Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/* gf128mul.c - GF(2^128) multiplication functions
  2 *
  3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
  4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
  5 *
  6 * Based on Dr Brian Gladman's (GPL'd) work published at
  7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
  8 * See the original copyright notice below.
  9 *
 10 * This program is free software; you can redistribute it and/or modify it
 11 * under the terms of the GNU General Public License as published by the Free
 12 * Software Foundation; either version 2 of the License, or (at your option)
 13 * any later version.
 14 */
 15
 16/*
 17 ---------------------------------------------------------------------------
 18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 19
 20 LICENSE TERMS
 21
 22 The free distribution and use of this software in both source and binary
 23 form is allowed (with or without changes) provided that:
 24
 25   1. distributions of this source code include the above copyright
 26      notice, this list of conditions and the following disclaimer;
 27
 28   2. distributions in binary form include the above copyright
 29      notice, this list of conditions and the following disclaimer
 30      in the documentation and/or other associated materials;
 31
 32   3. the copyright holder's name is not used to endorse products
 33      built using this software without specific written permission.
 34
 35 ALTERNATIVELY, provided that this notice is retained in full, this product
 36 may be distributed under the terms of the GNU General Public License (GPL),
 37 in which case the provisions of the GPL apply INSTEAD OF those given above.
 38
 39 DISCLAIMER
 40
 41 This software is provided 'as is' with no explicit or implied warranties
 42 in respect of its properties, including, but not limited to, correctness
 43 and/or fitness for purpose.
 44 ---------------------------------------------------------------------------
 45 Issue 31/01/2006
 46
 47 This file provides fast multiplication in GF(128) as required by several
 48 cryptographic authentication modes
 49*/
 50
 51#include <crypto/gf128mul.h>
 52#include <linux/kernel.h>
 53#include <linux/module.h>
 54#include <linux/slab.h>
 55
 56#define gf128mul_dat(q) { \
 57	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
 58	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
 59	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
 60	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
 61	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
 62	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
 63	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
 64	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
 65	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
 66	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
 67	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
 68	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
 69	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
 70	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
 71	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
 72	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
 73	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
 74	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
 75	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
 76	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
 77	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
 78	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
 79	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
 80	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
 81	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
 82	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
 83	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
 84	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
 85	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
 86	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
 87	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
 88	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
 89}
 90
 91/*	Given the value i in 0..255 as the byte overflow when a field element
 92    in GHASH is multiplied by x^8, this function will return the values that
 93    are generated in the lo 16-bit word of the field value by applying the
 94    modular polynomial. The values lo_byte and hi_byte are returned via the
 95    macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into
 96    memory as required by a suitable definition of this macro operating on
 97    the table above
 98*/
 99
100#define xx(p, q)	0x##p##q
101
102#define xda_bbe(i) ( \
103	(i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \
104	(i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \
105	(i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \
106	(i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \
107)
108
109#define xda_lle(i) ( \
110	(i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \
111	(i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \
112	(i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \
113	(i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \
114)
115
116static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle);
117static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe);
118
119/* These functions multiply a field element by x, by x^4 and by x^8
120 * in the polynomial field representation. It uses 32-bit word operations
121 * to gain speed but compensates for machine endianess and hence works
122 * correctly on both styles of machine.
123 */
124
125static void gf128mul_x_lle(be128 *r, const be128 *x)
126{
127	u64 a = be64_to_cpu(x->a);
128	u64 b = be64_to_cpu(x->b);
129	u64 _tt = gf128mul_table_lle[(b << 7) & 0xff];
130
131	r->b = cpu_to_be64((b >> 1) | (a << 63));
132	r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
133}
134
135static void gf128mul_x_bbe(be128 *r, const be128 *x)
136{
137	u64 a = be64_to_cpu(x->a);
138	u64 b = be64_to_cpu(x->b);
139	u64 _tt = gf128mul_table_bbe[a >> 63];
140
141	r->a = cpu_to_be64((a << 1) | (b >> 63));
142	r->b = cpu_to_be64((b << 1) ^ _tt);
143}
144
145void gf128mul_x_ble(be128 *r, const be128 *x)
146{
147	u64 a = le64_to_cpu(x->a);
148	u64 b = le64_to_cpu(x->b);
149	u64 _tt = gf128mul_table_bbe[b >> 63];
150
151	r->a = cpu_to_le64((a << 1) ^ _tt);
152	r->b = cpu_to_le64((b << 1) | (a >> 63));
153}
154EXPORT_SYMBOL(gf128mul_x_ble);
155
156static void gf128mul_x8_lle(be128 *x)
157{
158	u64 a = be64_to_cpu(x->a);
159	u64 b = be64_to_cpu(x->b);
160	u64 _tt = gf128mul_table_lle[b & 0xff];
161
162	x->b = cpu_to_be64((b >> 8) | (a << 56));
163	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
164}
165
166static void gf128mul_x8_bbe(be128 *x)
167{
168	u64 a = be64_to_cpu(x->a);
169	u64 b = be64_to_cpu(x->b);
170	u64 _tt = gf128mul_table_bbe[a >> 56];
171
172	x->a = cpu_to_be64((a << 8) | (b >> 56));
173	x->b = cpu_to_be64((b << 8) ^ _tt);
174}
175
176void gf128mul_lle(be128 *r, const be128 *b)
177{
178	be128 p[8];
179	int i;
180
181	p[0] = *r;
182	for (i = 0; i < 7; ++i)
183		gf128mul_x_lle(&p[i + 1], &p[i]);
184
185	memset(r, 0, sizeof(*r));
186	for (i = 0;;) {
187		u8 ch = ((u8 *)b)[15 - i];
188
189		if (ch & 0x80)
190			be128_xor(r, r, &p[0]);
191		if (ch & 0x40)
192			be128_xor(r, r, &p[1]);
193		if (ch & 0x20)
194			be128_xor(r, r, &p[2]);
195		if (ch & 0x10)
196			be128_xor(r, r, &p[3]);
197		if (ch & 0x08)
198			be128_xor(r, r, &p[4]);
199		if (ch & 0x04)
200			be128_xor(r, r, &p[5]);
201		if (ch & 0x02)
202			be128_xor(r, r, &p[6]);
203		if (ch & 0x01)
204			be128_xor(r, r, &p[7]);
205
206		if (++i >= 16)
207			break;
208
209		gf128mul_x8_lle(r);
210	}
211}
212EXPORT_SYMBOL(gf128mul_lle);
213
214void gf128mul_bbe(be128 *r, const be128 *b)
215{
216	be128 p[8];
217	int i;
218
219	p[0] = *r;
220	for (i = 0; i < 7; ++i)
221		gf128mul_x_bbe(&p[i + 1], &p[i]);
222
223	memset(r, 0, sizeof(*r));
224	for (i = 0;;) {
225		u8 ch = ((u8 *)b)[i];
226
227		if (ch & 0x80)
228			be128_xor(r, r, &p[7]);
229		if (ch & 0x40)
230			be128_xor(r, r, &p[6]);
231		if (ch & 0x20)
232			be128_xor(r, r, &p[5]);
233		if (ch & 0x10)
234			be128_xor(r, r, &p[4]);
235		if (ch & 0x08)
236			be128_xor(r, r, &p[3]);
237		if (ch & 0x04)
238			be128_xor(r, r, &p[2]);
239		if (ch & 0x02)
240			be128_xor(r, r, &p[1]);
241		if (ch & 0x01)
242			be128_xor(r, r, &p[0]);
243
244		if (++i >= 16)
245			break;
246
247		gf128mul_x8_bbe(r);
248	}
249}
250EXPORT_SYMBOL(gf128mul_bbe);
251
252/*      This version uses 64k bytes of table space.
253    A 16 byte buffer has to be multiplied by a 16 byte key
254    value in GF(128).  If we consider a GF(128) value in
255    the buffer's lowest byte, we can construct a table of
256    the 256 16 byte values that result from the 256 values
257    of this byte.  This requires 4096 bytes. But we also
258    need tables for each of the 16 higher bytes in the
259    buffer as well, which makes 64 kbytes in total.
260*/
261/* additional explanation
262 * t[0][BYTE] contains g*BYTE
263 * t[1][BYTE] contains g*x^8*BYTE
264 *  ..
265 * t[15][BYTE] contains g*x^120*BYTE */
266struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
267{
268	struct gf128mul_64k *t;
269	int i, j, k;
270
271	t = kzalloc(sizeof(*t), GFP_KERNEL);
272	if (!t)
273		goto out;
274
275	for (i = 0; i < 16; i++) {
276		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
277		if (!t->t[i]) {
278			gf128mul_free_64k(t);
279			t = NULL;
280			goto out;
281		}
282	}
283
284	t->t[0]->t[1] = *g;
285	for (j = 1; j <= 64; j <<= 1)
286		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
287
288	for (i = 0;;) {
289		for (j = 2; j < 256; j += j)
290			for (k = 1; k < j; ++k)
291				be128_xor(&t->t[i]->t[j + k],
292					  &t->t[i]->t[j], &t->t[i]->t[k]);
293
294		if (++i >= 16)
295			break;
296
297		for (j = 128; j > 0; j >>= 1) {
298			t->t[i]->t[j] = t->t[i - 1]->t[j];
299			gf128mul_x8_bbe(&t->t[i]->t[j]);
300		}
301	}
302
303out:
304	return t;
305}
306EXPORT_SYMBOL(gf128mul_init_64k_bbe);
307
308void gf128mul_free_64k(struct gf128mul_64k *t)
309{
310	int i;
311
312	for (i = 0; i < 16; i++)
313		kzfree(t->t[i]);
314	kzfree(t);
315}
316EXPORT_SYMBOL(gf128mul_free_64k);
317
318void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t)
319{
320	u8 *ap = (u8 *)a;
321	be128 r[1];
322	int i;
323
324	*r = t->t[0]->t[ap[15]];
325	for (i = 1; i < 16; ++i)
326		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
327	*a = *r;
328}
329EXPORT_SYMBOL(gf128mul_64k_bbe);
330
331/*      This version uses 4k bytes of table space.
332    A 16 byte buffer has to be multiplied by a 16 byte key
333    value in GF(128).  If we consider a GF(128) value in a
334    single byte, we can construct a table of the 256 16 byte
335    values that result from the 256 values of this byte.
336    This requires 4096 bytes. If we take the highest byte in
337    the buffer and use this table to get the result, we then
338    have to multiply by x^120 to get the final value. For the
339    next highest byte the result has to be multiplied by x^112
340    and so on. But we can do this by accumulating the result
341    in an accumulator starting with the result for the top
342    byte.  We repeatedly multiply the accumulator value by
343    x^8 and then add in (i.e. xor) the 16 bytes of the next
344    lower byte in the buffer, stopping when we reach the
345    lowest byte. This requires a 4096 byte table.
346*/
347struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
348{
349	struct gf128mul_4k *t;
350	int j, k;
351
352	t = kzalloc(sizeof(*t), GFP_KERNEL);
353	if (!t)
354		goto out;
355
356	t->t[128] = *g;
357	for (j = 64; j > 0; j >>= 1)
358		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
359
360	for (j = 2; j < 256; j += j)
361		for (k = 1; k < j; ++k)
362			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
363
364out:
365	return t;
366}
367EXPORT_SYMBOL(gf128mul_init_4k_lle);
368
369struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
370{
371	struct gf128mul_4k *t;
372	int j, k;
373
374	t = kzalloc(sizeof(*t), GFP_KERNEL);
375	if (!t)
376		goto out;
377
378	t->t[1] = *g;
379	for (j = 1; j <= 64; j <<= 1)
380		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
381
382	for (j = 2; j < 256; j += j)
383		for (k = 1; k < j; ++k)
384			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
385
386out:
387	return t;
388}
389EXPORT_SYMBOL(gf128mul_init_4k_bbe);
390
391void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t)
392{
393	u8 *ap = (u8 *)a;
394	be128 r[1];
395	int i = 15;
396
397	*r = t->t[ap[15]];
398	while (i--) {
399		gf128mul_x8_lle(r);
400		be128_xor(r, r, &t->t[ap[i]]);
401	}
402	*a = *r;
403}
404EXPORT_SYMBOL(gf128mul_4k_lle);
405
406void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t)
407{
408	u8 *ap = (u8 *)a;
409	be128 r[1];
410	int i = 0;
411
412	*r = t->t[ap[0]];
413	while (++i < 16) {
414		gf128mul_x8_bbe(r);
415		be128_xor(r, r, &t->t[ap[i]]);
416	}
417	*a = *r;
418}
419EXPORT_SYMBOL(gf128mul_4k_bbe);
420
421MODULE_LICENSE("GPL");
422MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");