Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
 
 
 
 
 
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 
 
 
 
 
 
 
 
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 
 
 
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
 172			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 173			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 174			[NEIGH_VAR_PROXY_QLEN] = 64,
 175			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 176			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 177			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 178		},
 179	},
 180	.gc_interval	= 30 * HZ,
 181	.gc_thresh1	= 128,
 182	.gc_thresh2	= 512,
 183	.gc_thresh3	= 1024,
 184};
 185EXPORT_SYMBOL(arp_tbl);
 186
 187int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 188{
 189	switch (dev->type) {
 190	case ARPHRD_ETHER:
 191	case ARPHRD_FDDI:
 192	case ARPHRD_IEEE802:
 193		ip_eth_mc_map(addr, haddr);
 194		return 0;
 195	case ARPHRD_INFINIBAND:
 196		ip_ib_mc_map(addr, dev->broadcast, haddr);
 197		return 0;
 198	case ARPHRD_IPGRE:
 199		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 200		return 0;
 201	default:
 202		if (dir) {
 203			memcpy(haddr, dev->broadcast, dev->addr_len);
 204			return 0;
 205		}
 206	}
 207	return -EINVAL;
 208}
 209
 210
 211static u32 arp_hash(const void *pkey,
 212		    const struct net_device *dev,
 213		    __u32 *hash_rnd)
 214{
 215	return arp_hashfn(pkey, dev, hash_rnd);
 216}
 217
 218static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 219{
 220	return neigh_key_eq32(neigh, pkey);
 221}
 222
 223static int arp_constructor(struct neighbour *neigh)
 224{
 225	__be32 addr;
 226	struct net_device *dev = neigh->dev;
 227	struct in_device *in_dev;
 228	struct neigh_parms *parms;
 229	u32 inaddr_any = INADDR_ANY;
 230
 231	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 232		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 233
 234	addr = *(__be32 *)neigh->primary_key;
 235	rcu_read_lock();
 236	in_dev = __in_dev_get_rcu(dev);
 237	if (!in_dev) {
 238		rcu_read_unlock();
 239		return -EINVAL;
 240	}
 241
 242	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 243
 244	parms = in_dev->arp_parms;
 245	__neigh_parms_put(neigh->parms);
 246	neigh->parms = neigh_parms_clone(parms);
 247	rcu_read_unlock();
 248
 249	if (!dev->header_ops) {
 250		neigh->nud_state = NUD_NOARP;
 251		neigh->ops = &arp_direct_ops;
 252		neigh->output = neigh_direct_output;
 253	} else {
 254		/* Good devices (checked by reading texts, but only Ethernet is
 255		   tested)
 256
 257		   ARPHRD_ETHER: (ethernet, apfddi)
 258		   ARPHRD_FDDI: (fddi)
 259		   ARPHRD_IEEE802: (tr)
 260		   ARPHRD_METRICOM: (strip)
 261		   ARPHRD_ARCNET:
 262		   etc. etc. etc.
 263
 264		   ARPHRD_IPDDP will also work, if author repairs it.
 265		   I did not it, because this driver does not work even
 266		   in old paradigm.
 267		 */
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269		if (neigh->type == RTN_MULTICAST) {
 270			neigh->nud_state = NUD_NOARP;
 271			arp_mc_map(addr, neigh->ha, dev, 1);
 272		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 275		} else if (neigh->type == RTN_BROADCAST ||
 276			   (dev->flags & IFF_POINTOPOINT)) {
 277			neigh->nud_state = NUD_NOARP;
 278			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 279		}
 280
 281		if (dev->header_ops->cache)
 282			neigh->ops = &arp_hh_ops;
 283		else
 284			neigh->ops = &arp_generic_ops;
 285
 286		if (neigh->nud_state & NUD_VALID)
 287			neigh->output = neigh->ops->connected_output;
 288		else
 289			neigh->output = neigh->ops->output;
 290	}
 291	return 0;
 292}
 293
 294static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 295{
 296	dst_link_failure(skb);
 297	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
 298}
 299
 300/* Create and send an arp packet. */
 301static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 302			 struct net_device *dev, __be32 src_ip,
 303			 const unsigned char *dest_hw,
 304			 const unsigned char *src_hw,
 305			 const unsigned char *target_hw,
 306			 struct dst_entry *dst)
 307{
 308	struct sk_buff *skb;
 309
 310	/* arp on this interface. */
 311	if (dev->flags & IFF_NOARP)
 312		return;
 313
 314	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 315			 dest_hw, src_hw, target_hw);
 316	if (!skb)
 317		return;
 318
 319	skb_dst_set(skb, dst_clone(dst));
 320	arp_xmit(skb);
 321}
 322
 323void arp_send(int type, int ptype, __be32 dest_ip,
 324	      struct net_device *dev, __be32 src_ip,
 325	      const unsigned char *dest_hw, const unsigned char *src_hw,
 326	      const unsigned char *target_hw)
 327{
 328	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 329		     target_hw, NULL);
 330}
 331EXPORT_SYMBOL(arp_send);
 332
 333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 334{
 335	__be32 saddr = 0;
 336	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 337	struct net_device *dev = neigh->dev;
 338	__be32 target = *(__be32 *)neigh->primary_key;
 339	int probes = atomic_read(&neigh->probes);
 340	struct in_device *in_dev;
 341	struct dst_entry *dst = NULL;
 342
 343	rcu_read_lock();
 344	in_dev = __in_dev_get_rcu(dev);
 345	if (!in_dev) {
 346		rcu_read_unlock();
 347		return;
 348	}
 349	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 350	default:
 351	case 0:		/* By default announce any local IP */
 352		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 353					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 354			saddr = ip_hdr(skb)->saddr;
 355		break;
 356	case 1:		/* Restrict announcements of saddr in same subnet */
 357		if (!skb)
 358			break;
 359		saddr = ip_hdr(skb)->saddr;
 360		if (inet_addr_type_dev_table(dev_net(dev), dev,
 361					     saddr) == RTN_LOCAL) {
 362			/* saddr should be known to target */
 363			if (inet_addr_onlink(in_dev, target, saddr))
 364				break;
 365		}
 366		saddr = 0;
 367		break;
 368	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 369		break;
 370	}
 371	rcu_read_unlock();
 372
 373	if (!saddr)
 374		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 375
 376	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 377	if (probes < 0) {
 378		if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
 379			pr_debug("trying to ucast probe in NUD_INVALID\n");
 380		neigh_ha_snapshot(dst_ha, neigh, dev);
 381		dst_hw = dst_ha;
 382	} else {
 383		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 384		if (probes < 0) {
 
 385			neigh_app_ns(neigh);
 
 386			return;
 387		}
 388	}
 389
 390	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 391		dst = skb_dst(skb);
 392	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 393		     dst_hw, dev->dev_addr, NULL, dst);
 394}
 395
 396static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 397{
 398	struct net *net = dev_net(in_dev->dev);
 399	int scope;
 400
 401	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 402	case 0:	/* Reply, the tip is already validated */
 403		return 0;
 404	case 1:	/* Reply only if tip is configured on the incoming interface */
 405		sip = 0;
 406		scope = RT_SCOPE_HOST;
 407		break;
 408	case 2:	/*
 409		 * Reply only if tip is configured on the incoming interface
 410		 * and is in same subnet as sip
 411		 */
 412		scope = RT_SCOPE_HOST;
 413		break;
 414	case 3:	/* Do not reply for scope host addresses */
 415		sip = 0;
 416		scope = RT_SCOPE_LINK;
 417		in_dev = NULL;
 418		break;
 419	case 4:	/* Reserved */
 420	case 5:
 421	case 6:
 422	case 7:
 423		return 0;
 424	case 8:	/* Do not reply */
 425		return 1;
 426	default:
 427		return 0;
 428	}
 429	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 430}
 431
 432static int arp_accept(struct in_device *in_dev, __be32 sip)
 433{
 434	struct net *net = dev_net(in_dev->dev);
 435	int scope = RT_SCOPE_LINK;
 436
 437	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
 438	case 0: /* Don't create new entries from garp */
 439		return 0;
 440	case 1: /* Create new entries from garp */
 441		return 1;
 442	case 2: /* Create a neighbor in the arp table only if sip
 443		 * is in the same subnet as an address configured
 444		 * on the interface that received the garp message
 445		 */
 446		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
 447	default:
 448		return 0;
 449	}
 450}
 451
 452static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 453{
 454	struct rtable *rt;
 455	int flag = 0;
 456	/*unsigned long now; */
 457	struct net *net = dev_net(dev);
 458
 459	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 460	if (IS_ERR(rt))
 461		return 1;
 462	if (rt->dst.dev != dev) {
 463		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 464		flag = 1;
 465	}
 466	ip_rt_put(rt);
 467	return flag;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470/*
 471 * Check if we can use proxy ARP for this path
 472 */
 473static inline int arp_fwd_proxy(struct in_device *in_dev,
 474				struct net_device *dev,	struct rtable *rt)
 475{
 476	struct in_device *out_dev;
 477	int imi, omi = -1;
 478
 479	if (rt->dst.dev == dev)
 480		return 0;
 481
 482	if (!IN_DEV_PROXY_ARP(in_dev))
 483		return 0;
 484	imi = IN_DEV_MEDIUM_ID(in_dev);
 485	if (imi == 0)
 486		return 1;
 487	if (imi == -1)
 488		return 0;
 489
 490	/* place to check for proxy_arp for routes */
 491
 492	out_dev = __in_dev_get_rcu(rt->dst.dev);
 493	if (out_dev)
 494		omi = IN_DEV_MEDIUM_ID(out_dev);
 495
 496	return omi != imi && omi != -1;
 497}
 498
 499/*
 500 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 501 *
 502 * RFC3069 supports proxy arp replies back to the same interface.  This
 503 * is done to support (ethernet) switch features, like RFC 3069, where
 504 * the individual ports are not allowed to communicate with each
 505 * other, BUT they are allowed to talk to the upstream router.  As
 506 * described in RFC 3069, it is possible to allow these hosts to
 507 * communicate through the upstream router, by proxy_arp'ing.
 508 *
 509 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 510 *
 511 *  This technology is known by different names:
 512 *    In RFC 3069 it is called VLAN Aggregation.
 513 *    Cisco and Allied Telesyn call it Private VLAN.
 514 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 515 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 516 *
 517 */
 518static inline int arp_fwd_pvlan(struct in_device *in_dev,
 519				struct net_device *dev,	struct rtable *rt,
 520				__be32 sip, __be32 tip)
 521{
 522	/* Private VLAN is only concerned about the same ethernet segment */
 523	if (rt->dst.dev != dev)
 524		return 0;
 525
 526	/* Don't reply on self probes (often done by windowz boxes)*/
 527	if (sip == tip)
 528		return 0;
 529
 530	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 531		return 1;
 532	else
 533		return 0;
 534}
 535
 536/*
 537 *	Interface to link layer: send routine and receive handler.
 538 */
 539
 540/*
 541 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 542 *	message.
 543 */
 544struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 545			   struct net_device *dev, __be32 src_ip,
 546			   const unsigned char *dest_hw,
 547			   const unsigned char *src_hw,
 548			   const unsigned char *target_hw)
 549{
 550	struct sk_buff *skb;
 551	struct arphdr *arp;
 552	unsigned char *arp_ptr;
 553	int hlen = LL_RESERVED_SPACE(dev);
 554	int tlen = dev->needed_tailroom;
 555
 556	/*
 557	 *	Allocate a buffer
 558	 */
 559
 560	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 561	if (!skb)
 562		return NULL;
 563
 564	skb_reserve(skb, hlen);
 565	skb_reset_network_header(skb);
 566	arp = skb_put(skb, arp_hdr_len(dev));
 567	skb->dev = dev;
 568	skb->protocol = htons(ETH_P_ARP);
 569	if (!src_hw)
 570		src_hw = dev->dev_addr;
 571	if (!dest_hw)
 572		dest_hw = dev->broadcast;
 573
 574	/*
 575	 *	Fill the device header for the ARP frame
 576	 */
 577	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 578		goto out;
 579
 580	/*
 581	 * Fill out the arp protocol part.
 582	 *
 583	 * The arp hardware type should match the device type, except for FDDI,
 584	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 585	 */
 586	/*
 587	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 588	 *	DIX code for the protocol. Make these device structure fields.
 589	 */
 590	switch (dev->type) {
 591	default:
 592		arp->ar_hrd = htons(dev->type);
 593		arp->ar_pro = htons(ETH_P_IP);
 594		break;
 595
 596#if IS_ENABLED(CONFIG_AX25)
 597	case ARPHRD_AX25:
 598		arp->ar_hrd = htons(ARPHRD_AX25);
 599		arp->ar_pro = htons(AX25_P_IP);
 600		break;
 601
 602#if IS_ENABLED(CONFIG_NETROM)
 603	case ARPHRD_NETROM:
 604		arp->ar_hrd = htons(ARPHRD_NETROM);
 605		arp->ar_pro = htons(AX25_P_IP);
 606		break;
 607#endif
 608#endif
 609
 610#if IS_ENABLED(CONFIG_FDDI)
 611	case ARPHRD_FDDI:
 612		arp->ar_hrd = htons(ARPHRD_ETHER);
 613		arp->ar_pro = htons(ETH_P_IP);
 614		break;
 615#endif
 616	}
 617
 618	arp->ar_hln = dev->addr_len;
 619	arp->ar_pln = 4;
 620	arp->ar_op = htons(type);
 621
 622	arp_ptr = (unsigned char *)(arp + 1);
 623
 624	memcpy(arp_ptr, src_hw, dev->addr_len);
 625	arp_ptr += dev->addr_len;
 626	memcpy(arp_ptr, &src_ip, 4);
 627	arp_ptr += 4;
 628
 629	switch (dev->type) {
 630#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 631	case ARPHRD_IEEE1394:
 632		break;
 633#endif
 634	default:
 635		if (target_hw)
 636			memcpy(arp_ptr, target_hw, dev->addr_len);
 637		else
 638			memset(arp_ptr, 0, dev->addr_len);
 639		arp_ptr += dev->addr_len;
 640	}
 641	memcpy(arp_ptr, &dest_ip, 4);
 642
 643	return skb;
 644
 645out:
 646	kfree_skb(skb);
 647	return NULL;
 648}
 649EXPORT_SYMBOL(arp_create);
 650
 651static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 652{
 653	return dev_queue_xmit(skb);
 654}
 655
 656/*
 657 *	Send an arp packet.
 658 */
 659void arp_xmit(struct sk_buff *skb)
 660{
 661	/* Send it off, maybe filter it using firewalling first.  */
 662	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 663		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 664		arp_xmit_finish);
 665}
 666EXPORT_SYMBOL(arp_xmit);
 667
 668static bool arp_is_garp(struct net *net, struct net_device *dev,
 669			int *addr_type, __be16 ar_op,
 670			__be32 sip, __be32 tip,
 671			unsigned char *sha, unsigned char *tha)
 
 
 
 672{
 673	bool is_garp = tip == sip;
 674
 675	/* Gratuitous ARP _replies_ also require target hwaddr to be
 676	 * the same as source.
 677	 */
 678	if (is_garp && ar_op == htons(ARPOP_REPLY))
 679		is_garp =
 680			/* IPv4 over IEEE 1394 doesn't provide target
 681			 * hardware address field in its ARP payload.
 682			 */
 683			tha &&
 684			!memcmp(tha, sha, dev->addr_len);
 685
 686	if (is_garp) {
 687		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 688		if (*addr_type != RTN_UNICAST)
 689			is_garp = false;
 690	}
 691	return is_garp;
 692}
 
 693
 694/*
 695 *	Process an arp request.
 696 */
 697
 698static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 699{
 700	struct net_device *dev = skb->dev;
 701	struct in_device *in_dev = __in_dev_get_rcu(dev);
 702	struct arphdr *arp;
 703	unsigned char *arp_ptr;
 704	struct rtable *rt;
 705	unsigned char *sha;
 706	unsigned char *tha = NULL;
 707	__be32 sip, tip;
 708	u16 dev_type = dev->type;
 709	int addr_type;
 710	struct neighbour *n;
 711	struct dst_entry *reply_dst = NULL;
 712	bool is_garp = false;
 713
 714	/* arp_rcv below verifies the ARP header and verifies the device
 715	 * is ARP'able.
 716	 */
 717
 718	if (!in_dev)
 719		goto out_free_skb;
 720
 721	arp = arp_hdr(skb);
 722
 723	switch (dev_type) {
 724	default:
 725		if (arp->ar_pro != htons(ETH_P_IP) ||
 726		    htons(dev_type) != arp->ar_hrd)
 727			goto out_free_skb;
 728		break;
 729	case ARPHRD_ETHER:
 730	case ARPHRD_FDDI:
 731	case ARPHRD_IEEE802:
 732		/*
 733		 * ETHERNET, and Fibre Channel (which are IEEE 802
 734		 * devices, according to RFC 2625) devices will accept ARP
 735		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 736		 * This is the case also of FDDI, where the RFC 1390 says that
 737		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 738		 * however, to be more robust, we'll accept both 1 (Ethernet)
 739		 * or 6 (IEEE 802.2)
 740		 */
 741		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 742		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 743		    arp->ar_pro != htons(ETH_P_IP))
 744			goto out_free_skb;
 745		break;
 746	case ARPHRD_AX25:
 747		if (arp->ar_pro != htons(AX25_P_IP) ||
 748		    arp->ar_hrd != htons(ARPHRD_AX25))
 749			goto out_free_skb;
 750		break;
 751	case ARPHRD_NETROM:
 752		if (arp->ar_pro != htons(AX25_P_IP) ||
 753		    arp->ar_hrd != htons(ARPHRD_NETROM))
 754			goto out_free_skb;
 755		break;
 756	}
 757
 758	/* Understand only these message types */
 759
 760	if (arp->ar_op != htons(ARPOP_REPLY) &&
 761	    arp->ar_op != htons(ARPOP_REQUEST))
 762		goto out_free_skb;
 763
 764/*
 765 *	Extract fields
 766 */
 767	arp_ptr = (unsigned char *)(arp + 1);
 768	sha	= arp_ptr;
 769	arp_ptr += dev->addr_len;
 770	memcpy(&sip, arp_ptr, 4);
 771	arp_ptr += 4;
 772	switch (dev_type) {
 773#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 774	case ARPHRD_IEEE1394:
 775		break;
 776#endif
 777	default:
 778		tha = arp_ptr;
 779		arp_ptr += dev->addr_len;
 780	}
 781	memcpy(&tip, arp_ptr, 4);
 782/*
 783 *	Check for bad requests for 127.x.x.x and requests for multicast
 784 *	addresses.  If this is one such, delete it.
 785 */
 786	if (ipv4_is_multicast(tip) ||
 787	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 788		goto out_free_skb;
 789
 790 /*
 791  *	For some 802.11 wireless deployments (and possibly other networks),
 792  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 793  *	and thus should not be accepted.
 794  */
 795	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 796		goto out_free_skb;
 797
 798/*
 799 *     Special case: We must set Frame Relay source Q.922 address
 800 */
 801	if (dev_type == ARPHRD_DLCI)
 802		sha = dev->broadcast;
 803
 804/*
 805 *  Process entry.  The idea here is we want to send a reply if it is a
 806 *  request for us or if it is a request for someone else that we hold
 807 *  a proxy for.  We want to add an entry to our cache if it is a reply
 808 *  to us or if it is a request for our address.
 809 *  (The assumption for this last is that if someone is requesting our
 810 *  address, they are probably intending to talk to us, so it saves time
 811 *  if we cache their address.  Their address is also probably not in
 812 *  our cache, since ours is not in their cache.)
 813 *
 814 *  Putting this another way, we only care about replies if they are to
 815 *  us, in which case we add them to the cache.  For requests, we care
 816 *  about those for us and those for our proxies.  We reply to both,
 817 *  and in the case of requests for us we add the requester to the arp
 818 *  cache.
 819 */
 820
 821	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 822		reply_dst = (struct dst_entry *)
 823			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 824						    GFP_ATOMIC);
 825
 826	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 827	if (sip == 0) {
 828		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 829		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 830		    !arp_ignore(in_dev, sip, tip))
 831			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 832				     sha, dev->dev_addr, sha, reply_dst);
 833		goto out_consume_skb;
 834	}
 835
 836	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 838
 839		rt = skb_rtable(skb);
 840		addr_type = rt->rt_type;
 841
 842		if (addr_type == RTN_LOCAL) {
 843			int dont_send;
 844
 845			dont_send = arp_ignore(in_dev, sip, tip);
 846			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 847				dont_send = arp_filter(sip, tip, dev);
 848			if (!dont_send) {
 849				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 850				if (n) {
 851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852						     sip, dev, tip, sha,
 853						     dev->dev_addr, sha,
 854						     reply_dst);
 855					neigh_release(n);
 856				}
 857			}
 858			goto out_consume_skb;
 859		} else if (IN_DEV_FORWARD(in_dev)) {
 860			if (addr_type == RTN_UNICAST  &&
 861			    (arp_fwd_proxy(in_dev, dev, rt) ||
 862			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 863			     (rt->dst.dev != dev &&
 864			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 865				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 866				if (n)
 867					neigh_release(n);
 868
 869				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 870				    skb->pkt_type == PACKET_HOST ||
 871				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 872					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 873						     sip, dev, tip, sha,
 874						     dev->dev_addr, sha,
 875						     reply_dst);
 876				} else {
 877					pneigh_enqueue(&arp_tbl,
 878						       in_dev->arp_parms, skb);
 879					goto out_free_dst;
 880				}
 881				goto out_consume_skb;
 882			}
 883		}
 884	}
 885
 886	/* Update our ARP tables */
 887
 888	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 889
 890	addr_type = -1;
 891	if (n || arp_accept(in_dev, sip)) {
 892		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 893				      sip, tip, sha, tha);
 894	}
 895
 896	if (arp_accept(in_dev, sip)) {
 897		/* Unsolicited ARP is not accepted by default.
 898		   It is possible, that this option should be enabled for some
 899		   devices (strip is candidate)
 900		 */
 901		if (!n &&
 902		    (is_garp ||
 903		     (arp->ar_op == htons(ARPOP_REPLY) &&
 904		      (addr_type == RTN_UNICAST ||
 905		       (addr_type < 0 &&
 906			/* postpone calculation to as late as possible */
 907			inet_addr_type_dev_table(net, dev, sip) ==
 908				RTN_UNICAST)))))
 909			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 910	}
 911
 912	if (n) {
 913		int state = NUD_REACHABLE;
 914		int override;
 915
 916		/* If several different ARP replies follows back-to-back,
 917		   use the FIRST one. It is possible, if several proxy
 918		   agents are active. Taking the first reply prevents
 919		   arp trashing and chooses the fastest router.
 920		 */
 921		override = time_after(jiffies,
 922				      n->updated +
 923				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 924			   is_garp;
 925
 926		/* Broadcast replies and request packets
 927		   do not assert neighbour reachability.
 928		 */
 929		if (arp->ar_op != htons(ARPOP_REPLY) ||
 930		    skb->pkt_type != PACKET_HOST)
 931			state = NUD_STALE;
 932		neigh_update(n, sha, state,
 933			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 934		neigh_release(n);
 935	}
 936
 937out_consume_skb:
 938	consume_skb(skb);
 939
 940out_free_dst:
 941	dst_release(reply_dst);
 942	return NET_RX_SUCCESS;
 943
 944out_free_skb:
 945	kfree_skb(skb);
 946	return NET_RX_DROP;
 947}
 948
 949static void parp_redo(struct sk_buff *skb)
 950{
 951	arp_process(dev_net(skb->dev), NULL, skb);
 952}
 953
 954static int arp_is_multicast(const void *pkey)
 955{
 956	return ipv4_is_multicast(*((__be32 *)pkey));
 957}
 958
 959/*
 960 *	Receive an arp request from the device layer.
 961 */
 962
 963static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 964		   struct packet_type *pt, struct net_device *orig_dev)
 965{
 966	const struct arphdr *arp;
 967
 968	/* do not tweak dropwatch on an ARP we will ignore */
 969	if (dev->flags & IFF_NOARP ||
 970	    skb->pkt_type == PACKET_OTHERHOST ||
 971	    skb->pkt_type == PACKET_LOOPBACK)
 972		goto consumeskb;
 973
 974	skb = skb_share_check(skb, GFP_ATOMIC);
 975	if (!skb)
 976		goto out_of_mem;
 977
 978	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 979	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 980		goto freeskb;
 981
 982	arp = arp_hdr(skb);
 983	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 984		goto freeskb;
 985
 
 
 
 
 986	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 987
 988	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 989		       dev_net(dev), NULL, skb, dev, NULL,
 990		       arp_process);
 991
 992consumeskb:
 993	consume_skb(skb);
 994	return NET_RX_SUCCESS;
 995freeskb:
 996	kfree_skb(skb);
 997out_of_mem:
 998	return NET_RX_DROP;
 999}
1000
1001/*
1002 *	User level interface (ioctl)
1003 */
1004
1005/*
1006 *	Set (create) an ARP cache entry.
1007 */
1008
1009static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1010{
1011	if (!dev) {
1012		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1013		return 0;
1014	}
1015	if (__in_dev_get_rtnl(dev)) {
1016		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1017		return 0;
1018	}
1019	return -ENXIO;
1020}
1021
1022static int arp_req_set_public(struct net *net, struct arpreq *r,
1023		struct net_device *dev)
1024{
1025	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1027
1028	if (mask && mask != htonl(0xFFFFFFFF))
1029		return -EINVAL;
1030	if (!dev && (r->arp_flags & ATF_COM)) {
1031		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1032				      r->arp_ha.sa_data);
1033		if (!dev)
1034			return -ENODEV;
1035	}
1036	if (mask) {
1037		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1038			return -ENOBUFS;
1039		return 0;
1040	}
1041
1042	return arp_req_set_proxy(net, dev, 1);
1043}
1044
1045static int arp_req_set(struct net *net, struct arpreq *r,
1046		       struct net_device *dev)
1047{
1048	__be32 ip;
1049	struct neighbour *neigh;
1050	int err;
1051
1052	if (r->arp_flags & ATF_PUBL)
1053		return arp_req_set_public(net, r, dev);
1054
1055	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1056	if (r->arp_flags & ATF_PERM)
1057		r->arp_flags |= ATF_COM;
1058	if (!dev) {
1059		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1060
1061		if (IS_ERR(rt))
1062			return PTR_ERR(rt);
1063		dev = rt->dst.dev;
1064		ip_rt_put(rt);
1065		if (!dev)
1066			return -EINVAL;
1067	}
1068	switch (dev->type) {
1069#if IS_ENABLED(CONFIG_FDDI)
1070	case ARPHRD_FDDI:
1071		/*
1072		 * According to RFC 1390, FDDI devices should accept ARP
1073		 * hardware types of 1 (Ethernet).  However, to be more
1074		 * robust, we'll accept hardware types of either 1 (Ethernet)
1075		 * or 6 (IEEE 802.2).
1076		 */
1077		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1078		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1079		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1080			return -EINVAL;
1081		break;
1082#endif
1083	default:
1084		if (r->arp_ha.sa_family != dev->type)
1085			return -EINVAL;
1086		break;
1087	}
1088
1089	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1090	err = PTR_ERR(neigh);
1091	if (!IS_ERR(neigh)) {
1092		unsigned int state = NUD_STALE;
1093		if (r->arp_flags & ATF_PERM)
1094			state = NUD_PERMANENT;
1095		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1096				   r->arp_ha.sa_data : NULL, state,
1097				   NEIGH_UPDATE_F_OVERRIDE |
1098				   NEIGH_UPDATE_F_ADMIN, 0);
1099		neigh_release(neigh);
1100	}
1101	return err;
1102}
1103
1104static unsigned int arp_state_to_flags(struct neighbour *neigh)
1105{
1106	if (neigh->nud_state&NUD_PERMANENT)
1107		return ATF_PERM | ATF_COM;
1108	else if (neigh->nud_state&NUD_VALID)
1109		return ATF_COM;
1110	else
1111		return 0;
1112}
1113
1114/*
1115 *	Get an ARP cache entry.
1116 */
1117
1118static int arp_req_get(struct arpreq *r, struct net_device *dev)
1119{
1120	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1121	struct neighbour *neigh;
1122	int err = -ENXIO;
1123
1124	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125	if (neigh) {
1126		if (!(READ_ONCE(neigh->nud_state) & NUD_NOARP)) {
1127			read_lock_bh(&neigh->lock);
1128			memcpy(r->arp_ha.sa_data, neigh->ha,
1129			       min(dev->addr_len, sizeof(r->arp_ha.sa_data_min)));
1130			r->arp_flags = arp_state_to_flags(neigh);
1131			read_unlock_bh(&neigh->lock);
1132			r->arp_ha.sa_family = dev->type;
1133			strscpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1134			err = 0;
1135		}
1136		neigh_release(neigh);
 
1137	}
1138	return err;
1139}
1140
1141int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1142{
1143	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1144	int err = -ENXIO;
1145	struct neigh_table *tbl = &arp_tbl;
1146
1147	if (neigh) {
1148		if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1149			neigh_release(neigh);
1150			return 0;
1151		}
1152
1153		if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1154			err = neigh_update(neigh, NULL, NUD_FAILED,
1155					   NEIGH_UPDATE_F_OVERRIDE|
1156					   NEIGH_UPDATE_F_ADMIN, 0);
1157		write_lock_bh(&tbl->lock);
1158		neigh_release(neigh);
1159		neigh_remove_one(neigh, tbl);
1160		write_unlock_bh(&tbl->lock);
1161	}
1162
1163	return err;
1164}
 
1165
1166static int arp_req_delete_public(struct net *net, struct arpreq *r,
1167		struct net_device *dev)
1168{
1169	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1170	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1171
1172	if (mask == htonl(0xFFFFFFFF))
1173		return pneigh_delete(&arp_tbl, net, &ip, dev);
1174
1175	if (mask)
1176		return -EINVAL;
1177
1178	return arp_req_set_proxy(net, dev, 0);
1179}
1180
1181static int arp_req_delete(struct net *net, struct arpreq *r,
1182			  struct net_device *dev)
1183{
1184	__be32 ip;
1185
1186	if (r->arp_flags & ATF_PUBL)
1187		return arp_req_delete_public(net, r, dev);
1188
1189	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1190	if (!dev) {
1191		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1192		if (IS_ERR(rt))
1193			return PTR_ERR(rt);
1194		dev = rt->dst.dev;
1195		ip_rt_put(rt);
1196		if (!dev)
1197			return -EINVAL;
1198	}
1199	return arp_invalidate(dev, ip, true);
1200}
1201
1202/*
1203 *	Handle an ARP layer I/O control request.
1204 */
1205
1206int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1207{
1208	int err;
1209	struct arpreq r;
1210	struct net_device *dev = NULL;
1211
1212	switch (cmd) {
1213	case SIOCDARP:
1214	case SIOCSARP:
1215		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1216			return -EPERM;
1217		fallthrough;
1218	case SIOCGARP:
1219		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1220		if (err)
1221			return -EFAULT;
1222		break;
1223	default:
1224		return -EINVAL;
1225	}
1226
1227	if (r.arp_pa.sa_family != AF_INET)
1228		return -EPFNOSUPPORT;
1229
1230	if (!(r.arp_flags & ATF_PUBL) &&
1231	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1232		return -EINVAL;
1233	if (!(r.arp_flags & ATF_NETMASK))
1234		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1235							   htonl(0xFFFFFFFFUL);
1236	rtnl_lock();
1237	if (r.arp_dev[0]) {
1238		err = -ENODEV;
1239		dev = __dev_get_by_name(net, r.arp_dev);
1240		if (!dev)
1241			goto out;
1242
1243		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1244		if (!r.arp_ha.sa_family)
1245			r.arp_ha.sa_family = dev->type;
1246		err = -EINVAL;
1247		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1248			goto out;
1249	} else if (cmd == SIOCGARP) {
1250		err = -ENODEV;
1251		goto out;
1252	}
1253
1254	switch (cmd) {
1255	case SIOCDARP:
1256		err = arp_req_delete(net, &r, dev);
1257		break;
1258	case SIOCSARP:
1259		err = arp_req_set(net, &r, dev);
1260		break;
1261	case SIOCGARP:
1262		err = arp_req_get(&r, dev);
1263		break;
1264	}
1265out:
1266	rtnl_unlock();
1267	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1268		err = -EFAULT;
1269	return err;
1270}
1271
1272static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1273			    void *ptr)
1274{
1275	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1276	struct netdev_notifier_change_info *change_info;
1277	struct in_device *in_dev;
1278	bool evict_nocarrier;
1279
1280	switch (event) {
1281	case NETDEV_CHANGEADDR:
1282		neigh_changeaddr(&arp_tbl, dev);
1283		rt_cache_flush(dev_net(dev));
1284		break;
1285	case NETDEV_CHANGE:
1286		change_info = ptr;
1287		if (change_info->flags_changed & IFF_NOARP)
1288			neigh_changeaddr(&arp_tbl, dev);
1289
1290		in_dev = __in_dev_get_rtnl(dev);
1291		if (!in_dev)
1292			evict_nocarrier = true;
1293		else
1294			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1295
1296		if (evict_nocarrier && !netif_carrier_ok(dev))
1297			neigh_carrier_down(&arp_tbl, dev);
1298		break;
1299	default:
1300		break;
1301	}
1302
1303	return NOTIFY_DONE;
1304}
1305
1306static struct notifier_block arp_netdev_notifier = {
1307	.notifier_call = arp_netdev_event,
1308};
1309
1310/* Note, that it is not on notifier chain.
1311   It is necessary, that this routine was called after route cache will be
1312   flushed.
1313 */
1314void arp_ifdown(struct net_device *dev)
1315{
1316	neigh_ifdown(&arp_tbl, dev);
1317}
1318
1319
1320/*
1321 *	Called once on startup.
1322 */
1323
1324static struct packet_type arp_packet_type __read_mostly = {
1325	.type =	cpu_to_be16(ETH_P_ARP),
1326	.func =	arp_rcv,
1327};
1328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329#ifdef CONFIG_PROC_FS
1330#if IS_ENABLED(CONFIG_AX25)
1331
 
1332/*
1333 *	ax25 -> ASCII conversion
1334 */
1335static void ax2asc2(ax25_address *a, char *buf)
1336{
1337	char c, *s;
1338	int n;
1339
1340	for (n = 0, s = buf; n < 6; n++) {
1341		c = (a->ax25_call[n] >> 1) & 0x7F;
1342
1343		if (c != ' ')
1344			*s++ = c;
1345	}
1346
1347	*s++ = '-';
1348	n = (a->ax25_call[6] >> 1) & 0x0F;
1349	if (n > 9) {
1350		*s++ = '1';
1351		n -= 10;
1352	}
1353
1354	*s++ = n + '0';
1355	*s++ = '\0';
1356
1357	if (*buf == '\0' || *buf == '-') {
1358		buf[0] = '*';
1359		buf[1] = '\0';
1360	}
1361}
1362#endif /* CONFIG_AX25 */
1363
1364#define HBUFFERLEN 30
1365
1366static void arp_format_neigh_entry(struct seq_file *seq,
1367				   struct neighbour *n)
1368{
1369	char hbuffer[HBUFFERLEN];
1370	int k, j;
1371	char tbuf[16];
1372	struct net_device *dev = n->dev;
1373	int hatype = dev->type;
1374
1375	read_lock(&n->lock);
1376	/* Convert hardware address to XX:XX:XX:XX ... form. */
1377#if IS_ENABLED(CONFIG_AX25)
1378	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1379		ax2asc2((ax25_address *)n->ha, hbuffer);
1380	else {
1381#endif
1382	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1383		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1384		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1385		hbuffer[k++] = ':';
1386	}
1387	if (k != 0)
1388		--k;
1389	hbuffer[k] = 0;
1390#if IS_ENABLED(CONFIG_AX25)
1391	}
1392#endif
1393	sprintf(tbuf, "%pI4", n->primary_key);
1394	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1395		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1396	read_unlock(&n->lock);
1397}
1398
1399static void arp_format_pneigh_entry(struct seq_file *seq,
1400				    struct pneigh_entry *n)
1401{
1402	struct net_device *dev = n->dev;
1403	int hatype = dev ? dev->type : 0;
1404	char tbuf[16];
1405
1406	sprintf(tbuf, "%pI4", n->key);
1407	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1408		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1409		   dev ? dev->name : "*");
1410}
1411
1412static int arp_seq_show(struct seq_file *seq, void *v)
1413{
1414	if (v == SEQ_START_TOKEN) {
1415		seq_puts(seq, "IP address       HW type     Flags       "
1416			      "HW address            Mask     Device\n");
1417	} else {
1418		struct neigh_seq_state *state = seq->private;
1419
1420		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1421			arp_format_pneigh_entry(seq, v);
1422		else
1423			arp_format_neigh_entry(seq, v);
1424	}
1425
1426	return 0;
1427}
1428
1429static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1430{
1431	/* Don't want to confuse "arp -a" w/ magic entries,
1432	 * so we tell the generic iterator to skip NUD_NOARP.
1433	 */
1434	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1435}
1436
 
 
1437static const struct seq_operations arp_seq_ops = {
1438	.start	= arp_seq_start,
1439	.next	= neigh_seq_next,
1440	.stop	= neigh_seq_stop,
1441	.show	= arp_seq_show,
1442};
1443#endif /* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445static int __net_init arp_net_init(struct net *net)
1446{
1447	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1448			sizeof(struct neigh_seq_state)))
1449		return -ENOMEM;
1450	return 0;
1451}
1452
1453static void __net_exit arp_net_exit(struct net *net)
1454{
1455	remove_proc_entry("arp", net->proc_net);
1456}
1457
1458static struct pernet_operations arp_net_ops = {
1459	.init = arp_net_init,
1460	.exit = arp_net_exit,
1461};
1462
1463void __init arp_init(void)
1464{
1465	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
 
1466
1467	dev_add_pack(&arp_packet_type);
1468	register_pernet_subsys(&arp_net_ops);
1469#ifdef CONFIG_SYSCTL
1470	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1471#endif
1472	register_netdevice_notifier(&arp_netdev_notifier);
1473}
v3.5.6
 
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 
 163	.hash		= arp_hash,
 
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 169		.base_reachable_time	= 30 * HZ,
 170		.retrans_time		= 1 * HZ,
 171		.gc_staletime		= 60 * HZ,
 172		.reachable_time		= 30 * HZ,
 173		.delay_probe_time	= 5 * HZ,
 174		.queue_len_bytes	= 64*1024,
 175		.ucast_probes		= 3,
 176		.mcast_probes		= 3,
 177		.anycast_delay		= 1 * HZ,
 178		.proxy_delay		= (8 * HZ) / 10,
 179		.proxy_qlen		= 64,
 180		.locktime		= 1 * HZ,
 
 
 
 
 
 
 181	},
 182	.gc_interval	= 30 * HZ,
 183	.gc_thresh1	= 128,
 184	.gc_thresh2	= 512,
 185	.gc_thresh3	= 1024,
 186};
 187EXPORT_SYMBOL(arp_tbl);
 188
 189int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 190{
 191	switch (dev->type) {
 192	case ARPHRD_ETHER:
 193	case ARPHRD_FDDI:
 194	case ARPHRD_IEEE802:
 195		ip_eth_mc_map(addr, haddr);
 196		return 0;
 197	case ARPHRD_INFINIBAND:
 198		ip_ib_mc_map(addr, dev->broadcast, haddr);
 199		return 0;
 200	case ARPHRD_IPGRE:
 201		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 202		return 0;
 203	default:
 204		if (dir) {
 205			memcpy(haddr, dev->broadcast, dev->addr_len);
 206			return 0;
 207		}
 208	}
 209	return -EINVAL;
 210}
 211
 212
 213static u32 arp_hash(const void *pkey,
 214		    const struct net_device *dev,
 215		    __u32 *hash_rnd)
 216{
 217	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 
 
 
 
 
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222	__be32 addr = *(__be32 *)neigh->primary_key;
 223	struct net_device *dev = neigh->dev;
 224	struct in_device *in_dev;
 225	struct neigh_parms *parms;
 
 
 
 
 226
 
 227	rcu_read_lock();
 228	in_dev = __in_dev_get_rcu(dev);
 229	if (in_dev == NULL) {
 230		rcu_read_unlock();
 231		return -EINVAL;
 232	}
 233
 234	neigh->type = inet_addr_type(dev_net(dev), addr);
 235
 236	parms = in_dev->arp_parms;
 237	__neigh_parms_put(neigh->parms);
 238	neigh->parms = neigh_parms_clone(parms);
 239	rcu_read_unlock();
 240
 241	if (!dev->header_ops) {
 242		neigh->nud_state = NUD_NOARP;
 243		neigh->ops = &arp_direct_ops;
 244		neigh->output = neigh_direct_output;
 245	} else {
 246		/* Good devices (checked by reading texts, but only Ethernet is
 247		   tested)
 248
 249		   ARPHRD_ETHER: (ethernet, apfddi)
 250		   ARPHRD_FDDI: (fddi)
 251		   ARPHRD_IEEE802: (tr)
 252		   ARPHRD_METRICOM: (strip)
 253		   ARPHRD_ARCNET:
 254		   etc. etc. etc.
 255
 256		   ARPHRD_IPDDP will also work, if author repairs it.
 257		   I did not it, because this driver does not work even
 258		   in old paradigm.
 259		 */
 260
 261#if 1
 262		/* So... these "amateur" devices are hopeless.
 263		   The only thing, that I can say now:
 264		   It is very sad that we need to keep ugly obsolete
 265		   code to make them happy.
 266
 267		   They should be moved to more reasonable state, now
 268		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 269		   Besides that, they are sort of out of date
 270		   (a lot of redundant clones/copies, useless in 2.1),
 271		   I wonder why people believe that they work.
 272		 */
 273		switch (dev->type) {
 274		default:
 275			break;
 276		case ARPHRD_ROSE:
 277#if IS_ENABLED(CONFIG_AX25)
 278		case ARPHRD_AX25:
 279#if IS_ENABLED(CONFIG_NETROM)
 280		case ARPHRD_NETROM:
 281#endif
 282			neigh->ops = &arp_broken_ops;
 283			neigh->output = neigh->ops->output;
 284			return 0;
 285#else
 286			break;
 287#endif
 288		}
 289#endif
 290		if (neigh->type == RTN_MULTICAST) {
 291			neigh->nud_state = NUD_NOARP;
 292			arp_mc_map(addr, neigh->ha, dev, 1);
 293		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 294			neigh->nud_state = NUD_NOARP;
 295			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 296		} else if (neigh->type == RTN_BROADCAST ||
 297			   (dev->flags & IFF_POINTOPOINT)) {
 298			neigh->nud_state = NUD_NOARP;
 299			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 300		}
 301
 302		if (dev->header_ops->cache)
 303			neigh->ops = &arp_hh_ops;
 304		else
 305			neigh->ops = &arp_generic_ops;
 306
 307		if (neigh->nud_state & NUD_VALID)
 308			neigh->output = neigh->ops->connected_output;
 309		else
 310			neigh->output = neigh->ops->output;
 311	}
 312	return 0;
 313}
 314
 315static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 316{
 317	dst_link_failure(skb);
 318	kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319}
 
 320
 321static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 322{
 323	__be32 saddr = 0;
 324	u8  *dst_ha = NULL;
 325	struct net_device *dev = neigh->dev;
 326	__be32 target = *(__be32 *)neigh->primary_key;
 327	int probes = atomic_read(&neigh->probes);
 328	struct in_device *in_dev;
 
 329
 330	rcu_read_lock();
 331	in_dev = __in_dev_get_rcu(dev);
 332	if (!in_dev) {
 333		rcu_read_unlock();
 334		return;
 335	}
 336	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 337	default:
 338	case 0:		/* By default announce any local IP */
 339		if (skb && inet_addr_type(dev_net(dev),
 340					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 341			saddr = ip_hdr(skb)->saddr;
 342		break;
 343	case 1:		/* Restrict announcements of saddr in same subnet */
 344		if (!skb)
 345			break;
 346		saddr = ip_hdr(skb)->saddr;
 347		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 348			/* saddr should be known to target */
 349			if (inet_addr_onlink(in_dev, target, saddr))
 350				break;
 351		}
 352		saddr = 0;
 353		break;
 354	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 355		break;
 356	}
 357	rcu_read_unlock();
 358
 359	if (!saddr)
 360		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 361
 362	probes -= neigh->parms->ucast_probes;
 363	if (probes < 0) {
 364		if (!(neigh->nud_state & NUD_VALID))
 365			pr_debug("trying to ucast probe in NUD_INVALID\n");
 366		dst_ha = neigh->ha;
 367		read_lock_bh(&neigh->lock);
 368	} else {
 369		probes -= neigh->parms->app_probes;
 370		if (probes < 0) {
 371#ifdef CONFIG_ARPD
 372			neigh_app_ns(neigh);
 373#endif
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_ha, dev->dev_addr, NULL);
 380	if (dst_ha)
 381		read_unlock_bh(&neigh->lock);
 382}
 383
 384static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 385{
 
 386	int scope;
 387
 388	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 389	case 0:	/* Reply, the tip is already validated */
 390		return 0;
 391	case 1:	/* Reply only if tip is configured on the incoming interface */
 392		sip = 0;
 393		scope = RT_SCOPE_HOST;
 394		break;
 395	case 2:	/*
 396		 * Reply only if tip is configured on the incoming interface
 397		 * and is in same subnet as sip
 398		 */
 399		scope = RT_SCOPE_HOST;
 400		break;
 401	case 3:	/* Do not reply for scope host addresses */
 402		sip = 0;
 403		scope = RT_SCOPE_LINK;
 
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(in_dev, sip, tip, scope);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = skb_rtable(skb)->rt_gateway;
 479
 480	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 481			       paddr, dev))
 482		return 0;
 483
 484	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 485
 486	if (n) {
 487		n->used = jiffies;
 488		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 489			neigh_ha_snapshot(haddr, n, dev);
 490			neigh_release(n);
 491			return 0;
 492		}
 493		neigh_release(n);
 494	} else
 495		kfree_skb(skb);
 496	return 1;
 497}
 498EXPORT_SYMBOL(arp_find);
 499
 500/* END OF OBSOLETE FUNCTIONS */
 501
 502/*
 503 * Check if we can use proxy ARP for this path
 504 */
 505static inline int arp_fwd_proxy(struct in_device *in_dev,
 506				struct net_device *dev,	struct rtable *rt)
 507{
 508	struct in_device *out_dev;
 509	int imi, omi = -1;
 510
 511	if (rt->dst.dev == dev)
 512		return 0;
 513
 514	if (!IN_DEV_PROXY_ARP(in_dev))
 515		return 0;
 516	imi = IN_DEV_MEDIUM_ID(in_dev);
 517	if (imi == 0)
 518		return 1;
 519	if (imi == -1)
 520		return 0;
 521
 522	/* place to check for proxy_arp for routes */
 523
 524	out_dev = __in_dev_get_rcu(rt->dst.dev);
 525	if (out_dev)
 526		omi = IN_DEV_MEDIUM_ID(out_dev);
 527
 528	return omi != imi && omi != -1;
 529}
 530
 531/*
 532 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 533 *
 534 * RFC3069 supports proxy arp replies back to the same interface.  This
 535 * is done to support (ethernet) switch features, like RFC 3069, where
 536 * the individual ports are not allowed to communicate with each
 537 * other, BUT they are allowed to talk to the upstream router.  As
 538 * described in RFC 3069, it is possible to allow these hosts to
 539 * communicate through the upstream router, by proxy_arp'ing.
 540 *
 541 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 542 *
 543 *  This technology is known by different names:
 544 *    In RFC 3069 it is called VLAN Aggregation.
 545 *    Cisco and Allied Telesyn call it Private VLAN.
 546 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 547 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 548 *
 549 */
 550static inline int arp_fwd_pvlan(struct in_device *in_dev,
 551				struct net_device *dev,	struct rtable *rt,
 552				__be32 sip, __be32 tip)
 553{
 554	/* Private VLAN is only concerned about the same ethernet segment */
 555	if (rt->dst.dev != dev)
 556		return 0;
 557
 558	/* Don't reply on self probes (often done by windowz boxes)*/
 559	if (sip == tip)
 560		return 0;
 561
 562	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 563		return 1;
 564	else
 565		return 0;
 566}
 567
 568/*
 569 *	Interface to link layer: send routine and receive handler.
 570 */
 571
 572/*
 573 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 574 *	message.
 575 */
 576struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 577			   struct net_device *dev, __be32 src_ip,
 578			   const unsigned char *dest_hw,
 579			   const unsigned char *src_hw,
 580			   const unsigned char *target_hw)
 581{
 582	struct sk_buff *skb;
 583	struct arphdr *arp;
 584	unsigned char *arp_ptr;
 585	int hlen = LL_RESERVED_SPACE(dev);
 586	int tlen = dev->needed_tailroom;
 587
 588	/*
 589	 *	Allocate a buffer
 590	 */
 591
 592	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 593	if (skb == NULL)
 594		return NULL;
 595
 596	skb_reserve(skb, hlen);
 597	skb_reset_network_header(skb);
 598	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 599	skb->dev = dev;
 600	skb->protocol = htons(ETH_P_ARP);
 601	if (src_hw == NULL)
 602		src_hw = dev->dev_addr;
 603	if (dest_hw == NULL)
 604		dest_hw = dev->broadcast;
 605
 606	/*
 607	 *	Fill the device header for the ARP frame
 608	 */
 609	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 610		goto out;
 611
 612	/*
 613	 * Fill out the arp protocol part.
 614	 *
 615	 * The arp hardware type should match the device type, except for FDDI,
 616	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 617	 */
 618	/*
 619	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 620	 *	DIX code for the protocol. Make these device structure fields.
 621	 */
 622	switch (dev->type) {
 623	default:
 624		arp->ar_hrd = htons(dev->type);
 625		arp->ar_pro = htons(ETH_P_IP);
 626		break;
 627
 628#if IS_ENABLED(CONFIG_AX25)
 629	case ARPHRD_AX25:
 630		arp->ar_hrd = htons(ARPHRD_AX25);
 631		arp->ar_pro = htons(AX25_P_IP);
 632		break;
 633
 634#if IS_ENABLED(CONFIG_NETROM)
 635	case ARPHRD_NETROM:
 636		arp->ar_hrd = htons(ARPHRD_NETROM);
 637		arp->ar_pro = htons(AX25_P_IP);
 638		break;
 639#endif
 640#endif
 641
 642#if IS_ENABLED(CONFIG_FDDI)
 643	case ARPHRD_FDDI:
 644		arp->ar_hrd = htons(ARPHRD_ETHER);
 645		arp->ar_pro = htons(ETH_P_IP);
 646		break;
 647#endif
 648	}
 649
 650	arp->ar_hln = dev->addr_len;
 651	arp->ar_pln = 4;
 652	arp->ar_op = htons(type);
 653
 654	arp_ptr = (unsigned char *)(arp + 1);
 655
 656	memcpy(arp_ptr, src_hw, dev->addr_len);
 657	arp_ptr += dev->addr_len;
 658	memcpy(arp_ptr, &src_ip, 4);
 659	arp_ptr += 4;
 660	if (target_hw != NULL)
 661		memcpy(arp_ptr, target_hw, dev->addr_len);
 662	else
 663		memset(arp_ptr, 0, dev->addr_len);
 664	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 665	memcpy(arp_ptr, &dest_ip, 4);
 666
 667	return skb;
 668
 669out:
 670	kfree_skb(skb);
 671	return NULL;
 672}
 673EXPORT_SYMBOL(arp_create);
 674
 
 
 
 
 
 675/*
 676 *	Send an arp packet.
 677 */
 678void arp_xmit(struct sk_buff *skb)
 679{
 680	/* Send it off, maybe filter it using firewalling first.  */
 681	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 682}
 683EXPORT_SYMBOL(arp_xmit);
 684
 685/*
 686 *	Create and send an arp packet.
 687 */
 688void arp_send(int type, int ptype, __be32 dest_ip,
 689	      struct net_device *dev, __be32 src_ip,
 690	      const unsigned char *dest_hw, const unsigned char *src_hw,
 691	      const unsigned char *target_hw)
 692{
 693	struct sk_buff *skb;
 694
 695	/*
 696	 *	No arp on this interface.
 697	 */
 698
 699	if (dev->flags&IFF_NOARP)
 700		return;
 701
 702	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 703			 dest_hw, src_hw, target_hw);
 704	if (skb == NULL)
 705		return;
 706
 707	arp_xmit(skb);
 
 
 
 
 708}
 709EXPORT_SYMBOL(arp_send);
 710
 711/*
 712 *	Process an arp request.
 713 */
 714
 715static int arp_process(struct sk_buff *skb)
 716{
 717	struct net_device *dev = skb->dev;
 718	struct in_device *in_dev = __in_dev_get_rcu(dev);
 719	struct arphdr *arp;
 720	unsigned char *arp_ptr;
 721	struct rtable *rt;
 722	unsigned char *sha;
 
 723	__be32 sip, tip;
 724	u16 dev_type = dev->type;
 725	int addr_type;
 726	struct neighbour *n;
 727	struct net *net = dev_net(dev);
 
 728
 729	/* arp_rcv below verifies the ARP header and verifies the device
 730	 * is ARP'able.
 731	 */
 732
 733	if (in_dev == NULL)
 734		goto out;
 735
 736	arp = arp_hdr(skb);
 737
 738	switch (dev_type) {
 739	default:
 740		if (arp->ar_pro != htons(ETH_P_IP) ||
 741		    htons(dev_type) != arp->ar_hrd)
 742			goto out;
 743		break;
 744	case ARPHRD_ETHER:
 745	case ARPHRD_FDDI:
 746	case ARPHRD_IEEE802:
 747		/*
 748		 * ETHERNET, and Fibre Channel (which are IEEE 802
 749		 * devices, according to RFC 2625) devices will accept ARP
 750		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 751		 * This is the case also of FDDI, where the RFC 1390 says that
 752		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 753		 * however, to be more robust, we'll accept both 1 (Ethernet)
 754		 * or 6 (IEEE 802.2)
 755		 */
 756		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 757		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 758		    arp->ar_pro != htons(ETH_P_IP))
 759			goto out;
 760		break;
 761	case ARPHRD_AX25:
 762		if (arp->ar_pro != htons(AX25_P_IP) ||
 763		    arp->ar_hrd != htons(ARPHRD_AX25))
 764			goto out;
 765		break;
 766	case ARPHRD_NETROM:
 767		if (arp->ar_pro != htons(AX25_P_IP) ||
 768		    arp->ar_hrd != htons(ARPHRD_NETROM))
 769			goto out;
 770		break;
 771	}
 772
 773	/* Understand only these message types */
 774
 775	if (arp->ar_op != htons(ARPOP_REPLY) &&
 776	    arp->ar_op != htons(ARPOP_REQUEST))
 777		goto out;
 778
 779/*
 780 *	Extract fields
 781 */
 782	arp_ptr = (unsigned char *)(arp + 1);
 783	sha	= arp_ptr;
 784	arp_ptr += dev->addr_len;
 785	memcpy(&sip, arp_ptr, 4);
 786	arp_ptr += 4;
 787	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 788	memcpy(&tip, arp_ptr, 4);
 789/*
 790 *	Check for bad requests for 127.x.x.x and requests for multicast
 791 *	addresses.  If this is one such, delete it.
 792 */
 793	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 794		goto out;
 
 
 
 
 
 
 
 
 
 795
 796/*
 797 *     Special case: We must set Frame Relay source Q.922 address
 798 */
 799	if (dev_type == ARPHRD_DLCI)
 800		sha = dev->broadcast;
 801
 802/*
 803 *  Process entry.  The idea here is we want to send a reply if it is a
 804 *  request for us or if it is a request for someone else that we hold
 805 *  a proxy for.  We want to add an entry to our cache if it is a reply
 806 *  to us or if it is a request for our address.
 807 *  (The assumption for this last is that if someone is requesting our
 808 *  address, they are probably intending to talk to us, so it saves time
 809 *  if we cache their address.  Their address is also probably not in
 810 *  our cache, since ours is not in their cache.)
 811 *
 812 *  Putting this another way, we only care about replies if they are to
 813 *  us, in which case we add them to the cache.  For requests, we care
 814 *  about those for us and those for our proxies.  We reply to both,
 815 *  and in the case of requests for us we add the requester to the arp
 816 *  cache.
 817 */
 818
 
 
 
 
 
 819	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 820	if (sip == 0) {
 821		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 822		    inet_addr_type(net, tip) == RTN_LOCAL &&
 823		    !arp_ignore(in_dev, sip, tip))
 824			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 825				 dev->dev_addr, sha);
 826		goto out;
 827	}
 828
 829	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 830	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 831
 832		rt = skb_rtable(skb);
 833		addr_type = rt->rt_type;
 834
 835		if (addr_type == RTN_LOCAL) {
 836			int dont_send;
 837
 838			dont_send = arp_ignore(in_dev, sip, tip);
 839			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 840				dont_send = arp_filter(sip, tip, dev);
 841			if (!dont_send) {
 842				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 843				if (n) {
 844					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 845						 dev, tip, sha, dev->dev_addr,
 846						 sha);
 
 847					neigh_release(n);
 848				}
 849			}
 850			goto out;
 851		} else if (IN_DEV_FORWARD(in_dev)) {
 852			if (addr_type == RTN_UNICAST  &&
 853			    (arp_fwd_proxy(in_dev, dev, rt) ||
 854			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 855			     (rt->dst.dev != dev &&
 856			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n)
 859					neigh_release(n);
 860
 861				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 862				    skb->pkt_type == PACKET_HOST ||
 863				    in_dev->arp_parms->proxy_delay == 0) {
 864					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 865						 dev, tip, sha, dev->dev_addr,
 866						 sha);
 
 867				} else {
 868					pneigh_enqueue(&arp_tbl,
 869						       in_dev->arp_parms, skb);
 870					return 0;
 871				}
 872				goto out;
 873			}
 874		}
 875	}
 876
 877	/* Update our ARP tables */
 878
 879	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 880
 881	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 
 
 
 
 
 
 882		/* Unsolicited ARP is not accepted by default.
 883		   It is possible, that this option should be enabled for some
 884		   devices (strip is candidate)
 885		 */
 886		if (n == NULL &&
 887		    (arp->ar_op == htons(ARPOP_REPLY) ||
 888		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 889		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 
 
 890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891	}
 892
 893	if (n) {
 894		int state = NUD_REACHABLE;
 895		int override;
 896
 897		/* If several different ARP replies follows back-to-back,
 898		   use the FIRST one. It is possible, if several proxy
 899		   agents are active. Taking the first reply prevents
 900		   arp trashing and chooses the fastest router.
 901		 */
 902		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 903
 904		/* Broadcast replies and request packets
 905		   do not assert neighbour reachability.
 906		 */
 907		if (arp->ar_op != htons(ARPOP_REPLY) ||
 908		    skb->pkt_type != PACKET_HOST)
 909			state = NUD_STALE;
 910		neigh_update(n, sha, state,
 911			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 912		neigh_release(n);
 913	}
 914
 915out:
 916	consume_skb(skb);
 917	return 0;
 
 
 
 
 
 
 
 918}
 919
 920static void parp_redo(struct sk_buff *skb)
 921{
 922	arp_process(skb);
 923}
 924
 
 
 
 
 925
 926/*
 927 *	Receive an arp request from the device layer.
 928 */
 929
 930static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 931		   struct packet_type *pt, struct net_device *orig_dev)
 932{
 933	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 934
 935	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 936	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 937		goto freeskb;
 938
 939	arp = arp_hdr(skb);
 940	if (arp->ar_hln != dev->addr_len ||
 941	    dev->flags & IFF_NOARP ||
 942	    skb->pkt_type == PACKET_OTHERHOST ||
 943	    skb->pkt_type == PACKET_LOOPBACK ||
 944	    arp->ar_pln != 4)
 945		goto freeskb;
 946
 947	skb = skb_share_check(skb, GFP_ATOMIC);
 948	if (skb == NULL)
 949		goto out_of_mem;
 950
 951	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 952
 953	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 954
 
 
 
 955freeskb:
 956	kfree_skb(skb);
 957out_of_mem:
 958	return 0;
 959}
 960
 961/*
 962 *	User level interface (ioctl)
 963 */
 964
 965/*
 966 *	Set (create) an ARP cache entry.
 967 */
 968
 969static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 970{
 971	if (dev == NULL) {
 972		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 973		return 0;
 974	}
 975	if (__in_dev_get_rtnl(dev)) {
 976		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 977		return 0;
 978	}
 979	return -ENXIO;
 980}
 981
 982static int arp_req_set_public(struct net *net, struct arpreq *r,
 983		struct net_device *dev)
 984{
 985	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 986	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 987
 988	if (mask && mask != htonl(0xFFFFFFFF))
 989		return -EINVAL;
 990	if (!dev && (r->arp_flags & ATF_COM)) {
 991		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 992				      r->arp_ha.sa_data);
 993		if (!dev)
 994			return -ENODEV;
 995	}
 996	if (mask) {
 997		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
 998			return -ENOBUFS;
 999		return 0;
1000	}
1001
1002	return arp_req_set_proxy(net, dev, 1);
1003}
1004
1005static int arp_req_set(struct net *net, struct arpreq *r,
1006		       struct net_device *dev)
1007{
1008	__be32 ip;
1009	struct neighbour *neigh;
1010	int err;
1011
1012	if (r->arp_flags & ATF_PUBL)
1013		return arp_req_set_public(net, r, dev);
1014
1015	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1016	if (r->arp_flags & ATF_PERM)
1017		r->arp_flags |= ATF_COM;
1018	if (dev == NULL) {
1019		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1020
1021		if (IS_ERR(rt))
1022			return PTR_ERR(rt);
1023		dev = rt->dst.dev;
1024		ip_rt_put(rt);
1025		if (!dev)
1026			return -EINVAL;
1027	}
1028	switch (dev->type) {
1029#if IS_ENABLED(CONFIG_FDDI)
1030	case ARPHRD_FDDI:
1031		/*
1032		 * According to RFC 1390, FDDI devices should accept ARP
1033		 * hardware types of 1 (Ethernet).  However, to be more
1034		 * robust, we'll accept hardware types of either 1 (Ethernet)
1035		 * or 6 (IEEE 802.2).
1036		 */
1037		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1038		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1039		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1040			return -EINVAL;
1041		break;
1042#endif
1043	default:
1044		if (r->arp_ha.sa_family != dev->type)
1045			return -EINVAL;
1046		break;
1047	}
1048
1049	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1050	err = PTR_ERR(neigh);
1051	if (!IS_ERR(neigh)) {
1052		unsigned int state = NUD_STALE;
1053		if (r->arp_flags & ATF_PERM)
1054			state = NUD_PERMANENT;
1055		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1056				   r->arp_ha.sa_data : NULL, state,
1057				   NEIGH_UPDATE_F_OVERRIDE |
1058				   NEIGH_UPDATE_F_ADMIN);
1059		neigh_release(neigh);
1060	}
1061	return err;
1062}
1063
1064static unsigned int arp_state_to_flags(struct neighbour *neigh)
1065{
1066	if (neigh->nud_state&NUD_PERMANENT)
1067		return ATF_PERM | ATF_COM;
1068	else if (neigh->nud_state&NUD_VALID)
1069		return ATF_COM;
1070	else
1071		return 0;
1072}
1073
1074/*
1075 *	Get an ARP cache entry.
1076 */
1077
1078static int arp_req_get(struct arpreq *r, struct net_device *dev)
1079{
1080	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1081	struct neighbour *neigh;
1082	int err = -ENXIO;
1083
1084	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1085	if (neigh) {
1086		read_lock_bh(&neigh->lock);
1087		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1088		r->arp_flags = arp_state_to_flags(neigh);
1089		read_unlock_bh(&neigh->lock);
1090		r->arp_ha.sa_family = dev->type;
1091		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
 
1092		neigh_release(neigh);
1093		err = 0;
1094	}
1095	return err;
1096}
1097
1098int arp_invalidate(struct net_device *dev, __be32 ip)
1099{
1100	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1101	int err = -ENXIO;
 
1102
1103	if (neigh) {
1104		if (neigh->nud_state & ~NUD_NOARP)
 
 
 
 
 
1105			err = neigh_update(neigh, NULL, NUD_FAILED,
1106					   NEIGH_UPDATE_F_OVERRIDE|
1107					   NEIGH_UPDATE_F_ADMIN);
 
1108		neigh_release(neigh);
 
 
1109	}
1110
1111	return err;
1112}
1113EXPORT_SYMBOL(arp_invalidate);
1114
1115static int arp_req_delete_public(struct net *net, struct arpreq *r,
1116		struct net_device *dev)
1117{
1118	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1119	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1120
1121	if (mask == htonl(0xFFFFFFFF))
1122		return pneigh_delete(&arp_tbl, net, &ip, dev);
1123
1124	if (mask)
1125		return -EINVAL;
1126
1127	return arp_req_set_proxy(net, dev, 0);
1128}
1129
1130static int arp_req_delete(struct net *net, struct arpreq *r,
1131			  struct net_device *dev)
1132{
1133	__be32 ip;
1134
1135	if (r->arp_flags & ATF_PUBL)
1136		return arp_req_delete_public(net, r, dev);
1137
1138	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1139	if (dev == NULL) {
1140		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1141		if (IS_ERR(rt))
1142			return PTR_ERR(rt);
1143		dev = rt->dst.dev;
1144		ip_rt_put(rt);
1145		if (!dev)
1146			return -EINVAL;
1147	}
1148	return arp_invalidate(dev, ip);
1149}
1150
1151/*
1152 *	Handle an ARP layer I/O control request.
1153 */
1154
1155int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1156{
1157	int err;
1158	struct arpreq r;
1159	struct net_device *dev = NULL;
1160
1161	switch (cmd) {
1162	case SIOCDARP:
1163	case SIOCSARP:
1164		if (!capable(CAP_NET_ADMIN))
1165			return -EPERM;
 
1166	case SIOCGARP:
1167		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1168		if (err)
1169			return -EFAULT;
1170		break;
1171	default:
1172		return -EINVAL;
1173	}
1174
1175	if (r.arp_pa.sa_family != AF_INET)
1176		return -EPFNOSUPPORT;
1177
1178	if (!(r.arp_flags & ATF_PUBL) &&
1179	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1180		return -EINVAL;
1181	if (!(r.arp_flags & ATF_NETMASK))
1182		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1183							   htonl(0xFFFFFFFFUL);
1184	rtnl_lock();
1185	if (r.arp_dev[0]) {
1186		err = -ENODEV;
1187		dev = __dev_get_by_name(net, r.arp_dev);
1188		if (dev == NULL)
1189			goto out;
1190
1191		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1192		if (!r.arp_ha.sa_family)
1193			r.arp_ha.sa_family = dev->type;
1194		err = -EINVAL;
1195		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1196			goto out;
1197	} else if (cmd == SIOCGARP) {
1198		err = -ENODEV;
1199		goto out;
1200	}
1201
1202	switch (cmd) {
1203	case SIOCDARP:
1204		err = arp_req_delete(net, &r, dev);
1205		break;
1206	case SIOCSARP:
1207		err = arp_req_set(net, &r, dev);
1208		break;
1209	case SIOCGARP:
1210		err = arp_req_get(&r, dev);
1211		break;
1212	}
1213out:
1214	rtnl_unlock();
1215	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1216		err = -EFAULT;
1217	return err;
1218}
1219
1220static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1221			    void *ptr)
1222{
1223	struct net_device *dev = ptr;
 
 
 
1224
1225	switch (event) {
1226	case NETDEV_CHANGEADDR:
1227		neigh_changeaddr(&arp_tbl, dev);
1228		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229		break;
1230	default:
1231		break;
1232	}
1233
1234	return NOTIFY_DONE;
1235}
1236
1237static struct notifier_block arp_netdev_notifier = {
1238	.notifier_call = arp_netdev_event,
1239};
1240
1241/* Note, that it is not on notifier chain.
1242   It is necessary, that this routine was called after route cache will be
1243   flushed.
1244 */
1245void arp_ifdown(struct net_device *dev)
1246{
1247	neigh_ifdown(&arp_tbl, dev);
1248}
1249
1250
1251/*
1252 *	Called once on startup.
1253 */
1254
1255static struct packet_type arp_packet_type __read_mostly = {
1256	.type =	cpu_to_be16(ETH_P_ARP),
1257	.func =	arp_rcv,
1258};
1259
1260static int arp_proc_init(void);
1261
1262void __init arp_init(void)
1263{
1264	neigh_table_init(&arp_tbl);
1265
1266	dev_add_pack(&arp_packet_type);
1267	arp_proc_init();
1268#ifdef CONFIG_SYSCTL
1269	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1270#endif
1271	register_netdevice_notifier(&arp_netdev_notifier);
1272}
1273
1274#ifdef CONFIG_PROC_FS
1275#if IS_ENABLED(CONFIG_AX25)
1276
1277/* ------------------------------------------------------------------------ */
1278/*
1279 *	ax25 -> ASCII conversion
1280 */
1281static char *ax2asc2(ax25_address *a, char *buf)
1282{
1283	char c, *s;
1284	int n;
1285
1286	for (n = 0, s = buf; n < 6; n++) {
1287		c = (a->ax25_call[n] >> 1) & 0x7F;
1288
1289		if (c != ' ')
1290			*s++ = c;
1291	}
1292
1293	*s++ = '-';
1294	n = (a->ax25_call[6] >> 1) & 0x0F;
1295	if (n > 9) {
1296		*s++ = '1';
1297		n -= 10;
1298	}
1299
1300	*s++ = n + '0';
1301	*s++ = '\0';
1302
1303	if (*buf == '\0' || *buf == '-')
1304		return "*";
1305
1306	return buf;
1307}
1308#endif /* CONFIG_AX25 */
1309
1310#define HBUFFERLEN 30
1311
1312static void arp_format_neigh_entry(struct seq_file *seq,
1313				   struct neighbour *n)
1314{
1315	char hbuffer[HBUFFERLEN];
1316	int k, j;
1317	char tbuf[16];
1318	struct net_device *dev = n->dev;
1319	int hatype = dev->type;
1320
1321	read_lock(&n->lock);
1322	/* Convert hardware address to XX:XX:XX:XX ... form. */
1323#if IS_ENABLED(CONFIG_AX25)
1324	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1325		ax2asc2((ax25_address *)n->ha, hbuffer);
1326	else {
1327#endif
1328	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1329		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1330		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1331		hbuffer[k++] = ':';
1332	}
1333	if (k != 0)
1334		--k;
1335	hbuffer[k] = 0;
1336#if IS_ENABLED(CONFIG_AX25)
1337	}
1338#endif
1339	sprintf(tbuf, "%pI4", n->primary_key);
1340	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1341		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1342	read_unlock(&n->lock);
1343}
1344
1345static void arp_format_pneigh_entry(struct seq_file *seq,
1346				    struct pneigh_entry *n)
1347{
1348	struct net_device *dev = n->dev;
1349	int hatype = dev ? dev->type : 0;
1350	char tbuf[16];
1351
1352	sprintf(tbuf, "%pI4", n->key);
1353	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1354		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1355		   dev ? dev->name : "*");
1356}
1357
1358static int arp_seq_show(struct seq_file *seq, void *v)
1359{
1360	if (v == SEQ_START_TOKEN) {
1361		seq_puts(seq, "IP address       HW type     Flags       "
1362			      "HW address            Mask     Device\n");
1363	} else {
1364		struct neigh_seq_state *state = seq->private;
1365
1366		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1367			arp_format_pneigh_entry(seq, v);
1368		else
1369			arp_format_neigh_entry(seq, v);
1370	}
1371
1372	return 0;
1373}
1374
1375static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1376{
1377	/* Don't want to confuse "arp -a" w/ magic entries,
1378	 * so we tell the generic iterator to skip NUD_NOARP.
1379	 */
1380	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1381}
1382
1383/* ------------------------------------------------------------------------ */
1384
1385static const struct seq_operations arp_seq_ops = {
1386	.start	= arp_seq_start,
1387	.next	= neigh_seq_next,
1388	.stop	= neigh_seq_stop,
1389	.show	= arp_seq_show,
1390};
1391
1392static int arp_seq_open(struct inode *inode, struct file *file)
1393{
1394	return seq_open_net(inode, file, &arp_seq_ops,
1395			    sizeof(struct neigh_seq_state));
1396}
1397
1398static const struct file_operations arp_seq_fops = {
1399	.owner		= THIS_MODULE,
1400	.open           = arp_seq_open,
1401	.read           = seq_read,
1402	.llseek         = seq_lseek,
1403	.release	= seq_release_net,
1404};
1405
1406
1407static int __net_init arp_net_init(struct net *net)
1408{
1409	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
 
1410		return -ENOMEM;
1411	return 0;
1412}
1413
1414static void __net_exit arp_net_exit(struct net *net)
1415{
1416	proc_net_remove(net, "arp");
1417}
1418
1419static struct pernet_operations arp_net_ops = {
1420	.init = arp_net_init,
1421	.exit = arp_net_exit,
1422};
1423
1424static int __init arp_proc_init(void)
1425{
1426	return register_pernet_subsys(&arp_net_ops);
1427}
1428
1429#else /* CONFIG_PROC_FS */
1430
1431static int __init arp_proc_init(void)
1432{
1433	return 0;
 
1434}
1435
1436#endif /* CONFIG_PROC_FS */