Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   4 *
   5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   6 * Copyright (C) 2006 David Brownell (convert to new framework)
 
 
 
 
 
   7 */
   8
   9/*
  10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  11 * That defined the register interface now provided by all PCs, some
  12 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  13 * integrate an MC146818 clone in their southbridge, and boards use
  14 * that instead of discrete clones like the DS12887 or M48T86.  There
  15 * are also clones that connect using the LPC bus.
  16 *
  17 * That register API is also used directly by various other drivers
  18 * (notably for integrated NVRAM), infrastructure (x86 has code to
  19 * bypass the RTC framework, directly reading the RTC during boot
  20 * and updating minutes/seconds for systems using NTP synch) and
  21 * utilities (like userspace 'hwclock', if no /dev node exists).
  22 *
  23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  24 * interrupts disabled, holding the global rtc_lock, to exclude those
  25 * other drivers and utilities on correctly configured systems.
  26 */
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/spinlock.h>
  35#include <linux/platform_device.h>
  36#include <linux/log2.h>
  37#include <linux/pm.h>
  38#include <linux/of.h>
  39#include <linux/of_platform.h>
  40#ifdef CONFIG_X86
  41#include <asm/i8259.h>
  42#include <asm/processor.h>
  43#include <linux/dmi.h>
  44#endif
  45
  46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  47#include <linux/mc146818rtc.h>
  48
  49#ifdef CONFIG_ACPI
  50/*
  51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
  52 *
  53 * If cleared, ACPI SCI is only used to wake up the system from suspend
  54 *
  55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
  56 */
  57
  58static bool use_acpi_alarm;
  59module_param(use_acpi_alarm, bool, 0444);
  60
  61static inline int cmos_use_acpi_alarm(void)
  62{
  63	return use_acpi_alarm;
  64}
  65#else /* !CONFIG_ACPI */
  66
  67static inline int cmos_use_acpi_alarm(void)
  68{
  69	return 0;
  70}
  71#endif
  72
  73struct cmos_rtc {
  74	struct rtc_device	*rtc;
  75	struct device		*dev;
  76	int			irq;
  77	struct resource		*iomem;
  78	time64_t		alarm_expires;
  79
  80	void			(*wake_on)(struct device *);
  81	void			(*wake_off)(struct device *);
  82
  83	u8			enabled_wake;
  84	u8			suspend_ctrl;
  85
  86	/* newer hardware extends the original register set */
  87	u8			day_alrm;
  88	u8			mon_alrm;
  89	u8			century;
  90
  91	struct rtc_wkalrm	saved_wkalrm;
  92};
  93
  94/* both platform and pnp busses use negative numbers for invalid irqs */
  95#define is_valid_irq(n)		((n) > 0)
  96
  97static const char driver_name[] = "rtc_cmos";
  98
  99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 100 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 102 */
 103#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
 104
 105static inline int is_intr(u8 rtc_intr)
 106{
 107	if (!(rtc_intr & RTC_IRQF))
 108		return 0;
 109	return rtc_intr & RTC_IRQMASK;
 110}
 111
 112/*----------------------------------------------------------------*/
 113
 114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 116 * used in a broken "legacy replacement" mode.  The breakage includes
 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 118 * other (better) use.
 119 *
 120 * When that broken mode is in use, platform glue provides a partial
 121 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 122 * want to use HPET for anything except those IRQs though...
 123 */
 124#ifdef CONFIG_HPET_EMULATE_RTC
 125#include <asm/hpet.h>
 126#else
 127
 128static inline int is_hpet_enabled(void)
 129{
 130	return 0;
 131}
 132
 133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 134{
 135	return 0;
 136}
 137
 138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 139{
 140	return 0;
 141}
 142
 143static inline int
 144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 145{
 146	return 0;
 147}
 148
 149static inline int hpet_set_periodic_freq(unsigned long freq)
 150{
 151	return 0;
 152}
 153
 154static inline int hpet_rtc_dropped_irq(void)
 155{
 156	return 0;
 157}
 158
 159static inline int hpet_rtc_timer_init(void)
 160{
 161	return 0;
 162}
 163
 164extern irq_handler_t hpet_rtc_interrupt;
 165
 166static inline int hpet_register_irq_handler(irq_handler_t handler)
 167{
 168	return 0;
 169}
 170
 171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 172{
 173	return 0;
 174}
 175
 176#endif
 177
 178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
 179static inline int use_hpet_alarm(void)
 180{
 181	return is_hpet_enabled() && !cmos_use_acpi_alarm();
 182}
 183
 184/*----------------------------------------------------------------*/
 185
 186#ifdef RTC_PORT
 187
 188/* Most newer x86 systems have two register banks, the first used
 189 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 190 * own rtc_lock ... and we won't worry about access during NMI.
 191 */
 192#define can_bank2	true
 193
 194static inline unsigned char cmos_read_bank2(unsigned char addr)
 195{
 196	outb(addr, RTC_PORT(2));
 197	return inb(RTC_PORT(3));
 198}
 199
 200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 201{
 202	outb(addr, RTC_PORT(2));
 203	outb(val, RTC_PORT(3));
 204}
 205
 206#else
 207
 208#define can_bank2	false
 209
 210static inline unsigned char cmos_read_bank2(unsigned char addr)
 211{
 212	return 0;
 213}
 214
 215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 216{
 217}
 218
 219#endif
 220
 221/*----------------------------------------------------------------*/
 222
 223static int cmos_read_time(struct device *dev, struct rtc_time *t)
 224{
 225	int ret;
 226
 227	/*
 228	 * If pm_trace abused the RTC for storage, set the timespec to 0,
 229	 * which tells the caller that this RTC value is unusable.
 230	 */
 231	if (!pm_trace_rtc_valid())
 232		return -EIO;
 233
 234	ret = mc146818_get_time(t, 1000);
 235	if (ret < 0) {
 236		dev_err_ratelimited(dev, "unable to read current time\n");
 237		return ret;
 238	}
 239
 240	return 0;
 241}
 242
 243static int cmos_set_time(struct device *dev, struct rtc_time *t)
 244{
 245	/* NOTE: this ignores the issue whereby updating the seconds
 
 
 246	 * takes effect exactly 500ms after we write the register.
 247	 * (Also queueing and other delays before we get this far.)
 248	 */
 249	return mc146818_set_time(t);
 250}
 251
 252struct cmos_read_alarm_callback_param {
 253	struct cmos_rtc *cmos;
 254	struct rtc_time *time;
 255	unsigned char	rtc_control;
 256};
 257
 258static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
 259				     void *param_in)
 260{
 261	struct cmos_read_alarm_callback_param *p =
 262		(struct cmos_read_alarm_callback_param *)param_in;
 263	struct rtc_time *time = p->time;
 264
 265	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 266	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 267	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 268
 269	if (p->cmos->day_alrm) {
 270		/* ignore upper bits on readback per ACPI spec */
 271		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
 272		if (!time->tm_mday)
 273			time->tm_mday = -1;
 274
 275		if (p->cmos->mon_alrm) {
 276			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
 277			if (!time->tm_mon)
 278				time->tm_mon = -1;
 279		}
 280	}
 281
 282	p->rtc_control = CMOS_READ(RTC_CONTROL);
 283}
 284
 285static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 286{
 287	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 288	struct cmos_read_alarm_callback_param p = {
 289		.cmos = cmos,
 290		.time = &t->time,
 291	};
 292
 293	/* This not only a rtc_op, but also called directly */
 294	if (!is_valid_irq(cmos->irq))
 295		return -ETIMEDOUT;
 296
 297	/* Basic alarms only support hour, minute, and seconds fields.
 298	 * Some also support day and month, for alarms up to a year in
 299	 * the future.
 300	 */
 301
 302	/* Some Intel chipsets disconnect the alarm registers when the clock
 303	 * update is in progress - during this time reads return bogus values
 304	 * and writes may fail silently. See for example "7th Generation Intel®
 305	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
 306	 * 27.7.1
 307	 *
 308	 * Use the mc146818_avoid_UIP() function to avoid this.
 309	 */
 310	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
 311		return -EIO;
 
 
 
 
 
 
 
 312
 313	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 
 
 
 314		if (((unsigned)t->time.tm_sec) < 0x60)
 315			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 316		else
 317			t->time.tm_sec = -1;
 318		if (((unsigned)t->time.tm_min) < 0x60)
 319			t->time.tm_min = bcd2bin(t->time.tm_min);
 320		else
 321			t->time.tm_min = -1;
 322		if (((unsigned)t->time.tm_hour) < 0x24)
 323			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 324		else
 325			t->time.tm_hour = -1;
 326
 327		if (cmos->day_alrm) {
 328			if (((unsigned)t->time.tm_mday) <= 0x31)
 329				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 330			else
 331				t->time.tm_mday = -1;
 332
 333			if (cmos->mon_alrm) {
 334				if (((unsigned)t->time.tm_mon) <= 0x12)
 335					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 336				else
 337					t->time.tm_mon = -1;
 338			}
 339		}
 340	}
 341
 342	t->enabled = !!(p.rtc_control & RTC_AIE);
 343	t->pending = 0;
 344
 345	return 0;
 346}
 347
 348static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 349{
 350	unsigned char	rtc_intr;
 351
 352	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 353	 * allegedly some older rtcs need that to handle irqs properly
 354	 */
 355	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 356
 357	if (use_hpet_alarm())
 358		return;
 359
 360	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 361	if (is_intr(rtc_intr))
 362		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 363}
 364
 365static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 366{
 367	unsigned char	rtc_control;
 368
 369	/* flush any pending IRQ status, notably for update irqs,
 370	 * before we enable new IRQs
 371	 */
 372	rtc_control = CMOS_READ(RTC_CONTROL);
 373	cmos_checkintr(cmos, rtc_control);
 374
 375	rtc_control |= mask;
 376	CMOS_WRITE(rtc_control, RTC_CONTROL);
 377	if (use_hpet_alarm())
 378		hpet_set_rtc_irq_bit(mask);
 379
 380	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 381		if (cmos->wake_on)
 382			cmos->wake_on(cmos->dev);
 383	}
 384
 385	cmos_checkintr(cmos, rtc_control);
 386}
 387
 388static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 389{
 390	unsigned char	rtc_control;
 391
 392	rtc_control = CMOS_READ(RTC_CONTROL);
 393	rtc_control &= ~mask;
 394	CMOS_WRITE(rtc_control, RTC_CONTROL);
 395	if (use_hpet_alarm())
 396		hpet_mask_rtc_irq_bit(mask);
 397
 398	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 399		if (cmos->wake_off)
 400			cmos->wake_off(cmos->dev);
 401	}
 402
 403	cmos_checkintr(cmos, rtc_control);
 404}
 405
 406static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 407{
 408	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 409	struct rtc_time now;
 410
 411	cmos_read_time(dev, &now);
 412
 413	if (!cmos->day_alrm) {
 414		time64_t t_max_date;
 415		time64_t t_alrm;
 416
 417		t_max_date = rtc_tm_to_time64(&now);
 418		t_max_date += 24 * 60 * 60 - 1;
 419		t_alrm = rtc_tm_to_time64(&t->time);
 420		if (t_alrm > t_max_date) {
 421			dev_err(dev,
 422				"Alarms can be up to one day in the future\n");
 423			return -EINVAL;
 424		}
 425	} else if (!cmos->mon_alrm) {
 426		struct rtc_time max_date = now;
 427		time64_t t_max_date;
 428		time64_t t_alrm;
 429		int max_mday;
 430
 431		if (max_date.tm_mon == 11) {
 432			max_date.tm_mon = 0;
 433			max_date.tm_year += 1;
 434		} else {
 435			max_date.tm_mon += 1;
 436		}
 437		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 438		if (max_date.tm_mday > max_mday)
 439			max_date.tm_mday = max_mday;
 440
 441		t_max_date = rtc_tm_to_time64(&max_date);
 442		t_max_date -= 1;
 443		t_alrm = rtc_tm_to_time64(&t->time);
 444		if (t_alrm > t_max_date) {
 445			dev_err(dev,
 446				"Alarms can be up to one month in the future\n");
 447			return -EINVAL;
 448		}
 449	} else {
 450		struct rtc_time max_date = now;
 451		time64_t t_max_date;
 452		time64_t t_alrm;
 453		int max_mday;
 454
 455		max_date.tm_year += 1;
 456		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 457		if (max_date.tm_mday > max_mday)
 458			max_date.tm_mday = max_mday;
 459
 460		t_max_date = rtc_tm_to_time64(&max_date);
 461		t_max_date -= 1;
 462		t_alrm = rtc_tm_to_time64(&t->time);
 463		if (t_alrm > t_max_date) {
 464			dev_err(dev,
 465				"Alarms can be up to one year in the future\n");
 466			return -EINVAL;
 467		}
 468	}
 469
 470	return 0;
 471}
 472
 473struct cmos_set_alarm_callback_param {
 474	struct cmos_rtc *cmos;
 475	unsigned char mon, mday, hrs, min, sec;
 476	struct rtc_wkalrm *t;
 477};
 478
 479/* Note: this function may be executed by mc146818_avoid_UIP() more then
 480 *	 once
 481 */
 482static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
 483				    void *param_in)
 484{
 485	struct cmos_set_alarm_callback_param *p =
 486		(struct cmos_set_alarm_callback_param *)param_in;
 487
 488	/* next rtc irq must not be from previous alarm setting */
 489	cmos_irq_disable(p->cmos, RTC_AIE);
 490
 491	/* update alarm */
 492	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
 493	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
 494	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
 495
 496	/* the system may support an "enhanced" alarm */
 497	if (p->cmos->day_alrm) {
 498		CMOS_WRITE(p->mday, p->cmos->day_alrm);
 499		if (p->cmos->mon_alrm)
 500			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
 501	}
 502
 503	if (use_hpet_alarm()) {
 504		/*
 505		 * FIXME the HPET alarm glue currently ignores day_alrm
 506		 * and mon_alrm ...
 507		 */
 508		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
 509				    p->t->time.tm_sec);
 510	}
 511
 512	if (p->t->enabled)
 513		cmos_irq_enable(p->cmos, RTC_AIE);
 514}
 515
 516static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 517{
 518	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 519	struct cmos_set_alarm_callback_param p = {
 520		.cmos = cmos,
 521		.t = t
 522	};
 523	unsigned char rtc_control;
 524	int ret;
 525
 526	/* This not only a rtc_op, but also called directly */
 527	if (!is_valid_irq(cmos->irq))
 528		return -EIO;
 529
 530	ret = cmos_validate_alarm(dev, t);
 531	if (ret < 0)
 532		return ret;
 533
 534	p.mon = t->time.tm_mon + 1;
 535	p.mday = t->time.tm_mday;
 536	p.hrs = t->time.tm_hour;
 537	p.min = t->time.tm_min;
 538	p.sec = t->time.tm_sec;
 539
 540	spin_lock_irq(&rtc_lock);
 541	rtc_control = CMOS_READ(RTC_CONTROL);
 542	spin_unlock_irq(&rtc_lock);
 543
 544	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 545		/* Writing 0xff means "don't care" or "match all".  */
 546		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
 547		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
 548		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
 549		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
 550		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
 551	}
 552
 553	/*
 554	 * Some Intel chipsets disconnect the alarm registers when the clock
 555	 * update is in progress - during this time writes fail silently.
 556	 *
 557	 * Use mc146818_avoid_UIP() to avoid this.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558	 */
 559	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
 560		return -ETIMEDOUT;
 
 
 
 
 561
 562	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 563
 564	return 0;
 565}
 566
 567static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 568{
 569	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 570	unsigned long	flags;
 571
 
 
 
 572	spin_lock_irqsave(&rtc_lock, flags);
 573
 574	if (enabled)
 575		cmos_irq_enable(cmos, RTC_AIE);
 576	else
 577		cmos_irq_disable(cmos, RTC_AIE);
 578
 579	spin_unlock_irqrestore(&rtc_lock, flags);
 580	return 0;
 581}
 582
 583#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 584
 585static int cmos_procfs(struct device *dev, struct seq_file *seq)
 586{
 587	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 588	unsigned char	rtc_control, valid;
 589
 590	spin_lock_irq(&rtc_lock);
 591	rtc_control = CMOS_READ(RTC_CONTROL);
 592	valid = CMOS_READ(RTC_VALID);
 593	spin_unlock_irq(&rtc_lock);
 594
 595	/* NOTE:  at least ICH6 reports battery status using a different
 596	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 597	 */
 598	seq_printf(seq,
 599		   "periodic_IRQ\t: %s\n"
 600		   "update_IRQ\t: %s\n"
 601		   "HPET_emulated\t: %s\n"
 602		   // "square_wave\t: %s\n"
 603		   "BCD\t\t: %s\n"
 604		   "DST_enable\t: %s\n"
 605		   "periodic_freq\t: %d\n"
 606		   "batt_status\t: %s\n",
 607		   (rtc_control & RTC_PIE) ? "yes" : "no",
 608		   (rtc_control & RTC_UIE) ? "yes" : "no",
 609		   use_hpet_alarm() ? "yes" : "no",
 610		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 611		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 612		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 613		   cmos->rtc->irq_freq,
 614		   (valid & RTC_VRT) ? "okay" : "dead");
 615
 616	return 0;
 617}
 618
 619#else
 620#define	cmos_procfs	NULL
 621#endif
 622
 623static const struct rtc_class_ops cmos_rtc_ops = {
 624	.read_time		= cmos_read_time,
 625	.set_time		= cmos_set_time,
 626	.read_alarm		= cmos_read_alarm,
 627	.set_alarm		= cmos_set_alarm,
 628	.proc			= cmos_procfs,
 629	.alarm_irq_enable	= cmos_alarm_irq_enable,
 630};
 631
 632/*----------------------------------------------------------------*/
 633
 634/*
 635 * All these chips have at least 64 bytes of address space, shared by
 636 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 637 * by boot firmware.  Modern chips have 128 or 256 bytes.
 638 */
 639
 640#define NVRAM_OFFSET	(RTC_REG_D + 1)
 641
 642static int cmos_nvram_read(void *priv, unsigned int off, void *val,
 643			   size_t count)
 
 
 644{
 645	unsigned char *buf = val;
 646	int	retval;
 647
 648	off += NVRAM_OFFSET;
 649	spin_lock_irq(&rtc_lock);
 650	for (retval = 0; count; count--, off++, retval++) {
 651		if (off < 128)
 652			*buf++ = CMOS_READ(off);
 653		else if (can_bank2)
 654			*buf++ = cmos_read_bank2(off);
 655		else
 656			break;
 657	}
 658	spin_unlock_irq(&rtc_lock);
 659
 660	return retval;
 661}
 662
 663static int cmos_nvram_write(void *priv, unsigned int off, void *val,
 664			    size_t count)
 
 
 665{
 666	struct cmos_rtc	*cmos = priv;
 667	unsigned char	*buf = val;
 668	int		retval;
 669
 
 
 670	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 671	 * checksum on part of the NVRAM data.  That's currently ignored
 672	 * here.  If userspace is smart enough to know what fields of
 673	 * NVRAM to update, updating checksums is also part of its job.
 674	 */
 675	off += NVRAM_OFFSET;
 676	spin_lock_irq(&rtc_lock);
 677	for (retval = 0; count; count--, off++, retval++) {
 678		/* don't trash RTC registers */
 679		if (off == cmos->day_alrm
 680				|| off == cmos->mon_alrm
 681				|| off == cmos->century)
 682			buf++;
 683		else if (off < 128)
 684			CMOS_WRITE(*buf++, off);
 685		else if (can_bank2)
 686			cmos_write_bank2(*buf++, off);
 687		else
 688			break;
 689	}
 690	spin_unlock_irq(&rtc_lock);
 691
 692	return retval;
 693}
 694
 
 
 
 
 
 
 
 
 
 
 
 695/*----------------------------------------------------------------*/
 696
 697static struct cmos_rtc	cmos_rtc;
 698
 699static irqreturn_t cmos_interrupt(int irq, void *p)
 700{
 701	u8		irqstat;
 702	u8		rtc_control;
 703
 704	spin_lock(&rtc_lock);
 705
 706	/* When the HPET interrupt handler calls us, the interrupt
 707	 * status is passed as arg1 instead of the irq number.  But
 708	 * always clear irq status, even when HPET is in the way.
 709	 *
 710	 * Note that HPET and RTC are almost certainly out of phase,
 711	 * giving different IRQ status ...
 712	 */
 713	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 714	rtc_control = CMOS_READ(RTC_CONTROL);
 715	if (use_hpet_alarm())
 716		irqstat = (unsigned long)irq & 0xF0;
 717
 718	/* If we were suspended, RTC_CONTROL may not be accurate since the
 719	 * bios may have cleared it.
 720	 */
 721	if (!cmos_rtc.suspend_ctrl)
 722		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 723	else
 724		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 725
 726	/* All Linux RTC alarms should be treated as if they were oneshot.
 727	 * Similar code may be needed in system wakeup paths, in case the
 728	 * alarm woke the system.
 729	 */
 730	if (irqstat & RTC_AIE) {
 731		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 732		rtc_control &= ~RTC_AIE;
 733		CMOS_WRITE(rtc_control, RTC_CONTROL);
 734		if (use_hpet_alarm())
 735			hpet_mask_rtc_irq_bit(RTC_AIE);
 736		CMOS_READ(RTC_INTR_FLAGS);
 737	}
 738	spin_unlock(&rtc_lock);
 739
 740	if (is_intr(irqstat)) {
 741		rtc_update_irq(p, 1, irqstat);
 742		return IRQ_HANDLED;
 743	} else
 744		return IRQ_NONE;
 745}
 746
 747#ifdef	CONFIG_ACPI
 748
 749#include <linux/acpi.h>
 750
 751static u32 rtc_handler(void *context)
 752{
 753	struct device *dev = context;
 754	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 755	unsigned char rtc_control = 0;
 756	unsigned char rtc_intr;
 757	unsigned long flags;
 758
 759
 760	/*
 761	 * Always update rtc irq when ACPI is used as RTC Alarm.
 762	 * Or else, ACPI SCI is enabled during suspend/resume only,
 763	 * update rtc irq in that case.
 764	 */
 765	if (cmos_use_acpi_alarm())
 766		cmos_interrupt(0, (void *)cmos->rtc);
 767	else {
 768		/* Fix me: can we use cmos_interrupt() here as well? */
 769		spin_lock_irqsave(&rtc_lock, flags);
 770		if (cmos_rtc.suspend_ctrl)
 771			rtc_control = CMOS_READ(RTC_CONTROL);
 772		if (rtc_control & RTC_AIE) {
 773			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 774			CMOS_WRITE(rtc_control, RTC_CONTROL);
 775			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 776			rtc_update_irq(cmos->rtc, 1, rtc_intr);
 777		}
 778		spin_unlock_irqrestore(&rtc_lock, flags);
 779	}
 780
 781	pm_wakeup_hard_event(dev);
 782	acpi_clear_event(ACPI_EVENT_RTC);
 783	acpi_disable_event(ACPI_EVENT_RTC, 0);
 784	return ACPI_INTERRUPT_HANDLED;
 785}
 786
 787static void acpi_rtc_event_setup(struct device *dev)
 788{
 789	if (acpi_disabled)
 790		return;
 791
 792	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
 793	/*
 794	 * After the RTC handler is installed, the Fixed_RTC event should
 795	 * be disabled. Only when the RTC alarm is set will it be enabled.
 796	 */
 797	acpi_clear_event(ACPI_EVENT_RTC);
 798	acpi_disable_event(ACPI_EVENT_RTC, 0);
 799}
 800
 801static void acpi_rtc_event_cleanup(void)
 802{
 803	if (acpi_disabled)
 804		return;
 805
 806	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
 807}
 808
 809static void rtc_wake_on(struct device *dev)
 810{
 811	acpi_clear_event(ACPI_EVENT_RTC);
 812	acpi_enable_event(ACPI_EVENT_RTC, 0);
 813}
 814
 815static void rtc_wake_off(struct device *dev)
 816{
 817	acpi_disable_event(ACPI_EVENT_RTC, 0);
 818}
 819
 820#ifdef CONFIG_X86
 821static void use_acpi_alarm_quirks(void)
 822{
 823	switch (boot_cpu_data.x86_vendor) {
 824	case X86_VENDOR_INTEL:
 825		if (dmi_get_bios_year() < 2015)
 826			return;
 827		break;
 828	case X86_VENDOR_AMD:
 829	case X86_VENDOR_HYGON:
 830		if (dmi_get_bios_year() < 2021)
 831			return;
 832		break;
 833	default:
 834		return;
 835	}
 836	if (!is_hpet_enabled())
 837		return;
 838
 839	use_acpi_alarm = true;
 840}
 841#else
 842static inline void use_acpi_alarm_quirks(void) { }
 843#endif
 844
 845static void acpi_cmos_wake_setup(struct device *dev)
 846{
 847	if (acpi_disabled)
 848		return;
 849
 850	use_acpi_alarm_quirks();
 851
 852	cmos_rtc.wake_on = rtc_wake_on;
 853	cmos_rtc.wake_off = rtc_wake_off;
 854
 855	/* ACPI tables bug workaround. */
 856	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
 857		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
 858			acpi_gbl_FADT.month_alarm);
 859		acpi_gbl_FADT.month_alarm = 0;
 860	}
 861
 862	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
 863	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
 864	cmos_rtc.century = acpi_gbl_FADT.century;
 865
 866	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
 867		dev_info(dev, "RTC can wake from S4\n");
 868
 869	/* RTC always wakes from S1/S2/S3, and often S4/STD */
 870	device_init_wakeup(dev, 1);
 871}
 872
 873static void cmos_check_acpi_rtc_status(struct device *dev,
 874					      unsigned char *rtc_control)
 875{
 876	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 877	acpi_event_status rtc_status;
 878	acpi_status status;
 879
 880	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
 881		return;
 882
 883	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
 884	if (ACPI_FAILURE(status)) {
 885		dev_err(dev, "Could not get RTC status\n");
 886	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
 887		unsigned char mask;
 888		*rtc_control &= ~RTC_AIE;
 889		CMOS_WRITE(*rtc_control, RTC_CONTROL);
 890		mask = CMOS_READ(RTC_INTR_FLAGS);
 891		rtc_update_irq(cmos->rtc, 1, mask);
 892	}
 893}
 894
 895#else /* !CONFIG_ACPI */
 896
 897static inline void acpi_rtc_event_setup(struct device *dev)
 898{
 899}
 900
 901static inline void acpi_rtc_event_cleanup(void)
 902{
 903}
 904
 905static inline void acpi_cmos_wake_setup(struct device *dev)
 906{
 907}
 908
 909static inline void cmos_check_acpi_rtc_status(struct device *dev,
 910					      unsigned char *rtc_control)
 911{
 912}
 913#endif /* CONFIG_ACPI */
 914
 915#ifdef	CONFIG_PNP
 916#define	INITSECTION
 917
 918#else
 919#define	INITSECTION	__init
 920#endif
 921
 922#define SECS_PER_DAY	(24 * 60 * 60)
 923#define SECS_PER_MONTH	(28 * SECS_PER_DAY)
 924#define SECS_PER_YEAR	(365 * SECS_PER_DAY)
 925
 926static int INITSECTION
 927cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 928{
 929	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 930	int				retval = 0;
 931	unsigned char			rtc_control;
 932	unsigned			address_space;
 933	u32				flags = 0;
 934	struct nvmem_config nvmem_cfg = {
 935		.name = "cmos_nvram",
 936		.word_size = 1,
 937		.stride = 1,
 938		.reg_read = cmos_nvram_read,
 939		.reg_write = cmos_nvram_write,
 940		.priv = &cmos_rtc,
 941	};
 942
 943	/* there can be only one ... */
 944	if (cmos_rtc.dev)
 945		return -EBUSY;
 946
 947	if (!ports)
 948		return -ENODEV;
 949
 950	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 951	 *
 952	 * REVISIT non-x86 systems may instead use memory space resources
 953	 * (needing ioremap etc), not i/o space resources like this ...
 954	 */
 955	if (RTC_IOMAPPED)
 956		ports = request_region(ports->start, resource_size(ports),
 957				       driver_name);
 958	else
 959		ports = request_mem_region(ports->start, resource_size(ports),
 960					   driver_name);
 961	if (!ports) {
 962		dev_dbg(dev, "i/o registers already in use\n");
 963		return -EBUSY;
 964	}
 965
 966	cmos_rtc.irq = rtc_irq;
 967	cmos_rtc.iomem = ports;
 968
 969	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 970	 * driver did, but don't reject unknown configs.   Old hardware
 971	 * won't address 128 bytes.  Newer chips have multiple banks,
 972	 * though they may not be listed in one I/O resource.
 973	 */
 974#if	defined(CONFIG_ATARI)
 975	address_space = 64;
 976#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 977			|| defined(__sparc__) || defined(__mips__) \
 978			|| defined(__powerpc__)
 979	address_space = 128;
 980#else
 981#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 982	address_space = 128;
 983#endif
 984	if (can_bank2 && ports->end > (ports->start + 1))
 985		address_space = 256;
 986
 987	/* For ACPI systems extension info comes from the FADT.  On others,
 988	 * board specific setup provides it as appropriate.  Systems where
 989	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 990	 * some almost-clones) can provide hooks to make that behave.
 991	 *
 992	 * Note that ACPI doesn't preclude putting these registers into
 993	 * "extended" areas of the chip, including some that we won't yet
 994	 * expect CMOS_READ and friends to handle.
 995	 */
 996	if (info) {
 997		if (info->flags)
 998			flags = info->flags;
 999		if (info->address_space)
1000			address_space = info->address_space;
1001
1002		cmos_rtc.day_alrm = info->rtc_day_alarm;
1003		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1004		cmos_rtc.century = info->rtc_century;
 
 
 
1005
1006		if (info->wake_on && info->wake_off) {
1007			cmos_rtc.wake_on = info->wake_on;
1008			cmos_rtc.wake_off = info->wake_off;
1009		}
1010	} else {
1011		acpi_cmos_wake_setup(dev);
1012	}
1013
1014	if (cmos_rtc.day_alrm >= 128)
1015		cmos_rtc.day_alrm = 0;
1016
1017	if (cmos_rtc.mon_alrm >= 128)
1018		cmos_rtc.mon_alrm = 0;
1019
1020	if (cmos_rtc.century >= 128)
1021		cmos_rtc.century = 0;
1022
1023	cmos_rtc.dev = dev;
1024	dev_set_drvdata(dev, &cmos_rtc);
1025
1026	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
 
1027	if (IS_ERR(cmos_rtc.rtc)) {
1028		retval = PTR_ERR(cmos_rtc.rtc);
1029		goto cleanup0;
1030	}
1031
1032	if (cmos_rtc.mon_alrm)
1033		cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1034	else if (cmos_rtc.day_alrm)
1035		cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1036	else
1037		cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1038
1039	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1040
1041	if (!mc146818_does_rtc_work()) {
1042		dev_warn(dev, "broken or not accessible\n");
1043		retval = -ENXIO;
1044		goto cleanup1;
1045	}
1046
1047	spin_lock_irq(&rtc_lock);
1048
1049	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1050		/* force periodic irq to CMOS reset default of 1024Hz;
1051		 *
1052		 * REVISIT it's been reported that at least one x86_64 ALI
1053		 * mobo doesn't use 32KHz here ... for portability we might
1054		 * need to do something about other clock frequencies.
1055		 */
1056		cmos_rtc.rtc->irq_freq = 1024;
1057		if (use_hpet_alarm())
1058			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1059		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1060	}
1061
1062	/* disable irqs */
1063	if (is_valid_irq(rtc_irq))
1064		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1065
1066	rtc_control = CMOS_READ(RTC_CONTROL);
1067
1068	spin_unlock_irq(&rtc_lock);
1069
1070	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1071		dev_warn(dev, "only 24-hr supported\n");
1072		retval = -ENXIO;
1073		goto cleanup1;
1074	}
1075
1076	if (use_hpet_alarm())
1077		hpet_rtc_timer_init();
1078
1079	if (is_valid_irq(rtc_irq)) {
1080		irq_handler_t rtc_cmos_int_handler;
1081
1082		if (use_hpet_alarm()) {
1083			rtc_cmos_int_handler = hpet_rtc_interrupt;
1084			retval = hpet_register_irq_handler(cmos_interrupt);
1085			if (retval) {
1086				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1087				dev_warn(dev, "hpet_register_irq_handler "
1088						" failed in rtc_init().");
1089				goto cleanup1;
1090			}
1091		} else
1092			rtc_cmos_int_handler = cmos_interrupt;
1093
1094		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1095				0, dev_name(&cmos_rtc.rtc->dev),
1096				cmos_rtc.rtc);
1097		if (retval < 0) {
1098			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1099			goto cleanup1;
1100		}
1101	} else {
1102		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1103	}
1104
1105	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1106
1107	retval = devm_rtc_register_device(cmos_rtc.rtc);
1108	if (retval)
1109		goto cleanup2;
1110
1111	/* Set the sync offset for the periodic 11min update correct */
1112	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1113
1114	/* export at least the first block of NVRAM */
1115	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1116	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1117
1118	/*
1119	 * Everything has gone well so far, so by default register a handler for
1120	 * the ACPI RTC fixed event.
1121	 */
1122	if (!info)
1123		acpi_rtc_event_setup(dev);
1124
1125	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1126		 !is_valid_irq(rtc_irq) ? "no alarms" :
1127		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1128		 cmos_rtc.day_alrm ? "alarms up to one month" :
1129		 "alarms up to one day",
1130		 cmos_rtc.century ? ", y3k" : "",
1131		 nvmem_cfg.size,
1132		 use_hpet_alarm() ? ", hpet irqs" : "");
1133
1134	return 0;
1135
1136cleanup2:
1137	if (is_valid_irq(rtc_irq))
1138		free_irq(rtc_irq, cmos_rtc.rtc);
1139cleanup1:
1140	cmos_rtc.dev = NULL;
 
1141cleanup0:
1142	if (RTC_IOMAPPED)
1143		release_region(ports->start, resource_size(ports));
1144	else
1145		release_mem_region(ports->start, resource_size(ports));
1146	return retval;
1147}
1148
1149static void cmos_do_shutdown(int rtc_irq)
1150{
1151	spin_lock_irq(&rtc_lock);
1152	if (is_valid_irq(rtc_irq))
1153		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1154	spin_unlock_irq(&rtc_lock);
1155}
1156
1157static void cmos_do_remove(struct device *dev)
1158{
1159	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1160	struct resource *ports;
1161
1162	cmos_do_shutdown(cmos->irq);
1163
 
 
1164	if (is_valid_irq(cmos->irq)) {
1165		free_irq(cmos->irq, cmos->rtc);
1166		if (use_hpet_alarm())
1167			hpet_unregister_irq_handler(cmos_interrupt);
1168	}
1169
1170	if (!dev_get_platdata(dev))
1171		acpi_rtc_event_cleanup();
1172
1173	cmos->rtc = NULL;
1174
1175	ports = cmos->iomem;
1176	if (RTC_IOMAPPED)
1177		release_region(ports->start, resource_size(ports));
1178	else
1179		release_mem_region(ports->start, resource_size(ports));
1180	cmos->iomem = NULL;
1181
1182	cmos->dev = NULL;
1183}
1184
1185static int cmos_aie_poweroff(struct device *dev)
1186{
1187	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1188	struct rtc_time now;
1189	time64_t t_now;
1190	int retval = 0;
1191	unsigned char rtc_control;
1192
1193	if (!cmos->alarm_expires)
1194		return -EINVAL;
1195
1196	spin_lock_irq(&rtc_lock);
1197	rtc_control = CMOS_READ(RTC_CONTROL);
1198	spin_unlock_irq(&rtc_lock);
1199
1200	/* We only care about the situation where AIE is disabled. */
1201	if (rtc_control & RTC_AIE)
1202		return -EBUSY;
1203
1204	cmos_read_time(dev, &now);
1205	t_now = rtc_tm_to_time64(&now);
1206
1207	/*
1208	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1209	 * automatically right after shutdown on some buggy boxes.
1210	 * This automatic rebooting issue won't happen when the alarm
1211	 * time is larger than now+1 seconds.
1212	 *
1213	 * If the alarm time is equal to now+1 seconds, the issue can be
1214	 * prevented by cancelling the alarm.
1215	 */
1216	if (cmos->alarm_expires == t_now + 1) {
1217		struct rtc_wkalrm alarm;
1218
1219		/* Cancel the AIE timer by configuring the past time. */
1220		rtc_time64_to_tm(t_now - 1, &alarm.time);
1221		alarm.enabled = 0;
1222		retval = cmos_set_alarm(dev, &alarm);
1223	} else if (cmos->alarm_expires > t_now + 1) {
1224		retval = -EBUSY;
1225	}
1226
1227	return retval;
1228}
1229
1230static int cmos_suspend(struct device *dev)
1231{
1232	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1233	unsigned char	tmp;
1234
1235	/* only the alarm might be a wakeup event source */
1236	spin_lock_irq(&rtc_lock);
1237	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1238	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1239		unsigned char	mask;
1240
1241		if (device_may_wakeup(dev))
1242			mask = RTC_IRQMASK & ~RTC_AIE;
1243		else
1244			mask = RTC_IRQMASK;
1245		tmp &= ~mask;
1246		CMOS_WRITE(tmp, RTC_CONTROL);
1247		if (use_hpet_alarm())
1248			hpet_mask_rtc_irq_bit(mask);
1249		cmos_checkintr(cmos, tmp);
1250	}
1251	spin_unlock_irq(&rtc_lock);
1252
1253	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1254		cmos->enabled_wake = 1;
1255		if (cmos->wake_on)
1256			cmos->wake_on(dev);
1257		else
1258			enable_irq_wake(cmos->irq);
1259	}
1260
1261	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1262	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1263
1264	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1265			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1266			tmp);
1267
1268	return 0;
1269}
1270
1271/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1272 * after a detour through G3 "mechanical off", although the ACPI spec
1273 * says wakeup should only work from G1/S4 "hibernate".  To most users,
1274 * distinctions between S4 and S5 are pointless.  So when the hardware
1275 * allows, don't draw that distinction.
1276 */
1277static inline int cmos_poweroff(struct device *dev)
1278{
1279	if (!IS_ENABLED(CONFIG_PM))
1280		return -ENOSYS;
1281
1282	return cmos_suspend(dev);
1283}
1284
1285static void cmos_check_wkalrm(struct device *dev)
1286{
1287	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1288	struct rtc_wkalrm current_alarm;
1289	time64_t t_now;
1290	time64_t t_current_expires;
1291	time64_t t_saved_expires;
1292	struct rtc_time now;
1293
1294	/* Check if we have RTC Alarm armed */
1295	if (!(cmos->suspend_ctrl & RTC_AIE))
1296		return;
1297
1298	cmos_read_time(dev, &now);
1299	t_now = rtc_tm_to_time64(&now);
1300
1301	/*
1302	 * ACPI RTC wake event is cleared after resume from STR,
1303	 * ACK the rtc irq here
1304	 */
1305	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1306		local_irq_disable();
1307		cmos_interrupt(0, (void *)cmos->rtc);
1308		local_irq_enable();
1309		return;
1310	}
1311
1312	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1313	cmos_read_alarm(dev, &current_alarm);
1314	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1315	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1316	if (t_current_expires != t_saved_expires ||
1317	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1318		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1319	}
1320}
1321
 
 
 
1322static int __maybe_unused cmos_resume(struct device *dev)
1323{
1324	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1325	unsigned char tmp;
1326
1327	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1328		if (cmos->wake_off)
1329			cmos->wake_off(dev);
1330		else
1331			disable_irq_wake(cmos->irq);
1332		cmos->enabled_wake = 0;
1333	}
1334
1335	/* The BIOS might have changed the alarm, restore it */
1336	cmos_check_wkalrm(dev);
1337
1338	spin_lock_irq(&rtc_lock);
1339	tmp = cmos->suspend_ctrl;
1340	cmos->suspend_ctrl = 0;
1341	/* re-enable any irqs previously active */
1342	if (tmp & RTC_IRQMASK) {
1343		unsigned char	mask;
1344
1345		if (device_may_wakeup(dev) && use_hpet_alarm())
1346			hpet_rtc_timer_init();
1347
1348		do {
1349			CMOS_WRITE(tmp, RTC_CONTROL);
1350			if (use_hpet_alarm())
1351				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1352
1353			mask = CMOS_READ(RTC_INTR_FLAGS);
1354			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1355			if (!use_hpet_alarm() || !is_intr(mask))
1356				break;
1357
1358			/* force one-shot behavior if HPET blocked
1359			 * the wake alarm's irq
1360			 */
1361			rtc_update_irq(cmos->rtc, 1, mask);
1362			tmp &= ~RTC_AIE;
1363			hpet_mask_rtc_irq_bit(RTC_AIE);
1364		} while (mask & RTC_AIE);
1365
1366		if (tmp & RTC_AIE)
1367			cmos_check_acpi_rtc_status(dev, &tmp);
1368	}
1369	spin_unlock_irq(&rtc_lock);
1370
1371	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1372
1373	return 0;
1374}
1375
1376static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1377
1378/*----------------------------------------------------------------*/
1379
1380/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1381 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1382 * probably list them in similar PNPBIOS tables; so PNP is more common.
1383 *
1384 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1385 * predate even PNPBIOS should set up platform_bus devices.
1386 */
1387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388#ifdef	CONFIG_PNP
1389
1390#include <linux/pnp.h>
1391
1392static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1393{
1394	int irq;
1395
1396	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1397		irq = 0;
1398#ifdef CONFIG_X86
1399		/* Some machines contain a PNP entry for the RTC, but
1400		 * don't define the IRQ. It should always be safe to
1401		 * hardcode it on systems with a legacy PIC.
1402		 */
1403		if (nr_legacy_irqs())
1404			irq = RTC_IRQ;
1405#endif
1406	} else {
1407		irq = pnp_irq(pnp, 0);
1408	}
1409
1410	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1411}
1412
1413static void cmos_pnp_remove(struct pnp_dev *pnp)
1414{
1415	cmos_do_remove(&pnp->dev);
1416}
1417
1418static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1419{
1420	struct device *dev = &pnp->dev;
1421	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1422
1423	if (system_state == SYSTEM_POWER_OFF) {
1424		int retval = cmos_poweroff(dev);
1425
1426		if (cmos_aie_poweroff(dev) < 0 && !retval)
1427			return;
1428	}
1429
1430	cmos_do_shutdown(cmos->irq);
1431}
1432
1433static const struct pnp_device_id rtc_ids[] = {
1434	{ .id = "PNP0b00", },
1435	{ .id = "PNP0b01", },
1436	{ .id = "PNP0b02", },
1437	{ },
1438};
1439MODULE_DEVICE_TABLE(pnp, rtc_ids);
1440
1441static struct pnp_driver cmos_pnp_driver = {
1442	.name		= driver_name,
1443	.id_table	= rtc_ids,
1444	.probe		= cmos_pnp_probe,
1445	.remove		= cmos_pnp_remove,
1446	.shutdown	= cmos_pnp_shutdown,
1447
1448	/* flag ensures resume() gets called, and stops syslog spam */
1449	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1450	.driver		= {
1451			.pm = &cmos_pm_ops,
1452	},
1453};
1454
1455#endif	/* CONFIG_PNP */
1456
1457#ifdef CONFIG_OF
1458static const struct of_device_id of_cmos_match[] = {
1459	{
1460		.compatible = "motorola,mc146818",
1461	},
1462	{ },
1463};
1464MODULE_DEVICE_TABLE(of, of_cmos_match);
1465
1466static __init void cmos_of_init(struct platform_device *pdev)
1467{
1468	struct device_node *node = pdev->dev.of_node;
 
 
1469	const __be32 *val;
1470
1471	if (!node)
1472		return;
1473
1474	val = of_get_property(node, "ctrl-reg", NULL);
1475	if (val)
1476		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1477
1478	val = of_get_property(node, "freq-reg", NULL);
1479	if (val)
1480		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
 
 
 
 
 
 
 
 
 
 
1481}
1482#else
1483static inline void cmos_of_init(struct platform_device *pdev) {}
1484#endif
1485/*----------------------------------------------------------------*/
1486
1487/* Platform setup should have set up an RTC device, when PNP is
1488 * unavailable ... this could happen even on (older) PCs.
1489 */
1490
1491static int __init cmos_platform_probe(struct platform_device *pdev)
1492{
1493	struct resource *resource;
1494	int irq;
1495
1496	cmos_of_init(pdev);
 
1497
1498	if (RTC_IOMAPPED)
1499		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1500	else
1501		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502	irq = platform_get_irq(pdev, 0);
1503	if (irq < 0)
1504		irq = -1;
1505
1506	return cmos_do_probe(&pdev->dev, resource, irq);
1507}
1508
1509static void cmos_platform_remove(struct platform_device *pdev)
1510{
1511	cmos_do_remove(&pdev->dev);
 
1512}
1513
1514static void cmos_platform_shutdown(struct platform_device *pdev)
1515{
1516	struct device *dev = &pdev->dev;
1517	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1518
1519	if (system_state == SYSTEM_POWER_OFF) {
1520		int retval = cmos_poweroff(dev);
1521
1522		if (cmos_aie_poweroff(dev) < 0 && !retval)
1523			return;
1524	}
1525
1526	cmos_do_shutdown(cmos->irq);
1527}
1528
1529/* work with hotplug and coldplug */
1530MODULE_ALIAS("platform:rtc_cmos");
1531
1532static struct platform_driver cmos_platform_driver = {
1533	.remove_new	= cmos_platform_remove,
1534	.shutdown	= cmos_platform_shutdown,
1535	.driver = {
1536		.name		= driver_name,
1537		.pm		= &cmos_pm_ops,
1538		.of_match_table = of_match_ptr(of_cmos_match),
1539	}
1540};
1541
1542#ifdef CONFIG_PNP
1543static bool pnp_driver_registered;
1544#endif
1545static bool platform_driver_registered;
1546
1547static int __init cmos_init(void)
1548{
1549	int retval = 0;
1550
1551#ifdef	CONFIG_PNP
1552	retval = pnp_register_driver(&cmos_pnp_driver);
1553	if (retval == 0)
1554		pnp_driver_registered = true;
1555#endif
1556
1557	if (!cmos_rtc.dev) {
1558		retval = platform_driver_probe(&cmos_platform_driver,
1559					       cmos_platform_probe);
1560		if (retval == 0)
1561			platform_driver_registered = true;
1562	}
1563
1564	if (retval == 0)
1565		return 0;
1566
1567#ifdef	CONFIG_PNP
1568	if (pnp_driver_registered)
1569		pnp_unregister_driver(&cmos_pnp_driver);
1570#endif
1571	return retval;
1572}
1573module_init(cmos_init);
1574
1575static void __exit cmos_exit(void)
1576{
1577#ifdef	CONFIG_PNP
1578	if (pnp_driver_registered)
1579		pnp_unregister_driver(&cmos_pnp_driver);
1580#endif
1581	if (platform_driver_registered)
1582		platform_driver_unregister(&cmos_platform_driver);
1583}
1584module_exit(cmos_exit);
1585
1586
1587MODULE_AUTHOR("David Brownell");
1588MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1589MODULE_LICENSE("GPL");
v4.10.11
 
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
 
 
 
 
 
  44
  45/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  46#include <linux/mc146818rtc.h>
  47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48struct cmos_rtc {
  49	struct rtc_device	*rtc;
  50	struct device		*dev;
  51	int			irq;
  52	struct resource		*iomem;
  53	time64_t		alarm_expires;
  54
  55	void			(*wake_on)(struct device *);
  56	void			(*wake_off)(struct device *);
  57
  58	u8			enabled_wake;
  59	u8			suspend_ctrl;
  60
  61	/* newer hardware extends the original register set */
  62	u8			day_alrm;
  63	u8			mon_alrm;
  64	u8			century;
  65
  66	struct rtc_wkalrm	saved_wkalrm;
  67};
  68
  69/* both platform and pnp busses use negative numbers for invalid irqs */
  70#define is_valid_irq(n)		((n) > 0)
  71
  72static const char driver_name[] = "rtc_cmos";
  73
  74/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  75 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  77 */
  78#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
  79
  80static inline int is_intr(u8 rtc_intr)
  81{
  82	if (!(rtc_intr & RTC_IRQF))
  83		return 0;
  84	return rtc_intr & RTC_IRQMASK;
  85}
  86
  87/*----------------------------------------------------------------*/
  88
  89/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  91 * used in a broken "legacy replacement" mode.  The breakage includes
  92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  93 * other (better) use.
  94 *
  95 * When that broken mode is in use, platform glue provides a partial
  96 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
  97 * want to use HPET for anything except those IRQs though...
  98 */
  99#ifdef CONFIG_HPET_EMULATE_RTC
 100#include <asm/hpet.h>
 101#else
 102
 103static inline int is_hpet_enabled(void)
 104{
 105	return 0;
 106}
 107
 108static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 109{
 110	return 0;
 111}
 112
 113static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 114{
 115	return 0;
 116}
 117
 118static inline int
 119hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 120{
 121	return 0;
 122}
 123
 124static inline int hpet_set_periodic_freq(unsigned long freq)
 125{
 126	return 0;
 127}
 128
 129static inline int hpet_rtc_dropped_irq(void)
 130{
 131	return 0;
 132}
 133
 134static inline int hpet_rtc_timer_init(void)
 135{
 136	return 0;
 137}
 138
 139extern irq_handler_t hpet_rtc_interrupt;
 140
 141static inline int hpet_register_irq_handler(irq_handler_t handler)
 142{
 143	return 0;
 144}
 145
 146static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 147{
 148	return 0;
 149}
 150
 151#endif
 152
 
 
 
 
 
 
 153/*----------------------------------------------------------------*/
 154
 155#ifdef RTC_PORT
 156
 157/* Most newer x86 systems have two register banks, the first used
 158 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 159 * own rtc_lock ... and we won't worry about access during NMI.
 160 */
 161#define can_bank2	true
 162
 163static inline unsigned char cmos_read_bank2(unsigned char addr)
 164{
 165	outb(addr, RTC_PORT(2));
 166	return inb(RTC_PORT(3));
 167}
 168
 169static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 170{
 171	outb(addr, RTC_PORT(2));
 172	outb(val, RTC_PORT(3));
 173}
 174
 175#else
 176
 177#define can_bank2	false
 178
 179static inline unsigned char cmos_read_bank2(unsigned char addr)
 180{
 181	return 0;
 182}
 183
 184static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 185{
 186}
 187
 188#endif
 189
 190/*----------------------------------------------------------------*/
 191
 192static int cmos_read_time(struct device *dev, struct rtc_time *t)
 193{
 
 
 194	/*
 195	 * If pm_trace abused the RTC for storage, set the timespec to 0,
 196	 * which tells the caller that this RTC value is unusable.
 197	 */
 198	if (!pm_trace_rtc_valid())
 199		return -EIO;
 200
 201	/* REVISIT:  if the clock has a "century" register, use
 202	 * that instead of the heuristic in mc146818_get_time().
 203	 * That'll make Y3K compatility (year > 2070) easy!
 204	 */
 205	mc146818_get_time(t);
 
 206	return 0;
 207}
 208
 209static int cmos_set_time(struct device *dev, struct rtc_time *t)
 210{
 211	/* REVISIT:  set the "century" register if available
 212	 *
 213	 * NOTE: this ignores the issue whereby updating the seconds
 214	 * takes effect exactly 500ms after we write the register.
 215	 * (Also queueing and other delays before we get this far.)
 216	 */
 217	return mc146818_set_time(t);
 218}
 219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 221{
 222	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 223	unsigned char	rtc_control;
 
 
 
 224
 
 225	if (!is_valid_irq(cmos->irq))
 226		return -EIO;
 227
 228	/* Basic alarms only support hour, minute, and seconds fields.
 229	 * Some also support day and month, for alarms up to a year in
 230	 * the future.
 231	 */
 232
 233	spin_lock_irq(&rtc_lock);
 234	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 235	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 236	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 237
 238	if (cmos->day_alrm) {
 239		/* ignore upper bits on readback per ACPI spec */
 240		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 241		if (!t->time.tm_mday)
 242			t->time.tm_mday = -1;
 243
 244		if (cmos->mon_alrm) {
 245			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 246			if (!t->time.tm_mon)
 247				t->time.tm_mon = -1;
 248		}
 249	}
 250
 251	rtc_control = CMOS_READ(RTC_CONTROL);
 252	spin_unlock_irq(&rtc_lock);
 253
 254	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 255		if (((unsigned)t->time.tm_sec) < 0x60)
 256			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 257		else
 258			t->time.tm_sec = -1;
 259		if (((unsigned)t->time.tm_min) < 0x60)
 260			t->time.tm_min = bcd2bin(t->time.tm_min);
 261		else
 262			t->time.tm_min = -1;
 263		if (((unsigned)t->time.tm_hour) < 0x24)
 264			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 265		else
 266			t->time.tm_hour = -1;
 267
 268		if (cmos->day_alrm) {
 269			if (((unsigned)t->time.tm_mday) <= 0x31)
 270				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 271			else
 272				t->time.tm_mday = -1;
 273
 274			if (cmos->mon_alrm) {
 275				if (((unsigned)t->time.tm_mon) <= 0x12)
 276					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 277				else
 278					t->time.tm_mon = -1;
 279			}
 280		}
 281	}
 282
 283	t->enabled = !!(rtc_control & RTC_AIE);
 284	t->pending = 0;
 285
 286	return 0;
 287}
 288
 289static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 290{
 291	unsigned char	rtc_intr;
 292
 293	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 294	 * allegedly some older rtcs need that to handle irqs properly
 295	 */
 296	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 297
 298	if (is_hpet_enabled())
 299		return;
 300
 301	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 302	if (is_intr(rtc_intr))
 303		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 304}
 305
 306static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 307{
 308	unsigned char	rtc_control;
 309
 310	/* flush any pending IRQ status, notably for update irqs,
 311	 * before we enable new IRQs
 312	 */
 313	rtc_control = CMOS_READ(RTC_CONTROL);
 314	cmos_checkintr(cmos, rtc_control);
 315
 316	rtc_control |= mask;
 317	CMOS_WRITE(rtc_control, RTC_CONTROL);
 318	hpet_set_rtc_irq_bit(mask);
 
 
 
 
 
 
 319
 320	cmos_checkintr(cmos, rtc_control);
 321}
 322
 323static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 324{
 325	unsigned char	rtc_control;
 326
 327	rtc_control = CMOS_READ(RTC_CONTROL);
 328	rtc_control &= ~mask;
 329	CMOS_WRITE(rtc_control, RTC_CONTROL);
 330	hpet_mask_rtc_irq_bit(mask);
 
 
 
 
 
 
 331
 332	cmos_checkintr(cmos, rtc_control);
 333}
 334
 335static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 336{
 337	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 338	struct rtc_time now;
 339
 340	cmos_read_time(dev, &now);
 341
 342	if (!cmos->day_alrm) {
 343		time64_t t_max_date;
 344		time64_t t_alrm;
 345
 346		t_max_date = rtc_tm_to_time64(&now);
 347		t_max_date += 24 * 60 * 60 - 1;
 348		t_alrm = rtc_tm_to_time64(&t->time);
 349		if (t_alrm > t_max_date) {
 350			dev_err(dev,
 351				"Alarms can be up to one day in the future\n");
 352			return -EINVAL;
 353		}
 354	} else if (!cmos->mon_alrm) {
 355		struct rtc_time max_date = now;
 356		time64_t t_max_date;
 357		time64_t t_alrm;
 358		int max_mday;
 359
 360		if (max_date.tm_mon == 11) {
 361			max_date.tm_mon = 0;
 362			max_date.tm_year += 1;
 363		} else {
 364			max_date.tm_mon += 1;
 365		}
 366		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 367		if (max_date.tm_mday > max_mday)
 368			max_date.tm_mday = max_mday;
 369
 370		t_max_date = rtc_tm_to_time64(&max_date);
 371		t_max_date -= 1;
 372		t_alrm = rtc_tm_to_time64(&t->time);
 373		if (t_alrm > t_max_date) {
 374			dev_err(dev,
 375				"Alarms can be up to one month in the future\n");
 376			return -EINVAL;
 377		}
 378	} else {
 379		struct rtc_time max_date = now;
 380		time64_t t_max_date;
 381		time64_t t_alrm;
 382		int max_mday;
 383
 384		max_date.tm_year += 1;
 385		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 386		if (max_date.tm_mday > max_mday)
 387			max_date.tm_mday = max_mday;
 388
 389		t_max_date = rtc_tm_to_time64(&max_date);
 390		t_max_date -= 1;
 391		t_alrm = rtc_tm_to_time64(&t->time);
 392		if (t_alrm > t_max_date) {
 393			dev_err(dev,
 394				"Alarms can be up to one year in the future\n");
 395			return -EINVAL;
 396		}
 397	}
 398
 399	return 0;
 400}
 401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 403{
 404	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 405	unsigned char mon, mday, hrs, min, sec, rtc_control;
 
 
 
 
 406	int ret;
 407
 
 408	if (!is_valid_irq(cmos->irq))
 409		return -EIO;
 410
 411	ret = cmos_validate_alarm(dev, t);
 412	if (ret < 0)
 413		return ret;
 414
 415	mon = t->time.tm_mon + 1;
 416	mday = t->time.tm_mday;
 417	hrs = t->time.tm_hour;
 418	min = t->time.tm_min;
 419	sec = t->time.tm_sec;
 420
 
 421	rtc_control = CMOS_READ(RTC_CONTROL);
 
 
 422	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 423		/* Writing 0xff means "don't care" or "match all".  */
 424		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 425		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 426		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 427		min = (min < 60) ? bin2bcd(min) : 0xff;
 428		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 429	}
 430
 431	spin_lock_irq(&rtc_lock);
 432
 433	/* next rtc irq must not be from previous alarm setting */
 434	cmos_irq_disable(cmos, RTC_AIE);
 435
 436	/* update alarm */
 437	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 438	CMOS_WRITE(min, RTC_MINUTES_ALARM);
 439	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 440
 441	/* the system may support an "enhanced" alarm */
 442	if (cmos->day_alrm) {
 443		CMOS_WRITE(mday, cmos->day_alrm);
 444		if (cmos->mon_alrm)
 445			CMOS_WRITE(mon, cmos->mon_alrm);
 446	}
 447
 448	/* FIXME the HPET alarm glue currently ignores day_alrm
 449	 * and mon_alrm ...
 450	 */
 451	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 452
 453	if (t->enabled)
 454		cmos_irq_enable(cmos, RTC_AIE);
 455
 456	spin_unlock_irq(&rtc_lock);
 457
 458	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 459
 460	return 0;
 461}
 462
 463static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 464{
 465	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 466	unsigned long	flags;
 467
 468	if (!is_valid_irq(cmos->irq))
 469		return -EINVAL;
 470
 471	spin_lock_irqsave(&rtc_lock, flags);
 472
 473	if (enabled)
 474		cmos_irq_enable(cmos, RTC_AIE);
 475	else
 476		cmos_irq_disable(cmos, RTC_AIE);
 477
 478	spin_unlock_irqrestore(&rtc_lock, flags);
 479	return 0;
 480}
 481
 482#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 483
 484static int cmos_procfs(struct device *dev, struct seq_file *seq)
 485{
 486	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 487	unsigned char	rtc_control, valid;
 488
 489	spin_lock_irq(&rtc_lock);
 490	rtc_control = CMOS_READ(RTC_CONTROL);
 491	valid = CMOS_READ(RTC_VALID);
 492	spin_unlock_irq(&rtc_lock);
 493
 494	/* NOTE:  at least ICH6 reports battery status using a different
 495	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 496	 */
 497	seq_printf(seq,
 498		   "periodic_IRQ\t: %s\n"
 499		   "update_IRQ\t: %s\n"
 500		   "HPET_emulated\t: %s\n"
 501		   // "square_wave\t: %s\n"
 502		   "BCD\t\t: %s\n"
 503		   "DST_enable\t: %s\n"
 504		   "periodic_freq\t: %d\n"
 505		   "batt_status\t: %s\n",
 506		   (rtc_control & RTC_PIE) ? "yes" : "no",
 507		   (rtc_control & RTC_UIE) ? "yes" : "no",
 508		   is_hpet_enabled() ? "yes" : "no",
 509		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 510		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 511		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 512		   cmos->rtc->irq_freq,
 513		   (valid & RTC_VRT) ? "okay" : "dead");
 514
 515	return 0;
 516}
 517
 518#else
 519#define	cmos_procfs	NULL
 520#endif
 521
 522static const struct rtc_class_ops cmos_rtc_ops = {
 523	.read_time		= cmos_read_time,
 524	.set_time		= cmos_set_time,
 525	.read_alarm		= cmos_read_alarm,
 526	.set_alarm		= cmos_set_alarm,
 527	.proc			= cmos_procfs,
 528	.alarm_irq_enable	= cmos_alarm_irq_enable,
 529};
 530
 531/*----------------------------------------------------------------*/
 532
 533/*
 534 * All these chips have at least 64 bytes of address space, shared by
 535 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 536 * by boot firmware.  Modern chips have 128 or 256 bytes.
 537 */
 538
 539#define NVRAM_OFFSET	(RTC_REG_D + 1)
 540
 541static ssize_t
 542cmos_nvram_read(struct file *filp, struct kobject *kobj,
 543		struct bin_attribute *attr,
 544		char *buf, loff_t off, size_t count)
 545{
 
 546	int	retval;
 547
 548	off += NVRAM_OFFSET;
 549	spin_lock_irq(&rtc_lock);
 550	for (retval = 0; count; count--, off++, retval++) {
 551		if (off < 128)
 552			*buf++ = CMOS_READ(off);
 553		else if (can_bank2)
 554			*buf++ = cmos_read_bank2(off);
 555		else
 556			break;
 557	}
 558	spin_unlock_irq(&rtc_lock);
 559
 560	return retval;
 561}
 562
 563static ssize_t
 564cmos_nvram_write(struct file *filp, struct kobject *kobj,
 565		struct bin_attribute *attr,
 566		char *buf, loff_t off, size_t count)
 567{
 568	struct cmos_rtc	*cmos;
 
 569	int		retval;
 570
 571	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
 572
 573	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 574	 * checksum on part of the NVRAM data.  That's currently ignored
 575	 * here.  If userspace is smart enough to know what fields of
 576	 * NVRAM to update, updating checksums is also part of its job.
 577	 */
 578	off += NVRAM_OFFSET;
 579	spin_lock_irq(&rtc_lock);
 580	for (retval = 0; count; count--, off++, retval++) {
 581		/* don't trash RTC registers */
 582		if (off == cmos->day_alrm
 583				|| off == cmos->mon_alrm
 584				|| off == cmos->century)
 585			buf++;
 586		else if (off < 128)
 587			CMOS_WRITE(*buf++, off);
 588		else if (can_bank2)
 589			cmos_write_bank2(*buf++, off);
 590		else
 591			break;
 592	}
 593	spin_unlock_irq(&rtc_lock);
 594
 595	return retval;
 596}
 597
 598static struct bin_attribute nvram = {
 599	.attr = {
 600		.name	= "nvram",
 601		.mode	= S_IRUGO | S_IWUSR,
 602	},
 603
 604	.read	= cmos_nvram_read,
 605	.write	= cmos_nvram_write,
 606	/* size gets set up later */
 607};
 608
 609/*----------------------------------------------------------------*/
 610
 611static struct cmos_rtc	cmos_rtc;
 612
 613static irqreturn_t cmos_interrupt(int irq, void *p)
 614{
 615	u8		irqstat;
 616	u8		rtc_control;
 617
 618	spin_lock(&rtc_lock);
 619
 620	/* When the HPET interrupt handler calls us, the interrupt
 621	 * status is passed as arg1 instead of the irq number.  But
 622	 * always clear irq status, even when HPET is in the way.
 623	 *
 624	 * Note that HPET and RTC are almost certainly out of phase,
 625	 * giving different IRQ status ...
 626	 */
 627	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 628	rtc_control = CMOS_READ(RTC_CONTROL);
 629	if (is_hpet_enabled())
 630		irqstat = (unsigned long)irq & 0xF0;
 631
 632	/* If we were suspended, RTC_CONTROL may not be accurate since the
 633	 * bios may have cleared it.
 634	 */
 635	if (!cmos_rtc.suspend_ctrl)
 636		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 637	else
 638		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 639
 640	/* All Linux RTC alarms should be treated as if they were oneshot.
 641	 * Similar code may be needed in system wakeup paths, in case the
 642	 * alarm woke the system.
 643	 */
 644	if (irqstat & RTC_AIE) {
 645		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 646		rtc_control &= ~RTC_AIE;
 647		CMOS_WRITE(rtc_control, RTC_CONTROL);
 648		hpet_mask_rtc_irq_bit(RTC_AIE);
 
 649		CMOS_READ(RTC_INTR_FLAGS);
 650	}
 651	spin_unlock(&rtc_lock);
 652
 653	if (is_intr(irqstat)) {
 654		rtc_update_irq(p, 1, irqstat);
 655		return IRQ_HANDLED;
 656	} else
 657		return IRQ_NONE;
 658}
 659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660#ifdef	CONFIG_PNP
 661#define	INITSECTION
 662
 663#else
 664#define	INITSECTION	__init
 665#endif
 666
 
 
 
 
 667static int INITSECTION
 668cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 669{
 670	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 671	int				retval = 0;
 672	unsigned char			rtc_control;
 673	unsigned			address_space;
 674	u32				flags = 0;
 
 
 
 
 
 
 
 
 675
 676	/* there can be only one ... */
 677	if (cmos_rtc.dev)
 678		return -EBUSY;
 679
 680	if (!ports)
 681		return -ENODEV;
 682
 683	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 684	 *
 685	 * REVISIT non-x86 systems may instead use memory space resources
 686	 * (needing ioremap etc), not i/o space resources like this ...
 687	 */
 688	if (RTC_IOMAPPED)
 689		ports = request_region(ports->start, resource_size(ports),
 690				       driver_name);
 691	else
 692		ports = request_mem_region(ports->start, resource_size(ports),
 693					   driver_name);
 694	if (!ports) {
 695		dev_dbg(dev, "i/o registers already in use\n");
 696		return -EBUSY;
 697	}
 698
 699	cmos_rtc.irq = rtc_irq;
 700	cmos_rtc.iomem = ports;
 701
 702	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 703	 * driver did, but don't reject unknown configs.   Old hardware
 704	 * won't address 128 bytes.  Newer chips have multiple banks,
 705	 * though they may not be listed in one I/O resource.
 706	 */
 707#if	defined(CONFIG_ATARI)
 708	address_space = 64;
 709#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 710			|| defined(__sparc__) || defined(__mips__) \
 711			|| defined(__powerpc__) || defined(CONFIG_MN10300)
 712	address_space = 128;
 713#else
 714#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 715	address_space = 128;
 716#endif
 717	if (can_bank2 && ports->end > (ports->start + 1))
 718		address_space = 256;
 719
 720	/* For ACPI systems extension info comes from the FADT.  On others,
 721	 * board specific setup provides it as appropriate.  Systems where
 722	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 723	 * some almost-clones) can provide hooks to make that behave.
 724	 *
 725	 * Note that ACPI doesn't preclude putting these registers into
 726	 * "extended" areas of the chip, including some that we won't yet
 727	 * expect CMOS_READ and friends to handle.
 728	 */
 729	if (info) {
 730		if (info->flags)
 731			flags = info->flags;
 732		if (info->address_space)
 733			address_space = info->address_space;
 734
 735		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 736			cmos_rtc.day_alrm = info->rtc_day_alarm;
 737		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 738			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 739		if (info->rtc_century && info->rtc_century < 128)
 740			cmos_rtc.century = info->rtc_century;
 741
 742		if (info->wake_on && info->wake_off) {
 743			cmos_rtc.wake_on = info->wake_on;
 744			cmos_rtc.wake_off = info->wake_off;
 745		}
 
 
 746	}
 747
 
 
 
 
 
 
 
 
 
 748	cmos_rtc.dev = dev;
 749	dev_set_drvdata(dev, &cmos_rtc);
 750
 751	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
 752				&cmos_rtc_ops, THIS_MODULE);
 753	if (IS_ERR(cmos_rtc.rtc)) {
 754		retval = PTR_ERR(cmos_rtc.rtc);
 755		goto cleanup0;
 756	}
 757
 
 
 
 
 
 
 
 758	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 759
 
 
 
 
 
 
 760	spin_lock_irq(&rtc_lock);
 761
 762	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 763		/* force periodic irq to CMOS reset default of 1024Hz;
 764		 *
 765		 * REVISIT it's been reported that at least one x86_64 ALI
 766		 * mobo doesn't use 32KHz here ... for portability we might
 767		 * need to do something about other clock frequencies.
 768		 */
 769		cmos_rtc.rtc->irq_freq = 1024;
 770		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 
 771		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 772	}
 773
 774	/* disable irqs */
 775	if (is_valid_irq(rtc_irq))
 776		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 777
 778	rtc_control = CMOS_READ(RTC_CONTROL);
 779
 780	spin_unlock_irq(&rtc_lock);
 781
 782	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 783		dev_warn(dev, "only 24-hr supported\n");
 784		retval = -ENXIO;
 785		goto cleanup1;
 786	}
 787
 788	hpet_rtc_timer_init();
 
 789
 790	if (is_valid_irq(rtc_irq)) {
 791		irq_handler_t rtc_cmos_int_handler;
 792
 793		if (is_hpet_enabled()) {
 794			rtc_cmos_int_handler = hpet_rtc_interrupt;
 795			retval = hpet_register_irq_handler(cmos_interrupt);
 796			if (retval) {
 797				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 798				dev_warn(dev, "hpet_register_irq_handler "
 799						" failed in rtc_init().");
 800				goto cleanup1;
 801			}
 802		} else
 803			rtc_cmos_int_handler = cmos_interrupt;
 804
 805		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 806				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 807				cmos_rtc.rtc);
 808		if (retval < 0) {
 809			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 810			goto cleanup1;
 811		}
 
 
 812	}
 813
 
 
 
 
 
 
 
 
 
 814	/* export at least the first block of NVRAM */
 815	nvram.size = address_space - NVRAM_OFFSET;
 816	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
 817	if (retval < 0) {
 818		dev_dbg(dev, "can't create nvram file? %d\n", retval);
 819		goto cleanup2;
 820	}
 
 
 
 821
 822	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
 823		!is_valid_irq(rtc_irq) ? "no alarms" :
 824			cmos_rtc.mon_alrm ? "alarms up to one year" :
 825			cmos_rtc.day_alrm ? "alarms up to one month" :
 826			"alarms up to one day",
 827		cmos_rtc.century ? ", y3k" : "",
 828		nvram.size,
 829		is_hpet_enabled() ? ", hpet irqs" : "");
 830
 831	return 0;
 832
 833cleanup2:
 834	if (is_valid_irq(rtc_irq))
 835		free_irq(rtc_irq, cmos_rtc.rtc);
 836cleanup1:
 837	cmos_rtc.dev = NULL;
 838	rtc_device_unregister(cmos_rtc.rtc);
 839cleanup0:
 840	if (RTC_IOMAPPED)
 841		release_region(ports->start, resource_size(ports));
 842	else
 843		release_mem_region(ports->start, resource_size(ports));
 844	return retval;
 845}
 846
 847static void cmos_do_shutdown(int rtc_irq)
 848{
 849	spin_lock_irq(&rtc_lock);
 850	if (is_valid_irq(rtc_irq))
 851		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 852	spin_unlock_irq(&rtc_lock);
 853}
 854
 855static void cmos_do_remove(struct device *dev)
 856{
 857	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 858	struct resource *ports;
 859
 860	cmos_do_shutdown(cmos->irq);
 861
 862	sysfs_remove_bin_file(&dev->kobj, &nvram);
 863
 864	if (is_valid_irq(cmos->irq)) {
 865		free_irq(cmos->irq, cmos->rtc);
 866		hpet_unregister_irq_handler(cmos_interrupt);
 
 867	}
 868
 869	rtc_device_unregister(cmos->rtc);
 
 
 870	cmos->rtc = NULL;
 871
 872	ports = cmos->iomem;
 873	if (RTC_IOMAPPED)
 874		release_region(ports->start, resource_size(ports));
 875	else
 876		release_mem_region(ports->start, resource_size(ports));
 877	cmos->iomem = NULL;
 878
 879	cmos->dev = NULL;
 880}
 881
 882static int cmos_aie_poweroff(struct device *dev)
 883{
 884	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 885	struct rtc_time now;
 886	time64_t t_now;
 887	int retval = 0;
 888	unsigned char rtc_control;
 889
 890	if (!cmos->alarm_expires)
 891		return -EINVAL;
 892
 893	spin_lock_irq(&rtc_lock);
 894	rtc_control = CMOS_READ(RTC_CONTROL);
 895	spin_unlock_irq(&rtc_lock);
 896
 897	/* We only care about the situation where AIE is disabled. */
 898	if (rtc_control & RTC_AIE)
 899		return -EBUSY;
 900
 901	cmos_read_time(dev, &now);
 902	t_now = rtc_tm_to_time64(&now);
 903
 904	/*
 905	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 906	 * automatically right after shutdown on some buggy boxes.
 907	 * This automatic rebooting issue won't happen when the alarm
 908	 * time is larger than now+1 seconds.
 909	 *
 910	 * If the alarm time is equal to now+1 seconds, the issue can be
 911	 * prevented by cancelling the alarm.
 912	 */
 913	if (cmos->alarm_expires == t_now + 1) {
 914		struct rtc_wkalrm alarm;
 915
 916		/* Cancel the AIE timer by configuring the past time. */
 917		rtc_time64_to_tm(t_now - 1, &alarm.time);
 918		alarm.enabled = 0;
 919		retval = cmos_set_alarm(dev, &alarm);
 920	} else if (cmos->alarm_expires > t_now + 1) {
 921		retval = -EBUSY;
 922	}
 923
 924	return retval;
 925}
 926
 927static int cmos_suspend(struct device *dev)
 928{
 929	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 930	unsigned char	tmp;
 931
 932	/* only the alarm might be a wakeup event source */
 933	spin_lock_irq(&rtc_lock);
 934	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 935	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 936		unsigned char	mask;
 937
 938		if (device_may_wakeup(dev))
 939			mask = RTC_IRQMASK & ~RTC_AIE;
 940		else
 941			mask = RTC_IRQMASK;
 942		tmp &= ~mask;
 943		CMOS_WRITE(tmp, RTC_CONTROL);
 944		hpet_mask_rtc_irq_bit(mask);
 945
 946		cmos_checkintr(cmos, tmp);
 947	}
 948	spin_unlock_irq(&rtc_lock);
 949
 950	if (tmp & RTC_AIE) {
 951		cmos->enabled_wake = 1;
 952		if (cmos->wake_on)
 953			cmos->wake_on(dev);
 954		else
 955			enable_irq_wake(cmos->irq);
 956	}
 957
 
 958	cmos_read_alarm(dev, &cmos->saved_wkalrm);
 959
 960	dev_dbg(dev, "suspend%s, ctrl %02x\n",
 961			(tmp & RTC_AIE) ? ", alarm may wake" : "",
 962			tmp);
 963
 964	return 0;
 965}
 966
 967/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 968 * after a detour through G3 "mechanical off", although the ACPI spec
 969 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 970 * distinctions between S4 and S5 are pointless.  So when the hardware
 971 * allows, don't draw that distinction.
 972 */
 973static inline int cmos_poweroff(struct device *dev)
 974{
 975	if (!IS_ENABLED(CONFIG_PM))
 976		return -ENOSYS;
 977
 978	return cmos_suspend(dev);
 979}
 980
 981static void cmos_check_wkalrm(struct device *dev)
 982{
 983	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 984	struct rtc_wkalrm current_alarm;
 
 985	time64_t t_current_expires;
 986	time64_t t_saved_expires;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 
 988	cmos_read_alarm(dev, &current_alarm);
 989	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
 990	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
 991	if (t_current_expires != t_saved_expires ||
 992	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
 993		cmos_set_alarm(dev, &cmos->saved_wkalrm);
 994	}
 995}
 996
 997static void cmos_check_acpi_rtc_status(struct device *dev,
 998				       unsigned char *rtc_control);
 999
1000static int __maybe_unused cmos_resume(struct device *dev)
1001{
1002	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1003	unsigned char tmp;
1004
1005	if (cmos->enabled_wake) {
1006		if (cmos->wake_off)
1007			cmos->wake_off(dev);
1008		else
1009			disable_irq_wake(cmos->irq);
1010		cmos->enabled_wake = 0;
1011	}
1012
1013	/* The BIOS might have changed the alarm, restore it */
1014	cmos_check_wkalrm(dev);
1015
1016	spin_lock_irq(&rtc_lock);
1017	tmp = cmos->suspend_ctrl;
1018	cmos->suspend_ctrl = 0;
1019	/* re-enable any irqs previously active */
1020	if (tmp & RTC_IRQMASK) {
1021		unsigned char	mask;
1022
1023		if (device_may_wakeup(dev))
1024			hpet_rtc_timer_init();
1025
1026		do {
1027			CMOS_WRITE(tmp, RTC_CONTROL);
1028			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
 
1029
1030			mask = CMOS_READ(RTC_INTR_FLAGS);
1031			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1032			if (!is_hpet_enabled() || !is_intr(mask))
1033				break;
1034
1035			/* force one-shot behavior if HPET blocked
1036			 * the wake alarm's irq
1037			 */
1038			rtc_update_irq(cmos->rtc, 1, mask);
1039			tmp &= ~RTC_AIE;
1040			hpet_mask_rtc_irq_bit(RTC_AIE);
1041		} while (mask & RTC_AIE);
1042
1043		if (tmp & RTC_AIE)
1044			cmos_check_acpi_rtc_status(dev, &tmp);
1045	}
1046	spin_unlock_irq(&rtc_lock);
1047
1048	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1049
1050	return 0;
1051}
1052
1053static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1054
1055/*----------------------------------------------------------------*/
1056
1057/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1058 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1059 * probably list them in similar PNPBIOS tables; so PNP is more common.
1060 *
1061 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1062 * predate even PNPBIOS should set up platform_bus devices.
1063 */
1064
1065#ifdef	CONFIG_ACPI
1066
1067#include <linux/acpi.h>
1068
1069static u32 rtc_handler(void *context)
1070{
1071	struct device *dev = context;
1072	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1073	unsigned char rtc_control = 0;
1074	unsigned char rtc_intr;
1075	unsigned long flags;
1076
1077	spin_lock_irqsave(&rtc_lock, flags);
1078	if (cmos_rtc.suspend_ctrl)
1079		rtc_control = CMOS_READ(RTC_CONTROL);
1080	if (rtc_control & RTC_AIE) {
1081		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1082		CMOS_WRITE(rtc_control, RTC_CONTROL);
1083		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1084		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1085	}
1086	spin_unlock_irqrestore(&rtc_lock, flags);
1087
1088	pm_wakeup_event(dev, 0);
1089	acpi_clear_event(ACPI_EVENT_RTC);
1090	acpi_disable_event(ACPI_EVENT_RTC, 0);
1091	return ACPI_INTERRUPT_HANDLED;
1092}
1093
1094static inline void rtc_wake_setup(struct device *dev)
1095{
1096	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1097	/*
1098	 * After the RTC handler is installed, the Fixed_RTC event should
1099	 * be disabled. Only when the RTC alarm is set will it be enabled.
1100	 */
1101	acpi_clear_event(ACPI_EVENT_RTC);
1102	acpi_disable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_on(struct device *dev)
1106{
1107	acpi_clear_event(ACPI_EVENT_RTC);
1108	acpi_enable_event(ACPI_EVENT_RTC, 0);
1109}
1110
1111static void rtc_wake_off(struct device *dev)
1112{
1113	acpi_disable_event(ACPI_EVENT_RTC, 0);
1114}
1115
1116/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1117 * its device node and pass extra config data.  This helps its driver use
1118 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1119 * that this board's RTC is wakeup-capable (per ACPI spec).
1120 */
1121static struct cmos_rtc_board_info acpi_rtc_info;
1122
1123static void cmos_wake_setup(struct device *dev)
1124{
1125	if (acpi_disabled)
1126		return;
1127
1128	rtc_wake_setup(dev);
1129	acpi_rtc_info.wake_on = rtc_wake_on;
1130	acpi_rtc_info.wake_off = rtc_wake_off;
1131
1132	/* workaround bug in some ACPI tables */
1133	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1134		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1135			acpi_gbl_FADT.month_alarm);
1136		acpi_gbl_FADT.month_alarm = 0;
1137	}
1138
1139	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1140	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1141	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1142
1143	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1144	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1145		dev_info(dev, "RTC can wake from S4\n");
1146
1147	dev->platform_data = &acpi_rtc_info;
1148
1149	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1150	device_init_wakeup(dev, 1);
1151}
1152
1153static void cmos_check_acpi_rtc_status(struct device *dev,
1154				       unsigned char *rtc_control)
1155{
1156	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1157	acpi_event_status rtc_status;
1158	acpi_status status;
1159
1160	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1161		return;
1162
1163	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1164	if (ACPI_FAILURE(status)) {
1165		dev_err(dev, "Could not get RTC status\n");
1166	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1167		unsigned char mask;
1168		*rtc_control &= ~RTC_AIE;
1169		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1170		mask = CMOS_READ(RTC_INTR_FLAGS);
1171		rtc_update_irq(cmos->rtc, 1, mask);
1172	}
1173}
1174
1175#else
1176
1177static void cmos_wake_setup(struct device *dev)
1178{
1179}
1180
1181static void cmos_check_acpi_rtc_status(struct device *dev,
1182				       unsigned char *rtc_control)
1183{
1184}
1185
1186#endif
1187
1188#ifdef	CONFIG_PNP
1189
1190#include <linux/pnp.h>
1191
1192static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1193{
1194	cmos_wake_setup(&pnp->dev);
1195
1196	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
 
 
1197		/* Some machines contain a PNP entry for the RTC, but
1198		 * don't define the IRQ. It should always be safe to
1199		 * hardcode it in these cases
1200		 */
1201		return cmos_do_probe(&pnp->dev,
1202				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1203	else
1204		return cmos_do_probe(&pnp->dev,
1205				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1206				pnp_irq(pnp, 0));
 
 
1207}
1208
1209static void cmos_pnp_remove(struct pnp_dev *pnp)
1210{
1211	cmos_do_remove(&pnp->dev);
1212}
1213
1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215{
1216	struct device *dev = &pnp->dev;
1217	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1218
1219	if (system_state == SYSTEM_POWER_OFF) {
1220		int retval = cmos_poweroff(dev);
1221
1222		if (cmos_aie_poweroff(dev) < 0 && !retval)
1223			return;
1224	}
1225
1226	cmos_do_shutdown(cmos->irq);
1227}
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230	{ .id = "PNP0b00", },
1231	{ .id = "PNP0b01", },
1232	{ .id = "PNP0b02", },
1233	{ },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238	.name		= (char *) driver_name,
1239	.id_table	= rtc_ids,
1240	.probe		= cmos_pnp_probe,
1241	.remove		= cmos_pnp_remove,
1242	.shutdown	= cmos_pnp_shutdown,
1243
1244	/* flag ensures resume() gets called, and stops syslog spam */
1245	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1246	.driver		= {
1247			.pm = &cmos_pm_ops,
1248	},
1249};
1250
1251#endif	/* CONFIG_PNP */
1252
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255	{
1256		.compatible = "motorola,mc146818",
1257	},
1258	{ },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264	struct device_node *node = pdev->dev.of_node;
1265	struct rtc_time time;
1266	int ret;
1267	const __be32 *val;
1268
1269	if (!node)
1270		return;
1271
1272	val = of_get_property(node, "ctrl-reg", NULL);
1273	if (val)
1274		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1275
1276	val = of_get_property(node, "freq-reg", NULL);
1277	if (val)
1278		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1279
1280	cmos_read_time(&pdev->dev, &time);
1281	ret = rtc_valid_tm(&time);
1282	if (ret) {
1283		struct rtc_time def_time = {
1284			.tm_year = 1,
1285			.tm_mday = 1,
1286		};
1287		cmos_set_time(&pdev->dev, &def_time);
1288	}
1289}
1290#else
1291static inline void cmos_of_init(struct platform_device *pdev) {}
1292#endif
1293/*----------------------------------------------------------------*/
1294
1295/* Platform setup should have set up an RTC device, when PNP is
1296 * unavailable ... this could happen even on (older) PCs.
1297 */
1298
1299static int __init cmos_platform_probe(struct platform_device *pdev)
1300{
1301	struct resource *resource;
1302	int irq;
1303
1304	cmos_of_init(pdev);
1305	cmos_wake_setup(&pdev->dev);
1306
1307	if (RTC_IOMAPPED)
1308		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1309	else
1310		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311	irq = platform_get_irq(pdev, 0);
1312	if (irq < 0)
1313		irq = -1;
1314
1315	return cmos_do_probe(&pdev->dev, resource, irq);
1316}
1317
1318static int cmos_platform_remove(struct platform_device *pdev)
1319{
1320	cmos_do_remove(&pdev->dev);
1321	return 0;
1322}
1323
1324static void cmos_platform_shutdown(struct platform_device *pdev)
1325{
1326	struct device *dev = &pdev->dev;
1327	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1328
1329	if (system_state == SYSTEM_POWER_OFF) {
1330		int retval = cmos_poweroff(dev);
1331
1332		if (cmos_aie_poweroff(dev) < 0 && !retval)
1333			return;
1334	}
1335
1336	cmos_do_shutdown(cmos->irq);
1337}
1338
1339/* work with hotplug and coldplug */
1340MODULE_ALIAS("platform:rtc_cmos");
1341
1342static struct platform_driver cmos_platform_driver = {
1343	.remove		= cmos_platform_remove,
1344	.shutdown	= cmos_platform_shutdown,
1345	.driver = {
1346		.name		= driver_name,
1347		.pm		= &cmos_pm_ops,
1348		.of_match_table = of_match_ptr(of_cmos_match),
1349	}
1350};
1351
1352#ifdef CONFIG_PNP
1353static bool pnp_driver_registered;
1354#endif
1355static bool platform_driver_registered;
1356
1357static int __init cmos_init(void)
1358{
1359	int retval = 0;
1360
1361#ifdef	CONFIG_PNP
1362	retval = pnp_register_driver(&cmos_pnp_driver);
1363	if (retval == 0)
1364		pnp_driver_registered = true;
1365#endif
1366
1367	if (!cmos_rtc.dev) {
1368		retval = platform_driver_probe(&cmos_platform_driver,
1369					       cmos_platform_probe);
1370		if (retval == 0)
1371			platform_driver_registered = true;
1372	}
1373
1374	if (retval == 0)
1375		return 0;
1376
1377#ifdef	CONFIG_PNP
1378	if (pnp_driver_registered)
1379		pnp_unregister_driver(&cmos_pnp_driver);
1380#endif
1381	return retval;
1382}
1383module_init(cmos_init);
1384
1385static void __exit cmos_exit(void)
1386{
1387#ifdef	CONFIG_PNP
1388	if (pnp_driver_registered)
1389		pnp_unregister_driver(&cmos_pnp_driver);
1390#endif
1391	if (platform_driver_registered)
1392		platform_driver_unregister(&cmos_platform_driver);
1393}
1394module_exit(cmos_exit);
1395
1396
1397MODULE_AUTHOR("David Brownell");
1398MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1399MODULE_LICENSE("GPL");