Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
   3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26
  27#include <crypto/ecc_curve.h>
  28#include <linux/module.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/swab.h>
  32#include <linux/fips.h>
  33#include <crypto/ecdh.h>
  34#include <crypto/rng.h>
  35#include <crypto/internal/ecc.h>
  36#include <asm/unaligned.h>
  37#include <linux/ratelimit.h>
  38
 
  39#include "ecc_curve_defs.h"
  40
  41typedef struct {
  42	u64 m_low;
  43	u64 m_high;
  44} uint128_t;
  45
  46/* Returns curv25519 curve param */
  47const struct ecc_curve *ecc_get_curve25519(void)
  48{
  49	return &ecc_25519;
  50}
  51EXPORT_SYMBOL(ecc_get_curve25519);
  52
  53const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
  54{
  55	switch (curve_id) {
  56	/* In FIPS mode only allow P256 and higher */
  57	case ECC_CURVE_NIST_P192:
  58		return fips_enabled ? NULL : &nist_p192;
  59	case ECC_CURVE_NIST_P256:
  60		return &nist_p256;
  61	case ECC_CURVE_NIST_P384:
  62		return &nist_p384;
  63	default:
  64		return NULL;
  65	}
  66}
  67EXPORT_SYMBOL(ecc_get_curve);
  68
  69static u64 *ecc_alloc_digits_space(unsigned int ndigits)
  70{
  71	size_t len = ndigits * sizeof(u64);
  72
  73	if (!len)
  74		return NULL;
  75
  76	return kmalloc(len, GFP_KERNEL);
  77}
  78
  79static void ecc_free_digits_space(u64 *space)
  80{
  81	kfree_sensitive(space);
  82}
  83
  84struct ecc_point *ecc_alloc_point(unsigned int ndigits)
  85{
  86	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
  87
  88	if (!p)
  89		return NULL;
  90
  91	p->x = ecc_alloc_digits_space(ndigits);
  92	if (!p->x)
  93		goto err_alloc_x;
  94
  95	p->y = ecc_alloc_digits_space(ndigits);
  96	if (!p->y)
  97		goto err_alloc_y;
  98
  99	p->ndigits = ndigits;
 100
 101	return p;
 102
 103err_alloc_y:
 104	ecc_free_digits_space(p->x);
 105err_alloc_x:
 106	kfree(p);
 107	return NULL;
 108}
 109EXPORT_SYMBOL(ecc_alloc_point);
 110
 111void ecc_free_point(struct ecc_point *p)
 112{
 113	if (!p)
 114		return;
 115
 116	kfree_sensitive(p->x);
 117	kfree_sensitive(p->y);
 118	kfree_sensitive(p);
 119}
 120EXPORT_SYMBOL(ecc_free_point);
 121
 122static void vli_clear(u64 *vli, unsigned int ndigits)
 123{
 124	int i;
 125
 126	for (i = 0; i < ndigits; i++)
 127		vli[i] = 0;
 128}
 129
 130/* Returns true if vli == 0, false otherwise. */
 131bool vli_is_zero(const u64 *vli, unsigned int ndigits)
 132{
 133	int i;
 134
 135	for (i = 0; i < ndigits; i++) {
 136		if (vli[i])
 137			return false;
 138	}
 139
 140	return true;
 141}
 142EXPORT_SYMBOL(vli_is_zero);
 143
 144/* Returns nonzero if bit of vli is set. */
 145static u64 vli_test_bit(const u64 *vli, unsigned int bit)
 146{
 147	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
 148}
 149
 150static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
 151{
 152	return vli_test_bit(vli, ndigits * 64 - 1);
 153}
 154
 155/* Counts the number of 64-bit "digits" in vli. */
 156static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
 157{
 158	int i;
 159
 160	/* Search from the end until we find a non-zero digit.
 161	 * We do it in reverse because we expect that most digits will
 162	 * be nonzero.
 163	 */
 164	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
 165
 166	return (i + 1);
 167}
 168
 169/* Counts the number of bits required for vli. */
 170unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
 171{
 172	unsigned int i, num_digits;
 173	u64 digit;
 174
 175	num_digits = vli_num_digits(vli, ndigits);
 176	if (num_digits == 0)
 177		return 0;
 178
 179	digit = vli[num_digits - 1];
 180	for (i = 0; digit; i++)
 181		digit >>= 1;
 182
 183	return ((num_digits - 1) * 64 + i);
 184}
 185EXPORT_SYMBOL(vli_num_bits);
 186
 187/* Set dest from unaligned bit string src. */
 188void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
 189{
 190	int i;
 191	const u64 *from = src;
 192
 193	for (i = 0; i < ndigits; i++)
 194		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
 195}
 196EXPORT_SYMBOL(vli_from_be64);
 197
 198void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
 199{
 200	int i;
 201	const u64 *from = src;
 202
 203	for (i = 0; i < ndigits; i++)
 204		dest[i] = get_unaligned_le64(&from[i]);
 205}
 206EXPORT_SYMBOL(vli_from_le64);
 207
 208/* Sets dest = src. */
 209static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
 210{
 211	int i;
 212
 213	for (i = 0; i < ndigits; i++)
 214		dest[i] = src[i];
 215}
 216
 217/* Returns sign of left - right. */
 218int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
 219{
 220	int i;
 221
 222	for (i = ndigits - 1; i >= 0; i--) {
 223		if (left[i] > right[i])
 224			return 1;
 225		else if (left[i] < right[i])
 226			return -1;
 227	}
 228
 229	return 0;
 230}
 231EXPORT_SYMBOL(vli_cmp);
 232
 233/* Computes result = in << c, returning carry. Can modify in place
 234 * (if result == in). 0 < shift < 64.
 235 */
 236static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
 237		      unsigned int ndigits)
 238{
 239	u64 carry = 0;
 240	int i;
 241
 242	for (i = 0; i < ndigits; i++) {
 243		u64 temp = in[i];
 244
 245		result[i] = (temp << shift) | carry;
 246		carry = temp >> (64 - shift);
 247	}
 248
 249	return carry;
 250}
 251
 252/* Computes vli = vli >> 1. */
 253static void vli_rshift1(u64 *vli, unsigned int ndigits)
 254{
 255	u64 *end = vli;
 256	u64 carry = 0;
 257
 258	vli += ndigits;
 259
 260	while (vli-- > end) {
 261		u64 temp = *vli;
 262		*vli = (temp >> 1) | carry;
 263		carry = temp << 63;
 264	}
 265}
 266
 267/* Computes result = left + right, returning carry. Can modify in place. */
 268static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
 269		   unsigned int ndigits)
 270{
 271	u64 carry = 0;
 272	int i;
 273
 274	for (i = 0; i < ndigits; i++) {
 275		u64 sum;
 276
 277		sum = left[i] + right[i] + carry;
 278		if (sum != left[i])
 279			carry = (sum < left[i]);
 280
 281		result[i] = sum;
 282	}
 283
 284	return carry;
 285}
 286
 287/* Computes result = left + right, returning carry. Can modify in place. */
 288static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
 289		    unsigned int ndigits)
 290{
 291	u64 carry = right;
 292	int i;
 293
 294	for (i = 0; i < ndigits; i++) {
 295		u64 sum;
 296
 297		sum = left[i] + carry;
 298		if (sum != left[i])
 299			carry = (sum < left[i]);
 300		else
 301			carry = !!carry;
 302
 303		result[i] = sum;
 304	}
 305
 306	return carry;
 307}
 308
 309/* Computes result = left - right, returning borrow. Can modify in place. */
 310u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 311		   unsigned int ndigits)
 312{
 313	u64 borrow = 0;
 314	int i;
 315
 316	for (i = 0; i < ndigits; i++) {
 317		u64 diff;
 318
 319		diff = left[i] - right[i] - borrow;
 320		if (diff != left[i])
 321			borrow = (diff > left[i]);
 322
 323		result[i] = diff;
 324	}
 325
 326	return borrow;
 327}
 328EXPORT_SYMBOL(vli_sub);
 329
 330/* Computes result = left - right, returning borrow. Can modify in place. */
 331static u64 vli_usub(u64 *result, const u64 *left, u64 right,
 332	     unsigned int ndigits)
 333{
 334	u64 borrow = right;
 335	int i;
 336
 337	for (i = 0; i < ndigits; i++) {
 338		u64 diff;
 339
 340		diff = left[i] - borrow;
 341		if (diff != left[i])
 342			borrow = (diff > left[i]);
 343
 344		result[i] = diff;
 345	}
 346
 347	return borrow;
 348}
 349
 350static uint128_t mul_64_64(u64 left, u64 right)
 351{
 352	uint128_t result;
 353#if defined(CONFIG_ARCH_SUPPORTS_INT128)
 354	unsigned __int128 m = (unsigned __int128)left * right;
 355
 356	result.m_low  = m;
 357	result.m_high = m >> 64;
 358#else
 359	u64 a0 = left & 0xffffffffull;
 360	u64 a1 = left >> 32;
 361	u64 b0 = right & 0xffffffffull;
 362	u64 b1 = right >> 32;
 363	u64 m0 = a0 * b0;
 364	u64 m1 = a0 * b1;
 365	u64 m2 = a1 * b0;
 366	u64 m3 = a1 * b1;
 
 367
 368	m2 += (m0 >> 32);
 369	m2 += m1;
 370
 371	/* Overflow */
 372	if (m2 < m1)
 373		m3 += 0x100000000ull;
 374
 375	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
 376	result.m_high = m3 + (m2 >> 32);
 377#endif
 378	return result;
 379}
 380
 381static uint128_t add_128_128(uint128_t a, uint128_t b)
 382{
 383	uint128_t result;
 384
 385	result.m_low = a.m_low + b.m_low;
 386	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
 387
 388	return result;
 389}
 390
 391static void vli_mult(u64 *result, const u64 *left, const u64 *right,
 392		     unsigned int ndigits)
 393{
 394	uint128_t r01 = { 0, 0 };
 395	u64 r2 = 0;
 396	unsigned int i, k;
 397
 398	/* Compute each digit of result in sequence, maintaining the
 399	 * carries.
 400	 */
 401	for (k = 0; k < ndigits * 2 - 1; k++) {
 402		unsigned int min;
 403
 404		if (k < ndigits)
 405			min = 0;
 406		else
 407			min = (k + 1) - ndigits;
 408
 409		for (i = min; i <= k && i < ndigits; i++) {
 410			uint128_t product;
 411
 412			product = mul_64_64(left[i], right[k - i]);
 413
 414			r01 = add_128_128(r01, product);
 415			r2 += (r01.m_high < product.m_high);
 416		}
 417
 418		result[k] = r01.m_low;
 419		r01.m_low = r01.m_high;
 420		r01.m_high = r2;
 421		r2 = 0;
 422	}
 423
 424	result[ndigits * 2 - 1] = r01.m_low;
 425}
 426
 427/* Compute product = left * right, for a small right value. */
 428static void vli_umult(u64 *result, const u64 *left, u32 right,
 429		      unsigned int ndigits)
 430{
 431	uint128_t r01 = { 0 };
 432	unsigned int k;
 433
 434	for (k = 0; k < ndigits; k++) {
 435		uint128_t product;
 436
 437		product = mul_64_64(left[k], right);
 438		r01 = add_128_128(r01, product);
 439		/* no carry */
 440		result[k] = r01.m_low;
 441		r01.m_low = r01.m_high;
 442		r01.m_high = 0;
 443	}
 444	result[k] = r01.m_low;
 445	for (++k; k < ndigits * 2; k++)
 446		result[k] = 0;
 447}
 448
 449static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
 450{
 451	uint128_t r01 = { 0, 0 };
 452	u64 r2 = 0;
 453	int i, k;
 454
 455	for (k = 0; k < ndigits * 2 - 1; k++) {
 456		unsigned int min;
 457
 458		if (k < ndigits)
 459			min = 0;
 460		else
 461			min = (k + 1) - ndigits;
 462
 463		for (i = min; i <= k && i <= k - i; i++) {
 464			uint128_t product;
 465
 466			product = mul_64_64(left[i], left[k - i]);
 467
 468			if (i < k - i) {
 469				r2 += product.m_high >> 63;
 470				product.m_high = (product.m_high << 1) |
 471						 (product.m_low >> 63);
 472				product.m_low <<= 1;
 473			}
 474
 475			r01 = add_128_128(r01, product);
 476			r2 += (r01.m_high < product.m_high);
 477		}
 478
 479		result[k] = r01.m_low;
 480		r01.m_low = r01.m_high;
 481		r01.m_high = r2;
 482		r2 = 0;
 483	}
 484
 485	result[ndigits * 2 - 1] = r01.m_low;
 486}
 487
 488/* Computes result = (left + right) % mod.
 489 * Assumes that left < mod and right < mod, result != mod.
 490 */
 491static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
 492			const u64 *mod, unsigned int ndigits)
 493{
 494	u64 carry;
 495
 496	carry = vli_add(result, left, right, ndigits);
 497
 498	/* result > mod (result = mod + remainder), so subtract mod to
 499	 * get remainder.
 500	 */
 501	if (carry || vli_cmp(result, mod, ndigits) >= 0)
 502		vli_sub(result, result, mod, ndigits);
 503}
 504
 505/* Computes result = (left - right) % mod.
 506 * Assumes that left < mod and right < mod, result != mod.
 507 */
 508static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
 509			const u64 *mod, unsigned int ndigits)
 510{
 511	u64 borrow = vli_sub(result, left, right, ndigits);
 512
 513	/* In this case, p_result == -diff == (max int) - diff.
 514	 * Since -x % d == d - x, we can get the correct result from
 515	 * result + mod (with overflow).
 516	 */
 517	if (borrow)
 518		vli_add(result, result, mod, ndigits);
 519}
 520
 521/*
 522 * Computes result = product % mod
 523 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
 524 *
 525 * References:
 526 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
 527 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
 528 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
 529 */
 530static void vli_mmod_special(u64 *result, const u64 *product,
 531			      const u64 *mod, unsigned int ndigits)
 532{
 533	u64 c = -mod[0];
 534	u64 t[ECC_MAX_DIGITS * 2];
 535	u64 r[ECC_MAX_DIGITS * 2];
 536
 537	vli_set(r, product, ndigits * 2);
 538	while (!vli_is_zero(r + ndigits, ndigits)) {
 539		vli_umult(t, r + ndigits, c, ndigits);
 540		vli_clear(r + ndigits, ndigits);
 541		vli_add(r, r, t, ndigits * 2);
 542	}
 543	vli_set(t, mod, ndigits);
 544	vli_clear(t + ndigits, ndigits);
 545	while (vli_cmp(r, t, ndigits * 2) >= 0)
 546		vli_sub(r, r, t, ndigits * 2);
 547	vli_set(result, r, ndigits);
 548}
 549
 550/*
 551 * Computes result = product % mod
 552 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
 553 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
 554
 555 * References (loosely based on):
 556 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
 557 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
 558 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
 559 *
 560 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
 561 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
 562 * Algorithm 10.25 Fast reduction for special form moduli
 563 */
 564static void vli_mmod_special2(u64 *result, const u64 *product,
 565			       const u64 *mod, unsigned int ndigits)
 566{
 567	u64 c2 = mod[0] * 2;
 568	u64 q[ECC_MAX_DIGITS];
 569	u64 r[ECC_MAX_DIGITS * 2];
 570	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
 571	int carry; /* last bit that doesn't fit into q */
 572	int i;
 573
 574	vli_set(m, mod, ndigits);
 575	vli_clear(m + ndigits, ndigits);
 576
 577	vli_set(r, product, ndigits);
 578	/* q and carry are top bits */
 579	vli_set(q, product + ndigits, ndigits);
 580	vli_clear(r + ndigits, ndigits);
 581	carry = vli_is_negative(r, ndigits);
 582	if (carry)
 583		r[ndigits - 1] &= (1ull << 63) - 1;
 584	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
 585		u64 qc[ECC_MAX_DIGITS * 2];
 586
 587		vli_umult(qc, q, c2, ndigits);
 588		if (carry)
 589			vli_uadd(qc, qc, mod[0], ndigits * 2);
 590		vli_set(q, qc + ndigits, ndigits);
 591		vli_clear(qc + ndigits, ndigits);
 592		carry = vli_is_negative(qc, ndigits);
 593		if (carry)
 594			qc[ndigits - 1] &= (1ull << 63) - 1;
 595		if (i & 1)
 596			vli_sub(r, r, qc, ndigits * 2);
 597		else
 598			vli_add(r, r, qc, ndigits * 2);
 599	}
 600	while (vli_is_negative(r, ndigits * 2))
 601		vli_add(r, r, m, ndigits * 2);
 602	while (vli_cmp(r, m, ndigits * 2) >= 0)
 603		vli_sub(r, r, m, ndigits * 2);
 604
 605	vli_set(result, r, ndigits);
 606}
 607
 608/*
 609 * Computes result = product % mod, where product is 2N words long.
 610 * Reference: Ken MacKay's micro-ecc.
 611 * Currently only designed to work for curve_p or curve_n.
 612 */
 613static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
 614			  unsigned int ndigits)
 615{
 616	u64 mod_m[2 * ECC_MAX_DIGITS];
 617	u64 tmp[2 * ECC_MAX_DIGITS];
 618	u64 *v[2] = { tmp, product };
 619	u64 carry = 0;
 620	unsigned int i;
 621	/* Shift mod so its highest set bit is at the maximum position. */
 622	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
 623	int word_shift = shift / 64;
 624	int bit_shift = shift % 64;
 625
 626	vli_clear(mod_m, word_shift);
 627	if (bit_shift > 0) {
 628		for (i = 0; i < ndigits; ++i) {
 629			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
 630			carry = mod[i] >> (64 - bit_shift);
 631		}
 632	} else
 633		vli_set(mod_m + word_shift, mod, ndigits);
 634
 635	for (i = 1; shift >= 0; --shift) {
 636		u64 borrow = 0;
 637		unsigned int j;
 638
 639		for (j = 0; j < ndigits * 2; ++j) {
 640			u64 diff = v[i][j] - mod_m[j] - borrow;
 641
 642			if (diff != v[i][j])
 643				borrow = (diff > v[i][j]);
 644			v[1 - i][j] = diff;
 645		}
 646		i = !(i ^ borrow); /* Swap the index if there was no borrow */
 647		vli_rshift1(mod_m, ndigits);
 648		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
 649		vli_rshift1(mod_m + ndigits, ndigits);
 650	}
 651	vli_set(result, v[i], ndigits);
 652}
 653
 654/* Computes result = product % mod using Barrett's reduction with precomputed
 655 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
 656 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
 657 * boundary.
 658 *
 659 * Reference:
 660 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
 661 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
 662 */
 663static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
 664			     unsigned int ndigits)
 665{
 666	u64 q[ECC_MAX_DIGITS * 2];
 667	u64 r[ECC_MAX_DIGITS * 2];
 668	const u64 *mu = mod + ndigits;
 669
 670	vli_mult(q, product + ndigits, mu, ndigits);
 671	if (mu[ndigits])
 672		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
 673	vli_mult(r, mod, q + ndigits, ndigits);
 674	vli_sub(r, product, r, ndigits * 2);
 675	while (!vli_is_zero(r + ndigits, ndigits) ||
 676	       vli_cmp(r, mod, ndigits) != -1) {
 677		u64 carry;
 678
 679		carry = vli_sub(r, r, mod, ndigits);
 680		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
 681	}
 682	vli_set(result, r, ndigits);
 683}
 684
 685/* Computes p_result = p_product % curve_p.
 686 * See algorithm 5 and 6 from
 687 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
 688 */
 689static void vli_mmod_fast_192(u64 *result, const u64 *product,
 690			      const u64 *curve_prime, u64 *tmp)
 691{
 692	const unsigned int ndigits = 3;
 693	int carry;
 694
 695	vli_set(result, product, ndigits);
 696
 697	vli_set(tmp, &product[3], ndigits);
 698	carry = vli_add(result, result, tmp, ndigits);
 699
 700	tmp[0] = 0;
 701	tmp[1] = product[3];
 702	tmp[2] = product[4];
 703	carry += vli_add(result, result, tmp, ndigits);
 704
 705	tmp[0] = tmp[1] = product[5];
 706	tmp[2] = 0;
 707	carry += vli_add(result, result, tmp, ndigits);
 708
 709	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 710		carry -= vli_sub(result, result, curve_prime, ndigits);
 711}
 712
 713/* Computes result = product % curve_prime
 714 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
 715 */
 716static void vli_mmod_fast_256(u64 *result, const u64 *product,
 717			      const u64 *curve_prime, u64 *tmp)
 718{
 719	int carry;
 720	const unsigned int ndigits = 4;
 721
 722	/* t */
 723	vli_set(result, product, ndigits);
 724
 725	/* s1 */
 726	tmp[0] = 0;
 727	tmp[1] = product[5] & 0xffffffff00000000ull;
 728	tmp[2] = product[6];
 729	tmp[3] = product[7];
 730	carry = vli_lshift(tmp, tmp, 1, ndigits);
 731	carry += vli_add(result, result, tmp, ndigits);
 732
 733	/* s2 */
 734	tmp[1] = product[6] << 32;
 735	tmp[2] = (product[6] >> 32) | (product[7] << 32);
 736	tmp[3] = product[7] >> 32;
 737	carry += vli_lshift(tmp, tmp, 1, ndigits);
 738	carry += vli_add(result, result, tmp, ndigits);
 739
 740	/* s3 */
 741	tmp[0] = product[4];
 742	tmp[1] = product[5] & 0xffffffff;
 743	tmp[2] = 0;
 744	tmp[3] = product[7];
 745	carry += vli_add(result, result, tmp, ndigits);
 746
 747	/* s4 */
 748	tmp[0] = (product[4] >> 32) | (product[5] << 32);
 749	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
 750	tmp[2] = product[7];
 751	tmp[3] = (product[6] >> 32) | (product[4] << 32);
 752	carry += vli_add(result, result, tmp, ndigits);
 753
 754	/* d1 */
 755	tmp[0] = (product[5] >> 32) | (product[6] << 32);
 756	tmp[1] = (product[6] >> 32);
 757	tmp[2] = 0;
 758	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
 759	carry -= vli_sub(result, result, tmp, ndigits);
 760
 761	/* d2 */
 762	tmp[0] = product[6];
 763	tmp[1] = product[7];
 764	tmp[2] = 0;
 765	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
 766	carry -= vli_sub(result, result, tmp, ndigits);
 767
 768	/* d3 */
 769	tmp[0] = (product[6] >> 32) | (product[7] << 32);
 770	tmp[1] = (product[7] >> 32) | (product[4] << 32);
 771	tmp[2] = (product[4] >> 32) | (product[5] << 32);
 772	tmp[3] = (product[6] << 32);
 773	carry -= vli_sub(result, result, tmp, ndigits);
 774
 775	/* d4 */
 776	tmp[0] = product[7];
 777	tmp[1] = product[4] & 0xffffffff00000000ull;
 778	tmp[2] = product[5];
 779	tmp[3] = product[6] & 0xffffffff00000000ull;
 780	carry -= vli_sub(result, result, tmp, ndigits);
 781
 782	if (carry < 0) {
 783		do {
 784			carry += vli_add(result, result, curve_prime, ndigits);
 785		} while (carry < 0);
 786	} else {
 787		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 788			carry -= vli_sub(result, result, curve_prime, ndigits);
 789	}
 790}
 791
 792#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
 793#define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
 794#define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
 795
 796/* Computes result = product % curve_prime
 797 * from "Mathematical routines for the NIST prime elliptic curves"
 798 */
 799static void vli_mmod_fast_384(u64 *result, const u64 *product,
 800				const u64 *curve_prime, u64 *tmp)
 801{
 802	int carry;
 803	const unsigned int ndigits = 6;
 804
 805	/* t */
 806	vli_set(result, product, ndigits);
 807
 808	/* s1 */
 809	tmp[0] = 0;		// 0 || 0
 810	tmp[1] = 0;		// 0 || 0
 811	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 812	tmp[3] = product[11]>>32;	// 0 ||a23
 813	tmp[4] = 0;		// 0 || 0
 814	tmp[5] = 0;		// 0 || 0
 815	carry = vli_lshift(tmp, tmp, 1, ndigits);
 816	carry += vli_add(result, result, tmp, ndigits);
 817
 818	/* s2 */
 819	tmp[0] = product[6];	//a13||a12
 820	tmp[1] = product[7];	//a15||a14
 821	tmp[2] = product[8];	//a17||a16
 822	tmp[3] = product[9];	//a19||a18
 823	tmp[4] = product[10];	//a21||a20
 824	tmp[5] = product[11];	//a23||a22
 825	carry += vli_add(result, result, tmp, ndigits);
 826
 827	/* s3 */
 828	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 829	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
 830	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
 831	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
 832	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
 833	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
 834	carry += vli_add(result, result, tmp, ndigits);
 835
 836	/* s4 */
 837	tmp[0] = AND64H(product[11]);	//a23|| 0
 838	tmp[1] = (product[10]<<32);	//a20|| 0
 839	tmp[2] = product[6];	//a13||a12
 840	tmp[3] = product[7];	//a15||a14
 841	tmp[4] = product[8];	//a17||a16
 842	tmp[5] = product[9];	//a19||a18
 843	carry += vli_add(result, result, tmp, ndigits);
 844
 845	/* s5 */
 846	tmp[0] = 0;		//  0|| 0
 847	tmp[1] = 0;		//  0|| 0
 848	tmp[2] = product[10];	//a21||a20
 849	tmp[3] = product[11];	//a23||a22
 850	tmp[4] = 0;		//  0|| 0
 851	tmp[5] = 0;		//  0|| 0
 852	carry += vli_add(result, result, tmp, ndigits);
 853
 854	/* s6 */
 855	tmp[0] = AND64L(product[10]);	// 0 ||a20
 856	tmp[1] = AND64H(product[10]);	//a21|| 0
 857	tmp[2] = product[11];	//a23||a22
 858	tmp[3] = 0;		// 0 || 0
 859	tmp[4] = 0;		// 0 || 0
 860	tmp[5] = 0;		// 0 || 0
 861	carry += vli_add(result, result, tmp, ndigits);
 862
 863	/* d1 */
 864	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
 865	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
 866	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
 867	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
 868	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
 869	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 870	carry -= vli_sub(result, result, tmp, ndigits);
 871
 872	/* d2 */
 873	tmp[0] = (product[10]<<32);	//a20|| 0
 874	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 875	tmp[2] = (product[11]>>32);	// 0 ||a23
 876	tmp[3] = 0;		// 0 || 0
 877	tmp[4] = 0;		// 0 || 0
 878	tmp[5] = 0;		// 0 || 0
 879	carry -= vli_sub(result, result, tmp, ndigits);
 880
 881	/* d3 */
 882	tmp[0] = 0;		// 0 || 0
 883	tmp[1] = AND64H(product[11]);	//a23|| 0
 884	tmp[2] = product[11]>>32;	// 0 ||a23
 885	tmp[3] = 0;		// 0 || 0
 886	tmp[4] = 0;		// 0 || 0
 887	tmp[5] = 0;		// 0 || 0
 888	carry -= vli_sub(result, result, tmp, ndigits);
 889
 890	if (carry < 0) {
 891		do {
 892			carry += vli_add(result, result, curve_prime, ndigits);
 893		} while (carry < 0);
 894	} else {
 895		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 896			carry -= vli_sub(result, result, curve_prime, ndigits);
 897	}
 898
 899}
 900
 901#undef SL32OR32
 902#undef AND64H
 903#undef AND64L
 904
 905/* Computes result = product % curve_prime for different curve_primes.
 906 *
 907 * Note that curve_primes are distinguished just by heuristic check and
 908 * not by complete conformance check.
 909 */
 910static bool vli_mmod_fast(u64 *result, u64 *product,
 911			  const struct ecc_curve *curve)
 912{
 913	u64 tmp[2 * ECC_MAX_DIGITS];
 914	const u64 *curve_prime = curve->p;
 915	const unsigned int ndigits = curve->g.ndigits;
 916
 917	/* All NIST curves have name prefix 'nist_' */
 918	if (strncmp(curve->name, "nist_", 5) != 0) {
 919		/* Try to handle Pseudo-Marsenne primes. */
 920		if (curve_prime[ndigits - 1] == -1ull) {
 921			vli_mmod_special(result, product, curve_prime,
 922					 ndigits);
 923			return true;
 924		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
 925			   curve_prime[ndigits - 2] == 0) {
 926			vli_mmod_special2(result, product, curve_prime,
 927					  ndigits);
 928			return true;
 929		}
 930		vli_mmod_barrett(result, product, curve_prime, ndigits);
 931		return true;
 932	}
 933
 934	switch (ndigits) {
 935	case 3:
 936		vli_mmod_fast_192(result, product, curve_prime, tmp);
 937		break;
 938	case 4:
 939		vli_mmod_fast_256(result, product, curve_prime, tmp);
 940		break;
 941	case 6:
 942		vli_mmod_fast_384(result, product, curve_prime, tmp);
 943		break;
 944	default:
 945		pr_err_ratelimited("ecc: unsupported digits size!\n");
 946		return false;
 947	}
 948
 949	return true;
 950}
 951
 952/* Computes result = (left * right) % mod.
 953 * Assumes that mod is big enough curve order.
 954 */
 955void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
 956		       const u64 *mod, unsigned int ndigits)
 957{
 958	u64 product[ECC_MAX_DIGITS * 2];
 959
 960	vli_mult(product, left, right, ndigits);
 961	vli_mmod_slow(result, product, mod, ndigits);
 962}
 963EXPORT_SYMBOL(vli_mod_mult_slow);
 964
 965/* Computes result = (left * right) % curve_prime. */
 966static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
 967			      const struct ecc_curve *curve)
 968{
 969	u64 product[2 * ECC_MAX_DIGITS];
 970
 971	vli_mult(product, left, right, curve->g.ndigits);
 972	vli_mmod_fast(result, product, curve);
 973}
 974
 975/* Computes result = left^2 % curve_prime. */
 976static void vli_mod_square_fast(u64 *result, const u64 *left,
 977				const struct ecc_curve *curve)
 978{
 979	u64 product[2 * ECC_MAX_DIGITS];
 980
 981	vli_square(product, left, curve->g.ndigits);
 982	vli_mmod_fast(result, product, curve);
 983}
 984
 985#define EVEN(vli) (!(vli[0] & 1))
 986/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
 987 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
 988 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
 989 */
 990void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
 991			unsigned int ndigits)
 992{
 993	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
 994	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
 995	u64 carry;
 996	int cmp_result;
 997
 998	if (vli_is_zero(input, ndigits)) {
 999		vli_clear(result, ndigits);
1000		return;
1001	}
1002
1003	vli_set(a, input, ndigits);
1004	vli_set(b, mod, ndigits);
1005	vli_clear(u, ndigits);
1006	u[0] = 1;
1007	vli_clear(v, ndigits);
1008
1009	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1010		carry = 0;
1011
1012		if (EVEN(a)) {
1013			vli_rshift1(a, ndigits);
1014
1015			if (!EVEN(u))
1016				carry = vli_add(u, u, mod, ndigits);
1017
1018			vli_rshift1(u, ndigits);
1019			if (carry)
1020				u[ndigits - 1] |= 0x8000000000000000ull;
1021		} else if (EVEN(b)) {
1022			vli_rshift1(b, ndigits);
1023
1024			if (!EVEN(v))
1025				carry = vli_add(v, v, mod, ndigits);
1026
1027			vli_rshift1(v, ndigits);
1028			if (carry)
1029				v[ndigits - 1] |= 0x8000000000000000ull;
1030		} else if (cmp_result > 0) {
1031			vli_sub(a, a, b, ndigits);
1032			vli_rshift1(a, ndigits);
1033
1034			if (vli_cmp(u, v, ndigits) < 0)
1035				vli_add(u, u, mod, ndigits);
1036
1037			vli_sub(u, u, v, ndigits);
1038			if (!EVEN(u))
1039				carry = vli_add(u, u, mod, ndigits);
1040
1041			vli_rshift1(u, ndigits);
1042			if (carry)
1043				u[ndigits - 1] |= 0x8000000000000000ull;
1044		} else {
1045			vli_sub(b, b, a, ndigits);
1046			vli_rshift1(b, ndigits);
1047
1048			if (vli_cmp(v, u, ndigits) < 0)
1049				vli_add(v, v, mod, ndigits);
1050
1051			vli_sub(v, v, u, ndigits);
1052			if (!EVEN(v))
1053				carry = vli_add(v, v, mod, ndigits);
1054
1055			vli_rshift1(v, ndigits);
1056			if (carry)
1057				v[ndigits - 1] |= 0x8000000000000000ull;
1058		}
1059	}
1060
1061	vli_set(result, u, ndigits);
1062}
1063EXPORT_SYMBOL(vli_mod_inv);
1064
1065/* ------ Point operations ------ */
1066
1067/* Returns true if p_point is the point at infinity, false otherwise. */
1068bool ecc_point_is_zero(const struct ecc_point *point)
1069{
1070	return (vli_is_zero(point->x, point->ndigits) &&
1071		vli_is_zero(point->y, point->ndigits));
1072}
1073EXPORT_SYMBOL(ecc_point_is_zero);
1074
1075/* Point multiplication algorithm using Montgomery's ladder with co-Z
1076 * coordinates. From https://eprint.iacr.org/2011/338.pdf
1077 */
1078
1079/* Double in place */
1080static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1081					const struct ecc_curve *curve)
1082{
1083	/* t1 = x, t2 = y, t3 = z */
1084	u64 t4[ECC_MAX_DIGITS];
1085	u64 t5[ECC_MAX_DIGITS];
1086	const u64 *curve_prime = curve->p;
1087	const unsigned int ndigits = curve->g.ndigits;
1088
1089	if (vli_is_zero(z1, ndigits))
1090		return;
1091
1092	/* t4 = y1^2 */
1093	vli_mod_square_fast(t4, y1, curve);
1094	/* t5 = x1*y1^2 = A */
1095	vli_mod_mult_fast(t5, x1, t4, curve);
1096	/* t4 = y1^4 */
1097	vli_mod_square_fast(t4, t4, curve);
1098	/* t2 = y1*z1 = z3 */
1099	vli_mod_mult_fast(y1, y1, z1, curve);
1100	/* t3 = z1^2 */
1101	vli_mod_square_fast(z1, z1, curve);
1102
1103	/* t1 = x1 + z1^2 */
1104	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1105	/* t3 = 2*z1^2 */
1106	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1107	/* t3 = x1 - z1^2 */
1108	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1109	/* t1 = x1^2 - z1^4 */
1110	vli_mod_mult_fast(x1, x1, z1, curve);
1111
1112	/* t3 = 2*(x1^2 - z1^4) */
1113	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1114	/* t1 = 3*(x1^2 - z1^4) */
1115	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1116	if (vli_test_bit(x1, 0)) {
1117		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1118
1119		vli_rshift1(x1, ndigits);
1120		x1[ndigits - 1] |= carry << 63;
1121	} else {
1122		vli_rshift1(x1, ndigits);
1123	}
1124	/* t1 = 3/2*(x1^2 - z1^4) = B */
1125
1126	/* t3 = B^2 */
1127	vli_mod_square_fast(z1, x1, curve);
1128	/* t3 = B^2 - A */
1129	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1130	/* t3 = B^2 - 2A = x3 */
1131	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1132	/* t5 = A - x3 */
1133	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1134	/* t1 = B * (A - x3) */
1135	vli_mod_mult_fast(x1, x1, t5, curve);
1136	/* t4 = B * (A - x3) - y1^4 = y3 */
1137	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1138
1139	vli_set(x1, z1, ndigits);
1140	vli_set(z1, y1, ndigits);
1141	vli_set(y1, t4, ndigits);
1142}
1143
1144/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1145static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
 
1146{
1147	u64 t1[ECC_MAX_DIGITS];
1148
1149	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1150	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1151	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1152	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1153}
1154
1155/* P = (x1, y1) => 2P, (x2, y2) => P' */
1156static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1157				u64 *p_initial_z, const struct ecc_curve *curve)
 
1158{
1159	u64 z[ECC_MAX_DIGITS];
1160	const unsigned int ndigits = curve->g.ndigits;
1161
1162	vli_set(x2, x1, ndigits);
1163	vli_set(y2, y1, ndigits);
1164
1165	vli_clear(z, ndigits);
1166	z[0] = 1;
1167
1168	if (p_initial_z)
1169		vli_set(z, p_initial_z, ndigits);
1170
1171	apply_z(x1, y1, z, curve);
1172
1173	ecc_point_double_jacobian(x1, y1, z, curve);
1174
1175	apply_z(x2, y2, z, curve);
1176}
1177
1178/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1179 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1180 * or P => P', Q => P + Q
1181 */
1182static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1183			const struct ecc_curve *curve)
1184{
1185	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1186	u64 t5[ECC_MAX_DIGITS];
1187	const u64 *curve_prime = curve->p;
1188	const unsigned int ndigits = curve->g.ndigits;
1189
1190	/* t5 = x2 - x1 */
1191	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1192	/* t5 = (x2 - x1)^2 = A */
1193	vli_mod_square_fast(t5, t5, curve);
1194	/* t1 = x1*A = B */
1195	vli_mod_mult_fast(x1, x1, t5, curve);
1196	/* t3 = x2*A = C */
1197	vli_mod_mult_fast(x2, x2, t5, curve);
1198	/* t4 = y2 - y1 */
1199	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1200	/* t5 = (y2 - y1)^2 = D */
1201	vli_mod_square_fast(t5, y2, curve);
1202
1203	/* t5 = D - B */
1204	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1205	/* t5 = D - B - C = x3 */
1206	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1207	/* t3 = C - B */
1208	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1209	/* t2 = y1*(C - B) */
1210	vli_mod_mult_fast(y1, y1, x2, curve);
1211	/* t3 = B - x3 */
1212	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1213	/* t4 = (y2 - y1)*(B - x3) */
1214	vli_mod_mult_fast(y2, y2, x2, curve);
1215	/* t4 = y3 */
1216	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1217
1218	vli_set(x2, t5, ndigits);
1219}
1220
1221/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1222 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1223 * or P => P - Q, Q => P + Q
1224 */
1225static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1226			const struct ecc_curve *curve)
1227{
1228	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1229	u64 t5[ECC_MAX_DIGITS];
1230	u64 t6[ECC_MAX_DIGITS];
1231	u64 t7[ECC_MAX_DIGITS];
1232	const u64 *curve_prime = curve->p;
1233	const unsigned int ndigits = curve->g.ndigits;
1234
1235	/* t5 = x2 - x1 */
1236	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1237	/* t5 = (x2 - x1)^2 = A */
1238	vli_mod_square_fast(t5, t5, curve);
1239	/* t1 = x1*A = B */
1240	vli_mod_mult_fast(x1, x1, t5, curve);
1241	/* t3 = x2*A = C */
1242	vli_mod_mult_fast(x2, x2, t5, curve);
1243	/* t4 = y2 + y1 */
1244	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1245	/* t4 = y2 - y1 */
1246	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1247
1248	/* t6 = C - B */
1249	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1250	/* t2 = y1 * (C - B) */
1251	vli_mod_mult_fast(y1, y1, t6, curve);
1252	/* t6 = B + C */
1253	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1254	/* t3 = (y2 - y1)^2 */
1255	vli_mod_square_fast(x2, y2, curve);
1256	/* t3 = x3 */
1257	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1258
1259	/* t7 = B - x3 */
1260	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1261	/* t4 = (y2 - y1)*(B - x3) */
1262	vli_mod_mult_fast(y2, y2, t7, curve);
1263	/* t4 = y3 */
1264	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1265
1266	/* t7 = (y2 + y1)^2 = F */
1267	vli_mod_square_fast(t7, t5, curve);
1268	/* t7 = x3' */
1269	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1270	/* t6 = x3' - B */
1271	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1272	/* t6 = (y2 + y1)*(x3' - B) */
1273	vli_mod_mult_fast(t6, t6, t5, curve);
1274	/* t2 = y3' */
1275	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1276
1277	vli_set(x1, t7, ndigits);
1278}
1279
1280static void ecc_point_mult(struct ecc_point *result,
1281			   const struct ecc_point *point, const u64 *scalar,
1282			   u64 *initial_z, const struct ecc_curve *curve,
1283			   unsigned int ndigits)
1284{
1285	/* R0 and R1 */
1286	u64 rx[2][ECC_MAX_DIGITS];
1287	u64 ry[2][ECC_MAX_DIGITS];
1288	u64 z[ECC_MAX_DIGITS];
1289	u64 sk[2][ECC_MAX_DIGITS];
1290	u64 *curve_prime = curve->p;
1291	int i, nb;
1292	int num_bits;
1293	int carry;
1294
1295	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1296	vli_add(sk[1], sk[0], curve->n, ndigits);
1297	scalar = sk[!carry];
1298	num_bits = sizeof(u64) * ndigits * 8 + 1;
1299
1300	vli_set(rx[1], point->x, ndigits);
1301	vli_set(ry[1], point->y, ndigits);
1302
1303	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
 
1304
1305	for (i = num_bits - 2; i > 0; i--) {
1306		nb = !vli_test_bit(scalar, i);
1307		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1308		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
 
 
1309	}
1310
1311	nb = !vli_test_bit(scalar, 0);
1312	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
 
1313
1314	/* Find final 1/Z value. */
1315	/* X1 - X0 */
1316	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1317	/* Yb * (X1 - X0) */
1318	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1319	/* xP * Yb * (X1 - X0) */
1320	vli_mod_mult_fast(z, z, point->x, curve);
1321
1322	/* 1 / (xP * Yb * (X1 - X0)) */
1323	vli_mod_inv(z, z, curve_prime, point->ndigits);
1324
1325	/* yP / (xP * Yb * (X1 - X0)) */
1326	vli_mod_mult_fast(z, z, point->y, curve);
1327	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1328	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1329	/* End 1/Z calculation */
1330
1331	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1332
1333	apply_z(rx[0], ry[0], z, curve);
1334
1335	vli_set(result->x, rx[0], ndigits);
1336	vli_set(result->y, ry[0], ndigits);
1337}
1338
1339/* Computes R = P + Q mod p */
1340static void ecc_point_add(const struct ecc_point *result,
1341		   const struct ecc_point *p, const struct ecc_point *q,
1342		   const struct ecc_curve *curve)
1343{
1344	u64 z[ECC_MAX_DIGITS];
1345	u64 px[ECC_MAX_DIGITS];
1346	u64 py[ECC_MAX_DIGITS];
1347	unsigned int ndigits = curve->g.ndigits;
1348
1349	vli_set(result->x, q->x, ndigits);
1350	vli_set(result->y, q->y, ndigits);
1351	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1352	vli_set(px, p->x, ndigits);
1353	vli_set(py, p->y, ndigits);
1354	xycz_add(px, py, result->x, result->y, curve);
1355	vli_mod_inv(z, z, curve->p, ndigits);
1356	apply_z(result->x, result->y, z, curve);
1357}
1358
1359/* Computes R = u1P + u2Q mod p using Shamir's trick.
1360 * Based on: Kenneth MacKay's micro-ecc (2014).
1361 */
1362void ecc_point_mult_shamir(const struct ecc_point *result,
1363			   const u64 *u1, const struct ecc_point *p,
1364			   const u64 *u2, const struct ecc_point *q,
1365			   const struct ecc_curve *curve)
1366{
1367	u64 z[ECC_MAX_DIGITS];
1368	u64 sump[2][ECC_MAX_DIGITS];
1369	u64 *rx = result->x;
1370	u64 *ry = result->y;
1371	unsigned int ndigits = curve->g.ndigits;
1372	unsigned int num_bits;
1373	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1374	const struct ecc_point *points[4];
1375	const struct ecc_point *point;
1376	unsigned int idx;
1377	int i;
1378
1379	ecc_point_add(&sum, p, q, curve);
1380	points[0] = NULL;
1381	points[1] = p;
1382	points[2] = q;
1383	points[3] = &sum;
1384
1385	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1386	i = num_bits - 1;
1387	idx = !!vli_test_bit(u1, i);
1388	idx |= (!!vli_test_bit(u2, i)) << 1;
1389	point = points[idx];
1390
1391	vli_set(rx, point->x, ndigits);
1392	vli_set(ry, point->y, ndigits);
1393	vli_clear(z + 1, ndigits - 1);
1394	z[0] = 1;
1395
1396	for (--i; i >= 0; i--) {
1397		ecc_point_double_jacobian(rx, ry, z, curve);
1398		idx = !!vli_test_bit(u1, i);
1399		idx |= (!!vli_test_bit(u2, i)) << 1;
1400		point = points[idx];
1401		if (point) {
1402			u64 tx[ECC_MAX_DIGITS];
1403			u64 ty[ECC_MAX_DIGITS];
1404			u64 tz[ECC_MAX_DIGITS];
1405
1406			vli_set(tx, point->x, ndigits);
1407			vli_set(ty, point->y, ndigits);
1408			apply_z(tx, ty, z, curve);
1409			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1410			xycz_add(tx, ty, rx, ry, curve);
1411			vli_mod_mult_fast(z, z, tz, curve);
1412		}
1413	}
1414	vli_mod_inv(z, z, curve->p, ndigits);
1415	apply_z(rx, ry, z, curve);
1416}
1417EXPORT_SYMBOL(ecc_point_mult_shamir);
1418
1419static int __ecc_is_key_valid(const struct ecc_curve *curve,
1420			      const u64 *private_key, unsigned int ndigits)
1421{
1422	u64 one[ECC_MAX_DIGITS] = { 1, };
1423	u64 res[ECC_MAX_DIGITS];
1424
1425	if (!private_key)
1426		return -EINVAL;
1427
1428	if (curve->g.ndigits != ndigits)
1429		return -EINVAL;
1430
1431	/* Make sure the private key is in the range [2, n-3]. */
1432	if (vli_cmp(one, private_key, ndigits) != -1)
1433		return -EINVAL;
1434	vli_sub(res, curve->n, one, ndigits);
1435	vli_sub(res, res, one, ndigits);
1436	if (vli_cmp(res, private_key, ndigits) != 1)
1437		return -EINVAL;
1438
1439	return 0;
 
1440}
1441
1442int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1443		     const u64 *private_key, unsigned int private_key_len)
1444{
1445	int nbytes;
1446	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1447
 
 
 
1448	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1449
1450	if (private_key_len != nbytes)
1451		return -EINVAL;
1452
1453	return __ecc_is_key_valid(curve, private_key, ndigits);
1454}
1455EXPORT_SYMBOL(ecc_is_key_valid);
1456
1457/*
1458 * ECC private keys are generated using the method of extra random bits,
1459 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1460 *
1461 * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1462 *                         than requested
1463 * 0 <= c mod(n-1) <= n-2  and implies that
1464 * 1 <= d <= n-1
1465 *
1466 * This method generates a private key uniformly distributed in the range
1467 * [1, n-1].
1468 */
1469int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1470{
1471	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1472	u64 priv[ECC_MAX_DIGITS];
1473	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1474	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1475	int err;
1476
1477	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1478	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1479		return -EINVAL;
1480
1481	/*
1482	 * FIPS 186-4 recommends that the private key should be obtained from a
1483	 * RBG with a security strength equal to or greater than the security
1484	 * strength associated with N.
1485	 *
1486	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1487	 * ECC is 256 (N >= 512).
1488	 *
1489	 * This condition is met by the default RNG because it selects a favored
1490	 * DRBG with a security strength of 256.
1491	 */
1492	if (crypto_get_default_rng())
1493		return -EFAULT;
1494
1495	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1496	crypto_put_default_rng();
1497	if (err)
1498		return err;
1499
1500	/* Make sure the private key is in the valid range. */
1501	if (__ecc_is_key_valid(curve, priv, ndigits))
1502		return -EINVAL;
1503
1504	ecc_swap_digits(priv, privkey, ndigits);
1505
1506	return 0;
1507}
1508EXPORT_SYMBOL(ecc_gen_privkey);
1509
1510int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1511		     const u64 *private_key, u64 *public_key)
 
1512{
1513	int ret = 0;
1514	struct ecc_point *pk;
1515	u64 priv[ECC_MAX_DIGITS];
 
1516	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1517
1518	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1519		ret = -EINVAL;
1520		goto out;
1521	}
1522
1523	ecc_swap_digits(private_key, priv, ndigits);
1524
1525	pk = ecc_alloc_point(ndigits);
1526	if (!pk) {
1527		ret = -ENOMEM;
1528		goto out;
1529	}
1530
1531	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1532
1533	/* SP800-56A rev 3 5.6.2.1.3 key check */
1534	if (ecc_is_pubkey_valid_full(curve, pk)) {
1535		ret = -EAGAIN;
1536		goto err_free_point;
1537	}
1538
1539	ecc_swap_digits(pk->x, public_key, ndigits);
1540	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
 
1541
1542err_free_point:
1543	ecc_free_point(pk);
1544out:
1545	return ret;
1546}
1547EXPORT_SYMBOL(ecc_make_pub_key);
1548
1549/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1550int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1551				struct ecc_point *pk)
1552{
1553	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1554
1555	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1556		return -EINVAL;
1557
1558	/* Check 1: Verify key is not the zero point. */
1559	if (ecc_point_is_zero(pk))
1560		return -EINVAL;
1561
1562	/* Check 2: Verify key is in the range [1, p-1]. */
1563	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1564		return -EINVAL;
1565	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1566		return -EINVAL;
1567
1568	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1569	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1570	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1571	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1572	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1573	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1574	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1575	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1576		return -EINVAL;
1577
1578	return 0;
1579}
1580EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1581
1582/* SP800-56A section 5.6.2.3.3 full verification */
1583int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1584			     struct ecc_point *pk)
1585{
1586	struct ecc_point *nQ;
1587
1588	/* Checks 1 through 3 */
1589	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1590
1591	if (ret)
1592		return ret;
1593
1594	/* Check 4: Verify that nQ is the zero point. */
1595	nQ = ecc_alloc_point(pk->ndigits);
1596	if (!nQ)
1597		return -ENOMEM;
1598
1599	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1600	if (!ecc_point_is_zero(nQ))
1601		ret = -EINVAL;
1602
1603	ecc_free_point(nQ);
1604
1605	return ret;
1606}
1607EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1608
1609int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1610			      const u64 *private_key, const u64 *public_key,
1611			      u64 *secret)
 
1612{
1613	int ret = 0;
1614	struct ecc_point *product, *pk;
1615	u64 priv[ECC_MAX_DIGITS];
1616	u64 rand_z[ECC_MAX_DIGITS];
1617	unsigned int nbytes;
1618	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1619
1620	if (!private_key || !public_key || !curve ||
1621	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1622		ret = -EINVAL;
1623		goto out;
1624	}
1625
1626	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1627
1628	get_random_bytes(rand_z, nbytes);
1629
1630	pk = ecc_alloc_point(ndigits);
1631	if (!pk) {
1632		ret = -ENOMEM;
1633		goto out;
1634	}
1635
1636	ecc_swap_digits(public_key, pk->x, ndigits);
1637	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1638	ret = ecc_is_pubkey_valid_partial(curve, pk);
1639	if (ret)
1640		goto err_alloc_product;
1641
1642	ecc_swap_digits(private_key, priv, ndigits);
1643
1644	product = ecc_alloc_point(ndigits);
1645	if (!product) {
1646		ret = -ENOMEM;
1647		goto err_alloc_product;
1648	}
1649
1650	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
 
 
1651
1652	if (ecc_point_is_zero(product)) {
1653		ret = -EFAULT;
1654		goto err_validity;
1655	}
1656
1657	ecc_swap_digits(product->x, secret, ndigits);
 
 
 
1658
1659err_validity:
1660	memzero_explicit(priv, sizeof(priv));
1661	memzero_explicit(rand_z, sizeof(rand_z));
1662	ecc_free_point(product);
1663err_alloc_product:
1664	ecc_free_point(pk);
1665out:
1666	return ret;
1667}
1668EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1669
1670MODULE_LICENSE("Dual BSD/GPL");
v4.10.11
   1/*
   2 * Copyright (c) 2013, Kenneth MacKay
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26
 
 
  27#include <linux/random.h>
  28#include <linux/slab.h>
  29#include <linux/swab.h>
  30#include <linux/fips.h>
  31#include <crypto/ecdh.h>
 
 
 
 
  32
  33#include "ecc.h"
  34#include "ecc_curve_defs.h"
  35
  36typedef struct {
  37	u64 m_low;
  38	u64 m_high;
  39} uint128_t;
  40
  41static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
 
 
 
 
 
 
 
  42{
  43	switch (curve_id) {
  44	/* In FIPS mode only allow P256 and higher */
  45	case ECC_CURVE_NIST_P192:
  46		return fips_enabled ? NULL : &nist_p192;
  47	case ECC_CURVE_NIST_P256:
  48		return &nist_p256;
 
 
  49	default:
  50		return NULL;
  51	}
  52}
 
  53
  54static u64 *ecc_alloc_digits_space(unsigned int ndigits)
  55{
  56	size_t len = ndigits * sizeof(u64);
  57
  58	if (!len)
  59		return NULL;
  60
  61	return kmalloc(len, GFP_KERNEL);
  62}
  63
  64static void ecc_free_digits_space(u64 *space)
  65{
  66	kzfree(space);
  67}
  68
  69static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
  70{
  71	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
  72
  73	if (!p)
  74		return NULL;
  75
  76	p->x = ecc_alloc_digits_space(ndigits);
  77	if (!p->x)
  78		goto err_alloc_x;
  79
  80	p->y = ecc_alloc_digits_space(ndigits);
  81	if (!p->y)
  82		goto err_alloc_y;
  83
  84	p->ndigits = ndigits;
  85
  86	return p;
  87
  88err_alloc_y:
  89	ecc_free_digits_space(p->x);
  90err_alloc_x:
  91	kfree(p);
  92	return NULL;
  93}
 
  94
  95static void ecc_free_point(struct ecc_point *p)
  96{
  97	if (!p)
  98		return;
  99
 100	kzfree(p->x);
 101	kzfree(p->y);
 102	kzfree(p);
 103}
 
 104
 105static void vli_clear(u64 *vli, unsigned int ndigits)
 106{
 107	int i;
 108
 109	for (i = 0; i < ndigits; i++)
 110		vli[i] = 0;
 111}
 112
 113/* Returns true if vli == 0, false otherwise. */
 114static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
 115{
 116	int i;
 117
 118	for (i = 0; i < ndigits; i++) {
 119		if (vli[i])
 120			return false;
 121	}
 122
 123	return true;
 124}
 
 125
 126/* Returns nonzero if bit bit of vli is set. */
 127static u64 vli_test_bit(const u64 *vli, unsigned int bit)
 128{
 129	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
 130}
 131
 
 
 
 
 
 132/* Counts the number of 64-bit "digits" in vli. */
 133static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
 134{
 135	int i;
 136
 137	/* Search from the end until we find a non-zero digit.
 138	 * We do it in reverse because we expect that most digits will
 139	 * be nonzero.
 140	 */
 141	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
 142
 143	return (i + 1);
 144}
 145
 146/* Counts the number of bits required for vli. */
 147static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
 148{
 149	unsigned int i, num_digits;
 150	u64 digit;
 151
 152	num_digits = vli_num_digits(vli, ndigits);
 153	if (num_digits == 0)
 154		return 0;
 155
 156	digit = vli[num_digits - 1];
 157	for (i = 0; digit; i++)
 158		digit >>= 1;
 159
 160	return ((num_digits - 1) * 64 + i);
 161}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162
 163/* Sets dest = src. */
 164static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
 165{
 166	int i;
 167
 168	for (i = 0; i < ndigits; i++)
 169		dest[i] = src[i];
 170}
 171
 172/* Returns sign of left - right. */
 173static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
 174{
 175	int i;
 176
 177	for (i = ndigits - 1; i >= 0; i--) {
 178		if (left[i] > right[i])
 179			return 1;
 180		else if (left[i] < right[i])
 181			return -1;
 182	}
 183
 184	return 0;
 185}
 
 186
 187/* Computes result = in << c, returning carry. Can modify in place
 188 * (if result == in). 0 < shift < 64.
 189 */
 190static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
 191		      unsigned int ndigits)
 192{
 193	u64 carry = 0;
 194	int i;
 195
 196	for (i = 0; i < ndigits; i++) {
 197		u64 temp = in[i];
 198
 199		result[i] = (temp << shift) | carry;
 200		carry = temp >> (64 - shift);
 201	}
 202
 203	return carry;
 204}
 205
 206/* Computes vli = vli >> 1. */
 207static void vli_rshift1(u64 *vli, unsigned int ndigits)
 208{
 209	u64 *end = vli;
 210	u64 carry = 0;
 211
 212	vli += ndigits;
 213
 214	while (vli-- > end) {
 215		u64 temp = *vli;
 216		*vli = (temp >> 1) | carry;
 217		carry = temp << 63;
 218	}
 219}
 220
 221/* Computes result = left + right, returning carry. Can modify in place. */
 222static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
 223		   unsigned int ndigits)
 224{
 225	u64 carry = 0;
 226	int i;
 227
 228	for (i = 0; i < ndigits; i++) {
 229		u64 sum;
 230
 231		sum = left[i] + right[i] + carry;
 232		if (sum != left[i])
 233			carry = (sum < left[i]);
 234
 235		result[i] = sum;
 236	}
 237
 238	return carry;
 239}
 240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241/* Computes result = left - right, returning borrow. Can modify in place. */
 242static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 243		   unsigned int ndigits)
 244{
 245	u64 borrow = 0;
 246	int i;
 247
 248	for (i = 0; i < ndigits; i++) {
 249		u64 diff;
 250
 251		diff = left[i] - right[i] - borrow;
 252		if (diff != left[i])
 253			borrow = (diff > left[i]);
 254
 255		result[i] = diff;
 256	}
 257
 258	return borrow;
 259}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260
 261static uint128_t mul_64_64(u64 left, u64 right)
 262{
 
 
 
 
 
 
 
 263	u64 a0 = left & 0xffffffffull;
 264	u64 a1 = left >> 32;
 265	u64 b0 = right & 0xffffffffull;
 266	u64 b1 = right >> 32;
 267	u64 m0 = a0 * b0;
 268	u64 m1 = a0 * b1;
 269	u64 m2 = a1 * b0;
 270	u64 m3 = a1 * b1;
 271	uint128_t result;
 272
 273	m2 += (m0 >> 32);
 274	m2 += m1;
 275
 276	/* Overflow */
 277	if (m2 < m1)
 278		m3 += 0x100000000ull;
 279
 280	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
 281	result.m_high = m3 + (m2 >> 32);
 282
 283	return result;
 284}
 285
 286static uint128_t add_128_128(uint128_t a, uint128_t b)
 287{
 288	uint128_t result;
 289
 290	result.m_low = a.m_low + b.m_low;
 291	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
 292
 293	return result;
 294}
 295
 296static void vli_mult(u64 *result, const u64 *left, const u64 *right,
 297		     unsigned int ndigits)
 298{
 299	uint128_t r01 = { 0, 0 };
 300	u64 r2 = 0;
 301	unsigned int i, k;
 302
 303	/* Compute each digit of result in sequence, maintaining the
 304	 * carries.
 305	 */
 306	for (k = 0; k < ndigits * 2 - 1; k++) {
 307		unsigned int min;
 308
 309		if (k < ndigits)
 310			min = 0;
 311		else
 312			min = (k + 1) - ndigits;
 313
 314		for (i = min; i <= k && i < ndigits; i++) {
 315			uint128_t product;
 316
 317			product = mul_64_64(left[i], right[k - i]);
 318
 319			r01 = add_128_128(r01, product);
 320			r2 += (r01.m_high < product.m_high);
 321		}
 322
 323		result[k] = r01.m_low;
 324		r01.m_low = r01.m_high;
 325		r01.m_high = r2;
 326		r2 = 0;
 327	}
 328
 329	result[ndigits * 2 - 1] = r01.m_low;
 330}
 331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
 333{
 334	uint128_t r01 = { 0, 0 };
 335	u64 r2 = 0;
 336	int i, k;
 337
 338	for (k = 0; k < ndigits * 2 - 1; k++) {
 339		unsigned int min;
 340
 341		if (k < ndigits)
 342			min = 0;
 343		else
 344			min = (k + 1) - ndigits;
 345
 346		for (i = min; i <= k && i <= k - i; i++) {
 347			uint128_t product;
 348
 349			product = mul_64_64(left[i], left[k - i]);
 350
 351			if (i < k - i) {
 352				r2 += product.m_high >> 63;
 353				product.m_high = (product.m_high << 1) |
 354						 (product.m_low >> 63);
 355				product.m_low <<= 1;
 356			}
 357
 358			r01 = add_128_128(r01, product);
 359			r2 += (r01.m_high < product.m_high);
 360		}
 361
 362		result[k] = r01.m_low;
 363		r01.m_low = r01.m_high;
 364		r01.m_high = r2;
 365		r2 = 0;
 366	}
 367
 368	result[ndigits * 2 - 1] = r01.m_low;
 369}
 370
 371/* Computes result = (left + right) % mod.
 372 * Assumes that left < mod and right < mod, result != mod.
 373 */
 374static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
 375			const u64 *mod, unsigned int ndigits)
 376{
 377	u64 carry;
 378
 379	carry = vli_add(result, left, right, ndigits);
 380
 381	/* result > mod (result = mod + remainder), so subtract mod to
 382	 * get remainder.
 383	 */
 384	if (carry || vli_cmp(result, mod, ndigits) >= 0)
 385		vli_sub(result, result, mod, ndigits);
 386}
 387
 388/* Computes result = (left - right) % mod.
 389 * Assumes that left < mod and right < mod, result != mod.
 390 */
 391static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
 392			const u64 *mod, unsigned int ndigits)
 393{
 394	u64 borrow = vli_sub(result, left, right, ndigits);
 395
 396	/* In this case, p_result == -diff == (max int) - diff.
 397	 * Since -x % d == d - x, we can get the correct result from
 398	 * result + mod (with overflow).
 399	 */
 400	if (borrow)
 401		vli_add(result, result, mod, ndigits);
 402}
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404/* Computes p_result = p_product % curve_p.
 405 * See algorithm 5 and 6 from
 406 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
 407 */
 408static void vli_mmod_fast_192(u64 *result, const u64 *product,
 409			      const u64 *curve_prime, u64 *tmp)
 410{
 411	const unsigned int ndigits = 3;
 412	int carry;
 413
 414	vli_set(result, product, ndigits);
 415
 416	vli_set(tmp, &product[3], ndigits);
 417	carry = vli_add(result, result, tmp, ndigits);
 418
 419	tmp[0] = 0;
 420	tmp[1] = product[3];
 421	tmp[2] = product[4];
 422	carry += vli_add(result, result, tmp, ndigits);
 423
 424	tmp[0] = tmp[1] = product[5];
 425	tmp[2] = 0;
 426	carry += vli_add(result, result, tmp, ndigits);
 427
 428	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 429		carry -= vli_sub(result, result, curve_prime, ndigits);
 430}
 431
 432/* Computes result = product % curve_prime
 433 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
 434 */
 435static void vli_mmod_fast_256(u64 *result, const u64 *product,
 436			      const u64 *curve_prime, u64 *tmp)
 437{
 438	int carry;
 439	const unsigned int ndigits = 4;
 440
 441	/* t */
 442	vli_set(result, product, ndigits);
 443
 444	/* s1 */
 445	tmp[0] = 0;
 446	tmp[1] = product[5] & 0xffffffff00000000ull;
 447	tmp[2] = product[6];
 448	tmp[3] = product[7];
 449	carry = vli_lshift(tmp, tmp, 1, ndigits);
 450	carry += vli_add(result, result, tmp, ndigits);
 451
 452	/* s2 */
 453	tmp[1] = product[6] << 32;
 454	tmp[2] = (product[6] >> 32) | (product[7] << 32);
 455	tmp[3] = product[7] >> 32;
 456	carry += vli_lshift(tmp, tmp, 1, ndigits);
 457	carry += vli_add(result, result, tmp, ndigits);
 458
 459	/* s3 */
 460	tmp[0] = product[4];
 461	tmp[1] = product[5] & 0xffffffff;
 462	tmp[2] = 0;
 463	tmp[3] = product[7];
 464	carry += vli_add(result, result, tmp, ndigits);
 465
 466	/* s4 */
 467	tmp[0] = (product[4] >> 32) | (product[5] << 32);
 468	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
 469	tmp[2] = product[7];
 470	tmp[3] = (product[6] >> 32) | (product[4] << 32);
 471	carry += vli_add(result, result, tmp, ndigits);
 472
 473	/* d1 */
 474	tmp[0] = (product[5] >> 32) | (product[6] << 32);
 475	tmp[1] = (product[6] >> 32);
 476	tmp[2] = 0;
 477	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
 478	carry -= vli_sub(result, result, tmp, ndigits);
 479
 480	/* d2 */
 481	tmp[0] = product[6];
 482	tmp[1] = product[7];
 483	tmp[2] = 0;
 484	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
 485	carry -= vli_sub(result, result, tmp, ndigits);
 486
 487	/* d3 */
 488	tmp[0] = (product[6] >> 32) | (product[7] << 32);
 489	tmp[1] = (product[7] >> 32) | (product[4] << 32);
 490	tmp[2] = (product[4] >> 32) | (product[5] << 32);
 491	tmp[3] = (product[6] << 32);
 492	carry -= vli_sub(result, result, tmp, ndigits);
 493
 494	/* d4 */
 495	tmp[0] = product[7];
 496	tmp[1] = product[4] & 0xffffffff00000000ull;
 497	tmp[2] = product[5];
 498	tmp[3] = product[6] & 0xffffffff00000000ull;
 499	carry -= vli_sub(result, result, tmp, ndigits);
 500
 501	if (carry < 0) {
 502		do {
 503			carry += vli_add(result, result, curve_prime, ndigits);
 504		} while (carry < 0);
 505	} else {
 506		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 507			carry -= vli_sub(result, result, curve_prime, ndigits);
 508	}
 509}
 510
 
 
 
 
 511/* Computes result = product % curve_prime
 512 *  from http://www.nsa.gov/ia/_files/nist-routines.pdf
 513*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514static bool vli_mmod_fast(u64 *result, u64 *product,
 515			  const u64 *curve_prime, unsigned int ndigits)
 516{
 517	u64 tmp[2 * ndigits];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519	switch (ndigits) {
 520	case 3:
 521		vli_mmod_fast_192(result, product, curve_prime, tmp);
 522		break;
 523	case 4:
 524		vli_mmod_fast_256(result, product, curve_prime, tmp);
 525		break;
 
 
 
 526	default:
 527		pr_err("unsupports digits size!\n");
 528		return false;
 529	}
 530
 531	return true;
 532}
 533
 
 
 
 
 
 
 
 
 
 
 
 
 
 534/* Computes result = (left * right) % curve_prime. */
 535static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
 536			      const u64 *curve_prime, unsigned int ndigits)
 537{
 538	u64 product[2 * ndigits];
 539
 540	vli_mult(product, left, right, ndigits);
 541	vli_mmod_fast(result, product, curve_prime, ndigits);
 542}
 543
 544/* Computes result = left^2 % curve_prime. */
 545static void vli_mod_square_fast(u64 *result, const u64 *left,
 546				const u64 *curve_prime, unsigned int ndigits)
 547{
 548	u64 product[2 * ndigits];
 549
 550	vli_square(product, left, ndigits);
 551	vli_mmod_fast(result, product, curve_prime, ndigits);
 552}
 553
 554#define EVEN(vli) (!(vli[0] & 1))
 555/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
 556 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
 557 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
 558 */
 559static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
 560			unsigned int ndigits)
 561{
 562	u64 a[ndigits], b[ndigits];
 563	u64 u[ndigits], v[ndigits];
 564	u64 carry;
 565	int cmp_result;
 566
 567	if (vli_is_zero(input, ndigits)) {
 568		vli_clear(result, ndigits);
 569		return;
 570	}
 571
 572	vli_set(a, input, ndigits);
 573	vli_set(b, mod, ndigits);
 574	vli_clear(u, ndigits);
 575	u[0] = 1;
 576	vli_clear(v, ndigits);
 577
 578	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
 579		carry = 0;
 580
 581		if (EVEN(a)) {
 582			vli_rshift1(a, ndigits);
 583
 584			if (!EVEN(u))
 585				carry = vli_add(u, u, mod, ndigits);
 586
 587			vli_rshift1(u, ndigits);
 588			if (carry)
 589				u[ndigits - 1] |= 0x8000000000000000ull;
 590		} else if (EVEN(b)) {
 591			vli_rshift1(b, ndigits);
 592
 593			if (!EVEN(v))
 594				carry = vli_add(v, v, mod, ndigits);
 595
 596			vli_rshift1(v, ndigits);
 597			if (carry)
 598				v[ndigits - 1] |= 0x8000000000000000ull;
 599		} else if (cmp_result > 0) {
 600			vli_sub(a, a, b, ndigits);
 601			vli_rshift1(a, ndigits);
 602
 603			if (vli_cmp(u, v, ndigits) < 0)
 604				vli_add(u, u, mod, ndigits);
 605
 606			vli_sub(u, u, v, ndigits);
 607			if (!EVEN(u))
 608				carry = vli_add(u, u, mod, ndigits);
 609
 610			vli_rshift1(u, ndigits);
 611			if (carry)
 612				u[ndigits - 1] |= 0x8000000000000000ull;
 613		} else {
 614			vli_sub(b, b, a, ndigits);
 615			vli_rshift1(b, ndigits);
 616
 617			if (vli_cmp(v, u, ndigits) < 0)
 618				vli_add(v, v, mod, ndigits);
 619
 620			vli_sub(v, v, u, ndigits);
 621			if (!EVEN(v))
 622				carry = vli_add(v, v, mod, ndigits);
 623
 624			vli_rshift1(v, ndigits);
 625			if (carry)
 626				v[ndigits - 1] |= 0x8000000000000000ull;
 627		}
 628	}
 629
 630	vli_set(result, u, ndigits);
 631}
 
 632
 633/* ------ Point operations ------ */
 634
 635/* Returns true if p_point is the point at infinity, false otherwise. */
 636static bool ecc_point_is_zero(const struct ecc_point *point)
 637{
 638	return (vli_is_zero(point->x, point->ndigits) &&
 639		vli_is_zero(point->y, point->ndigits));
 640}
 
 641
 642/* Point multiplication algorithm using Montgomery's ladder with co-Z
 643 * coordinates. From http://eprint.iacr.org/2011/338.pdf
 644 */
 645
 646/* Double in place */
 647static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
 648				      u64 *curve_prime, unsigned int ndigits)
 649{
 650	/* t1 = x, t2 = y, t3 = z */
 651	u64 t4[ndigits];
 652	u64 t5[ndigits];
 
 
 653
 654	if (vli_is_zero(z1, ndigits))
 655		return;
 656
 657	/* t4 = y1^2 */
 658	vli_mod_square_fast(t4, y1, curve_prime, ndigits);
 659	/* t5 = x1*y1^2 = A */
 660	vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
 661	/* t4 = y1^4 */
 662	vli_mod_square_fast(t4, t4, curve_prime, ndigits);
 663	/* t2 = y1*z1 = z3 */
 664	vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
 665	/* t3 = z1^2 */
 666	vli_mod_square_fast(z1, z1, curve_prime, ndigits);
 667
 668	/* t1 = x1 + z1^2 */
 669	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 670	/* t3 = 2*z1^2 */
 671	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
 672	/* t3 = x1 - z1^2 */
 673	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
 674	/* t1 = x1^2 - z1^4 */
 675	vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
 676
 677	/* t3 = 2*(x1^2 - z1^4) */
 678	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
 679	/* t1 = 3*(x1^2 - z1^4) */
 680	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 681	if (vli_test_bit(x1, 0)) {
 682		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
 683
 684		vli_rshift1(x1, ndigits);
 685		x1[ndigits - 1] |= carry << 63;
 686	} else {
 687		vli_rshift1(x1, ndigits);
 688	}
 689	/* t1 = 3/2*(x1^2 - z1^4) = B */
 690
 691	/* t3 = B^2 */
 692	vli_mod_square_fast(z1, x1, curve_prime, ndigits);
 693	/* t3 = B^2 - A */
 694	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 695	/* t3 = B^2 - 2A = x3 */
 696	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 697	/* t5 = A - x3 */
 698	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
 699	/* t1 = B * (A - x3) */
 700	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 701	/* t4 = B * (A - x3) - y1^4 = y3 */
 702	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
 703
 704	vli_set(x1, z1, ndigits);
 705	vli_set(z1, y1, ndigits);
 706	vli_set(y1, t4, ndigits);
 707}
 708
 709/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
 710static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
 711		    unsigned int ndigits)
 712{
 713	u64 t1[ndigits];
 714
 715	vli_mod_square_fast(t1, z, curve_prime, ndigits);    /* z^2 */
 716	vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
 717	vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits);  /* z^3 */
 718	vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
 719}
 720
 721/* P = (x1, y1) => 2P, (x2, y2) => P' */
 722static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
 723				u64 *p_initial_z, u64 *curve_prime,
 724				unsigned int ndigits)
 725{
 726	u64 z[ndigits];
 
 727
 728	vli_set(x2, x1, ndigits);
 729	vli_set(y2, y1, ndigits);
 730
 731	vli_clear(z, ndigits);
 732	z[0] = 1;
 733
 734	if (p_initial_z)
 735		vli_set(z, p_initial_z, ndigits);
 736
 737	apply_z(x1, y1, z, curve_prime, ndigits);
 738
 739	ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
 740
 741	apply_z(x2, y2, z, curve_prime, ndigits);
 742}
 743
 744/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 745 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
 746 * or P => P', Q => P + Q
 747 */
 748static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
 749		     unsigned int ndigits)
 750{
 751	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
 752	u64 t5[ndigits];
 
 
 753
 754	/* t5 = x2 - x1 */
 755	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
 756	/* t5 = (x2 - x1)^2 = A */
 757	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
 758	/* t1 = x1*A = B */
 759	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 760	/* t3 = x2*A = C */
 761	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
 762	/* t4 = y2 - y1 */
 763	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 764	/* t5 = (y2 - y1)^2 = D */
 765	vli_mod_square_fast(t5, y2, curve_prime, ndigits);
 766
 767	/* t5 = D - B */
 768	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
 769	/* t5 = D - B - C = x3 */
 770	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
 771	/* t3 = C - B */
 772	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
 773	/* t2 = y1*(C - B) */
 774	vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
 775	/* t3 = B - x3 */
 776	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
 777	/* t4 = (y2 - y1)*(B - x3) */
 778	vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
 779	/* t4 = y3 */
 780	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 781
 782	vli_set(x2, t5, ndigits);
 783}
 784
 785/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 786 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
 787 * or P => P - Q, Q => P + Q
 788 */
 789static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
 790		       unsigned int ndigits)
 791{
 792	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
 793	u64 t5[ndigits];
 794	u64 t6[ndigits];
 795	u64 t7[ndigits];
 
 
 796
 797	/* t5 = x2 - x1 */
 798	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
 799	/* t5 = (x2 - x1)^2 = A */
 800	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
 801	/* t1 = x1*A = B */
 802	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 803	/* t3 = x2*A = C */
 804	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
 805	/* t4 = y2 + y1 */
 806	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
 807	/* t4 = y2 - y1 */
 808	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 809
 810	/* t6 = C - B */
 811	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
 812	/* t2 = y1 * (C - B) */
 813	vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
 814	/* t6 = B + C */
 815	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
 816	/* t3 = (y2 - y1)^2 */
 817	vli_mod_square_fast(x2, y2, curve_prime, ndigits);
 818	/* t3 = x3 */
 819	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
 820
 821	/* t7 = B - x3 */
 822	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
 823	/* t4 = (y2 - y1)*(B - x3) */
 824	vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
 825	/* t4 = y3 */
 826	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 827
 828	/* t7 = (y2 + y1)^2 = F */
 829	vli_mod_square_fast(t7, t5, curve_prime, ndigits);
 830	/* t7 = x3' */
 831	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
 832	/* t6 = x3' - B */
 833	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
 834	/* t6 = (y2 + y1)*(x3' - B) */
 835	vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
 836	/* t2 = y3' */
 837	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
 838
 839	vli_set(x1, t7, ndigits);
 840}
 841
 842static void ecc_point_mult(struct ecc_point *result,
 843			   const struct ecc_point *point, const u64 *scalar,
 844			   u64 *initial_z, u64 *curve_prime,
 845			   unsigned int ndigits)
 846{
 847	/* R0 and R1 */
 848	u64 rx[2][ndigits];
 849	u64 ry[2][ndigits];
 850	u64 z[ndigits];
 
 
 851	int i, nb;
 852	int num_bits = vli_num_bits(scalar, ndigits);
 
 
 
 
 
 
 853
 854	vli_set(rx[1], point->x, ndigits);
 855	vli_set(ry[1], point->y, ndigits);
 856
 857	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
 858			    ndigits);
 859
 860	for (i = num_bits - 2; i > 0; i--) {
 861		nb = !vli_test_bit(scalar, i);
 862		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
 863			   ndigits);
 864		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
 865			 ndigits);
 866	}
 867
 868	nb = !vli_test_bit(scalar, 0);
 869	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
 870		   ndigits);
 871
 872	/* Find final 1/Z value. */
 873	/* X1 - X0 */
 874	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
 875	/* Yb * (X1 - X0) */
 876	vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
 877	/* xP * Yb * (X1 - X0) */
 878	vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
 879
 880	/* 1 / (xP * Yb * (X1 - X0)) */
 881	vli_mod_inv(z, z, curve_prime, point->ndigits);
 882
 883	/* yP / (xP * Yb * (X1 - X0)) */
 884	vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
 885	/* Xb * yP / (xP * Yb * (X1 - X0)) */
 886	vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
 887	/* End 1/Z calculation */
 888
 889	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
 890
 891	apply_z(rx[0], ry[0], z, curve_prime, ndigits);
 892
 893	vli_set(result->x, rx[0], ndigits);
 894	vli_set(result->y, ry[0], ndigits);
 895}
 896
 897static inline void ecc_swap_digits(const u64 *in, u64 *out,
 898				   unsigned int ndigits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899{
 900	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901
 902	for (i = 0; i < ndigits; i++)
 903		out[i] = __swab64(in[ndigits - 1 - i]);
 904}
 905
 906int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
 907		     const u8 *private_key, unsigned int private_key_len)
 908{
 909	int nbytes;
 910	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 911
 912	if (!private_key)
 913		return -EINVAL;
 914
 915	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 916
 917	if (private_key_len != nbytes)
 918		return -EINVAL;
 919
 920	if (vli_is_zero((const u64 *)&private_key[0], ndigits))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921		return -EINVAL;
 922
 923	/* Make sure the private key is in the range [1, n-1]. */
 924	if (vli_cmp(curve->n, (const u64 *)&private_key[0], ndigits) != 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925		return -EINVAL;
 926
 
 
 927	return 0;
 928}
 
 929
 930int ecdh_make_pub_key(unsigned int curve_id, unsigned int ndigits,
 931		      const u8 *private_key, unsigned int private_key_len,
 932		      u8 *public_key, unsigned int public_key_len)
 933{
 934	int ret = 0;
 935	struct ecc_point *pk;
 936	u64 priv[ndigits];
 937	unsigned int nbytes;
 938	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 939
 940	if (!private_key || !curve) {
 941		ret = -EINVAL;
 942		goto out;
 943	}
 944
 945	ecc_swap_digits((const u64 *)private_key, priv, ndigits);
 946
 947	pk = ecc_alloc_point(ndigits);
 948	if (!pk) {
 949		ret = -ENOMEM;
 950		goto out;
 951	}
 952
 953	ecc_point_mult(pk, &curve->g, priv, NULL, curve->p, ndigits);
 954	if (ecc_point_is_zero(pk)) {
 
 
 955		ret = -EAGAIN;
 956		goto err_free_point;
 957	}
 958
 959	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 960	ecc_swap_digits(pk->x, (u64 *)public_key, ndigits);
 961	ecc_swap_digits(pk->y, (u64 *)&public_key[nbytes], ndigits);
 962
 963err_free_point:
 964	ecc_free_point(pk);
 965out:
 966	return ret;
 967}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968
 969int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
 970		       const u8 *private_key, unsigned int private_key_len,
 971		       const u8 *public_key, unsigned int public_key_len,
 972		       u8 *secret, unsigned int secret_len)
 973{
 974	int ret = 0;
 975	struct ecc_point *product, *pk;
 976	u64 priv[ndigits];
 977	u64 rand_z[ndigits];
 978	unsigned int nbytes;
 979	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 980
 981	if (!private_key || !public_key || !curve) {
 
 982		ret = -EINVAL;
 983		goto out;
 984	}
 985
 986	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 987
 988	get_random_bytes(rand_z, nbytes);
 989
 990	pk = ecc_alloc_point(ndigits);
 991	if (!pk) {
 992		ret = -ENOMEM;
 993		goto out;
 994	}
 995
 
 
 
 
 
 
 
 
 996	product = ecc_alloc_point(ndigits);
 997	if (!product) {
 998		ret = -ENOMEM;
 999		goto err_alloc_product;
1000	}
1001
1002	ecc_swap_digits((const u64 *)public_key, pk->x, ndigits);
1003	ecc_swap_digits((const u64 *)&public_key[nbytes], pk->y, ndigits);
1004	ecc_swap_digits((const u64 *)private_key, priv, ndigits);
1005
1006	ecc_point_mult(product, pk, priv, rand_z, curve->p, ndigits);
 
 
 
1007
1008	ecc_swap_digits(product->x, (u64 *)secret, ndigits);
1009
1010	if (ecc_point_is_zero(product))
1011		ret = -EFAULT;
1012
 
 
 
1013	ecc_free_point(product);
1014err_alloc_product:
1015	ecc_free_point(pk);
1016out:
1017	return ret;
1018}