					rb_set_parent_color(tmp, parent,
203							    RB_BLACK);
204				rb_set_parent_color(parent, node, RB_RED);
205				augment_rotate(parent, node);
206				parent = node;
207				tmp = node->rb_left;
208			}
209
210			/* Case 3 - left rotate at gparent */
211			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
212			WRITE_ONCE(parent->rb_left, gparent);
213			if (tmp)
214				rb_set_parent_color(tmp, gparent, RB_BLACK);
215			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
216			augment_rotate(gparent, parent);
217			break;
218		}
219	}
220}
221
222/*
223 * Inline version for rb_erase() use - we want to be able to inline
224 * and eliminate the dummy_rotate callback there
225 */
226static __always_inline void
227____rb_erase_color(struct rb_node *parent, struct rb_root *root,
228	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
229{
230	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
231
232	while (true) {
233		/*
234		 * Loop invariants:
235		 * - node is black (or NULL on first iteration)
236		 * - node is not the root (parent is not NULL)
237		 * - All leaf paths going through parent and node have a
238		 *   black node count that is 1 lower than other leaf paths.
239		 */
240		sibling = parent->rb_right;
241		if (node != sibling) {	/* node == parent->rb_left */
242			if (rb_is_red(sibling)) {
243				/*
244				 * Case 1 - left rotate at parent
245				 *
246				 *     P               S
247				 *    / \             / \
248				 *   N   s    -->    p   Sr
249				 *      / \         / \
250				 *     Sl  Sr      N   Sl
251				 */
252				tmp1 = sibling->rb_left;
253				WRITE_ONCE(parent->rb_right, tmp1);
254				WRITE_ONCE(sibling->rb_left, parent);
255				rb_set_parent_color(tmp1, parent, RB_BLACK);
256				__rb_rotate_set_parents(parent, sibling, root,
257							RB_RED);
258				augment_rotate(parent, sibling);
259				sibling = tmp1;
260			}
261			tmp1 = sibling->rb_right;
262			if (!tmp1 || rb_is_black(tmp1)) {
263				tmp2 = sibling->rb_left;
264				if (!tmp2 || rb_is_black(tmp2)) {
265					/*
266					 * Case 2 - sibling color flip
267					 * (p could be either color here)
268					 *
269					 *    (p)           (p)
270					 *    / \           / \
271					 *   N   S    -->  N   s
272					 *      / \           / \
273					 *     Sl  Sr        Sl  Sr
274					 *
275					 * This leaves us violating 5) which
276					 * can be fixed by flipping p to black
277					 * if it was red, or by recursing at p.
278					 * p is red when coming from Case 1.
279					 */
280					rb_set_parent_color(sibling, parent,
281							    RB_RED);
282					if (rb_is_red(parent))
283						rb_set_black(parent);
284					else {
285						node = parent;
286						parent = rb_parent(node);
287						if (parent)
288							continue;
289					}
290					break;
291				}
292				/*
293				 * Case 3 - right rotate at sibling
294				 * (p could be either color here)
295				 *
296				 *   (p)           (p)
297				 *   / \           / \
298				 *  N   S    -->  N   sl
299				 *     / \             \
300				 *    sl  Sr            S
301				 *                       \
302				 *                        Sr
303				 *
304				 * Note: p might be red, and then both
305				 * p and sl are red after rotation(which
306				 * breaks property 4). This is fixed in
307				 * Case 4 (in __rb_rotate_set_parents()
308				 *         which set sl the color of p
309				 *         and set p RB_BLACK)
310				 *
311				 *   (p)            (sl)
312				 *   / \            /  \
313				 *  N   sl   -->   P    S
314				 *       \        /      \
315				 *        S      N        Sr
316				 *         \
317				 *          Sr
318				 */
319				tmp1 = tmp2->rb_right;
320				WRITE_ONCE(sibling->rb_left, tmp1);
321				WRITE_ONCE(tmp2->rb_right, sibling);
322				WRITE_ONCE(parent->rb_right, tmp2);
323				if (tmp1)
324					rb_set_parent_color(tmp1, sibling,
325							    RB_BLACK);
326				augment_rotate(sibling, tmp2);
327				tmp1 = sibling;
328				sibling = tmp2;
329			}
330			/*
331			 * Case 4 - left rotate at parent + color flips
332			 * (p and sl could be either color here.
333			 *  After rotation, p becomes black, s acquires
334			 *  p's color, and sl keeps its color)
335			 *
336			 *      (p)             (s)
337			 *      / \             / \
338			 *     N   S     -->   P   Sr
339			 *        / \         / \
340			 *      (sl) sr      N  (sl)
341			 */
342			tmp2 = sibling->rb_left;
343			WRITE_ONCE(parent->rb_right, tmp2);
344			WRITE_ONCE(sibling->rb_left, parent);
345			rb_set_parent_color(tmp1, sibling, RB_BLACK);
346			if (tmp2)
347				rb_set_parent(tmp2, parent);
348			__rb_rotate_set_parents(parent, sibling, root,
349						RB_BLACK);
350			augment_rotate(parent, sibling);
351			break;
352		} else {
353			sibling = parent->rb_left;
354			if (rb_is_red(sibling)) {
355				/* Case 1 - right rotate at parent */
356				tmp1 = sibling->rb_right;
357				WRITE_ONCE(parent->rb_left, tmp1);
358				WRITE_ONCE(sibling->rb_right, parent);
359				rb_set_parent_color(tmp1, parent, RB_BLACK);
360				__rb_rotate_set_parents(parent, sibling, root,
361							RB_RED);
362				augment_rotate(parent, sibling);
363				sibling = tmp1;
364			}
365			tmp1 = sibling->rb_left;
366			if (!tmp1 || rb_is_black(tmp1)) {
367				tmp2 = sibling->rb_right;
368				if (!tmp2 || rb_is_black(tmp2)) {
369					/* Case 2 - sibling color flip */
370					rb_set_parent_color(sibling, parent,
371							    RB_RED);
372					if (rb_is_red(parent))
373						rb_set_black(parent);
374					else {
375						node = parent;
376						parent = rb_parent(node);
377						if (parent)
378							continue;
379					}
380					break;
381				}
382				/* Case 3 - left rotate at sibling */
383				tmp1 = tmp2->rb_left;
384				WRITE_ONCE(sibling->rb_right, tmp1);
385				WRITE_ONCE(tmp2->rb_left, sibling);
386				WRITE_ONCE(parent->rb_left, tmp2);
387				if (tmp1)
388					rb_set_parent_color(tmp1, sibling,
389							    RB_BLACK);
390				augment_rotate(sibling, tmp2);
391				tmp1 = sibling;
392				sibling = tmp2;
393			}
394			/* Case 4 - right rotate at parent + color flips */
395			tmp2 = sibling->rb_right;
396			WRITE_ONCE(parent->rb_left, tmp2);
397			WRITE_ONCE(sibling->rb_right, parent);
398			rb_set_parent_color(tmp1, sibling, RB_BLACK);
399			if (tmp2)
400				rb_set_parent(tmp2, parent);
401			__rb_rotate_set_parents(parent, sibling, root,
402						RB_BLACK);
403			augment_rotate(parent, sibling);
404			break;
405		}
406	}
407}
408
409/* Non-inline version for rb_erase_augmented() use */
410void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
411	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
412{
413	____rb_erase_color(parent, root, augment_rotate);
414}
415EXPORT_SYMBOL(__rb_erase_color);
416
417/*
418 * Non-augmented rbtree manipulation functions.
419 *
420 * We use dummy augmented callbacks here, and have the compiler optimize them
421 * out of the rb_insert_color() and rb_erase() function definitions.
422 */
423
424static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
425static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
426static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
427
428static const struct rb_augment_callbacks dummy_callbacks = {
429	.propagate = dummy_propagate,
430	.copy = dummy_copy,
431	.rotate = dummy_rotate
432};
433
434void rb_insert_color(struct rb_node *node, struct rb_root *root)
435{
436	__rb_insert(node, root, dummy_rotate);
437}
438EXPORT_SYMBOL(rb_insert_color);
439
440void rb_erase(struct rb_node *node, struct rb_root *root)
441{
442	struct rb_node *rebalance;
443	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
444	if (rebalance)
445		____rb_erase_color(rebalance, root, dummy_rotate);
446}
447EXPORT_SYMBOL(rb_erase);
448
449/*
450 * Augmented rbtree manipulation functions.
451 *
452 * This instantiates the same __always_inline functions as in the non-augmented
453 * case, but this time with user-defined callbacks.
454 */
455
456void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
457	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
458{
459	__rb_insert(node, root, augment_rotate);
460}
461EXPORT_SYMBOL(__rb_insert_augmented);
462
463/*
464 * This function returns the first node (in sort order) of the tree.
465 */
466struct rb_node *rb_first(const struct rb_root *root)
467{
468	struct rb_node	*n;
469
470	n = root->rb_node;
471	if (!n)
472		return NULL;
473	while (n->rb_left)
474		n = n->rb_left;
475	return n;
476}
477EXPORT_SYMBOL(rb_first);
478
479struct rb_node *rb_last(const struct rb_root *root)
480{
481	struct rb_node	*n;
482
483	n = root->rb_node;
484	if (!n)
485		return NULL;
486	while (n->rb_right)
487		n = n->rb_right;
488	return n;
489}
490EXPORT_SYMBOL(rb_last);
491
492struct rb_node *rb_next(const struct rb_node *node)
493{
494	struct rb_node *parent;
495
496	if (RB_EMPTY_NODE(node))
497		return NULL;
498
499	/*
500	 * If we have a right-hand child, go down and then left as far
501	 * as we can.
502	 */
503	if (node->rb_right) {
504		node = node->rb_right;
505		while (node->rb_left)
506			node = node->rb_left;
507		return (struct rb_node *)node;
508	}
509
510	/*
511	 * No right-hand children. Everything down and left is smaller than us,
512	 * so any 'next' node must be in the general direction of our parent.
513	 * Go up the tree; any time the ancestor is a right-hand child of its
514	 * parent, keep going up. First time it's a left-hand child of its
515	 * parent, said parent is our 'next' node.
516	 */
517	while ((parent = rb_parent(node)) && node == parent->rb_right)
518		node = parent;
519
520	return parent;
521}
522EXPORT_SYMBOL(rb_next);
523
524struct rb_node *rb_prev(const struct rb_node *node)
525{
526	struct rb_node *parent;
527
528	if (RB_EMPTY_NODE(node))
529		return NULL;
530
531	/*
532	 * If we have a left-hand child, go down and then right as far
533	 * as we can.
534	 */
535	if (node->rb_left) {
536		node = node->rb_left;
537		while (node->rb_right)
538			node = node->rb_right;
539		return (struct rb_node *)node;
540	}
541
542	/*
543	 * No left-hand children. Go up till we find an ancestor which
544	 * is a right-hand child of its parent.
545	 */
546	while ((parent = rb_parent(node)) && node == parent->rb_left)
547		node = parent;
548
549	return parent;
550}
551EXPORT_SYMBOL(rb_prev);
552
553void rb_replace_node(struct rb_node *victim, struct rb_node *new,
554		     struct rb_root *root)
555{
556	struct rb_node *parent = rb_parent(victim);
557
558	/* Copy the pointers/colour from the victim to the replacement */
559	*new = *victim;
560
561	/* Set the surrounding nodes to point to the replacement */
562	if (victim->rb_left)
563		rb_set_parent(victim->rb_left, new);
564	if (victim->rb_right)
565		rb_set_parent(victim->rb_right, new);
566	__rb_change_child(victim, new, parent, root);
567}
568EXPORT_SYMBOL(rb_replace_node);
569
570void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
571			 struct rb_root *root)
572{
573	struct rb_node *parent = rb_parent(victim);
574
575	/* Copy the pointers/colour from the victim to the replacement */
576	*new = *victim;
577
578	/* Set the surrounding nodes to point to the replacement */
579	if (victim->rb_left)
580		rb_set_parent(victim->rb_left, new);
581	if (victim->rb_right)
582		rb_set_parent(victim->rb_right, new);
583
584	/* Set the parent's pointer to the new node last after an RCU barrier
585	 * so that the pointers onwards are seen to be set correctly when doing
586	 * an RCU walk over the tree.
587	 */
588	__rb_change_child_rcu(victim, new, parent, root);
589}
590EXPORT_SYMBOL(rb_replace_node_rcu);
591
592static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
593{
594	for (;;) {
595		if (node->rb_left)
596			node = node->rb_left;
597		else if (node->rb_right)
598			node = node->rb_right;
599		else
600			return (struct rb_node *)node;
601	}
602}
603
604struct rb_node *rb_next_postorder(const struct rb_node *node)
605{
606	const struct rb_node *parent;
607	if (!node)
608		return NULL;
609	parent = rb_parent(node);
610
611	/* If we're sitting on node, we've already seen our children */
612	if (parent && node == parent->rb_left && parent->rb_right) {
613		/* If we are the parent's left node, go to the parent's right
614		 * node then all the way down to the left */
615		return rb_left_deepest_node(parent->rb_right);
616	} else
617		/* Otherwise we are the parent's right node, and the parent
618		 * should be next */
619		return (struct rb_node *)parent;
620}
621EXPORT_SYMBOL(rb_next_postorder);
622
623struct rb_node *rb_first_postorder(const struct rb_root *root)
624{
625	if (!root->rb_node)
626		return NULL;
627
628	return rb_left_deepest_node(root->rb_node);
629}
630EXPORT_SYMBOL(rb_first_postorder);
v4.10.11
 
  1/*
  2  Red Black Trees
  3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  5  (C) 2012  Michel Lespinasse <walken@google.com>
  6
  7  This program is free software; you can redistribute it and/or modify
  8  it under the terms of the GNU General Public License as published by
  9  the Free Software Foundation; either version 2 of the License, or
 10  (at your option) any later version.
 11
 12  This program is distributed in the hope that it will be useful,
 13  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  GNU General Public License for more details.
 16
 17  You should have received a copy of the GNU General Public License
 18  along with this program; if not, write to the Free Software
 19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 20
 21  linux/lib/rbtree.c
 22*/
 23
 24#include <linux/rbtree_augmented.h>
 25#include <linux/export.h>
 26
 27/*
 28 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 29 *
 30 *  1) A node is either red or black
 31 *  2) The root is black
 32 *  3) All leaves (NULL) are black
 33 *  4) Both children of every red node are black
 34 *  5) Every simple path from root to leaves contains the same number
 35 *     of black nodes.
 36 *
 37 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 38 *  consecutive red nodes in a path and every red node is therefore followed by
 39 *  a black. So if B is the number of black nodes on every simple path (as per
 40 *  5), then the longest possible path due to 4 is 2B.
 41 *
 42 *  We shall indicate color with case, where black nodes are uppercase and red
 43 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 44 *  parentheses and have some accompanying text comment.
 45 */
 46
 47/*
 48 * Notes on lockless lookups:
 49 *
 50 * All stores to the tree structure (rb_left and rb_right) must be done using
 51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 52 * tree structure as seen in program order.
 53 *
 54 * These two requirements will allow lockless iteration of the tree -- not
 55 * correct iteration mind you, tree rotations are not atomic so a lookup might
 56 * miss entire subtrees.
 57 *
 58 * But they do guarantee that any such traversal will only see valid elements
 59 * and that it will indeed complete -- does not get stuck in a loop.
 60 *
 61 * It also guarantees that if the lookup returns an element it is the 'correct'
 62 * one. But not returning an element does _NOT_ mean it's not present.
 63 *
 64 * NOTE:
 65 *
 66 * Stores to __rb_parent_color are not important for simple lookups so those
 67 * are left undone as of now. Nor did I check for loops involving parent
 68 * pointers.
 69 */
 70
 71static inline void rb_set_black(struct rb_node *rb)
 72{
 73	rb->__rb_parent_color |= RB_BLACK;
 74}
 75
 76static inline struct rb_node *rb_red_parent(struct rb_node *red)
 77{
 78	return (struct rb_node *)red->__rb_parent_color;
 79}
 80
 81/*
 82 * Helper function for rotations:
 83 * - old's parent and color get assigned to new
 84 * - old gets assigned new as a parent and 'color' as a color.
 85 */
 86static inline void
 87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 88			struct rb_root *root, int color)
 89{
 90	struct rb_node *parent = rb_parent(old);
 91	new->__rb_parent_color = old->__rb_parent_color;
 92	rb_set_parent_color(old, new, color);
 93	__rb_change_child(old, new, parent, root);
 94}
 95
 96static __always_inline void
 97__rb_insert(struct rb_node *node, struct rb_root *root,
 98	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 99{
100	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
101
102	while (true) {
103		/*
104		 * Loop invariant: node is red
105		 *
106		 * If there is a black parent, we are done.
107		 * Otherwise, take some corrective action as we don't
108		 * want a red root or two consecutive red nodes.
109		 */
110		if (!parent) {
 
 
 
 
 
111			rb_set_parent_color(node, NULL, RB_BLACK);
112			break;
113		} else if (rb_is_black(parent))
 
 
 
 
 
 
 
 
114			break;
115
116		gparent = rb_red_parent(parent);
117
118		tmp = gparent->rb_right;
119		if (parent != tmp) {	/* parent == gparent->rb_left */
120			if (tmp && rb_is_red(tmp)) {
121				/*
122				 * Case 1 - color flips
123				 *
124				 *       G            g
125				 *      / \          / \
126				 *     p   u  -->   P   U
127				 *    /            /
128				 *   n            n
129				 *
130				 * However, since g's parent might be red, and
131				 * 4) does not allow this, we need to recurse
132				 * at g.
133				 */
134				rb_set_parent_color(tmp, gparent, RB_BLACK);
135				rb_set_parent_color(parent, gparent, RB_BLACK);
136				node = gparent;
137				parent = rb_parent(node);
138				rb_set_parent_color(node, parent, RB_RED);
139				continue;
140			}
141
142			tmp = parent->rb_right;
143			if (node == tmp) {
144				/*
145				 * Case 2 - left rotate at parent
 
146				 *
147				 *      G             G
148				 *     / \           / \
149				 *    p   U  -->    n   U
150				 *     \           /
151				 *      n         p
152				 *
153				 * This still leaves us in violation of 4), the
154				 * continuation into Case 3 will fix that.
155				 */
156				tmp = node->rb_left;
157				WRITE_ONCE(parent->rb_right, tmp);
158				WRITE_ONCE(node->rb_left, parent);
159				if (tmp)
160					rb_set_parent_color(tmp, parent,
161							    RB_BLACK);
162				rb_set_parent_color(parent, node, RB_RED);
163				augment_rotate(parent, node);
164				parent = node;
165				tmp = node->rb_right;
166			}
167
168			/*
169			 * Case 3 - right rotate at gparent
 
170			 *
171			 *        G           P
172			 *       / \         / \
173			 *      p   U  -->  n   g
174			 *     /                 \
175			 *    n                   U
176			 */
177			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178			WRITE_ONCE(parent->rb_right, gparent);
179			if (tmp)
180				rb_set_parent_color(tmp, gparent, RB_BLACK);
181			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182			augment_rotate(gparent, parent);
183			break;
184		} else {
185			tmp = gparent->rb_left;
186			if (tmp && rb_is_red(tmp)) {
187				/* Case 1 - color flips */
188				rb_set_parent_color(tmp, gparent, RB_BLACK);
189				rb_set_parent_color(parent, gparent, RB_BLACK);
190				node = gparent;
191				parent = rb_parent(node);
192				rb_set_parent_color(node, parent, RB_RED);
193				continue;
194			}
195
196			tmp = parent->rb_left;
197			if (node == tmp) {
198				/* Case 2 - right rotate at parent */
199				tmp = node->rb_right;
200				WRITE_ONCE(parent->rb_left, tmp);
201				WRITE_ONCE(node->rb_right, parent);
202				if (tmp)
203					rb_set_parent_color(tmp, parent,
204							    RB_BLACK);
205				rb_set_parent_color(parent, node, RB_RED);
206				augment_rotate(parent, node);
207				parent = node;
208				tmp = node->rb_left;
209			}
210
211			/* Case 3 - left rotate at gparent */
212			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213			WRITE_ONCE(parent->rb_left, gparent);
214			if (tmp)
215				rb_set_parent_color(tmp, gparent, RB_BLACK);
216			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
217			augment_rotate(gparent, parent);
218			break;
219		}
220	}
221}
222
223/*
224 * Inline version for rb_erase() use - we want to be able to inline
225 * and eliminate the dummy_rotate callback there
226 */
227static __always_inline void
228____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230{
231	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
232
233	while (true) {
234		/*
235		 * Loop invariants:
236		 * - node is black (or NULL on first iteration)
237		 * - node is not the root (parent is not NULL)
238		 * - All leaf paths going through parent and node have a
239		 *   black node count that is 1 lower than other leaf paths.
240		 */
241		sibling = parent->rb_right;
242		if (node != sibling) {	/* node == parent->rb_left */
243			if (rb_is_red(sibling)) {
244				/*
245				 * Case 1 - left rotate at parent
246				 *
247				 *     P               S
248				 *    / \             / \
249				 *   N   s    -->    p   Sr
250				 *      / \         / \
251				 *     Sl  Sr      N   Sl
252				 */
253				tmp1 = sibling->rb_left;
254				WRITE_ONCE(parent->rb_right, tmp1);
255				WRITE_ONCE(sibling->rb_left, parent);
256				rb_set_parent_color(tmp1, parent, RB_BLACK);
257				__rb_rotate_set_parents(parent, sibling, root,
258							RB_RED);
259				augment_rotate(parent, sibling);
260				sibling = tmp1;
261			}
262			tmp1 = sibling->rb_right;
263			if (!tmp1 || rb_is_black(tmp1)) {
264				tmp2 = sibling->rb_left;
265				if (!tmp2 || rb_is_black(tmp2)) {
266					/*
267					 * Case 2 - sibling color flip
268					 * (p could be either color here)
269					 *
270					 *    (p)           (p)
271					 *    / \           / \
272					 *   N   S    -->  N   s
273					 *      / \           / \
274					 *     Sl  Sr        Sl  Sr
275					 *
276					 * This leaves us violating 5) which
277					 * can be fixed by flipping p to black
278					 * if it was red, or by recursing at p.
279					 * p is red when coming from Case 1.
280					 */
281					rb_set_parent_color(sibling, parent,
282							    RB_RED);
283					if (rb_is_red(parent))
284						rb_set_black(parent);
285					else {
286						node = parent;
287						parent = rb_parent(node);
288						if (parent)
289							continue;
290					}
291					break;
292				}
293				/*
294				 * Case 3 - right rotate at sibling
295				 * (p could be either color here)
296				 *
297				 *   (p)           (p)
298				 *   / \           / \
299				 *  N   S    -->  N   sl
300				 *     / \             \
301				 *    sl  Sr            S
302				 *                       \
303				 *                        Sr
304				 *
305				 * Note: p might be red, and then both
306				 * p and sl are red after rotation(which
307				 * breaks property 4). This is fixed in
308				 * Case 4 (in __rb_rotate_set_parents()
309				 *         which set sl the color of p
310				 *         and set p RB_BLACK)
311				 *
312				 *   (p)            (sl)
313				 *   / \            /  \
314				 *  N   sl   -->   P    S
315				 *       \        /      \
316				 *        S      N        Sr
317				 *         \
318				 *          Sr
319				 */
320				tmp1 = tmp2->rb_right;
321				WRITE_ONCE(sibling->rb_left, tmp1);
322				WRITE_ONCE(tmp2->rb_right, sibling);
323				WRITE_ONCE(parent->rb_right, tmp2);
324				if (tmp1)
325					rb_set_parent_color(tmp1, sibling,
326							    RB_BLACK);
327				augment_rotate(sibling, tmp2);
328				tmp1 = sibling;
329				sibling = tmp2;
330			}
331			/*
332			 * Case 4 - left rotate at parent + color flips
333			 * (p and sl could be either color here.
334			 *  After rotation, p becomes black, s acquires
335			 *  p's color, and sl keeps its color)
336			 *
337			 *      (p)             (s)
338			 *      / \             / \
339			 *     N   S     -->   P   Sr
340			 *        / \         / \
341			 *      (sl) sr      N  (sl)
342			 */
343			tmp2 = sibling->rb_left;
344			WRITE_ONCE(parent->rb_right, tmp2);
345			WRITE_ONCE(sibling->rb_left, parent);
346			rb_set_parent_color(tmp1, sibling, RB_BLACK);
347			if (tmp2)
348				rb_set_parent(tmp2, parent);
349			__rb_rotate_set_parents(parent, sibling, root,
350						RB_BLACK);
351			augment_rotate(parent, sibling);
352			break;
353		} else {
354			sibling = parent->rb_left;
355			if (rb_is_red(sibling)) {
356				/* Case 1 - right rotate at parent */
357				tmp1 = sibling->rb_right;
358				WRITE_ONCE(parent->rb_left, tmp1);
359				WRITE_ONCE(sibling->rb_right, parent);
360				rb_set_parent_color(tmp1, parent, RB_BLACK);
361				__rb_rotate_set_parents(parent, sibling, root,
362							RB_RED);
363				augment_rotate(parent, sibling);
364				sibling = tmp1;
365			}
366			tmp1 = sibling->rb_left;
367			if (!tmp1 || rb_is_black(tmp1)) {
368				tmp2 = sibling->rb_right;
369				if (!tmp2 || rb_is_black(tmp2)) {
370					/* Case 2 - sibling color flip */
371					rb_set_parent_color(sibling, parent,
372							    RB_RED);
373					if (rb_is_red(parent))
374						rb_set_black(parent);
375					else {
376						node = parent;
377						parent = rb_parent(node);
378						if (parent)
379							continue;
380					}
381					break;
382				}
383				/* Case 3 - left rotate at sibling */
384				tmp1 = tmp2->rb_left;
385				WRITE_ONCE(sibling->rb_right, tmp1);
386				WRITE_ONCE(tmp2->rb_left, sibling);
387				WRITE_ONCE(parent->rb_left, tmp2);
388				if (tmp1)
389					rb_set_parent_color(tmp1, sibling,
390							    RB_BLACK);
391				augment_rotate(sibling, tmp2);
392				tmp1 = sibling;
393				sibling = tmp2;
394			}
395			/* Case 4 - right rotate at parent + color flips */
396			tmp2 = sibling->rb_right;
397			WRITE_ONCE(parent->rb_left, tmp2);
398			WRITE_ONCE(sibling->rb_right, parent);
399			rb_set_parent_color(tmp1, sibling, RB_BLACK);
400			if (tmp2)
401				rb_set_parent(tmp2, parent);
402			__rb_rotate_set_parents(parent, sibling, root,
403						RB_BLACK);
404			augment_rotate(parent, sibling);
405			break;
406		}
407	}
408}
409
410/* Non-inline version for rb_erase_augmented() use */
411void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
412	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
413{
414	____rb_erase_color(parent, root, augment_rotate);
415}
416EXPORT_SYMBOL(__rb_erase_color);
417
418/*
419 * Non-augmented rbtree manipulation functions.
420 *
421 * We use dummy augmented callbacks here, and have the compiler optimize them
422 * out of the rb_insert_color() and rb_erase() function definitions.
423 */
424
425static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
426static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
427static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
428
429static const struct rb_augment_callbacks dummy_callbacks = {
430	dummy_propagate, dummy_copy, dummy_rotate
 
 
431};
432
433void rb_insert_color(struct rb_node *node, struct rb_root *root)
434{
435	__rb_insert(node, root, dummy_rotate);
436}
437EXPORT_SYMBOL(rb_insert_color);
438
439void rb_erase(struct rb_node *node, struct rb_root *root)
440{
441	struct rb_node *rebalance;
442	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
443	if (rebalance)
444		____rb_erase_color(rebalance, root, dummy_rotate);
445}
446EXPORT_SYMBOL(rb_erase);
447
448/*
449 * Augmented rbtree manipulation functions.
450 *
451 * This instantiates the same __always_inline functions as in the non-augmented
452 * case, but this time with user-defined callbacks.
453 */
454
455void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
456	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
457{
458	__rb_insert(node, root, augment_rotate);
459}
460EXPORT_SYMBOL(__rb_insert_augmented);
461
462/*
463 * This function returns the first node (in sort order) of the tree.
464 */
465struct rb_node *rb_first(const struct rb_root *root)
466{
467	struct rb_node	*n;
468
469	n = root->rb_node;
470	if (!n)
471		return NULL;
472	while (n->rb_left)
473		n = n->rb_left;
474	return n;
475}
476EXPORT_SYMBOL(rb_first);
477
478struct rb_node *rb_last(const struct rb_root *root)
479{
480	struct rb_node	*n;
481
482	n = root->rb_node;
483	if (!n)
484		return NULL;
485	while (n->rb_right)
486		n = n->rb_right;
487	return n;
488}
489EXPORT_SYMBOL(rb_last);
490
491struct rb_node *rb_next(const struct rb_node *node)
492{
493	struct rb_node *parent;
494
495	if (RB_EMPTY_NODE(node))
496		return NULL;
497
498	/*
499	 * If we have a right-hand child, go down and then left as far
500	 * as we can.
501	 */
502	if (node->rb_right) {
503		node = node->rb_right; 
504		while (node->rb_left)
505			node=node->rb_left;
506		return (struct rb_node *)node;
507	}
508
509	/*
510	 * No right-hand children. Everything down and left is smaller than us,
511	 * so any 'next' node must be in the general direction of our parent.
512	 * Go up the tree; any time the ancestor is a right-hand child of its
513	 * parent, keep going up. First time it's a left-hand child of its
514	 * parent, said parent is our 'next' node.
515	 */
516	while ((parent = rb_parent(node)) && node == parent->rb_right)
517		node = parent;
518
519	return parent;
520}
521EXPORT_SYMBOL(rb_next);
522
523struct rb_node *rb_prev(const struct rb_node *node)
524{
525	struct rb_node *parent;
526
527	if (RB_EMPTY_NODE(node))
528		return NULL;
529
530	/*
531	 * If we have a left-hand child, go down and then right as far
532	 * as we can.
533	 */
534	if (node->rb_left) {
535		node = node->rb_left; 
536		while (node->rb_right)
537			node=node->rb_right;
538		return (struct rb_node *)node;
539	}
540
541	/*
542	 * No left-hand children. Go up till we find an ancestor which
543	 * is a right-hand child of its parent.
544	 */
545	while ((parent = rb_parent(node)) && node == parent->rb_left)
546		node = parent;
547
548	return parent;
549}
550EXPORT_SYMBOL(rb_prev);
551
552void rb_replace_node(struct rb_node *victim, struct rb_node *new,
553		     struct rb_root *root)
554{
555	struct rb_node *parent = rb_parent(victim);
556
557	/* Copy the pointers/colour from the victim to the replacement */
558	*new = *victim;
559
560	/* Set the surrounding nodes to point to the replacement */
561	if (victim->rb_left)
562		rb_set_parent(victim->rb_left, new);
563	if (victim->rb_right)
564		rb_set_parent(victim->rb_right, new);
565	__rb_change_child(victim, new, parent, root);
566}
567EXPORT_SYMBOL(rb_replace_node);
568
569void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
570			 struct rb_root *root)
571{
572	struct rb_node *parent = rb_parent(victim);
573
574	/* Copy the pointers/colour from the victim to the replacement */
575	*new = *victim;
576
577	/* Set the surrounding nodes to point to the replacement */
578	if (victim->rb_left)
579		rb_set_parent(victim->rb_left, new);
580	if (victim->rb_right)
581		rb_set_parent(victim->rb_right, new);
582
583	/* Set the parent's pointer to the new node last after an RCU barrier
584	 * so that the pointers onwards are seen to be set correctly when doing
585	 * an RCU walk over the tree.
586	 */
587	__rb_change_child_rcu(victim, new, parent, root);
588}
589EXPORT_SYMBOL(rb_replace_node_rcu);
590
591static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
592{
593	for (;;) {
594		if (node->rb_left)
595			node = node->rb_left;
596		else if (node->rb_right)
597			node = node->rb_right;
598		else
599			return (struct rb_node *)node;
600	}
601}
602
603struct rb_node *rb_next_postorder(const struct rb_node *node)
604{
605	const struct rb_node *parent;
606	if (!node)
607		return NULL;
608	parent = rb_parent(node);
609
610	/* If we're sitting on node, we've already seen our children */
611	if (parent && node == parent->rb_left && parent->rb_right) {
612		/* If we are the parent's left node, go to the parent's right
613		 * node then all the way down to the left */
614		return rb_left_deepest_node(parent->rb_right);
615	} else
616		/* Otherwise we are the parent's right node, and the parent
617		 * should be next */
618		return (struct rb_node *)parent;
619}
620EXPORT_SYMBOL(rb_next_postorder);
621
622struct rb_node *rb_first_postorder(const struct rb_root *root)
623{
624	if (!root->rb_node)
625		return NULL;
626
627	return rb_left_deepest_node(root->rb_node);
628}
629EXPORT_SYMBOL(rb_first_postorder);