Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similar to hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corporation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15#include <linux/time.h>
16#include <linux/hrtimer.h>
17#include <linux/timerqueue.h>
18#include <linux/rtc.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/alarmtimer.h>
22#include <linux/mutex.h>
23#include <linux/platform_device.h>
24#include <linux/posix-timers.h>
25#include <linux/workqueue.h>
26#include <linux/freezer.h>
27#include <linux/compat.h>
28#include <linux/module.h>
29#include <linux/time_namespace.h>
30
31#include "posix-timers.h"
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/alarmtimer.h>
35
36/**
37 * struct alarm_base - Alarm timer bases
38 * @lock: Lock for syncrhonized access to the base
39 * @timerqueue: Timerqueue head managing the list of events
40 * @get_ktime: Function to read the time correlating to the base
41 * @get_timespec: Function to read the namespace time correlating to the base
42 * @base_clockid: clockid for the base
43 */
44static struct alarm_base {
45 spinlock_t lock;
46 struct timerqueue_head timerqueue;
47 ktime_t (*get_ktime)(void);
48 void (*get_timespec)(struct timespec64 *tp);
49 clockid_t base_clockid;
50} alarm_bases[ALARM_NUMTYPE];
51
52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53/* freezer information to handle clock_nanosleep triggered wakeups */
54static enum alarmtimer_type freezer_alarmtype;
55static ktime_t freezer_expires;
56static ktime_t freezer_delta;
57static DEFINE_SPINLOCK(freezer_delta_lock);
58#endif
59
60#ifdef CONFIG_RTC_CLASS
61/* rtc timer and device for setting alarm wakeups at suspend */
62static struct rtc_timer rtctimer;
63static struct rtc_device *rtcdev;
64static DEFINE_SPINLOCK(rtcdev_lock);
65
66/**
67 * alarmtimer_get_rtcdev - Return selected rtcdevice
68 *
69 * This function returns the rtc device to use for wakealarms.
70 */
71struct rtc_device *alarmtimer_get_rtcdev(void)
72{
73 unsigned long flags;
74 struct rtc_device *ret;
75
76 spin_lock_irqsave(&rtcdev_lock, flags);
77 ret = rtcdev;
78 spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80 return ret;
81}
82EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84static int alarmtimer_rtc_add_device(struct device *dev)
85{
86 unsigned long flags;
87 struct rtc_device *rtc = to_rtc_device(dev);
88 struct platform_device *pdev;
89 int ret = 0;
90
91 if (rtcdev)
92 return -EBUSY;
93
94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95 return -1;
96 if (!device_may_wakeup(rtc->dev.parent))
97 return -1;
98
99 pdev = platform_device_register_data(dev, "alarmtimer",
100 PLATFORM_DEVID_AUTO, NULL, 0);
101 if (!IS_ERR(pdev))
102 device_init_wakeup(&pdev->dev, true);
103
104 spin_lock_irqsave(&rtcdev_lock, flags);
105 if (!IS_ERR(pdev) && !rtcdev) {
106 if (!try_module_get(rtc->owner)) {
107 ret = -1;
108 goto unlock;
109 }
110
111 rtcdev = rtc;
112 /* hold a reference so it doesn't go away */
113 get_device(dev);
114 pdev = NULL;
115 } else {
116 ret = -1;
117 }
118unlock:
119 spin_unlock_irqrestore(&rtcdev_lock, flags);
120
121 platform_device_unregister(pdev);
122
123 return ret;
124}
125
126static inline void alarmtimer_rtc_timer_init(void)
127{
128 rtc_timer_init(&rtctimer, NULL, NULL);
129}
130
131static struct class_interface alarmtimer_rtc_interface = {
132 .add_dev = &alarmtimer_rtc_add_device,
133};
134
135static int alarmtimer_rtc_interface_setup(void)
136{
137 alarmtimer_rtc_interface.class = rtc_class;
138 return class_interface_register(&alarmtimer_rtc_interface);
139}
140static void alarmtimer_rtc_interface_remove(void)
141{
142 class_interface_unregister(&alarmtimer_rtc_interface);
143}
144#else
145static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
146static inline void alarmtimer_rtc_interface_remove(void) { }
147static inline void alarmtimer_rtc_timer_init(void) { }
148#endif
149
150/**
151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152 * @base: pointer to the base where the timer is being run
153 * @alarm: pointer to alarm being enqueued.
154 *
155 * Adds alarm to a alarm_base timerqueue
156 *
157 * Must hold base->lock when calling.
158 */
159static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160{
161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162 timerqueue_del(&base->timerqueue, &alarm->node);
163
164 timerqueue_add(&base->timerqueue, &alarm->node);
165 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166}
167
168/**
169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170 * @base: pointer to the base where the timer is running
171 * @alarm: pointer to alarm being removed
172 *
173 * Removes alarm to a alarm_base timerqueue
174 *
175 * Must hold base->lock when calling.
176 */
177static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178{
179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180 return;
181
182 timerqueue_del(&base->timerqueue, &alarm->node);
183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184}
185
186
187/**
188 * alarmtimer_fired - Handles alarm hrtimer being fired.
189 * @timer: pointer to hrtimer being run
190 *
191 * When a alarm timer fires, this runs through the timerqueue to
192 * see which alarms expired, and runs those. If there are more alarm
193 * timers queued for the future, we set the hrtimer to fire when
194 * the next future alarm timer expires.
195 */
196static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197{
198 struct alarm *alarm = container_of(timer, struct alarm, timer);
199 struct alarm_base *base = &alarm_bases[alarm->type];
200 unsigned long flags;
201 int ret = HRTIMER_NORESTART;
202 int restart = ALARMTIMER_NORESTART;
203
204 spin_lock_irqsave(&base->lock, flags);
205 alarmtimer_dequeue(base, alarm);
206 spin_unlock_irqrestore(&base->lock, flags);
207
208 if (alarm->function)
209 restart = alarm->function(alarm, base->get_ktime());
210
211 spin_lock_irqsave(&base->lock, flags);
212 if (restart != ALARMTIMER_NORESTART) {
213 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
214 alarmtimer_enqueue(base, alarm);
215 ret = HRTIMER_RESTART;
216 }
217 spin_unlock_irqrestore(&base->lock, flags);
218
219 trace_alarmtimer_fired(alarm, base->get_ktime());
220 return ret;
221
222}
223
224ktime_t alarm_expires_remaining(const struct alarm *alarm)
225{
226 struct alarm_base *base = &alarm_bases[alarm->type];
227 return ktime_sub(alarm->node.expires, base->get_ktime());
228}
229EXPORT_SYMBOL_GPL(alarm_expires_remaining);
230
231#ifdef CONFIG_RTC_CLASS
232/**
233 * alarmtimer_suspend - Suspend time callback
234 * @dev: unused
235 *
236 * When we are going into suspend, we look through the bases
237 * to see which is the soonest timer to expire. We then
238 * set an rtc timer to fire that far into the future, which
239 * will wake us from suspend.
240 */
241static int alarmtimer_suspend(struct device *dev)
242{
243 ktime_t min, now, expires;
244 int i, ret, type;
245 struct rtc_device *rtc;
246 unsigned long flags;
247 struct rtc_time tm;
248
249 spin_lock_irqsave(&freezer_delta_lock, flags);
250 min = freezer_delta;
251 expires = freezer_expires;
252 type = freezer_alarmtype;
253 freezer_delta = 0;
254 spin_unlock_irqrestore(&freezer_delta_lock, flags);
255
256 rtc = alarmtimer_get_rtcdev();
257 /* If we have no rtcdev, just return */
258 if (!rtc)
259 return 0;
260
261 /* Find the soonest timer to expire*/
262 for (i = 0; i < ALARM_NUMTYPE; i++) {
263 struct alarm_base *base = &alarm_bases[i];
264 struct timerqueue_node *next;
265 ktime_t delta;
266
267 spin_lock_irqsave(&base->lock, flags);
268 next = timerqueue_getnext(&base->timerqueue);
269 spin_unlock_irqrestore(&base->lock, flags);
270 if (!next)
271 continue;
272 delta = ktime_sub(next->expires, base->get_ktime());
273 if (!min || (delta < min)) {
274 expires = next->expires;
275 min = delta;
276 type = i;
277 }
278 }
279 if (min == 0)
280 return 0;
281
282 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
283 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
284 return -EBUSY;
285 }
286
287 trace_alarmtimer_suspend(expires, type);
288
289 /* Setup an rtc timer to fire that far in the future */
290 rtc_timer_cancel(rtc, &rtctimer);
291 rtc_read_time(rtc, &tm);
292 now = rtc_tm_to_ktime(tm);
293
294 /*
295 * If the RTC alarm timer only supports a limited time offset, set the
296 * alarm time to the maximum supported value.
297 * The system may wake up earlier (possibly much earlier) than expected
298 * when the alarmtimer runs. This is the best the kernel can do if
299 * the alarmtimer exceeds the time that the rtc device can be programmed
300 * for.
301 */
302 min = rtc_bound_alarmtime(rtc, min);
303
304 now = ktime_add(now, min);
305
306 /* Set alarm, if in the past reject suspend briefly to handle */
307 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
308 if (ret < 0)
309 pm_wakeup_event(dev, MSEC_PER_SEC);
310 return ret;
311}
312
313static int alarmtimer_resume(struct device *dev)
314{
315 struct rtc_device *rtc;
316
317 rtc = alarmtimer_get_rtcdev();
318 if (rtc)
319 rtc_timer_cancel(rtc, &rtctimer);
320 return 0;
321}
322
323#else
324static int alarmtimer_suspend(struct device *dev)
325{
326 return 0;
327}
328
329static int alarmtimer_resume(struct device *dev)
330{
331 return 0;
332}
333#endif
334
335static void
336__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
337 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
338{
339 timerqueue_init(&alarm->node);
340 alarm->timer.function = alarmtimer_fired;
341 alarm->function = function;
342 alarm->type = type;
343 alarm->state = ALARMTIMER_STATE_INACTIVE;
344}
345
346/**
347 * alarm_init - Initialize an alarm structure
348 * @alarm: ptr to alarm to be initialized
349 * @type: the type of the alarm
350 * @function: callback that is run when the alarm fires
351 */
352void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
353 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
354{
355 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
356 HRTIMER_MODE_ABS);
357 __alarm_init(alarm, type, function);
358}
359EXPORT_SYMBOL_GPL(alarm_init);
360
361/**
362 * alarm_start - Sets an absolute alarm to fire
363 * @alarm: ptr to alarm to set
364 * @start: time to run the alarm
365 */
366void alarm_start(struct alarm *alarm, ktime_t start)
367{
368 struct alarm_base *base = &alarm_bases[alarm->type];
369 unsigned long flags;
370
371 spin_lock_irqsave(&base->lock, flags);
372 alarm->node.expires = start;
373 alarmtimer_enqueue(base, alarm);
374 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
375 spin_unlock_irqrestore(&base->lock, flags);
376
377 trace_alarmtimer_start(alarm, base->get_ktime());
378}
379EXPORT_SYMBOL_GPL(alarm_start);
380
381/**
382 * alarm_start_relative - Sets a relative alarm to fire
383 * @alarm: ptr to alarm to set
384 * @start: time relative to now to run the alarm
385 */
386void alarm_start_relative(struct alarm *alarm, ktime_t start)
387{
388 struct alarm_base *base = &alarm_bases[alarm->type];
389
390 start = ktime_add_safe(start, base->get_ktime());
391 alarm_start(alarm, start);
392}
393EXPORT_SYMBOL_GPL(alarm_start_relative);
394
395void alarm_restart(struct alarm *alarm)
396{
397 struct alarm_base *base = &alarm_bases[alarm->type];
398 unsigned long flags;
399
400 spin_lock_irqsave(&base->lock, flags);
401 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
402 hrtimer_restart(&alarm->timer);
403 alarmtimer_enqueue(base, alarm);
404 spin_unlock_irqrestore(&base->lock, flags);
405}
406EXPORT_SYMBOL_GPL(alarm_restart);
407
408/**
409 * alarm_try_to_cancel - Tries to cancel an alarm timer
410 * @alarm: ptr to alarm to be canceled
411 *
412 * Returns 1 if the timer was canceled, 0 if it was not running,
413 * and -1 if the callback was running
414 */
415int alarm_try_to_cancel(struct alarm *alarm)
416{
417 struct alarm_base *base = &alarm_bases[alarm->type];
418 unsigned long flags;
419 int ret;
420
421 spin_lock_irqsave(&base->lock, flags);
422 ret = hrtimer_try_to_cancel(&alarm->timer);
423 if (ret >= 0)
424 alarmtimer_dequeue(base, alarm);
425 spin_unlock_irqrestore(&base->lock, flags);
426
427 trace_alarmtimer_cancel(alarm, base->get_ktime());
428 return ret;
429}
430EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
431
432
433/**
434 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
435 * @alarm: ptr to alarm to be canceled
436 *
437 * Returns 1 if the timer was canceled, 0 if it was not active.
438 */
439int alarm_cancel(struct alarm *alarm)
440{
441 for (;;) {
442 int ret = alarm_try_to_cancel(alarm);
443 if (ret >= 0)
444 return ret;
445 hrtimer_cancel_wait_running(&alarm->timer);
446 }
447}
448EXPORT_SYMBOL_GPL(alarm_cancel);
449
450
451u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
452{
453 u64 overrun = 1;
454 ktime_t delta;
455
456 delta = ktime_sub(now, alarm->node.expires);
457
458 if (delta < 0)
459 return 0;
460
461 if (unlikely(delta >= interval)) {
462 s64 incr = ktime_to_ns(interval);
463
464 overrun = ktime_divns(delta, incr);
465
466 alarm->node.expires = ktime_add_ns(alarm->node.expires,
467 incr*overrun);
468
469 if (alarm->node.expires > now)
470 return overrun;
471 /*
472 * This (and the ktime_add() below) is the
473 * correction for exact:
474 */
475 overrun++;
476 }
477
478 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
479 return overrun;
480}
481EXPORT_SYMBOL_GPL(alarm_forward);
482
483static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
484{
485 struct alarm_base *base = &alarm_bases[alarm->type];
486 ktime_t now = base->get_ktime();
487
488 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
489 /*
490 * Same issue as with posix_timer_fn(). Timers which are
491 * periodic but the signal is ignored can starve the system
492 * with a very small interval. The real fix which was
493 * promised in the context of posix_timer_fn() never
494 * materialized, but someone should really work on it.
495 *
496 * To prevent DOS fake @now to be 1 jiffie out which keeps
497 * the overrun accounting correct but creates an
498 * inconsistency vs. timer_gettime(2).
499 */
500 ktime_t kj = NSEC_PER_SEC / HZ;
501
502 if (interval < kj)
503 now = ktime_add(now, kj);
504 }
505
506 return alarm_forward(alarm, now, interval);
507}
508
509u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
510{
511 return __alarm_forward_now(alarm, interval, false);
512}
513EXPORT_SYMBOL_GPL(alarm_forward_now);
514
515#ifdef CONFIG_POSIX_TIMERS
516
517static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
518{
519 struct alarm_base *base;
520 unsigned long flags;
521 ktime_t delta;
522
523 switch(type) {
524 case ALARM_REALTIME:
525 base = &alarm_bases[ALARM_REALTIME];
526 type = ALARM_REALTIME_FREEZER;
527 break;
528 case ALARM_BOOTTIME:
529 base = &alarm_bases[ALARM_BOOTTIME];
530 type = ALARM_BOOTTIME_FREEZER;
531 break;
532 default:
533 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
534 return;
535 }
536
537 delta = ktime_sub(absexp, base->get_ktime());
538
539 spin_lock_irqsave(&freezer_delta_lock, flags);
540 if (!freezer_delta || (delta < freezer_delta)) {
541 freezer_delta = delta;
542 freezer_expires = absexp;
543 freezer_alarmtype = type;
544 }
545 spin_unlock_irqrestore(&freezer_delta_lock, flags);
546}
547
548/**
549 * clock2alarm - helper that converts from clockid to alarmtypes
550 * @clockid: clockid.
551 */
552static enum alarmtimer_type clock2alarm(clockid_t clockid)
553{
554 if (clockid == CLOCK_REALTIME_ALARM)
555 return ALARM_REALTIME;
556 if (clockid == CLOCK_BOOTTIME_ALARM)
557 return ALARM_BOOTTIME;
558 return -1;
559}
560
561/**
562 * alarm_handle_timer - Callback for posix timers
563 * @alarm: alarm that fired
564 * @now: time at the timer expiration
565 *
566 * Posix timer callback for expired alarm timers.
567 *
568 * Return: whether the timer is to be restarted
569 */
570static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
571 ktime_t now)
572{
573 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
574 it.alarm.alarmtimer);
575 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
576 unsigned long flags;
577 int si_private = 0;
578
579 spin_lock_irqsave(&ptr->it_lock, flags);
580
581 ptr->it_active = 0;
582 if (ptr->it_interval)
583 si_private = ++ptr->it_requeue_pending;
584
585 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
586 /*
587 * Handle ignored signals and rearm the timer. This will go
588 * away once we handle ignored signals proper. Ensure that
589 * small intervals cannot starve the system.
590 */
591 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
592 ++ptr->it_requeue_pending;
593 ptr->it_active = 1;
594 result = ALARMTIMER_RESTART;
595 }
596 spin_unlock_irqrestore(&ptr->it_lock, flags);
597
598 return result;
599}
600
601/**
602 * alarm_timer_rearm - Posix timer callback for rearming timer
603 * @timr: Pointer to the posixtimer data struct
604 */
605static void alarm_timer_rearm(struct k_itimer *timr)
606{
607 struct alarm *alarm = &timr->it.alarm.alarmtimer;
608
609 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
610 alarm_start(alarm, alarm->node.expires);
611}
612
613/**
614 * alarm_timer_forward - Posix timer callback for forwarding timer
615 * @timr: Pointer to the posixtimer data struct
616 * @now: Current time to forward the timer against
617 */
618static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
619{
620 struct alarm *alarm = &timr->it.alarm.alarmtimer;
621
622 return alarm_forward(alarm, timr->it_interval, now);
623}
624
625/**
626 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
627 * @timr: Pointer to the posixtimer data struct
628 * @now: Current time to calculate against
629 */
630static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
631{
632 struct alarm *alarm = &timr->it.alarm.alarmtimer;
633
634 return ktime_sub(alarm->node.expires, now);
635}
636
637/**
638 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
639 * @timr: Pointer to the posixtimer data struct
640 */
641static int alarm_timer_try_to_cancel(struct k_itimer *timr)
642{
643 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
644}
645
646/**
647 * alarm_timer_wait_running - Posix timer callback to wait for a timer
648 * @timr: Pointer to the posixtimer data struct
649 *
650 * Called from the core code when timer cancel detected that the callback
651 * is running. @timr is unlocked and rcu read lock is held to prevent it
652 * from being freed.
653 */
654static void alarm_timer_wait_running(struct k_itimer *timr)
655{
656 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
657}
658
659/**
660 * alarm_timer_arm - Posix timer callback to arm a timer
661 * @timr: Pointer to the posixtimer data struct
662 * @expires: The new expiry time
663 * @absolute: Expiry value is absolute time
664 * @sigev_none: Posix timer does not deliver signals
665 */
666static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
667 bool absolute, bool sigev_none)
668{
669 struct alarm *alarm = &timr->it.alarm.alarmtimer;
670 struct alarm_base *base = &alarm_bases[alarm->type];
671
672 if (!absolute)
673 expires = ktime_add_safe(expires, base->get_ktime());
674 if (sigev_none)
675 alarm->node.expires = expires;
676 else
677 alarm_start(&timr->it.alarm.alarmtimer, expires);
678}
679
680/**
681 * alarm_clock_getres - posix getres interface
682 * @which_clock: clockid
683 * @tp: timespec to fill
684 *
685 * Returns the granularity of underlying alarm base clock
686 */
687static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
688{
689 if (!alarmtimer_get_rtcdev())
690 return -EINVAL;
691
692 tp->tv_sec = 0;
693 tp->tv_nsec = hrtimer_resolution;
694 return 0;
695}
696
697/**
698 * alarm_clock_get_timespec - posix clock_get_timespec interface
699 * @which_clock: clockid
700 * @tp: timespec to fill.
701 *
702 * Provides the underlying alarm base time in a tasks time namespace.
703 */
704static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
705{
706 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
707
708 if (!alarmtimer_get_rtcdev())
709 return -EINVAL;
710
711 base->get_timespec(tp);
712
713 return 0;
714}
715
716/**
717 * alarm_clock_get_ktime - posix clock_get_ktime interface
718 * @which_clock: clockid
719 *
720 * Provides the underlying alarm base time in the root namespace.
721 */
722static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
723{
724 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
725
726 if (!alarmtimer_get_rtcdev())
727 return -EINVAL;
728
729 return base->get_ktime();
730}
731
732/**
733 * alarm_timer_create - posix timer_create interface
734 * @new_timer: k_itimer pointer to manage
735 *
736 * Initializes the k_itimer structure.
737 */
738static int alarm_timer_create(struct k_itimer *new_timer)
739{
740 enum alarmtimer_type type;
741
742 if (!alarmtimer_get_rtcdev())
743 return -EOPNOTSUPP;
744
745 if (!capable(CAP_WAKE_ALARM))
746 return -EPERM;
747
748 type = clock2alarm(new_timer->it_clock);
749 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
750 return 0;
751}
752
753/**
754 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
755 * @alarm: ptr to alarm that fired
756 * @now: time at the timer expiration
757 *
758 * Wakes up the task that set the alarmtimer
759 *
760 * Return: ALARMTIMER_NORESTART
761 */
762static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
763 ktime_t now)
764{
765 struct task_struct *task = alarm->data;
766
767 alarm->data = NULL;
768 if (task)
769 wake_up_process(task);
770 return ALARMTIMER_NORESTART;
771}
772
773/**
774 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
775 * @alarm: ptr to alarmtimer
776 * @absexp: absolute expiration time
777 * @type: alarm type (BOOTTIME/REALTIME).
778 *
779 * Sets the alarm timer and sleeps until it is fired or interrupted.
780 */
781static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
782 enum alarmtimer_type type)
783{
784 struct restart_block *restart;
785 alarm->data = (void *)current;
786 do {
787 set_current_state(TASK_INTERRUPTIBLE);
788 alarm_start(alarm, absexp);
789 if (likely(alarm->data))
790 schedule();
791
792 alarm_cancel(alarm);
793 } while (alarm->data && !signal_pending(current));
794
795 __set_current_state(TASK_RUNNING);
796
797 destroy_hrtimer_on_stack(&alarm->timer);
798
799 if (!alarm->data)
800 return 0;
801
802 if (freezing(current))
803 alarmtimer_freezerset(absexp, type);
804 restart = ¤t->restart_block;
805 if (restart->nanosleep.type != TT_NONE) {
806 struct timespec64 rmt;
807 ktime_t rem;
808
809 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
810
811 if (rem <= 0)
812 return 0;
813 rmt = ktime_to_timespec64(rem);
814
815 return nanosleep_copyout(restart, &rmt);
816 }
817 return -ERESTART_RESTARTBLOCK;
818}
819
820static void
821alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
822 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
823{
824 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
825 HRTIMER_MODE_ABS);
826 __alarm_init(alarm, type, function);
827}
828
829/**
830 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
831 * @restart: ptr to restart block
832 *
833 * Handles restarted clock_nanosleep calls
834 */
835static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
836{
837 enum alarmtimer_type type = restart->nanosleep.clockid;
838 ktime_t exp = restart->nanosleep.expires;
839 struct alarm alarm;
840
841 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
842
843 return alarmtimer_do_nsleep(&alarm, exp, type);
844}
845
846/**
847 * alarm_timer_nsleep - alarmtimer nanosleep
848 * @which_clock: clockid
849 * @flags: determines abstime or relative
850 * @tsreq: requested sleep time (abs or rel)
851 *
852 * Handles clock_nanosleep calls against _ALARM clockids
853 */
854static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
855 const struct timespec64 *tsreq)
856{
857 enum alarmtimer_type type = clock2alarm(which_clock);
858 struct restart_block *restart = ¤t->restart_block;
859 struct alarm alarm;
860 ktime_t exp;
861 int ret;
862
863 if (!alarmtimer_get_rtcdev())
864 return -EOPNOTSUPP;
865
866 if (flags & ~TIMER_ABSTIME)
867 return -EINVAL;
868
869 if (!capable(CAP_WAKE_ALARM))
870 return -EPERM;
871
872 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
873
874 exp = timespec64_to_ktime(*tsreq);
875 /* Convert (if necessary) to absolute time */
876 if (flags != TIMER_ABSTIME) {
877 ktime_t now = alarm_bases[type].get_ktime();
878
879 exp = ktime_add_safe(now, exp);
880 } else {
881 exp = timens_ktime_to_host(which_clock, exp);
882 }
883
884 ret = alarmtimer_do_nsleep(&alarm, exp, type);
885 if (ret != -ERESTART_RESTARTBLOCK)
886 return ret;
887
888 /* abs timers don't set remaining time or restart */
889 if (flags == TIMER_ABSTIME)
890 return -ERESTARTNOHAND;
891
892 restart->nanosleep.clockid = type;
893 restart->nanosleep.expires = exp;
894 set_restart_fn(restart, alarm_timer_nsleep_restart);
895 return ret;
896}
897
898const struct k_clock alarm_clock = {
899 .clock_getres = alarm_clock_getres,
900 .clock_get_ktime = alarm_clock_get_ktime,
901 .clock_get_timespec = alarm_clock_get_timespec,
902 .timer_create = alarm_timer_create,
903 .timer_set = common_timer_set,
904 .timer_del = common_timer_del,
905 .timer_get = common_timer_get,
906 .timer_arm = alarm_timer_arm,
907 .timer_rearm = alarm_timer_rearm,
908 .timer_forward = alarm_timer_forward,
909 .timer_remaining = alarm_timer_remaining,
910 .timer_try_to_cancel = alarm_timer_try_to_cancel,
911 .timer_wait_running = alarm_timer_wait_running,
912 .nsleep = alarm_timer_nsleep,
913};
914#endif /* CONFIG_POSIX_TIMERS */
915
916
917/* Suspend hook structures */
918static const struct dev_pm_ops alarmtimer_pm_ops = {
919 .suspend = alarmtimer_suspend,
920 .resume = alarmtimer_resume,
921};
922
923static struct platform_driver alarmtimer_driver = {
924 .driver = {
925 .name = "alarmtimer",
926 .pm = &alarmtimer_pm_ops,
927 }
928};
929
930static void get_boottime_timespec(struct timespec64 *tp)
931{
932 ktime_get_boottime_ts64(tp);
933 timens_add_boottime(tp);
934}
935
936/**
937 * alarmtimer_init - Initialize alarm timer code
938 *
939 * This function initializes the alarm bases and registers
940 * the posix clock ids.
941 */
942static int __init alarmtimer_init(void)
943{
944 int error;
945 int i;
946
947 alarmtimer_rtc_timer_init();
948
949 /* Initialize alarm bases */
950 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
951 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
952 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
953 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
954 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
955 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
956 for (i = 0; i < ALARM_NUMTYPE; i++) {
957 timerqueue_init_head(&alarm_bases[i].timerqueue);
958 spin_lock_init(&alarm_bases[i].lock);
959 }
960
961 error = alarmtimer_rtc_interface_setup();
962 if (error)
963 return error;
964
965 error = platform_driver_register(&alarmtimer_driver);
966 if (error)
967 goto out_if;
968
969 return 0;
970out_if:
971 alarmtimer_rtc_interface_remove();
972 return error;
973}
974device_initcall(alarmtimer_init);
1/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29#define CREATE_TRACE_POINTS
30#include <trace/events/alarmtimer.h>
31
32/**
33 * struct alarm_base - Alarm timer bases
34 * @lock: Lock for syncrhonized access to the base
35 * @timerqueue: Timerqueue head managing the list of events
36 * @gettime: Function to read the time correlating to the base
37 * @base_clockid: clockid for the base
38 */
39static struct alarm_base {
40 spinlock_t lock;
41 struct timerqueue_head timerqueue;
42 ktime_t (*gettime)(void);
43 clockid_t base_clockid;
44} alarm_bases[ALARM_NUMTYPE];
45
46/* freezer information to handle clock_nanosleep triggered wakeups */
47static enum alarmtimer_type freezer_alarmtype;
48static ktime_t freezer_expires;
49static ktime_t freezer_delta;
50static DEFINE_SPINLOCK(freezer_delta_lock);
51
52static struct wakeup_source *ws;
53
54#ifdef CONFIG_RTC_CLASS
55/* rtc timer and device for setting alarm wakeups at suspend */
56static struct rtc_timer rtctimer;
57static struct rtc_device *rtcdev;
58static DEFINE_SPINLOCK(rtcdev_lock);
59
60/**
61 * alarmtimer_get_rtcdev - Return selected rtcdevice
62 *
63 * This function returns the rtc device to use for wakealarms.
64 * If one has not already been chosen, it checks to see if a
65 * functional rtc device is available.
66 */
67struct rtc_device *alarmtimer_get_rtcdev(void)
68{
69 unsigned long flags;
70 struct rtc_device *ret;
71
72 spin_lock_irqsave(&rtcdev_lock, flags);
73 ret = rtcdev;
74 spin_unlock_irqrestore(&rtcdev_lock, flags);
75
76 return ret;
77}
78EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
79
80static int alarmtimer_rtc_add_device(struct device *dev,
81 struct class_interface *class_intf)
82{
83 unsigned long flags;
84 struct rtc_device *rtc = to_rtc_device(dev);
85
86 if (rtcdev)
87 return -EBUSY;
88
89 if (!rtc->ops->set_alarm)
90 return -1;
91 if (!device_may_wakeup(rtc->dev.parent))
92 return -1;
93
94 spin_lock_irqsave(&rtcdev_lock, flags);
95 if (!rtcdev) {
96 rtcdev = rtc;
97 /* hold a reference so it doesn't go away */
98 get_device(dev);
99 }
100 spin_unlock_irqrestore(&rtcdev_lock, flags);
101 return 0;
102}
103
104static inline void alarmtimer_rtc_timer_init(void)
105{
106 rtc_timer_init(&rtctimer, NULL, NULL);
107}
108
109static struct class_interface alarmtimer_rtc_interface = {
110 .add_dev = &alarmtimer_rtc_add_device,
111};
112
113static int alarmtimer_rtc_interface_setup(void)
114{
115 alarmtimer_rtc_interface.class = rtc_class;
116 return class_interface_register(&alarmtimer_rtc_interface);
117}
118static void alarmtimer_rtc_interface_remove(void)
119{
120 class_interface_unregister(&alarmtimer_rtc_interface);
121}
122#else
123struct rtc_device *alarmtimer_get_rtcdev(void)
124{
125 return NULL;
126}
127#define rtcdev (NULL)
128static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
129static inline void alarmtimer_rtc_interface_remove(void) { }
130static inline void alarmtimer_rtc_timer_init(void) { }
131#endif
132
133/**
134 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
135 * @base: pointer to the base where the timer is being run
136 * @alarm: pointer to alarm being enqueued.
137 *
138 * Adds alarm to a alarm_base timerqueue
139 *
140 * Must hold base->lock when calling.
141 */
142static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
143{
144 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
145 timerqueue_del(&base->timerqueue, &alarm->node);
146
147 timerqueue_add(&base->timerqueue, &alarm->node);
148 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
149}
150
151/**
152 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
153 * @base: pointer to the base where the timer is running
154 * @alarm: pointer to alarm being removed
155 *
156 * Removes alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
161{
162 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
163 return;
164
165 timerqueue_del(&base->timerqueue, &alarm->node);
166 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
167}
168
169
170/**
171 * alarmtimer_fired - Handles alarm hrtimer being fired.
172 * @timer: pointer to hrtimer being run
173 *
174 * When a alarm timer fires, this runs through the timerqueue to
175 * see which alarms expired, and runs those. If there are more alarm
176 * timers queued for the future, we set the hrtimer to fire when
177 * when the next future alarm timer expires.
178 */
179static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
180{
181 struct alarm *alarm = container_of(timer, struct alarm, timer);
182 struct alarm_base *base = &alarm_bases[alarm->type];
183 unsigned long flags;
184 int ret = HRTIMER_NORESTART;
185 int restart = ALARMTIMER_NORESTART;
186
187 spin_lock_irqsave(&base->lock, flags);
188 alarmtimer_dequeue(base, alarm);
189 spin_unlock_irqrestore(&base->lock, flags);
190
191 if (alarm->function)
192 restart = alarm->function(alarm, base->gettime());
193
194 spin_lock_irqsave(&base->lock, flags);
195 if (restart != ALARMTIMER_NORESTART) {
196 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
197 alarmtimer_enqueue(base, alarm);
198 ret = HRTIMER_RESTART;
199 }
200 spin_unlock_irqrestore(&base->lock, flags);
201
202 trace_alarmtimer_fired(alarm, base->gettime());
203 return ret;
204
205}
206
207ktime_t alarm_expires_remaining(const struct alarm *alarm)
208{
209 struct alarm_base *base = &alarm_bases[alarm->type];
210 return ktime_sub(alarm->node.expires, base->gettime());
211}
212EXPORT_SYMBOL_GPL(alarm_expires_remaining);
213
214#ifdef CONFIG_RTC_CLASS
215/**
216 * alarmtimer_suspend - Suspend time callback
217 * @dev: unused
218 * @state: unused
219 *
220 * When we are going into suspend, we look through the bases
221 * to see which is the soonest timer to expire. We then
222 * set an rtc timer to fire that far into the future, which
223 * will wake us from suspend.
224 */
225static int alarmtimer_suspend(struct device *dev)
226{
227 ktime_t min, now, expires;
228 int i, ret, type;
229 struct rtc_device *rtc;
230 unsigned long flags;
231 struct rtc_time tm;
232
233 spin_lock_irqsave(&freezer_delta_lock, flags);
234 min = freezer_delta;
235 expires = freezer_expires;
236 type = freezer_alarmtype;
237 freezer_delta = 0;
238 spin_unlock_irqrestore(&freezer_delta_lock, flags);
239
240 rtc = alarmtimer_get_rtcdev();
241 /* If we have no rtcdev, just return */
242 if (!rtc)
243 return 0;
244
245 /* Find the soonest timer to expire*/
246 for (i = 0; i < ALARM_NUMTYPE; i++) {
247 struct alarm_base *base = &alarm_bases[i];
248 struct timerqueue_node *next;
249 ktime_t delta;
250
251 spin_lock_irqsave(&base->lock, flags);
252 next = timerqueue_getnext(&base->timerqueue);
253 spin_unlock_irqrestore(&base->lock, flags);
254 if (!next)
255 continue;
256 delta = ktime_sub(next->expires, base->gettime());
257 if (!min || (delta < min)) {
258 expires = next->expires;
259 min = delta;
260 type = i;
261 }
262 }
263 if (min == 0)
264 return 0;
265
266 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
267 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
268 return -EBUSY;
269 }
270
271 trace_alarmtimer_suspend(expires, type);
272
273 /* Setup an rtc timer to fire that far in the future */
274 rtc_timer_cancel(rtc, &rtctimer);
275 rtc_read_time(rtc, &tm);
276 now = rtc_tm_to_ktime(tm);
277 now = ktime_add(now, min);
278
279 /* Set alarm, if in the past reject suspend briefly to handle */
280 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
281 if (ret < 0)
282 __pm_wakeup_event(ws, MSEC_PER_SEC);
283 return ret;
284}
285
286static int alarmtimer_resume(struct device *dev)
287{
288 struct rtc_device *rtc;
289
290 rtc = alarmtimer_get_rtcdev();
291 if (rtc)
292 rtc_timer_cancel(rtc, &rtctimer);
293 return 0;
294}
295
296#else
297static int alarmtimer_suspend(struct device *dev)
298{
299 return 0;
300}
301
302static int alarmtimer_resume(struct device *dev)
303{
304 return 0;
305}
306#endif
307
308static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
309{
310 struct alarm_base *base;
311 unsigned long flags;
312 ktime_t delta;
313
314 switch(type) {
315 case ALARM_REALTIME:
316 base = &alarm_bases[ALARM_REALTIME];
317 type = ALARM_REALTIME_FREEZER;
318 break;
319 case ALARM_BOOTTIME:
320 base = &alarm_bases[ALARM_BOOTTIME];
321 type = ALARM_BOOTTIME_FREEZER;
322 break;
323 default:
324 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
325 return;
326 }
327
328 delta = ktime_sub(absexp, base->gettime());
329
330 spin_lock_irqsave(&freezer_delta_lock, flags);
331 if (!freezer_delta || (delta < freezer_delta)) {
332 freezer_delta = delta;
333 freezer_expires = absexp;
334 freezer_alarmtype = type;
335 }
336 spin_unlock_irqrestore(&freezer_delta_lock, flags);
337}
338
339
340/**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
346void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348{
349 timerqueue_init(&alarm->node);
350 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
351 HRTIMER_MODE_ABS);
352 alarm->timer.function = alarmtimer_fired;
353 alarm->function = function;
354 alarm->type = type;
355 alarm->state = ALARMTIMER_STATE_INACTIVE;
356}
357EXPORT_SYMBOL_GPL(alarm_init);
358
359/**
360 * alarm_start - Sets an absolute alarm to fire
361 * @alarm: ptr to alarm to set
362 * @start: time to run the alarm
363 */
364void alarm_start(struct alarm *alarm, ktime_t start)
365{
366 struct alarm_base *base = &alarm_bases[alarm->type];
367 unsigned long flags;
368
369 spin_lock_irqsave(&base->lock, flags);
370 alarm->node.expires = start;
371 alarmtimer_enqueue(base, alarm);
372 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
373 spin_unlock_irqrestore(&base->lock, flags);
374
375 trace_alarmtimer_start(alarm, base->gettime());
376}
377EXPORT_SYMBOL_GPL(alarm_start);
378
379/**
380 * alarm_start_relative - Sets a relative alarm to fire
381 * @alarm: ptr to alarm to set
382 * @start: time relative to now to run the alarm
383 */
384void alarm_start_relative(struct alarm *alarm, ktime_t start)
385{
386 struct alarm_base *base = &alarm_bases[alarm->type];
387
388 start = ktime_add(start, base->gettime());
389 alarm_start(alarm, start);
390}
391EXPORT_SYMBOL_GPL(alarm_start_relative);
392
393void alarm_restart(struct alarm *alarm)
394{
395 struct alarm_base *base = &alarm_bases[alarm->type];
396 unsigned long flags;
397
398 spin_lock_irqsave(&base->lock, flags);
399 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
400 hrtimer_restart(&alarm->timer);
401 alarmtimer_enqueue(base, alarm);
402 spin_unlock_irqrestore(&base->lock, flags);
403}
404EXPORT_SYMBOL_GPL(alarm_restart);
405
406/**
407 * alarm_try_to_cancel - Tries to cancel an alarm timer
408 * @alarm: ptr to alarm to be canceled
409 *
410 * Returns 1 if the timer was canceled, 0 if it was not running,
411 * and -1 if the callback was running
412 */
413int alarm_try_to_cancel(struct alarm *alarm)
414{
415 struct alarm_base *base = &alarm_bases[alarm->type];
416 unsigned long flags;
417 int ret;
418
419 spin_lock_irqsave(&base->lock, flags);
420 ret = hrtimer_try_to_cancel(&alarm->timer);
421 if (ret >= 0)
422 alarmtimer_dequeue(base, alarm);
423 spin_unlock_irqrestore(&base->lock, flags);
424
425 trace_alarmtimer_cancel(alarm, base->gettime());
426 return ret;
427}
428EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
429
430
431/**
432 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
433 * @alarm: ptr to alarm to be canceled
434 *
435 * Returns 1 if the timer was canceled, 0 if it was not active.
436 */
437int alarm_cancel(struct alarm *alarm)
438{
439 for (;;) {
440 int ret = alarm_try_to_cancel(alarm);
441 if (ret >= 0)
442 return ret;
443 cpu_relax();
444 }
445}
446EXPORT_SYMBOL_GPL(alarm_cancel);
447
448
449u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
450{
451 u64 overrun = 1;
452 ktime_t delta;
453
454 delta = ktime_sub(now, alarm->node.expires);
455
456 if (delta < 0)
457 return 0;
458
459 if (unlikely(delta >= interval)) {
460 s64 incr = ktime_to_ns(interval);
461
462 overrun = ktime_divns(delta, incr);
463
464 alarm->node.expires = ktime_add_ns(alarm->node.expires,
465 incr*overrun);
466
467 if (alarm->node.expires > now)
468 return overrun;
469 /*
470 * This (and the ktime_add() below) is the
471 * correction for exact:
472 */
473 overrun++;
474 }
475
476 alarm->node.expires = ktime_add(alarm->node.expires, interval);
477 return overrun;
478}
479EXPORT_SYMBOL_GPL(alarm_forward);
480
481u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
482{
483 struct alarm_base *base = &alarm_bases[alarm->type];
484
485 return alarm_forward(alarm, base->gettime(), interval);
486}
487EXPORT_SYMBOL_GPL(alarm_forward_now);
488
489
490/**
491 * clock2alarm - helper that converts from clockid to alarmtypes
492 * @clockid: clockid.
493 */
494static enum alarmtimer_type clock2alarm(clockid_t clockid)
495{
496 if (clockid == CLOCK_REALTIME_ALARM)
497 return ALARM_REALTIME;
498 if (clockid == CLOCK_BOOTTIME_ALARM)
499 return ALARM_BOOTTIME;
500 return -1;
501}
502
503/**
504 * alarm_handle_timer - Callback for posix timers
505 * @alarm: alarm that fired
506 *
507 * Posix timer callback for expired alarm timers.
508 */
509static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
510 ktime_t now)
511{
512 unsigned long flags;
513 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
514 it.alarm.alarmtimer);
515 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
516
517 spin_lock_irqsave(&ptr->it_lock, flags);
518 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
519 if (IS_ENABLED(CONFIG_POSIX_TIMERS) &&
520 posix_timer_event(ptr, 0) != 0)
521 ptr->it_overrun++;
522 }
523
524 /* Re-add periodic timers */
525 if (ptr->it.alarm.interval) {
526 ptr->it_overrun += alarm_forward(alarm, now,
527 ptr->it.alarm.interval);
528 result = ALARMTIMER_RESTART;
529 }
530 spin_unlock_irqrestore(&ptr->it_lock, flags);
531
532 return result;
533}
534
535/**
536 * alarm_clock_getres - posix getres interface
537 * @which_clock: clockid
538 * @tp: timespec to fill
539 *
540 * Returns the granularity of underlying alarm base clock
541 */
542static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
543{
544 if (!alarmtimer_get_rtcdev())
545 return -EINVAL;
546
547 tp->tv_sec = 0;
548 tp->tv_nsec = hrtimer_resolution;
549 return 0;
550}
551
552/**
553 * alarm_clock_get - posix clock_get interface
554 * @which_clock: clockid
555 * @tp: timespec to fill.
556 *
557 * Provides the underlying alarm base time.
558 */
559static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
560{
561 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
562
563 if (!alarmtimer_get_rtcdev())
564 return -EINVAL;
565
566 *tp = ktime_to_timespec(base->gettime());
567 return 0;
568}
569
570/**
571 * alarm_timer_create - posix timer_create interface
572 * @new_timer: k_itimer pointer to manage
573 *
574 * Initializes the k_itimer structure.
575 */
576static int alarm_timer_create(struct k_itimer *new_timer)
577{
578 enum alarmtimer_type type;
579
580 if (!alarmtimer_get_rtcdev())
581 return -ENOTSUPP;
582
583 if (!capable(CAP_WAKE_ALARM))
584 return -EPERM;
585
586 type = clock2alarm(new_timer->it_clock);
587 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
588 return 0;
589}
590
591/**
592 * alarm_timer_get - posix timer_get interface
593 * @new_timer: k_itimer pointer
594 * @cur_setting: itimerspec data to fill
595 *
596 * Copies out the current itimerspec data
597 */
598static void alarm_timer_get(struct k_itimer *timr,
599 struct itimerspec *cur_setting)
600{
601 ktime_t relative_expiry_time =
602 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
603
604 if (ktime_to_ns(relative_expiry_time) > 0) {
605 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
606 } else {
607 cur_setting->it_value.tv_sec = 0;
608 cur_setting->it_value.tv_nsec = 0;
609 }
610
611 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
612}
613
614/**
615 * alarm_timer_del - posix timer_del interface
616 * @timr: k_itimer pointer to be deleted
617 *
618 * Cancels any programmed alarms for the given timer.
619 */
620static int alarm_timer_del(struct k_itimer *timr)
621{
622 if (!rtcdev)
623 return -ENOTSUPP;
624
625 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
626 return TIMER_RETRY;
627
628 return 0;
629}
630
631/**
632 * alarm_timer_set - posix timer_set interface
633 * @timr: k_itimer pointer to be deleted
634 * @flags: timer flags
635 * @new_setting: itimerspec to be used
636 * @old_setting: itimerspec being replaced
637 *
638 * Sets the timer to new_setting, and starts the timer.
639 */
640static int alarm_timer_set(struct k_itimer *timr, int flags,
641 struct itimerspec *new_setting,
642 struct itimerspec *old_setting)
643{
644 ktime_t exp;
645
646 if (!rtcdev)
647 return -ENOTSUPP;
648
649 if (flags & ~TIMER_ABSTIME)
650 return -EINVAL;
651
652 if (old_setting)
653 alarm_timer_get(timr, old_setting);
654
655 /* If the timer was already set, cancel it */
656 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
657 return TIMER_RETRY;
658
659 /* start the timer */
660 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
661 exp = timespec_to_ktime(new_setting->it_value);
662 /* Convert (if necessary) to absolute time */
663 if (flags != TIMER_ABSTIME) {
664 ktime_t now;
665
666 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
667 exp = ktime_add(now, exp);
668 }
669
670 alarm_start(&timr->it.alarm.alarmtimer, exp);
671 return 0;
672}
673
674/**
675 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
676 * @alarm: ptr to alarm that fired
677 *
678 * Wakes up the task that set the alarmtimer
679 */
680static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
681 ktime_t now)
682{
683 struct task_struct *task = (struct task_struct *)alarm->data;
684
685 alarm->data = NULL;
686 if (task)
687 wake_up_process(task);
688 return ALARMTIMER_NORESTART;
689}
690
691/**
692 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
693 * @alarm: ptr to alarmtimer
694 * @absexp: absolute expiration time
695 *
696 * Sets the alarm timer and sleeps until it is fired or interrupted.
697 */
698static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
699{
700 alarm->data = (void *)current;
701 do {
702 set_current_state(TASK_INTERRUPTIBLE);
703 alarm_start(alarm, absexp);
704 if (likely(alarm->data))
705 schedule();
706
707 alarm_cancel(alarm);
708 } while (alarm->data && !signal_pending(current));
709
710 __set_current_state(TASK_RUNNING);
711
712 return (alarm->data == NULL);
713}
714
715
716/**
717 * update_rmtp - Update remaining timespec value
718 * @exp: expiration time
719 * @type: timer type
720 * @rmtp: user pointer to remaining timepsec value
721 *
722 * Helper function that fills in rmtp value with time between
723 * now and the exp value
724 */
725static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
726 struct timespec __user *rmtp)
727{
728 struct timespec rmt;
729 ktime_t rem;
730
731 rem = ktime_sub(exp, alarm_bases[type].gettime());
732
733 if (rem <= 0)
734 return 0;
735 rmt = ktime_to_timespec(rem);
736
737 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
738 return -EFAULT;
739
740 return 1;
741
742}
743
744/**
745 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
746 * @restart: ptr to restart block
747 *
748 * Handles restarted clock_nanosleep calls
749 */
750static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
751{
752 enum alarmtimer_type type = restart->nanosleep.clockid;
753 ktime_t exp;
754 struct timespec __user *rmtp;
755 struct alarm alarm;
756 int ret = 0;
757
758 exp = restart->nanosleep.expires;
759 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
760
761 if (alarmtimer_do_nsleep(&alarm, exp))
762 goto out;
763
764 if (freezing(current))
765 alarmtimer_freezerset(exp, type);
766
767 rmtp = restart->nanosleep.rmtp;
768 if (rmtp) {
769 ret = update_rmtp(exp, type, rmtp);
770 if (ret <= 0)
771 goto out;
772 }
773
774
775 /* The other values in restart are already filled in */
776 ret = -ERESTART_RESTARTBLOCK;
777out:
778 return ret;
779}
780
781/**
782 * alarm_timer_nsleep - alarmtimer nanosleep
783 * @which_clock: clockid
784 * @flags: determins abstime or relative
785 * @tsreq: requested sleep time (abs or rel)
786 * @rmtp: remaining sleep time saved
787 *
788 * Handles clock_nanosleep calls against _ALARM clockids
789 */
790static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
791 struct timespec *tsreq, struct timespec __user *rmtp)
792{
793 enum alarmtimer_type type = clock2alarm(which_clock);
794 struct alarm alarm;
795 ktime_t exp;
796 int ret = 0;
797 struct restart_block *restart;
798
799 if (!alarmtimer_get_rtcdev())
800 return -ENOTSUPP;
801
802 if (flags & ~TIMER_ABSTIME)
803 return -EINVAL;
804
805 if (!capable(CAP_WAKE_ALARM))
806 return -EPERM;
807
808 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
809
810 exp = timespec_to_ktime(*tsreq);
811 /* Convert (if necessary) to absolute time */
812 if (flags != TIMER_ABSTIME) {
813 ktime_t now = alarm_bases[type].gettime();
814 exp = ktime_add(now, exp);
815 }
816
817 if (alarmtimer_do_nsleep(&alarm, exp))
818 goto out;
819
820 if (freezing(current))
821 alarmtimer_freezerset(exp, type);
822
823 /* abs timers don't set remaining time or restart */
824 if (flags == TIMER_ABSTIME) {
825 ret = -ERESTARTNOHAND;
826 goto out;
827 }
828
829 if (rmtp) {
830 ret = update_rmtp(exp, type, rmtp);
831 if (ret <= 0)
832 goto out;
833 }
834
835 restart = ¤t->restart_block;
836 restart->fn = alarm_timer_nsleep_restart;
837 restart->nanosleep.clockid = type;
838 restart->nanosleep.expires = exp;
839 restart->nanosleep.rmtp = rmtp;
840 ret = -ERESTART_RESTARTBLOCK;
841
842out:
843 return ret;
844}
845
846
847/* Suspend hook structures */
848static const struct dev_pm_ops alarmtimer_pm_ops = {
849 .suspend = alarmtimer_suspend,
850 .resume = alarmtimer_resume,
851};
852
853static struct platform_driver alarmtimer_driver = {
854 .driver = {
855 .name = "alarmtimer",
856 .pm = &alarmtimer_pm_ops,
857 }
858};
859
860/**
861 * alarmtimer_init - Initialize alarm timer code
862 *
863 * This function initializes the alarm bases and registers
864 * the posix clock ids.
865 */
866static int __init alarmtimer_init(void)
867{
868 struct platform_device *pdev;
869 int error = 0;
870 int i;
871 struct k_clock alarm_clock = {
872 .clock_getres = alarm_clock_getres,
873 .clock_get = alarm_clock_get,
874 .timer_create = alarm_timer_create,
875 .timer_set = alarm_timer_set,
876 .timer_del = alarm_timer_del,
877 .timer_get = alarm_timer_get,
878 .nsleep = alarm_timer_nsleep,
879 };
880
881 alarmtimer_rtc_timer_init();
882
883 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
884 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
885 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
886 }
887
888 /* Initialize alarm bases */
889 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
890 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
891 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
892 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
893 for (i = 0; i < ALARM_NUMTYPE; i++) {
894 timerqueue_init_head(&alarm_bases[i].timerqueue);
895 spin_lock_init(&alarm_bases[i].lock);
896 }
897
898 error = alarmtimer_rtc_interface_setup();
899 if (error)
900 return error;
901
902 error = platform_driver_register(&alarmtimer_driver);
903 if (error)
904 goto out_if;
905
906 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
907 if (IS_ERR(pdev)) {
908 error = PTR_ERR(pdev);
909 goto out_drv;
910 }
911 ws = wakeup_source_register("alarmtimer");
912 return 0;
913
914out_drv:
915 platform_driver_unregister(&alarmtimer_driver);
916out_if:
917 alarmtimer_rtc_interface_remove();
918 return error;
919}
920device_initcall(alarmtimer_init);