Loading...
Note: File does not exist in v6.8.
1/*
2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
4 *
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
9 *
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
12 *
13 */
14
15#include <linux/efi.h>
16#include <linux/sort.h>
17#include <asm/efi.h>
18
19#include "efistub.h"
20
21bool __nokaslr;
22
23static int efi_get_secureboot(efi_system_table_t *sys_table_arg)
24{
25 static efi_char16_t const sb_var_name[] = {
26 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
27 static efi_char16_t const sm_var_name[] = {
28 'S', 'e', 't', 'u', 'p', 'M', 'o', 'd', 'e', 0 };
29
30 efi_guid_t var_guid = EFI_GLOBAL_VARIABLE_GUID;
31 efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
32 u8 val;
33 unsigned long size = sizeof(val);
34 efi_status_t status;
35
36 status = f_getvar((efi_char16_t *)sb_var_name, (efi_guid_t *)&var_guid,
37 NULL, &size, &val);
38
39 if (status != EFI_SUCCESS)
40 goto out_efi_err;
41
42 if (val == 0)
43 return 0;
44
45 status = f_getvar((efi_char16_t *)sm_var_name, (efi_guid_t *)&var_guid,
46 NULL, &size, &val);
47
48 if (status != EFI_SUCCESS)
49 goto out_efi_err;
50
51 if (val == 1)
52 return 0;
53
54 return 1;
55
56out_efi_err:
57 switch (status) {
58 case EFI_NOT_FOUND:
59 return 0;
60 case EFI_DEVICE_ERROR:
61 return -EIO;
62 case EFI_SECURITY_VIOLATION:
63 return -EACCES;
64 default:
65 return -EINVAL;
66 }
67}
68
69efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
70 void *__image, void **__fh)
71{
72 efi_file_io_interface_t *io;
73 efi_loaded_image_t *image = __image;
74 efi_file_handle_t *fh;
75 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
76 efi_status_t status;
77 void *handle = (void *)(unsigned long)image->device_handle;
78
79 status = sys_table_arg->boottime->handle_protocol(handle,
80 &fs_proto, (void **)&io);
81 if (status != EFI_SUCCESS) {
82 efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
83 return status;
84 }
85
86 status = io->open_volume(io, &fh);
87 if (status != EFI_SUCCESS)
88 efi_printk(sys_table_arg, "Failed to open volume\n");
89
90 *__fh = fh;
91 return status;
92}
93
94efi_status_t efi_file_close(void *handle)
95{
96 efi_file_handle_t *fh = handle;
97
98 return fh->close(handle);
99}
100
101efi_status_t
102efi_file_read(void *handle, unsigned long *size, void *addr)
103{
104 efi_file_handle_t *fh = handle;
105
106 return fh->read(handle, size, addr);
107}
108
109
110efi_status_t
111efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
112 efi_char16_t *filename_16, void **handle, u64 *file_sz)
113{
114 efi_file_handle_t *h, *fh = __fh;
115 efi_file_info_t *info;
116 efi_status_t status;
117 efi_guid_t info_guid = EFI_FILE_INFO_ID;
118 unsigned long info_sz;
119
120 status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
121 if (status != EFI_SUCCESS) {
122 efi_printk(sys_table_arg, "Failed to open file: ");
123 efi_char16_printk(sys_table_arg, filename_16);
124 efi_printk(sys_table_arg, "\n");
125 return status;
126 }
127
128 *handle = h;
129
130 info_sz = 0;
131 status = h->get_info(h, &info_guid, &info_sz, NULL);
132 if (status != EFI_BUFFER_TOO_SMALL) {
133 efi_printk(sys_table_arg, "Failed to get file info size\n");
134 return status;
135 }
136
137grow:
138 status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
139 info_sz, (void **)&info);
140 if (status != EFI_SUCCESS) {
141 efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
142 return status;
143 }
144
145 status = h->get_info(h, &info_guid, &info_sz,
146 info);
147 if (status == EFI_BUFFER_TOO_SMALL) {
148 sys_table_arg->boottime->free_pool(info);
149 goto grow;
150 }
151
152 *file_sz = info->file_size;
153 sys_table_arg->boottime->free_pool(info);
154
155 if (status != EFI_SUCCESS)
156 efi_printk(sys_table_arg, "Failed to get initrd info\n");
157
158 return status;
159}
160
161
162
163void efi_char16_printk(efi_system_table_t *sys_table_arg,
164 efi_char16_t *str)
165{
166 struct efi_simple_text_output_protocol *out;
167
168 out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
169 out->output_string(out, str);
170}
171
172static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
173{
174 efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
175 efi_status_t status;
176 unsigned long size;
177 void **gop_handle = NULL;
178 struct screen_info *si = NULL;
179
180 size = 0;
181 status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
182 &gop_proto, NULL, &size, gop_handle);
183 if (status == EFI_BUFFER_TOO_SMALL) {
184 si = alloc_screen_info(sys_table_arg);
185 if (!si)
186 return NULL;
187 efi_setup_gop(sys_table_arg, si, &gop_proto, size);
188 }
189 return si;
190}
191
192/*
193 * This function handles the architcture specific differences between arm and
194 * arm64 regarding where the kernel image must be loaded and any memory that
195 * must be reserved. On failure it is required to free all
196 * all allocations it has made.
197 */
198efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
199 unsigned long *image_addr,
200 unsigned long *image_size,
201 unsigned long *reserve_addr,
202 unsigned long *reserve_size,
203 unsigned long dram_base,
204 efi_loaded_image_t *image);
205/*
206 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
207 * that is described in the PE/COFF header. Most of the code is the same
208 * for both archictectures, with the arch-specific code provided in the
209 * handle_kernel_image() function.
210 */
211unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
212 unsigned long *image_addr)
213{
214 efi_loaded_image_t *image;
215 efi_status_t status;
216 unsigned long image_size = 0;
217 unsigned long dram_base;
218 /* addr/point and size pairs for memory management*/
219 unsigned long initrd_addr;
220 u64 initrd_size = 0;
221 unsigned long fdt_addr = 0; /* Original DTB */
222 unsigned long fdt_size = 0;
223 char *cmdline_ptr = NULL;
224 int cmdline_size = 0;
225 unsigned long new_fdt_addr;
226 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
227 unsigned long reserve_addr = 0;
228 unsigned long reserve_size = 0;
229 int secure_boot = 0;
230 struct screen_info *si;
231
232 /* Check if we were booted by the EFI firmware */
233 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
234 goto fail;
235
236 pr_efi(sys_table, "Booting Linux Kernel...\n");
237
238 status = check_platform_features(sys_table);
239 if (status != EFI_SUCCESS)
240 goto fail;
241
242 /*
243 * Get a handle to the loaded image protocol. This is used to get
244 * information about the running image, such as size and the command
245 * line.
246 */
247 status = sys_table->boottime->handle_protocol(handle,
248 &loaded_image_proto, (void *)&image);
249 if (status != EFI_SUCCESS) {
250 pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
251 goto fail;
252 }
253
254 dram_base = get_dram_base(sys_table);
255 if (dram_base == EFI_ERROR) {
256 pr_efi_err(sys_table, "Failed to find DRAM base\n");
257 goto fail;
258 }
259
260 /*
261 * Get the command line from EFI, using the LOADED_IMAGE
262 * protocol. We are going to copy the command line into the
263 * device tree, so this can be allocated anywhere.
264 */
265 cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
266 if (!cmdline_ptr) {
267 pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
268 goto fail;
269 }
270
271 /* check whether 'nokaslr' was passed on the command line */
272 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
273 static const u8 default_cmdline[] = CONFIG_CMDLINE;
274 const u8 *str, *cmdline = cmdline_ptr;
275
276 if (IS_ENABLED(CONFIG_CMDLINE_FORCE))
277 cmdline = default_cmdline;
278 str = strstr(cmdline, "nokaslr");
279 if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
280 __nokaslr = true;
281 }
282
283 si = setup_graphics(sys_table);
284
285 status = handle_kernel_image(sys_table, image_addr, &image_size,
286 &reserve_addr,
287 &reserve_size,
288 dram_base, image);
289 if (status != EFI_SUCCESS) {
290 pr_efi_err(sys_table, "Failed to relocate kernel\n");
291 goto fail_free_cmdline;
292 }
293
294 status = efi_parse_options(cmdline_ptr);
295 if (status != EFI_SUCCESS)
296 pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
297
298 secure_boot = efi_get_secureboot(sys_table);
299 if (secure_boot > 0)
300 pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
301
302 if (secure_boot < 0) {
303 pr_efi_err(sys_table,
304 "could not determine UEFI Secure Boot status.\n");
305 }
306
307 /*
308 * Unauthenticated device tree data is a security hazard, so
309 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
310 */
311 if (secure_boot != 0 && strstr(cmdline_ptr, "dtb=")) {
312 pr_efi(sys_table, "Ignoring DTB from command line.\n");
313 } else {
314 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
315 "dtb=",
316 ~0UL, &fdt_addr, &fdt_size);
317
318 if (status != EFI_SUCCESS) {
319 pr_efi_err(sys_table, "Failed to load device tree!\n");
320 goto fail_free_image;
321 }
322 }
323
324 if (fdt_addr) {
325 pr_efi(sys_table, "Using DTB from command line\n");
326 } else {
327 /* Look for a device tree configuration table entry. */
328 fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
329 if (fdt_addr)
330 pr_efi(sys_table, "Using DTB from configuration table\n");
331 }
332
333 if (!fdt_addr)
334 pr_efi(sys_table, "Generating empty DTB\n");
335
336 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
337 "initrd=", dram_base + SZ_512M,
338 (unsigned long *)&initrd_addr,
339 (unsigned long *)&initrd_size);
340 if (status != EFI_SUCCESS)
341 pr_efi_err(sys_table, "Failed initrd from command line!\n");
342
343 efi_random_get_seed(sys_table);
344
345 new_fdt_addr = fdt_addr;
346 status = allocate_new_fdt_and_exit_boot(sys_table, handle,
347 &new_fdt_addr, dram_base + MAX_FDT_OFFSET,
348 initrd_addr, initrd_size, cmdline_ptr,
349 fdt_addr, fdt_size);
350
351 /*
352 * If all went well, we need to return the FDT address to the
353 * calling function so it can be passed to kernel as part of
354 * the kernel boot protocol.
355 */
356 if (status == EFI_SUCCESS)
357 return new_fdt_addr;
358
359 pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
360
361 efi_free(sys_table, initrd_size, initrd_addr);
362 efi_free(sys_table, fdt_size, fdt_addr);
363
364fail_free_image:
365 efi_free(sys_table, image_size, *image_addr);
366 efi_free(sys_table, reserve_size, reserve_addr);
367fail_free_cmdline:
368 free_screen_info(sys_table, si);
369 efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
370fail:
371 return EFI_ERROR;
372}
373
374/*
375 * This is the base address at which to start allocating virtual memory ranges
376 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
377 * any allocation we choose, and eliminate the risk of a conflict after kexec.
378 * The value chosen is the largest non-zero power of 2 suitable for this purpose
379 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
380 * be mapped efficiently.
381 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
382 * map everything below 1 GB.
383 */
384#define EFI_RT_VIRTUAL_BASE SZ_512M
385
386static int cmp_mem_desc(const void *l, const void *r)
387{
388 const efi_memory_desc_t *left = l, *right = r;
389
390 return (left->phys_addr > right->phys_addr) ? 1 : -1;
391}
392
393/*
394 * Returns whether region @left ends exactly where region @right starts,
395 * or false if either argument is NULL.
396 */
397static bool regions_are_adjacent(efi_memory_desc_t *left,
398 efi_memory_desc_t *right)
399{
400 u64 left_end;
401
402 if (left == NULL || right == NULL)
403 return false;
404
405 left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
406
407 return left_end == right->phys_addr;
408}
409
410/*
411 * Returns whether region @left and region @right have compatible memory type
412 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
413 */
414static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
415 efi_memory_desc_t *right)
416{
417 static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
418 EFI_MEMORY_WC | EFI_MEMORY_UC |
419 EFI_MEMORY_RUNTIME;
420
421 return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
422}
423
424/*
425 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
426 *
427 * This function populates the virt_addr fields of all memory region descriptors
428 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
429 * are also copied to @runtime_map, and their total count is returned in @count.
430 */
431void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
432 unsigned long desc_size, efi_memory_desc_t *runtime_map,
433 int *count)
434{
435 u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
436 efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
437 int l;
438
439 /*
440 * To work around potential issues with the Properties Table feature
441 * introduced in UEFI 2.5, which may split PE/COFF executable images
442 * in memory into several RuntimeServicesCode and RuntimeServicesData
443 * regions, we need to preserve the relative offsets between adjacent
444 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
445 * The easiest way to find adjacent regions is to sort the memory map
446 * before traversing it.
447 */
448 sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
449
450 for (l = 0; l < map_size; l += desc_size, prev = in) {
451 u64 paddr, size;
452
453 in = (void *)memory_map + l;
454 if (!(in->attribute & EFI_MEMORY_RUNTIME))
455 continue;
456
457 paddr = in->phys_addr;
458 size = in->num_pages * EFI_PAGE_SIZE;
459
460 /*
461 * Make the mapping compatible with 64k pages: this allows
462 * a 4k page size kernel to kexec a 64k page size kernel and
463 * vice versa.
464 */
465 if (!regions_are_adjacent(prev, in) ||
466 !regions_have_compatible_memory_type_attrs(prev, in)) {
467
468 paddr = round_down(in->phys_addr, SZ_64K);
469 size += in->phys_addr - paddr;
470
471 /*
472 * Avoid wasting memory on PTEs by choosing a virtual
473 * base that is compatible with section mappings if this
474 * region has the appropriate size and physical
475 * alignment. (Sections are 2 MB on 4k granule kernels)
476 */
477 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
478 efi_virt_base = round_up(efi_virt_base, SZ_2M);
479 else
480 efi_virt_base = round_up(efi_virt_base, SZ_64K);
481 }
482
483 in->virt_addr = efi_virt_base + in->phys_addr - paddr;
484 efi_virt_base += size;
485
486 memcpy(out, in, desc_size);
487 out = (void *)out + desc_size;
488 ++*count;
489 }
490}