Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * MTD device concatenation layer
  4 *
  5 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
  6 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * NAND support by Christian Gan <cgan@iders.ca>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/slab.h>
 14#include <linux/sched.h>
 15#include <linux/types.h>
 16#include <linux/backing-dev.h>
 17
 18#include <linux/mtd/mtd.h>
 19#include <linux/mtd/concat.h>
 20
 21#include <asm/div64.h>
 22
 23/*
 24 * Our storage structure:
 25 * Subdev points to an array of pointers to struct mtd_info objects
 26 * which is allocated along with this structure
 27 *
 28 */
 29struct mtd_concat {
 30	struct mtd_info mtd;
 31	int num_subdev;
 32	struct mtd_info **subdev;
 33};
 34
 35/*
 36 * how to calculate the size required for the above structure,
 37 * including the pointer array subdev points to:
 38 */
 39#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
 40	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
 41
 42/*
 43 * Given a pointer to the MTD object in the mtd_concat structure,
 44 * we can retrieve the pointer to that structure with this macro.
 45 */
 46#define CONCAT(x)  ((struct mtd_concat *)(x))
 47
 48/*
 49 * MTD methods which look up the relevant subdevice, translate the
 50 * effective address and pass through to the subdevice.
 51 */
 52
 53static int
 54concat_read(struct mtd_info *mtd, loff_t from, size_t len,
 55	    size_t * retlen, u_char * buf)
 56{
 57	struct mtd_concat *concat = CONCAT(mtd);
 58	int ret = 0, err;
 59	int i;
 60
 61	for (i = 0; i < concat->num_subdev; i++) {
 62		struct mtd_info *subdev = concat->subdev[i];
 63		size_t size, retsize;
 64
 65		if (from >= subdev->size) {
 66			/* Not destined for this subdev */
 67			size = 0;
 68			from -= subdev->size;
 69			continue;
 70		}
 71		if (from + len > subdev->size)
 72			/* First part goes into this subdev */
 73			size = subdev->size - from;
 74		else
 75			/* Entire transaction goes into this subdev */
 76			size = len;
 77
 78		err = mtd_read(subdev, from, size, &retsize, buf);
 79
 80		/* Save information about bitflips! */
 81		if (unlikely(err)) {
 82			if (mtd_is_eccerr(err)) {
 83				mtd->ecc_stats.failed++;
 84				ret = err;
 85			} else if (mtd_is_bitflip(err)) {
 86				mtd->ecc_stats.corrected++;
 87				/* Do not overwrite -EBADMSG !! */
 88				if (!ret)
 89					ret = err;
 90			} else
 91				return err;
 92		}
 93
 94		*retlen += retsize;
 95		len -= size;
 96		if (len == 0)
 97			return ret;
 98
 99		buf += size;
100		from = 0;
101	}
102	return -EINVAL;
103}
104
105static int
106concat_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
107	     size_t * retlen, const u_char * buf)
108{
109	struct mtd_concat *concat = CONCAT(mtd);
110	int err = -EINVAL;
111	int i;
112	for (i = 0; i < concat->num_subdev; i++) {
113		struct mtd_info *subdev = concat->subdev[i];
114		size_t size, retsize;
115
116		if (to >= subdev->size) {
117			to -= subdev->size;
118			continue;
119		}
120		if (to + len > subdev->size)
121			size = subdev->size - to;
122		else
123			size = len;
124
125		err = mtd_panic_write(subdev, to, size, &retsize, buf);
126		if (err == -EOPNOTSUPP) {
127			printk(KERN_ERR "mtdconcat: Cannot write from panic without panic_write\n");
128			return err;
129		}
130		if (err)
131			break;
132
133		*retlen += retsize;
134		len -= size;
135		if (len == 0)
136			break;
137
138		err = -EINVAL;
139		buf += size;
140		to = 0;
141	}
142	return err;
143}
144
145
146static int
147concat_write(struct mtd_info *mtd, loff_t to, size_t len,
148	     size_t * retlen, const u_char * buf)
149{
150	struct mtd_concat *concat = CONCAT(mtd);
151	int err = -EINVAL;
152	int i;
153
154	for (i = 0; i < concat->num_subdev; i++) {
155		struct mtd_info *subdev = concat->subdev[i];
156		size_t size, retsize;
157
158		if (to >= subdev->size) {
159			size = 0;
160			to -= subdev->size;
161			continue;
162		}
163		if (to + len > subdev->size)
164			size = subdev->size - to;
165		else
166			size = len;
167
168		err = mtd_write(subdev, to, size, &retsize, buf);
169		if (err)
170			break;
171
172		*retlen += retsize;
173		len -= size;
174		if (len == 0)
175			break;
176
177		err = -EINVAL;
178		buf += size;
179		to = 0;
180	}
181	return err;
182}
183
184static int
185concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
186		unsigned long count, loff_t to, size_t * retlen)
187{
188	struct mtd_concat *concat = CONCAT(mtd);
189	struct kvec *vecs_copy;
190	unsigned long entry_low, entry_high;
191	size_t total_len = 0;
192	int i;
193	int err = -EINVAL;
194
195	/* Calculate total length of data */
196	for (i = 0; i < count; i++)
197		total_len += vecs[i].iov_len;
198
199	/* Check alignment */
200	if (mtd->writesize > 1) {
201		uint64_t __to = to;
202		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
203			return -EINVAL;
204	}
205
206	/* make a copy of vecs */
207	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
208	if (!vecs_copy)
209		return -ENOMEM;
210
211	entry_low = 0;
212	for (i = 0; i < concat->num_subdev; i++) {
213		struct mtd_info *subdev = concat->subdev[i];
214		size_t size, wsize, retsize, old_iov_len;
215
216		if (to >= subdev->size) {
217			to -= subdev->size;
218			continue;
219		}
220
221		size = min_t(uint64_t, total_len, subdev->size - to);
222		wsize = size; /* store for future use */
223
224		entry_high = entry_low;
225		while (entry_high < count) {
226			if (size <= vecs_copy[entry_high].iov_len)
227				break;
228			size -= vecs_copy[entry_high++].iov_len;
229		}
230
231		old_iov_len = vecs_copy[entry_high].iov_len;
232		vecs_copy[entry_high].iov_len = size;
233
234		err = mtd_writev(subdev, &vecs_copy[entry_low],
235				 entry_high - entry_low + 1, to, &retsize);
236
237		vecs_copy[entry_high].iov_len = old_iov_len - size;
238		vecs_copy[entry_high].iov_base += size;
239
240		entry_low = entry_high;
241
242		if (err)
243			break;
244
245		*retlen += retsize;
246		total_len -= wsize;
247
248		if (total_len == 0)
249			break;
250
251		err = -EINVAL;
252		to = 0;
253	}
254
255	kfree(vecs_copy);
256	return err;
257}
258
259static int
260concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
261{
262	struct mtd_concat *concat = CONCAT(mtd);
263	struct mtd_oob_ops devops = *ops;
264	int i, err, ret = 0;
265
266	ops->retlen = ops->oobretlen = 0;
267
268	for (i = 0; i < concat->num_subdev; i++) {
269		struct mtd_info *subdev = concat->subdev[i];
270
271		if (from >= subdev->size) {
272			from -= subdev->size;
273			continue;
274		}
275
276		/* partial read ? */
277		if (from + devops.len > subdev->size)
278			devops.len = subdev->size - from;
279
280		err = mtd_read_oob(subdev, from, &devops);
281		ops->retlen += devops.retlen;
282		ops->oobretlen += devops.oobretlen;
283
284		/* Save information about bitflips! */
285		if (unlikely(err)) {
286			if (mtd_is_eccerr(err)) {
287				mtd->ecc_stats.failed++;
288				ret = err;
289			} else if (mtd_is_bitflip(err)) {
290				mtd->ecc_stats.corrected++;
291				/* Do not overwrite -EBADMSG !! */
292				if (!ret)
293					ret = err;
294			} else
295				return err;
296		}
297
298		if (devops.datbuf) {
299			devops.len = ops->len - ops->retlen;
300			if (!devops.len)
301				return ret;
302			devops.datbuf += devops.retlen;
303		}
304		if (devops.oobbuf) {
305			devops.ooblen = ops->ooblen - ops->oobretlen;
306			if (!devops.ooblen)
307				return ret;
308			devops.oobbuf += ops->oobretlen;
309		}
310
311		from = 0;
312	}
313	return -EINVAL;
314}
315
316static int
317concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
318{
319	struct mtd_concat *concat = CONCAT(mtd);
320	struct mtd_oob_ops devops = *ops;
321	int i, err;
322
323	if (!(mtd->flags & MTD_WRITEABLE))
324		return -EROFS;
325
326	ops->retlen = ops->oobretlen = 0;
327
328	for (i = 0; i < concat->num_subdev; i++) {
329		struct mtd_info *subdev = concat->subdev[i];
330
331		if (to >= subdev->size) {
332			to -= subdev->size;
333			continue;
334		}
335
336		/* partial write ? */
337		if (to + devops.len > subdev->size)
338			devops.len = subdev->size - to;
339
340		err = mtd_write_oob(subdev, to, &devops);
341		ops->retlen += devops.retlen;
342		ops->oobretlen += devops.oobretlen;
343		if (err)
344			return err;
345
346		if (devops.datbuf) {
347			devops.len = ops->len - ops->retlen;
348			if (!devops.len)
349				return 0;
350			devops.datbuf += devops.retlen;
351		}
352		if (devops.oobbuf) {
353			devops.ooblen = ops->ooblen - ops->oobretlen;
354			if (!devops.ooblen)
355				return 0;
356			devops.oobbuf += devops.oobretlen;
357		}
358		to = 0;
359	}
360	return -EINVAL;
361}
362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
364{
365	struct mtd_concat *concat = CONCAT(mtd);
366	struct mtd_info *subdev;
367	int i, err;
368	uint64_t length, offset = 0;
369	struct erase_info *erase;
370
371	/*
372	 * Check for proper erase block alignment of the to-be-erased area.
373	 * It is easier to do this based on the super device's erase
374	 * region info rather than looking at each particular sub-device
375	 * in turn.
376	 */
377	if (!concat->mtd.numeraseregions) {
378		/* the easy case: device has uniform erase block size */
379		if (instr->addr & (concat->mtd.erasesize - 1))
380			return -EINVAL;
381		if (instr->len & (concat->mtd.erasesize - 1))
382			return -EINVAL;
383	} else {
384		/* device has variable erase size */
385		struct mtd_erase_region_info *erase_regions =
386		    concat->mtd.eraseregions;
387
388		/*
389		 * Find the erase region where the to-be-erased area begins:
390		 */
391		for (i = 0; i < concat->mtd.numeraseregions &&
392		     instr->addr >= erase_regions[i].offset; i++) ;
393		--i;
394
395		/*
396		 * Now erase_regions[i] is the region in which the
397		 * to-be-erased area begins. Verify that the starting
398		 * offset is aligned to this region's erase size:
399		 */
400		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
401			return -EINVAL;
402
403		/*
404		 * now find the erase region where the to-be-erased area ends:
405		 */
406		for (; i < concat->mtd.numeraseregions &&
407		     (instr->addr + instr->len) >= erase_regions[i].offset;
408		     ++i) ;
409		--i;
410		/*
411		 * check if the ending offset is aligned to this region's erase size
412		 */
413		if (i < 0 || ((instr->addr + instr->len) &
414					(erase_regions[i].erasesize - 1)))
415			return -EINVAL;
416	}
417
418	/* make a local copy of instr to avoid modifying the caller's struct */
419	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
420
421	if (!erase)
422		return -ENOMEM;
423
424	*erase = *instr;
425	length = instr->len;
426
427	/*
428	 * find the subdevice where the to-be-erased area begins, adjust
429	 * starting offset to be relative to the subdevice start
430	 */
431	for (i = 0; i < concat->num_subdev; i++) {
432		subdev = concat->subdev[i];
433		if (subdev->size <= erase->addr) {
434			erase->addr -= subdev->size;
435			offset += subdev->size;
436		} else {
437			break;
438		}
439	}
440
441	/* must never happen since size limit has been verified above */
442	BUG_ON(i >= concat->num_subdev);
443
444	/* now do the erase: */
445	err = 0;
446	for (; length > 0; i++) {
447		/* loop for all subdevices affected by this request */
448		subdev = concat->subdev[i];	/* get current subdevice */
449
450		/* limit length to subdevice's size: */
451		if (erase->addr + length > subdev->size)
452			erase->len = subdev->size - erase->addr;
453		else
454			erase->len = length;
455
456		length -= erase->len;
457		if ((err = mtd_erase(subdev, erase))) {
458			/* sanity check: should never happen since
459			 * block alignment has been checked above */
460			BUG_ON(err == -EINVAL);
461			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
462				instr->fail_addr = erase->fail_addr + offset;
463			break;
464		}
465		/*
466		 * erase->addr specifies the offset of the area to be
467		 * erased *within the current subdevice*. It can be
468		 * non-zero only the first time through this loop, i.e.
469		 * for the first subdevice where blocks need to be erased.
470		 * All the following erases must begin at the start of the
471		 * current subdevice, i.e. at offset zero.
472		 */
473		erase->addr = 0;
474		offset += subdev->size;
475	}
 
476	kfree(erase);
 
 
477
478	return err;
 
 
479}
480
481static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len,
482			 bool is_lock)
483{
484	struct mtd_concat *concat = CONCAT(mtd);
485	int i, err = -EINVAL;
486
487	for (i = 0; i < concat->num_subdev; i++) {
488		struct mtd_info *subdev = concat->subdev[i];
489		uint64_t size;
490
491		if (ofs >= subdev->size) {
492			size = 0;
493			ofs -= subdev->size;
494			continue;
495		}
496		if (ofs + len > subdev->size)
497			size = subdev->size - ofs;
498		else
499			size = len;
500
501		if (is_lock)
502			err = mtd_lock(subdev, ofs, size);
503		else
504			err = mtd_unlock(subdev, ofs, size);
505		if (err)
506			break;
507
508		len -= size;
509		if (len == 0)
510			break;
511
512		err = -EINVAL;
513		ofs = 0;
514	}
515
516	return err;
517}
518
519static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
520{
521	return concat_xxlock(mtd, ofs, len, true);
522}
523
524static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
525{
526	return concat_xxlock(mtd, ofs, len, false);
527}
528
529static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
530{
531	struct mtd_concat *concat = CONCAT(mtd);
532	int i, err = -EINVAL;
533
534	for (i = 0; i < concat->num_subdev; i++) {
535		struct mtd_info *subdev = concat->subdev[i];
 
536
537		if (ofs >= subdev->size) {
 
538			ofs -= subdev->size;
539			continue;
540		}
541
542		if (ofs + len > subdev->size)
 
 
 
 
 
 
 
 
 
 
543			break;
544
545		return mtd_is_locked(subdev, ofs, len);
 
546	}
547
548	return err;
549}
550
551static void concat_sync(struct mtd_info *mtd)
552{
553	struct mtd_concat *concat = CONCAT(mtd);
554	int i;
555
556	for (i = 0; i < concat->num_subdev; i++) {
557		struct mtd_info *subdev = concat->subdev[i];
558		mtd_sync(subdev);
559	}
560}
561
562static int concat_suspend(struct mtd_info *mtd)
563{
564	struct mtd_concat *concat = CONCAT(mtd);
565	int i, rc = 0;
566
567	for (i = 0; i < concat->num_subdev; i++) {
568		struct mtd_info *subdev = concat->subdev[i];
569		if ((rc = mtd_suspend(subdev)) < 0)
570			return rc;
571	}
572	return rc;
573}
574
575static void concat_resume(struct mtd_info *mtd)
576{
577	struct mtd_concat *concat = CONCAT(mtd);
578	int i;
579
580	for (i = 0; i < concat->num_subdev; i++) {
581		struct mtd_info *subdev = concat->subdev[i];
582		mtd_resume(subdev);
583	}
584}
585
586static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
587{
588	struct mtd_concat *concat = CONCAT(mtd);
589	int i, res = 0;
590
591	if (!mtd_can_have_bb(concat->subdev[0]))
592		return res;
593
594	for (i = 0; i < concat->num_subdev; i++) {
595		struct mtd_info *subdev = concat->subdev[i];
596
597		if (ofs >= subdev->size) {
598			ofs -= subdev->size;
599			continue;
600		}
601
602		res = mtd_block_isbad(subdev, ofs);
603		break;
604	}
605
606	return res;
607}
608
609static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
610{
611	struct mtd_concat *concat = CONCAT(mtd);
612	int i, err = -EINVAL;
613
614	for (i = 0; i < concat->num_subdev; i++) {
615		struct mtd_info *subdev = concat->subdev[i];
616
617		if (ofs >= subdev->size) {
618			ofs -= subdev->size;
619			continue;
620		}
621
622		err = mtd_block_markbad(subdev, ofs);
623		if (!err)
624			mtd->ecc_stats.badblocks++;
625		break;
626	}
627
628	return err;
629}
630
631/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632 * This function constructs a virtual MTD device by concatenating
633 * num_devs MTD devices. A pointer to the new device object is
634 * stored to *new_dev upon success. This function does _not_
635 * register any devices: this is the caller's responsibility.
636 */
637struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
638				   int num_devs,	/* number of subdevices      */
639				   const char *name)
640{				/* name for the new device   */
641	int i;
642	size_t size;
643	struct mtd_concat *concat;
644	struct mtd_info *subdev_master = NULL;
645	uint32_t max_erasesize, curr_erasesize;
646	int num_erase_region;
647	int max_writebufsize = 0;
648
649	printk(KERN_NOTICE "Concatenating MTD devices:\n");
650	for (i = 0; i < num_devs; i++)
651		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
652	printk(KERN_NOTICE "into device \"%s\"\n", name);
653
654	/* allocate the device structure */
655	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
656	concat = kzalloc(size, GFP_KERNEL);
657	if (!concat) {
658		printk
659		    ("memory allocation error while creating concatenated device \"%s\"\n",
660		     name);
661		return NULL;
662	}
663	concat->subdev = (struct mtd_info **) (concat + 1);
664
665	/*
666	 * Set up the new "super" device's MTD object structure, check for
667	 * incompatibilities between the subdevices.
668	 */
669	concat->mtd.type = subdev[0]->type;
670	concat->mtd.flags = subdev[0]->flags;
671	concat->mtd.size = subdev[0]->size;
672	concat->mtd.erasesize = subdev[0]->erasesize;
673	concat->mtd.writesize = subdev[0]->writesize;
674
675	for (i = 0; i < num_devs; i++)
676		if (max_writebufsize < subdev[i]->writebufsize)
677			max_writebufsize = subdev[i]->writebufsize;
678	concat->mtd.writebufsize = max_writebufsize;
679
680	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
681	concat->mtd.oobsize = subdev[0]->oobsize;
682	concat->mtd.oobavail = subdev[0]->oobavail;
683
684	subdev_master = mtd_get_master(subdev[0]);
685	if (subdev_master->_writev)
686		concat->mtd._writev = concat_writev;
687	if (subdev_master->_read_oob)
688		concat->mtd._read_oob = concat_read_oob;
689	if (subdev_master->_write_oob)
690		concat->mtd._write_oob = concat_write_oob;
691	if (subdev_master->_block_isbad)
692		concat->mtd._block_isbad = concat_block_isbad;
693	if (subdev_master->_block_markbad)
694		concat->mtd._block_markbad = concat_block_markbad;
695	if (subdev_master->_panic_write)
696		concat->mtd._panic_write = concat_panic_write;
697	if (subdev_master->_read)
698		concat->mtd._read = concat_read;
699	if (subdev_master->_write)
700		concat->mtd._write = concat_write;
701
702	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
703
704	concat->subdev[0] = subdev[0];
705
706	for (i = 1; i < num_devs; i++) {
707		if (concat->mtd.type != subdev[i]->type) {
708			kfree(concat);
709			printk("Incompatible device type on \"%s\"\n",
710			       subdev[i]->name);
711			return NULL;
712		}
713		if (concat->mtd.flags != subdev[i]->flags) {
714			/*
715			 * Expect all flags except MTD_WRITEABLE to be
716			 * equal on all subdevices.
717			 */
718			if ((concat->mtd.flags ^ subdev[i]->
719			     flags) & ~MTD_WRITEABLE) {
720				kfree(concat);
721				printk("Incompatible device flags on \"%s\"\n",
722				       subdev[i]->name);
723				return NULL;
724			} else
725				/* if writeable attribute differs,
726				   make super device writeable */
727				concat->mtd.flags |=
728				    subdev[i]->flags & MTD_WRITEABLE;
729		}
730
731		subdev_master = mtd_get_master(subdev[i]);
732		concat->mtd.size += subdev[i]->size;
733		concat->mtd.ecc_stats.badblocks +=
734			subdev[i]->ecc_stats.badblocks;
735		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
736		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
737		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
738		    !concat->mtd._read_oob  != !subdev_master->_read_oob ||
739		    !concat->mtd._write_oob != !subdev_master->_write_oob) {
740			/*
741			 * Check against subdev[i] for data members, because
742			 * subdev's attributes may be different from master
743			 * mtd device. Check against subdev's master mtd
744			 * device for callbacks, because the existence of
745			 * subdev's callbacks is decided by master mtd device.
746			 */
747			kfree(concat);
748			printk("Incompatible OOB or ECC data on \"%s\"\n",
749			       subdev[i]->name);
750			return NULL;
751		}
752		concat->subdev[i] = subdev[i];
753
754	}
755
756	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
757
758	concat->num_subdev = num_devs;
759	concat->mtd.name = name;
760
761	concat->mtd._erase = concat_erase;
 
 
762	concat->mtd._sync = concat_sync;
763	concat->mtd._lock = concat_lock;
764	concat->mtd._unlock = concat_unlock;
765	concat->mtd._is_locked = concat_is_locked;
766	concat->mtd._suspend = concat_suspend;
767	concat->mtd._resume = concat_resume;
 
768
769	/*
770	 * Combine the erase block size info of the subdevices:
771	 *
772	 * first, walk the map of the new device and see how
773	 * many changes in erase size we have
774	 */
775	max_erasesize = curr_erasesize = subdev[0]->erasesize;
776	num_erase_region = 1;
777	for (i = 0; i < num_devs; i++) {
778		if (subdev[i]->numeraseregions == 0) {
779			/* current subdevice has uniform erase size */
780			if (subdev[i]->erasesize != curr_erasesize) {
781				/* if it differs from the last subdevice's erase size, count it */
782				++num_erase_region;
783				curr_erasesize = subdev[i]->erasesize;
784				if (curr_erasesize > max_erasesize)
785					max_erasesize = curr_erasesize;
786			}
787		} else {
788			/* current subdevice has variable erase size */
789			int j;
790			for (j = 0; j < subdev[i]->numeraseregions; j++) {
791
792				/* walk the list of erase regions, count any changes */
793				if (subdev[i]->eraseregions[j].erasesize !=
794				    curr_erasesize) {
795					++num_erase_region;
796					curr_erasesize =
797					    subdev[i]->eraseregions[j].
798					    erasesize;
799					if (curr_erasesize > max_erasesize)
800						max_erasesize = curr_erasesize;
801				}
802			}
803		}
804	}
805
806	if (num_erase_region == 1) {
807		/*
808		 * All subdevices have the same uniform erase size.
809		 * This is easy:
810		 */
811		concat->mtd.erasesize = curr_erasesize;
812		concat->mtd.numeraseregions = 0;
813	} else {
814		uint64_t tmp64;
815
816		/*
817		 * erase block size varies across the subdevices: allocate
818		 * space to store the data describing the variable erase regions
819		 */
820		struct mtd_erase_region_info *erase_region_p;
821		uint64_t begin, position;
822
823		concat->mtd.erasesize = max_erasesize;
824		concat->mtd.numeraseregions = num_erase_region;
825		concat->mtd.eraseregions = erase_region_p =
826		    kmalloc_array(num_erase_region,
827				  sizeof(struct mtd_erase_region_info),
828				  GFP_KERNEL);
829		if (!erase_region_p) {
830			kfree(concat);
831			printk
832			    ("memory allocation error while creating erase region list"
833			     " for device \"%s\"\n", name);
834			return NULL;
835		}
836
837		/*
838		 * walk the map of the new device once more and fill in
839		 * erase region info:
840		 */
841		curr_erasesize = subdev[0]->erasesize;
842		begin = position = 0;
843		for (i = 0; i < num_devs; i++) {
844			if (subdev[i]->numeraseregions == 0) {
845				/* current subdevice has uniform erase size */
846				if (subdev[i]->erasesize != curr_erasesize) {
847					/*
848					 *  fill in an mtd_erase_region_info structure for the area
849					 *  we have walked so far:
850					 */
851					erase_region_p->offset = begin;
852					erase_region_p->erasesize =
853					    curr_erasesize;
854					tmp64 = position - begin;
855					do_div(tmp64, curr_erasesize);
856					erase_region_p->numblocks = tmp64;
857					begin = position;
858
859					curr_erasesize = subdev[i]->erasesize;
860					++erase_region_p;
861				}
862				position += subdev[i]->size;
863			} else {
864				/* current subdevice has variable erase size */
865				int j;
866				for (j = 0; j < subdev[i]->numeraseregions; j++) {
867					/* walk the list of erase regions, count any changes */
868					if (subdev[i]->eraseregions[j].
869					    erasesize != curr_erasesize) {
870						erase_region_p->offset = begin;
871						erase_region_p->erasesize =
872						    curr_erasesize;
873						tmp64 = position - begin;
874						do_div(tmp64, curr_erasesize);
875						erase_region_p->numblocks = tmp64;
876						begin = position;
877
878						curr_erasesize =
879						    subdev[i]->eraseregions[j].
880						    erasesize;
881						++erase_region_p;
882					}
883					position +=
884					    subdev[i]->eraseregions[j].
885					    numblocks * (uint64_t)curr_erasesize;
886				}
887			}
888		}
889		/* Now write the final entry */
890		erase_region_p->offset = begin;
891		erase_region_p->erasesize = curr_erasesize;
892		tmp64 = position - begin;
893		do_div(tmp64, curr_erasesize);
894		erase_region_p->numblocks = tmp64;
895	}
896
897	return &concat->mtd;
898}
899
900/* Cleans the context obtained from mtd_concat_create() */
 
 
 
901void mtd_concat_destroy(struct mtd_info *mtd)
902{
903	struct mtd_concat *concat = CONCAT(mtd);
904	if (concat->mtd.numeraseregions)
905		kfree(concat->mtd.eraseregions);
906	kfree(concat);
907}
908
909EXPORT_SYMBOL(mtd_concat_create);
910EXPORT_SYMBOL(mtd_concat_destroy);
911
912MODULE_LICENSE("GPL");
913MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
914MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
v4.10.11
 
  1/*
  2 * MTD device concatenation layer
  3 *
  4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
  5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
  6 *
  7 * NAND support by Christian Gan <cgan@iders.ca>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License as published by
 11 * the Free Software Foundation; either version 2 of the License, or
 12 * (at your option) any later version.
 13 *
 14 * This program is distributed in the hope that it will be useful,
 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17 * GNU General Public License for more details.
 18 *
 19 * You should have received a copy of the GNU General Public License
 20 * along with this program; if not, write to the Free Software
 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 22 *
 23 */
 24
 25#include <linux/kernel.h>
 26#include <linux/module.h>
 27#include <linux/slab.h>
 28#include <linux/sched.h>
 29#include <linux/types.h>
 30#include <linux/backing-dev.h>
 31
 32#include <linux/mtd/mtd.h>
 33#include <linux/mtd/concat.h>
 34
 35#include <asm/div64.h>
 36
 37/*
 38 * Our storage structure:
 39 * Subdev points to an array of pointers to struct mtd_info objects
 40 * which is allocated along with this structure
 41 *
 42 */
 43struct mtd_concat {
 44	struct mtd_info mtd;
 45	int num_subdev;
 46	struct mtd_info **subdev;
 47};
 48
 49/*
 50 * how to calculate the size required for the above structure,
 51 * including the pointer array subdev points to:
 52 */
 53#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
 54	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
 55
 56/*
 57 * Given a pointer to the MTD object in the mtd_concat structure,
 58 * we can retrieve the pointer to that structure with this macro.
 59 */
 60#define CONCAT(x)  ((struct mtd_concat *)(x))
 61
 62/*
 63 * MTD methods which look up the relevant subdevice, translate the
 64 * effective address and pass through to the subdevice.
 65 */
 66
 67static int
 68concat_read(struct mtd_info *mtd, loff_t from, size_t len,
 69	    size_t * retlen, u_char * buf)
 70{
 71	struct mtd_concat *concat = CONCAT(mtd);
 72	int ret = 0, err;
 73	int i;
 74
 75	for (i = 0; i < concat->num_subdev; i++) {
 76		struct mtd_info *subdev = concat->subdev[i];
 77		size_t size, retsize;
 78
 79		if (from >= subdev->size) {
 80			/* Not destined for this subdev */
 81			size = 0;
 82			from -= subdev->size;
 83			continue;
 84		}
 85		if (from + len > subdev->size)
 86			/* First part goes into this subdev */
 87			size = subdev->size - from;
 88		else
 89			/* Entire transaction goes into this subdev */
 90			size = len;
 91
 92		err = mtd_read(subdev, from, size, &retsize, buf);
 93
 94		/* Save information about bitflips! */
 95		if (unlikely(err)) {
 96			if (mtd_is_eccerr(err)) {
 97				mtd->ecc_stats.failed++;
 98				ret = err;
 99			} else if (mtd_is_bitflip(err)) {
100				mtd->ecc_stats.corrected++;
101				/* Do not overwrite -EBADMSG !! */
102				if (!ret)
103					ret = err;
104			} else
105				return err;
106		}
107
108		*retlen += retsize;
109		len -= size;
110		if (len == 0)
111			return ret;
112
113		buf += size;
114		from = 0;
115	}
116	return -EINVAL;
117}
118
119static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121	     size_t * retlen, const u_char * buf)
122{
123	struct mtd_concat *concat = CONCAT(mtd);
124	int err = -EINVAL;
125	int i;
126
127	for (i = 0; i < concat->num_subdev; i++) {
128		struct mtd_info *subdev = concat->subdev[i];
129		size_t size, retsize;
130
131		if (to >= subdev->size) {
132			size = 0;
133			to -= subdev->size;
134			continue;
135		}
136		if (to + len > subdev->size)
137			size = subdev->size - to;
138		else
139			size = len;
140
141		err = mtd_write(subdev, to, size, &retsize, buf);
142		if (err)
143			break;
144
145		*retlen += retsize;
146		len -= size;
147		if (len == 0)
148			break;
149
150		err = -EINVAL;
151		buf += size;
152		to = 0;
153	}
154	return err;
155}
156
157static int
158concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159		unsigned long count, loff_t to, size_t * retlen)
160{
161	struct mtd_concat *concat = CONCAT(mtd);
162	struct kvec *vecs_copy;
163	unsigned long entry_low, entry_high;
164	size_t total_len = 0;
165	int i;
166	int err = -EINVAL;
167
168	/* Calculate total length of data */
169	for (i = 0; i < count; i++)
170		total_len += vecs[i].iov_len;
171
172	/* Check alignment */
173	if (mtd->writesize > 1) {
174		uint64_t __to = to;
175		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176			return -EINVAL;
177	}
178
179	/* make a copy of vecs */
180	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181	if (!vecs_copy)
182		return -ENOMEM;
183
184	entry_low = 0;
185	for (i = 0; i < concat->num_subdev; i++) {
186		struct mtd_info *subdev = concat->subdev[i];
187		size_t size, wsize, retsize, old_iov_len;
188
189		if (to >= subdev->size) {
190			to -= subdev->size;
191			continue;
192		}
193
194		size = min_t(uint64_t, total_len, subdev->size - to);
195		wsize = size; /* store for future use */
196
197		entry_high = entry_low;
198		while (entry_high < count) {
199			if (size <= vecs_copy[entry_high].iov_len)
200				break;
201			size -= vecs_copy[entry_high++].iov_len;
202		}
203
204		old_iov_len = vecs_copy[entry_high].iov_len;
205		vecs_copy[entry_high].iov_len = size;
206
207		err = mtd_writev(subdev, &vecs_copy[entry_low],
208				 entry_high - entry_low + 1, to, &retsize);
209
210		vecs_copy[entry_high].iov_len = old_iov_len - size;
211		vecs_copy[entry_high].iov_base += size;
212
213		entry_low = entry_high;
214
215		if (err)
216			break;
217
218		*retlen += retsize;
219		total_len -= wsize;
220
221		if (total_len == 0)
222			break;
223
224		err = -EINVAL;
225		to = 0;
226	}
227
228	kfree(vecs_copy);
229	return err;
230}
231
232static int
233concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234{
235	struct mtd_concat *concat = CONCAT(mtd);
236	struct mtd_oob_ops devops = *ops;
237	int i, err, ret = 0;
238
239	ops->retlen = ops->oobretlen = 0;
240
241	for (i = 0; i < concat->num_subdev; i++) {
242		struct mtd_info *subdev = concat->subdev[i];
243
244		if (from >= subdev->size) {
245			from -= subdev->size;
246			continue;
247		}
248
249		/* partial read ? */
250		if (from + devops.len > subdev->size)
251			devops.len = subdev->size - from;
252
253		err = mtd_read_oob(subdev, from, &devops);
254		ops->retlen += devops.retlen;
255		ops->oobretlen += devops.oobretlen;
256
257		/* Save information about bitflips! */
258		if (unlikely(err)) {
259			if (mtd_is_eccerr(err)) {
260				mtd->ecc_stats.failed++;
261				ret = err;
262			} else if (mtd_is_bitflip(err)) {
263				mtd->ecc_stats.corrected++;
264				/* Do not overwrite -EBADMSG !! */
265				if (!ret)
266					ret = err;
267			} else
268				return err;
269		}
270
271		if (devops.datbuf) {
272			devops.len = ops->len - ops->retlen;
273			if (!devops.len)
274				return ret;
275			devops.datbuf += devops.retlen;
276		}
277		if (devops.oobbuf) {
278			devops.ooblen = ops->ooblen - ops->oobretlen;
279			if (!devops.ooblen)
280				return ret;
281			devops.oobbuf += ops->oobretlen;
282		}
283
284		from = 0;
285	}
286	return -EINVAL;
287}
288
289static int
290concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291{
292	struct mtd_concat *concat = CONCAT(mtd);
293	struct mtd_oob_ops devops = *ops;
294	int i, err;
295
296	if (!(mtd->flags & MTD_WRITEABLE))
297		return -EROFS;
298
299	ops->retlen = ops->oobretlen = 0;
300
301	for (i = 0; i < concat->num_subdev; i++) {
302		struct mtd_info *subdev = concat->subdev[i];
303
304		if (to >= subdev->size) {
305			to -= subdev->size;
306			continue;
307		}
308
309		/* partial write ? */
310		if (to + devops.len > subdev->size)
311			devops.len = subdev->size - to;
312
313		err = mtd_write_oob(subdev, to, &devops);
314		ops->retlen += devops.retlen;
315		ops->oobretlen += devops.oobretlen;
316		if (err)
317			return err;
318
319		if (devops.datbuf) {
320			devops.len = ops->len - ops->retlen;
321			if (!devops.len)
322				return 0;
323			devops.datbuf += devops.retlen;
324		}
325		if (devops.oobbuf) {
326			devops.ooblen = ops->ooblen - ops->oobretlen;
327			if (!devops.ooblen)
328				return 0;
329			devops.oobbuf += devops.oobretlen;
330		}
331		to = 0;
332	}
333	return -EINVAL;
334}
335
336static void concat_erase_callback(struct erase_info *instr)
337{
338	wake_up((wait_queue_head_t *) instr->priv);
339}
340
341static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
342{
343	int err;
344	wait_queue_head_t waitq;
345	DECLARE_WAITQUEUE(wait, current);
346
347	/*
348	 * This code was stol^H^H^H^Hinspired by mtdchar.c
349	 */
350	init_waitqueue_head(&waitq);
351
352	erase->mtd = mtd;
353	erase->callback = concat_erase_callback;
354	erase->priv = (unsigned long) &waitq;
355
356	/*
357	 * FIXME: Allow INTERRUPTIBLE. Which means
358	 * not having the wait_queue head on the stack.
359	 */
360	err = mtd_erase(mtd, erase);
361	if (!err) {
362		set_current_state(TASK_UNINTERRUPTIBLE);
363		add_wait_queue(&waitq, &wait);
364		if (erase->state != MTD_ERASE_DONE
365		    && erase->state != MTD_ERASE_FAILED)
366			schedule();
367		remove_wait_queue(&waitq, &wait);
368		set_current_state(TASK_RUNNING);
369
370		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
371	}
372	return err;
373}
374
375static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
376{
377	struct mtd_concat *concat = CONCAT(mtd);
378	struct mtd_info *subdev;
379	int i, err;
380	uint64_t length, offset = 0;
381	struct erase_info *erase;
382
383	/*
384	 * Check for proper erase block alignment of the to-be-erased area.
385	 * It is easier to do this based on the super device's erase
386	 * region info rather than looking at each particular sub-device
387	 * in turn.
388	 */
389	if (!concat->mtd.numeraseregions) {
390		/* the easy case: device has uniform erase block size */
391		if (instr->addr & (concat->mtd.erasesize - 1))
392			return -EINVAL;
393		if (instr->len & (concat->mtd.erasesize - 1))
394			return -EINVAL;
395	} else {
396		/* device has variable erase size */
397		struct mtd_erase_region_info *erase_regions =
398		    concat->mtd.eraseregions;
399
400		/*
401		 * Find the erase region where the to-be-erased area begins:
402		 */
403		for (i = 0; i < concat->mtd.numeraseregions &&
404		     instr->addr >= erase_regions[i].offset; i++) ;
405		--i;
406
407		/*
408		 * Now erase_regions[i] is the region in which the
409		 * to-be-erased area begins. Verify that the starting
410		 * offset is aligned to this region's erase size:
411		 */
412		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
413			return -EINVAL;
414
415		/*
416		 * now find the erase region where the to-be-erased area ends:
417		 */
418		for (; i < concat->mtd.numeraseregions &&
419		     (instr->addr + instr->len) >= erase_regions[i].offset;
420		     ++i) ;
421		--i;
422		/*
423		 * check if the ending offset is aligned to this region's erase size
424		 */
425		if (i < 0 || ((instr->addr + instr->len) &
426					(erase_regions[i].erasesize - 1)))
427			return -EINVAL;
428	}
429
430	/* make a local copy of instr to avoid modifying the caller's struct */
431	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
432
433	if (!erase)
434		return -ENOMEM;
435
436	*erase = *instr;
437	length = instr->len;
438
439	/*
440	 * find the subdevice where the to-be-erased area begins, adjust
441	 * starting offset to be relative to the subdevice start
442	 */
443	for (i = 0; i < concat->num_subdev; i++) {
444		subdev = concat->subdev[i];
445		if (subdev->size <= erase->addr) {
446			erase->addr -= subdev->size;
447			offset += subdev->size;
448		} else {
449			break;
450		}
451	}
452
453	/* must never happen since size limit has been verified above */
454	BUG_ON(i >= concat->num_subdev);
455
456	/* now do the erase: */
457	err = 0;
458	for (; length > 0; i++) {
459		/* loop for all subdevices affected by this request */
460		subdev = concat->subdev[i];	/* get current subdevice */
461
462		/* limit length to subdevice's size: */
463		if (erase->addr + length > subdev->size)
464			erase->len = subdev->size - erase->addr;
465		else
466			erase->len = length;
467
468		length -= erase->len;
469		if ((err = concat_dev_erase(subdev, erase))) {
470			/* sanity check: should never happen since
471			 * block alignment has been checked above */
472			BUG_ON(err == -EINVAL);
473			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
474				instr->fail_addr = erase->fail_addr + offset;
475			break;
476		}
477		/*
478		 * erase->addr specifies the offset of the area to be
479		 * erased *within the current subdevice*. It can be
480		 * non-zero only the first time through this loop, i.e.
481		 * for the first subdevice where blocks need to be erased.
482		 * All the following erases must begin at the start of the
483		 * current subdevice, i.e. at offset zero.
484		 */
485		erase->addr = 0;
486		offset += subdev->size;
487	}
488	instr->state = erase->state;
489	kfree(erase);
490	if (err)
491		return err;
492
493	if (instr->callback)
494		instr->callback(instr);
495	return 0;
496}
497
498static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 
499{
500	struct mtd_concat *concat = CONCAT(mtd);
501	int i, err = -EINVAL;
502
503	for (i = 0; i < concat->num_subdev; i++) {
504		struct mtd_info *subdev = concat->subdev[i];
505		uint64_t size;
506
507		if (ofs >= subdev->size) {
508			size = 0;
509			ofs -= subdev->size;
510			continue;
511		}
512		if (ofs + len > subdev->size)
513			size = subdev->size - ofs;
514		else
515			size = len;
516
517		err = mtd_lock(subdev, ofs, size);
 
 
 
518		if (err)
519			break;
520
521		len -= size;
522		if (len == 0)
523			break;
524
525		err = -EINVAL;
526		ofs = 0;
527	}
528
529	return err;
530}
531
 
 
 
 
 
532static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
533{
 
 
 
 
 
534	struct mtd_concat *concat = CONCAT(mtd);
535	int i, err = 0;
536
537	for (i = 0; i < concat->num_subdev; i++) {
538		struct mtd_info *subdev = concat->subdev[i];
539		uint64_t size;
540
541		if (ofs >= subdev->size) {
542			size = 0;
543			ofs -= subdev->size;
544			continue;
545		}
 
546		if (ofs + len > subdev->size)
547			size = subdev->size - ofs;
548		else
549			size = len;
550
551		err = mtd_unlock(subdev, ofs, size);
552		if (err)
553			break;
554
555		len -= size;
556		if (len == 0)
557			break;
558
559		err = -EINVAL;
560		ofs = 0;
561	}
562
563	return err;
564}
565
566static void concat_sync(struct mtd_info *mtd)
567{
568	struct mtd_concat *concat = CONCAT(mtd);
569	int i;
570
571	for (i = 0; i < concat->num_subdev; i++) {
572		struct mtd_info *subdev = concat->subdev[i];
573		mtd_sync(subdev);
574	}
575}
576
577static int concat_suspend(struct mtd_info *mtd)
578{
579	struct mtd_concat *concat = CONCAT(mtd);
580	int i, rc = 0;
581
582	for (i = 0; i < concat->num_subdev; i++) {
583		struct mtd_info *subdev = concat->subdev[i];
584		if ((rc = mtd_suspend(subdev)) < 0)
585			return rc;
586	}
587	return rc;
588}
589
590static void concat_resume(struct mtd_info *mtd)
591{
592	struct mtd_concat *concat = CONCAT(mtd);
593	int i;
594
595	for (i = 0; i < concat->num_subdev; i++) {
596		struct mtd_info *subdev = concat->subdev[i];
597		mtd_resume(subdev);
598	}
599}
600
601static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
602{
603	struct mtd_concat *concat = CONCAT(mtd);
604	int i, res = 0;
605
606	if (!mtd_can_have_bb(concat->subdev[0]))
607		return res;
608
609	for (i = 0; i < concat->num_subdev; i++) {
610		struct mtd_info *subdev = concat->subdev[i];
611
612		if (ofs >= subdev->size) {
613			ofs -= subdev->size;
614			continue;
615		}
616
617		res = mtd_block_isbad(subdev, ofs);
618		break;
619	}
620
621	return res;
622}
623
624static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
625{
626	struct mtd_concat *concat = CONCAT(mtd);
627	int i, err = -EINVAL;
628
629	for (i = 0; i < concat->num_subdev; i++) {
630		struct mtd_info *subdev = concat->subdev[i];
631
632		if (ofs >= subdev->size) {
633			ofs -= subdev->size;
634			continue;
635		}
636
637		err = mtd_block_markbad(subdev, ofs);
638		if (!err)
639			mtd->ecc_stats.badblocks++;
640		break;
641	}
642
643	return err;
644}
645
646/*
647 * try to support NOMMU mmaps on concatenated devices
648 * - we don't support subdev spanning as we can't guarantee it'll work
649 */
650static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
651					      unsigned long len,
652					      unsigned long offset,
653					      unsigned long flags)
654{
655	struct mtd_concat *concat = CONCAT(mtd);
656	int i;
657
658	for (i = 0; i < concat->num_subdev; i++) {
659		struct mtd_info *subdev = concat->subdev[i];
660
661		if (offset >= subdev->size) {
662			offset -= subdev->size;
663			continue;
664		}
665
666		return mtd_get_unmapped_area(subdev, len, offset, flags);
667	}
668
669	return (unsigned long) -ENOSYS;
670}
671
672/*
673 * This function constructs a virtual MTD device by concatenating
674 * num_devs MTD devices. A pointer to the new device object is
675 * stored to *new_dev upon success. This function does _not_
676 * register any devices: this is the caller's responsibility.
677 */
678struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
679				   int num_devs,	/* number of subdevices      */
680				   const char *name)
681{				/* name for the new device   */
682	int i;
683	size_t size;
684	struct mtd_concat *concat;
 
685	uint32_t max_erasesize, curr_erasesize;
686	int num_erase_region;
687	int max_writebufsize = 0;
688
689	printk(KERN_NOTICE "Concatenating MTD devices:\n");
690	for (i = 0; i < num_devs; i++)
691		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
692	printk(KERN_NOTICE "into device \"%s\"\n", name);
693
694	/* allocate the device structure */
695	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
696	concat = kzalloc(size, GFP_KERNEL);
697	if (!concat) {
698		printk
699		    ("memory allocation error while creating concatenated device \"%s\"\n",
700		     name);
701		return NULL;
702	}
703	concat->subdev = (struct mtd_info **) (concat + 1);
704
705	/*
706	 * Set up the new "super" device's MTD object structure, check for
707	 * incompatibilities between the subdevices.
708	 */
709	concat->mtd.type = subdev[0]->type;
710	concat->mtd.flags = subdev[0]->flags;
711	concat->mtd.size = subdev[0]->size;
712	concat->mtd.erasesize = subdev[0]->erasesize;
713	concat->mtd.writesize = subdev[0]->writesize;
714
715	for (i = 0; i < num_devs; i++)
716		if (max_writebufsize < subdev[i]->writebufsize)
717			max_writebufsize = subdev[i]->writebufsize;
718	concat->mtd.writebufsize = max_writebufsize;
719
720	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
721	concat->mtd.oobsize = subdev[0]->oobsize;
722	concat->mtd.oobavail = subdev[0]->oobavail;
723	if (subdev[0]->_writev)
 
 
724		concat->mtd._writev = concat_writev;
725	if (subdev[0]->_read_oob)
726		concat->mtd._read_oob = concat_read_oob;
727	if (subdev[0]->_write_oob)
728		concat->mtd._write_oob = concat_write_oob;
729	if (subdev[0]->_block_isbad)
730		concat->mtd._block_isbad = concat_block_isbad;
731	if (subdev[0]->_block_markbad)
732		concat->mtd._block_markbad = concat_block_markbad;
 
 
 
 
 
 
733
734	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
735
736	concat->subdev[0] = subdev[0];
737
738	for (i = 1; i < num_devs; i++) {
739		if (concat->mtd.type != subdev[i]->type) {
740			kfree(concat);
741			printk("Incompatible device type on \"%s\"\n",
742			       subdev[i]->name);
743			return NULL;
744		}
745		if (concat->mtd.flags != subdev[i]->flags) {
746			/*
747			 * Expect all flags except MTD_WRITEABLE to be
748			 * equal on all subdevices.
749			 */
750			if ((concat->mtd.flags ^ subdev[i]->
751			     flags) & ~MTD_WRITEABLE) {
752				kfree(concat);
753				printk("Incompatible device flags on \"%s\"\n",
754				       subdev[i]->name);
755				return NULL;
756			} else
757				/* if writeable attribute differs,
758				   make super device writeable */
759				concat->mtd.flags |=
760				    subdev[i]->flags & MTD_WRITEABLE;
761		}
762
 
763		concat->mtd.size += subdev[i]->size;
764		concat->mtd.ecc_stats.badblocks +=
765			subdev[i]->ecc_stats.badblocks;
766		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
767		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
768		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
769		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
770		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
 
 
 
 
 
 
 
771			kfree(concat);
772			printk("Incompatible OOB or ECC data on \"%s\"\n",
773			       subdev[i]->name);
774			return NULL;
775		}
776		concat->subdev[i] = subdev[i];
777
778	}
779
780	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
781
782	concat->num_subdev = num_devs;
783	concat->mtd.name = name;
784
785	concat->mtd._erase = concat_erase;
786	concat->mtd._read = concat_read;
787	concat->mtd._write = concat_write;
788	concat->mtd._sync = concat_sync;
789	concat->mtd._lock = concat_lock;
790	concat->mtd._unlock = concat_unlock;
 
791	concat->mtd._suspend = concat_suspend;
792	concat->mtd._resume = concat_resume;
793	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
794
795	/*
796	 * Combine the erase block size info of the subdevices:
797	 *
798	 * first, walk the map of the new device and see how
799	 * many changes in erase size we have
800	 */
801	max_erasesize = curr_erasesize = subdev[0]->erasesize;
802	num_erase_region = 1;
803	for (i = 0; i < num_devs; i++) {
804		if (subdev[i]->numeraseregions == 0) {
805			/* current subdevice has uniform erase size */
806			if (subdev[i]->erasesize != curr_erasesize) {
807				/* if it differs from the last subdevice's erase size, count it */
808				++num_erase_region;
809				curr_erasesize = subdev[i]->erasesize;
810				if (curr_erasesize > max_erasesize)
811					max_erasesize = curr_erasesize;
812			}
813		} else {
814			/* current subdevice has variable erase size */
815			int j;
816			for (j = 0; j < subdev[i]->numeraseregions; j++) {
817
818				/* walk the list of erase regions, count any changes */
819				if (subdev[i]->eraseregions[j].erasesize !=
820				    curr_erasesize) {
821					++num_erase_region;
822					curr_erasesize =
823					    subdev[i]->eraseregions[j].
824					    erasesize;
825					if (curr_erasesize > max_erasesize)
826						max_erasesize = curr_erasesize;
827				}
828			}
829		}
830	}
831
832	if (num_erase_region == 1) {
833		/*
834		 * All subdevices have the same uniform erase size.
835		 * This is easy:
836		 */
837		concat->mtd.erasesize = curr_erasesize;
838		concat->mtd.numeraseregions = 0;
839	} else {
840		uint64_t tmp64;
841
842		/*
843		 * erase block size varies across the subdevices: allocate
844		 * space to store the data describing the variable erase regions
845		 */
846		struct mtd_erase_region_info *erase_region_p;
847		uint64_t begin, position;
848
849		concat->mtd.erasesize = max_erasesize;
850		concat->mtd.numeraseregions = num_erase_region;
851		concat->mtd.eraseregions = erase_region_p =
852		    kmalloc(num_erase_region *
853			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
 
854		if (!erase_region_p) {
855			kfree(concat);
856			printk
857			    ("memory allocation error while creating erase region list"
858			     " for device \"%s\"\n", name);
859			return NULL;
860		}
861
862		/*
863		 * walk the map of the new device once more and fill in
864		 * in erase region info:
865		 */
866		curr_erasesize = subdev[0]->erasesize;
867		begin = position = 0;
868		for (i = 0; i < num_devs; i++) {
869			if (subdev[i]->numeraseregions == 0) {
870				/* current subdevice has uniform erase size */
871				if (subdev[i]->erasesize != curr_erasesize) {
872					/*
873					 *  fill in an mtd_erase_region_info structure for the area
874					 *  we have walked so far:
875					 */
876					erase_region_p->offset = begin;
877					erase_region_p->erasesize =
878					    curr_erasesize;
879					tmp64 = position - begin;
880					do_div(tmp64, curr_erasesize);
881					erase_region_p->numblocks = tmp64;
882					begin = position;
883
884					curr_erasesize = subdev[i]->erasesize;
885					++erase_region_p;
886				}
887				position += subdev[i]->size;
888			} else {
889				/* current subdevice has variable erase size */
890				int j;
891				for (j = 0; j < subdev[i]->numeraseregions; j++) {
892					/* walk the list of erase regions, count any changes */
893					if (subdev[i]->eraseregions[j].
894					    erasesize != curr_erasesize) {
895						erase_region_p->offset = begin;
896						erase_region_p->erasesize =
897						    curr_erasesize;
898						tmp64 = position - begin;
899						do_div(tmp64, curr_erasesize);
900						erase_region_p->numblocks = tmp64;
901						begin = position;
902
903						curr_erasesize =
904						    subdev[i]->eraseregions[j].
905						    erasesize;
906						++erase_region_p;
907					}
908					position +=
909					    subdev[i]->eraseregions[j].
910					    numblocks * (uint64_t)curr_erasesize;
911				}
912			}
913		}
914		/* Now write the final entry */
915		erase_region_p->offset = begin;
916		erase_region_p->erasesize = curr_erasesize;
917		tmp64 = position - begin;
918		do_div(tmp64, curr_erasesize);
919		erase_region_p->numblocks = tmp64;
920	}
921
922	return &concat->mtd;
923}
924
925/*
926 * This function destroys an MTD object obtained from concat_mtd_devs()
927 */
928
929void mtd_concat_destroy(struct mtd_info *mtd)
930{
931	struct mtd_concat *concat = CONCAT(mtd);
932	if (concat->mtd.numeraseregions)
933		kfree(concat->mtd.eraseregions);
934	kfree(concat);
935}
936
937EXPORT_SYMBOL(mtd_concat_create);
938EXPORT_SYMBOL(mtd_concat_destroy);
939
940MODULE_LICENSE("GPL");
941MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
942MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");