Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright © 2013 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Brad Volkin <bradley.d.volkin@intel.com>
  25 *
  26 */
  27
  28#include <linux/highmem.h>
  29
  30#include <drm/drm_cache.h>
  31
  32#include "gt/intel_engine.h"
  33#include "gt/intel_engine_regs.h"
  34#include "gt/intel_gpu_commands.h"
  35#include "gt/intel_gt_regs.h"
  36
  37#include "i915_cmd_parser.h"
  38#include "i915_drv.h"
  39#include "i915_memcpy.h"
  40#include "i915_reg.h"
  41
  42/**
  43 * DOC: batch buffer command parser
  44 *
  45 * Motivation:
  46 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
  47 * require userspace code to submit batches containing commands such as
  48 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
  49 * generations of the hardware will noop these commands in "unsecure" batches
  50 * (which includes all userspace batches submitted via i915) even though the
  51 * commands may be safe and represent the intended programming model of the
  52 * device.
  53 *
  54 * The software command parser is similar in operation to the command parsing
  55 * done in hardware for unsecure batches. However, the software parser allows
  56 * some operations that would be noop'd by hardware, if the parser determines
  57 * the operation is safe, and submits the batch as "secure" to prevent hardware
  58 * parsing.
  59 *
  60 * Threats:
  61 * At a high level, the hardware (and software) checks attempt to prevent
  62 * granting userspace undue privileges. There are three categories of privilege.
  63 *
  64 * First, commands which are explicitly defined as privileged or which should
  65 * only be used by the kernel driver. The parser rejects such commands
 
  66 *
  67 * Second, commands which access registers. To support correct/enhanced
  68 * userspace functionality, particularly certain OpenGL extensions, the parser
  69 * provides a whitelist of registers which userspace may safely access
 
  70 *
  71 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
  72 * The parser always rejects such commands.
  73 *
  74 * The majority of the problematic commands fall in the MI_* range, with only a
  75 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
  76 *
  77 * Implementation:
  78 * Each engine maintains tables of commands and registers which the parser
  79 * uses in scanning batch buffers submitted to that engine.
  80 *
  81 * Since the set of commands that the parser must check for is significantly
  82 * smaller than the number of commands supported, the parser tables contain only
  83 * those commands required by the parser. This generally works because command
  84 * opcode ranges have standard command length encodings. So for commands that
  85 * the parser does not need to check, it can easily skip them. This is
  86 * implemented via a per-engine length decoding vfunc.
  87 *
  88 * Unfortunately, there are a number of commands that do not follow the standard
  89 * length encoding for their opcode range, primarily amongst the MI_* commands.
  90 * To handle this, the parser provides a way to define explicit "skip" entries
  91 * in the per-engine command tables.
  92 *
  93 * Other command table entries map fairly directly to high level categories
  94 * mentioned above: rejected, register whitelist. The parser implements a number
  95 * of checks, including the privileged memory checks, via a general bitmasking
  96 * mechanism.
  97 */
  98
  99/*
 100 * A command that requires special handling by the command parser.
 101 */
 102struct drm_i915_cmd_descriptor {
 103	/*
 104	 * Flags describing how the command parser processes the command.
 105	 *
 106	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
 107	 *                 a length mask if not set
 108	 * CMD_DESC_SKIP: The command is allowed but does not follow the
 109	 *                standard length encoding for the opcode range in
 110	 *                which it falls
 111	 * CMD_DESC_REJECT: The command is never allowed
 112	 * CMD_DESC_REGISTER: The command should be checked against the
 113	 *                    register whitelist for the appropriate ring
 114	 */
 115	u32 flags;
 116#define CMD_DESC_FIXED    (1<<0)
 117#define CMD_DESC_SKIP     (1<<1)
 118#define CMD_DESC_REJECT   (1<<2)
 119#define CMD_DESC_REGISTER (1<<3)
 120#define CMD_DESC_BITMASK  (1<<4)
 121
 122	/*
 123	 * The command's unique identification bits and the bitmask to get them.
 124	 * This isn't strictly the opcode field as defined in the spec and may
 125	 * also include type, subtype, and/or subop fields.
 126	 */
 127	struct {
 128		u32 value;
 129		u32 mask;
 130	} cmd;
 131
 132	/*
 133	 * The command's length. The command is either fixed length (i.e. does
 134	 * not include a length field) or has a length field mask. The flag
 135	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
 136	 * a length mask. All command entries in a command table must include
 137	 * length information.
 138	 */
 139	union {
 140		u32 fixed;
 141		u32 mask;
 142	} length;
 143
 144	/*
 145	 * Describes where to find a register address in the command to check
 146	 * against the ring's register whitelist. Only valid if flags has the
 147	 * CMD_DESC_REGISTER bit set.
 148	 *
 149	 * A non-zero step value implies that the command may access multiple
 150	 * registers in sequence (e.g. LRI), in that case step gives the
 151	 * distance in dwords between individual offset fields.
 152	 */
 153	struct {
 154		u32 offset;
 155		u32 mask;
 156		u32 step;
 157	} reg;
 158
 159#define MAX_CMD_DESC_BITMASKS 3
 160	/*
 161	 * Describes command checks where a particular dword is masked and
 162	 * compared against an expected value. If the command does not match
 163	 * the expected value, the parser rejects it. Only valid if flags has
 164	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
 165	 * are valid.
 166	 *
 167	 * If the check specifies a non-zero condition_mask then the parser
 168	 * only performs the check when the bits specified by condition_mask
 169	 * are non-zero.
 170	 */
 171	struct {
 172		u32 offset;
 173		u32 mask;
 174		u32 expected;
 175		u32 condition_offset;
 176		u32 condition_mask;
 177	} bits[MAX_CMD_DESC_BITMASKS];
 178};
 179
 180/*
 181 * A table of commands requiring special handling by the command parser.
 182 *
 183 * Each engine has an array of tables. Each table consists of an array of
 184 * command descriptors, which must be sorted with command opcodes in
 185 * ascending order.
 186 */
 187struct drm_i915_cmd_table {
 188	const struct drm_i915_cmd_descriptor *table;
 189	int count;
 190};
 191
 192#define STD_MI_OPCODE_SHIFT  (32 - 9)
 193#define STD_3D_OPCODE_SHIFT  (32 - 16)
 194#define STD_2D_OPCODE_SHIFT  (32 - 10)
 195#define STD_MFX_OPCODE_SHIFT (32 - 16)
 196#define MIN_OPCODE_SHIFT 16
 197
 198#define CMD(op, opm, f, lm, fl, ...)				\
 199	{							\
 200		.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0),	\
 201		.cmd = { (op & ~0u << (opm)), ~0u << (opm) },	\
 202		.length = { (lm) },				\
 203		__VA_ARGS__					\
 204	}
 205
 206/* Convenience macros to compress the tables */
 207#define SMI STD_MI_OPCODE_SHIFT
 208#define S3D STD_3D_OPCODE_SHIFT
 209#define S2D STD_2D_OPCODE_SHIFT
 210#define SMFX STD_MFX_OPCODE_SHIFT
 211#define F true
 212#define S CMD_DESC_SKIP
 213#define R CMD_DESC_REJECT
 214#define W CMD_DESC_REGISTER
 215#define B CMD_DESC_BITMASK
 
 216
 217/*            Command                          Mask   Fixed Len   Action
 218	      ---------------------------------------------------------- */
 219static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
 220	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
 221	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      R  ),
 222	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      R  ),
 223	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
 224	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
 225	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
 226	CMD(  MI_SEMAPHORE_MBOX,                SMI,   !F,  0xFF,   R  ),
 227	CMD(  MI_STORE_DWORD_INDEX,             SMI,   !F,  0xFF,   R  ),
 228	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
 229	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
 230	CMD(  MI_STORE_REGISTER_MEM,            SMI,    F,  3,     W | B,
 231	      .reg = { .offset = 1, .mask = 0x007FFFFC },
 232	      .bits = {{
 233			.offset = 0,
 234			.mask = MI_GLOBAL_GTT,
 235			.expected = 0,
 236	      }},						       ),
 237	CMD(  MI_LOAD_REGISTER_MEM,             SMI,    F,  3,     W | B,
 238	      .reg = { .offset = 1, .mask = 0x007FFFFC },
 239	      .bits = {{
 240			.offset = 0,
 241			.mask = MI_GLOBAL_GTT,
 242			.expected = 0,
 243	      }},						       ),
 244	/*
 245	 * MI_BATCH_BUFFER_START requires some special handling. It's not
 246	 * really a 'skip' action but it doesn't seem like it's worth adding
 247	 * a new action. See intel_engine_cmd_parser().
 248	 */
 249	CMD(  MI_BATCH_BUFFER_START,            SMI,   !F,  0xFF,   S  ),
 250};
 251
 252static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
 253	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
 254	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
 255	CMD(  MI_PREDICATE,                     SMI,    F,  1,      S  ),
 256	CMD(  MI_TOPOLOGY_FILTER,               SMI,    F,  1,      S  ),
 257	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 258	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
 259	CMD(  MI_SET_CONTEXT,                   SMI,   !F,  0xFF,   R  ),
 260	CMD(  MI_URB_CLEAR,                     SMI,   !F,  0xFF,   S  ),
 261	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3F,   B,
 262	      .bits = {{
 263			.offset = 0,
 264			.mask = MI_GLOBAL_GTT,
 265			.expected = 0,
 266	      }},						       ),
 267	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0xFF,   R  ),
 268	CMD(  MI_CLFLUSH,                       SMI,   !F,  0x3FF,  B,
 269	      .bits = {{
 270			.offset = 0,
 271			.mask = MI_GLOBAL_GTT,
 272			.expected = 0,
 273	      }},						       ),
 274	CMD(  MI_REPORT_PERF_COUNT,             SMI,   !F,  0x3F,   B,
 275	      .bits = {{
 276			.offset = 1,
 277			.mask = MI_REPORT_PERF_COUNT_GGTT,
 278			.expected = 0,
 279	      }},						       ),
 280	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
 281	      .bits = {{
 282			.offset = 0,
 283			.mask = MI_GLOBAL_GTT,
 284			.expected = 0,
 285	      }},						       ),
 286	CMD(  GFX_OP_3DSTATE_VF_STATISTICS,     S3D,    F,  1,      S  ),
 287	CMD(  PIPELINE_SELECT,                  S3D,    F,  1,      S  ),
 288	CMD(  MEDIA_VFE_STATE,			S3D,   !F,  0xFFFF, B,
 289	      .bits = {{
 290			.offset = 2,
 291			.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
 292			.expected = 0,
 293	      }},						       ),
 294	CMD(  GPGPU_OBJECT,                     S3D,   !F,  0xFF,   S  ),
 295	CMD(  GPGPU_WALKER,                     S3D,   !F,  0xFF,   S  ),
 296	CMD(  GFX_OP_3DSTATE_SO_DECL_LIST,      S3D,   !F,  0x1FF,  S  ),
 297	CMD(  GFX_OP_PIPE_CONTROL(5),           S3D,   !F,  0xFF,   B,
 298	      .bits = {{
 299			.offset = 1,
 300			.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
 301			.expected = 0,
 302	      },
 303	      {
 304			.offset = 1,
 305		        .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
 306				 PIPE_CONTROL_STORE_DATA_INDEX),
 307			.expected = 0,
 308			.condition_offset = 1,
 309			.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
 310	      }},						       ),
 311};
 312
 313static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
 314	CMD(  MI_SET_PREDICATE,                 SMI,    F,  1,      S  ),
 315	CMD(  MI_RS_CONTROL,                    SMI,    F,  1,      S  ),
 316	CMD(  MI_URB_ATOMIC_ALLOC,              SMI,    F,  1,      S  ),
 317	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 318	CMD(  MI_RS_CONTEXT,                    SMI,    F,  1,      S  ),
 319	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
 320	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
 321	CMD(  MI_LOAD_REGISTER_REG,             SMI,   !F,  0xFF,   W,
 322	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
 323	CMD(  MI_RS_STORE_DATA_IMM,             SMI,   !F,  0xFF,   S  ),
 324	CMD(  MI_LOAD_URB_MEM,                  SMI,   !F,  0xFF,   S  ),
 325	CMD(  MI_STORE_URB_MEM,                 SMI,   !F,  0xFF,   S  ),
 326	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_VS,  S3D,   !F,  0x7FF,  S  ),
 327	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_PS,  S3D,   !F,  0x7FF,  S  ),
 328
 329	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS,  S3D,   !F,  0x1FF,  S  ),
 330	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS,  S3D,   !F,  0x1FF,  S  ),
 331	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS,  S3D,   !F,  0x1FF,  S  ),
 332	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS,  S3D,   !F,  0x1FF,  S  ),
 333	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS,  S3D,   !F,  0x1FF,  S  ),
 334};
 335
 336static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
 337	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
 338	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 339	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
 340	      .bits = {{
 341			.offset = 0,
 342			.mask = MI_GLOBAL_GTT,
 343			.expected = 0,
 344	      }},						       ),
 345	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
 346	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
 347	      .bits = {{
 348			.offset = 0,
 349			.mask = MI_FLUSH_DW_NOTIFY,
 350			.expected = 0,
 351	      },
 352	      {
 353			.offset = 1,
 354			.mask = MI_FLUSH_DW_USE_GTT,
 355			.expected = 0,
 356			.condition_offset = 0,
 357			.condition_mask = MI_FLUSH_DW_OP_MASK,
 358	      },
 359	      {
 360			.offset = 0,
 361			.mask = MI_FLUSH_DW_STORE_INDEX,
 362			.expected = 0,
 363			.condition_offset = 0,
 364			.condition_mask = MI_FLUSH_DW_OP_MASK,
 365	      }},						       ),
 366	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
 367	      .bits = {{
 368			.offset = 0,
 369			.mask = MI_GLOBAL_GTT,
 370			.expected = 0,
 371	      }},						       ),
 372	/*
 373	 * MFX_WAIT doesn't fit the way we handle length for most commands.
 374	 * It has a length field but it uses a non-standard length bias.
 375	 * It is always 1 dword though, so just treat it as fixed length.
 376	 */
 377	CMD(  MFX_WAIT,                         SMFX,   F,  1,      S  ),
 378};
 379
 380static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
 381	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
 382	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 383	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
 384	      .bits = {{
 385			.offset = 0,
 386			.mask = MI_GLOBAL_GTT,
 387			.expected = 0,
 388	      }},						       ),
 389	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
 390	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
 391	      .bits = {{
 392			.offset = 0,
 393			.mask = MI_FLUSH_DW_NOTIFY,
 394			.expected = 0,
 395	      },
 396	      {
 397			.offset = 1,
 398			.mask = MI_FLUSH_DW_USE_GTT,
 399			.expected = 0,
 400			.condition_offset = 0,
 401			.condition_mask = MI_FLUSH_DW_OP_MASK,
 402	      },
 403	      {
 404			.offset = 0,
 405			.mask = MI_FLUSH_DW_STORE_INDEX,
 406			.expected = 0,
 407			.condition_offset = 0,
 408			.condition_mask = MI_FLUSH_DW_OP_MASK,
 409	      }},						       ),
 410	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
 411	      .bits = {{
 412			.offset = 0,
 413			.mask = MI_GLOBAL_GTT,
 414			.expected = 0,
 415	      }},						       ),
 416};
 417
 418static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
 419	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
 420	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  B,
 421	      .bits = {{
 422			.offset = 0,
 423			.mask = MI_GLOBAL_GTT,
 424			.expected = 0,
 425	      }},						       ),
 426	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
 427	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
 428	      .bits = {{
 429			.offset = 0,
 430			.mask = MI_FLUSH_DW_NOTIFY,
 431			.expected = 0,
 432	      },
 433	      {
 434			.offset = 1,
 435			.mask = MI_FLUSH_DW_USE_GTT,
 436			.expected = 0,
 437			.condition_offset = 0,
 438			.condition_mask = MI_FLUSH_DW_OP_MASK,
 439	      },
 440	      {
 441			.offset = 0,
 442			.mask = MI_FLUSH_DW_STORE_INDEX,
 443			.expected = 0,
 444			.condition_offset = 0,
 445			.condition_mask = MI_FLUSH_DW_OP_MASK,
 446	      }},						       ),
 447	CMD(  COLOR_BLT,                        S2D,   !F,  0x3F,   S  ),
 448	CMD(  SRC_COPY_BLT,                     S2D,   !F,  0x3F,   S  ),
 449};
 450
 451static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
 452	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
 453	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
 454};
 455
 456/*
 457 * For Gen9 we can still rely on the h/w to enforce cmd security, and only
 458 * need to re-enforce the register access checks. We therefore only need to
 459 * teach the cmdparser how to find the end of each command, and identify
 460 * register accesses. The table doesn't need to reject any commands, and so
 461 * the only commands listed here are:
 462 *   1) Those that touch registers
 463 *   2) Those that do not have the default 8-bit length
 464 *
 465 * Note that the default MI length mask chosen for this table is 0xFF, not
 466 * the 0x3F used on older devices. This is because the vast majority of MI
 467 * cmds on Gen9 use a standard 8-bit Length field.
 468 * All the Gen9 blitter instructions are standard 0xFF length mask, and
 469 * none allow access to non-general registers, so in fact no BLT cmds are
 470 * included in the table at all.
 471 *
 472 */
 473static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
 474	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
 475	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      S  ),
 476	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      S  ),
 477	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
 478	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
 479	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
 480	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      S  ),
 481	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
 482	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   S  ),
 483	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   S  ),
 484	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  S  ),
 485	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
 486	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
 487	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3FF,  S  ),
 488	CMD(  MI_STORE_REGISTER_MEM_GEN8,       SMI,    F,  4,      W,
 489	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
 490	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   S  ),
 491	CMD(  MI_LOAD_REGISTER_MEM_GEN8,        SMI,    F,  4,      W,
 492	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
 493	CMD(  MI_LOAD_REGISTER_REG,             SMI,    !F,  0xFF,  W,
 494	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
 495
 496	/*
 497	 * We allow BB_START but apply further checks. We just sanitize the
 498	 * basic fields here.
 499	 */
 500#define MI_BB_START_OPERAND_MASK   GENMASK(SMI-1, 0)
 501#define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
 502	CMD(  MI_BATCH_BUFFER_START_GEN8,       SMI,    !F,  0xFF,  B,
 503	      .bits = {{
 504			.offset = 0,
 505			.mask = MI_BB_START_OPERAND_MASK,
 506			.expected = MI_BB_START_OPERAND_EXPECT,
 507	      }},						       ),
 508};
 509
 510static const struct drm_i915_cmd_descriptor noop_desc =
 511	CMD(MI_NOOP, SMI, F, 1, S);
 512
 513#undef CMD
 514#undef SMI
 515#undef S3D
 516#undef S2D
 517#undef SMFX
 518#undef F
 519#undef S
 520#undef R
 521#undef W
 522#undef B
 
 523
 524static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
 525	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
 526	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
 527};
 528
 529static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
 530	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
 531	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
 532	{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
 533};
 534
 535static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
 536	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
 537	{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
 538};
 539
 540static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
 541	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
 542	{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
 543};
 544
 545static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
 546	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
 547	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
 548};
 549
 550static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
 551	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
 552	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
 553	{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
 554};
 555
 556static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
 557	{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
 558};
 559
 560
 561/*
 562 * Register whitelists, sorted by increasing register offset.
 563 */
 564
 565/*
 566 * An individual whitelist entry granting access to register addr.  If
 567 * mask is non-zero the argument of immediate register writes will be
 568 * AND-ed with mask, and the command will be rejected if the result
 569 * doesn't match value.
 570 *
 571 * Registers with non-zero mask are only allowed to be written using
 572 * LRI.
 573 */
 574struct drm_i915_reg_descriptor {
 575	i915_reg_t addr;
 576	u32 mask;
 577	u32 value;
 578};
 579
 580/* Convenience macro for adding 32-bit registers. */
 581#define REG32(_reg, ...) \
 582	{ .addr = (_reg), __VA_ARGS__ }
 583
 584#define REG32_IDX(_reg, idx) \
 585	{ .addr = _reg(idx) }
 586
 587/*
 588 * Convenience macro for adding 64-bit registers.
 589 *
 590 * Some registers that userspace accesses are 64 bits. The register
 591 * access commands only allow 32-bit accesses. Hence, we have to include
 592 * entries for both halves of the 64-bit registers.
 593 */
 594#define REG64(_reg) \
 595	{ .addr = _reg }, \
 596	{ .addr = _reg ## _UDW }
 597
 598#define REG64_IDX(_reg, idx) \
 599	{ .addr = _reg(idx) }, \
 600	{ .addr = _reg ## _UDW(idx) }
 601
 602#define REG64_BASE_IDX(_reg, base, idx) \
 603	{ .addr = _reg(base, idx) }, \
 604	{ .addr = _reg ## _UDW(base, idx) }
 605
 606static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
 607	REG64(GPGPU_THREADS_DISPATCHED),
 608	REG64(HS_INVOCATION_COUNT),
 609	REG64(DS_INVOCATION_COUNT),
 610	REG64(IA_VERTICES_COUNT),
 611	REG64(IA_PRIMITIVES_COUNT),
 612	REG64(VS_INVOCATION_COUNT),
 613	REG64(GS_INVOCATION_COUNT),
 614	REG64(GS_PRIMITIVES_COUNT),
 615	REG64(CL_INVOCATION_COUNT),
 616	REG64(CL_PRIMITIVES_COUNT),
 617	REG64(PS_INVOCATION_COUNT),
 618	REG64(PS_DEPTH_COUNT),
 619	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
 620	REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE),
 621	REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE),
 
 622	REG32(GEN7_3DPRIM_END_OFFSET),
 623	REG32(GEN7_3DPRIM_START_VERTEX),
 624	REG32(GEN7_3DPRIM_VERTEX_COUNT),
 625	REG32(GEN7_3DPRIM_INSTANCE_COUNT),
 626	REG32(GEN7_3DPRIM_START_INSTANCE),
 627	REG32(GEN7_3DPRIM_BASE_VERTEX),
 628	REG32(GEN7_GPGPU_DISPATCHDIMX),
 629	REG32(GEN7_GPGPU_DISPATCHDIMY),
 630	REG32(GEN7_GPGPU_DISPATCHDIMZ),
 631	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
 632	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
 633	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
 634	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
 635	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
 636	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
 637	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
 638	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
 639	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
 640	REG32(GEN7_SO_WRITE_OFFSET(0)),
 641	REG32(GEN7_SO_WRITE_OFFSET(1)),
 642	REG32(GEN7_SO_WRITE_OFFSET(2)),
 643	REG32(GEN7_SO_WRITE_OFFSET(3)),
 644	REG32(GEN7_L3SQCREG1),
 645	REG32(GEN7_L3CNTLREG2),
 646	REG32(GEN7_L3CNTLREG3),
 647	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
 648};
 649
 650static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
 651	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0),
 652	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1),
 653	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2),
 654	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3),
 655	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4),
 656	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5),
 657	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6),
 658	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7),
 659	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8),
 660	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9),
 661	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10),
 662	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11),
 663	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12),
 664	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13),
 665	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14),
 666	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15),
 667	REG32(HSW_SCRATCH1,
 668	      .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
 669	      .value = 0),
 670	REG32(HSW_ROW_CHICKEN3,
 671	      .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
 672                        HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
 673	      .value = 0),
 674};
 675
 676static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
 677	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
 678	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
 679	REG32(BCS_SWCTRL),
 680	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
 681};
 682
 683static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
 684	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
 685	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
 686	REG32(BCS_SWCTRL),
 687	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
 688	REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
 689	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0),
 690	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1),
 691	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2),
 692	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3),
 693	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4),
 694	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5),
 695	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6),
 696	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7),
 697	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8),
 698	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9),
 699	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10),
 700	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11),
 701	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12),
 702	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13),
 703	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14),
 704	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15),
 705};
 706
 707#undef REG64
 708#undef REG32
 709
 710struct drm_i915_reg_table {
 711	const struct drm_i915_reg_descriptor *regs;
 712	int num_regs;
 
 713};
 714
 715static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
 716	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
 
 717};
 718
 719static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
 720	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
 
 721};
 722
 723static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
 724	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
 725	{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
 
 726};
 727
 728static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
 729	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
 730};
 731
 732static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
 733	{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
 734};
 735
 736static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
 737{
 738	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
 739	u32 subclient =
 740		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
 741
 742	if (client == INSTR_MI_CLIENT)
 743		return 0x3F;
 744	else if (client == INSTR_RC_CLIENT) {
 745		if (subclient == INSTR_MEDIA_SUBCLIENT)
 746			return 0xFFFF;
 747		else
 748			return 0xFF;
 749	}
 750
 751	DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
 752	return 0;
 753}
 754
 755static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
 756{
 757	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
 758	u32 subclient =
 759		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
 760	u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
 761
 762	if (client == INSTR_MI_CLIENT)
 763		return 0x3F;
 764	else if (client == INSTR_RC_CLIENT) {
 765		if (subclient == INSTR_MEDIA_SUBCLIENT) {
 766			if (op == 6)
 767				return 0xFFFF;
 768			else
 769				return 0xFFF;
 770		} else
 771			return 0xFF;
 772	}
 773
 774	DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
 775	return 0;
 776}
 777
 778static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
 779{
 780	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
 781
 782	if (client == INSTR_MI_CLIENT)
 783		return 0x3F;
 784	else if (client == INSTR_BC_CLIENT)
 785		return 0xFF;
 786
 787	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
 788	return 0;
 789}
 790
 791static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
 792{
 793	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
 794
 795	if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
 796		return 0xFF;
 797
 798	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
 799	return 0;
 800}
 801
 802static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
 803				 const struct drm_i915_cmd_table *cmd_tables,
 804				 int cmd_table_count)
 805{
 806	int i;
 807	bool ret = true;
 808
 809	if (!cmd_tables || cmd_table_count == 0)
 810		return true;
 811
 812	for (i = 0; i < cmd_table_count; i++) {
 813		const struct drm_i915_cmd_table *table = &cmd_tables[i];
 814		u32 previous = 0;
 815		int j;
 816
 817		for (j = 0; j < table->count; j++) {
 818			const struct drm_i915_cmd_descriptor *desc =
 819				&table->table[j];
 820			u32 curr = desc->cmd.value & desc->cmd.mask;
 821
 822			if (curr < previous) {
 823				drm_err(&engine->i915->drm,
 824					"CMD: %s [%d] command table not sorted: "
 825					"table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
 826					engine->name, engine->id,
 827					i, j, curr, previous);
 828				ret = false;
 829			}
 830
 831			previous = curr;
 832		}
 833	}
 834
 835	return ret;
 836}
 837
 838static bool check_sorted(const struct intel_engine_cs *engine,
 839			 const struct drm_i915_reg_descriptor *reg_table,
 840			 int reg_count)
 841{
 842	int i;
 843	u32 previous = 0;
 844	bool ret = true;
 845
 846	for (i = 0; i < reg_count; i++) {
 847		u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
 848
 849		if (curr < previous) {
 850			drm_err(&engine->i915->drm,
 851				"CMD: %s [%d] register table not sorted: "
 852				"entry=%d reg=0x%08X prev=0x%08X\n",
 853				engine->name, engine->id,
 854				i, curr, previous);
 855			ret = false;
 856		}
 857
 858		previous = curr;
 859	}
 860
 861	return ret;
 862}
 863
 864static bool validate_regs_sorted(struct intel_engine_cs *engine)
 865{
 866	int i;
 867	const struct drm_i915_reg_table *table;
 868
 869	for (i = 0; i < engine->reg_table_count; i++) {
 870		table = &engine->reg_tables[i];
 871		if (!check_sorted(engine, table->regs, table->num_regs))
 872			return false;
 873	}
 874
 875	return true;
 876}
 877
 878struct cmd_node {
 879	const struct drm_i915_cmd_descriptor *desc;
 880	struct hlist_node node;
 881};
 882
 883/*
 884 * Different command ranges have different numbers of bits for the opcode. For
 885 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
 886 * problem is that, for example, MI commands use bits 22:16 for other fields
 887 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
 888 * we mask a command from a batch it could hash to the wrong bucket due to
 889 * non-opcode bits being set. But if we don't include those bits, some 3D
 890 * commands may hash to the same bucket due to not including opcode bits that
 891 * make the command unique. For now, we will risk hashing to the same bucket.
 892 */
 893static inline u32 cmd_header_key(u32 x)
 894{
 
 
 895	switch (x >> INSTR_CLIENT_SHIFT) {
 896	default:
 897	case INSTR_MI_CLIENT:
 898		return x >> STD_MI_OPCODE_SHIFT;
 
 899	case INSTR_RC_CLIENT:
 900		return x >> STD_3D_OPCODE_SHIFT;
 
 901	case INSTR_BC_CLIENT:
 902		return x >> STD_2D_OPCODE_SHIFT;
 
 903	}
 
 
 904}
 905
 906static int init_hash_table(struct intel_engine_cs *engine,
 907			   const struct drm_i915_cmd_table *cmd_tables,
 908			   int cmd_table_count)
 909{
 910	int i, j;
 911
 912	hash_init(engine->cmd_hash);
 913
 914	for (i = 0; i < cmd_table_count; i++) {
 915		const struct drm_i915_cmd_table *table = &cmd_tables[i];
 916
 917		for (j = 0; j < table->count; j++) {
 918			const struct drm_i915_cmd_descriptor *desc =
 919				&table->table[j];
 920			struct cmd_node *desc_node =
 921				kmalloc(sizeof(*desc_node), GFP_KERNEL);
 922
 923			if (!desc_node)
 924				return -ENOMEM;
 925
 926			desc_node->desc = desc;
 927			hash_add(engine->cmd_hash, &desc_node->node,
 928				 cmd_header_key(desc->cmd.value));
 929		}
 930	}
 931
 932	return 0;
 933}
 934
 935static void fini_hash_table(struct intel_engine_cs *engine)
 936{
 937	struct hlist_node *tmp;
 938	struct cmd_node *desc_node;
 939	int i;
 940
 941	hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
 942		hash_del(&desc_node->node);
 943		kfree(desc_node);
 944	}
 945}
 946
 947/**
 948 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
 949 * @engine: the engine to initialize
 950 *
 951 * Optionally initializes fields related to batch buffer command parsing in the
 952 * struct intel_engine_cs based on whether the platform requires software
 953 * command parsing.
 954 */
 955int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
 956{
 957	const struct drm_i915_cmd_table *cmd_tables;
 958	int cmd_table_count;
 959	int ret;
 960
 961	if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 &&
 962						 engine->class == COPY_ENGINE_CLASS))
 963		return 0;
 964
 965	switch (engine->class) {
 966	case RENDER_CLASS:
 967		if (IS_HASWELL(engine->i915)) {
 968			cmd_tables = hsw_render_ring_cmd_table;
 969			cmd_table_count =
 970				ARRAY_SIZE(hsw_render_ring_cmd_table);
 971		} else {
 972			cmd_tables = gen7_render_cmd_table;
 973			cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
 974		}
 975
 976		if (IS_HASWELL(engine->i915)) {
 977			engine->reg_tables = hsw_render_reg_tables;
 978			engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
 979		} else {
 980			engine->reg_tables = ivb_render_reg_tables;
 981			engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
 982		}
 
 983		engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
 984		break;
 985	case VIDEO_DECODE_CLASS:
 986		cmd_tables = gen7_video_cmd_table;
 987		cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
 988		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
 989		break;
 990	case COPY_ENGINE_CLASS:
 991		engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
 992		if (GRAPHICS_VER(engine->i915) == 9) {
 993			cmd_tables = gen9_blt_cmd_table;
 994			cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
 995			engine->get_cmd_length_mask =
 996				gen9_blt_get_cmd_length_mask;
 997
 998			/* BCS Engine unsafe without parser */
 999			engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
1000		} else if (IS_HASWELL(engine->i915)) {
1001			cmd_tables = hsw_blt_ring_cmd_table;
1002			cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
1003		} else {
1004			cmd_tables = gen7_blt_cmd_table;
1005			cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
1006		}
1007
1008		if (GRAPHICS_VER(engine->i915) == 9) {
1009			engine->reg_tables = gen9_blt_reg_tables;
1010			engine->reg_table_count =
1011				ARRAY_SIZE(gen9_blt_reg_tables);
1012		} else if (IS_HASWELL(engine->i915)) {
1013			engine->reg_tables = hsw_blt_reg_tables;
1014			engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1015		} else {
1016			engine->reg_tables = ivb_blt_reg_tables;
1017			engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1018		}
 
 
1019		break;
1020	case VIDEO_ENHANCEMENT_CLASS:
1021		cmd_tables = hsw_vebox_cmd_table;
1022		cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1023		/* VECS can use the same length_mask function as VCS */
1024		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1025		break;
1026	default:
1027		MISSING_CASE(engine->class);
1028		goto out;
1029	}
1030
1031	if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1032		drm_err(&engine->i915->drm,
1033			"%s: command descriptions are not sorted\n",
1034			engine->name);
1035		goto out;
1036	}
1037	if (!validate_regs_sorted(engine)) {
1038		drm_err(&engine->i915->drm,
1039			"%s: registers are not sorted\n", engine->name);
1040		goto out;
1041	}
1042
1043	ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1044	if (ret) {
1045		drm_err(&engine->i915->drm,
1046			"%s: initialised failed!\n", engine->name);
1047		fini_hash_table(engine);
1048		goto out;
1049	}
1050
1051	engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1052
1053out:
1054	if (intel_engine_requires_cmd_parser(engine) &&
1055	    !intel_engine_using_cmd_parser(engine))
1056		return -EINVAL;
1057
1058	return 0;
1059}
1060
1061/**
1062 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1063 * @engine: the engine to clean up
1064 *
1065 * Releases any resources related to command parsing that may have been
1066 * initialized for the specified engine.
1067 */
1068void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1069{
1070	if (!intel_engine_using_cmd_parser(engine))
1071		return;
1072
1073	fini_hash_table(engine);
1074}
1075
1076static const struct drm_i915_cmd_descriptor*
1077find_cmd_in_table(struct intel_engine_cs *engine,
1078		  u32 cmd_header)
1079{
1080	struct cmd_node *desc_node;
1081
1082	hash_for_each_possible(engine->cmd_hash, desc_node, node,
1083			       cmd_header_key(cmd_header)) {
1084		const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1085		if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1086			return desc;
1087	}
1088
1089	return NULL;
1090}
1091
1092/*
1093 * Returns a pointer to a descriptor for the command specified by cmd_header.
1094 *
1095 * The caller must supply space for a default descriptor via the default_desc
1096 * parameter. If no descriptor for the specified command exists in the engine's
1097 * command parser tables, this function fills in default_desc based on the
1098 * engine's default length encoding and returns default_desc.
1099 */
1100static const struct drm_i915_cmd_descriptor*
1101find_cmd(struct intel_engine_cs *engine,
1102	 u32 cmd_header,
1103	 const struct drm_i915_cmd_descriptor *desc,
1104	 struct drm_i915_cmd_descriptor *default_desc)
1105{
1106	u32 mask;
1107
1108	if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1109		return desc;
1110
1111	desc = find_cmd_in_table(engine, cmd_header);
1112	if (desc)
1113		return desc;
1114
1115	mask = engine->get_cmd_length_mask(cmd_header);
1116	if (!mask)
1117		return NULL;
1118
1119	default_desc->cmd.value = cmd_header;
1120	default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1121	default_desc->length.mask = mask;
1122	default_desc->flags = CMD_DESC_SKIP;
1123	return default_desc;
1124}
1125
1126static const struct drm_i915_reg_descriptor *
1127__find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1128{
1129	int start = 0, end = count;
1130	while (start < end) {
1131		int mid = start + (end - start) / 2;
1132		int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1133		if (ret < 0)
1134			end = mid;
1135		else if (ret > 0)
1136			start = mid + 1;
1137		else
1138			return &table[mid];
1139	}
1140	return NULL;
1141}
1142
1143static const struct drm_i915_reg_descriptor *
1144find_reg(const struct intel_engine_cs *engine, u32 addr)
1145{
1146	const struct drm_i915_reg_table *table = engine->reg_tables;
1147	const struct drm_i915_reg_descriptor *reg = NULL;
1148	int count = engine->reg_table_count;
1149
1150	for (; !reg && (count > 0); ++table, --count)
1151		reg = __find_reg(table->regs, table->num_regs, addr);
 
1152
1153	return reg;
 
 
 
 
 
 
1154}
1155
1156/* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
1157static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1158		       struct drm_i915_gem_object *src_obj,
1159		       unsigned long offset, unsigned long length,
 
1160		       bool *needs_clflush_after)
1161{
1162	unsigned int src_needs_clflush;
1163	unsigned int dst_needs_clflush;
1164	void *dst, *src;
1165	int ret;
1166
1167	ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush);
1168	if (ret)
1169		return ERR_PTR(ret);
1170
1171	dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
1172	i915_gem_object_finish_access(dst_obj);
1173	if (IS_ERR(dst))
1174		return dst;
1175
1176	ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush);
1177	if (ret) {
1178		i915_gem_object_unpin_map(dst_obj);
1179		return ERR_PTR(ret);
1180	}
1181
 
 
 
 
1182	src = ERR_PTR(-ENODEV);
1183	if (src_needs_clflush && i915_has_memcpy_from_wc()) {
 
1184		src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1185		if (!IS_ERR(src)) {
1186			i915_unaligned_memcpy_from_wc(dst,
1187						      src + offset,
1188						      length);
1189			i915_gem_object_unpin_map(src_obj);
1190		}
1191	}
1192	if (IS_ERR(src)) {
1193		unsigned long x, n, remain;
1194		void *ptr;
 
1195
1196		/*
1197		 * We can avoid clflushing partial cachelines before the write
 
1198		 * if we only every write full cache-lines. Since we know that
1199		 * both the source and destination are in multiples of
1200		 * PAGE_SIZE, we can simply round up to the next cacheline.
1201		 * We don't care about copying too much here as we only
1202		 * validate up to the end of the batch.
1203		 */
1204		remain = length;
1205		if (dst_needs_clflush & CLFLUSH_BEFORE)
1206			remain = round_up(remain,
1207					  boot_cpu_data.x86_clflush_size);
1208
1209		ptr = dst;
1210		x = offset_in_page(offset);
1211		for (n = offset >> PAGE_SHIFT; remain; n++) {
1212			int len = min(remain, PAGE_SIZE - x);
1213
1214			src = kmap_local_page(i915_gem_object_get_page(src_obj, n));
1215			if (src_needs_clflush)
1216				drm_clflush_virt_range(src + x, len);
1217			memcpy(ptr, src + x, len);
1218			kunmap_local(src);
1219
1220			ptr += len;
1221			remain -= len;
1222			x = 0;
1223		}
1224	}
1225
1226	i915_gem_object_finish_access(src_obj);
1227
1228	memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1229
1230	/* dst_obj is returned with vmap pinned */
1231	*needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1232
 
 
 
 
1233	return dst;
1234}
1235
1236static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1237			       const u32 cmd)
 
 
 
 
 
 
 
 
 
1238{
1239	return desc->cmd.value == (cmd & desc->cmd.mask);
 
 
 
 
 
 
1240}
1241
1242static bool check_cmd(const struct intel_engine_cs *engine,
1243		      const struct drm_i915_cmd_descriptor *desc,
1244		      const u32 *cmd, u32 length)
 
 
1245{
1246	if (desc->flags & CMD_DESC_SKIP)
1247		return true;
1248
1249	if (desc->flags & CMD_DESC_REJECT) {
1250		DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
 
 
 
 
 
 
1251		return false;
1252	}
1253
1254	if (desc->flags & CMD_DESC_REGISTER) {
1255		/*
1256		 * Get the distance between individual register offset
1257		 * fields if the command can perform more than one
1258		 * access at a time.
1259		 */
1260		const u32 step = desc->reg.step ? desc->reg.step : length;
1261		u32 offset;
1262
1263		for (offset = desc->reg.offset; offset < length;
1264		     offset += step) {
1265			const u32 reg_addr = cmd[offset] & desc->reg.mask;
1266			const struct drm_i915_reg_descriptor *reg =
1267				find_reg(engine, reg_addr);
1268
1269			if (!reg) {
1270				DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1271					  reg_addr, *cmd, engine->name);
1272				return false;
1273			}
1274
1275			/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276			 * Check the value written to the register against the
1277			 * allowed mask/value pair given in the whitelist entry.
1278			 */
1279			if (reg->mask) {
1280				if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1281					DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1282						  reg_addr);
1283					return false;
1284				}
1285
1286				if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1287					DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1288						  reg_addr);
1289					return false;
1290				}
1291
1292				if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1293				    (offset + 2 > length ||
1294				     (cmd[offset + 1] & reg->mask) != reg->value)) {
1295					DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1296						  reg_addr);
1297					return false;
1298				}
1299			}
1300		}
1301	}
1302
1303	if (desc->flags & CMD_DESC_BITMASK) {
1304		int i;
1305
1306		for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1307			u32 dword;
1308
1309			if (desc->bits[i].mask == 0)
1310				break;
1311
1312			if (desc->bits[i].condition_mask != 0) {
1313				u32 offset =
1314					desc->bits[i].condition_offset;
1315				u32 condition = cmd[offset] &
1316					desc->bits[i].condition_mask;
1317
1318				if (condition == 0)
1319					continue;
1320			}
1321
1322			if (desc->bits[i].offset >= length) {
1323				DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1324					  *cmd, engine->name);
1325				return false;
1326			}
1327
1328			dword = cmd[desc->bits[i].offset] &
1329				desc->bits[i].mask;
1330
1331			if (dword != desc->bits[i].expected) {
1332				DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1333					  *cmd,
1334					  desc->bits[i].mask,
1335					  desc->bits[i].expected,
1336					  dword, engine->name);
1337				return false;
1338			}
1339		}
1340	}
1341
1342	return true;
1343}
1344
1345static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1346			 u32 batch_length,
1347			 u64 batch_addr,
1348			 u64 shadow_addr,
1349			 const unsigned long *jump_whitelist)
1350{
1351	u64 jump_offset, jump_target;
1352	u32 target_cmd_offset, target_cmd_index;
1353
1354	/* For igt compatibility on older platforms */
1355	if (!jump_whitelist) {
1356		DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1357		return -EACCES;
1358	}
1359
1360	if (length != 3) {
1361		DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1362			  length);
1363		return -EINVAL;
1364	}
1365
1366	jump_target = *(u64 *)(cmd + 1);
1367	jump_offset = jump_target - batch_addr;
1368
1369	/*
1370	 * Any underflow of jump_target is guaranteed to be outside the range
1371	 * of a u32, so >= test catches both too large and too small
1372	 */
1373	if (jump_offset >= batch_length) {
1374		DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1375			  jump_target);
1376		return -EINVAL;
1377	}
1378
1379	/*
1380	 * This cannot overflow a u32 because we already checked jump_offset
1381	 * is within the BB, and the batch_length is a u32
1382	 */
1383	target_cmd_offset = lower_32_bits(jump_offset);
1384	target_cmd_index = target_cmd_offset / sizeof(u32);
1385
1386	*(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1387
1388	if (target_cmd_index == offset)
1389		return 0;
1390
1391	if (IS_ERR(jump_whitelist))
1392		return PTR_ERR(jump_whitelist);
1393
1394	if (!test_bit(target_cmd_index, jump_whitelist)) {
1395		DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1396			  jump_target);
1397		return -EINVAL;
1398	}
1399
1400	return 0;
1401}
1402
1403static unsigned long *alloc_whitelist(u32 batch_length)
1404{
1405	unsigned long *jmp;
1406
1407	/*
1408	 * We expect batch_length to be less than 256KiB for known users,
1409	 * i.e. we need at most an 8KiB bitmap allocation which should be
1410	 * reasonably cheap due to kmalloc caches.
1411	 */
1412
1413	/* Prefer to report transient allocation failure rather than hit oom */
1414	jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1415			    GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1416	if (!jmp)
1417		return ERR_PTR(-ENOMEM);
1418
1419	return jmp;
1420}
1421
1422#define LENGTH_BIAS 2
1423
1424/**
1425 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1426 * @engine: the engine on which the batch is to execute
1427 * @batch: the batch buffer in question
1428 * @batch_offset: byte offset in the batch at which execution starts
1429 * @batch_length: length of the commands in batch_obj
1430 * @shadow: validated copy of the batch buffer in question
1431 * @trampoline: true if we need to trampoline into privileged execution
1432 *
1433 * Parses the specified batch buffer looking for privilege violations as
1434 * described in the overview.
1435 *
1436 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1437 * if the batch appears legal but should use hardware parsing
1438 */
1439
1440int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1441			    struct i915_vma *batch,
1442			    unsigned long batch_offset,
1443			    unsigned long batch_length,
1444			    struct i915_vma *shadow,
1445			    bool trampoline)
1446{
1447	u32 *cmd, *batch_end, offset = 0;
1448	struct drm_i915_cmd_descriptor default_desc = noop_desc;
1449	const struct drm_i915_cmd_descriptor *desc = &default_desc;
 
1450	bool needs_clflush_after = false;
1451	unsigned long *jump_whitelist;
1452	u64 batch_addr, shadow_addr;
1453	int ret = 0;
1454
1455	GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1456	GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1457	GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1458				     batch->size));
1459	GEM_BUG_ON(!batch_length);
1460
1461	cmd = copy_batch(shadow->obj, batch->obj,
1462			 batch_offset, batch_length,
1463			 &needs_clflush_after);
1464	if (IS_ERR(cmd)) {
1465		DRM_DEBUG("CMD: Failed to copy batch\n");
1466		return PTR_ERR(cmd);
1467	}
1468
1469	jump_whitelist = NULL;
1470	if (!trampoline)
1471		/* Defer failure until attempted use */
1472		jump_whitelist = alloc_whitelist(batch_length);
1473
1474	shadow_addr = gen8_canonical_addr(i915_vma_offset(shadow));
1475	batch_addr = gen8_canonical_addr(i915_vma_offset(batch) + batch_offset);
1476
1477	/*
1478	 * We use the batch length as size because the shadow object is as
1479	 * large or larger and copy_batch() will write MI_NOPs to the extra
1480	 * space. Parsing should be faster in some cases this way.
1481	 */
1482	batch_end = cmd + batch_length / sizeof(*batch_end);
1483	do {
1484		u32 length;
1485
1486		if (*cmd == MI_BATCH_BUFFER_END)
1487			break;
1488
1489		desc = find_cmd(engine, *cmd, desc, &default_desc);
1490		if (!desc) {
1491			DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
 
1492			ret = -EINVAL;
1493			break;
1494		}
1495
 
 
 
 
 
 
 
 
 
 
1496		if (desc->flags & CMD_DESC_FIXED)
1497			length = desc->length.fixed;
1498		else
1499			length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1500
1501		if ((batch_end - cmd) < length) {
1502			DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1503				  *cmd,
1504				  length,
1505				  batch_end - cmd);
1506			ret = -EINVAL;
1507			break;
1508		}
1509
1510		if (!check_cmd(engine, desc, cmd, length)) {
1511			ret = -EACCES;
1512			break;
1513		}
1514
1515		if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1516			ret = check_bbstart(cmd, offset, length, batch_length,
1517					    batch_addr, shadow_addr,
1518					    jump_whitelist);
1519			break;
1520		}
1521
1522		if (!IS_ERR_OR_NULL(jump_whitelist))
1523			__set_bit(offset, jump_whitelist);
1524
1525		cmd += length;
1526		offset += length;
1527		if  (cmd >= batch_end) {
1528			DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1529			ret = -EINVAL;
1530			break;
1531		}
1532	} while (1);
1533
1534	if (trampoline) {
1535		/*
1536		 * With the trampoline, the shadow is executed twice.
1537		 *
1538		 *   1 - starting at offset 0, in privileged mode
1539		 *   2 - starting at offset batch_len, as non-privileged
1540		 *
1541		 * Only if the batch is valid and safe to execute, do we
1542		 * allow the first privileged execution to proceed. If not,
1543		 * we terminate the first batch and use the second batchbuffer
1544		 * entry to chain to the original unsafe non-privileged batch,
1545		 * leaving it to the HW to validate.
1546		 */
1547		*batch_end = MI_BATCH_BUFFER_END;
1548
1549		if (ret) {
1550			/* Batch unsafe to execute with privileges, cancel! */
1551			cmd = page_mask_bits(shadow->obj->mm.mapping);
1552			*cmd = MI_BATCH_BUFFER_END;
1553
1554			/* If batch is unsafe but valid, jump to the original */
1555			if (ret == -EACCES) {
1556				unsigned int flags;
1557
1558				flags = MI_BATCH_NON_SECURE_I965;
1559				if (IS_HASWELL(engine->i915))
1560					flags = MI_BATCH_NON_SECURE_HSW;
1561
1562				GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7));
1563				__gen6_emit_bb_start(batch_end,
1564						     batch_addr,
1565						     flags);
1566
1567				ret = 0; /* allow execution */
1568			}
1569		}
1570	}
1571
1572	i915_gem_object_flush_map(shadow->obj);
 
 
1573
1574	if (!IS_ERR_OR_NULL(jump_whitelist))
1575		kfree(jump_whitelist);
1576	i915_gem_object_unpin_map(shadow->obj);
1577	return ret;
1578}
1579
1580/**
1581 * i915_cmd_parser_get_version() - get the cmd parser version number
1582 * @dev_priv: i915 device private
1583 *
1584 * The cmd parser maintains a simple increasing integer version number suitable
1585 * for passing to userspace clients to determine what operations are permitted.
1586 *
1587 * Return: the current version number of the cmd parser
1588 */
1589int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1590{
1591	struct intel_engine_cs *engine;
 
1592	bool active = false;
1593
1594	/* If the command parser is not enabled, report 0 - unsupported */
1595	for_each_uabi_engine(engine, dev_priv) {
1596		if (intel_engine_using_cmd_parser(engine)) {
1597			active = true;
1598			break;
1599		}
1600	}
1601	if (!active)
1602		return 0;
1603
1604	/*
1605	 * Command parser version history
1606	 *
1607	 * 1. Initial version. Checks batches and reports violations, but leaves
1608	 *    hardware parsing enabled (so does not allow new use cases).
1609	 * 2. Allow access to the MI_PREDICATE_SRC0 and
1610	 *    MI_PREDICATE_SRC1 registers.
1611	 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1612	 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1613	 * 5. GPGPU dispatch compute indirect registers.
1614	 * 6. TIMESTAMP register and Haswell CS GPR registers
1615	 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1616	 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1617	 *    rely on the HW to NOOP disallowed commands as it would without
1618	 *    the parser enabled.
1619	 * 9. Don't whitelist or handle oacontrol specially, as ownership
1620	 *    for oacontrol state is moving to i915-perf.
1621	 * 10. Support for Gen9 BCS Parsing
1622	 */
1623	return 10;
1624}
v4.10.11
   1/*
   2 * Copyright © 2013 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Brad Volkin <bradley.d.volkin@intel.com>
  25 *
  26 */
  27
 
 
 
 
 
 
 
 
 
 
  28#include "i915_drv.h"
 
 
  29
  30/**
  31 * DOC: batch buffer command parser
  32 *
  33 * Motivation:
  34 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
  35 * require userspace code to submit batches containing commands such as
  36 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
  37 * generations of the hardware will noop these commands in "unsecure" batches
  38 * (which includes all userspace batches submitted via i915) even though the
  39 * commands may be safe and represent the intended programming model of the
  40 * device.
  41 *
  42 * The software command parser is similar in operation to the command parsing
  43 * done in hardware for unsecure batches. However, the software parser allows
  44 * some operations that would be noop'd by hardware, if the parser determines
  45 * the operation is safe, and submits the batch as "secure" to prevent hardware
  46 * parsing.
  47 *
  48 * Threats:
  49 * At a high level, the hardware (and software) checks attempt to prevent
  50 * granting userspace undue privileges. There are three categories of privilege.
  51 *
  52 * First, commands which are explicitly defined as privileged or which should
  53 * only be used by the kernel driver. The parser generally rejects such
  54 * commands, though it may allow some from the drm master process.
  55 *
  56 * Second, commands which access registers. To support correct/enhanced
  57 * userspace functionality, particularly certain OpenGL extensions, the parser
  58 * provides a whitelist of registers which userspace may safely access (for both
  59 * normal and drm master processes).
  60 *
  61 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
  62 * The parser always rejects such commands.
  63 *
  64 * The majority of the problematic commands fall in the MI_* range, with only a
  65 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
  66 *
  67 * Implementation:
  68 * Each engine maintains tables of commands and registers which the parser
  69 * uses in scanning batch buffers submitted to that engine.
  70 *
  71 * Since the set of commands that the parser must check for is significantly
  72 * smaller than the number of commands supported, the parser tables contain only
  73 * those commands required by the parser. This generally works because command
  74 * opcode ranges have standard command length encodings. So for commands that
  75 * the parser does not need to check, it can easily skip them. This is
  76 * implemented via a per-engine length decoding vfunc.
  77 *
  78 * Unfortunately, there are a number of commands that do not follow the standard
  79 * length encoding for their opcode range, primarily amongst the MI_* commands.
  80 * To handle this, the parser provides a way to define explicit "skip" entries
  81 * in the per-engine command tables.
  82 *
  83 * Other command table entries map fairly directly to high level categories
  84 * mentioned above: rejected, master-only, register whitelist. The parser
  85 * implements a number of checks, including the privileged memory checks, via a
  86 * general bitmasking mechanism.
 
 
 
 
  87 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88
  89#define STD_MI_OPCODE_SHIFT  (32 - 9)
  90#define STD_3D_OPCODE_SHIFT  (32 - 16)
  91#define STD_2D_OPCODE_SHIFT  (32 - 10)
  92#define STD_MFX_OPCODE_SHIFT (32 - 16)
  93#define MIN_OPCODE_SHIFT 16
  94
  95#define CMD(op, opm, f, lm, fl, ...)				\
  96	{							\
  97		.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0),	\
  98		.cmd = { (op), ~0u << (opm) },			\
  99		.length = { (lm) },				\
 100		__VA_ARGS__					\
 101	}
 102
 103/* Convenience macros to compress the tables */
 104#define SMI STD_MI_OPCODE_SHIFT
 105#define S3D STD_3D_OPCODE_SHIFT
 106#define S2D STD_2D_OPCODE_SHIFT
 107#define SMFX STD_MFX_OPCODE_SHIFT
 108#define F true
 109#define S CMD_DESC_SKIP
 110#define R CMD_DESC_REJECT
 111#define W CMD_DESC_REGISTER
 112#define B CMD_DESC_BITMASK
 113#define M CMD_DESC_MASTER
 114
 115/*            Command                          Mask   Fixed Len   Action
 116	      ---------------------------------------------------------- */
 117static const struct drm_i915_cmd_descriptor common_cmds[] = {
 118	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
 119	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      R  ),
 120	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      M  ),
 121	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
 122	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
 123	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
 124	CMD(  MI_SEMAPHORE_MBOX,                SMI,   !F,  0xFF,   R  ),
 125	CMD(  MI_STORE_DWORD_INDEX,             SMI,   !F,  0xFF,   R  ),
 126	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
 127	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
 128	CMD(  MI_STORE_REGISTER_MEM,            SMI,    F,  3,     W | B,
 129	      .reg = { .offset = 1, .mask = 0x007FFFFC },
 130	      .bits = {{
 131			.offset = 0,
 132			.mask = MI_GLOBAL_GTT,
 133			.expected = 0,
 134	      }},						       ),
 135	CMD(  MI_LOAD_REGISTER_MEM,             SMI,    F,  3,     W | B,
 136	      .reg = { .offset = 1, .mask = 0x007FFFFC },
 137	      .bits = {{
 138			.offset = 0,
 139			.mask = MI_GLOBAL_GTT,
 140			.expected = 0,
 141	      }},						       ),
 142	/*
 143	 * MI_BATCH_BUFFER_START requires some special handling. It's not
 144	 * really a 'skip' action but it doesn't seem like it's worth adding
 145	 * a new action. See i915_parse_cmds().
 146	 */
 147	CMD(  MI_BATCH_BUFFER_START,            SMI,   !F,  0xFF,   S  ),
 148};
 149
 150static const struct drm_i915_cmd_descriptor render_cmds[] = {
 151	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
 152	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
 153	CMD(  MI_PREDICATE,                     SMI,    F,  1,      S  ),
 154	CMD(  MI_TOPOLOGY_FILTER,               SMI,    F,  1,      S  ),
 155	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 156	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
 157	CMD(  MI_SET_CONTEXT,                   SMI,   !F,  0xFF,   R  ),
 158	CMD(  MI_URB_CLEAR,                     SMI,   !F,  0xFF,   S  ),
 159	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3F,   B,
 160	      .bits = {{
 161			.offset = 0,
 162			.mask = MI_GLOBAL_GTT,
 163			.expected = 0,
 164	      }},						       ),
 165	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0xFF,   R  ),
 166	CMD(  MI_CLFLUSH,                       SMI,   !F,  0x3FF,  B,
 167	      .bits = {{
 168			.offset = 0,
 169			.mask = MI_GLOBAL_GTT,
 170			.expected = 0,
 171	      }},						       ),
 172	CMD(  MI_REPORT_PERF_COUNT,             SMI,   !F,  0x3F,   B,
 173	      .bits = {{
 174			.offset = 1,
 175			.mask = MI_REPORT_PERF_COUNT_GGTT,
 176			.expected = 0,
 177	      }},						       ),
 178	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
 179	      .bits = {{
 180			.offset = 0,
 181			.mask = MI_GLOBAL_GTT,
 182			.expected = 0,
 183	      }},						       ),
 184	CMD(  GFX_OP_3DSTATE_VF_STATISTICS,     S3D,    F,  1,      S  ),
 185	CMD(  PIPELINE_SELECT,                  S3D,    F,  1,      S  ),
 186	CMD(  MEDIA_VFE_STATE,			S3D,   !F,  0xFFFF, B,
 187	      .bits = {{
 188			.offset = 2,
 189			.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
 190			.expected = 0,
 191	      }},						       ),
 192	CMD(  GPGPU_OBJECT,                     S3D,   !F,  0xFF,   S  ),
 193	CMD(  GPGPU_WALKER,                     S3D,   !F,  0xFF,   S  ),
 194	CMD(  GFX_OP_3DSTATE_SO_DECL_LIST,      S3D,   !F,  0x1FF,  S  ),
 195	CMD(  GFX_OP_PIPE_CONTROL(5),           S3D,   !F,  0xFF,   B,
 196	      .bits = {{
 197			.offset = 1,
 198			.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
 199			.expected = 0,
 200	      },
 201	      {
 202			.offset = 1,
 203		        .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
 204				 PIPE_CONTROL_STORE_DATA_INDEX),
 205			.expected = 0,
 206			.condition_offset = 1,
 207			.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
 208	      }},						       ),
 209};
 210
 211static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
 212	CMD(  MI_SET_PREDICATE,                 SMI,    F,  1,      S  ),
 213	CMD(  MI_RS_CONTROL,                    SMI,    F,  1,      S  ),
 214	CMD(  MI_URB_ATOMIC_ALLOC,              SMI,    F,  1,      S  ),
 215	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 216	CMD(  MI_RS_CONTEXT,                    SMI,    F,  1,      S  ),
 217	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   M  ),
 218	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
 219	CMD(  MI_LOAD_REGISTER_REG,             SMI,   !F,  0xFF,   W,
 220	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
 221	CMD(  MI_RS_STORE_DATA_IMM,             SMI,   !F,  0xFF,   S  ),
 222	CMD(  MI_LOAD_URB_MEM,                  SMI,   !F,  0xFF,   S  ),
 223	CMD(  MI_STORE_URB_MEM,                 SMI,   !F,  0xFF,   S  ),
 224	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_VS,  S3D,   !F,  0x7FF,  S  ),
 225	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_PS,  S3D,   !F,  0x7FF,  S  ),
 226
 227	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS,  S3D,   !F,  0x1FF,  S  ),
 228	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS,  S3D,   !F,  0x1FF,  S  ),
 229	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS,  S3D,   !F,  0x1FF,  S  ),
 230	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS,  S3D,   !F,  0x1FF,  S  ),
 231	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS,  S3D,   !F,  0x1FF,  S  ),
 232};
 233
 234static const struct drm_i915_cmd_descriptor video_cmds[] = {
 235	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
 236	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 237	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
 238	      .bits = {{
 239			.offset = 0,
 240			.mask = MI_GLOBAL_GTT,
 241			.expected = 0,
 242	      }},						       ),
 243	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
 244	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
 245	      .bits = {{
 246			.offset = 0,
 247			.mask = MI_FLUSH_DW_NOTIFY,
 248			.expected = 0,
 249	      },
 250	      {
 251			.offset = 1,
 252			.mask = MI_FLUSH_DW_USE_GTT,
 253			.expected = 0,
 254			.condition_offset = 0,
 255			.condition_mask = MI_FLUSH_DW_OP_MASK,
 256	      },
 257	      {
 258			.offset = 0,
 259			.mask = MI_FLUSH_DW_STORE_INDEX,
 260			.expected = 0,
 261			.condition_offset = 0,
 262			.condition_mask = MI_FLUSH_DW_OP_MASK,
 263	      }},						       ),
 264	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
 265	      .bits = {{
 266			.offset = 0,
 267			.mask = MI_GLOBAL_GTT,
 268			.expected = 0,
 269	      }},						       ),
 270	/*
 271	 * MFX_WAIT doesn't fit the way we handle length for most commands.
 272	 * It has a length field but it uses a non-standard length bias.
 273	 * It is always 1 dword though, so just treat it as fixed length.
 274	 */
 275	CMD(  MFX_WAIT,                         SMFX,   F,  1,      S  ),
 276};
 277
 278static const struct drm_i915_cmd_descriptor vecs_cmds[] = {
 279	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
 280	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
 281	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
 282	      .bits = {{
 283			.offset = 0,
 284			.mask = MI_GLOBAL_GTT,
 285			.expected = 0,
 286	      }},						       ),
 287	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
 288	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
 289	      .bits = {{
 290			.offset = 0,
 291			.mask = MI_FLUSH_DW_NOTIFY,
 292			.expected = 0,
 293	      },
 294	      {
 295			.offset = 1,
 296			.mask = MI_FLUSH_DW_USE_GTT,
 297			.expected = 0,
 298			.condition_offset = 0,
 299			.condition_mask = MI_FLUSH_DW_OP_MASK,
 300	      },
 301	      {
 302			.offset = 0,
 303			.mask = MI_FLUSH_DW_STORE_INDEX,
 304			.expected = 0,
 305			.condition_offset = 0,
 306			.condition_mask = MI_FLUSH_DW_OP_MASK,
 307	      }},						       ),
 308	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
 309	      .bits = {{
 310			.offset = 0,
 311			.mask = MI_GLOBAL_GTT,
 312			.expected = 0,
 313	      }},						       ),
 314};
 315
 316static const struct drm_i915_cmd_descriptor blt_cmds[] = {
 317	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
 318	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  B,
 319	      .bits = {{
 320			.offset = 0,
 321			.mask = MI_GLOBAL_GTT,
 322			.expected = 0,
 323	      }},						       ),
 324	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
 325	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
 326	      .bits = {{
 327			.offset = 0,
 328			.mask = MI_FLUSH_DW_NOTIFY,
 329			.expected = 0,
 330	      },
 331	      {
 332			.offset = 1,
 333			.mask = MI_FLUSH_DW_USE_GTT,
 334			.expected = 0,
 335			.condition_offset = 0,
 336			.condition_mask = MI_FLUSH_DW_OP_MASK,
 337	      },
 338	      {
 339			.offset = 0,
 340			.mask = MI_FLUSH_DW_STORE_INDEX,
 341			.expected = 0,
 342			.condition_offset = 0,
 343			.condition_mask = MI_FLUSH_DW_OP_MASK,
 344	      }},						       ),
 345	CMD(  COLOR_BLT,                        S2D,   !F,  0x3F,   S  ),
 346	CMD(  SRC_COPY_BLT,                     S2D,   !F,  0x3F,   S  ),
 347};
 348
 349static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
 350	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   M  ),
 351	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
 352};
 353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354static const struct drm_i915_cmd_descriptor noop_desc =
 355	CMD(MI_NOOP, SMI, F, 1, S);
 356
 357#undef CMD
 358#undef SMI
 359#undef S3D
 360#undef S2D
 361#undef SMFX
 362#undef F
 363#undef S
 364#undef R
 365#undef W
 366#undef B
 367#undef M
 368
 369static const struct drm_i915_cmd_table gen7_render_cmds[] = {
 370	{ common_cmds, ARRAY_SIZE(common_cmds) },
 371	{ render_cmds, ARRAY_SIZE(render_cmds) },
 372};
 373
 374static const struct drm_i915_cmd_table hsw_render_ring_cmds[] = {
 375	{ common_cmds, ARRAY_SIZE(common_cmds) },
 376	{ render_cmds, ARRAY_SIZE(render_cmds) },
 377	{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
 378};
 379
 380static const struct drm_i915_cmd_table gen7_video_cmds[] = {
 381	{ common_cmds, ARRAY_SIZE(common_cmds) },
 382	{ video_cmds, ARRAY_SIZE(video_cmds) },
 383};
 384
 385static const struct drm_i915_cmd_table hsw_vebox_cmds[] = {
 386	{ common_cmds, ARRAY_SIZE(common_cmds) },
 387	{ vecs_cmds, ARRAY_SIZE(vecs_cmds) },
 388};
 389
 390static const struct drm_i915_cmd_table gen7_blt_cmds[] = {
 391	{ common_cmds, ARRAY_SIZE(common_cmds) },
 392	{ blt_cmds, ARRAY_SIZE(blt_cmds) },
 393};
 394
 395static const struct drm_i915_cmd_table hsw_blt_ring_cmds[] = {
 396	{ common_cmds, ARRAY_SIZE(common_cmds) },
 397	{ blt_cmds, ARRAY_SIZE(blt_cmds) },
 398	{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
 399};
 400
 
 
 
 
 
 401/*
 402 * Register whitelists, sorted by increasing register offset.
 403 */
 404
 405/*
 406 * An individual whitelist entry granting access to register addr.  If
 407 * mask is non-zero the argument of immediate register writes will be
 408 * AND-ed with mask, and the command will be rejected if the result
 409 * doesn't match value.
 410 *
 411 * Registers with non-zero mask are only allowed to be written using
 412 * LRI.
 413 */
 414struct drm_i915_reg_descriptor {
 415	i915_reg_t addr;
 416	u32 mask;
 417	u32 value;
 418};
 419
 420/* Convenience macro for adding 32-bit registers. */
 421#define REG32(_reg, ...) \
 422	{ .addr = (_reg), __VA_ARGS__ }
 423
 
 
 
 424/*
 425 * Convenience macro for adding 64-bit registers.
 426 *
 427 * Some registers that userspace accesses are 64 bits. The register
 428 * access commands only allow 32-bit accesses. Hence, we have to include
 429 * entries for both halves of the 64-bit registers.
 430 */
 431#define REG64(_reg) \
 432	{ .addr = _reg }, \
 433	{ .addr = _reg ## _UDW }
 434
 435#define REG64_IDX(_reg, idx) \
 436	{ .addr = _reg(idx) }, \
 437	{ .addr = _reg ## _UDW(idx) }
 438
 
 
 
 
 439static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
 440	REG64(GPGPU_THREADS_DISPATCHED),
 441	REG64(HS_INVOCATION_COUNT),
 442	REG64(DS_INVOCATION_COUNT),
 443	REG64(IA_VERTICES_COUNT),
 444	REG64(IA_PRIMITIVES_COUNT),
 445	REG64(VS_INVOCATION_COUNT),
 446	REG64(GS_INVOCATION_COUNT),
 447	REG64(GS_PRIMITIVES_COUNT),
 448	REG64(CL_INVOCATION_COUNT),
 449	REG64(CL_PRIMITIVES_COUNT),
 450	REG64(PS_INVOCATION_COUNT),
 451	REG64(PS_DEPTH_COUNT),
 452	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
 453	REG32(OACONTROL), /* Only allowed for LRI and SRM. See below. */
 454	REG64(MI_PREDICATE_SRC0),
 455	REG64(MI_PREDICATE_SRC1),
 456	REG32(GEN7_3DPRIM_END_OFFSET),
 457	REG32(GEN7_3DPRIM_START_VERTEX),
 458	REG32(GEN7_3DPRIM_VERTEX_COUNT),
 459	REG32(GEN7_3DPRIM_INSTANCE_COUNT),
 460	REG32(GEN7_3DPRIM_START_INSTANCE),
 461	REG32(GEN7_3DPRIM_BASE_VERTEX),
 462	REG32(GEN7_GPGPU_DISPATCHDIMX),
 463	REG32(GEN7_GPGPU_DISPATCHDIMY),
 464	REG32(GEN7_GPGPU_DISPATCHDIMZ),
 465	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
 466	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
 467	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
 468	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
 469	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
 470	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
 471	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
 472	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
 473	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
 474	REG32(GEN7_SO_WRITE_OFFSET(0)),
 475	REG32(GEN7_SO_WRITE_OFFSET(1)),
 476	REG32(GEN7_SO_WRITE_OFFSET(2)),
 477	REG32(GEN7_SO_WRITE_OFFSET(3)),
 478	REG32(GEN7_L3SQCREG1),
 479	REG32(GEN7_L3CNTLREG2),
 480	REG32(GEN7_L3CNTLREG3),
 481	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
 482};
 483
 484static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
 485	REG64_IDX(HSW_CS_GPR, 0),
 486	REG64_IDX(HSW_CS_GPR, 1),
 487	REG64_IDX(HSW_CS_GPR, 2),
 488	REG64_IDX(HSW_CS_GPR, 3),
 489	REG64_IDX(HSW_CS_GPR, 4),
 490	REG64_IDX(HSW_CS_GPR, 5),
 491	REG64_IDX(HSW_CS_GPR, 6),
 492	REG64_IDX(HSW_CS_GPR, 7),
 493	REG64_IDX(HSW_CS_GPR, 8),
 494	REG64_IDX(HSW_CS_GPR, 9),
 495	REG64_IDX(HSW_CS_GPR, 10),
 496	REG64_IDX(HSW_CS_GPR, 11),
 497	REG64_IDX(HSW_CS_GPR, 12),
 498	REG64_IDX(HSW_CS_GPR, 13),
 499	REG64_IDX(HSW_CS_GPR, 14),
 500	REG64_IDX(HSW_CS_GPR, 15),
 501	REG32(HSW_SCRATCH1,
 502	      .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
 503	      .value = 0),
 504	REG32(HSW_ROW_CHICKEN3,
 505	      .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
 506                        HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
 507	      .value = 0),
 508};
 509
 510static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
 511	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
 512	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
 513	REG32(BCS_SWCTRL),
 514	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
 515};
 516
 517static const struct drm_i915_reg_descriptor ivb_master_regs[] = {
 518	REG32(FORCEWAKE_MT),
 519	REG32(DERRMR),
 520	REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_A)),
 521	REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_B)),
 522	REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_C)),
 523};
 524
 525static const struct drm_i915_reg_descriptor hsw_master_regs[] = {
 526	REG32(FORCEWAKE_MT),
 527	REG32(DERRMR),
 
 
 
 
 
 
 
 
 
 
 
 528};
 529
 530#undef REG64
 531#undef REG32
 532
 533struct drm_i915_reg_table {
 534	const struct drm_i915_reg_descriptor *regs;
 535	int num_regs;
 536	bool master;
 537};
 538
 539static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
 540	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
 541	{ ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
 542};
 543
 544static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
 545	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
 546	{ ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
 547};
 548
 549static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
 550	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
 551	{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs), false },
 552	{ hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
 553};
 554
 555static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
 556	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
 557	{ hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
 
 
 
 558};
 559
 560static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
 561{
 562	u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
 563	u32 subclient =
 564		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
 565
 566	if (client == INSTR_MI_CLIENT)
 567		return 0x3F;
 568	else if (client == INSTR_RC_CLIENT) {
 569		if (subclient == INSTR_MEDIA_SUBCLIENT)
 570			return 0xFFFF;
 571		else
 572			return 0xFF;
 573	}
 574
 575	DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
 576	return 0;
 577}
 578
 579static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
 580{
 581	u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
 582	u32 subclient =
 583		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
 584	u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
 585
 586	if (client == INSTR_MI_CLIENT)
 587		return 0x3F;
 588	else if (client == INSTR_RC_CLIENT) {
 589		if (subclient == INSTR_MEDIA_SUBCLIENT) {
 590			if (op == 6)
 591				return 0xFFFF;
 592			else
 593				return 0xFFF;
 594		} else
 595			return 0xFF;
 596	}
 597
 598	DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
 599	return 0;
 600}
 601
 602static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
 603{
 604	u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
 605
 606	if (client == INSTR_MI_CLIENT)
 607		return 0x3F;
 608	else if (client == INSTR_BC_CLIENT)
 609		return 0xFF;
 610
 611	DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
 
 
 
 
 
 
 
 
 
 
 
 612	return 0;
 613}
 614
 615static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
 616				 const struct drm_i915_cmd_table *cmd_tables,
 617				 int cmd_table_count)
 618{
 619	int i;
 620	bool ret = true;
 621
 622	if (!cmd_tables || cmd_table_count == 0)
 623		return true;
 624
 625	for (i = 0; i < cmd_table_count; i++) {
 626		const struct drm_i915_cmd_table *table = &cmd_tables[i];
 627		u32 previous = 0;
 628		int j;
 629
 630		for (j = 0; j < table->count; j++) {
 631			const struct drm_i915_cmd_descriptor *desc =
 632				&table->table[j];
 633			u32 curr = desc->cmd.value & desc->cmd.mask;
 634
 635			if (curr < previous) {
 636				DRM_ERROR("CMD: %s [%d] command table not sorted: "
 637					  "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
 638					  engine->name, engine->id,
 639					  i, j, curr, previous);
 
 640				ret = false;
 641			}
 642
 643			previous = curr;
 644		}
 645	}
 646
 647	return ret;
 648}
 649
 650static bool check_sorted(const struct intel_engine_cs *engine,
 651			 const struct drm_i915_reg_descriptor *reg_table,
 652			 int reg_count)
 653{
 654	int i;
 655	u32 previous = 0;
 656	bool ret = true;
 657
 658	for (i = 0; i < reg_count; i++) {
 659		u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
 660
 661		if (curr < previous) {
 662			DRM_ERROR("CMD: %s [%d] register table not sorted: "
 663				  "entry=%d reg=0x%08X prev=0x%08X\n",
 664				  engine->name, engine->id,
 665				  i, curr, previous);
 
 666			ret = false;
 667		}
 668
 669		previous = curr;
 670	}
 671
 672	return ret;
 673}
 674
 675static bool validate_regs_sorted(struct intel_engine_cs *engine)
 676{
 677	int i;
 678	const struct drm_i915_reg_table *table;
 679
 680	for (i = 0; i < engine->reg_table_count; i++) {
 681		table = &engine->reg_tables[i];
 682		if (!check_sorted(engine, table->regs, table->num_regs))
 683			return false;
 684	}
 685
 686	return true;
 687}
 688
 689struct cmd_node {
 690	const struct drm_i915_cmd_descriptor *desc;
 691	struct hlist_node node;
 692};
 693
 694/*
 695 * Different command ranges have different numbers of bits for the opcode. For
 696 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
 697 * problem is that, for example, MI commands use bits 22:16 for other fields
 698 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
 699 * we mask a command from a batch it could hash to the wrong bucket due to
 700 * non-opcode bits being set. But if we don't include those bits, some 3D
 701 * commands may hash to the same bucket due to not including opcode bits that
 702 * make the command unique. For now, we will risk hashing to the same bucket.
 703 */
 704static inline u32 cmd_header_key(u32 x)
 705{
 706	u32 shift;
 707
 708	switch (x >> INSTR_CLIENT_SHIFT) {
 709	default:
 710	case INSTR_MI_CLIENT:
 711		shift = STD_MI_OPCODE_SHIFT;
 712		break;
 713	case INSTR_RC_CLIENT:
 714		shift = STD_3D_OPCODE_SHIFT;
 715		break;
 716	case INSTR_BC_CLIENT:
 717		shift = STD_2D_OPCODE_SHIFT;
 718		break;
 719	}
 720
 721	return x >> shift;
 722}
 723
 724static int init_hash_table(struct intel_engine_cs *engine,
 725			   const struct drm_i915_cmd_table *cmd_tables,
 726			   int cmd_table_count)
 727{
 728	int i, j;
 729
 730	hash_init(engine->cmd_hash);
 731
 732	for (i = 0; i < cmd_table_count; i++) {
 733		const struct drm_i915_cmd_table *table = &cmd_tables[i];
 734
 735		for (j = 0; j < table->count; j++) {
 736			const struct drm_i915_cmd_descriptor *desc =
 737				&table->table[j];
 738			struct cmd_node *desc_node =
 739				kmalloc(sizeof(*desc_node), GFP_KERNEL);
 740
 741			if (!desc_node)
 742				return -ENOMEM;
 743
 744			desc_node->desc = desc;
 745			hash_add(engine->cmd_hash, &desc_node->node,
 746				 cmd_header_key(desc->cmd.value));
 747		}
 748	}
 749
 750	return 0;
 751}
 752
 753static void fini_hash_table(struct intel_engine_cs *engine)
 754{
 755	struct hlist_node *tmp;
 756	struct cmd_node *desc_node;
 757	int i;
 758
 759	hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
 760		hash_del(&desc_node->node);
 761		kfree(desc_node);
 762	}
 763}
 764
 765/**
 766 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
 767 * @engine: the engine to initialize
 768 *
 769 * Optionally initializes fields related to batch buffer command parsing in the
 770 * struct intel_engine_cs based on whether the platform requires software
 771 * command parsing.
 772 */
 773void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
 774{
 775	const struct drm_i915_cmd_table *cmd_tables;
 776	int cmd_table_count;
 777	int ret;
 778
 779	if (!IS_GEN7(engine->i915))
 780		return;
 
 781
 782	switch (engine->id) {
 783	case RCS:
 784		if (IS_HASWELL(engine->i915)) {
 785			cmd_tables = hsw_render_ring_cmds;
 786			cmd_table_count =
 787				ARRAY_SIZE(hsw_render_ring_cmds);
 788		} else {
 789			cmd_tables = gen7_render_cmds;
 790			cmd_table_count = ARRAY_SIZE(gen7_render_cmds);
 791		}
 792
 793		if (IS_HASWELL(engine->i915)) {
 794			engine->reg_tables = hsw_render_reg_tables;
 795			engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
 796		} else {
 797			engine->reg_tables = ivb_render_reg_tables;
 798			engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
 799		}
 800
 801		engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
 802		break;
 803	case VCS:
 804		cmd_tables = gen7_video_cmds;
 805		cmd_table_count = ARRAY_SIZE(gen7_video_cmds);
 806		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
 807		break;
 808	case BCS:
 809		if (IS_HASWELL(engine->i915)) {
 810			cmd_tables = hsw_blt_ring_cmds;
 811			cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmds);
 
 
 
 
 
 
 
 
 
 812		} else {
 813			cmd_tables = gen7_blt_cmds;
 814			cmd_table_count = ARRAY_SIZE(gen7_blt_cmds);
 815		}
 816
 817		if (IS_HASWELL(engine->i915)) {
 
 
 
 
 818			engine->reg_tables = hsw_blt_reg_tables;
 819			engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
 820		} else {
 821			engine->reg_tables = ivb_blt_reg_tables;
 822			engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
 823		}
 824
 825		engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
 826		break;
 827	case VECS:
 828		cmd_tables = hsw_vebox_cmds;
 829		cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds);
 830		/* VECS can use the same length_mask function as VCS */
 831		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
 832		break;
 833	default:
 834		MISSING_CASE(engine->id);
 835		return;
 836	}
 837
 838	if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
 839		DRM_ERROR("%s: command descriptions are not sorted\n",
 840			  engine->name);
 841		return;
 
 842	}
 843	if (!validate_regs_sorted(engine)) {
 844		DRM_ERROR("%s: registers are not sorted\n", engine->name);
 845		return;
 
 846	}
 847
 848	ret = init_hash_table(engine, cmd_tables, cmd_table_count);
 849	if (ret) {
 850		DRM_ERROR("%s: initialised failed!\n", engine->name);
 
 851		fini_hash_table(engine);
 852		return;
 853	}
 854
 855	engine->needs_cmd_parser = true;
 
 
 
 
 
 
 
 856}
 857
 858/**
 859 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
 860 * @engine: the engine to clean up
 861 *
 862 * Releases any resources related to command parsing that may have been
 863 * initialized for the specified engine.
 864 */
 865void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
 866{
 867	if (!engine->needs_cmd_parser)
 868		return;
 869
 870	fini_hash_table(engine);
 871}
 872
 873static const struct drm_i915_cmd_descriptor*
 874find_cmd_in_table(struct intel_engine_cs *engine,
 875		  u32 cmd_header)
 876{
 877	struct cmd_node *desc_node;
 878
 879	hash_for_each_possible(engine->cmd_hash, desc_node, node,
 880			       cmd_header_key(cmd_header)) {
 881		const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
 882		if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
 883			return desc;
 884	}
 885
 886	return NULL;
 887}
 888
 889/*
 890 * Returns a pointer to a descriptor for the command specified by cmd_header.
 891 *
 892 * The caller must supply space for a default descriptor via the default_desc
 893 * parameter. If no descriptor for the specified command exists in the engine's
 894 * command parser tables, this function fills in default_desc based on the
 895 * engine's default length encoding and returns default_desc.
 896 */
 897static const struct drm_i915_cmd_descriptor*
 898find_cmd(struct intel_engine_cs *engine,
 899	 u32 cmd_header,
 900	 const struct drm_i915_cmd_descriptor *desc,
 901	 struct drm_i915_cmd_descriptor *default_desc)
 902{
 903	u32 mask;
 904
 905	if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
 906		return desc;
 907
 908	desc = find_cmd_in_table(engine, cmd_header);
 909	if (desc)
 910		return desc;
 911
 912	mask = engine->get_cmd_length_mask(cmd_header);
 913	if (!mask)
 914		return NULL;
 915
 916	default_desc->cmd.value = cmd_header;
 917	default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
 918	default_desc->length.mask = mask;
 919	default_desc->flags = CMD_DESC_SKIP;
 920	return default_desc;
 921}
 922
 923static const struct drm_i915_reg_descriptor *
 924__find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
 925{
 926	int start = 0, end = count;
 927	while (start < end) {
 928		int mid = start + (end - start) / 2;
 929		int ret = addr - i915_mmio_reg_offset(table[mid].addr);
 930		if (ret < 0)
 931			end = mid;
 932		else if (ret > 0)
 933			start = mid + 1;
 934		else
 935			return &table[mid];
 936	}
 937	return NULL;
 938}
 939
 940static const struct drm_i915_reg_descriptor *
 941find_reg(const struct intel_engine_cs *engine, bool is_master, u32 addr)
 942{
 943	const struct drm_i915_reg_table *table = engine->reg_tables;
 
 944	int count = engine->reg_table_count;
 945
 946	do {
 947		if (!table->master || is_master) {
 948			const struct drm_i915_reg_descriptor *reg;
 949
 950			reg = __find_reg(table->regs, table->num_regs, addr);
 951			if (reg != NULL)
 952				return reg;
 953		}
 954	} while (table++, --count);
 955
 956	return NULL;
 957}
 958
 959/* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
 960static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
 961		       struct drm_i915_gem_object *src_obj,
 962		       u32 batch_start_offset,
 963		       u32 batch_len,
 964		       bool *needs_clflush_after)
 965{
 966	unsigned int src_needs_clflush;
 967	unsigned int dst_needs_clflush;
 968	void *dst, *src;
 969	int ret;
 970
 971	ret = i915_gem_obj_prepare_shmem_read(src_obj, &src_needs_clflush);
 972	if (ret)
 973		return ERR_PTR(ret);
 974
 975	ret = i915_gem_obj_prepare_shmem_write(dst_obj, &dst_needs_clflush);
 
 
 
 
 
 976	if (ret) {
 977		dst = ERR_PTR(ret);
 978		goto unpin_src;
 979	}
 980
 981	dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
 982	if (IS_ERR(dst))
 983		goto unpin_dst;
 984
 985	src = ERR_PTR(-ENODEV);
 986	if (src_needs_clflush &&
 987	    i915_memcpy_from_wc((void *)(uintptr_t)batch_start_offset, NULL, 0)) {
 988		src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
 989		if (!IS_ERR(src)) {
 990			i915_memcpy_from_wc(dst,
 991					    src + batch_start_offset,
 992					    ALIGN(batch_len, 16));
 993			i915_gem_object_unpin_map(src_obj);
 994		}
 995	}
 996	if (IS_ERR(src)) {
 
 997		void *ptr;
 998		int offset, n;
 999
1000		offset = offset_in_page(batch_start_offset);
1001
1002		/* We can avoid clflushing partial cachelines before the write
1003		 * if we only every write full cache-lines. Since we know that
1004		 * both the source and destination are in multiples of
1005		 * PAGE_SIZE, we can simply round up to the next cacheline.
1006		 * We don't care about copying too much here as we only
1007		 * validate up to the end of the batch.
1008		 */
 
1009		if (dst_needs_clflush & CLFLUSH_BEFORE)
1010			batch_len = roundup(batch_len,
1011					    boot_cpu_data.x86_clflush_size);
1012
1013		ptr = dst;
1014		for (n = batch_start_offset >> PAGE_SHIFT; batch_len; n++) {
1015			int len = min_t(int, batch_len, PAGE_SIZE - offset);
 
1016
1017			src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1018			if (src_needs_clflush)
1019				drm_clflush_virt_range(src + offset, len);
1020			memcpy(ptr, src + offset, len);
1021			kunmap_atomic(src);
1022
1023			ptr += len;
1024			batch_len -= len;
1025			offset = 0;
1026		}
1027	}
1028
 
 
 
 
1029	/* dst_obj is returned with vmap pinned */
1030	*needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1031
1032unpin_dst:
1033	i915_gem_obj_finish_shmem_access(dst_obj);
1034unpin_src:
1035	i915_gem_obj_finish_shmem_access(src_obj);
1036	return dst;
1037}
1038
1039/**
1040 * intel_engine_needs_cmd_parser() - should a given engine use software
1041 *                                   command parsing?
1042 * @engine: the engine in question
1043 *
1044 * Only certain platforms require software batch buffer command parsing, and
1045 * only when enabled via module parameter.
1046 *
1047 * Return: true if the engine requires software command parsing
1048 */
1049bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine)
1050{
1051	if (!engine->needs_cmd_parser)
1052		return false;
1053
1054	if (!USES_PPGTT(engine->i915))
1055		return false;
1056
1057	return (i915.enable_cmd_parser == 1);
1058}
1059
1060static bool check_cmd(const struct intel_engine_cs *engine,
1061		      const struct drm_i915_cmd_descriptor *desc,
1062		      const u32 *cmd, u32 length,
1063		      const bool is_master,
1064		      bool *oacontrol_set)
1065{
1066	if (desc->flags & CMD_DESC_SKIP)
1067		return true;
1068
1069	if (desc->flags & CMD_DESC_REJECT) {
1070		DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd);
1071		return false;
1072	}
1073
1074	if ((desc->flags & CMD_DESC_MASTER) && !is_master) {
1075		DRM_DEBUG_DRIVER("CMD: Rejected master-only command: 0x%08X\n",
1076				 *cmd);
1077		return false;
1078	}
1079
1080	if (desc->flags & CMD_DESC_REGISTER) {
1081		/*
1082		 * Get the distance between individual register offset
1083		 * fields if the command can perform more than one
1084		 * access at a time.
1085		 */
1086		const u32 step = desc->reg.step ? desc->reg.step : length;
1087		u32 offset;
1088
1089		for (offset = desc->reg.offset; offset < length;
1090		     offset += step) {
1091			const u32 reg_addr = cmd[offset] & desc->reg.mask;
1092			const struct drm_i915_reg_descriptor *reg =
1093				find_reg(engine, is_master, reg_addr);
1094
1095			if (!reg) {
1096				DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (exec_id=%d)\n",
1097						 reg_addr, *cmd, engine->exec_id);
1098				return false;
1099			}
1100
1101			/*
1102			 * OACONTROL requires some special handling for
1103			 * writes. We want to make sure that any batch which
1104			 * enables OA also disables it before the end of the
1105			 * batch. The goal is to prevent one process from
1106			 * snooping on the perf data from another process. To do
1107			 * that, we need to check the value that will be written
1108			 * to the register. Hence, limit OACONTROL writes to
1109			 * only MI_LOAD_REGISTER_IMM commands.
1110			 */
1111			if (reg_addr == i915_mmio_reg_offset(OACONTROL)) {
1112				if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1113					DRM_DEBUG_DRIVER("CMD: Rejected LRM to OACONTROL\n");
1114					return false;
1115				}
1116
1117				if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1118					DRM_DEBUG_DRIVER("CMD: Rejected LRR to OACONTROL\n");
1119					return false;
1120				}
1121
1122				if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1))
1123					*oacontrol_set = (cmd[offset + 1] != 0);
1124			}
1125
1126			/*
1127			 * Check the value written to the register against the
1128			 * allowed mask/value pair given in the whitelist entry.
1129			 */
1130			if (reg->mask) {
1131				if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1132					DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n",
1133							 reg_addr);
1134					return false;
1135				}
1136
1137				if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1138					DRM_DEBUG_DRIVER("CMD: Rejected LRR to masked register 0x%08X\n",
1139							 reg_addr);
1140					return false;
1141				}
1142
1143				if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
1144				    (offset + 2 > length ||
1145				     (cmd[offset + 1] & reg->mask) != reg->value)) {
1146					DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n",
1147							 reg_addr);
1148					return false;
1149				}
1150			}
1151		}
1152	}
1153
1154	if (desc->flags & CMD_DESC_BITMASK) {
1155		int i;
1156
1157		for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1158			u32 dword;
1159
1160			if (desc->bits[i].mask == 0)
1161				break;
1162
1163			if (desc->bits[i].condition_mask != 0) {
1164				u32 offset =
1165					desc->bits[i].condition_offset;
1166				u32 condition = cmd[offset] &
1167					desc->bits[i].condition_mask;
1168
1169				if (condition == 0)
1170					continue;
1171			}
1172
 
 
 
 
 
 
1173			dword = cmd[desc->bits[i].offset] &
1174				desc->bits[i].mask;
1175
1176			if (dword != desc->bits[i].expected) {
1177				DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (exec_id=%d)\n",
1178						 *cmd,
1179						 desc->bits[i].mask,
1180						 desc->bits[i].expected,
1181						 dword, engine->exec_id);
1182				return false;
1183			}
1184		}
1185	}
1186
1187	return true;
1188}
1189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190#define LENGTH_BIAS 2
1191
1192/**
1193 * i915_parse_cmds() - parse a submitted batch buffer for privilege violations
1194 * @engine: the engine on which the batch is to execute
1195 * @batch_obj: the batch buffer in question
1196 * @shadow_batch_obj: copy of the batch buffer in question
1197 * @batch_start_offset: byte offset in the batch at which execution starts
1198 * @batch_len: length of the commands in batch_obj
1199 * @is_master: is the submitting process the drm master?
1200 *
1201 * Parses the specified batch buffer looking for privilege violations as
1202 * described in the overview.
1203 *
1204 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1205 * if the batch appears legal but should use hardware parsing
1206 */
 
1207int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1208			    struct drm_i915_gem_object *batch_obj,
1209			    struct drm_i915_gem_object *shadow_batch_obj,
1210			    u32 batch_start_offset,
1211			    u32 batch_len,
1212			    bool is_master)
1213{
1214	u32 *cmd, *batch_end;
1215	struct drm_i915_cmd_descriptor default_desc = noop_desc;
1216	const struct drm_i915_cmd_descriptor *desc = &default_desc;
1217	bool oacontrol_set = false; /* OACONTROL tracking. See check_cmd() */
1218	bool needs_clflush_after = false;
 
 
1219	int ret = 0;
1220
1221	cmd = copy_batch(shadow_batch_obj, batch_obj,
1222			 batch_start_offset, batch_len,
 
 
 
 
 
 
1223			 &needs_clflush_after);
1224	if (IS_ERR(cmd)) {
1225		DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n");
1226		return PTR_ERR(cmd);
1227	}
1228
 
 
 
 
 
 
 
 
1229	/*
1230	 * We use the batch length as size because the shadow object is as
1231	 * large or larger and copy_batch() will write MI_NOPs to the extra
1232	 * space. Parsing should be faster in some cases this way.
1233	 */
1234	batch_end = cmd + (batch_len / sizeof(*batch_end));
1235	while (cmd < batch_end) {
1236		u32 length;
1237
1238		if (*cmd == MI_BATCH_BUFFER_END)
1239			break;
1240
1241		desc = find_cmd(engine, *cmd, desc, &default_desc);
1242		if (!desc) {
1243			DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
1244					 *cmd);
1245			ret = -EINVAL;
1246			break;
1247		}
1248
1249		/*
1250		 * If the batch buffer contains a chained batch, return an
1251		 * error that tells the caller to abort and dispatch the
1252		 * workload as a non-secure batch.
1253		 */
1254		if (desc->cmd.value == MI_BATCH_BUFFER_START) {
1255			ret = -EACCES;
1256			break;
1257		}
1258
1259		if (desc->flags & CMD_DESC_FIXED)
1260			length = desc->length.fixed;
1261		else
1262			length = ((*cmd & desc->length.mask) + LENGTH_BIAS);
1263
1264		if ((batch_end - cmd) < length) {
1265			DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1266					 *cmd,
1267					 length,
1268					 batch_end - cmd);
1269			ret = -EINVAL;
1270			break;
1271		}
1272
1273		if (!check_cmd(engine, desc, cmd, length, is_master,
1274			       &oacontrol_set)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275			ret = -EINVAL;
1276			break;
1277		}
 
1278
1279		cmd += length;
1280	}
 
 
 
 
 
 
 
 
 
 
 
 
1281
1282	if (oacontrol_set) {
1283		DRM_DEBUG_DRIVER("CMD: batch set OACONTROL but did not clear it\n");
1284		ret = -EINVAL;
1285	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287	if (cmd >= batch_end) {
1288		DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1289		ret = -EINVAL;
1290	}
1291
1292	if (ret == 0 && needs_clflush_after)
1293		drm_clflush_virt_range(shadow_batch_obj->mm.mapping, batch_len);
1294	i915_gem_object_unpin_map(shadow_batch_obj);
1295
 
 
 
1296	return ret;
1297}
1298
1299/**
1300 * i915_cmd_parser_get_version() - get the cmd parser version number
1301 * @dev_priv: i915 device private
1302 *
1303 * The cmd parser maintains a simple increasing integer version number suitable
1304 * for passing to userspace clients to determine what operations are permitted.
1305 *
1306 * Return: the current version number of the cmd parser
1307 */
1308int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1309{
1310	struct intel_engine_cs *engine;
1311	enum intel_engine_id id;
1312	bool active = false;
1313
1314	/* If the command parser is not enabled, report 0 - unsupported */
1315	for_each_engine(engine, dev_priv, id) {
1316		if (intel_engine_needs_cmd_parser(engine)) {
1317			active = true;
1318			break;
1319		}
1320	}
1321	if (!active)
1322		return 0;
1323
1324	/*
1325	 * Command parser version history
1326	 *
1327	 * 1. Initial version. Checks batches and reports violations, but leaves
1328	 *    hardware parsing enabled (so does not allow new use cases).
1329	 * 2. Allow access to the MI_PREDICATE_SRC0 and
1330	 *    MI_PREDICATE_SRC1 registers.
1331	 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1332	 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1333	 * 5. GPGPU dispatch compute indirect registers.
1334	 * 6. TIMESTAMP register and Haswell CS GPR registers
1335	 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
 
 
 
 
 
 
1336	 */
1337	return 7;
1338}