Loading...
1/*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Brad Volkin <bradley.d.volkin@intel.com>
25 *
26 */
27
28#include <linux/highmem.h>
29
30#include <drm/drm_cache.h>
31
32#include "gt/intel_engine.h"
33#include "gt/intel_engine_regs.h"
34#include "gt/intel_gpu_commands.h"
35#include "gt/intel_gt_regs.h"
36
37#include "i915_cmd_parser.h"
38#include "i915_drv.h"
39#include "i915_memcpy.h"
40#include "i915_reg.h"
41
42/**
43 * DOC: batch buffer command parser
44 *
45 * Motivation:
46 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
47 * require userspace code to submit batches containing commands such as
48 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
49 * generations of the hardware will noop these commands in "unsecure" batches
50 * (which includes all userspace batches submitted via i915) even though the
51 * commands may be safe and represent the intended programming model of the
52 * device.
53 *
54 * The software command parser is similar in operation to the command parsing
55 * done in hardware for unsecure batches. However, the software parser allows
56 * some operations that would be noop'd by hardware, if the parser determines
57 * the operation is safe, and submits the batch as "secure" to prevent hardware
58 * parsing.
59 *
60 * Threats:
61 * At a high level, the hardware (and software) checks attempt to prevent
62 * granting userspace undue privileges. There are three categories of privilege.
63 *
64 * First, commands which are explicitly defined as privileged or which should
65 * only be used by the kernel driver. The parser rejects such commands
66 *
67 * Second, commands which access registers. To support correct/enhanced
68 * userspace functionality, particularly certain OpenGL extensions, the parser
69 * provides a whitelist of registers which userspace may safely access
70 *
71 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
72 * The parser always rejects such commands.
73 *
74 * The majority of the problematic commands fall in the MI_* range, with only a
75 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
76 *
77 * Implementation:
78 * Each engine maintains tables of commands and registers which the parser
79 * uses in scanning batch buffers submitted to that engine.
80 *
81 * Since the set of commands that the parser must check for is significantly
82 * smaller than the number of commands supported, the parser tables contain only
83 * those commands required by the parser. This generally works because command
84 * opcode ranges have standard command length encodings. So for commands that
85 * the parser does not need to check, it can easily skip them. This is
86 * implemented via a per-engine length decoding vfunc.
87 *
88 * Unfortunately, there are a number of commands that do not follow the standard
89 * length encoding for their opcode range, primarily amongst the MI_* commands.
90 * To handle this, the parser provides a way to define explicit "skip" entries
91 * in the per-engine command tables.
92 *
93 * Other command table entries map fairly directly to high level categories
94 * mentioned above: rejected, register whitelist. The parser implements a number
95 * of checks, including the privileged memory checks, via a general bitmasking
96 * mechanism.
97 */
98
99/*
100 * A command that requires special handling by the command parser.
101 */
102struct drm_i915_cmd_descriptor {
103 /*
104 * Flags describing how the command parser processes the command.
105 *
106 * CMD_DESC_FIXED: The command has a fixed length if this is set,
107 * a length mask if not set
108 * CMD_DESC_SKIP: The command is allowed but does not follow the
109 * standard length encoding for the opcode range in
110 * which it falls
111 * CMD_DESC_REJECT: The command is never allowed
112 * CMD_DESC_REGISTER: The command should be checked against the
113 * register whitelist for the appropriate ring
114 */
115 u32 flags;
116#define CMD_DESC_FIXED (1<<0)
117#define CMD_DESC_SKIP (1<<1)
118#define CMD_DESC_REJECT (1<<2)
119#define CMD_DESC_REGISTER (1<<3)
120#define CMD_DESC_BITMASK (1<<4)
121
122 /*
123 * The command's unique identification bits and the bitmask to get them.
124 * This isn't strictly the opcode field as defined in the spec and may
125 * also include type, subtype, and/or subop fields.
126 */
127 struct {
128 u32 value;
129 u32 mask;
130 } cmd;
131
132 /*
133 * The command's length. The command is either fixed length (i.e. does
134 * not include a length field) or has a length field mask. The flag
135 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
136 * a length mask. All command entries in a command table must include
137 * length information.
138 */
139 union {
140 u32 fixed;
141 u32 mask;
142 } length;
143
144 /*
145 * Describes where to find a register address in the command to check
146 * against the ring's register whitelist. Only valid if flags has the
147 * CMD_DESC_REGISTER bit set.
148 *
149 * A non-zero step value implies that the command may access multiple
150 * registers in sequence (e.g. LRI), in that case step gives the
151 * distance in dwords between individual offset fields.
152 */
153 struct {
154 u32 offset;
155 u32 mask;
156 u32 step;
157 } reg;
158
159#define MAX_CMD_DESC_BITMASKS 3
160 /*
161 * Describes command checks where a particular dword is masked and
162 * compared against an expected value. If the command does not match
163 * the expected value, the parser rejects it. Only valid if flags has
164 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
165 * are valid.
166 *
167 * If the check specifies a non-zero condition_mask then the parser
168 * only performs the check when the bits specified by condition_mask
169 * are non-zero.
170 */
171 struct {
172 u32 offset;
173 u32 mask;
174 u32 expected;
175 u32 condition_offset;
176 u32 condition_mask;
177 } bits[MAX_CMD_DESC_BITMASKS];
178};
179
180/*
181 * A table of commands requiring special handling by the command parser.
182 *
183 * Each engine has an array of tables. Each table consists of an array of
184 * command descriptors, which must be sorted with command opcodes in
185 * ascending order.
186 */
187struct drm_i915_cmd_table {
188 const struct drm_i915_cmd_descriptor *table;
189 int count;
190};
191
192#define STD_MI_OPCODE_SHIFT (32 - 9)
193#define STD_3D_OPCODE_SHIFT (32 - 16)
194#define STD_2D_OPCODE_SHIFT (32 - 10)
195#define STD_MFX_OPCODE_SHIFT (32 - 16)
196#define MIN_OPCODE_SHIFT 16
197
198#define CMD(op, opm, f, lm, fl, ...) \
199 { \
200 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
201 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \
202 .length = { (lm) }, \
203 __VA_ARGS__ \
204 }
205
206/* Convenience macros to compress the tables */
207#define SMI STD_MI_OPCODE_SHIFT
208#define S3D STD_3D_OPCODE_SHIFT
209#define S2D STD_2D_OPCODE_SHIFT
210#define SMFX STD_MFX_OPCODE_SHIFT
211#define F true
212#define S CMD_DESC_SKIP
213#define R CMD_DESC_REJECT
214#define W CMD_DESC_REGISTER
215#define B CMD_DESC_BITMASK
216
217/* Command Mask Fixed Len Action
218 ---------------------------------------------------------- */
219static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
220 CMD( MI_NOOP, SMI, F, 1, S ),
221 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
222 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
223 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
224 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
225 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
226 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
227 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
228 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
229 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
230 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
231 .reg = { .offset = 1, .mask = 0x007FFFFC },
232 .bits = {{
233 .offset = 0,
234 .mask = MI_GLOBAL_GTT,
235 .expected = 0,
236 }}, ),
237 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
238 .reg = { .offset = 1, .mask = 0x007FFFFC },
239 .bits = {{
240 .offset = 0,
241 .mask = MI_GLOBAL_GTT,
242 .expected = 0,
243 }}, ),
244 /*
245 * MI_BATCH_BUFFER_START requires some special handling. It's not
246 * really a 'skip' action but it doesn't seem like it's worth adding
247 * a new action. See intel_engine_cmd_parser().
248 */
249 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
250};
251
252static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
253 CMD( MI_FLUSH, SMI, F, 1, S ),
254 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
255 CMD( MI_PREDICATE, SMI, F, 1, S ),
256 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
257 CMD( MI_SET_APPID, SMI, F, 1, S ),
258 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
259 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
260 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
261 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
262 .bits = {{
263 .offset = 0,
264 .mask = MI_GLOBAL_GTT,
265 .expected = 0,
266 }}, ),
267 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
268 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
269 .bits = {{
270 .offset = 0,
271 .mask = MI_GLOBAL_GTT,
272 .expected = 0,
273 }}, ),
274 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
275 .bits = {{
276 .offset = 1,
277 .mask = MI_REPORT_PERF_COUNT_GGTT,
278 .expected = 0,
279 }}, ),
280 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
281 .bits = {{
282 .offset = 0,
283 .mask = MI_GLOBAL_GTT,
284 .expected = 0,
285 }}, ),
286 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
287 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
288 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
289 .bits = {{
290 .offset = 2,
291 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
292 .expected = 0,
293 }}, ),
294 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
295 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
296 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
297 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
298 .bits = {{
299 .offset = 1,
300 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
301 .expected = 0,
302 },
303 {
304 .offset = 1,
305 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
306 PIPE_CONTROL_STORE_DATA_INDEX),
307 .expected = 0,
308 .condition_offset = 1,
309 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
310 }}, ),
311};
312
313static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
314 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
315 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
316 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
317 CMD( MI_SET_APPID, SMI, F, 1, S ),
318 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
319 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
320 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
321 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
322 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
323 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
324 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
325 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
326 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
327 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
328
329 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
330 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
331 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
332 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
333 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
334};
335
336static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
337 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
338 CMD( MI_SET_APPID, SMI, F, 1, S ),
339 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
340 .bits = {{
341 .offset = 0,
342 .mask = MI_GLOBAL_GTT,
343 .expected = 0,
344 }}, ),
345 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
346 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
347 .bits = {{
348 .offset = 0,
349 .mask = MI_FLUSH_DW_NOTIFY,
350 .expected = 0,
351 },
352 {
353 .offset = 1,
354 .mask = MI_FLUSH_DW_USE_GTT,
355 .expected = 0,
356 .condition_offset = 0,
357 .condition_mask = MI_FLUSH_DW_OP_MASK,
358 },
359 {
360 .offset = 0,
361 .mask = MI_FLUSH_DW_STORE_INDEX,
362 .expected = 0,
363 .condition_offset = 0,
364 .condition_mask = MI_FLUSH_DW_OP_MASK,
365 }}, ),
366 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
367 .bits = {{
368 .offset = 0,
369 .mask = MI_GLOBAL_GTT,
370 .expected = 0,
371 }}, ),
372 /*
373 * MFX_WAIT doesn't fit the way we handle length for most commands.
374 * It has a length field but it uses a non-standard length bias.
375 * It is always 1 dword though, so just treat it as fixed length.
376 */
377 CMD( MFX_WAIT, SMFX, F, 1, S ),
378};
379
380static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
381 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
382 CMD( MI_SET_APPID, SMI, F, 1, S ),
383 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
384 .bits = {{
385 .offset = 0,
386 .mask = MI_GLOBAL_GTT,
387 .expected = 0,
388 }}, ),
389 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
390 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
391 .bits = {{
392 .offset = 0,
393 .mask = MI_FLUSH_DW_NOTIFY,
394 .expected = 0,
395 },
396 {
397 .offset = 1,
398 .mask = MI_FLUSH_DW_USE_GTT,
399 .expected = 0,
400 .condition_offset = 0,
401 .condition_mask = MI_FLUSH_DW_OP_MASK,
402 },
403 {
404 .offset = 0,
405 .mask = MI_FLUSH_DW_STORE_INDEX,
406 .expected = 0,
407 .condition_offset = 0,
408 .condition_mask = MI_FLUSH_DW_OP_MASK,
409 }}, ),
410 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
411 .bits = {{
412 .offset = 0,
413 .mask = MI_GLOBAL_GTT,
414 .expected = 0,
415 }}, ),
416};
417
418static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
419 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
420 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
421 .bits = {{
422 .offset = 0,
423 .mask = MI_GLOBAL_GTT,
424 .expected = 0,
425 }}, ),
426 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
427 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
428 .bits = {{
429 .offset = 0,
430 .mask = MI_FLUSH_DW_NOTIFY,
431 .expected = 0,
432 },
433 {
434 .offset = 1,
435 .mask = MI_FLUSH_DW_USE_GTT,
436 .expected = 0,
437 .condition_offset = 0,
438 .condition_mask = MI_FLUSH_DW_OP_MASK,
439 },
440 {
441 .offset = 0,
442 .mask = MI_FLUSH_DW_STORE_INDEX,
443 .expected = 0,
444 .condition_offset = 0,
445 .condition_mask = MI_FLUSH_DW_OP_MASK,
446 }}, ),
447 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
448 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
449};
450
451static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
452 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
453 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
454};
455
456/*
457 * For Gen9 we can still rely on the h/w to enforce cmd security, and only
458 * need to re-enforce the register access checks. We therefore only need to
459 * teach the cmdparser how to find the end of each command, and identify
460 * register accesses. The table doesn't need to reject any commands, and so
461 * the only commands listed here are:
462 * 1) Those that touch registers
463 * 2) Those that do not have the default 8-bit length
464 *
465 * Note that the default MI length mask chosen for this table is 0xFF, not
466 * the 0x3F used on older devices. This is because the vast majority of MI
467 * cmds on Gen9 use a standard 8-bit Length field.
468 * All the Gen9 blitter instructions are standard 0xFF length mask, and
469 * none allow access to non-general registers, so in fact no BLT cmds are
470 * included in the table at all.
471 *
472 */
473static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
474 CMD( MI_NOOP, SMI, F, 1, S ),
475 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
476 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
477 CMD( MI_FLUSH, SMI, F, 1, S ),
478 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
479 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
480 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
481 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
482 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
483 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
484 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
485 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
486 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
487 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
488 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
489 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
490 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
491 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
492 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
493 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
494 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
495
496 /*
497 * We allow BB_START but apply further checks. We just sanitize the
498 * basic fields here.
499 */
500#define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0)
501#define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
502 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
503 .bits = {{
504 .offset = 0,
505 .mask = MI_BB_START_OPERAND_MASK,
506 .expected = MI_BB_START_OPERAND_EXPECT,
507 }}, ),
508};
509
510static const struct drm_i915_cmd_descriptor noop_desc =
511 CMD(MI_NOOP, SMI, F, 1, S);
512
513#undef CMD
514#undef SMI
515#undef S3D
516#undef S2D
517#undef SMFX
518#undef F
519#undef S
520#undef R
521#undef W
522#undef B
523
524static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
525 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
526 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
527};
528
529static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
530 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
531 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
532 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
533};
534
535static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
536 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
537 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
538};
539
540static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
541 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
542 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
543};
544
545static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
546 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
547 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
548};
549
550static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
551 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
552 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
553 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
554};
555
556static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
557 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
558};
559
560
561/*
562 * Register whitelists, sorted by increasing register offset.
563 */
564
565/*
566 * An individual whitelist entry granting access to register addr. If
567 * mask is non-zero the argument of immediate register writes will be
568 * AND-ed with mask, and the command will be rejected if the result
569 * doesn't match value.
570 *
571 * Registers with non-zero mask are only allowed to be written using
572 * LRI.
573 */
574struct drm_i915_reg_descriptor {
575 i915_reg_t addr;
576 u32 mask;
577 u32 value;
578};
579
580/* Convenience macro for adding 32-bit registers. */
581#define REG32(_reg, ...) \
582 { .addr = (_reg), __VA_ARGS__ }
583
584#define REG32_IDX(_reg, idx) \
585 { .addr = _reg(idx) }
586
587/*
588 * Convenience macro for adding 64-bit registers.
589 *
590 * Some registers that userspace accesses are 64 bits. The register
591 * access commands only allow 32-bit accesses. Hence, we have to include
592 * entries for both halves of the 64-bit registers.
593 */
594#define REG64(_reg) \
595 { .addr = _reg }, \
596 { .addr = _reg ## _UDW }
597
598#define REG64_IDX(_reg, idx) \
599 { .addr = _reg(idx) }, \
600 { .addr = _reg ## _UDW(idx) }
601
602#define REG64_BASE_IDX(_reg, base, idx) \
603 { .addr = _reg(base, idx) }, \
604 { .addr = _reg ## _UDW(base, idx) }
605
606static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
607 REG64(GPGPU_THREADS_DISPATCHED),
608 REG64(HS_INVOCATION_COUNT),
609 REG64(DS_INVOCATION_COUNT),
610 REG64(IA_VERTICES_COUNT),
611 REG64(IA_PRIMITIVES_COUNT),
612 REG64(VS_INVOCATION_COUNT),
613 REG64(GS_INVOCATION_COUNT),
614 REG64(GS_PRIMITIVES_COUNT),
615 REG64(CL_INVOCATION_COUNT),
616 REG64(CL_PRIMITIVES_COUNT),
617 REG64(PS_INVOCATION_COUNT),
618 REG64(PS_DEPTH_COUNT),
619 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
620 REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE),
621 REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE),
622 REG32(GEN7_3DPRIM_END_OFFSET),
623 REG32(GEN7_3DPRIM_START_VERTEX),
624 REG32(GEN7_3DPRIM_VERTEX_COUNT),
625 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
626 REG32(GEN7_3DPRIM_START_INSTANCE),
627 REG32(GEN7_3DPRIM_BASE_VERTEX),
628 REG32(GEN7_GPGPU_DISPATCHDIMX),
629 REG32(GEN7_GPGPU_DISPATCHDIMY),
630 REG32(GEN7_GPGPU_DISPATCHDIMZ),
631 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
632 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
633 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
634 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
635 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
636 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
637 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
638 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
639 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
640 REG32(GEN7_SO_WRITE_OFFSET(0)),
641 REG32(GEN7_SO_WRITE_OFFSET(1)),
642 REG32(GEN7_SO_WRITE_OFFSET(2)),
643 REG32(GEN7_SO_WRITE_OFFSET(3)),
644 REG32(GEN7_L3SQCREG1),
645 REG32(GEN7_L3CNTLREG2),
646 REG32(GEN7_L3CNTLREG3),
647 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
648};
649
650static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
651 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0),
652 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1),
653 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2),
654 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3),
655 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4),
656 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5),
657 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6),
658 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7),
659 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8),
660 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9),
661 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10),
662 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11),
663 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12),
664 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13),
665 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14),
666 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15),
667 REG32(HSW_SCRATCH1,
668 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
669 .value = 0),
670 REG32(HSW_ROW_CHICKEN3,
671 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
672 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
673 .value = 0),
674};
675
676static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
677 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
678 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
679 REG32(BCS_SWCTRL),
680 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
681};
682
683static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
684 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
685 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
686 REG32(BCS_SWCTRL),
687 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
688 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
689 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0),
690 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1),
691 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2),
692 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3),
693 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4),
694 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5),
695 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6),
696 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7),
697 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8),
698 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9),
699 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10),
700 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11),
701 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12),
702 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13),
703 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14),
704 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15),
705};
706
707#undef REG64
708#undef REG32
709
710struct drm_i915_reg_table {
711 const struct drm_i915_reg_descriptor *regs;
712 int num_regs;
713};
714
715static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
716 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
717};
718
719static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
720 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
721};
722
723static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
724 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
725 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
726};
727
728static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
729 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
730};
731
732static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
733 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
734};
735
736static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
737{
738 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
739 u32 subclient =
740 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
741
742 if (client == INSTR_MI_CLIENT)
743 return 0x3F;
744 else if (client == INSTR_RC_CLIENT) {
745 if (subclient == INSTR_MEDIA_SUBCLIENT)
746 return 0xFFFF;
747 else
748 return 0xFF;
749 }
750
751 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
752 return 0;
753}
754
755static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
756{
757 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
758 u32 subclient =
759 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
760 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
761
762 if (client == INSTR_MI_CLIENT)
763 return 0x3F;
764 else if (client == INSTR_RC_CLIENT) {
765 if (subclient == INSTR_MEDIA_SUBCLIENT) {
766 if (op == 6)
767 return 0xFFFF;
768 else
769 return 0xFFF;
770 } else
771 return 0xFF;
772 }
773
774 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
775 return 0;
776}
777
778static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
779{
780 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
781
782 if (client == INSTR_MI_CLIENT)
783 return 0x3F;
784 else if (client == INSTR_BC_CLIENT)
785 return 0xFF;
786
787 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
788 return 0;
789}
790
791static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
792{
793 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
794
795 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
796 return 0xFF;
797
798 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
799 return 0;
800}
801
802static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
803 const struct drm_i915_cmd_table *cmd_tables,
804 int cmd_table_count)
805{
806 int i;
807 bool ret = true;
808
809 if (!cmd_tables || cmd_table_count == 0)
810 return true;
811
812 for (i = 0; i < cmd_table_count; i++) {
813 const struct drm_i915_cmd_table *table = &cmd_tables[i];
814 u32 previous = 0;
815 int j;
816
817 for (j = 0; j < table->count; j++) {
818 const struct drm_i915_cmd_descriptor *desc =
819 &table->table[j];
820 u32 curr = desc->cmd.value & desc->cmd.mask;
821
822 if (curr < previous) {
823 drm_err(&engine->i915->drm,
824 "CMD: %s [%d] command table not sorted: "
825 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
826 engine->name, engine->id,
827 i, j, curr, previous);
828 ret = false;
829 }
830
831 previous = curr;
832 }
833 }
834
835 return ret;
836}
837
838static bool check_sorted(const struct intel_engine_cs *engine,
839 const struct drm_i915_reg_descriptor *reg_table,
840 int reg_count)
841{
842 int i;
843 u32 previous = 0;
844 bool ret = true;
845
846 for (i = 0; i < reg_count; i++) {
847 u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
848
849 if (curr < previous) {
850 drm_err(&engine->i915->drm,
851 "CMD: %s [%d] register table not sorted: "
852 "entry=%d reg=0x%08X prev=0x%08X\n",
853 engine->name, engine->id,
854 i, curr, previous);
855 ret = false;
856 }
857
858 previous = curr;
859 }
860
861 return ret;
862}
863
864static bool validate_regs_sorted(struct intel_engine_cs *engine)
865{
866 int i;
867 const struct drm_i915_reg_table *table;
868
869 for (i = 0; i < engine->reg_table_count; i++) {
870 table = &engine->reg_tables[i];
871 if (!check_sorted(engine, table->regs, table->num_regs))
872 return false;
873 }
874
875 return true;
876}
877
878struct cmd_node {
879 const struct drm_i915_cmd_descriptor *desc;
880 struct hlist_node node;
881};
882
883/*
884 * Different command ranges have different numbers of bits for the opcode. For
885 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
886 * problem is that, for example, MI commands use bits 22:16 for other fields
887 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
888 * we mask a command from a batch it could hash to the wrong bucket due to
889 * non-opcode bits being set. But if we don't include those bits, some 3D
890 * commands may hash to the same bucket due to not including opcode bits that
891 * make the command unique. For now, we will risk hashing to the same bucket.
892 */
893static inline u32 cmd_header_key(u32 x)
894{
895 switch (x >> INSTR_CLIENT_SHIFT) {
896 default:
897 case INSTR_MI_CLIENT:
898 return x >> STD_MI_OPCODE_SHIFT;
899 case INSTR_RC_CLIENT:
900 return x >> STD_3D_OPCODE_SHIFT;
901 case INSTR_BC_CLIENT:
902 return x >> STD_2D_OPCODE_SHIFT;
903 }
904}
905
906static int init_hash_table(struct intel_engine_cs *engine,
907 const struct drm_i915_cmd_table *cmd_tables,
908 int cmd_table_count)
909{
910 int i, j;
911
912 hash_init(engine->cmd_hash);
913
914 for (i = 0; i < cmd_table_count; i++) {
915 const struct drm_i915_cmd_table *table = &cmd_tables[i];
916
917 for (j = 0; j < table->count; j++) {
918 const struct drm_i915_cmd_descriptor *desc =
919 &table->table[j];
920 struct cmd_node *desc_node =
921 kmalloc(sizeof(*desc_node), GFP_KERNEL);
922
923 if (!desc_node)
924 return -ENOMEM;
925
926 desc_node->desc = desc;
927 hash_add(engine->cmd_hash, &desc_node->node,
928 cmd_header_key(desc->cmd.value));
929 }
930 }
931
932 return 0;
933}
934
935static void fini_hash_table(struct intel_engine_cs *engine)
936{
937 struct hlist_node *tmp;
938 struct cmd_node *desc_node;
939 int i;
940
941 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
942 hash_del(&desc_node->node);
943 kfree(desc_node);
944 }
945}
946
947/**
948 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
949 * @engine: the engine to initialize
950 *
951 * Optionally initializes fields related to batch buffer command parsing in the
952 * struct intel_engine_cs based on whether the platform requires software
953 * command parsing.
954 */
955int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
956{
957 const struct drm_i915_cmd_table *cmd_tables;
958 int cmd_table_count;
959 int ret;
960
961 if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 &&
962 engine->class == COPY_ENGINE_CLASS))
963 return 0;
964
965 switch (engine->class) {
966 case RENDER_CLASS:
967 if (IS_HASWELL(engine->i915)) {
968 cmd_tables = hsw_render_ring_cmd_table;
969 cmd_table_count =
970 ARRAY_SIZE(hsw_render_ring_cmd_table);
971 } else {
972 cmd_tables = gen7_render_cmd_table;
973 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
974 }
975
976 if (IS_HASWELL(engine->i915)) {
977 engine->reg_tables = hsw_render_reg_tables;
978 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
979 } else {
980 engine->reg_tables = ivb_render_reg_tables;
981 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
982 }
983 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
984 break;
985 case VIDEO_DECODE_CLASS:
986 cmd_tables = gen7_video_cmd_table;
987 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
988 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
989 break;
990 case COPY_ENGINE_CLASS:
991 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
992 if (GRAPHICS_VER(engine->i915) == 9) {
993 cmd_tables = gen9_blt_cmd_table;
994 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
995 engine->get_cmd_length_mask =
996 gen9_blt_get_cmd_length_mask;
997
998 /* BCS Engine unsafe without parser */
999 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
1000 } else if (IS_HASWELL(engine->i915)) {
1001 cmd_tables = hsw_blt_ring_cmd_table;
1002 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
1003 } else {
1004 cmd_tables = gen7_blt_cmd_table;
1005 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
1006 }
1007
1008 if (GRAPHICS_VER(engine->i915) == 9) {
1009 engine->reg_tables = gen9_blt_reg_tables;
1010 engine->reg_table_count =
1011 ARRAY_SIZE(gen9_blt_reg_tables);
1012 } else if (IS_HASWELL(engine->i915)) {
1013 engine->reg_tables = hsw_blt_reg_tables;
1014 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1015 } else {
1016 engine->reg_tables = ivb_blt_reg_tables;
1017 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1018 }
1019 break;
1020 case VIDEO_ENHANCEMENT_CLASS:
1021 cmd_tables = hsw_vebox_cmd_table;
1022 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1023 /* VECS can use the same length_mask function as VCS */
1024 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1025 break;
1026 default:
1027 MISSING_CASE(engine->class);
1028 goto out;
1029 }
1030
1031 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1032 drm_err(&engine->i915->drm,
1033 "%s: command descriptions are not sorted\n",
1034 engine->name);
1035 goto out;
1036 }
1037 if (!validate_regs_sorted(engine)) {
1038 drm_err(&engine->i915->drm,
1039 "%s: registers are not sorted\n", engine->name);
1040 goto out;
1041 }
1042
1043 ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1044 if (ret) {
1045 drm_err(&engine->i915->drm,
1046 "%s: initialised failed!\n", engine->name);
1047 fini_hash_table(engine);
1048 goto out;
1049 }
1050
1051 engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1052
1053out:
1054 if (intel_engine_requires_cmd_parser(engine) &&
1055 !intel_engine_using_cmd_parser(engine))
1056 return -EINVAL;
1057
1058 return 0;
1059}
1060
1061/**
1062 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1063 * @engine: the engine to clean up
1064 *
1065 * Releases any resources related to command parsing that may have been
1066 * initialized for the specified engine.
1067 */
1068void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1069{
1070 if (!intel_engine_using_cmd_parser(engine))
1071 return;
1072
1073 fini_hash_table(engine);
1074}
1075
1076static const struct drm_i915_cmd_descriptor*
1077find_cmd_in_table(struct intel_engine_cs *engine,
1078 u32 cmd_header)
1079{
1080 struct cmd_node *desc_node;
1081
1082 hash_for_each_possible(engine->cmd_hash, desc_node, node,
1083 cmd_header_key(cmd_header)) {
1084 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1085 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1086 return desc;
1087 }
1088
1089 return NULL;
1090}
1091
1092/*
1093 * Returns a pointer to a descriptor for the command specified by cmd_header.
1094 *
1095 * The caller must supply space for a default descriptor via the default_desc
1096 * parameter. If no descriptor for the specified command exists in the engine's
1097 * command parser tables, this function fills in default_desc based on the
1098 * engine's default length encoding and returns default_desc.
1099 */
1100static const struct drm_i915_cmd_descriptor*
1101find_cmd(struct intel_engine_cs *engine,
1102 u32 cmd_header,
1103 const struct drm_i915_cmd_descriptor *desc,
1104 struct drm_i915_cmd_descriptor *default_desc)
1105{
1106 u32 mask;
1107
1108 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1109 return desc;
1110
1111 desc = find_cmd_in_table(engine, cmd_header);
1112 if (desc)
1113 return desc;
1114
1115 mask = engine->get_cmd_length_mask(cmd_header);
1116 if (!mask)
1117 return NULL;
1118
1119 default_desc->cmd.value = cmd_header;
1120 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1121 default_desc->length.mask = mask;
1122 default_desc->flags = CMD_DESC_SKIP;
1123 return default_desc;
1124}
1125
1126static const struct drm_i915_reg_descriptor *
1127__find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1128{
1129 int start = 0, end = count;
1130 while (start < end) {
1131 int mid = start + (end - start) / 2;
1132 int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1133 if (ret < 0)
1134 end = mid;
1135 else if (ret > 0)
1136 start = mid + 1;
1137 else
1138 return &table[mid];
1139 }
1140 return NULL;
1141}
1142
1143static const struct drm_i915_reg_descriptor *
1144find_reg(const struct intel_engine_cs *engine, u32 addr)
1145{
1146 const struct drm_i915_reg_table *table = engine->reg_tables;
1147 const struct drm_i915_reg_descriptor *reg = NULL;
1148 int count = engine->reg_table_count;
1149
1150 for (; !reg && (count > 0); ++table, --count)
1151 reg = __find_reg(table->regs, table->num_regs, addr);
1152
1153 return reg;
1154}
1155
1156/* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
1157static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1158 struct drm_i915_gem_object *src_obj,
1159 unsigned long offset, unsigned long length,
1160 bool *needs_clflush_after)
1161{
1162 unsigned int src_needs_clflush;
1163 unsigned int dst_needs_clflush;
1164 void *dst, *src;
1165 int ret;
1166
1167 ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush);
1168 if (ret)
1169 return ERR_PTR(ret);
1170
1171 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
1172 i915_gem_object_finish_access(dst_obj);
1173 if (IS_ERR(dst))
1174 return dst;
1175
1176 ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush);
1177 if (ret) {
1178 i915_gem_object_unpin_map(dst_obj);
1179 return ERR_PTR(ret);
1180 }
1181
1182 src = ERR_PTR(-ENODEV);
1183 if (src_needs_clflush && i915_has_memcpy_from_wc()) {
1184 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1185 if (!IS_ERR(src)) {
1186 i915_unaligned_memcpy_from_wc(dst,
1187 src + offset,
1188 length);
1189 i915_gem_object_unpin_map(src_obj);
1190 }
1191 }
1192 if (IS_ERR(src)) {
1193 unsigned long x, n, remain;
1194 void *ptr;
1195
1196 /*
1197 * We can avoid clflushing partial cachelines before the write
1198 * if we only every write full cache-lines. Since we know that
1199 * both the source and destination are in multiples of
1200 * PAGE_SIZE, we can simply round up to the next cacheline.
1201 * We don't care about copying too much here as we only
1202 * validate up to the end of the batch.
1203 */
1204 remain = length;
1205 if (dst_needs_clflush & CLFLUSH_BEFORE)
1206 remain = round_up(remain,
1207 boot_cpu_data.x86_clflush_size);
1208
1209 ptr = dst;
1210 x = offset_in_page(offset);
1211 for (n = offset >> PAGE_SHIFT; remain; n++) {
1212 int len = min(remain, PAGE_SIZE - x);
1213
1214 src = kmap_local_page(i915_gem_object_get_page(src_obj, n));
1215 if (src_needs_clflush)
1216 drm_clflush_virt_range(src + x, len);
1217 memcpy(ptr, src + x, len);
1218 kunmap_local(src);
1219
1220 ptr += len;
1221 remain -= len;
1222 x = 0;
1223 }
1224 }
1225
1226 i915_gem_object_finish_access(src_obj);
1227
1228 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1229
1230 /* dst_obj is returned with vmap pinned */
1231 *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1232
1233 return dst;
1234}
1235
1236static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1237 const u32 cmd)
1238{
1239 return desc->cmd.value == (cmd & desc->cmd.mask);
1240}
1241
1242static bool check_cmd(const struct intel_engine_cs *engine,
1243 const struct drm_i915_cmd_descriptor *desc,
1244 const u32 *cmd, u32 length)
1245{
1246 if (desc->flags & CMD_DESC_SKIP)
1247 return true;
1248
1249 if (desc->flags & CMD_DESC_REJECT) {
1250 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1251 return false;
1252 }
1253
1254 if (desc->flags & CMD_DESC_REGISTER) {
1255 /*
1256 * Get the distance between individual register offset
1257 * fields if the command can perform more than one
1258 * access at a time.
1259 */
1260 const u32 step = desc->reg.step ? desc->reg.step : length;
1261 u32 offset;
1262
1263 for (offset = desc->reg.offset; offset < length;
1264 offset += step) {
1265 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1266 const struct drm_i915_reg_descriptor *reg =
1267 find_reg(engine, reg_addr);
1268
1269 if (!reg) {
1270 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1271 reg_addr, *cmd, engine->name);
1272 return false;
1273 }
1274
1275 /*
1276 * Check the value written to the register against the
1277 * allowed mask/value pair given in the whitelist entry.
1278 */
1279 if (reg->mask) {
1280 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1281 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1282 reg_addr);
1283 return false;
1284 }
1285
1286 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1287 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1288 reg_addr);
1289 return false;
1290 }
1291
1292 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1293 (offset + 2 > length ||
1294 (cmd[offset + 1] & reg->mask) != reg->value)) {
1295 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1296 reg_addr);
1297 return false;
1298 }
1299 }
1300 }
1301 }
1302
1303 if (desc->flags & CMD_DESC_BITMASK) {
1304 int i;
1305
1306 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1307 u32 dword;
1308
1309 if (desc->bits[i].mask == 0)
1310 break;
1311
1312 if (desc->bits[i].condition_mask != 0) {
1313 u32 offset =
1314 desc->bits[i].condition_offset;
1315 u32 condition = cmd[offset] &
1316 desc->bits[i].condition_mask;
1317
1318 if (condition == 0)
1319 continue;
1320 }
1321
1322 if (desc->bits[i].offset >= length) {
1323 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1324 *cmd, engine->name);
1325 return false;
1326 }
1327
1328 dword = cmd[desc->bits[i].offset] &
1329 desc->bits[i].mask;
1330
1331 if (dword != desc->bits[i].expected) {
1332 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1333 *cmd,
1334 desc->bits[i].mask,
1335 desc->bits[i].expected,
1336 dword, engine->name);
1337 return false;
1338 }
1339 }
1340 }
1341
1342 return true;
1343}
1344
1345static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1346 u32 batch_length,
1347 u64 batch_addr,
1348 u64 shadow_addr,
1349 const unsigned long *jump_whitelist)
1350{
1351 u64 jump_offset, jump_target;
1352 u32 target_cmd_offset, target_cmd_index;
1353
1354 /* For igt compatibility on older platforms */
1355 if (!jump_whitelist) {
1356 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1357 return -EACCES;
1358 }
1359
1360 if (length != 3) {
1361 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1362 length);
1363 return -EINVAL;
1364 }
1365
1366 jump_target = *(u64 *)(cmd + 1);
1367 jump_offset = jump_target - batch_addr;
1368
1369 /*
1370 * Any underflow of jump_target is guaranteed to be outside the range
1371 * of a u32, so >= test catches both too large and too small
1372 */
1373 if (jump_offset >= batch_length) {
1374 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1375 jump_target);
1376 return -EINVAL;
1377 }
1378
1379 /*
1380 * This cannot overflow a u32 because we already checked jump_offset
1381 * is within the BB, and the batch_length is a u32
1382 */
1383 target_cmd_offset = lower_32_bits(jump_offset);
1384 target_cmd_index = target_cmd_offset / sizeof(u32);
1385
1386 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1387
1388 if (target_cmd_index == offset)
1389 return 0;
1390
1391 if (IS_ERR(jump_whitelist))
1392 return PTR_ERR(jump_whitelist);
1393
1394 if (!test_bit(target_cmd_index, jump_whitelist)) {
1395 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1396 jump_target);
1397 return -EINVAL;
1398 }
1399
1400 return 0;
1401}
1402
1403static unsigned long *alloc_whitelist(u32 batch_length)
1404{
1405 unsigned long *jmp;
1406
1407 /*
1408 * We expect batch_length to be less than 256KiB for known users,
1409 * i.e. we need at most an 8KiB bitmap allocation which should be
1410 * reasonably cheap due to kmalloc caches.
1411 */
1412
1413 /* Prefer to report transient allocation failure rather than hit oom */
1414 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1415 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1416 if (!jmp)
1417 return ERR_PTR(-ENOMEM);
1418
1419 return jmp;
1420}
1421
1422#define LENGTH_BIAS 2
1423
1424/**
1425 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1426 * @engine: the engine on which the batch is to execute
1427 * @batch: the batch buffer in question
1428 * @batch_offset: byte offset in the batch at which execution starts
1429 * @batch_length: length of the commands in batch_obj
1430 * @shadow: validated copy of the batch buffer in question
1431 * @trampoline: true if we need to trampoline into privileged execution
1432 *
1433 * Parses the specified batch buffer looking for privilege violations as
1434 * described in the overview.
1435 *
1436 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1437 * if the batch appears legal but should use hardware parsing
1438 */
1439
1440int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1441 struct i915_vma *batch,
1442 unsigned long batch_offset,
1443 unsigned long batch_length,
1444 struct i915_vma *shadow,
1445 bool trampoline)
1446{
1447 u32 *cmd, *batch_end, offset = 0;
1448 struct drm_i915_cmd_descriptor default_desc = noop_desc;
1449 const struct drm_i915_cmd_descriptor *desc = &default_desc;
1450 bool needs_clflush_after = false;
1451 unsigned long *jump_whitelist;
1452 u64 batch_addr, shadow_addr;
1453 int ret = 0;
1454
1455 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1456 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1457 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1458 batch->size));
1459 GEM_BUG_ON(!batch_length);
1460
1461 cmd = copy_batch(shadow->obj, batch->obj,
1462 batch_offset, batch_length,
1463 &needs_clflush_after);
1464 if (IS_ERR(cmd)) {
1465 DRM_DEBUG("CMD: Failed to copy batch\n");
1466 return PTR_ERR(cmd);
1467 }
1468
1469 jump_whitelist = NULL;
1470 if (!trampoline)
1471 /* Defer failure until attempted use */
1472 jump_whitelist = alloc_whitelist(batch_length);
1473
1474 shadow_addr = gen8_canonical_addr(i915_vma_offset(shadow));
1475 batch_addr = gen8_canonical_addr(i915_vma_offset(batch) + batch_offset);
1476
1477 /*
1478 * We use the batch length as size because the shadow object is as
1479 * large or larger and copy_batch() will write MI_NOPs to the extra
1480 * space. Parsing should be faster in some cases this way.
1481 */
1482 batch_end = cmd + batch_length / sizeof(*batch_end);
1483 do {
1484 u32 length;
1485
1486 if (*cmd == MI_BATCH_BUFFER_END)
1487 break;
1488
1489 desc = find_cmd(engine, *cmd, desc, &default_desc);
1490 if (!desc) {
1491 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1492 ret = -EINVAL;
1493 break;
1494 }
1495
1496 if (desc->flags & CMD_DESC_FIXED)
1497 length = desc->length.fixed;
1498 else
1499 length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1500
1501 if ((batch_end - cmd) < length) {
1502 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1503 *cmd,
1504 length,
1505 batch_end - cmd);
1506 ret = -EINVAL;
1507 break;
1508 }
1509
1510 if (!check_cmd(engine, desc, cmd, length)) {
1511 ret = -EACCES;
1512 break;
1513 }
1514
1515 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1516 ret = check_bbstart(cmd, offset, length, batch_length,
1517 batch_addr, shadow_addr,
1518 jump_whitelist);
1519 break;
1520 }
1521
1522 if (!IS_ERR_OR_NULL(jump_whitelist))
1523 __set_bit(offset, jump_whitelist);
1524
1525 cmd += length;
1526 offset += length;
1527 if (cmd >= batch_end) {
1528 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1529 ret = -EINVAL;
1530 break;
1531 }
1532 } while (1);
1533
1534 if (trampoline) {
1535 /*
1536 * With the trampoline, the shadow is executed twice.
1537 *
1538 * 1 - starting at offset 0, in privileged mode
1539 * 2 - starting at offset batch_len, as non-privileged
1540 *
1541 * Only if the batch is valid and safe to execute, do we
1542 * allow the first privileged execution to proceed. If not,
1543 * we terminate the first batch and use the second batchbuffer
1544 * entry to chain to the original unsafe non-privileged batch,
1545 * leaving it to the HW to validate.
1546 */
1547 *batch_end = MI_BATCH_BUFFER_END;
1548
1549 if (ret) {
1550 /* Batch unsafe to execute with privileges, cancel! */
1551 cmd = page_mask_bits(shadow->obj->mm.mapping);
1552 *cmd = MI_BATCH_BUFFER_END;
1553
1554 /* If batch is unsafe but valid, jump to the original */
1555 if (ret == -EACCES) {
1556 unsigned int flags;
1557
1558 flags = MI_BATCH_NON_SECURE_I965;
1559 if (IS_HASWELL(engine->i915))
1560 flags = MI_BATCH_NON_SECURE_HSW;
1561
1562 GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7));
1563 __gen6_emit_bb_start(batch_end,
1564 batch_addr,
1565 flags);
1566
1567 ret = 0; /* allow execution */
1568 }
1569 }
1570 }
1571
1572 i915_gem_object_flush_map(shadow->obj);
1573
1574 if (!IS_ERR_OR_NULL(jump_whitelist))
1575 kfree(jump_whitelist);
1576 i915_gem_object_unpin_map(shadow->obj);
1577 return ret;
1578}
1579
1580/**
1581 * i915_cmd_parser_get_version() - get the cmd parser version number
1582 * @dev_priv: i915 device private
1583 *
1584 * The cmd parser maintains a simple increasing integer version number suitable
1585 * for passing to userspace clients to determine what operations are permitted.
1586 *
1587 * Return: the current version number of the cmd parser
1588 */
1589int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1590{
1591 struct intel_engine_cs *engine;
1592 bool active = false;
1593
1594 /* If the command parser is not enabled, report 0 - unsupported */
1595 for_each_uabi_engine(engine, dev_priv) {
1596 if (intel_engine_using_cmd_parser(engine)) {
1597 active = true;
1598 break;
1599 }
1600 }
1601 if (!active)
1602 return 0;
1603
1604 /*
1605 * Command parser version history
1606 *
1607 * 1. Initial version. Checks batches and reports violations, but leaves
1608 * hardware parsing enabled (so does not allow new use cases).
1609 * 2. Allow access to the MI_PREDICATE_SRC0 and
1610 * MI_PREDICATE_SRC1 registers.
1611 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1612 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1613 * 5. GPGPU dispatch compute indirect registers.
1614 * 6. TIMESTAMP register and Haswell CS GPR registers
1615 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1616 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1617 * rely on the HW to NOOP disallowed commands as it would without
1618 * the parser enabled.
1619 * 9. Don't whitelist or handle oacontrol specially, as ownership
1620 * for oacontrol state is moving to i915-perf.
1621 * 10. Support for Gen9 BCS Parsing
1622 */
1623 return 10;
1624}
1/*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Brad Volkin <bradley.d.volkin@intel.com>
25 *
26 */
27
28#include "i915_drv.h"
29
30/**
31 * DOC: batch buffer command parser
32 *
33 * Motivation:
34 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
35 * require userspace code to submit batches containing commands such as
36 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
37 * generations of the hardware will noop these commands in "unsecure" batches
38 * (which includes all userspace batches submitted via i915) even though the
39 * commands may be safe and represent the intended programming model of the
40 * device.
41 *
42 * The software command parser is similar in operation to the command parsing
43 * done in hardware for unsecure batches. However, the software parser allows
44 * some operations that would be noop'd by hardware, if the parser determines
45 * the operation is safe, and submits the batch as "secure" to prevent hardware
46 * parsing.
47 *
48 * Threats:
49 * At a high level, the hardware (and software) checks attempt to prevent
50 * granting userspace undue privileges. There are three categories of privilege.
51 *
52 * First, commands which are explicitly defined as privileged or which should
53 * only be used by the kernel driver. The parser generally rejects such
54 * commands, though it may allow some from the drm master process.
55 *
56 * Second, commands which access registers. To support correct/enhanced
57 * userspace functionality, particularly certain OpenGL extensions, the parser
58 * provides a whitelist of registers which userspace may safely access (for both
59 * normal and drm master processes).
60 *
61 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
62 * The parser always rejects such commands.
63 *
64 * The majority of the problematic commands fall in the MI_* range, with only a
65 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
66 *
67 * Implementation:
68 * Each engine maintains tables of commands and registers which the parser
69 * uses in scanning batch buffers submitted to that engine.
70 *
71 * Since the set of commands that the parser must check for is significantly
72 * smaller than the number of commands supported, the parser tables contain only
73 * those commands required by the parser. This generally works because command
74 * opcode ranges have standard command length encodings. So for commands that
75 * the parser does not need to check, it can easily skip them. This is
76 * implemented via a per-engine length decoding vfunc.
77 *
78 * Unfortunately, there are a number of commands that do not follow the standard
79 * length encoding for their opcode range, primarily amongst the MI_* commands.
80 * To handle this, the parser provides a way to define explicit "skip" entries
81 * in the per-engine command tables.
82 *
83 * Other command table entries map fairly directly to high level categories
84 * mentioned above: rejected, master-only, register whitelist. The parser
85 * implements a number of checks, including the privileged memory checks, via a
86 * general bitmasking mechanism.
87 */
88
89#define STD_MI_OPCODE_SHIFT (32 - 9)
90#define STD_3D_OPCODE_SHIFT (32 - 16)
91#define STD_2D_OPCODE_SHIFT (32 - 10)
92#define STD_MFX_OPCODE_SHIFT (32 - 16)
93#define MIN_OPCODE_SHIFT 16
94
95#define CMD(op, opm, f, lm, fl, ...) \
96 { \
97 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
98 .cmd = { (op), ~0u << (opm) }, \
99 .length = { (lm) }, \
100 __VA_ARGS__ \
101 }
102
103/* Convenience macros to compress the tables */
104#define SMI STD_MI_OPCODE_SHIFT
105#define S3D STD_3D_OPCODE_SHIFT
106#define S2D STD_2D_OPCODE_SHIFT
107#define SMFX STD_MFX_OPCODE_SHIFT
108#define F true
109#define S CMD_DESC_SKIP
110#define R CMD_DESC_REJECT
111#define W CMD_DESC_REGISTER
112#define B CMD_DESC_BITMASK
113#define M CMD_DESC_MASTER
114
115/* Command Mask Fixed Len Action
116 ---------------------------------------------------------- */
117static const struct drm_i915_cmd_descriptor common_cmds[] = {
118 CMD( MI_NOOP, SMI, F, 1, S ),
119 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
120 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, M ),
121 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
122 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
123 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
124 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
125 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
126 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
127 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
128 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
129 .reg = { .offset = 1, .mask = 0x007FFFFC },
130 .bits = {{
131 .offset = 0,
132 .mask = MI_GLOBAL_GTT,
133 .expected = 0,
134 }}, ),
135 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
136 .reg = { .offset = 1, .mask = 0x007FFFFC },
137 .bits = {{
138 .offset = 0,
139 .mask = MI_GLOBAL_GTT,
140 .expected = 0,
141 }}, ),
142 /*
143 * MI_BATCH_BUFFER_START requires some special handling. It's not
144 * really a 'skip' action but it doesn't seem like it's worth adding
145 * a new action. See i915_parse_cmds().
146 */
147 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
148};
149
150static const struct drm_i915_cmd_descriptor render_cmds[] = {
151 CMD( MI_FLUSH, SMI, F, 1, S ),
152 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
153 CMD( MI_PREDICATE, SMI, F, 1, S ),
154 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
155 CMD( MI_SET_APPID, SMI, F, 1, S ),
156 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
157 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
158 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
159 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
160 .bits = {{
161 .offset = 0,
162 .mask = MI_GLOBAL_GTT,
163 .expected = 0,
164 }}, ),
165 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
166 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
167 .bits = {{
168 .offset = 0,
169 .mask = MI_GLOBAL_GTT,
170 .expected = 0,
171 }}, ),
172 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
173 .bits = {{
174 .offset = 1,
175 .mask = MI_REPORT_PERF_COUNT_GGTT,
176 .expected = 0,
177 }}, ),
178 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
179 .bits = {{
180 .offset = 0,
181 .mask = MI_GLOBAL_GTT,
182 .expected = 0,
183 }}, ),
184 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
185 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
186 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
187 .bits = {{
188 .offset = 2,
189 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
190 .expected = 0,
191 }}, ),
192 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
193 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
194 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
195 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
196 .bits = {{
197 .offset = 1,
198 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
199 .expected = 0,
200 },
201 {
202 .offset = 1,
203 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
204 PIPE_CONTROL_STORE_DATA_INDEX),
205 .expected = 0,
206 .condition_offset = 1,
207 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
208 }}, ),
209};
210
211static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
212 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
213 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
214 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
215 CMD( MI_SET_APPID, SMI, F, 1, S ),
216 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
217 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
218 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
219 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
220 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
221 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
222 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
223 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
224 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
225 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
226
227 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
228 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
229 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
230 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
231 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
232};
233
234static const struct drm_i915_cmd_descriptor video_cmds[] = {
235 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
236 CMD( MI_SET_APPID, SMI, F, 1, S ),
237 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
238 .bits = {{
239 .offset = 0,
240 .mask = MI_GLOBAL_GTT,
241 .expected = 0,
242 }}, ),
243 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
244 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
245 .bits = {{
246 .offset = 0,
247 .mask = MI_FLUSH_DW_NOTIFY,
248 .expected = 0,
249 },
250 {
251 .offset = 1,
252 .mask = MI_FLUSH_DW_USE_GTT,
253 .expected = 0,
254 .condition_offset = 0,
255 .condition_mask = MI_FLUSH_DW_OP_MASK,
256 },
257 {
258 .offset = 0,
259 .mask = MI_FLUSH_DW_STORE_INDEX,
260 .expected = 0,
261 .condition_offset = 0,
262 .condition_mask = MI_FLUSH_DW_OP_MASK,
263 }}, ),
264 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
265 .bits = {{
266 .offset = 0,
267 .mask = MI_GLOBAL_GTT,
268 .expected = 0,
269 }}, ),
270 /*
271 * MFX_WAIT doesn't fit the way we handle length for most commands.
272 * It has a length field but it uses a non-standard length bias.
273 * It is always 1 dword though, so just treat it as fixed length.
274 */
275 CMD( MFX_WAIT, SMFX, F, 1, S ),
276};
277
278static const struct drm_i915_cmd_descriptor vecs_cmds[] = {
279 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
280 CMD( MI_SET_APPID, SMI, F, 1, S ),
281 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
282 .bits = {{
283 .offset = 0,
284 .mask = MI_GLOBAL_GTT,
285 .expected = 0,
286 }}, ),
287 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
288 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
289 .bits = {{
290 .offset = 0,
291 .mask = MI_FLUSH_DW_NOTIFY,
292 .expected = 0,
293 },
294 {
295 .offset = 1,
296 .mask = MI_FLUSH_DW_USE_GTT,
297 .expected = 0,
298 .condition_offset = 0,
299 .condition_mask = MI_FLUSH_DW_OP_MASK,
300 },
301 {
302 .offset = 0,
303 .mask = MI_FLUSH_DW_STORE_INDEX,
304 .expected = 0,
305 .condition_offset = 0,
306 .condition_mask = MI_FLUSH_DW_OP_MASK,
307 }}, ),
308 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
309 .bits = {{
310 .offset = 0,
311 .mask = MI_GLOBAL_GTT,
312 .expected = 0,
313 }}, ),
314};
315
316static const struct drm_i915_cmd_descriptor blt_cmds[] = {
317 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
318 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
319 .bits = {{
320 .offset = 0,
321 .mask = MI_GLOBAL_GTT,
322 .expected = 0,
323 }}, ),
324 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
325 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
326 .bits = {{
327 .offset = 0,
328 .mask = MI_FLUSH_DW_NOTIFY,
329 .expected = 0,
330 },
331 {
332 .offset = 1,
333 .mask = MI_FLUSH_DW_USE_GTT,
334 .expected = 0,
335 .condition_offset = 0,
336 .condition_mask = MI_FLUSH_DW_OP_MASK,
337 },
338 {
339 .offset = 0,
340 .mask = MI_FLUSH_DW_STORE_INDEX,
341 .expected = 0,
342 .condition_offset = 0,
343 .condition_mask = MI_FLUSH_DW_OP_MASK,
344 }}, ),
345 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
346 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
347};
348
349static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
350 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
351 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
352};
353
354static const struct drm_i915_cmd_descriptor noop_desc =
355 CMD(MI_NOOP, SMI, F, 1, S);
356
357#undef CMD
358#undef SMI
359#undef S3D
360#undef S2D
361#undef SMFX
362#undef F
363#undef S
364#undef R
365#undef W
366#undef B
367#undef M
368
369static const struct drm_i915_cmd_table gen7_render_cmds[] = {
370 { common_cmds, ARRAY_SIZE(common_cmds) },
371 { render_cmds, ARRAY_SIZE(render_cmds) },
372};
373
374static const struct drm_i915_cmd_table hsw_render_ring_cmds[] = {
375 { common_cmds, ARRAY_SIZE(common_cmds) },
376 { render_cmds, ARRAY_SIZE(render_cmds) },
377 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
378};
379
380static const struct drm_i915_cmd_table gen7_video_cmds[] = {
381 { common_cmds, ARRAY_SIZE(common_cmds) },
382 { video_cmds, ARRAY_SIZE(video_cmds) },
383};
384
385static const struct drm_i915_cmd_table hsw_vebox_cmds[] = {
386 { common_cmds, ARRAY_SIZE(common_cmds) },
387 { vecs_cmds, ARRAY_SIZE(vecs_cmds) },
388};
389
390static const struct drm_i915_cmd_table gen7_blt_cmds[] = {
391 { common_cmds, ARRAY_SIZE(common_cmds) },
392 { blt_cmds, ARRAY_SIZE(blt_cmds) },
393};
394
395static const struct drm_i915_cmd_table hsw_blt_ring_cmds[] = {
396 { common_cmds, ARRAY_SIZE(common_cmds) },
397 { blt_cmds, ARRAY_SIZE(blt_cmds) },
398 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
399};
400
401/*
402 * Register whitelists, sorted by increasing register offset.
403 */
404
405/*
406 * An individual whitelist entry granting access to register addr. If
407 * mask is non-zero the argument of immediate register writes will be
408 * AND-ed with mask, and the command will be rejected if the result
409 * doesn't match value.
410 *
411 * Registers with non-zero mask are only allowed to be written using
412 * LRI.
413 */
414struct drm_i915_reg_descriptor {
415 i915_reg_t addr;
416 u32 mask;
417 u32 value;
418};
419
420/* Convenience macro for adding 32-bit registers. */
421#define REG32(_reg, ...) \
422 { .addr = (_reg), __VA_ARGS__ }
423
424/*
425 * Convenience macro for adding 64-bit registers.
426 *
427 * Some registers that userspace accesses are 64 bits. The register
428 * access commands only allow 32-bit accesses. Hence, we have to include
429 * entries for both halves of the 64-bit registers.
430 */
431#define REG64(_reg) \
432 { .addr = _reg }, \
433 { .addr = _reg ## _UDW }
434
435#define REG64_IDX(_reg, idx) \
436 { .addr = _reg(idx) }, \
437 { .addr = _reg ## _UDW(idx) }
438
439static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
440 REG64(GPGPU_THREADS_DISPATCHED),
441 REG64(HS_INVOCATION_COUNT),
442 REG64(DS_INVOCATION_COUNT),
443 REG64(IA_VERTICES_COUNT),
444 REG64(IA_PRIMITIVES_COUNT),
445 REG64(VS_INVOCATION_COUNT),
446 REG64(GS_INVOCATION_COUNT),
447 REG64(GS_PRIMITIVES_COUNT),
448 REG64(CL_INVOCATION_COUNT),
449 REG64(CL_PRIMITIVES_COUNT),
450 REG64(PS_INVOCATION_COUNT),
451 REG64(PS_DEPTH_COUNT),
452 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
453 REG32(OACONTROL), /* Only allowed for LRI and SRM. See below. */
454 REG64(MI_PREDICATE_SRC0),
455 REG64(MI_PREDICATE_SRC1),
456 REG32(GEN7_3DPRIM_END_OFFSET),
457 REG32(GEN7_3DPRIM_START_VERTEX),
458 REG32(GEN7_3DPRIM_VERTEX_COUNT),
459 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
460 REG32(GEN7_3DPRIM_START_INSTANCE),
461 REG32(GEN7_3DPRIM_BASE_VERTEX),
462 REG32(GEN7_GPGPU_DISPATCHDIMX),
463 REG32(GEN7_GPGPU_DISPATCHDIMY),
464 REG32(GEN7_GPGPU_DISPATCHDIMZ),
465 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
466 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
467 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
468 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
469 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
470 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
471 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
472 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
473 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
474 REG32(GEN7_SO_WRITE_OFFSET(0)),
475 REG32(GEN7_SO_WRITE_OFFSET(1)),
476 REG32(GEN7_SO_WRITE_OFFSET(2)),
477 REG32(GEN7_SO_WRITE_OFFSET(3)),
478 REG32(GEN7_L3SQCREG1),
479 REG32(GEN7_L3CNTLREG2),
480 REG32(GEN7_L3CNTLREG3),
481 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
482};
483
484static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
485 REG64_IDX(HSW_CS_GPR, 0),
486 REG64_IDX(HSW_CS_GPR, 1),
487 REG64_IDX(HSW_CS_GPR, 2),
488 REG64_IDX(HSW_CS_GPR, 3),
489 REG64_IDX(HSW_CS_GPR, 4),
490 REG64_IDX(HSW_CS_GPR, 5),
491 REG64_IDX(HSW_CS_GPR, 6),
492 REG64_IDX(HSW_CS_GPR, 7),
493 REG64_IDX(HSW_CS_GPR, 8),
494 REG64_IDX(HSW_CS_GPR, 9),
495 REG64_IDX(HSW_CS_GPR, 10),
496 REG64_IDX(HSW_CS_GPR, 11),
497 REG64_IDX(HSW_CS_GPR, 12),
498 REG64_IDX(HSW_CS_GPR, 13),
499 REG64_IDX(HSW_CS_GPR, 14),
500 REG64_IDX(HSW_CS_GPR, 15),
501 REG32(HSW_SCRATCH1,
502 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
503 .value = 0),
504 REG32(HSW_ROW_CHICKEN3,
505 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
506 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
507 .value = 0),
508};
509
510static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
511 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
512 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
513 REG32(BCS_SWCTRL),
514 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
515};
516
517static const struct drm_i915_reg_descriptor ivb_master_regs[] = {
518 REG32(FORCEWAKE_MT),
519 REG32(DERRMR),
520 REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_A)),
521 REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_B)),
522 REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_C)),
523};
524
525static const struct drm_i915_reg_descriptor hsw_master_regs[] = {
526 REG32(FORCEWAKE_MT),
527 REG32(DERRMR),
528};
529
530#undef REG64
531#undef REG32
532
533struct drm_i915_reg_table {
534 const struct drm_i915_reg_descriptor *regs;
535 int num_regs;
536 bool master;
537};
538
539static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
540 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
541 { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
542};
543
544static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
545 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
546 { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
547};
548
549static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
550 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
551 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs), false },
552 { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
553};
554
555static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
556 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
557 { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
558};
559
560static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
561{
562 u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
563 u32 subclient =
564 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
565
566 if (client == INSTR_MI_CLIENT)
567 return 0x3F;
568 else if (client == INSTR_RC_CLIENT) {
569 if (subclient == INSTR_MEDIA_SUBCLIENT)
570 return 0xFFFF;
571 else
572 return 0xFF;
573 }
574
575 DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
576 return 0;
577}
578
579static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
580{
581 u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
582 u32 subclient =
583 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
584 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
585
586 if (client == INSTR_MI_CLIENT)
587 return 0x3F;
588 else if (client == INSTR_RC_CLIENT) {
589 if (subclient == INSTR_MEDIA_SUBCLIENT) {
590 if (op == 6)
591 return 0xFFFF;
592 else
593 return 0xFFF;
594 } else
595 return 0xFF;
596 }
597
598 DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
599 return 0;
600}
601
602static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
603{
604 u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
605
606 if (client == INSTR_MI_CLIENT)
607 return 0x3F;
608 else if (client == INSTR_BC_CLIENT)
609 return 0xFF;
610
611 DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
612 return 0;
613}
614
615static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
616 const struct drm_i915_cmd_table *cmd_tables,
617 int cmd_table_count)
618{
619 int i;
620 bool ret = true;
621
622 if (!cmd_tables || cmd_table_count == 0)
623 return true;
624
625 for (i = 0; i < cmd_table_count; i++) {
626 const struct drm_i915_cmd_table *table = &cmd_tables[i];
627 u32 previous = 0;
628 int j;
629
630 for (j = 0; j < table->count; j++) {
631 const struct drm_i915_cmd_descriptor *desc =
632 &table->table[j];
633 u32 curr = desc->cmd.value & desc->cmd.mask;
634
635 if (curr < previous) {
636 DRM_ERROR("CMD: %s [%d] command table not sorted: "
637 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
638 engine->name, engine->id,
639 i, j, curr, previous);
640 ret = false;
641 }
642
643 previous = curr;
644 }
645 }
646
647 return ret;
648}
649
650static bool check_sorted(const struct intel_engine_cs *engine,
651 const struct drm_i915_reg_descriptor *reg_table,
652 int reg_count)
653{
654 int i;
655 u32 previous = 0;
656 bool ret = true;
657
658 for (i = 0; i < reg_count; i++) {
659 u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
660
661 if (curr < previous) {
662 DRM_ERROR("CMD: %s [%d] register table not sorted: "
663 "entry=%d reg=0x%08X prev=0x%08X\n",
664 engine->name, engine->id,
665 i, curr, previous);
666 ret = false;
667 }
668
669 previous = curr;
670 }
671
672 return ret;
673}
674
675static bool validate_regs_sorted(struct intel_engine_cs *engine)
676{
677 int i;
678 const struct drm_i915_reg_table *table;
679
680 for (i = 0; i < engine->reg_table_count; i++) {
681 table = &engine->reg_tables[i];
682 if (!check_sorted(engine, table->regs, table->num_regs))
683 return false;
684 }
685
686 return true;
687}
688
689struct cmd_node {
690 const struct drm_i915_cmd_descriptor *desc;
691 struct hlist_node node;
692};
693
694/*
695 * Different command ranges have different numbers of bits for the opcode. For
696 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
697 * problem is that, for example, MI commands use bits 22:16 for other fields
698 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
699 * we mask a command from a batch it could hash to the wrong bucket due to
700 * non-opcode bits being set. But if we don't include those bits, some 3D
701 * commands may hash to the same bucket due to not including opcode bits that
702 * make the command unique. For now, we will risk hashing to the same bucket.
703 */
704static inline u32 cmd_header_key(u32 x)
705{
706 u32 shift;
707
708 switch (x >> INSTR_CLIENT_SHIFT) {
709 default:
710 case INSTR_MI_CLIENT:
711 shift = STD_MI_OPCODE_SHIFT;
712 break;
713 case INSTR_RC_CLIENT:
714 shift = STD_3D_OPCODE_SHIFT;
715 break;
716 case INSTR_BC_CLIENT:
717 shift = STD_2D_OPCODE_SHIFT;
718 break;
719 }
720
721 return x >> shift;
722}
723
724static int init_hash_table(struct intel_engine_cs *engine,
725 const struct drm_i915_cmd_table *cmd_tables,
726 int cmd_table_count)
727{
728 int i, j;
729
730 hash_init(engine->cmd_hash);
731
732 for (i = 0; i < cmd_table_count; i++) {
733 const struct drm_i915_cmd_table *table = &cmd_tables[i];
734
735 for (j = 0; j < table->count; j++) {
736 const struct drm_i915_cmd_descriptor *desc =
737 &table->table[j];
738 struct cmd_node *desc_node =
739 kmalloc(sizeof(*desc_node), GFP_KERNEL);
740
741 if (!desc_node)
742 return -ENOMEM;
743
744 desc_node->desc = desc;
745 hash_add(engine->cmd_hash, &desc_node->node,
746 cmd_header_key(desc->cmd.value));
747 }
748 }
749
750 return 0;
751}
752
753static void fini_hash_table(struct intel_engine_cs *engine)
754{
755 struct hlist_node *tmp;
756 struct cmd_node *desc_node;
757 int i;
758
759 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
760 hash_del(&desc_node->node);
761 kfree(desc_node);
762 }
763}
764
765/**
766 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
767 * @engine: the engine to initialize
768 *
769 * Optionally initializes fields related to batch buffer command parsing in the
770 * struct intel_engine_cs based on whether the platform requires software
771 * command parsing.
772 */
773void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
774{
775 const struct drm_i915_cmd_table *cmd_tables;
776 int cmd_table_count;
777 int ret;
778
779 if (!IS_GEN7(engine->i915))
780 return;
781
782 switch (engine->id) {
783 case RCS:
784 if (IS_HASWELL(engine->i915)) {
785 cmd_tables = hsw_render_ring_cmds;
786 cmd_table_count =
787 ARRAY_SIZE(hsw_render_ring_cmds);
788 } else {
789 cmd_tables = gen7_render_cmds;
790 cmd_table_count = ARRAY_SIZE(gen7_render_cmds);
791 }
792
793 if (IS_HASWELL(engine->i915)) {
794 engine->reg_tables = hsw_render_reg_tables;
795 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
796 } else {
797 engine->reg_tables = ivb_render_reg_tables;
798 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
799 }
800
801 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
802 break;
803 case VCS:
804 cmd_tables = gen7_video_cmds;
805 cmd_table_count = ARRAY_SIZE(gen7_video_cmds);
806 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
807 break;
808 case BCS:
809 if (IS_HASWELL(engine->i915)) {
810 cmd_tables = hsw_blt_ring_cmds;
811 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmds);
812 } else {
813 cmd_tables = gen7_blt_cmds;
814 cmd_table_count = ARRAY_SIZE(gen7_blt_cmds);
815 }
816
817 if (IS_HASWELL(engine->i915)) {
818 engine->reg_tables = hsw_blt_reg_tables;
819 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
820 } else {
821 engine->reg_tables = ivb_blt_reg_tables;
822 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
823 }
824
825 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
826 break;
827 case VECS:
828 cmd_tables = hsw_vebox_cmds;
829 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds);
830 /* VECS can use the same length_mask function as VCS */
831 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
832 break;
833 default:
834 MISSING_CASE(engine->id);
835 return;
836 }
837
838 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
839 DRM_ERROR("%s: command descriptions are not sorted\n",
840 engine->name);
841 return;
842 }
843 if (!validate_regs_sorted(engine)) {
844 DRM_ERROR("%s: registers are not sorted\n", engine->name);
845 return;
846 }
847
848 ret = init_hash_table(engine, cmd_tables, cmd_table_count);
849 if (ret) {
850 DRM_ERROR("%s: initialised failed!\n", engine->name);
851 fini_hash_table(engine);
852 return;
853 }
854
855 engine->needs_cmd_parser = true;
856}
857
858/**
859 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
860 * @engine: the engine to clean up
861 *
862 * Releases any resources related to command parsing that may have been
863 * initialized for the specified engine.
864 */
865void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
866{
867 if (!engine->needs_cmd_parser)
868 return;
869
870 fini_hash_table(engine);
871}
872
873static const struct drm_i915_cmd_descriptor*
874find_cmd_in_table(struct intel_engine_cs *engine,
875 u32 cmd_header)
876{
877 struct cmd_node *desc_node;
878
879 hash_for_each_possible(engine->cmd_hash, desc_node, node,
880 cmd_header_key(cmd_header)) {
881 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
882 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
883 return desc;
884 }
885
886 return NULL;
887}
888
889/*
890 * Returns a pointer to a descriptor for the command specified by cmd_header.
891 *
892 * The caller must supply space for a default descriptor via the default_desc
893 * parameter. If no descriptor for the specified command exists in the engine's
894 * command parser tables, this function fills in default_desc based on the
895 * engine's default length encoding and returns default_desc.
896 */
897static const struct drm_i915_cmd_descriptor*
898find_cmd(struct intel_engine_cs *engine,
899 u32 cmd_header,
900 const struct drm_i915_cmd_descriptor *desc,
901 struct drm_i915_cmd_descriptor *default_desc)
902{
903 u32 mask;
904
905 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
906 return desc;
907
908 desc = find_cmd_in_table(engine, cmd_header);
909 if (desc)
910 return desc;
911
912 mask = engine->get_cmd_length_mask(cmd_header);
913 if (!mask)
914 return NULL;
915
916 default_desc->cmd.value = cmd_header;
917 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
918 default_desc->length.mask = mask;
919 default_desc->flags = CMD_DESC_SKIP;
920 return default_desc;
921}
922
923static const struct drm_i915_reg_descriptor *
924__find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
925{
926 int start = 0, end = count;
927 while (start < end) {
928 int mid = start + (end - start) / 2;
929 int ret = addr - i915_mmio_reg_offset(table[mid].addr);
930 if (ret < 0)
931 end = mid;
932 else if (ret > 0)
933 start = mid + 1;
934 else
935 return &table[mid];
936 }
937 return NULL;
938}
939
940static const struct drm_i915_reg_descriptor *
941find_reg(const struct intel_engine_cs *engine, bool is_master, u32 addr)
942{
943 const struct drm_i915_reg_table *table = engine->reg_tables;
944 int count = engine->reg_table_count;
945
946 do {
947 if (!table->master || is_master) {
948 const struct drm_i915_reg_descriptor *reg;
949
950 reg = __find_reg(table->regs, table->num_regs, addr);
951 if (reg != NULL)
952 return reg;
953 }
954 } while (table++, --count);
955
956 return NULL;
957}
958
959/* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
960static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
961 struct drm_i915_gem_object *src_obj,
962 u32 batch_start_offset,
963 u32 batch_len,
964 bool *needs_clflush_after)
965{
966 unsigned int src_needs_clflush;
967 unsigned int dst_needs_clflush;
968 void *dst, *src;
969 int ret;
970
971 ret = i915_gem_obj_prepare_shmem_read(src_obj, &src_needs_clflush);
972 if (ret)
973 return ERR_PTR(ret);
974
975 ret = i915_gem_obj_prepare_shmem_write(dst_obj, &dst_needs_clflush);
976 if (ret) {
977 dst = ERR_PTR(ret);
978 goto unpin_src;
979 }
980
981 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
982 if (IS_ERR(dst))
983 goto unpin_dst;
984
985 src = ERR_PTR(-ENODEV);
986 if (src_needs_clflush &&
987 i915_memcpy_from_wc((void *)(uintptr_t)batch_start_offset, NULL, 0)) {
988 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
989 if (!IS_ERR(src)) {
990 i915_memcpy_from_wc(dst,
991 src + batch_start_offset,
992 ALIGN(batch_len, 16));
993 i915_gem_object_unpin_map(src_obj);
994 }
995 }
996 if (IS_ERR(src)) {
997 void *ptr;
998 int offset, n;
999
1000 offset = offset_in_page(batch_start_offset);
1001
1002 /* We can avoid clflushing partial cachelines before the write
1003 * if we only every write full cache-lines. Since we know that
1004 * both the source and destination are in multiples of
1005 * PAGE_SIZE, we can simply round up to the next cacheline.
1006 * We don't care about copying too much here as we only
1007 * validate up to the end of the batch.
1008 */
1009 if (dst_needs_clflush & CLFLUSH_BEFORE)
1010 batch_len = roundup(batch_len,
1011 boot_cpu_data.x86_clflush_size);
1012
1013 ptr = dst;
1014 for (n = batch_start_offset >> PAGE_SHIFT; batch_len; n++) {
1015 int len = min_t(int, batch_len, PAGE_SIZE - offset);
1016
1017 src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1018 if (src_needs_clflush)
1019 drm_clflush_virt_range(src + offset, len);
1020 memcpy(ptr, src + offset, len);
1021 kunmap_atomic(src);
1022
1023 ptr += len;
1024 batch_len -= len;
1025 offset = 0;
1026 }
1027 }
1028
1029 /* dst_obj is returned with vmap pinned */
1030 *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1031
1032unpin_dst:
1033 i915_gem_obj_finish_shmem_access(dst_obj);
1034unpin_src:
1035 i915_gem_obj_finish_shmem_access(src_obj);
1036 return dst;
1037}
1038
1039/**
1040 * intel_engine_needs_cmd_parser() - should a given engine use software
1041 * command parsing?
1042 * @engine: the engine in question
1043 *
1044 * Only certain platforms require software batch buffer command parsing, and
1045 * only when enabled via module parameter.
1046 *
1047 * Return: true if the engine requires software command parsing
1048 */
1049bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine)
1050{
1051 if (!engine->needs_cmd_parser)
1052 return false;
1053
1054 if (!USES_PPGTT(engine->i915))
1055 return false;
1056
1057 return (i915.enable_cmd_parser == 1);
1058}
1059
1060static bool check_cmd(const struct intel_engine_cs *engine,
1061 const struct drm_i915_cmd_descriptor *desc,
1062 const u32 *cmd, u32 length,
1063 const bool is_master,
1064 bool *oacontrol_set)
1065{
1066 if (desc->flags & CMD_DESC_SKIP)
1067 return true;
1068
1069 if (desc->flags & CMD_DESC_REJECT) {
1070 DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd);
1071 return false;
1072 }
1073
1074 if ((desc->flags & CMD_DESC_MASTER) && !is_master) {
1075 DRM_DEBUG_DRIVER("CMD: Rejected master-only command: 0x%08X\n",
1076 *cmd);
1077 return false;
1078 }
1079
1080 if (desc->flags & CMD_DESC_REGISTER) {
1081 /*
1082 * Get the distance between individual register offset
1083 * fields if the command can perform more than one
1084 * access at a time.
1085 */
1086 const u32 step = desc->reg.step ? desc->reg.step : length;
1087 u32 offset;
1088
1089 for (offset = desc->reg.offset; offset < length;
1090 offset += step) {
1091 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1092 const struct drm_i915_reg_descriptor *reg =
1093 find_reg(engine, is_master, reg_addr);
1094
1095 if (!reg) {
1096 DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (exec_id=%d)\n",
1097 reg_addr, *cmd, engine->exec_id);
1098 return false;
1099 }
1100
1101 /*
1102 * OACONTROL requires some special handling for
1103 * writes. We want to make sure that any batch which
1104 * enables OA also disables it before the end of the
1105 * batch. The goal is to prevent one process from
1106 * snooping on the perf data from another process. To do
1107 * that, we need to check the value that will be written
1108 * to the register. Hence, limit OACONTROL writes to
1109 * only MI_LOAD_REGISTER_IMM commands.
1110 */
1111 if (reg_addr == i915_mmio_reg_offset(OACONTROL)) {
1112 if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1113 DRM_DEBUG_DRIVER("CMD: Rejected LRM to OACONTROL\n");
1114 return false;
1115 }
1116
1117 if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1118 DRM_DEBUG_DRIVER("CMD: Rejected LRR to OACONTROL\n");
1119 return false;
1120 }
1121
1122 if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1))
1123 *oacontrol_set = (cmd[offset + 1] != 0);
1124 }
1125
1126 /*
1127 * Check the value written to the register against the
1128 * allowed mask/value pair given in the whitelist entry.
1129 */
1130 if (reg->mask) {
1131 if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1132 DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n",
1133 reg_addr);
1134 return false;
1135 }
1136
1137 if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1138 DRM_DEBUG_DRIVER("CMD: Rejected LRR to masked register 0x%08X\n",
1139 reg_addr);
1140 return false;
1141 }
1142
1143 if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
1144 (offset + 2 > length ||
1145 (cmd[offset + 1] & reg->mask) != reg->value)) {
1146 DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n",
1147 reg_addr);
1148 return false;
1149 }
1150 }
1151 }
1152 }
1153
1154 if (desc->flags & CMD_DESC_BITMASK) {
1155 int i;
1156
1157 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1158 u32 dword;
1159
1160 if (desc->bits[i].mask == 0)
1161 break;
1162
1163 if (desc->bits[i].condition_mask != 0) {
1164 u32 offset =
1165 desc->bits[i].condition_offset;
1166 u32 condition = cmd[offset] &
1167 desc->bits[i].condition_mask;
1168
1169 if (condition == 0)
1170 continue;
1171 }
1172
1173 dword = cmd[desc->bits[i].offset] &
1174 desc->bits[i].mask;
1175
1176 if (dword != desc->bits[i].expected) {
1177 DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (exec_id=%d)\n",
1178 *cmd,
1179 desc->bits[i].mask,
1180 desc->bits[i].expected,
1181 dword, engine->exec_id);
1182 return false;
1183 }
1184 }
1185 }
1186
1187 return true;
1188}
1189
1190#define LENGTH_BIAS 2
1191
1192/**
1193 * i915_parse_cmds() - parse a submitted batch buffer for privilege violations
1194 * @engine: the engine on which the batch is to execute
1195 * @batch_obj: the batch buffer in question
1196 * @shadow_batch_obj: copy of the batch buffer in question
1197 * @batch_start_offset: byte offset in the batch at which execution starts
1198 * @batch_len: length of the commands in batch_obj
1199 * @is_master: is the submitting process the drm master?
1200 *
1201 * Parses the specified batch buffer looking for privilege violations as
1202 * described in the overview.
1203 *
1204 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1205 * if the batch appears legal but should use hardware parsing
1206 */
1207int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1208 struct drm_i915_gem_object *batch_obj,
1209 struct drm_i915_gem_object *shadow_batch_obj,
1210 u32 batch_start_offset,
1211 u32 batch_len,
1212 bool is_master)
1213{
1214 u32 *cmd, *batch_end;
1215 struct drm_i915_cmd_descriptor default_desc = noop_desc;
1216 const struct drm_i915_cmd_descriptor *desc = &default_desc;
1217 bool oacontrol_set = false; /* OACONTROL tracking. See check_cmd() */
1218 bool needs_clflush_after = false;
1219 int ret = 0;
1220
1221 cmd = copy_batch(shadow_batch_obj, batch_obj,
1222 batch_start_offset, batch_len,
1223 &needs_clflush_after);
1224 if (IS_ERR(cmd)) {
1225 DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n");
1226 return PTR_ERR(cmd);
1227 }
1228
1229 /*
1230 * We use the batch length as size because the shadow object is as
1231 * large or larger and copy_batch() will write MI_NOPs to the extra
1232 * space. Parsing should be faster in some cases this way.
1233 */
1234 batch_end = cmd + (batch_len / sizeof(*batch_end));
1235 while (cmd < batch_end) {
1236 u32 length;
1237
1238 if (*cmd == MI_BATCH_BUFFER_END)
1239 break;
1240
1241 desc = find_cmd(engine, *cmd, desc, &default_desc);
1242 if (!desc) {
1243 DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
1244 *cmd);
1245 ret = -EINVAL;
1246 break;
1247 }
1248
1249 /*
1250 * If the batch buffer contains a chained batch, return an
1251 * error that tells the caller to abort and dispatch the
1252 * workload as a non-secure batch.
1253 */
1254 if (desc->cmd.value == MI_BATCH_BUFFER_START) {
1255 ret = -EACCES;
1256 break;
1257 }
1258
1259 if (desc->flags & CMD_DESC_FIXED)
1260 length = desc->length.fixed;
1261 else
1262 length = ((*cmd & desc->length.mask) + LENGTH_BIAS);
1263
1264 if ((batch_end - cmd) < length) {
1265 DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1266 *cmd,
1267 length,
1268 batch_end - cmd);
1269 ret = -EINVAL;
1270 break;
1271 }
1272
1273 if (!check_cmd(engine, desc, cmd, length, is_master,
1274 &oacontrol_set)) {
1275 ret = -EINVAL;
1276 break;
1277 }
1278
1279 cmd += length;
1280 }
1281
1282 if (oacontrol_set) {
1283 DRM_DEBUG_DRIVER("CMD: batch set OACONTROL but did not clear it\n");
1284 ret = -EINVAL;
1285 }
1286
1287 if (cmd >= batch_end) {
1288 DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1289 ret = -EINVAL;
1290 }
1291
1292 if (ret == 0 && needs_clflush_after)
1293 drm_clflush_virt_range(shadow_batch_obj->mm.mapping, batch_len);
1294 i915_gem_object_unpin_map(shadow_batch_obj);
1295
1296 return ret;
1297}
1298
1299/**
1300 * i915_cmd_parser_get_version() - get the cmd parser version number
1301 * @dev_priv: i915 device private
1302 *
1303 * The cmd parser maintains a simple increasing integer version number suitable
1304 * for passing to userspace clients to determine what operations are permitted.
1305 *
1306 * Return: the current version number of the cmd parser
1307 */
1308int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1309{
1310 struct intel_engine_cs *engine;
1311 enum intel_engine_id id;
1312 bool active = false;
1313
1314 /* If the command parser is not enabled, report 0 - unsupported */
1315 for_each_engine(engine, dev_priv, id) {
1316 if (intel_engine_needs_cmd_parser(engine)) {
1317 active = true;
1318 break;
1319 }
1320 }
1321 if (!active)
1322 return 0;
1323
1324 /*
1325 * Command parser version history
1326 *
1327 * 1. Initial version. Checks batches and reports violations, but leaves
1328 * hardware parsing enabled (so does not allow new use cases).
1329 * 2. Allow access to the MI_PREDICATE_SRC0 and
1330 * MI_PREDICATE_SRC1 registers.
1331 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1332 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1333 * 5. GPGPU dispatch compute indirect registers.
1334 * 6. TIMESTAMP register and Haswell CS GPR registers
1335 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1336 */
1337 return 7;
1338}