Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/kernfs/mount.c - kernfs mount implementation
  4 *
  5 * Copyright (c) 2001-3 Patrick Mochel
  6 * Copyright (c) 2007 SUSE Linux Products GmbH
  7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 
 
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/mount.h>
 12#include <linux/init.h>
 13#include <linux/magic.h>
 14#include <linux/slab.h>
 15#include <linux/pagemap.h>
 16#include <linux/namei.h>
 17#include <linux/seq_file.h>
 18#include <linux/exportfs.h>
 19#include <linux/uuid.h>
 20#include <linux/statfs.h>
 21
 22#include "kernfs-internal.h"
 23
 24struct kmem_cache *kernfs_node_cache __ro_after_init;
 25struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
 26struct kernfs_global_locks *kernfs_locks __ro_after_init;
 
 
 
 
 
 
 
 
 27
 28static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 29{
 30	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 31	struct kernfs_syscall_ops *scops = root->syscall_ops;
 32
 33	if (scops && scops->show_options)
 34		return scops->show_options(sf, root);
 35	return 0;
 36}
 37
 38static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 39{
 40	struct kernfs_node *node = kernfs_dentry_node(dentry);
 41	struct kernfs_root *root = kernfs_root(node);
 42	struct kernfs_syscall_ops *scops = root->syscall_ops;
 43
 44	if (scops && scops->show_path)
 45		return scops->show_path(sf, node, root);
 46
 47	seq_dentry(sf, dentry, " \t\n\\");
 48	return 0;
 49}
 50
 51static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 52{
 53	simple_statfs(dentry, buf);
 54	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
 55	return 0;
 56}
 57
 58const struct super_operations kernfs_sops = {
 59	.statfs		= kernfs_statfs,
 60	.drop_inode	= generic_delete_inode,
 61	.evict_inode	= kernfs_evict_inode,
 62
 
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 67static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
 68			    struct inode *parent)
 69{
 70	struct kernfs_node *kn = inode->i_private;
 71
 72	if (*max_len < 2) {
 73		*max_len = 2;
 74		return FILEID_INVALID;
 75	}
 76
 77	*max_len = 2;
 78	*(u64 *)fh = kn->id;
 79	return FILEID_KERNFS;
 80}
 81
 82static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
 83					    struct fid *fid, int fh_len,
 84					    int fh_type, bool get_parent)
 85{
 86	struct kernfs_super_info *info = kernfs_info(sb);
 87	struct kernfs_node *kn;
 88	struct inode *inode;
 89	u64 id;
 90
 91	if (fh_len < 2)
 92		return NULL;
 93
 94	switch (fh_type) {
 95	case FILEID_KERNFS:
 96		id = *(u64 *)fid;
 97		break;
 98	case FILEID_INO32_GEN:
 99	case FILEID_INO32_GEN_PARENT:
100		/*
101		 * blk_log_action() exposes "LOW32,HIGH32" pair without
102		 * type and userland can call us with generic fid
103		 * constructed from them.  Combine it back to ID.  See
104		 * blk_log_action().
105		 */
106		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107		break;
108	default:
109		return NULL;
110	}
111
112	kn = kernfs_find_and_get_node_by_id(info->root, id);
113	if (!kn)
114		return ERR_PTR(-ESTALE);
115
116	if (get_parent) {
117		struct kernfs_node *parent;
118
119		parent = kernfs_get_parent(kn);
120		kernfs_put(kn);
121		kn = parent;
122		if (!kn)
123			return ERR_PTR(-ESTALE);
124	}
125
126	inode = kernfs_get_inode(sb, kn);
127	kernfs_put(kn);
128	return d_obtain_alias(inode);
129}
130
131static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132					  struct fid *fid, int fh_len,
133					  int fh_type)
134{
135	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
136}
137
138static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139					  struct fid *fid, int fh_len,
140					  int fh_type)
141{
142	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
143}
144
145static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146{
147	struct kernfs_node *kn = kernfs_dentry_node(child);
148
149	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
150}
151
152static const struct export_operations kernfs_export_ops = {
153	.encode_fh	= kernfs_encode_fh,
154	.fh_to_dentry	= kernfs_fh_to_dentry,
155	.fh_to_parent	= kernfs_fh_to_parent,
156	.get_parent	= kernfs_get_parent_dentry,
157};
158
159/**
160 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
161 * @sb: the super_block in question
162 *
163 * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
164 * %NULL is returned.
165 */
166struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
167{
168	if (sb->s_op == &kernfs_sops)
169		return kernfs_info(sb)->root;
170	return NULL;
171}
172
173/*
174 * find the next ancestor in the path down to @child, where @parent was the
175 * ancestor whose descendant we want to find.
176 *
177 * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
178 * node.  If @parent is b, then we return the node for c.
179 * Passing in d as @parent is not ok.
180 */
181static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
182					      struct kernfs_node *parent)
183{
184	if (child == parent) {
185		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
186		return NULL;
187	}
188
189	while (child->parent != parent) {
190		if (!child->parent)
191			return NULL;
192		child = child->parent;
193	}
194
195	return child;
196}
197
198/**
199 * kernfs_node_dentry - get a dentry for the given kernfs_node
200 * @kn: kernfs_node for which a dentry is needed
201 * @sb: the kernfs super_block
202 *
203 * Return: the dentry pointer
204 */
205struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
206				  struct super_block *sb)
207{
208	struct dentry *dentry;
209	struct kernfs_node *knparent = NULL;
210
211	BUG_ON(sb->s_op != &kernfs_sops);
212
213	dentry = dget(sb->s_root);
214
215	/* Check if this is the root kernfs_node */
216	if (!kn->parent)
217		return dentry;
218
219	knparent = find_next_ancestor(kn, NULL);
220	if (WARN_ON(!knparent)) {
221		dput(dentry);
222		return ERR_PTR(-EINVAL);
223	}
224
225	do {
226		struct dentry *dtmp;
227		struct kernfs_node *kntmp;
228
229		if (kn == knparent)
230			return dentry;
231		kntmp = find_next_ancestor(kn, knparent);
232		if (WARN_ON(!kntmp)) {
233			dput(dentry);
234			return ERR_PTR(-EINVAL);
235		}
236		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
237					       strlen(kntmp->name));
238		dput(dentry);
239		if (IS_ERR(dtmp))
240			return dtmp;
241		knparent = kntmp;
242		dentry = dtmp;
243	} while (true);
244}
245
246static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
247{
248	struct kernfs_super_info *info = kernfs_info(sb);
249	struct kernfs_root *kf_root = kfc->root;
250	struct inode *inode;
251	struct dentry *root;
252
253	info->sb = sb;
254	/* Userspace would break if executables or devices appear on sysfs */
255	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
256	sb->s_blocksize = PAGE_SIZE;
257	sb->s_blocksize_bits = PAGE_SHIFT;
258	sb->s_magic = kfc->magic;
259	sb->s_op = &kernfs_sops;
260	sb->s_xattr = kernfs_xattr_handlers;
261	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
262		sb->s_export_op = &kernfs_export_ops;
263	sb->s_time_gran = 1;
264
265	/* sysfs dentries and inodes don't require IO to create */
266	sb->s_shrink->seeks = 0;
267
268	/* get root inode, initialize and unlock it */
269	down_read(&kf_root->kernfs_rwsem);
270	inode = kernfs_get_inode(sb, info->root->kn);
271	up_read(&kf_root->kernfs_rwsem);
272	if (!inode) {
273		pr_debug("kernfs: could not get root inode\n");
274		return -ENOMEM;
275	}
276
277	/* instantiate and link root dentry */
278	root = d_make_root(inode);
279	if (!root) {
280		pr_debug("%s: could not get root dentry!\n", __func__);
281		return -ENOMEM;
282	}
 
 
283	sb->s_root = root;
284	sb->s_d_op = &kernfs_dops;
285	return 0;
286}
287
288static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
289{
290	struct kernfs_super_info *sb_info = kernfs_info(sb);
291	struct kernfs_super_info *info = fc->s_fs_info;
292
293	return sb_info->root == info->root && sb_info->ns == info->ns;
294}
295
296static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
297{
298	struct kernfs_fs_context *kfc = fc->fs_private;
299
300	kfc->ns_tag = NULL;
301	return set_anon_super_fc(sb, fc);
 
302}
303
304/**
305 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
306 * @sb: super_block of interest
307 *
308 * Return: the namespace tag associated with kernfs super_block @sb.
309 */
310const void *kernfs_super_ns(struct super_block *sb)
311{
312	struct kernfs_super_info *info = kernfs_info(sb);
313
314	return info->ns;
315}
316
317/**
318 * kernfs_get_tree - kernfs filesystem access/retrieval helper
319 * @fc: The filesystem context.
 
 
 
 
 
320 *
321 * This is to be called from each kernfs user's fs_context->ops->get_tree()
322 * implementation, which should set the specified ->@fs_type and ->@flags, and
323 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
324 * respectively.
325 *
326 * Return: %0 on success, -errno on failure.
327 */
328int kernfs_get_tree(struct fs_context *fc)
 
 
329{
330	struct kernfs_fs_context *kfc = fc->fs_private;
331	struct super_block *sb;
332	struct kernfs_super_info *info;
333	int error;
334
335	info = kzalloc(sizeof(*info), GFP_KERNEL);
336	if (!info)
337		return -ENOMEM;
338
339	info->root = kfc->root;
340	info->ns = kfc->ns_tag;
341	INIT_LIST_HEAD(&info->node);
342
343	fc->s_fs_info = info;
344	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
 
 
345	if (IS_ERR(sb))
346		return PTR_ERR(sb);
 
 
 
347
348	if (!sb->s_root) {
349		struct kernfs_super_info *info = kernfs_info(sb);
350		struct kernfs_root *root = kfc->root;
351
352		kfc->new_sb_created = true;
353
354		error = kernfs_fill_super(sb, kfc);
355		if (error) {
356			deactivate_locked_super(sb);
357			return error;
358		}
359		sb->s_flags |= SB_ACTIVE;
360
361		uuid_gen(&sb->s_uuid);
362
363		down_write(&root->kernfs_supers_rwsem);
364		list_add(&info->node, &info->root->supers);
365		up_write(&root->kernfs_supers_rwsem);
366	}
367
368	fc->root = dget(sb->s_root);
369	return 0;
370}
371
372void kernfs_free_fs_context(struct fs_context *fc)
373{
374	/* Note that we don't deal with kfc->ns_tag here. */
375	kfree(fc->s_fs_info);
376	fc->s_fs_info = NULL;
377}
378
379/**
380 * kernfs_kill_sb - kill_sb for kernfs
381 * @sb: super_block being killed
382 *
383 * This can be used directly for file_system_type->kill_sb().  If a kernfs
384 * user needs extra cleanup, it can implement its own kill_sb() and call
385 * this function at the end.
386 */
387void kernfs_kill_sb(struct super_block *sb)
388{
389	struct kernfs_super_info *info = kernfs_info(sb);
390	struct kernfs_root *root = info->root;
391
392	down_write(&root->kernfs_supers_rwsem);
393	list_del(&info->node);
394	up_write(&root->kernfs_supers_rwsem);
395
396	/*
397	 * Remove the superblock from fs_supers/s_instances
398	 * so we can't find it, before freeing kernfs_super_info.
399	 */
400	kill_anon_super(sb);
401	kfree(info);
 
402}
403
404static void __init kernfs_mutex_init(void)
405{
406	int count;
407
408	for (count = 0; count < NR_KERNFS_LOCKS; count++)
409		mutex_init(&kernfs_locks->open_file_mutex[count]);
410}
411
412static void __init kernfs_lock_init(void)
 
 
 
 
413{
414	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
415	WARN_ON(!kernfs_locks);
416
417	kernfs_mutex_init();
 
 
 
 
 
 
 
 
 
 
418}
419
420void __init kernfs_init(void)
421{
422	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
423					      sizeof(struct kernfs_node),
424					      0, SLAB_PANIC, NULL);
425
426	/* Creates slab cache for kernfs inode attributes */
427	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
428					      sizeof(struct kernfs_iattrs),
429					      0, SLAB_PANIC, NULL);
430
431	kernfs_lock_init();
432}
v4.10.11
 
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 
 
 
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache;
 23
 24static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 25{
 26	struct kernfs_root *root = kernfs_info(sb)->root;
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->remount_fs)
 30		return scops->remount_fs(root, flags, data);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
 37	struct kernfs_syscall_ops *scops = root->syscall_ops;
 38
 39	if (scops && scops->show_options)
 40		return scops->show_options(sf, root);
 41	return 0;
 42}
 43
 44static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 45{
 46	struct kernfs_node *node = dentry->d_fsdata;
 47	struct kernfs_root *root = kernfs_root(node);
 48	struct kernfs_syscall_ops *scops = root->syscall_ops;
 49
 50	if (scops && scops->show_path)
 51		return scops->show_path(sf, node, root);
 52
 53	seq_dentry(sf, dentry, " \t\n\\");
 54	return 0;
 55}
 56
 
 
 
 
 
 
 
 57const struct super_operations kernfs_sops = {
 58	.statfs		= simple_statfs,
 59	.drop_inode	= generic_delete_inode,
 60	.evict_inode	= kernfs_evict_inode,
 61
 62	.remount_fs	= kernfs_sop_remount_fs,
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67/**
 68 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
 69 * @sb: the super_block in question
 70 *
 71 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
 72 * %NULL is returned.
 73 */
 74struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
 75{
 76	if (sb->s_op == &kernfs_sops)
 77		return kernfs_info(sb)->root;
 78	return NULL;
 79}
 80
 81/*
 82 * find the next ancestor in the path down to @child, where @parent was the
 83 * ancestor whose descendant we want to find.
 84 *
 85 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
 86 * node.  If @parent is b, then we return the node for c.
 87 * Passing in d as @parent is not ok.
 88 */
 89static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
 90					      struct kernfs_node *parent)
 91{
 92	if (child == parent) {
 93		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
 94		return NULL;
 95	}
 96
 97	while (child->parent != parent) {
 98		if (!child->parent)
 99			return NULL;
100		child = child->parent;
101	}
102
103	return child;
104}
105
106/**
107 * kernfs_node_dentry - get a dentry for the given kernfs_node
108 * @kn: kernfs_node for which a dentry is needed
109 * @sb: the kernfs super_block
 
 
110 */
111struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
112				  struct super_block *sb)
113{
114	struct dentry *dentry;
115	struct kernfs_node *knparent = NULL;
116
117	BUG_ON(sb->s_op != &kernfs_sops);
118
119	dentry = dget(sb->s_root);
120
121	/* Check if this is the root kernfs_node */
122	if (!kn->parent)
123		return dentry;
124
125	knparent = find_next_ancestor(kn, NULL);
126	if (WARN_ON(!knparent))
 
127		return ERR_PTR(-EINVAL);
 
128
129	do {
130		struct dentry *dtmp;
131		struct kernfs_node *kntmp;
132
133		if (kn == knparent)
134			return dentry;
135		kntmp = find_next_ancestor(kn, knparent);
136		if (WARN_ON(!kntmp))
 
137			return ERR_PTR(-EINVAL);
138		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
 
139					       strlen(kntmp->name));
140		dput(dentry);
141		if (IS_ERR(dtmp))
142			return dtmp;
143		knparent = kntmp;
144		dentry = dtmp;
145	} while (true);
146}
147
148static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
149{
150	struct kernfs_super_info *info = kernfs_info(sb);
 
151	struct inode *inode;
152	struct dentry *root;
153
154	info->sb = sb;
155	/* Userspace would break if executables or devices appear on sysfs */
156	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
157	sb->s_blocksize = PAGE_SIZE;
158	sb->s_blocksize_bits = PAGE_SHIFT;
159	sb->s_magic = magic;
160	sb->s_op = &kernfs_sops;
161	sb->s_xattr = kernfs_xattr_handlers;
 
 
162	sb->s_time_gran = 1;
163
 
 
 
164	/* get root inode, initialize and unlock it */
165	mutex_lock(&kernfs_mutex);
166	inode = kernfs_get_inode(sb, info->root->kn);
167	mutex_unlock(&kernfs_mutex);
168	if (!inode) {
169		pr_debug("kernfs: could not get root inode\n");
170		return -ENOMEM;
171	}
172
173	/* instantiate and link root dentry */
174	root = d_make_root(inode);
175	if (!root) {
176		pr_debug("%s: could not get root dentry!\n", __func__);
177		return -ENOMEM;
178	}
179	kernfs_get(info->root->kn);
180	root->d_fsdata = info->root->kn;
181	sb->s_root = root;
182	sb->s_d_op = &kernfs_dops;
183	return 0;
184}
185
186static int kernfs_test_super(struct super_block *sb, void *data)
187{
188	struct kernfs_super_info *sb_info = kernfs_info(sb);
189	struct kernfs_super_info *info = data;
190
191	return sb_info->root == info->root && sb_info->ns == info->ns;
192}
193
194static int kernfs_set_super(struct super_block *sb, void *data)
195{
196	int error;
197	error = set_anon_super(sb, data);
198	if (!error)
199		sb->s_fs_info = data;
200	return error;
201}
202
203/**
204 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
205 * @sb: super_block of interest
206 *
207 * Return the namespace tag associated with kernfs super_block @sb.
208 */
209const void *kernfs_super_ns(struct super_block *sb)
210{
211	struct kernfs_super_info *info = kernfs_info(sb);
212
213	return info->ns;
214}
215
216/**
217 * kernfs_mount_ns - kernfs mount helper
218 * @fs_type: file_system_type of the fs being mounted
219 * @flags: mount flags specified for the mount
220 * @root: kernfs_root of the hierarchy being mounted
221 * @magic: file system specific magic number
222 * @new_sb_created: tell the caller if we allocated a new superblock
223 * @ns: optional namespace tag of the mount
224 *
225 * This is to be called from each kernfs user's file_system_type->mount()
226 * implementation, which should pass through the specified @fs_type and
227 * @flags, and specify the hierarchy and namespace tag to mount via @root
228 * and @ns, respectively.
229 *
230 * The return value can be passed to the vfs layer verbatim.
231 */
232struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
233				struct kernfs_root *root, unsigned long magic,
234				bool *new_sb_created, const void *ns)
235{
 
236	struct super_block *sb;
237	struct kernfs_super_info *info;
238	int error;
239
240	info = kzalloc(sizeof(*info), GFP_KERNEL);
241	if (!info)
242		return ERR_PTR(-ENOMEM);
243
244	info->root = root;
245	info->ns = ns;
 
246
247	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
248			 &init_user_ns, info);
249	if (IS_ERR(sb) || sb->s_fs_info != info)
250		kfree(info);
251	if (IS_ERR(sb))
252		return ERR_CAST(sb);
253
254	if (new_sb_created)
255		*new_sb_created = !sb->s_root;
256
257	if (!sb->s_root) {
258		struct kernfs_super_info *info = kernfs_info(sb);
 
 
 
259
260		error = kernfs_fill_super(sb, magic);
261		if (error) {
262			deactivate_locked_super(sb);
263			return ERR_PTR(error);
264		}
265		sb->s_flags |= MS_ACTIVE;
266
267		mutex_lock(&kernfs_mutex);
268		list_add(&info->node, &root->supers);
269		mutex_unlock(&kernfs_mutex);
 
 
270	}
271
272	return dget(sb->s_root);
 
 
 
 
 
 
 
 
273}
274
275/**
276 * kernfs_kill_sb - kill_sb for kernfs
277 * @sb: super_block being killed
278 *
279 * This can be used directly for file_system_type->kill_sb().  If a kernfs
280 * user needs extra cleanup, it can implement its own kill_sb() and call
281 * this function at the end.
282 */
283void kernfs_kill_sb(struct super_block *sb)
284{
285	struct kernfs_super_info *info = kernfs_info(sb);
286	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
287
288	mutex_lock(&kernfs_mutex);
289	list_del(&info->node);
290	mutex_unlock(&kernfs_mutex);
291
292	/*
293	 * Remove the superblock from fs_supers/s_instances
294	 * so we can't find it, before freeing kernfs_super_info.
295	 */
296	kill_anon_super(sb);
297	kfree(info);
298	kernfs_put(root_kn);
299}
300
301/**
302 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
303 * @kernfs_root: the kernfs_root in question
304 * @ns: the namespace tag
305 *
306 * Pin the superblock so the superblock won't be destroyed in subsequent
307 * operations.  This can be used to block ->kill_sb() which may be useful
308 * for kernfs users which dynamically manage superblocks.
309 *
310 * Returns NULL if there's no superblock associated to this kernfs_root, or
311 * -EINVAL if the superblock is being freed.
312 */
313struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
314{
315	struct kernfs_super_info *info;
316	struct super_block *sb = NULL;
317
318	mutex_lock(&kernfs_mutex);
319	list_for_each_entry(info, &root->supers, node) {
320		if (info->ns == ns) {
321			sb = info->sb;
322			if (!atomic_inc_not_zero(&info->sb->s_active))
323				sb = ERR_PTR(-EINVAL);
324			break;
325		}
326	}
327	mutex_unlock(&kernfs_mutex);
328	return sb;
329}
330
331void __init kernfs_init(void)
332{
333	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
334					      sizeof(struct kernfs_node),
335					      0, SLAB_PANIC, NULL);
 
 
 
 
 
 
 
336}