Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
 
 
 
 
 
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "extent_map.h"
  18#include "disk-io.h"
  19#include "transaction.h"
  20#include "print-tree.h"
  21#include "volumes.h"
  22#include "raid56.h"
 
  23#include "rcu-string.h"
  24#include "dev-replace.h"
  25#include "sysfs.h"
  26#include "tree-checker.h"
  27#include "space-info.h"
  28#include "block-group.h"
  29#include "discard.h"
  30#include "zoned.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37#include "super.h"
  38#include "raid-stripe-tree.h"
  39
  40#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  41					 BTRFS_BLOCK_GROUP_RAID10 | \
  42					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  43
  44struct btrfs_io_geometry {
  45	u32 stripe_index;
  46	u32 stripe_nr;
  47	int mirror_num;
  48	int num_stripes;
  49	u64 stripe_offset;
  50	u64 raid56_full_stripe_start;
  51	int max_errors;
  52	enum btrfs_map_op op;
  53};
  54
  55const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  56	[BTRFS_RAID_RAID10] = {
  57		.sub_stripes	= 2,
  58		.dev_stripes	= 1,
  59		.devs_max	= 0,	/* 0 == as many as possible */
  60		.devs_min	= 2,
  61		.tolerated_failures = 1,
  62		.devs_increment	= 2,
  63		.ncopies	= 2,
  64		.nparity        = 0,
  65		.raid_name	= "raid10",
  66		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  67		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  68	},
  69	[BTRFS_RAID_RAID1] = {
  70		.sub_stripes	= 1,
  71		.dev_stripes	= 1,
  72		.devs_max	= 2,
  73		.devs_min	= 2,
  74		.tolerated_failures = 1,
  75		.devs_increment	= 2,
  76		.ncopies	= 2,
  77		.nparity        = 0,
  78		.raid_name	= "raid1",
  79		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  80		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  81	},
  82	[BTRFS_RAID_RAID1C3] = {
  83		.sub_stripes	= 1,
  84		.dev_stripes	= 1,
  85		.devs_max	= 3,
  86		.devs_min	= 3,
  87		.tolerated_failures = 2,
  88		.devs_increment	= 3,
  89		.ncopies	= 3,
  90		.nparity        = 0,
  91		.raid_name	= "raid1c3",
  92		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  93		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  94	},
  95	[BTRFS_RAID_RAID1C4] = {
  96		.sub_stripes	= 1,
  97		.dev_stripes	= 1,
  98		.devs_max	= 4,
  99		.devs_min	= 4,
 100		.tolerated_failures = 3,
 101		.devs_increment	= 4,
 102		.ncopies	= 4,
 103		.nparity        = 0,
 104		.raid_name	= "raid1c4",
 105		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
 106		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
 107	},
 108	[BTRFS_RAID_DUP] = {
 109		.sub_stripes	= 1,
 110		.dev_stripes	= 2,
 111		.devs_max	= 1,
 112		.devs_min	= 1,
 113		.tolerated_failures = 0,
 114		.devs_increment	= 1,
 115		.ncopies	= 2,
 116		.nparity        = 0,
 117		.raid_name	= "dup",
 118		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 119		.mindev_error	= 0,
 120	},
 121	[BTRFS_RAID_RAID0] = {
 122		.sub_stripes	= 1,
 123		.dev_stripes	= 1,
 124		.devs_max	= 0,
 125		.devs_min	= 1,
 126		.tolerated_failures = 0,
 127		.devs_increment	= 1,
 128		.ncopies	= 1,
 129		.nparity        = 0,
 130		.raid_name	= "raid0",
 131		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 132		.mindev_error	= 0,
 133	},
 134	[BTRFS_RAID_SINGLE] = {
 135		.sub_stripes	= 1,
 136		.dev_stripes	= 1,
 137		.devs_max	= 1,
 138		.devs_min	= 1,
 139		.tolerated_failures = 0,
 140		.devs_increment	= 1,
 141		.ncopies	= 1,
 142		.nparity        = 0,
 143		.raid_name	= "single",
 144		.bg_flag	= 0,
 145		.mindev_error	= 0,
 146	},
 147	[BTRFS_RAID_RAID5] = {
 148		.sub_stripes	= 1,
 149		.dev_stripes	= 1,
 150		.devs_max	= 0,
 151		.devs_min	= 2,
 152		.tolerated_failures = 1,
 153		.devs_increment	= 1,
 154		.ncopies	= 1,
 155		.nparity        = 1,
 156		.raid_name	= "raid5",
 157		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 158		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 159	},
 160	[BTRFS_RAID_RAID6] = {
 161		.sub_stripes	= 1,
 162		.dev_stripes	= 1,
 163		.devs_max	= 0,
 164		.devs_min	= 3,
 165		.tolerated_failures = 2,
 166		.devs_increment	= 1,
 167		.ncopies	= 1,
 168		.nparity        = 2,
 169		.raid_name	= "raid6",
 170		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 171		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 172	},
 173};
 174
 175/*
 176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 177 * can be used as index to access btrfs_raid_array[].
 178 */
 179enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 180{
 181	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 182
 183	if (!profile)
 184		return BTRFS_RAID_SINGLE;
 185
 186	return BTRFS_BG_FLAG_TO_INDEX(profile);
 187}
 188
 189const char *btrfs_bg_type_to_raid_name(u64 flags)
 190{
 191	const int index = btrfs_bg_flags_to_raid_index(flags);
 192
 193	if (index >= BTRFS_NR_RAID_TYPES)
 194		return NULL;
 195
 196	return btrfs_raid_array[index].raid_name;
 197}
 198
 199int btrfs_nr_parity_stripes(u64 type)
 200{
 201	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 202
 203	return btrfs_raid_array[index].nparity;
 204}
 205
 206/*
 207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 208 * bytes including terminating null byte.
 209 */
 210void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 211{
 212	int i;
 213	int ret;
 214	char *bp = buf;
 215	u64 flags = bg_flags;
 216	u32 size_bp = size_buf;
 217
 218	if (!flags) {
 219		strcpy(bp, "NONE");
 220		return;
 221	}
 222
 223#define DESCRIBE_FLAG(flag, desc)						\
 224	do {								\
 225		if (flags & (flag)) {					\
 226			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 227			if (ret < 0 || ret >= size_bp)			\
 228				goto out_overflow;			\
 229			size_bp -= ret;					\
 230			bp += ret;					\
 231			flags &= ~(flag);				\
 232		}							\
 233	} while (0)
 234
 235	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 236	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 237	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 238
 239	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 240	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 241		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 242			      btrfs_raid_array[i].raid_name);
 243#undef DESCRIBE_FLAG
 244
 245	if (flags) {
 246		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 247		size_bp -= ret;
 248	}
 249
 250	if (size_bp < size_buf)
 251		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 252
 253	/*
 254	 * The text is trimmed, it's up to the caller to provide sufficiently
 255	 * large buffer
 256	 */
 257out_overflow:;
 258}
 259
 260static int init_first_rw_device(struct btrfs_trans_handle *trans);
 261static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 
 
 
 262static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 263
 264/*
 265 * Device locking
 266 * ==============
 267 *
 268 * There are several mutexes that protect manipulation of devices and low-level
 269 * structures like chunks but not block groups, extents or files
 270 *
 271 * uuid_mutex (global lock)
 272 * ------------------------
 273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 275 * device) or requested by the device= mount option
 276 *
 277 * the mutex can be very coarse and can cover long-running operations
 278 *
 279 * protects: updates to fs_devices counters like missing devices, rw devices,
 280 * seeding, structure cloning, opening/closing devices at mount/umount time
 281 *
 282 * global::fs_devs - add, remove, updates to the global list
 283 *
 284 * does not protect: manipulation of the fs_devices::devices list in general
 285 * but in mount context it could be used to exclude list modifications by eg.
 286 * scan ioctl
 287 *
 288 * btrfs_device::name - renames (write side), read is RCU
 289 *
 290 * fs_devices::device_list_mutex (per-fs, with RCU)
 291 * ------------------------------------------------
 292 * protects updates to fs_devices::devices, ie. adding and deleting
 293 *
 294 * simple list traversal with read-only actions can be done with RCU protection
 295 *
 296 * may be used to exclude some operations from running concurrently without any
 297 * modifications to the list (see write_all_supers)
 298 *
 299 * Is not required at mount and close times, because our device list is
 300 * protected by the uuid_mutex at that point.
 301 *
 302 * balance_mutex
 303 * -------------
 304 * protects balance structures (status, state) and context accessed from
 305 * several places (internally, ioctl)
 306 *
 307 * chunk_mutex
 308 * -----------
 309 * protects chunks, adding or removing during allocation, trim or when a new
 310 * device is added/removed. Additionally it also protects post_commit_list of
 311 * individual devices, since they can be added to the transaction's
 312 * post_commit_list only with chunk_mutex held.
 313 *
 314 * cleaner_mutex
 315 * -------------
 316 * a big lock that is held by the cleaner thread and prevents running subvolume
 317 * cleaning together with relocation or delayed iputs
 318 *
 319 *
 320 * Lock nesting
 321 * ============
 322 *
 323 * uuid_mutex
 324 *   device_list_mutex
 325 *     chunk_mutex
 326 *   balance_mutex
 327 *
 328 *
 329 * Exclusive operations
 330 * ====================
 331 *
 332 * Maintains the exclusivity of the following operations that apply to the
 333 * whole filesystem and cannot run in parallel.
 334 *
 335 * - Balance (*)
 336 * - Device add
 337 * - Device remove
 338 * - Device replace (*)
 339 * - Resize
 340 *
 341 * The device operations (as above) can be in one of the following states:
 342 *
 343 * - Running state
 344 * - Paused state
 345 * - Completed state
 346 *
 347 * Only device operations marked with (*) can go into the Paused state for the
 348 * following reasons:
 349 *
 350 * - ioctl (only Balance can be Paused through ioctl)
 351 * - filesystem remounted as read-only
 352 * - filesystem unmounted and mounted as read-only
 353 * - system power-cycle and filesystem mounted as read-only
 354 * - filesystem or device errors leading to forced read-only
 355 *
 356 * The status of exclusive operation is set and cleared atomically.
 357 * During the course of Paused state, fs_info::exclusive_operation remains set.
 358 * A device operation in Paused or Running state can be canceled or resumed
 359 * either by ioctl (Balance only) or when remounted as read-write.
 360 * The exclusive status is cleared when the device operation is canceled or
 361 * completed.
 362 */
 363
 364DEFINE_MUTEX(uuid_mutex);
 365static LIST_HEAD(fs_uuids);
 366struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 367{
 368	return &fs_uuids;
 369}
 370
 371/*
 372 * Allocate new btrfs_fs_devices structure identified by a fsid.
 373 *
 374 * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
 375 *           fs_devices::metadata_fsid
 376 *
 377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 378 * The returned struct is not linked onto any lists and can be destroyed with
 379 * kfree() right away.
 380 */
 381static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 382{
 383	struct btrfs_fs_devices *fs_devs;
 384
 385	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 386	if (!fs_devs)
 387		return ERR_PTR(-ENOMEM);
 388
 389	mutex_init(&fs_devs->device_list_mutex);
 390
 391	INIT_LIST_HEAD(&fs_devs->devices);
 392	INIT_LIST_HEAD(&fs_devs->alloc_list);
 393	INIT_LIST_HEAD(&fs_devs->fs_list);
 394	INIT_LIST_HEAD(&fs_devs->seed_list);
 395
 396	if (fsid) {
 397		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 398		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 399	}
 400
 401	return fs_devs;
 402}
 403
 404static void btrfs_free_device(struct btrfs_device *device)
 405{
 406	WARN_ON(!list_empty(&device->post_commit_list));
 407	rcu_string_free(device->name);
 408	extent_io_tree_release(&device->alloc_state);
 409	btrfs_destroy_dev_zone_info(device);
 410	kfree(device);
 411}
 412
 413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 414{
 415	struct btrfs_device *device;
 416
 417	WARN_ON(fs_devices->opened);
 418	while (!list_empty(&fs_devices->devices)) {
 419		device = list_entry(fs_devices->devices.next,
 420				    struct btrfs_device, dev_list);
 421		list_del(&device->dev_list);
 422		btrfs_free_device(device);
 
 423	}
 424	kfree(fs_devices);
 425}
 426
 427void __exit btrfs_cleanup_fs_uuids(void)
 428{
 429	struct btrfs_fs_devices *fs_devices;
 430
 431	while (!list_empty(&fs_uuids)) {
 432		fs_devices = list_entry(fs_uuids.next,
 433					struct btrfs_fs_devices, fs_list);
 434		list_del(&fs_devices->fs_list);
 435		free_fs_devices(fs_devices);
 436	}
 437}
 438
 439static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
 440				  const u8 *fsid, const u8 *metadata_fsid)
 441{
 442	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
 443		return false;
 444
 445	if (!metadata_fsid)
 446		return true;
 447
 448	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
 449		return false;
 450
 451	return true;
 
 
 
 
 
 
 452}
 453
 454static noinline struct btrfs_fs_devices *find_fsid(
 455		const u8 *fsid, const u8 *metadata_fsid)
 456{
 457	struct btrfs_fs_devices *fs_devices;
 458
 459	ASSERT(fsid);
 460
 461	/* Handle non-split brain cases */
 462	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 463		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
 464			return fs_devices;
 465	}
 466	return NULL;
 467}
 468
 469static int
 470btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
 471		      int flush, struct bdev_handle **bdev_handle,
 472		      struct btrfs_super_block **disk_super)
 473{
 474	struct block_device *bdev;
 475	int ret;
 476
 477	*bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
 478
 479	if (IS_ERR(*bdev_handle)) {
 480		ret = PTR_ERR(*bdev_handle);
 481		goto error;
 482	}
 483	bdev = (*bdev_handle)->bdev;
 484
 485	if (flush)
 486		sync_blockdev(bdev);
 487	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
 488	if (ret) {
 489		bdev_release(*bdev_handle);
 490		goto error;
 491	}
 492	invalidate_bdev(bdev);
 493	*disk_super = btrfs_read_dev_super(bdev);
 494	if (IS_ERR(*disk_super)) {
 495		ret = PTR_ERR(*disk_super);
 496		bdev_release(*bdev_handle);
 497		goto error;
 498	}
 499
 500	return 0;
 501
 502error:
 503	*bdev_handle = NULL;
 504	return ret;
 
 505}
 506
 507/*
 508 *  Search and remove all stale devices (which are not mounted).  When both
 509 *  inputs are NULL, it will search and release all stale devices.
 510 *
 511 *  @devt:         Optional. When provided will it release all unmounted devices
 512 *                 matching this devt only.
 513 *  @skip_device:  Optional. Will skip this device when searching for the stale
 514 *                 devices.
 515 *
 516 *  Return:	0 for success or if @devt is 0.
 517 *		-EBUSY if @devt is a mounted device.
 518 *		-ENOENT if @devt does not match any device in the list.
 519 */
 520static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 521{
 522	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 523	struct btrfs_device *device, *tmp_device;
 524	int ret;
 525	bool freed = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527	lockdep_assert_held(&uuid_mutex);
 528
 529	/* Return good status if there is no instance of devt. */
 530	ret = 0;
 531	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 532
 533		mutex_lock(&fs_devices->device_list_mutex);
 534		list_for_each_entry_safe(device, tmp_device,
 535					 &fs_devices->devices, dev_list) {
 536			if (skip_device && skip_device == device)
 537				continue;
 538			if (devt && devt != device->devt)
 539				continue;
 540			if (fs_devices->opened) {
 541				if (devt)
 542					ret = -EBUSY;
 543				break;
 544			}
 545
 546			/* delete the stale device */
 547			fs_devices->num_devices--;
 548			list_del(&device->dev_list);
 549			btrfs_free_device(device);
 550
 551			freed = true;
 552		}
 553		mutex_unlock(&fs_devices->device_list_mutex);
 554
 555		if (fs_devices->num_devices == 0) {
 556			btrfs_sysfs_remove_fsid(fs_devices);
 557			list_del(&fs_devices->fs_list);
 558			free_fs_devices(fs_devices);
 559		}
 
 
 
 
 
 
 560	}
 561
 562	/* If there is at least one freed device return 0. */
 563	if (freed)
 564		return 0;
 565
 566	return ret;
 567}
 568
 569static struct btrfs_fs_devices *find_fsid_by_device(
 570					struct btrfs_super_block *disk_super,
 571					dev_t devt, bool *same_fsid_diff_dev)
 572{
 573	struct btrfs_fs_devices *fsid_fs_devices;
 574	struct btrfs_fs_devices *devt_fs_devices;
 575	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 576					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 577	bool found_by_devt = false;
 578
 579	/* Find the fs_device by the usual method, if found use it. */
 580	fsid_fs_devices = find_fsid(disk_super->fsid,
 581		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
 582
 583	/* The temp_fsid feature is supported only with single device filesystem. */
 584	if (btrfs_super_num_devices(disk_super) != 1)
 585		return fsid_fs_devices;
 586
 587	/*
 588	 * A seed device is an integral component of the sprout device, which
 589	 * functions as a multi-device filesystem. So, temp-fsid feature is
 590	 * not supported.
 
 
 
 591	 */
 592	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
 593		return fsid_fs_devices;
 594
 595	/* Try to find a fs_devices by matching devt. */
 596	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
 597		struct btrfs_device *device;
 598
 599		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
 600			if (device->devt == devt) {
 601				found_by_devt = true;
 602				break;
 603			}
 604		}
 605		if (found_by_devt)
 606			break;
 607	}
 608
 609	if (found_by_devt) {
 610		/* Existing device. */
 611		if (fsid_fs_devices == NULL) {
 612			if (devt_fs_devices->opened == 0) {
 613				/* Stale device. */
 614				return NULL;
 615			} else {
 616				/* temp_fsid is mounting a subvol. */
 617				return devt_fs_devices;
 618			}
 619		} else {
 620			/* Regular or temp_fsid device mounting a subvol. */
 621			return devt_fs_devices;
 622		}
 623	} else {
 624		/* New device. */
 625		if (fsid_fs_devices == NULL) {
 626			return NULL;
 627		} else {
 628			/* sb::fsid is already used create a new temp_fsid. */
 629			*same_fsid_diff_dev = true;
 630			return NULL;
 631		}
 632	}
 633
 634	/* Not reached. */
 635}
 636
 637/*
 638 * This is only used on mount, and we are protected from competing things
 639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 640 * fs_devices->device_list_mutex here.
 641 */
 642static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 643			struct btrfs_device *device, blk_mode_t flags,
 644			void *holder)
 645{
 646	struct bdev_handle *bdev_handle;
 647	struct btrfs_super_block *disk_super;
 648	u64 devid;
 649	int ret;
 650
 651	if (device->bdev)
 652		return -EINVAL;
 653	if (!device->name)
 654		return -EINVAL;
 655
 656	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 657				    &bdev_handle, &disk_super);
 658	if (ret)
 659		return ret;
 660
 661	devid = btrfs_stack_device_id(&disk_super->dev_item);
 662	if (devid != device->devid)
 663		goto error_free_page;
 664
 665	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 666		goto error_free_page;
 
 
 
 
 
 
 
 
 
 
 
 667
 668	device->generation = btrfs_super_generation(disk_super);
 669
 670	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 671		if (btrfs_super_incompat_flags(disk_super) &
 672		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 673			pr_err(
 674		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 675			goto error_free_page;
 
 
 
 
 
 
 
 
 676		}
 677
 678		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 679		fs_devices->seeding = true;
 680	} else {
 681		if (bdev_read_only(bdev_handle->bdev))
 682			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 683		else
 684			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 685	}
 686
 687	if (!bdev_nonrot(bdev_handle->bdev))
 688		fs_devices->rotating = true;
 
 
 
 
 
 
 689
 690	if (bdev_max_discard_sectors(bdev_handle->bdev))
 691		fs_devices->discardable = true;
 692
 693	device->bdev_handle = bdev_handle;
 694	device->bdev = bdev_handle->bdev;
 695	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697	fs_devices->open_devices++;
 698	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 699	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 700		fs_devices->rw_devices++;
 701		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 
 
 
 
 
 702	}
 703	btrfs_release_disk_super(disk_super);
 704
 705	return 0;
 706
 707error_free_page:
 708	btrfs_release_disk_super(disk_super);
 709	bdev_release(bdev_handle);
 
 
 
 
 
 710
 711	return -EINVAL;
 
 712}
 713
 714u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
 715{
 716	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
 717				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 718
 719	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
 
 720}
 721
 722/*
 723 * Add new device to list of registered devices
 724 *
 725 * Returns:
 726 * device pointer which was just added or updated when successful
 727 * error pointer when failed
 728 */
 729static noinline struct btrfs_device *device_list_add(const char *path,
 730			   struct btrfs_super_block *disk_super,
 731			   bool *new_device_added)
 732{
 733	struct btrfs_device *device;
 734	struct btrfs_fs_devices *fs_devices = NULL;
 735	struct rcu_string *name;
 736	u64 found_transid = btrfs_super_generation(disk_super);
 737	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 738	dev_t path_devt;
 739	int error;
 740	bool same_fsid_diff_dev = false;
 741	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 742		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 743
 744	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
 745		btrfs_err(NULL,
 746"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
 747			  path);
 748		return ERR_PTR(-EAGAIN);
 749	}
 750
 751	error = lookup_bdev(path, &path_devt);
 752	if (error) {
 753		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 754			  path, error);
 755		return ERR_PTR(error);
 756	}
 757
 758	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
 759
 
 760	if (!fs_devices) {
 761		fs_devices = alloc_fs_devices(disk_super->fsid);
 762		if (IS_ERR(fs_devices))
 763			return ERR_CAST(fs_devices);
 764
 765		if (has_metadata_uuid)
 766			memcpy(fs_devices->metadata_uuid,
 767			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 768
 769		if (same_fsid_diff_dev) {
 770			generate_random_uuid(fs_devices->fsid);
 771			fs_devices->temp_fsid = true;
 772			pr_info("BTRFS: device %s using temp-fsid %pU\n",
 773				path, fs_devices->fsid);
 774		}
 775
 776		mutex_lock(&fs_devices->device_list_mutex);
 777		list_add(&fs_devices->fs_list, &fs_uuids);
 778
 779		device = NULL;
 780	} else {
 781		struct btrfs_dev_lookup_args args = {
 782			.devid = devid,
 783			.uuid = disk_super->dev_item.uuid,
 784		};
 785
 786		mutex_lock(&fs_devices->device_list_mutex);
 787		device = btrfs_find_device(fs_devices, &args);
 788
 789		if (found_transid > fs_devices->latest_generation) {
 790			memcpy(fs_devices->fsid, disk_super->fsid,
 791					BTRFS_FSID_SIZE);
 792			memcpy(fs_devices->metadata_uuid,
 793			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
 794		}
 795	}
 796
 797	if (!device) {
 798		unsigned int nofs_flag;
 
 799
 800		if (fs_devices->opened) {
 801			btrfs_err(NULL,
 802"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
 803				  path, fs_devices->fsid, current->comm,
 804				  task_pid_nr(current));
 805			mutex_unlock(&fs_devices->device_list_mutex);
 806			return ERR_PTR(-EBUSY);
 807		}
 808
 809		nofs_flag = memalloc_nofs_save();
 810		device = btrfs_alloc_device(NULL, &devid,
 811					    disk_super->dev_item.uuid, path);
 812		memalloc_nofs_restore(nofs_flag);
 813		if (IS_ERR(device)) {
 814			mutex_unlock(&fs_devices->device_list_mutex);
 815			/* we can safely leave the fs_devices entry around */
 816			return device;
 
 
 
 
 
 
 
 
 
 
 
 
 817		}
 
 
 818
 819		device->devt = path_devt;
 
 
 
 
 
 
 820
 
 821		list_add_rcu(&device->dev_list, &fs_devices->devices);
 822		fs_devices->num_devices++;
 823
 824		device->fs_devices = fs_devices;
 825		*new_device_added = true;
 826
 827		if (disk_super->label[0])
 828			pr_info(
 829	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 830				disk_super->label, devid, found_transid, path,
 831				current->comm, task_pid_nr(current));
 832		else
 833			pr_info(
 834	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 835				disk_super->fsid, devid, found_transid, path,
 836				current->comm, task_pid_nr(current));
 837
 838	} else if (!device->name || strcmp(device->name->str, path)) {
 839		/*
 840		 * When FS is already mounted.
 841		 * 1. If you are here and if the device->name is NULL that
 842		 *    means this device was missing at time of FS mount.
 843		 * 2. If you are here and if the device->name is different
 844		 *    from 'path' that means either
 845		 *      a. The same device disappeared and reappeared with
 846		 *         different name. or
 847		 *      b. The missing-disk-which-was-replaced, has
 848		 *         reappeared now.
 849		 *
 850		 * We must allow 1 and 2a above. But 2b would be a spurious
 851		 * and unintentional.
 852		 *
 853		 * Further in case of 1 and 2a above, the disk at 'path'
 854		 * would have missed some transaction when it was away and
 855		 * in case of 2a the stale bdev has to be updated as well.
 856		 * 2b must not be allowed at all time.
 857		 */
 858
 859		/*
 860		 * For now, we do allow update to btrfs_fs_device through the
 861		 * btrfs dev scan cli after FS has been mounted.  We're still
 862		 * tracking a problem where systems fail mount by subvolume id
 863		 * when we reject replacement on a mounted FS.
 864		 */
 865		if (!fs_devices->opened && found_transid < device->generation) {
 866			/*
 867			 * That is if the FS is _not_ mounted and if you
 868			 * are here, that means there is more than one
 869			 * disk with same uuid and devid.We keep the one
 870			 * with larger generation number or the last-in if
 871			 * generation are equal.
 872			 */
 873			mutex_unlock(&fs_devices->device_list_mutex);
 874			btrfs_err(NULL,
 875"device %s already registered with a higher generation, found %llu expect %llu",
 876				  path, found_transid, device->generation);
 877			return ERR_PTR(-EEXIST);
 878		}
 879
 880		/*
 881		 * We are going to replace the device path for a given devid,
 882		 * make sure it's the same device if the device is mounted
 883		 *
 884		 * NOTE: the device->fs_info may not be reliable here so pass
 885		 * in a NULL to message helpers instead. This avoids a possible
 886		 * use-after-free when the fs_info and fs_info->sb are already
 887		 * torn down.
 888		 */
 889		if (device->bdev) {
 890			if (device->devt != path_devt) {
 891				mutex_unlock(&fs_devices->device_list_mutex);
 892				btrfs_warn_in_rcu(NULL,
 893	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 894						  path, devid, found_transid,
 895						  current->comm,
 896						  task_pid_nr(current));
 897				return ERR_PTR(-EEXIST);
 898			}
 899			btrfs_info_in_rcu(NULL,
 900	"devid %llu device path %s changed to %s scanned by %s (%d)",
 901					  devid, btrfs_dev_name(device),
 902					  path, current->comm,
 903					  task_pid_nr(current));
 904		}
 905
 906		name = rcu_string_strdup(path, GFP_NOFS);
 907		if (!name) {
 908			mutex_unlock(&fs_devices->device_list_mutex);
 909			return ERR_PTR(-ENOMEM);
 910		}
 911		rcu_string_free(device->name);
 912		rcu_assign_pointer(device->name, name);
 913		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 914			fs_devices->missing_devices--;
 915			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 916		}
 917		device->devt = path_devt;
 918	}
 919
 920	/*
 921	 * Unmount does not free the btrfs_device struct but would zero
 922	 * generation along with most of the other members. So just update
 923	 * it back. We need it to pick the disk with largest generation
 924	 * (as above).
 925	 */
 926	if (!fs_devices->opened) {
 927		device->generation = found_transid;
 928		fs_devices->latest_generation = max_t(u64, found_transid,
 929						fs_devices->latest_generation);
 930	}
 931
 932	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 933
 934	mutex_unlock(&fs_devices->device_list_mutex);
 935	return device;
 936}
 937
 938static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 939{
 940	struct btrfs_fs_devices *fs_devices;
 941	struct btrfs_device *device;
 942	struct btrfs_device *orig_dev;
 943	int ret = 0;
 944
 945	lockdep_assert_held(&uuid_mutex);
 946
 947	fs_devices = alloc_fs_devices(orig->fsid);
 948	if (IS_ERR(fs_devices))
 949		return fs_devices;
 950
 951	fs_devices->total_devices = orig->total_devices;
 
 
 
 
 
 
 952
 
 953	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 954		const char *dev_path = NULL;
 
 
 
 
 955
 956		/*
 957		 * This is ok to do without RCU read locked because we hold the
 958		 * uuid mutex so nothing we touch in here is going to disappear.
 959		 */
 960		if (orig_dev->name)
 961			dev_path = orig_dev->name->str;
 962
 963		device = btrfs_alloc_device(NULL, &orig_dev->devid,
 964					    orig_dev->uuid, dev_path);
 965		if (IS_ERR(device)) {
 966			ret = PTR_ERR(device);
 967			goto error;
 968		}
 
 969
 970		if (orig_dev->zone_info) {
 971			struct btrfs_zoned_device_info *zone_info;
 972
 973			zone_info = btrfs_clone_dev_zone_info(orig_dev);
 974			if (!zone_info) {
 975				btrfs_free_device(device);
 976				ret = -ENOMEM;
 977				goto error;
 978			}
 979			device->zone_info = zone_info;
 980		}
 981
 982		list_add(&device->dev_list, &fs_devices->devices);
 983		device->fs_devices = fs_devices;
 984		fs_devices->num_devices++;
 985	}
 986	return fs_devices;
 987error:
 988	free_fs_devices(fs_devices);
 989	return ERR_PTR(ret);
 990}
 991
 992static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
 993				      struct btrfs_device **latest_dev)
 994{
 995	struct btrfs_device *device, *next;
 996
 
 
 
 
 
 
 997	/* This is the initialized path, it is safe to release the devices. */
 998	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 999		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001				      &device->dev_state) &&
1002			    !test_bit(BTRFS_DEV_STATE_MISSING,
1003				      &device->dev_state) &&
1004			    (!*latest_dev ||
1005			     device->generation > (*latest_dev)->generation)) {
1006				*latest_dev = device;
1007			}
1008			continue;
1009		}
1010
1011		/*
1012		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013		 * in btrfs_init_dev_replace() so just continue.
1014		 */
1015		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016			continue;
1017
1018		if (device->bdev_handle) {
1019			bdev_release(device->bdev_handle);
1020			device->bdev = NULL;
1021			device->bdev_handle = NULL;
1022			fs_devices->open_devices--;
1023		}
1024		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025			list_del_init(&device->dev_alloc_list);
1026			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027			fs_devices->rw_devices--;
1028		}
1029		list_del_init(&device->dev_list);
1030		fs_devices->num_devices--;
1031		btrfs_free_device(device);
 
1032	}
1033
1034}
1035
1036/*
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1039 */
1040void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1041{
1042	struct btrfs_device *latest_dev = NULL;
1043	struct btrfs_fs_devices *seed_dev;
1044
1045	mutex_lock(&uuid_mutex);
1046	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1047
1048	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1050
1051	fs_devices->latest_dev = latest_dev;
 
 
1052
1053	mutex_unlock(&uuid_mutex);
1054}
1055
1056static void btrfs_close_bdev(struct btrfs_device *device)
1057{
1058	if (!device->bdev)
1059		return;
1060
1061	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062		sync_blockdev(device->bdev);
1063		invalidate_bdev(device->bdev);
1064	}
1065
1066	bdev_release(device->bdev_handle);
 
1067}
1068
1069static void btrfs_close_one_device(struct btrfs_device *device)
1070{
1071	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1072
1073	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075		list_del_init(&device->dev_alloc_list);
1076		fs_devices->rw_devices--;
1077	}
1078
1079	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081
1082	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084		fs_devices->missing_devices--;
1085	}
1086
1087	btrfs_close_bdev(device);
1088	if (device->bdev) {
1089		fs_devices->open_devices--;
1090		device->bdev = NULL;
1091	}
1092	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093	btrfs_destroy_dev_zone_info(device);
1094
1095	device->fs_info = NULL;
1096	atomic_set(&device->dev_stats_ccnt, 0);
1097	extent_io_tree_release(&device->alloc_state);
1098
1099	/*
1100	 * Reset the flush error record. We might have a transient flush error
1101	 * in this mount, and if so we aborted the current transaction and set
1102	 * the fs to an error state, guaranteeing no super blocks can be further
1103	 * committed. However that error might be transient and if we unmount the
1104	 * filesystem and mount it again, we should allow the mount to succeed
1105	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106	 * filesystem again we still get flush errors, then we will again abort
1107	 * any transaction and set the error state, guaranteeing no commits of
1108	 * unsafe super blocks.
1109	 */
1110	device->last_flush_error = 0;
1111
1112	/* Verify the device is back in a pristine state  */
1113	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115	WARN_ON(!list_empty(&device->dev_alloc_list));
1116	WARN_ON(!list_empty(&device->post_commit_list));
1117}
1118
1119static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1120{
1121	struct btrfs_device *device, *tmp;
 
1122
1123	lockdep_assert_held(&uuid_mutex);
 
1124
1125	if (--fs_devices->opened > 0)
1126		return;
 
 
 
 
 
 
 
 
 
 
 
1127
1128	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129		btrfs_close_one_device(device);
 
1130
1131	WARN_ON(fs_devices->open_devices);
1132	WARN_ON(fs_devices->rw_devices);
1133	fs_devices->opened = 0;
1134	fs_devices->seeding = false;
1135	fs_devices->fs_info = NULL;
 
1136}
1137
1138void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1139{
1140	LIST_HEAD(list);
1141	struct btrfs_fs_devices *tmp;
1142
1143	mutex_lock(&uuid_mutex);
1144	close_fs_devices(fs_devices);
1145	if (!fs_devices->opened) {
1146		list_splice_init(&fs_devices->seed_list, &list);
1147
1148		/*
1149		 * If the struct btrfs_fs_devices is not assembled with any
1150		 * other device, it can be re-initialized during the next mount
1151		 * without the needing device-scan step. Therefore, it can be
1152		 * fully freed.
1153		 */
1154		if (fs_devices->num_devices == 1) {
1155			list_del(&fs_devices->fs_list);
1156			free_fs_devices(fs_devices);
1157		}
1158	}
 
1159
1160
1161	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162		close_fs_devices(fs_devices);
1163		list_del(&fs_devices->seed_list);
1164		free_fs_devices(fs_devices);
1165	}
1166	mutex_unlock(&uuid_mutex);
1167}
1168
1169static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170				blk_mode_t flags, void *holder)
1171{
 
 
 
1172	struct btrfs_device *device;
1173	struct btrfs_device *latest_dev = NULL;
1174	struct btrfs_device *tmp_device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175
1176	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177				 dev_list) {
1178		int ret;
1179
1180		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181		if (ret == 0 &&
1182		    (!latest_dev || device->generation > latest_dev->generation)) {
1183			latest_dev = device;
1184		} else if (ret == -ENODATA) {
1185			fs_devices->num_devices--;
1186			list_del(&device->dev_list);
1187			btrfs_free_device(device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188		}
1189	}
1190	if (fs_devices->open_devices == 0)
1191		return -EINVAL;
1192
1193	fs_devices->opened = 1;
1194	fs_devices->latest_dev = latest_dev;
1195	fs_devices->total_rw_bytes = 0;
1196	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
 
1198
1199	return 0;
1200}
 
 
 
1201
1202static int devid_cmp(void *priv, const struct list_head *a,
1203		     const struct list_head *b)
1204{
1205	const struct btrfs_device *dev1, *dev2;
1206
1207	dev1 = list_entry(a, struct btrfs_device, dev_list);
1208	dev2 = list_entry(b, struct btrfs_device, dev_list);
1209
1210	if (dev1->devid < dev2->devid)
1211		return -1;
1212	else if (dev1->devid > dev2->devid)
1213		return 1;
1214	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215}
1216
1217int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218		       blk_mode_t flags, void *holder)
1219{
1220	int ret;
1221
1222	lockdep_assert_held(&uuid_mutex);
1223	/*
1224	 * The device_list_mutex cannot be taken here in case opening the
1225	 * underlying device takes further locks like open_mutex.
1226	 *
1227	 * We also don't need the lock here as this is called during mount and
1228	 * exclusion is provided by uuid_mutex
1229	 */
1230
1231	if (fs_devices->opened) {
1232		fs_devices->opened++;
1233		ret = 0;
1234	} else {
1235		list_sort(NULL, &fs_devices->devices, devid_cmp);
1236		ret = open_fs_devices(fs_devices, flags, holder);
1237	}
1238
1239	return ret;
1240}
1241
1242void btrfs_release_disk_super(struct btrfs_super_block *super)
1243{
1244	struct page *page = virt_to_page(super);
1245
1246	put_page(page);
1247}
1248
1249static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250						       u64 bytenr, u64 bytenr_orig)
1251{
1252	struct btrfs_super_block *disk_super;
1253	struct page *page;
1254	void *p;
1255	pgoff_t index;
1256
1257	/* make sure our super fits in the device */
1258	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259		return ERR_PTR(-EINVAL);
1260
1261	/* make sure our super fits in the page */
1262	if (sizeof(*disk_super) > PAGE_SIZE)
1263		return ERR_PTR(-EINVAL);
1264
1265	/* make sure our super doesn't straddle pages on disk */
1266	index = bytenr >> PAGE_SHIFT;
1267	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268		return ERR_PTR(-EINVAL);
1269
1270	/* pull in the page with our super */
1271	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1272
1273	if (IS_ERR(page))
1274		return ERR_CAST(page);
1275
1276	p = page_address(page);
1277
1278	/* align our pointer to the offset of the super block */
1279	disk_super = p + offset_in_page(bytenr);
1280
1281	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283		btrfs_release_disk_super(p);
1284		return ERR_PTR(-EINVAL);
1285	}
1286
1287	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1289
1290	return disk_super;
1291}
1292
1293int btrfs_forget_devices(dev_t devt)
1294{
1295	int ret;
1296
1297	mutex_lock(&uuid_mutex);
1298	ret = btrfs_free_stale_devices(devt, NULL);
1299	mutex_unlock(&uuid_mutex);
1300
1301	return ret;
1302}
1303
1304/*
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
1307 * is read via pagecache.
1308 *
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1311 * in both cases.
1312 */
1313struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314					   bool mount_arg_dev)
1315{
1316	struct btrfs_super_block *disk_super;
1317	bool new_device_added = false;
1318	struct btrfs_device *device = NULL;
1319	struct bdev_handle *bdev_handle;
1320	u64 bytenr, bytenr_orig;
1321	int ret;
 
 
1322
1323	lockdep_assert_held(&uuid_mutex);
1324
1325	/*
1326	 * we would like to check all the supers, but that would make
1327	 * a btrfs mount succeed after a mkfs from a different FS.
1328	 * So, we need to add a special mount option to scan for
1329	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330	 */
1331
1332	/*
1333	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334	 * device scan which may race with the user's mount or mkfs command,
1335	 * resulting in failure.
1336	 * Since the device scan is solely for reading purposes, there is no
1337	 * need for an exclusive open. Additionally, the devices are read again
1338	 * during the mount process. It is ok to get some inconsistent
1339	 * values temporarily, as the device paths of the fsid are the only
1340	 * required information for assembling the volume.
1341	 */
1342	bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1343	if (IS_ERR(bdev_handle))
1344		return ERR_CAST(bdev_handle);
1345
1346	bytenr_orig = btrfs_sb_offset(0);
1347	ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1348	if (ret) {
1349		device = ERR_PTR(ret);
1350		goto error_bdev_put;
1351	}
1352
1353	disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1354					   bytenr_orig);
1355	if (IS_ERR(disk_super)) {
1356		device = ERR_CAST(disk_super);
1357		goto error_bdev_put;
1358	}
1359
1360	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362		dev_t devt;
1363
1364		ret = lookup_bdev(path, &devt);
1365		if (ret)
1366			btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367				   path, ret);
1368		else
1369			btrfs_free_stale_devices(devt, NULL);
1370
1371		pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372		device = NULL;
1373		goto free_disk_super;
1374	}
 
 
 
 
 
 
 
 
 
 
1375
1376	device = device_list_add(path, disk_super, &new_device_added);
1377	if (!IS_ERR(device) && new_device_added)
1378		btrfs_free_stale_devices(device->devt, device);
1379
1380free_disk_super:
1381	btrfs_release_disk_super(disk_super);
1382
1383error_bdev_put:
1384	bdev_release(bdev_handle);
1385
1386	return device;
1387}
1388
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394				    u64 len)
1395{
1396	u64 physical_start, physical_end;
1397
1398	lockdep_assert_held(&device->fs_info->chunk_mutex);
1399
1400	if (find_first_extent_bit(&device->alloc_state, *start,
1401				  &physical_start, &physical_end,
1402				  CHUNK_ALLOCATED, NULL)) {
 
1403
1404		if (in_range(physical_start, *start, len) ||
1405		    in_range(*start, physical_start,
1406			     physical_end - physical_start)) {
1407			*start = physical_end + 1;
1408			return true;
1409		}
1410	}
1411	return false;
1412}
1413
1414static u64 dev_extent_search_start(struct btrfs_device *device)
1415{
1416	switch (device->fs_devices->chunk_alloc_policy) {
1417	case BTRFS_CHUNK_ALLOC_REGULAR:
1418		return BTRFS_DEVICE_RANGE_RESERVED;
1419	case BTRFS_CHUNK_ALLOC_ZONED:
1420		/*
1421		 * We don't care about the starting region like regular
1422		 * allocator, because we anyway use/reserve the first two zones
1423		 * for superblock logging.
1424		 */
1425		return 0;
1426	default:
1427		BUG();
1428	}
1429}
1430
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432					u64 *hole_start, u64 *hole_size,
1433					u64 num_bytes)
1434{
1435	u64 zone_size = device->zone_info->zone_size;
1436	u64 pos;
1437	int ret;
1438	bool changed = false;
1439
1440	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442	while (*hole_size > 0) {
1443		pos = btrfs_find_allocatable_zones(device, *hole_start,
1444						   *hole_start + *hole_size,
1445						   num_bytes);
1446		if (pos != *hole_start) {
1447			*hole_size = *hole_start + *hole_size - pos;
1448			*hole_start = pos;
1449			changed = true;
1450			if (*hole_size < num_bytes)
1451				break;
1452		}
1453
1454		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
 
 
 
 
 
 
 
1455
1456		/* Range is ensured to be empty */
1457		if (!ret)
1458			return changed;
 
 
 
 
 
 
1459
1460		/* Given hole range was invalid (outside of device) */
1461		if (ret == -ERANGE) {
1462			*hole_start += *hole_size;
1463			*hole_size = 0;
1464			return true;
1465		}
 
1466
1467		*hole_start += zone_size;
1468		*hole_size -= zone_size;
1469		changed = true;
1470	}
1471
1472	return changed;
1473}
1474
1475/*
1476 * Check if specified hole is suitable for allocation.
1477 *
1478 * @device:	the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size:	the size of the hole
1481 * @num_bytes:	the size of the free space that we need
1482 *
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
1486static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487				  u64 *hole_size, u64 num_bytes)
1488{
1489	bool changed = false;
1490	u64 hole_end = *hole_start + *hole_size;
1491
1492	for (;;) {
1493		/*
1494		 * Check before we set max_hole_start, otherwise we could end up
1495		 * sending back this offset anyway.
1496		 */
1497		if (contains_pending_extent(device, hole_start, *hole_size)) {
1498			if (hole_end >= *hole_start)
1499				*hole_size = hole_end - *hole_start;
1500			else
1501				*hole_size = 0;
1502			changed = true;
1503		}
1504
1505		switch (device->fs_devices->chunk_alloc_policy) {
1506		case BTRFS_CHUNK_ALLOC_REGULAR:
1507			/* No extra check */
 
 
1508			break;
1509		case BTRFS_CHUNK_ALLOC_ZONED:
1510			if (dev_extent_hole_check_zoned(device, hole_start,
1511							hole_size, num_bytes)) {
1512				changed = true;
1513				/*
1514				 * The changed hole can contain pending extent.
1515				 * Loop again to check that.
1516				 */
1517				continue;
1518			}
1519			break;
1520		default:
1521			BUG();
1522		}
1523
1524		break;
 
1525	}
1526
1527	return changed;
 
 
1528}
1529
1530/*
1531 * Find free space in the specified device.
1532 *
1533 * @device:	  the device which we search the free space in
1534 * @num_bytes:	  the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start:	  store the start of the free space.
1537 * @len:	  the size of the free space. that we find, or the size
1538 *		  of the max free space if we don't find suitable free space
1539 *
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1556 */
1557static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558				u64 *start, u64 *len)
1559{
1560	struct btrfs_fs_info *fs_info = device->fs_info;
1561	struct btrfs_root *root = fs_info->dev_root;
1562	struct btrfs_key key;
 
1563	struct btrfs_dev_extent *dev_extent;
1564	struct btrfs_path *path;
1565	u64 search_start;
1566	u64 hole_size;
1567	u64 max_hole_start;
1568	u64 max_hole_size = 0;
1569	u64 extent_end;
 
1570	u64 search_end = device->total_bytes;
1571	int ret;
1572	int slot;
1573	struct extent_buffer *l;
1574
1575	search_start = dev_extent_search_start(device);
 
 
 
 
 
 
1576	max_hole_start = search_start;
 
 
1577
1578	WARN_ON(device->zone_info &&
1579		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
 
 
1580
1581	path = btrfs_alloc_path();
1582	if (!path) {
1583		ret = -ENOMEM;
1584		goto out;
1585	}
1586again:
1587	if (search_start >= search_end ||
1588		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589		ret = -ENOSPC;
1590		goto out;
1591	}
1592
1593	path->reada = READA_FORWARD;
1594	path->search_commit_root = 1;
1595	path->skip_locking = 1;
1596
1597	key.objectid = device->devid;
1598	key.offset = search_start;
1599	key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601	ret = btrfs_search_backwards(root, &key, path);
1602	if (ret < 0)
1603		goto out;
 
 
 
 
 
1604
1605	while (search_start < search_end) {
1606		l = path->nodes[0];
1607		slot = path->slots[0];
1608		if (slot >= btrfs_header_nritems(l)) {
1609			ret = btrfs_next_leaf(root, path);
1610			if (ret == 0)
1611				continue;
1612			if (ret < 0)
1613				goto out;
1614
1615			break;
1616		}
1617		btrfs_item_key_to_cpu(l, &key, slot);
1618
1619		if (key.objectid < device->devid)
1620			goto next;
1621
1622		if (key.objectid > device->devid)
1623			break;
1624
1625		if (key.type != BTRFS_DEV_EXTENT_KEY)
1626			goto next;
1627
1628		if (key.offset > search_end)
1629			break;
1630
1631		if (key.offset > search_start) {
1632			hole_size = key.offset - search_start;
1633			dev_extent_hole_check(device, &search_start, &hole_size,
1634					      num_bytes);
1635
1636			if (hole_size > max_hole_size) {
1637				max_hole_start = search_start;
1638				max_hole_size = hole_size;
1639			}
1640
1641			/*
1642			 * If this free space is greater than which we need,
1643			 * it must be the max free space that we have found
1644			 * until now, so max_hole_start must point to the start
1645			 * of this free space and the length of this free space
1646			 * is stored in max_hole_size. Thus, we return
1647			 * max_hole_start and max_hole_size and go back to the
1648			 * caller.
1649			 */
1650			if (hole_size >= num_bytes) {
1651				ret = 0;
1652				goto out;
1653			}
1654		}
1655
1656		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657		extent_end = key.offset + btrfs_dev_extent_length(l,
1658								  dev_extent);
1659		if (extent_end > search_start)
1660			search_start = extent_end;
1661next:
1662		path->slots[0]++;
1663		cond_resched();
1664	}
1665
1666	/*
1667	 * At this point, search_start should be the end of
1668	 * allocated dev extents, and when shrinking the device,
1669	 * search_end may be smaller than search_start.
1670	 */
1671	if (search_end > search_start) {
1672		hole_size = search_end - search_start;
1673		if (dev_extent_hole_check(device, &search_start, &hole_size,
1674					  num_bytes)) {
1675			btrfs_release_path(path);
1676			goto again;
1677		}
1678
1679		if (hole_size > max_hole_size) {
1680			max_hole_start = search_start;
1681			max_hole_size = hole_size;
1682		}
1683	}
1684
1685	/* See above. */
1686	if (max_hole_size < num_bytes)
1687		ret = -ENOSPC;
1688	else
1689		ret = 0;
1690
1691	ASSERT(max_hole_start + max_hole_size <= search_end);
1692out:
1693	btrfs_free_path(path);
 
1694	*start = max_hole_start;
1695	if (len)
1696		*len = max_hole_size;
1697	return ret;
1698}
1699
1700static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701			  struct btrfs_device *device,
1702			  u64 start, u64 *dev_extent_len)
1703{
1704	struct btrfs_fs_info *fs_info = device->fs_info;
1705	struct btrfs_root *root = fs_info->dev_root;
1706	int ret;
1707	struct btrfs_path *path;
 
1708	struct btrfs_key key;
1709	struct btrfs_key found_key;
1710	struct extent_buffer *leaf = NULL;
1711	struct btrfs_dev_extent *extent = NULL;
1712
1713	path = btrfs_alloc_path();
1714	if (!path)
1715		return -ENOMEM;
1716
1717	key.objectid = device->devid;
1718	key.offset = start;
1719	key.type = BTRFS_DEV_EXTENT_KEY;
1720again:
1721	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1722	if (ret > 0) {
1723		ret = btrfs_previous_item(root, path, key.objectid,
1724					  BTRFS_DEV_EXTENT_KEY);
1725		if (ret)
1726			goto out;
1727		leaf = path->nodes[0];
1728		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729		extent = btrfs_item_ptr(leaf, path->slots[0],
1730					struct btrfs_dev_extent);
1731		BUG_ON(found_key.offset > start || found_key.offset +
1732		       btrfs_dev_extent_length(leaf, extent) < start);
1733		key = found_key;
1734		btrfs_release_path(path);
1735		goto again;
1736	} else if (ret == 0) {
1737		leaf = path->nodes[0];
1738		extent = btrfs_item_ptr(leaf, path->slots[0],
1739					struct btrfs_dev_extent);
1740	} else {
 
1741		goto out;
1742	}
1743
1744	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745
 
 
 
 
 
1746	ret = btrfs_del_item(trans, root, path);
1747	if (ret == 0)
1748		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
 
 
1749out:
1750	btrfs_free_path(path);
1751	return ret;
1752}
1753
1754static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
 
 
 
1755{
1756	struct rb_node *n;
1757	u64 ret = 0;
 
 
 
 
1758
1759	read_lock(&fs_info->mapping_tree_lock);
1760	n = rb_last(&fs_info->mapping_tree.rb_root);
1761	if (n) {
1762		struct btrfs_chunk_map *map;
1763
1764		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765		ret = map->start + map->chunk_len;
1766	}
1767	read_unlock(&fs_info->mapping_tree_lock);
 
 
 
1768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769	return ret;
1770}
1771
1772static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773				    u64 *devid_ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774{
1775	int ret;
1776	struct btrfs_key key;
1777	struct btrfs_key found_key;
1778	struct btrfs_path *path;
1779
 
 
1780	path = btrfs_alloc_path();
1781	if (!path)
1782		return -ENOMEM;
1783
1784	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785	key.type = BTRFS_DEV_ITEM_KEY;
1786	key.offset = (u64)-1;
1787
1788	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1789	if (ret < 0)
1790		goto error;
1791
1792	if (ret == 0) {
1793		/* Corruption */
1794		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795		ret = -EUCLEAN;
1796		goto error;
1797	}
1798
1799	ret = btrfs_previous_item(fs_info->chunk_root, path,
1800				  BTRFS_DEV_ITEMS_OBJECTID,
1801				  BTRFS_DEV_ITEM_KEY);
1802	if (ret) {
1803		*devid_ret = 1;
1804	} else {
1805		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806				      path->slots[0]);
1807		*devid_ret = found_key.offset + 1;
1808	}
1809	ret = 0;
1810error:
1811	btrfs_free_path(path);
1812	return ret;
1813}
1814
1815/*
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1818 */
1819static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820			    struct btrfs_device *device)
 
1821{
1822	int ret;
1823	struct btrfs_path *path;
1824	struct btrfs_dev_item *dev_item;
1825	struct extent_buffer *leaf;
1826	struct btrfs_key key;
1827	unsigned long ptr;
1828
 
 
1829	path = btrfs_alloc_path();
1830	if (!path)
1831		return -ENOMEM;
1832
1833	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834	key.type = BTRFS_DEV_ITEM_KEY;
1835	key.offset = device->devid;
1836
1837	btrfs_reserve_chunk_metadata(trans, true);
1838	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839				      &key, sizeof(*dev_item));
1840	btrfs_trans_release_chunk_metadata(trans);
1841	if (ret)
1842		goto out;
1843
1844	leaf = path->nodes[0];
1845	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846
1847	btrfs_set_device_id(leaf, dev_item, device->devid);
1848	btrfs_set_device_generation(leaf, dev_item, 0);
1849	btrfs_set_device_type(leaf, dev_item, device->type);
1850	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853	btrfs_set_device_total_bytes(leaf, dev_item,
1854				     btrfs_device_get_disk_total_bytes(device));
1855	btrfs_set_device_bytes_used(leaf, dev_item,
1856				    btrfs_device_get_bytes_used(device));
1857	btrfs_set_device_group(leaf, dev_item, 0);
1858	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860	btrfs_set_device_start_offset(leaf, dev_item, 0);
1861
1862	ptr = btrfs_device_uuid(dev_item);
1863	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864	ptr = btrfs_device_fsid(dev_item);
1865	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866			    ptr, BTRFS_FSID_SIZE);
1867	btrfs_mark_buffer_dirty(trans, leaf);
1868
1869	ret = 0;
1870out:
1871	btrfs_free_path(path);
1872	return ret;
1873}
1874
1875/*
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
1878 *
1879 * We don't care about errors here, this is just to be kind to userspace.
1880 */
1881static void update_dev_time(const char *device_path)
1882{
1883	struct path path;
1884	int ret;
1885
1886	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887	if (ret)
1888		return;
1889
1890	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1891	path_put(&path);
1892}
1893
1894static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895			     struct btrfs_device *device)
1896{
1897	struct btrfs_root *root = device->fs_info->chunk_root;
1898	int ret;
1899	struct btrfs_path *path;
1900	struct btrfs_key key;
 
 
 
1901
1902	path = btrfs_alloc_path();
1903	if (!path)
1904		return -ENOMEM;
1905
 
 
 
 
 
1906	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907	key.type = BTRFS_DEV_ITEM_KEY;
1908	key.offset = device->devid;
 
1909
1910	btrfs_reserve_chunk_metadata(trans, false);
1911	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912	btrfs_trans_release_chunk_metadata(trans);
1913	if (ret) {
1914		if (ret > 0)
1915			ret = -ENOENT;
 
1916		goto out;
1917	}
1918
1919	ret = btrfs_del_item(trans, root, path);
 
 
1920out:
1921	btrfs_free_path(path);
 
 
1922	return ret;
1923}
1924
1925/*
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1928 * replace.
1929 */
1930static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931		u64 num_devices)
1932{
1933	u64 all_avail;
1934	unsigned seq;
1935	int i;
1936
1937	do {
1938		seq = read_seqbegin(&fs_info->profiles_lock);
1939
1940		all_avail = fs_info->avail_data_alloc_bits |
1941			    fs_info->avail_system_alloc_bits |
1942			    fs_info->avail_metadata_alloc_bits;
1943	} while (read_seqretry(&fs_info->profiles_lock, seq));
1944
1945	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1947			continue;
1948
1949		if (num_devices < btrfs_raid_array[i].devs_min)
1950			return btrfs_raid_array[i].mindev_error;
1951	}
1952
1953	return 0;
1954}
1955
1956static struct btrfs_device * btrfs_find_next_active_device(
1957		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1958{
 
1959	struct btrfs_device *next_device;
1960
1961	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962		if (next_device != device &&
1963		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964		    && next_device->bdev)
1965			return next_device;
1966	}
1967
1968	return NULL;
1969}
1970
1971/*
1972 * Helper function to check if the given device is part of s_bdev / latest_dev
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1976 */
1977void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978					    struct btrfs_device *next_device)
1979{
1980	struct btrfs_fs_info *fs_info = device->fs_info;
1981
1982	if (!next_device)
1983		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1984							    device);
1985	ASSERT(next_device);
1986
1987	if (fs_info->sb->s_bdev &&
1988			(fs_info->sb->s_bdev == device->bdev))
1989		fs_info->sb->s_bdev = next_device->bdev;
1990
1991	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992		fs_info->fs_devices->latest_dev = next_device;
1993}
1994
1995/*
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1998 */
1999static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000{
2001	u64 num_devices = fs_info->fs_devices->num_devices;
2002
2003	down_read(&fs_info->dev_replace.rwsem);
2004	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005		ASSERT(num_devices > 1);
2006		num_devices--;
2007	}
2008	up_read(&fs_info->dev_replace.rwsem);
2009
2010	return num_devices;
2011}
2012
2013static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014				     struct block_device *bdev, int copy_num)
2015{
2016	struct btrfs_super_block *disk_super;
2017	const size_t len = sizeof(disk_super->magic);
2018	const u64 bytenr = btrfs_sb_offset(copy_num);
2019	int ret;
2020
2021	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022	if (IS_ERR(disk_super))
2023		return;
2024
2025	memset(&disk_super->magic, 0, len);
2026	folio_mark_dirty(virt_to_folio(disk_super));
2027	btrfs_release_disk_super(disk_super);
2028
2029	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2030	if (ret)
2031		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032			copy_num, ret);
2033}
2034
2035void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036			       struct block_device *bdev,
2037			       const char *device_path)
2038{
2039	int copy_num;
2040
2041	if (!bdev)
2042		return;
2043
2044	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045		if (bdev_is_zoned(bdev))
2046			btrfs_reset_sb_log_zones(bdev, copy_num);
2047		else
2048			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2049	}
2050
2051	/* Notify udev that device has changed */
2052	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053
2054	/* Update ctime/mtime for device path for libblkid */
2055	update_dev_time(device_path);
2056}
2057
2058int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059		    struct btrfs_dev_lookup_args *args,
2060		    struct bdev_handle **bdev_handle)
2061{
2062	struct btrfs_trans_handle *trans;
2063	struct btrfs_device *device;
2064	struct btrfs_fs_devices *cur_devices;
2065	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 
2066	u64 num_devices;
 
2067	int ret = 0;
 
2068
2069	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071		return -EINVAL;
 
 
 
 
 
 
 
 
 
2072	}
2073
2074	/*
2075	 * The device list in fs_devices is accessed without locks (neither
2076	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077	 * filesystem and another device rm cannot run.
2078	 */
2079	num_devices = btrfs_num_devices(fs_info);
 
2080
2081	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2082	if (ret)
2083		return ret;
2084
2085	device = btrfs_find_device(fs_info->fs_devices, args);
2086	if (!device) {
2087		if (args->missing)
2088			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090			ret = -ENOENT;
2091		return ret;
 
2092	}
2093
2094	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095		btrfs_warn_in_rcu(fs_info,
2096		  "cannot remove device %s (devid %llu) due to active swapfile",
2097				  btrfs_dev_name(device), device->devid);
2098		return -ETXTBSY;
2099	}
2100
2101	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102		return BTRFS_ERROR_DEV_TGT_REPLACE;
2103
2104	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105	    fs_info->fs_devices->rw_devices == 1)
2106		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2107
2108	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109		mutex_lock(&fs_info->chunk_mutex);
2110		list_del_init(&device->dev_alloc_list);
2111		device->fs_devices->rw_devices--;
2112		mutex_unlock(&fs_info->chunk_mutex);
 
2113	}
2114
2115	ret = btrfs_shrink_device(device, 0);
2116	if (ret)
2117		goto error_undo;
2118
2119	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120	if (IS_ERR(trans)) {
2121		ret = PTR_ERR(trans);
2122		goto error_undo;
2123	}
2124
2125	ret = btrfs_rm_dev_item(trans, device);
2126	if (ret) {
2127		/* Any error in dev item removal is critical */
2128		btrfs_crit(fs_info,
2129			   "failed to remove device item for devid %llu: %d",
2130			   device->devid, ret);
2131		btrfs_abort_transaction(trans, ret);
2132		btrfs_end_transaction(trans);
2133		return ret;
2134	}
2135
2136	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137	btrfs_scrub_cancel_dev(device);
2138
2139	/*
2140	 * the device list mutex makes sure that we don't change
2141	 * the device list while someone else is writing out all
2142	 * the device supers. Whoever is writing all supers, should
2143	 * lock the device list mutex before getting the number of
2144	 * devices in the super block (super_copy). Conversely,
2145	 * whoever updates the number of devices in the super block
2146	 * (super_copy) should hold the device list mutex.
2147	 */
2148
2149	/*
2150	 * In normal cases the cur_devices == fs_devices. But in case
2151	 * of deleting a seed device, the cur_devices should point to
2152	 * its own fs_devices listed under the fs_devices->seed_list.
2153	 */
2154	cur_devices = device->fs_devices;
2155	mutex_lock(&fs_devices->device_list_mutex);
2156	list_del_rcu(&device->dev_list);
2157
2158	cur_devices->num_devices--;
2159	cur_devices->total_devices--;
2160	/* Update total_devices of the parent fs_devices if it's seed */
2161	if (cur_devices != fs_devices)
2162		fs_devices->total_devices--;
2163
2164	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165		cur_devices->missing_devices--;
2166
2167	btrfs_assign_next_active_device(device, NULL);
 
 
 
 
 
2168
2169	if (device->bdev_handle) {
2170		cur_devices->open_devices--;
2171		/* remove sysfs entry */
2172		btrfs_sysfs_remove_device(device);
2173	}
2174
2175	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177	mutex_unlock(&fs_devices->device_list_mutex);
2178
2179	/*
2180	 * At this point, the device is zero sized and detached from the
2181	 * devices list.  All that's left is to zero out the old supers and
2182	 * free the device.
2183	 *
2184	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185	 * write lock, and bdev_release() will pull in the ->open_mutex on
2186	 * the block device and it's dependencies.  Instead just flush the
2187	 * device and let the caller do the final bdev_release.
2188	 */
2189	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190		btrfs_scratch_superblocks(fs_info, device->bdev,
2191					  device->name->str);
2192		if (device->bdev) {
2193			sync_blockdev(device->bdev);
2194			invalidate_bdev(device->bdev);
2195		}
 
 
 
 
 
 
2196	}
2197
2198	*bdev_handle = device->bdev_handle;
2199	synchronize_rcu();
2200	btrfs_free_device(device);
2201
2202	/*
2203	 * This can happen if cur_devices is the private seed devices list.  We
2204	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205	 * to be held, but in fact we don't need that for the private
2206	 * seed_devices, we can simply decrement cur_devices->opened and then
2207	 * remove it from our list and free the fs_devices.
2208	 */
2209	if (cur_devices->num_devices == 0) {
2210		list_del_init(&cur_devices->seed_list);
2211		ASSERT(cur_devices->opened == 1);
2212		cur_devices->opened--;
2213		free_fs_devices(cur_devices);
 
 
2214	}
2215
2216	ret = btrfs_commit_transaction(trans);
2217
 
 
 
 
 
 
 
2218	return ret;
2219
2220error_undo:
2221	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222		mutex_lock(&fs_info->chunk_mutex);
2223		list_add(&device->dev_alloc_list,
2224			 &fs_devices->alloc_list);
2225		device->fs_devices->rw_devices++;
2226		mutex_unlock(&fs_info->chunk_mutex);
2227	}
2228	return ret;
2229}
2230
2231void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2232{
2233	struct btrfs_fs_devices *fs_devices;
2234
2235	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2236
2237	/*
2238	 * in case of fs with no seed, srcdev->fs_devices will point
2239	 * to fs_devices of fs_info. However when the dev being replaced is
2240	 * a seed dev it will point to the seed's local fs_devices. In short
2241	 * srcdev will have its correct fs_devices in both the cases.
2242	 */
2243	fs_devices = srcdev->fs_devices;
2244
2245	list_del_rcu(&srcdev->dev_list);
2246	list_del(&srcdev->dev_alloc_list);
2247	fs_devices->num_devices--;
2248	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249		fs_devices->missing_devices--;
2250
2251	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252		fs_devices->rw_devices--;
2253
2254	if (srcdev->bdev)
2255		fs_devices->open_devices--;
2256}
2257
2258void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2259{
2260	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2261
2262	mutex_lock(&uuid_mutex);
2263
2264	btrfs_close_bdev(srcdev);
2265	synchronize_rcu();
2266	btrfs_free_device(srcdev);
2267
2268	/* if this is no devs we rather delete the fs_devices */
2269	if (!fs_devices->num_devices) {
2270		/*
2271		 * On a mounted FS, num_devices can't be zero unless it's a
2272		 * seed. In case of a seed device being replaced, the replace
2273		 * target added to the sprout FS, so there will be no more
2274		 * device left under the seed FS.
2275		 */
2276		ASSERT(fs_devices->seeding);
2277
2278		list_del_init(&fs_devices->seed_list);
2279		close_fs_devices(fs_devices);
2280		free_fs_devices(fs_devices);
2281	}
2282	mutex_unlock(&uuid_mutex);
2283}
2284
2285void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2286{
2287	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2288
2289	mutex_lock(&fs_devices->device_list_mutex);
2290
2291	btrfs_sysfs_remove_device(tgtdev);
2292
2293	if (tgtdev->bdev)
2294		fs_devices->open_devices--;
2295
2296	fs_devices->num_devices--;
2297
2298	btrfs_assign_next_active_device(tgtdev, NULL);
2299
2300	list_del_rcu(&tgtdev->dev_list);
2301
2302	mutex_unlock(&fs_devices->device_list_mutex);
2303
2304	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305				  tgtdev->name->str);
2306
2307	btrfs_close_bdev(tgtdev);
2308	synchronize_rcu();
2309	btrfs_free_device(tgtdev);
2310}
2311
2312/*
2313 * Populate args from device at path.
2314 *
2315 * @fs_info:	the filesystem
2316 * @args:	the args to populate
2317 * @path:	the path to the device
2318 *
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks.  The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326 * uuid buffers.
2327 *
2328 * Return: 0 for success, -errno for failure
2329 */
2330int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331				 struct btrfs_dev_lookup_args *args,
2332				 const char *path)
2333{
2334	struct btrfs_super_block *disk_super;
2335	struct bdev_handle *bdev_handle;
2336	int ret;
2337
2338	if (!path || !path[0])
2339		return -EINVAL;
2340	if (!strcmp(path, "missing")) {
2341		args->missing = true;
2342		return 0;
2343	}
2344
2345	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347	if (!args->uuid || !args->fsid) {
2348		btrfs_put_dev_args_from_path(args);
2349		return -ENOMEM;
2350	}
2351
2352	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353				    &bdev_handle, &disk_super);
2354	if (ret) {
2355		btrfs_put_dev_args_from_path(args);
2356		return ret;
2357	}
2358
2359	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363	else
2364		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365	btrfs_release_disk_super(disk_super);
2366	bdev_release(bdev_handle);
2367	return 0;
2368}
2369
2370/*
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
2374 */
2375void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376{
2377	kfree(args->uuid);
2378	kfree(args->fsid);
2379	args->uuid = NULL;
2380	args->fsid = NULL;
2381}
2382
2383struct btrfs_device *btrfs_find_device_by_devspec(
2384		struct btrfs_fs_info *fs_info, u64 devid,
2385		const char *device_path)
2386{
2387	BTRFS_DEV_LOOKUP_ARGS(args);
2388	struct btrfs_device *device;
2389	int ret;
2390
2391	if (devid) {
2392		args.devid = devid;
2393		device = btrfs_find_device(fs_info->fs_devices, &args);
2394		if (!device)
2395			return ERR_PTR(-ENOENT);
2396		return device;
2397	}
2398
2399	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400	if (ret)
2401		return ERR_PTR(ret);
2402	device = btrfs_find_device(fs_info->fs_devices, &args);
2403	btrfs_put_dev_args_from_path(&args);
2404	if (!device)
2405		return ERR_PTR(-ENOENT);
2406	return device;
2407}
2408
2409static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410{
2411	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412	struct btrfs_fs_devices *old_devices;
2413	struct btrfs_fs_devices *seed_devices;
 
 
 
2414
2415	lockdep_assert_held(&uuid_mutex);
2416	if (!fs_devices->seeding)
2417		return ERR_PTR(-EINVAL);
2418
2419	/*
2420	 * Private copy of the seed devices, anchored at
2421	 * fs_info->fs_devices->seed_list
2422	 */
2423	seed_devices = alloc_fs_devices(NULL);
2424	if (IS_ERR(seed_devices))
2425		return seed_devices;
2426
2427	/*
2428	 * It's necessary to retain a copy of the original seed fs_devices in
2429	 * fs_uuids so that filesystems which have been seeded can successfully
2430	 * reference the seed device from open_seed_devices. This also supports
2431	 * multiple fs seed.
2432	 */
2433	old_devices = clone_fs_devices(fs_devices);
2434	if (IS_ERR(old_devices)) {
2435		kfree(seed_devices);
2436		return old_devices;
2437	}
2438
2439	list_add(&old_devices->fs_list, &fs_uuids);
2440
2441	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442	seed_devices->opened = 1;
2443	INIT_LIST_HEAD(&seed_devices->devices);
2444	INIT_LIST_HEAD(&seed_devices->alloc_list);
2445	mutex_init(&seed_devices->device_list_mutex);
2446
2447	return seed_devices;
2448}
2449
2450/*
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2453 */
2454static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455			       struct btrfs_fs_devices *seed_devices)
2456{
2457	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458	struct btrfs_super_block *disk_super = fs_info->super_copy;
2459	struct btrfs_device *device;
2460	u64 super_flags;
2461
2462	/*
2463	 * We are updating the fsid, the thread leading to device_list_add()
2464	 * could race, so uuid_mutex is needed.
2465	 */
2466	lockdep_assert_held(&uuid_mutex);
2467
2468	/*
2469	 * The threads listed below may traverse dev_list but can do that without
2470	 * device_list_mutex:
2471	 * - All device ops and balance - as we are in btrfs_exclop_start.
2472	 * - Various dev_list readers - are using RCU.
2473	 * - btrfs_ioctl_fitrim() - is using RCU.
2474	 *
2475	 * For-read threads as below are using device_list_mutex:
2476	 * - Readonly scrub btrfs_scrub_dev()
2477	 * - Readonly scrub btrfs_scrub_progress()
2478	 * - btrfs_get_dev_stats()
2479	 */
2480	lockdep_assert_held(&fs_devices->device_list_mutex);
2481
2482	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483			      synchronize_rcu);
2484	list_for_each_entry(device, &seed_devices->devices, dev_list)
 
 
 
2485		device->fs_devices = seed_devices;
 
2486
2487	fs_devices->seeding = false;
2488	fs_devices->num_devices = 0;
2489	fs_devices->open_devices = 0;
2490	fs_devices->missing_devices = 0;
2491	fs_devices->rotating = false;
2492	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493
2494	generate_random_uuid(fs_devices->fsid);
2495	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497
2498	super_flags = btrfs_super_flags(disk_super) &
2499		      ~BTRFS_SUPER_FLAG_SEEDING;
2500	btrfs_set_super_flags(disk_super, super_flags);
 
 
2501}
2502
2503/*
2504 * Store the expected generation for seed devices in device items.
2505 */
2506static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
 
2507{
2508	BTRFS_DEV_LOOKUP_ARGS(args);
2509	struct btrfs_fs_info *fs_info = trans->fs_info;
2510	struct btrfs_root *root = fs_info->chunk_root;
2511	struct btrfs_path *path;
2512	struct extent_buffer *leaf;
2513	struct btrfs_dev_item *dev_item;
2514	struct btrfs_device *device;
2515	struct btrfs_key key;
2516	u8 fs_uuid[BTRFS_FSID_SIZE];
2517	u8 dev_uuid[BTRFS_UUID_SIZE];
 
2518	int ret;
2519
2520	path = btrfs_alloc_path();
2521	if (!path)
2522		return -ENOMEM;
2523
 
2524	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525	key.offset = 0;
2526	key.type = BTRFS_DEV_ITEM_KEY;
2527
2528	while (1) {
2529		btrfs_reserve_chunk_metadata(trans, false);
2530		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531		btrfs_trans_release_chunk_metadata(trans);
2532		if (ret < 0)
2533			goto error;
2534
2535		leaf = path->nodes[0];
2536next_slot:
2537		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538			ret = btrfs_next_leaf(root, path);
2539			if (ret > 0)
2540				break;
2541			if (ret < 0)
2542				goto error;
2543			leaf = path->nodes[0];
2544			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545			btrfs_release_path(path);
2546			continue;
2547		}
2548
2549		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551		    key.type != BTRFS_DEV_ITEM_KEY)
2552			break;
2553
2554		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555					  struct btrfs_dev_item);
2556		args.devid = btrfs_device_id(leaf, dev_item);
2557		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
 
2558				   BTRFS_UUID_SIZE);
2559		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560				   BTRFS_FSID_SIZE);
2561		args.uuid = dev_uuid;
2562		args.fsid = fs_uuid;
2563		device = btrfs_find_device(fs_info->fs_devices, &args);
2564		BUG_ON(!device); /* Logic error */
2565
2566		if (device->fs_devices->seeding) {
2567			btrfs_set_device_generation(leaf, dev_item,
2568						    device->generation);
2569			btrfs_mark_buffer_dirty(trans, leaf);
2570		}
2571
2572		path->slots[0]++;
2573		goto next_slot;
2574	}
2575	ret = 0;
2576error:
2577	btrfs_free_path(path);
2578	return ret;
2579}
2580
2581int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582{
2583	struct btrfs_root *root = fs_info->dev_root;
2584	struct btrfs_trans_handle *trans;
2585	struct btrfs_device *device;
2586	struct bdev_handle *bdev_handle;
2587	struct super_block *sb = fs_info->sb;
2588	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589	struct btrfs_fs_devices *seed_devices = NULL;
2590	u64 orig_super_total_bytes;
2591	u64 orig_super_num_devices;
2592	int ret = 0;
2593	bool seeding_dev = false;
2594	bool locked = false;
2595
2596	if (sb_rdonly(sb) && !fs_devices->seeding)
2597		return -EROFS;
2598
2599	bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2600					fs_info->bdev_holder, NULL);
2601	if (IS_ERR(bdev_handle))
2602		return PTR_ERR(bdev_handle);
2603
2604	if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2605		ret = -EINVAL;
2606		goto error;
2607	}
2608
2609	if (fs_devices->seeding) {
2610		seeding_dev = true;
2611		down_write(&sb->s_umount);
2612		mutex_lock(&uuid_mutex);
2613		locked = true;
2614	}
2615
2616	sync_blockdev(bdev_handle->bdev);
2617
2618	rcu_read_lock();
2619	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620		if (device->bdev == bdev_handle->bdev) {
 
 
 
 
2621			ret = -EEXIST;
2622			rcu_read_unlock();
2623			goto error;
2624		}
2625	}
2626	rcu_read_unlock();
2627
2628	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629	if (IS_ERR(device)) {
2630		/* we can safely leave the fs_devices entry around */
2631		ret = PTR_ERR(device);
2632		goto error;
2633	}
2634
2635	device->fs_info = fs_info;
2636	device->bdev_handle = bdev_handle;
2637	device->bdev = bdev_handle->bdev;
2638	ret = lookup_bdev(device_path, &device->devt);
2639	if (ret)
2640		goto error_free_device;
 
2641
2642	ret = btrfs_get_dev_zone_info(device, false);
2643	if (ret)
2644		goto error_free_device;
 
 
 
2645
2646	trans = btrfs_start_transaction(root, 0);
2647	if (IS_ERR(trans)) {
 
 
2648		ret = PTR_ERR(trans);
2649		goto error_free_zone;
2650	}
2651
2652	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 
 
 
 
 
 
 
 
2653	device->generation = trans->transid;
2654	device->io_width = fs_info->sectorsize;
2655	device->io_align = fs_info->sectorsize;
2656	device->sector_size = fs_info->sectorsize;
2657	device->total_bytes =
2658		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659	device->disk_total_bytes = device->total_bytes;
2660	device->commit_total_bytes = device->total_bytes;
2661	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663	device->dev_stats_valid = 1;
2664	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665
2666	if (seeding_dev) {
2667		btrfs_clear_sb_rdonly(sb);
2668
2669		/* GFP_KERNEL allocation must not be under device_list_mutex */
2670		seed_devices = btrfs_init_sprout(fs_info);
2671		if (IS_ERR(seed_devices)) {
2672			ret = PTR_ERR(seed_devices);
2673			btrfs_abort_transaction(trans, ret);
2674			goto error_trans;
2675		}
2676	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677
2678	mutex_lock(&fs_devices->device_list_mutex);
2679	if (seeding_dev) {
2680		btrfs_setup_sprout(fs_info, seed_devices);
2681		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682						device);
 
 
 
 
 
 
 
2683	}
2684
2685	device->fs_devices = fs_devices;
2686
2687	mutex_lock(&fs_info->chunk_mutex);
2688	list_add_rcu(&device->dev_list, &fs_devices->devices);
2689	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690	fs_devices->num_devices++;
2691	fs_devices->open_devices++;
2692	fs_devices->rw_devices++;
2693	fs_devices->total_devices++;
2694	fs_devices->total_rw_bytes += device->total_bytes;
2695
2696	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697
2698	if (!bdev_nonrot(device->bdev))
2699		fs_devices->rotating = true;
2700
2701	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702	btrfs_set_super_total_bytes(fs_info->super_copy,
2703		round_down(orig_super_total_bytes + device->total_bytes,
2704			   fs_info->sectorsize));
2705
2706	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707	btrfs_set_super_num_devices(fs_info->super_copy,
2708				    orig_super_num_devices + 1);
2709
2710	/*
2711	 * we've got more storage, clear any full flags on the space
2712	 * infos
2713	 */
2714	btrfs_clear_space_info_full(fs_info);
2715
2716	mutex_unlock(&fs_info->chunk_mutex);
2717
2718	/* Add sysfs device entry */
2719	btrfs_sysfs_add_device(device);
2720
2721	mutex_unlock(&fs_devices->device_list_mutex);
2722
2723	if (seeding_dev) {
2724		mutex_lock(&fs_info->chunk_mutex);
2725		ret = init_first_rw_device(trans);
2726		mutex_unlock(&fs_info->chunk_mutex);
2727		if (ret) {
2728			btrfs_abort_transaction(trans, ret);
2729			goto error_sysfs;
2730		}
2731	}
2732
2733	ret = btrfs_add_dev_item(trans, device);
2734	if (ret) {
2735		btrfs_abort_transaction(trans, ret);
2736		goto error_sysfs;
2737	}
2738
2739	if (seeding_dev) {
2740		ret = btrfs_finish_sprout(trans);
2741		if (ret) {
2742			btrfs_abort_transaction(trans, ret);
2743			goto error_sysfs;
2744		}
2745
2746		/*
2747		 * fs_devices now represents the newly sprouted filesystem and
2748		 * its fsid has been changed by btrfs_sprout_splice().
2749		 */
2750		btrfs_sysfs_update_sprout_fsid(fs_devices);
2751	}
2752
2753	ret = btrfs_commit_transaction(trans);
2754
2755	if (seeding_dev) {
2756		mutex_unlock(&uuid_mutex);
2757		up_write(&sb->s_umount);
2758		locked = false;
2759
2760		if (ret) /* transaction commit */
2761			return ret;
2762
2763		ret = btrfs_relocate_sys_chunks(fs_info);
2764		if (ret < 0)
2765			btrfs_handle_fs_error(fs_info, ret,
2766				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767		trans = btrfs_attach_transaction(root);
2768		if (IS_ERR(trans)) {
2769			if (PTR_ERR(trans) == -ENOENT)
2770				return 0;
2771			ret = PTR_ERR(trans);
2772			trans = NULL;
2773			goto error_sysfs;
2774		}
2775		ret = btrfs_commit_transaction(trans);
2776	}
2777
2778	/*
2779	 * Now that we have written a new super block to this device, check all
2780	 * other fs_devices list if device_path alienates any other scanned
2781	 * device.
2782	 * We can ignore the return value as it typically returns -EINVAL and
2783	 * only succeeds if the device was an alien.
2784	 */
2785	btrfs_forget_devices(device->devt);
2786
2787	/* Update ctime/mtime for blkid or udev */
2788	update_dev_time(device_path);
2789
2790	return ret;
2791
2792error_sysfs:
2793	btrfs_sysfs_remove_device(device);
2794	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795	mutex_lock(&fs_info->chunk_mutex);
2796	list_del_rcu(&device->dev_list);
2797	list_del(&device->dev_alloc_list);
2798	fs_info->fs_devices->num_devices--;
2799	fs_info->fs_devices->open_devices--;
2800	fs_info->fs_devices->rw_devices--;
2801	fs_info->fs_devices->total_devices--;
2802	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804	btrfs_set_super_total_bytes(fs_info->super_copy,
2805				    orig_super_total_bytes);
2806	btrfs_set_super_num_devices(fs_info->super_copy,
2807				    orig_super_num_devices);
2808	mutex_unlock(&fs_info->chunk_mutex);
2809	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810error_trans:
2811	if (seeding_dev)
2812		btrfs_set_sb_rdonly(sb);
2813	if (trans)
2814		btrfs_end_transaction(trans);
2815error_free_zone:
2816	btrfs_destroy_dev_zone_info(device);
2817error_free_device:
2818	btrfs_free_device(device);
2819error:
2820	bdev_release(bdev_handle);
2821	if (locked) {
2822		mutex_unlock(&uuid_mutex);
2823		up_write(&sb->s_umount);
2824	}
2825	return ret;
2826}
2827
2828static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829					struct btrfs_device *device)
2830{
2831	int ret;
2832	struct btrfs_path *path;
2833	struct btrfs_root *root = device->fs_info->chunk_root;
2834	struct btrfs_dev_item *dev_item;
2835	struct extent_buffer *leaf;
2836	struct btrfs_key key;
2837
 
 
2838	path = btrfs_alloc_path();
2839	if (!path)
2840		return -ENOMEM;
2841
2842	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843	key.type = BTRFS_DEV_ITEM_KEY;
2844	key.offset = device->devid;
2845
2846	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847	if (ret < 0)
2848		goto out;
2849
2850	if (ret > 0) {
2851		ret = -ENOENT;
2852		goto out;
2853	}
2854
2855	leaf = path->nodes[0];
2856	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857
2858	btrfs_set_device_id(leaf, dev_item, device->devid);
2859	btrfs_set_device_type(leaf, dev_item, device->type);
2860	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863	btrfs_set_device_total_bytes(leaf, dev_item,
2864				     btrfs_device_get_disk_total_bytes(device));
2865	btrfs_set_device_bytes_used(leaf, dev_item,
2866				    btrfs_device_get_bytes_used(device));
2867	btrfs_mark_buffer_dirty(trans, leaf);
2868
2869out:
2870	btrfs_free_path(path);
2871	return ret;
2872}
2873
2874int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875		      struct btrfs_device *device, u64 new_size)
2876{
2877	struct btrfs_fs_info *fs_info = device->fs_info;
2878	struct btrfs_super_block *super_copy = fs_info->super_copy;
2879	u64 old_total;
2880	u64 diff;
2881	int ret;
2882
2883	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884		return -EACCES;
2885
2886	new_size = round_down(new_size, fs_info->sectorsize);
2887
2888	mutex_lock(&fs_info->chunk_mutex);
2889	old_total = btrfs_super_total_bytes(super_copy);
2890	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891
2892	if (new_size <= device->total_bytes ||
2893	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894		mutex_unlock(&fs_info->chunk_mutex);
2895		return -EINVAL;
2896	}
2897
2898	btrfs_set_super_total_bytes(super_copy,
2899			round_down(old_total + diff, fs_info->sectorsize));
2900	device->fs_devices->total_rw_bytes += diff;
2901	atomic64_add(diff, &fs_info->free_chunk_space);
2902
2903	btrfs_device_set_total_bytes(device, new_size);
2904	btrfs_device_set_disk_total_bytes(device, new_size);
2905	btrfs_clear_space_info_full(device->fs_info);
2906	if (list_empty(&device->post_commit_list))
2907		list_add_tail(&device->post_commit_list,
2908			      &trans->transaction->dev_update_list);
2909	mutex_unlock(&fs_info->chunk_mutex);
2910
2911	btrfs_reserve_chunk_metadata(trans, false);
2912	ret = btrfs_update_device(trans, device);
2913	btrfs_trans_release_chunk_metadata(trans);
2914
 
 
 
 
 
 
 
2915	return ret;
2916}
2917
2918static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
 
 
 
2919{
2920	struct btrfs_fs_info *fs_info = trans->fs_info;
2921	struct btrfs_root *root = fs_info->chunk_root;
2922	int ret;
2923	struct btrfs_path *path;
2924	struct btrfs_key key;
2925
 
2926	path = btrfs_alloc_path();
2927	if (!path)
2928		return -ENOMEM;
2929
2930	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931	key.offset = chunk_offset;
2932	key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935	if (ret < 0)
2936		goto out;
2937	else if (ret > 0) { /* Logic error or corruption */
2938		btrfs_handle_fs_error(fs_info, -ENOENT,
2939				      "Failed lookup while freeing chunk.");
2940		ret = -ENOENT;
2941		goto out;
2942	}
2943
2944	ret = btrfs_del_item(trans, root, path);
2945	if (ret < 0)
2946		btrfs_handle_fs_error(fs_info, ret,
2947				      "Failed to delete chunk item.");
2948out:
2949	btrfs_free_path(path);
2950	return ret;
2951}
2952
2953static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
 
2954{
2955	struct btrfs_super_block *super_copy = fs_info->super_copy;
2956	struct btrfs_disk_key *disk_key;
2957	struct btrfs_chunk *chunk;
2958	u8 *ptr;
2959	int ret = 0;
2960	u32 num_stripes;
2961	u32 array_size;
2962	u32 len = 0;
2963	u32 cur;
2964	struct btrfs_key key;
2965
2966	lockdep_assert_held(&fs_info->chunk_mutex);
2967	array_size = btrfs_super_sys_array_size(super_copy);
2968
2969	ptr = super_copy->sys_chunk_array;
2970	cur = 0;
2971
2972	while (cur < array_size) {
2973		disk_key = (struct btrfs_disk_key *)ptr;
2974		btrfs_disk_key_to_cpu(&key, disk_key);
2975
2976		len = sizeof(*disk_key);
2977
2978		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979			chunk = (struct btrfs_chunk *)(ptr + len);
2980			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981			len += btrfs_chunk_item_size(num_stripes);
2982		} else {
2983			ret = -EIO;
2984			break;
2985		}
2986		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987		    key.offset == chunk_offset) {
2988			memmove(ptr, ptr + len, array_size - (cur + len));
2989			array_size -= len;
2990			btrfs_set_super_sys_array_size(super_copy, array_size);
2991		} else {
2992			ptr += len;
2993			cur += len;
2994		}
2995	}
2996	return ret;
2997}
2998
2999struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000						    u64 logical, u64 length)
3001{
3002	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003	struct rb_node *prev = NULL;
3004	struct rb_node *orig_prev;
3005	struct btrfs_chunk_map *map;
3006	struct btrfs_chunk_map *prev_map = NULL;
3007
3008	while (node) {
3009		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010		prev = node;
3011		prev_map = map;
3012
3013		if (logical < map->start) {
3014			node = node->rb_left;
3015		} else if (logical >= map->start + map->chunk_len) {
3016			node = node->rb_right;
3017		} else {
3018			refcount_inc(&map->refs);
3019			return map;
3020		}
3021	}
3022
3023	if (!prev)
3024		return NULL;
3025
3026	orig_prev = prev;
3027	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028		prev = rb_next(prev);
3029		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030	}
3031
3032	if (!prev) {
3033		prev = orig_prev;
3034		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035		while (prev && logical < prev_map->start) {
3036			prev = rb_prev(prev);
3037			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038		}
3039	}
3040
3041	if (prev) {
3042		u64 end = logical + length;
3043
3044		/*
3045		 * Caller can pass a U64_MAX length when it wants to get any
3046		 * chunk starting at an offset of 'logical' or higher, so deal
3047		 * with underflow by resetting the end offset to U64_MAX.
3048		 */
3049		if (end < logical)
3050			end = U64_MAX;
3051
3052		if (end > prev_map->start &&
3053		    logical < prev_map->start + prev_map->chunk_len) {
3054			refcount_inc(&prev_map->refs);
3055			return prev_map;
3056		}
3057	}
3058
3059	return NULL;
3060}
3061
3062struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063					     u64 logical, u64 length)
3064{
3065	struct btrfs_chunk_map *map;
3066
3067	read_lock(&fs_info->mapping_tree_lock);
3068	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069	read_unlock(&fs_info->mapping_tree_lock);
3070
3071	return map;
3072}
3073
3074/*
3075 * Find the mapping containing the given logical extent.
3076 *
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3079 *
3080 * Return: Chunk mapping or ERR_PTR.
3081 */
3082struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083					    u64 logical, u64 length)
3084{
3085	struct btrfs_chunk_map *map;
3086
3087	map = btrfs_find_chunk_map(fs_info, logical, length);
3088
3089	if (unlikely(!map)) {
3090		btrfs_crit(fs_info,
3091			   "unable to find chunk map for logical %llu length %llu",
3092			   logical, length);
3093		return ERR_PTR(-EINVAL);
3094	}
3095
3096	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3097		btrfs_crit(fs_info,
3098			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099			   logical, logical + length, map->start,
3100			   map->start + map->chunk_len);
3101		btrfs_free_chunk_map(map);
3102		return ERR_PTR(-EINVAL);
3103	}
3104
3105	/* Callers are responsible for dropping the reference. */
3106	return map;
3107}
3108
3109static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110			     struct btrfs_chunk_map *map, u64 chunk_offset)
3111{
 
 
 
 
 
 
3112	int i;
3113
3114	/*
3115	 * Removing chunk items and updating the device items in the chunks btree
3116	 * requires holding the chunk_mutex.
3117	 * See the comment at btrfs_chunk_alloc() for the details.
3118	 */
3119	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3120
3121	for (i = 0; i < map->num_stripes; i++) {
3122		int ret;
3123
3124		ret = btrfs_update_device(trans, map->stripes[i].dev);
3125		if (ret)
3126			return ret;
3127	}
3128
3129	return btrfs_free_chunk(trans, chunk_offset);
3130}
 
 
3131
3132int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3133{
3134	struct btrfs_fs_info *fs_info = trans->fs_info;
3135	struct btrfs_chunk_map *map;
3136	u64 dev_extent_len = 0;
3137	int i, ret = 0;
3138	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3139
3140	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3141	if (IS_ERR(map)) {
3142		/*
3143		 * This is a logic error, but we don't want to just rely on the
3144		 * user having built with ASSERT enabled, so if ASSERT doesn't
3145		 * do anything we still error out.
3146		 */
3147		ASSERT(0);
3148		return PTR_ERR(map);
3149	}
3150
3151	/*
3152	 * First delete the device extent items from the devices btree.
3153	 * We take the device_list_mutex to avoid racing with the finishing phase
3154	 * of a device replace operation. See the comment below before acquiring
3155	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156	 * because that can result in a deadlock when deleting the device extent
3157	 * items from the devices btree - COWing an extent buffer from the btree
3158	 * may result in allocating a new metadata chunk, which would attempt to
3159	 * lock again fs_info->chunk_mutex.
3160	 */
3161	mutex_lock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
3162	for (i = 0; i < map->num_stripes; i++) {
3163		struct btrfs_device *device = map->stripes[i].dev;
3164		ret = btrfs_free_dev_extent(trans, device,
3165					    map->stripes[i].physical,
3166					    &dev_extent_len);
3167		if (ret) {
3168			mutex_unlock(&fs_devices->device_list_mutex);
3169			btrfs_abort_transaction(trans, ret);
3170			goto out;
3171		}
3172
3173		if (device->bytes_used > 0) {
3174			mutex_lock(&fs_info->chunk_mutex);
3175			btrfs_device_set_bytes_used(device,
3176					device->bytes_used - dev_extent_len);
3177			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178			btrfs_clear_space_info_full(fs_info);
3179			mutex_unlock(&fs_info->chunk_mutex);
3180		}
3181	}
3182	mutex_unlock(&fs_devices->device_list_mutex);
 
3183
3184	/*
3185	 * We acquire fs_info->chunk_mutex for 2 reasons:
3186	 *
3187	 * 1) Just like with the first phase of the chunk allocation, we must
3188	 *    reserve system space, do all chunk btree updates and deletions, and
3189	 *    update the system chunk array in the superblock while holding this
3190	 *    mutex. This is for similar reasons as explained on the comment at
3191	 *    the top of btrfs_chunk_alloc();
3192	 *
3193	 * 2) Prevent races with the final phase of a device replace operation
3194	 *    that replaces the device object associated with the map's stripes,
3195	 *    because the device object's id can change at any time during that
3196	 *    final phase of the device replace operation
3197	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198	 *    replaced device and then see it with an ID of
3199	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200	 *    the device item, which does not exists on the chunk btree.
3201	 *    The finishing phase of device replace acquires both the
3202	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3203	 *    safe by just acquiring the chunk_mutex.
3204	 */
3205	trans->removing_chunk = true;
3206	mutex_lock(&fs_info->chunk_mutex);
3207
3208	check_system_chunk(trans, map->type);
3209
3210	ret = remove_chunk_item(trans, map, chunk_offset);
3211	/*
3212	 * Normally we should not get -ENOSPC since we reserved space before
3213	 * through the call to check_system_chunk().
3214	 *
3215	 * Despite our system space_info having enough free space, we may not
3216	 * be able to allocate extents from its block groups, because all have
3217	 * an incompatible profile, which will force us to allocate a new system
3218	 * block group with the right profile, or right after we called
3219	 * check_system_space() above, a scrub turned the only system block group
3220	 * with enough free space into RO mode.
3221	 * This is explained with more detail at do_chunk_alloc().
3222	 *
3223	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3224	 */
3225	if (ret == -ENOSPC) {
3226		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227		struct btrfs_block_group *sys_bg;
3228
3229		sys_bg = btrfs_create_chunk(trans, sys_flags);
3230		if (IS_ERR(sys_bg)) {
3231			ret = PTR_ERR(sys_bg);
3232			btrfs_abort_transaction(trans, ret);
3233			goto out;
3234		}
3235
3236		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3237		if (ret) {
3238			btrfs_abort_transaction(trans, ret);
3239			goto out;
3240		}
3241
3242		ret = remove_chunk_item(trans, map, chunk_offset);
3243		if (ret) {
3244			btrfs_abort_transaction(trans, ret);
3245			goto out;
3246		}
3247	} else if (ret) {
3248		btrfs_abort_transaction(trans, ret);
3249		goto out;
3250	}
3251
3252	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3253
3254	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3256		if (ret) {
3257			btrfs_abort_transaction(trans, ret);
3258			goto out;
3259		}
3260	}
3261
3262	mutex_unlock(&fs_info->chunk_mutex);
3263	trans->removing_chunk = false;
3264
3265	/*
3266	 * We are done with chunk btree updates and deletions, so release the
3267	 * system space we previously reserved (with check_system_chunk()).
3268	 */
3269	btrfs_trans_release_chunk_metadata(trans);
3270
3271	ret = btrfs_remove_block_group(trans, map);
3272	if (ret) {
3273		btrfs_abort_transaction(trans, ret);
3274		goto out;
3275	}
3276
3277out:
3278	if (trans->removing_chunk) {
3279		mutex_unlock(&fs_info->chunk_mutex);
3280		trans->removing_chunk = false;
3281	}
3282	/* once for us */
3283	btrfs_free_chunk_map(map);
3284	return ret;
3285}
3286
3287int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3288{
3289	struct btrfs_root *root = fs_info->chunk_root;
3290	struct btrfs_trans_handle *trans;
3291	struct btrfs_block_group *block_group;
3292	u64 length;
3293	int ret;
3294
3295	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3296		btrfs_err(fs_info,
3297			  "relocate: not supported on extent tree v2 yet");
3298		return -EINVAL;
3299	}
3300
3301	/*
3302	 * Prevent races with automatic removal of unused block groups.
3303	 * After we relocate and before we remove the chunk with offset
3304	 * chunk_offset, automatic removal of the block group can kick in,
3305	 * resulting in a failure when calling btrfs_remove_chunk() below.
3306	 *
3307	 * Make sure to acquire this mutex before doing a tree search (dev
3308	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310	 * we release the path used to search the chunk/dev tree and before
3311	 * the current task acquires this mutex and calls us.
3312	 */
3313	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3314
3315	/* step one, relocate all the extents inside this chunk */
3316	btrfs_scrub_pause(fs_info);
3317	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318	btrfs_scrub_continue(fs_info);
3319	if (ret) {
3320		/*
3321		 * If we had a transaction abort, stop all running scrubs.
3322		 * See transaction.c:cleanup_transaction() why we do it here.
3323		 */
3324		if (BTRFS_FS_ERROR(fs_info))
3325			btrfs_scrub_cancel(fs_info);
3326		return ret;
3327	}
3328
3329	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3330	if (!block_group)
3331		return -ENOENT;
3332	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333	length = block_group->length;
3334	btrfs_put_block_group(block_group);
3335
3336	/*
3337	 * On a zoned file system, discard the whole block group, this will
3338	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339	 * resetting the zone fails, don't treat it as a fatal problem from the
3340	 * filesystem's point of view.
3341	 */
3342	if (btrfs_is_zoned(fs_info)) {
3343		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3344		if (ret)
3345			btrfs_info(fs_info,
3346				"failed to reset zone %llu after relocation",
3347				chunk_offset);
3348	}
3349
3350	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3351						     chunk_offset);
3352	if (IS_ERR(trans)) {
3353		ret = PTR_ERR(trans);
3354		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3355		return ret;
3356	}
3357
3358	/*
3359	 * step two, delete the device extents and the
3360	 * chunk tree entries
3361	 */
3362	ret = btrfs_remove_chunk(trans, chunk_offset);
3363	btrfs_end_transaction(trans);
3364	return ret;
3365}
3366
3367static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3368{
3369	struct btrfs_root *chunk_root = fs_info->chunk_root;
3370	struct btrfs_path *path;
3371	struct extent_buffer *leaf;
3372	struct btrfs_chunk *chunk;
3373	struct btrfs_key key;
3374	struct btrfs_key found_key;
 
3375	u64 chunk_type;
3376	bool retried = false;
3377	int failed = 0;
3378	int ret;
3379
3380	path = btrfs_alloc_path();
3381	if (!path)
3382		return -ENOMEM;
3383
3384again:
3385	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386	key.offset = (u64)-1;
3387	key.type = BTRFS_CHUNK_ITEM_KEY;
3388
3389	while (1) {
3390		mutex_lock(&fs_info->reclaim_bgs_lock);
3391		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3392		if (ret < 0) {
3393			mutex_unlock(&fs_info->reclaim_bgs_lock);
3394			goto error;
3395		}
3396		BUG_ON(ret == 0); /* Corruption */
3397
3398		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3399					  key.type);
3400		if (ret)
3401			mutex_unlock(&fs_info->reclaim_bgs_lock);
3402		if (ret < 0)
3403			goto error;
3404		if (ret > 0)
3405			break;
3406
3407		leaf = path->nodes[0];
3408		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410		chunk = btrfs_item_ptr(leaf, path->slots[0],
3411				       struct btrfs_chunk);
3412		chunk_type = btrfs_chunk_type(leaf, chunk);
3413		btrfs_release_path(path);
3414
3415		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3416			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
 
 
3417			if (ret == -ENOSPC)
3418				failed++;
3419			else
3420				BUG_ON(ret);
3421		}
3422		mutex_unlock(&fs_info->reclaim_bgs_lock);
3423
3424		if (found_key.offset == 0)
3425			break;
3426		key.offset = found_key.offset - 1;
3427	}
3428	ret = 0;
3429	if (failed && !retried) {
3430		failed = 0;
3431		retried = true;
3432		goto again;
3433	} else if (WARN_ON(failed && retried)) {
 
3434		ret = -ENOSPC;
3435	}
3436error:
3437	btrfs_free_path(path);
3438	return ret;
3439}
3440
3441/*
3442 * return 1 : allocate a data chunk successfully,
3443 * return <0: errors during allocating a data chunk,
3444 * return 0 : no need to allocate a data chunk.
3445 */
3446static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3447				      u64 chunk_offset)
3448{
3449	struct btrfs_block_group *cache;
3450	u64 bytes_used;
3451	u64 chunk_type;
3452
3453	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3454	ASSERT(cache);
3455	chunk_type = cache->flags;
3456	btrfs_put_block_group(cache);
3457
3458	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3459		return 0;
3460
3461	spin_lock(&fs_info->data_sinfo->lock);
3462	bytes_used = fs_info->data_sinfo->bytes_used;
3463	spin_unlock(&fs_info->data_sinfo->lock);
3464
3465	if (!bytes_used) {
3466		struct btrfs_trans_handle *trans;
3467		int ret;
3468
3469		trans =	btrfs_join_transaction(fs_info->tree_root);
3470		if (IS_ERR(trans))
3471			return PTR_ERR(trans);
3472
3473		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3474		btrfs_end_transaction(trans);
3475		if (ret < 0)
3476			return ret;
3477		return 1;
3478	}
3479
3480	return 0;
3481}
3482
3483static int insert_balance_item(struct btrfs_fs_info *fs_info,
3484			       struct btrfs_balance_control *bctl)
3485{
3486	struct btrfs_root *root = fs_info->tree_root;
3487	struct btrfs_trans_handle *trans;
3488	struct btrfs_balance_item *item;
3489	struct btrfs_disk_balance_args disk_bargs;
3490	struct btrfs_path *path;
3491	struct extent_buffer *leaf;
3492	struct btrfs_key key;
3493	int ret, err;
3494
3495	path = btrfs_alloc_path();
3496	if (!path)
3497		return -ENOMEM;
3498
3499	trans = btrfs_start_transaction(root, 0);
3500	if (IS_ERR(trans)) {
3501		btrfs_free_path(path);
3502		return PTR_ERR(trans);
3503	}
3504
3505	key.objectid = BTRFS_BALANCE_OBJECTID;
3506	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3507	key.offset = 0;
3508
3509	ret = btrfs_insert_empty_item(trans, root, path, &key,
3510				      sizeof(*item));
3511	if (ret)
3512		goto out;
3513
3514	leaf = path->nodes[0];
3515	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3516
3517	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3518
3519	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3520	btrfs_set_balance_data(leaf, item, &disk_bargs);
3521	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3522	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3523	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3524	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3525
3526	btrfs_set_balance_flags(leaf, item, bctl->flags);
3527
3528	btrfs_mark_buffer_dirty(trans, leaf);
3529out:
3530	btrfs_free_path(path);
3531	err = btrfs_commit_transaction(trans);
3532	if (err && !ret)
3533		ret = err;
3534	return ret;
3535}
3536
3537static int del_balance_item(struct btrfs_fs_info *fs_info)
3538{
3539	struct btrfs_root *root = fs_info->tree_root;
3540	struct btrfs_trans_handle *trans;
3541	struct btrfs_path *path;
3542	struct btrfs_key key;
3543	int ret, err;
3544
3545	path = btrfs_alloc_path();
3546	if (!path)
3547		return -ENOMEM;
3548
3549	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3550	if (IS_ERR(trans)) {
3551		btrfs_free_path(path);
3552		return PTR_ERR(trans);
3553	}
3554
3555	key.objectid = BTRFS_BALANCE_OBJECTID;
3556	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3557	key.offset = 0;
3558
3559	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3560	if (ret < 0)
3561		goto out;
3562	if (ret > 0) {
3563		ret = -ENOENT;
3564		goto out;
3565	}
3566
3567	ret = btrfs_del_item(trans, root, path);
3568out:
3569	btrfs_free_path(path);
3570	err = btrfs_commit_transaction(trans);
3571	if (err && !ret)
3572		ret = err;
3573	return ret;
3574}
3575
3576/*
3577 * This is a heuristic used to reduce the number of chunks balanced on
3578 * resume after balance was interrupted.
3579 */
3580static void update_balance_args(struct btrfs_balance_control *bctl)
3581{
3582	/*
3583	 * Turn on soft mode for chunk types that were being converted.
3584	 */
3585	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3586		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3587	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591
3592	/*
3593	 * Turn on usage filter if is not already used.  The idea is
3594	 * that chunks that we have already balanced should be
3595	 * reasonably full.  Don't do it for chunks that are being
3596	 * converted - that will keep us from relocating unconverted
3597	 * (albeit full) chunks.
3598	 */
3599	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3600	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3601	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3602		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3603		bctl->data.usage = 90;
3604	}
3605	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3606	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3607	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3608		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3609		bctl->sys.usage = 90;
3610	}
3611	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3612	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3613	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3614		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3615		bctl->meta.usage = 90;
3616	}
3617}
3618
3619/*
3620 * Clear the balance status in fs_info and delete the balance item from disk.
 
 
3621 */
3622static void reset_balance_state(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
3623{
3624	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3625	int ret;
3626
3627	BUG_ON(!fs_info->balance_ctl);
3628
3629	spin_lock(&fs_info->balance_lock);
3630	fs_info->balance_ctl = NULL;
3631	spin_unlock(&fs_info->balance_lock);
3632
3633	kfree(bctl);
3634	ret = del_balance_item(fs_info);
3635	if (ret)
3636		btrfs_handle_fs_error(fs_info, ret, NULL);
3637}
3638
3639/*
3640 * Balance filters.  Return 1 if chunk should be filtered out
3641 * (should not be balanced).
3642 */
3643static int chunk_profiles_filter(u64 chunk_type,
3644				 struct btrfs_balance_args *bargs)
3645{
3646	chunk_type = chunk_to_extended(chunk_type) &
3647				BTRFS_EXTENDED_PROFILE_MASK;
3648
3649	if (bargs->profiles & chunk_type)
3650		return 0;
3651
3652	return 1;
3653}
3654
3655static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3656			      struct btrfs_balance_args *bargs)
3657{
3658	struct btrfs_block_group *cache;
3659	u64 chunk_used;
3660	u64 user_thresh_min;
3661	u64 user_thresh_max;
3662	int ret = 1;
3663
3664	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3665	chunk_used = cache->used;
3666
3667	if (bargs->usage_min == 0)
3668		user_thresh_min = 0;
3669	else
3670		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3671
3672	if (bargs->usage_max == 0)
3673		user_thresh_max = 1;
3674	else if (bargs->usage_max > 100)
3675		user_thresh_max = cache->length;
3676	else
3677		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3678
3679	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3680		ret = 0;
3681
3682	btrfs_put_block_group(cache);
3683	return ret;
 
3684}
3685
3686static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3687		u64 chunk_offset, struct btrfs_balance_args *bargs)
3688{
3689	struct btrfs_block_group *cache;
3690	u64 chunk_used, user_thresh;
3691	int ret = 1;
3692
3693	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3694	chunk_used = cache->used;
3695
3696	if (bargs->usage_min == 0)
3697		user_thresh = 1;
3698	else if (bargs->usage > 100)
3699		user_thresh = cache->length;
3700	else
3701		user_thresh = mult_perc(cache->length, bargs->usage);
3702
 
3703	if (chunk_used < user_thresh)
3704		ret = 0;
3705
3706	btrfs_put_block_group(cache);
3707	return ret;
3708}
3709
3710static int chunk_devid_filter(struct extent_buffer *leaf,
3711			      struct btrfs_chunk *chunk,
3712			      struct btrfs_balance_args *bargs)
3713{
3714	struct btrfs_stripe *stripe;
3715	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716	int i;
3717
3718	for (i = 0; i < num_stripes; i++) {
3719		stripe = btrfs_stripe_nr(chunk, i);
3720		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3721			return 0;
3722	}
3723
3724	return 1;
3725}
3726
3727static u64 calc_data_stripes(u64 type, int num_stripes)
3728{
3729	const int index = btrfs_bg_flags_to_raid_index(type);
3730	const int ncopies = btrfs_raid_array[index].ncopies;
3731	const int nparity = btrfs_raid_array[index].nparity;
3732
3733	return (num_stripes - nparity) / ncopies;
3734}
3735
3736/* [pstart, pend) */
3737static int chunk_drange_filter(struct extent_buffer *leaf,
3738			       struct btrfs_chunk *chunk,
 
3739			       struct btrfs_balance_args *bargs)
3740{
3741	struct btrfs_stripe *stripe;
3742	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3743	u64 stripe_offset;
3744	u64 stripe_length;
3745	u64 type;
3746	int factor;
3747	int i;
3748
3749	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3750		return 0;
3751
3752	type = btrfs_chunk_type(leaf, chunk);
3753	factor = calc_data_stripes(type, num_stripes);
 
 
 
 
3754
3755	for (i = 0; i < num_stripes; i++) {
3756		stripe = btrfs_stripe_nr(chunk, i);
3757		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3758			continue;
3759
3760		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3761		stripe_length = btrfs_chunk_length(leaf, chunk);
3762		stripe_length = div_u64(stripe_length, factor);
3763
3764		if (stripe_offset < bargs->pend &&
3765		    stripe_offset + stripe_length > bargs->pstart)
3766			return 0;
3767	}
3768
3769	return 1;
3770}
3771
3772/* [vstart, vend) */
3773static int chunk_vrange_filter(struct extent_buffer *leaf,
3774			       struct btrfs_chunk *chunk,
3775			       u64 chunk_offset,
3776			       struct btrfs_balance_args *bargs)
3777{
3778	if (chunk_offset < bargs->vend &&
3779	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3780		/* at least part of the chunk is inside this vrange */
3781		return 0;
3782
3783	return 1;
3784}
3785
3786static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3787			       struct btrfs_chunk *chunk,
3788			       struct btrfs_balance_args *bargs)
3789{
3790	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3791
3792	if (bargs->stripes_min <= num_stripes
3793			&& num_stripes <= bargs->stripes_max)
3794		return 0;
3795
3796	return 1;
3797}
3798
3799static int chunk_soft_convert_filter(u64 chunk_type,
3800				     struct btrfs_balance_args *bargs)
3801{
3802	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3803		return 0;
3804
3805	chunk_type = chunk_to_extended(chunk_type) &
3806				BTRFS_EXTENDED_PROFILE_MASK;
3807
3808	if (bargs->target == chunk_type)
3809		return 1;
3810
3811	return 0;
3812}
3813
3814static int should_balance_chunk(struct extent_buffer *leaf,
 
3815				struct btrfs_chunk *chunk, u64 chunk_offset)
3816{
3817	struct btrfs_fs_info *fs_info = leaf->fs_info;
3818	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819	struct btrfs_balance_args *bargs = NULL;
3820	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3821
3822	/* type filter */
3823	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3824	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3825		return 0;
3826	}
3827
3828	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3829		bargs = &bctl->data;
3830	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3831		bargs = &bctl->sys;
3832	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3833		bargs = &bctl->meta;
3834
3835	/* profiles filter */
3836	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3837	    chunk_profiles_filter(chunk_type, bargs)) {
3838		return 0;
3839	}
3840
3841	/* usage filter */
3842	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3843	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3844		return 0;
3845	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3846	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3847		return 0;
3848	}
3849
3850	/* devid filter */
3851	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3852	    chunk_devid_filter(leaf, chunk, bargs)) {
3853		return 0;
3854	}
3855
3856	/* drange filter, makes sense only with devid filter */
3857	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3858	    chunk_drange_filter(leaf, chunk, bargs)) {
3859		return 0;
3860	}
3861
3862	/* vrange filter */
3863	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3864	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3865		return 0;
3866	}
3867
3868	/* stripes filter */
3869	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3870	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3871		return 0;
3872	}
3873
3874	/* soft profile changing mode */
3875	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3876	    chunk_soft_convert_filter(chunk_type, bargs)) {
3877		return 0;
3878	}
3879
3880	/*
3881	 * limited by count, must be the last filter
3882	 */
3883	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3884		if (bargs->limit == 0)
3885			return 0;
3886		else
3887			bargs->limit--;
3888	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3889		/*
3890		 * Same logic as the 'limit' filter; the minimum cannot be
3891		 * determined here because we do not have the global information
3892		 * about the count of all chunks that satisfy the filters.
3893		 */
3894		if (bargs->limit_max == 0)
3895			return 0;
3896		else
3897			bargs->limit_max--;
3898	}
3899
3900	return 1;
3901}
3902
 
 
 
 
 
 
 
 
 
3903static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3904{
3905	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3906	struct btrfs_root *chunk_root = fs_info->chunk_root;
3907	u64 chunk_type;
 
 
 
 
3908	struct btrfs_chunk *chunk;
3909	struct btrfs_path *path = NULL;
3910	struct btrfs_key key;
3911	struct btrfs_key found_key;
 
3912	struct extent_buffer *leaf;
3913	int slot;
3914	int ret;
3915	int enospc_errors = 0;
3916	bool counting = true;
3917	/* The single value limit and min/max limits use the same bytes in the */
3918	u64 limit_data = bctl->data.limit;
3919	u64 limit_meta = bctl->meta.limit;
3920	u64 limit_sys = bctl->sys.limit;
3921	u32 count_data = 0;
3922	u32 count_meta = 0;
3923	u32 count_sys = 0;
3924	int chunk_reserved = 0;
3925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926	path = btrfs_alloc_path();
3927	if (!path) {
3928		ret = -ENOMEM;
3929		goto error;
3930	}
3931
3932	/* zero out stat counters */
3933	spin_lock(&fs_info->balance_lock);
3934	memset(&bctl->stat, 0, sizeof(bctl->stat));
3935	spin_unlock(&fs_info->balance_lock);
3936again:
3937	if (!counting) {
3938		/*
3939		 * The single value limit and min/max limits use the same bytes
3940		 * in the
3941		 */
3942		bctl->data.limit = limit_data;
3943		bctl->meta.limit = limit_meta;
3944		bctl->sys.limit = limit_sys;
3945	}
3946	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3947	key.offset = (u64)-1;
3948	key.type = BTRFS_CHUNK_ITEM_KEY;
3949
3950	while (1) {
3951		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3952		    atomic_read(&fs_info->balance_cancel_req)) {
3953			ret = -ECANCELED;
3954			goto error;
3955		}
3956
3957		mutex_lock(&fs_info->reclaim_bgs_lock);
3958		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3959		if (ret < 0) {
3960			mutex_unlock(&fs_info->reclaim_bgs_lock);
3961			goto error;
3962		}
3963
3964		/*
3965		 * this shouldn't happen, it means the last relocate
3966		 * failed
3967		 */
3968		if (ret == 0)
3969			BUG(); /* FIXME break ? */
3970
3971		ret = btrfs_previous_item(chunk_root, path, 0,
3972					  BTRFS_CHUNK_ITEM_KEY);
3973		if (ret) {
3974			mutex_unlock(&fs_info->reclaim_bgs_lock);
3975			ret = 0;
3976			break;
3977		}
3978
3979		leaf = path->nodes[0];
3980		slot = path->slots[0];
3981		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3982
3983		if (found_key.objectid != key.objectid) {
3984			mutex_unlock(&fs_info->reclaim_bgs_lock);
 
 
 
3985			break;
3986		}
3987
3988		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3989		chunk_type = btrfs_chunk_type(leaf, chunk);
3990
3991		if (!counting) {
3992			spin_lock(&fs_info->balance_lock);
3993			bctl->stat.considered++;
3994			spin_unlock(&fs_info->balance_lock);
3995		}
3996
3997		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3998
3999		btrfs_release_path(path);
4000		if (!ret) {
4001			mutex_unlock(&fs_info->reclaim_bgs_lock);
4002			goto loop;
4003		}
4004
4005		if (counting) {
4006			mutex_unlock(&fs_info->reclaim_bgs_lock);
4007			spin_lock(&fs_info->balance_lock);
4008			bctl->stat.expected++;
4009			spin_unlock(&fs_info->balance_lock);
4010
4011			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4012				count_data++;
4013			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4014				count_sys++;
4015			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4016				count_meta++;
4017
4018			goto loop;
4019		}
4020
4021		/*
4022		 * Apply limit_min filter, no need to check if the LIMITS
4023		 * filter is used, limit_min is 0 by default
4024		 */
4025		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4026					count_data < bctl->data.limit_min)
4027				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4028					count_meta < bctl->meta.limit_min)
4029				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4030					count_sys < bctl->sys.limit_min)) {
4031			mutex_unlock(&fs_info->reclaim_bgs_lock);
4032			goto loop;
4033		}
4034
4035		if (!chunk_reserved) {
4036			/*
4037			 * We may be relocating the only data chunk we have,
4038			 * which could potentially end up with losing data's
4039			 * raid profile, so lets allocate an empty one in
4040			 * advance.
4041			 */
4042			ret = btrfs_may_alloc_data_chunk(fs_info,
4043							 found_key.offset);
4044			if (ret < 0) {
4045				mutex_unlock(&fs_info->reclaim_bgs_lock);
4046				goto error;
4047			} else if (ret == 1) {
4048				chunk_reserved = 1;
4049			}
4050		}
4051
4052		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4053		mutex_unlock(&fs_info->reclaim_bgs_lock);
4054		if (ret == -ENOSPC) {
4055			enospc_errors++;
4056		} else if (ret == -ETXTBSY) {
4057			btrfs_info(fs_info,
4058	   "skipping relocation of block group %llu due to active swapfile",
4059				   found_key.offset);
4060			ret = 0;
4061		} else if (ret) {
4062			goto error;
4063		} else {
4064			spin_lock(&fs_info->balance_lock);
4065			bctl->stat.completed++;
4066			spin_unlock(&fs_info->balance_lock);
4067		}
4068loop:
4069		if (found_key.offset == 0)
4070			break;
4071		key.offset = found_key.offset - 1;
4072	}
4073
4074	if (counting) {
4075		btrfs_release_path(path);
4076		counting = false;
4077		goto again;
4078	}
4079error:
4080	btrfs_free_path(path);
4081	if (enospc_errors) {
4082		btrfs_info(fs_info, "%d enospc errors during balance",
4083			   enospc_errors);
4084		if (!ret)
4085			ret = -ENOSPC;
4086	}
4087
4088	return ret;
4089}
4090
4091/*
4092 * See if a given profile is valid and reduced.
4093 *
4094 * @flags:     profile to validate
4095 * @extended:  if true @flags is treated as an extended profile
4096 */
4097static int alloc_profile_is_valid(u64 flags, int extended)
4098{
4099	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4100			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4101
4102	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4103
4104	/* 1) check that all other bits are zeroed */
4105	if (flags & ~mask)
4106		return 0;
4107
4108	/* 2) see if profile is reduced */
4109	if (flags == 0)
4110		return !extended; /* "0" is valid for usual profiles */
4111
4112	return has_single_bit_set(flags);
 
4113}
4114
4115/*
4116 * Validate target profile against allowed profiles and return true if it's OK.
4117 * Otherwise print the error message and return false.
4118 */
4119static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4120		const struct btrfs_balance_args *bargs,
4121		u64 allowed, const char *type)
4122{
4123	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4124		return true;
4125
4126	/* Profile is valid and does not have bits outside of the allowed set */
4127	if (alloc_profile_is_valid(bargs->target, 1) &&
4128	    (bargs->target & ~allowed) == 0)
4129		return true;
4130
4131	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4132			type, btrfs_bg_type_to_raid_name(bargs->target));
4133	return false;
4134}
4135
4136/*
4137 * Fill @buf with textual description of balance filter flags @bargs, up to
4138 * @size_buf including the terminating null. The output may be trimmed if it
4139 * does not fit into the provided buffer.
4140 */
4141static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4142				 u32 size_buf)
4143{
4144	int ret;
4145	u32 size_bp = size_buf;
4146	char *bp = buf;
4147	u64 flags = bargs->flags;
4148	char tmp_buf[128] = {'\0'};
4149
4150	if (!flags)
4151		return;
4152
4153#define CHECK_APPEND_NOARG(a)						\
4154	do {								\
4155		ret = snprintf(bp, size_bp, (a));			\
4156		if (ret < 0 || ret >= size_bp)				\
4157			goto out_overflow;				\
4158		size_bp -= ret;						\
4159		bp += ret;						\
4160	} while (0)
4161
4162#define CHECK_APPEND_1ARG(a, v1)					\
4163	do {								\
4164		ret = snprintf(bp, size_bp, (a), (v1));			\
4165		if (ret < 0 || ret >= size_bp)				\
4166			goto out_overflow;				\
4167		size_bp -= ret;						\
4168		bp += ret;						\
4169	} while (0)
4170
4171#define CHECK_APPEND_2ARG(a, v1, v2)					\
4172	do {								\
4173		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4174		if (ret < 0 || ret >= size_bp)				\
4175			goto out_overflow;				\
4176		size_bp -= ret;						\
4177		bp += ret;						\
4178	} while (0)
4179
4180	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4181		CHECK_APPEND_1ARG("convert=%s,",
4182				  btrfs_bg_type_to_raid_name(bargs->target));
4183
4184	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4185		CHECK_APPEND_NOARG("soft,");
4186
4187	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4188		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4189					    sizeof(tmp_buf));
4190		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4191	}
4192
4193	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4194		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4195
4196	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4197		CHECK_APPEND_2ARG("usage=%u..%u,",
4198				  bargs->usage_min, bargs->usage_max);
4199
4200	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4201		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4202
4203	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4204		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4205				  bargs->pstart, bargs->pend);
4206
4207	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4208		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4209				  bargs->vstart, bargs->vend);
4210
4211	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4212		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4213
4214	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4215		CHECK_APPEND_2ARG("limit=%u..%u,",
4216				bargs->limit_min, bargs->limit_max);
4217
4218	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4219		CHECK_APPEND_2ARG("stripes=%u..%u,",
4220				  bargs->stripes_min, bargs->stripes_max);
4221
4222#undef CHECK_APPEND_2ARG
4223#undef CHECK_APPEND_1ARG
4224#undef CHECK_APPEND_NOARG
4225
4226out_overflow:
4227
4228	if (size_bp < size_buf)
4229		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4230	else
4231		buf[0] = '\0';
4232}
4233
4234static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4235{
4236	u32 size_buf = 1024;
4237	char tmp_buf[192] = {'\0'};
4238	char *buf;
4239	char *bp;
4240	u32 size_bp = size_buf;
4241	int ret;
4242	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4243
4244	buf = kzalloc(size_buf, GFP_KERNEL);
4245	if (!buf)
4246		return;
4247
4248	bp = buf;
4249
4250#define CHECK_APPEND_1ARG(a, v1)					\
4251	do {								\
4252		ret = snprintf(bp, size_bp, (a), (v1));			\
4253		if (ret < 0 || ret >= size_bp)				\
4254			goto out_overflow;				\
4255		size_bp -= ret;						\
4256		bp += ret;						\
4257	} while (0)
4258
4259	if (bctl->flags & BTRFS_BALANCE_FORCE)
4260		CHECK_APPEND_1ARG("%s", "-f ");
4261
4262	if (bctl->flags & BTRFS_BALANCE_DATA) {
4263		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4264		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4265	}
4266
4267	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4268		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4269		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4270	}
4271
4272	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4273		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4274		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4275	}
4276
4277#undef CHECK_APPEND_1ARG
4278
4279out_overflow:
4280
4281	if (size_bp < size_buf)
4282		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4283	btrfs_info(fs_info, "balance: %s %s",
4284		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4285		   "resume" : "start", buf);
4286
4287	kfree(buf);
4288}
4289
4290/*
4291 * Should be called with balance mutexe held
4292 */
4293int btrfs_balance(struct btrfs_fs_info *fs_info,
4294		  struct btrfs_balance_control *bctl,
4295		  struct btrfs_ioctl_balance_args *bargs)
4296{
4297	u64 meta_target, data_target;
4298	u64 allowed;
4299	int mixed = 0;
4300	int ret;
4301	u64 num_devices;
4302	unsigned seq;
4303	bool reducing_redundancy;
4304	bool paused = false;
4305	int i;
4306
4307	if (btrfs_fs_closing(fs_info) ||
4308	    atomic_read(&fs_info->balance_pause_req) ||
4309	    btrfs_should_cancel_balance(fs_info)) {
4310		ret = -EINVAL;
4311		goto out;
4312	}
4313
4314	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4315	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4316		mixed = 1;
4317
4318	/*
4319	 * In case of mixed groups both data and meta should be picked,
4320	 * and identical options should be given for both of them.
4321	 */
4322	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4323	if (mixed && (bctl->flags & allowed)) {
4324		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4325		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4326		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4327			btrfs_err(fs_info,
4328	  "balance: mixed groups data and metadata options must be the same");
4329			ret = -EINVAL;
4330			goto out;
4331		}
4332	}
4333
4334	/*
4335	 * rw_devices will not change at the moment, device add/delete/replace
4336	 * are exclusive
4337	 */
4338	num_devices = fs_info->fs_devices->rw_devices;
4339
4340	/*
4341	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4342	 * special bit for it, to make it easier to distinguish.  Thus we need
4343	 * to set it manually, or balance would refuse the profile.
4344	 */
4345	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4346	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4347		if (num_devices >= btrfs_raid_array[i].devs_min)
4348			allowed |= btrfs_raid_array[i].bg_flag;
4349
4350	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4351	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4352	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
 
 
 
 
 
 
 
4353		ret = -EINVAL;
4354		goto out;
4355	}
4356
4357	/*
4358	 * Allow to reduce metadata or system integrity only if force set for
4359	 * profiles with redundancy (copies, parity)
4360	 */
4361	allowed = 0;
4362	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4363		if (btrfs_raid_array[i].ncopies >= 2 ||
4364		    btrfs_raid_array[i].tolerated_failures >= 1)
4365			allowed |= btrfs_raid_array[i].bg_flag;
 
 
 
 
 
 
 
4366	}
4367	do {
4368		seq = read_seqbegin(&fs_info->profiles_lock);
4369
4370		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4371		     (fs_info->avail_system_alloc_bits & allowed) &&
4372		     !(bctl->sys.target & allowed)) ||
4373		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4374		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4375		     !(bctl->meta.target & allowed)))
4376			reducing_redundancy = true;
4377		else
4378			reducing_redundancy = false;
4379
4380		/* if we're not converting, the target field is uninitialized */
4381		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4382			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4383		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384			bctl->data.target : fs_info->avail_data_alloc_bits;
4385	} while (read_seqretry(&fs_info->profiles_lock, seq));
 
4386
4387	if (reducing_redundancy) {
 
 
 
 
 
 
 
 
4388		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4389			btrfs_info(fs_info,
4390			   "balance: force reducing metadata redundancy");
4391		} else {
4392			btrfs_err(fs_info,
4393	"balance: reduces metadata redundancy, use --force if you want this");
4394			ret = -EINVAL;
4395			goto out;
4396		}
4397	}
4398
4399	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4400		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4401		btrfs_warn(fs_info,
4402	"balance: metadata profile %s has lower redundancy than data profile %s",
4403				btrfs_bg_type_to_raid_name(meta_target),
4404				btrfs_bg_type_to_raid_name(data_target));
4405	}
4406
4407	ret = insert_balance_item(fs_info, bctl);
4408	if (ret && ret != -EEXIST)
4409		goto out;
4410
4411	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4412		BUG_ON(ret == -EEXIST);
4413		BUG_ON(fs_info->balance_ctl);
4414		spin_lock(&fs_info->balance_lock);
4415		fs_info->balance_ctl = bctl;
4416		spin_unlock(&fs_info->balance_lock);
4417	} else {
4418		BUG_ON(ret != -EEXIST);
4419		spin_lock(&fs_info->balance_lock);
4420		update_balance_args(bctl);
4421		spin_unlock(&fs_info->balance_lock);
4422	}
4423
4424	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4425	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426	describe_balance_start_or_resume(fs_info);
4427	mutex_unlock(&fs_info->balance_mutex);
4428
4429	ret = __btrfs_balance(fs_info);
4430
4431	mutex_lock(&fs_info->balance_mutex);
4432	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4433		btrfs_info(fs_info, "balance: paused");
4434		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4435		paused = true;
4436	}
4437	/*
4438	 * Balance can be canceled by:
4439	 *
4440	 * - Regular cancel request
4441	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4442	 *
4443	 * - Fatal signal to "btrfs" process
4444	 *   Either the signal caught by wait_reserve_ticket() and callers
4445	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4446	 *   got -ECANCELED.
4447	 *   Either way, in this case balance_cancel_req = 0, and
4448	 *   ret == -EINTR or ret == -ECANCELED.
4449	 *
4450	 * So here we only check the return value to catch canceled balance.
4451	 */
4452	else if (ret == -ECANCELED || ret == -EINTR)
4453		btrfs_info(fs_info, "balance: canceled");
4454	else
4455		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4456
4457	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4458
4459	if (bargs) {
4460		memset(bargs, 0, sizeof(*bargs));
4461		btrfs_update_ioctl_balance_args(fs_info, bargs);
4462	}
4463
4464	/* We didn't pause, we can clean everything up. */
4465	if (!paused) {
4466		reset_balance_state(fs_info);
4467		btrfs_exclop_finish(fs_info);
4468	}
4469
4470	wake_up(&fs_info->balance_wait_q);
4471
4472	return ret;
4473out:
4474	if (bctl->flags & BTRFS_BALANCE_RESUME)
4475		reset_balance_state(fs_info);
4476	else
4477		kfree(bctl);
4478	btrfs_exclop_finish(fs_info);
4479
4480	return ret;
4481}
4482
4483static int balance_kthread(void *data)
4484{
4485	struct btrfs_fs_info *fs_info = data;
4486	int ret = 0;
4487
4488	sb_start_write(fs_info->sb);
4489	mutex_lock(&fs_info->balance_mutex);
4490	if (fs_info->balance_ctl)
4491		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
 
 
 
 
4492	mutex_unlock(&fs_info->balance_mutex);
4493	sb_end_write(fs_info->sb);
4494
4495	return ret;
4496}
4497
4498int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4499{
4500	struct task_struct *tsk;
4501
4502	mutex_lock(&fs_info->balance_mutex);
4503	if (!fs_info->balance_ctl) {
4504		mutex_unlock(&fs_info->balance_mutex);
4505		return 0;
4506	}
4507	mutex_unlock(&fs_info->balance_mutex);
4508
4509	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4510		btrfs_info(fs_info, "balance: resume skipped");
4511		return 0;
4512	}
4513
4514	spin_lock(&fs_info->super_lock);
4515	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4516	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4517	spin_unlock(&fs_info->super_lock);
4518	/*
4519	 * A ro->rw remount sequence should continue with the paused balance
4520	 * regardless of who pauses it, system or the user as of now, so set
4521	 * the resume flag.
4522	 */
4523	spin_lock(&fs_info->balance_lock);
4524	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4525	spin_unlock(&fs_info->balance_lock);
4526
4527	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4528	return PTR_ERR_OR_ZERO(tsk);
 
 
 
4529}
4530
4531int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4532{
4533	struct btrfs_balance_control *bctl;
4534	struct btrfs_balance_item *item;
4535	struct btrfs_disk_balance_args disk_bargs;
4536	struct btrfs_path *path;
4537	struct extent_buffer *leaf;
4538	struct btrfs_key key;
4539	int ret;
4540
4541	path = btrfs_alloc_path();
4542	if (!path)
4543		return -ENOMEM;
4544
4545	key.objectid = BTRFS_BALANCE_OBJECTID;
4546	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4547	key.offset = 0;
4548
4549	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4550	if (ret < 0)
4551		goto out;
4552	if (ret > 0) { /* ret = -ENOENT; */
4553		ret = 0;
4554		goto out;
4555	}
4556
4557	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4558	if (!bctl) {
4559		ret = -ENOMEM;
4560		goto out;
4561	}
4562
4563	leaf = path->nodes[0];
4564	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4565
 
4566	bctl->flags = btrfs_balance_flags(leaf, item);
4567	bctl->flags |= BTRFS_BALANCE_RESUME;
4568
4569	btrfs_balance_data(leaf, item, &disk_bargs);
4570	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4571	btrfs_balance_meta(leaf, item, &disk_bargs);
4572	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4573	btrfs_balance_sys(leaf, item, &disk_bargs);
4574	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4575
4576	/*
4577	 * This should never happen, as the paused balance state is recovered
4578	 * during mount without any chance of other exclusive ops to collide.
4579	 *
4580	 * This gives the exclusive op status to balance and keeps in paused
4581	 * state until user intervention (cancel or umount). If the ownership
4582	 * cannot be assigned, show a message but do not fail. The balance
4583	 * is in a paused state and must have fs_info::balance_ctl properly
4584	 * set up.
4585	 */
4586	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4587		btrfs_warn(fs_info,
4588	"balance: cannot set exclusive op status, resume manually");
4589
4590	btrfs_release_path(path);
4591
4592	mutex_lock(&fs_info->balance_mutex);
4593	BUG_ON(fs_info->balance_ctl);
4594	spin_lock(&fs_info->balance_lock);
4595	fs_info->balance_ctl = bctl;
4596	spin_unlock(&fs_info->balance_lock);
4597	mutex_unlock(&fs_info->balance_mutex);
 
4598out:
4599	btrfs_free_path(path);
4600	return ret;
4601}
4602
4603int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4604{
4605	int ret = 0;
4606
4607	mutex_lock(&fs_info->balance_mutex);
4608	if (!fs_info->balance_ctl) {
4609		mutex_unlock(&fs_info->balance_mutex);
4610		return -ENOTCONN;
4611	}
4612
4613	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614		atomic_inc(&fs_info->balance_pause_req);
4615		mutex_unlock(&fs_info->balance_mutex);
4616
4617		wait_event(fs_info->balance_wait_q,
4618			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4619
4620		mutex_lock(&fs_info->balance_mutex);
4621		/* we are good with balance_ctl ripped off from under us */
4622		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623		atomic_dec(&fs_info->balance_pause_req);
4624	} else {
4625		ret = -ENOTCONN;
4626	}
4627
4628	mutex_unlock(&fs_info->balance_mutex);
4629	return ret;
4630}
4631
4632int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4633{
4634	mutex_lock(&fs_info->balance_mutex);
4635	if (!fs_info->balance_ctl) {
4636		mutex_unlock(&fs_info->balance_mutex);
4637		return -ENOTCONN;
4638	}
4639
4640	/*
4641	 * A paused balance with the item stored on disk can be resumed at
4642	 * mount time if the mount is read-write. Otherwise it's still paused
4643	 * and we must not allow cancelling as it deletes the item.
4644	 */
4645	if (sb_rdonly(fs_info->sb)) {
4646		mutex_unlock(&fs_info->balance_mutex);
4647		return -EROFS;
4648	}
4649
4650	atomic_inc(&fs_info->balance_cancel_req);
4651	/*
4652	 * if we are running just wait and return, balance item is
4653	 * deleted in btrfs_balance in this case
4654	 */
4655	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4656		mutex_unlock(&fs_info->balance_mutex);
4657		wait_event(fs_info->balance_wait_q,
4658			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4659		mutex_lock(&fs_info->balance_mutex);
4660	} else {
 
4661		mutex_unlock(&fs_info->balance_mutex);
4662		/*
4663		 * Lock released to allow other waiters to continue, we'll
4664		 * reexamine the status again.
4665		 */
4666		mutex_lock(&fs_info->balance_mutex);
4667
4668		if (fs_info->balance_ctl) {
4669			reset_balance_state(fs_info);
4670			btrfs_exclop_finish(fs_info);
4671			btrfs_info(fs_info, "balance: canceled");
4672		}
4673	}
4674
4675	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4676	atomic_dec(&fs_info->balance_cancel_req);
4677	mutex_unlock(&fs_info->balance_mutex);
4678	return 0;
4679}
4680
4681int btrfs_uuid_scan_kthread(void *data)
4682{
4683	struct btrfs_fs_info *fs_info = data;
4684	struct btrfs_root *root = fs_info->tree_root;
4685	struct btrfs_key key;
4686	struct btrfs_path *path = NULL;
4687	int ret = 0;
4688	struct extent_buffer *eb;
4689	int slot;
4690	struct btrfs_root_item root_item;
4691	u32 item_size;
4692	struct btrfs_trans_handle *trans = NULL;
4693	bool closing = false;
4694
4695	path = btrfs_alloc_path();
4696	if (!path) {
4697		ret = -ENOMEM;
4698		goto out;
4699	}
4700
4701	key.objectid = 0;
4702	key.type = BTRFS_ROOT_ITEM_KEY;
4703	key.offset = 0;
4704
4705	while (1) {
4706		if (btrfs_fs_closing(fs_info)) {
4707			closing = true;
4708			break;
4709		}
4710		ret = btrfs_search_forward(root, &key, path,
4711				BTRFS_OLDEST_GENERATION);
4712		if (ret) {
4713			if (ret > 0)
4714				ret = 0;
4715			break;
4716		}
4717
4718		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4719		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4720		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4721		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4722			goto skip;
4723
4724		eb = path->nodes[0];
4725		slot = path->slots[0];
4726		item_size = btrfs_item_size(eb, slot);
4727		if (item_size < sizeof(root_item))
4728			goto skip;
4729
4730		read_extent_buffer(eb, &root_item,
4731				   btrfs_item_ptr_offset(eb, slot),
4732				   (int)sizeof(root_item));
4733		if (btrfs_root_refs(&root_item) == 0)
4734			goto skip;
4735
4736		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4737		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4738			if (trans)
4739				goto update_tree;
4740
4741			btrfs_release_path(path);
4742			/*
4743			 * 1 - subvol uuid item
4744			 * 1 - received_subvol uuid item
4745			 */
4746			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4747			if (IS_ERR(trans)) {
4748				ret = PTR_ERR(trans);
4749				break;
4750			}
4751			continue;
4752		} else {
4753			goto skip;
4754		}
4755update_tree:
4756		btrfs_release_path(path);
4757		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4758			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4759						  BTRFS_UUID_KEY_SUBVOL,
4760						  key.objectid);
4761			if (ret < 0) {
4762				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4763					ret);
4764				break;
4765			}
4766		}
4767
4768		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4769			ret = btrfs_uuid_tree_add(trans,
4770						  root_item.received_uuid,
4771						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4772						  key.objectid);
4773			if (ret < 0) {
4774				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4775					ret);
4776				break;
4777			}
4778		}
4779
4780skip:
4781		btrfs_release_path(path);
4782		if (trans) {
4783			ret = btrfs_end_transaction(trans);
4784			trans = NULL;
4785			if (ret)
4786				break;
4787		}
4788
4789		if (key.offset < (u64)-1) {
4790			key.offset++;
4791		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4792			key.offset = 0;
4793			key.type = BTRFS_ROOT_ITEM_KEY;
4794		} else if (key.objectid < (u64)-1) {
4795			key.offset = 0;
4796			key.type = BTRFS_ROOT_ITEM_KEY;
4797			key.objectid++;
4798		} else {
4799			break;
4800		}
4801		cond_resched();
4802	}
4803
4804out:
4805	btrfs_free_path(path);
4806	if (trans && !IS_ERR(trans))
4807		btrfs_end_transaction(trans);
4808	if (ret)
4809		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4810	else if (!closing)
4811		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4812	up(&fs_info->uuid_tree_rescan_sem);
4813	return 0;
4814}
4815
4816int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4817{
4818	struct btrfs_trans_handle *trans;
4819	struct btrfs_root *tree_root = fs_info->tree_root;
4820	struct btrfs_root *uuid_root;
4821	struct task_struct *task;
4822	int ret;
4823
4824	/*
4825	 * 1 - root node
4826	 * 1 - root item
4827	 */
4828	trans = btrfs_start_transaction(tree_root, 2);
4829	if (IS_ERR(trans))
4830		return PTR_ERR(trans);
4831
4832	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4833	if (IS_ERR(uuid_root)) {
4834		ret = PTR_ERR(uuid_root);
4835		btrfs_abort_transaction(trans, ret);
4836		btrfs_end_transaction(trans);
4837		return ret;
4838	}
4839
4840	fs_info->uuid_root = uuid_root;
4841
4842	ret = btrfs_commit_transaction(trans);
4843	if (ret)
4844		return ret;
4845
4846	down(&fs_info->uuid_tree_rescan_sem);
4847	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4848	if (IS_ERR(task)) {
4849		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4850		btrfs_warn(fs_info, "failed to start uuid_scan task");
4851		up(&fs_info->uuid_tree_rescan_sem);
4852		return PTR_ERR(task);
4853	}
4854
4855	return 0;
4856}
4857
4858/*
4859 * shrinking a device means finding all of the device extents past
4860 * the new size, and then following the back refs to the chunks.
4861 * The chunk relocation code actually frees the device extent
4862 */
4863int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4864{
4865	struct btrfs_fs_info *fs_info = device->fs_info;
4866	struct btrfs_root *root = fs_info->dev_root;
4867	struct btrfs_trans_handle *trans;
 
4868	struct btrfs_dev_extent *dev_extent = NULL;
4869	struct btrfs_path *path;
4870	u64 length;
 
 
4871	u64 chunk_offset;
4872	int ret;
4873	int slot;
4874	int failed = 0;
4875	bool retried = false;
4876	struct extent_buffer *l;
4877	struct btrfs_key key;
4878	struct btrfs_super_block *super_copy = fs_info->super_copy;
4879	u64 old_total = btrfs_super_total_bytes(super_copy);
4880	u64 old_size = btrfs_device_get_total_bytes(device);
4881	u64 diff;
4882	u64 start;
4883	u64 free_diff = 0;
4884
4885	new_size = round_down(new_size, fs_info->sectorsize);
4886	start = new_size;
4887	diff = round_down(old_size - new_size, fs_info->sectorsize);
4888
4889	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4890		return -EINVAL;
4891
4892	path = btrfs_alloc_path();
4893	if (!path)
4894		return -ENOMEM;
4895
4896	path->reada = READA_BACK;
4897
4898	trans = btrfs_start_transaction(root, 0);
4899	if (IS_ERR(trans)) {
4900		btrfs_free_path(path);
4901		return PTR_ERR(trans);
4902	}
4903
4904	mutex_lock(&fs_info->chunk_mutex);
4905
4906	btrfs_device_set_total_bytes(device, new_size);
4907	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4908		device->fs_devices->total_rw_bytes -= diff;
4909
4910		/*
4911		 * The new free_chunk_space is new_size - used, so we have to
4912		 * subtract the delta of the old free_chunk_space which included
4913		 * old_size - used.  If used > new_size then just subtract this
4914		 * entire device's free space.
4915		 */
4916		if (device->bytes_used < new_size)
4917			free_diff = (old_size - device->bytes_used) -
4918				    (new_size - device->bytes_used);
4919		else
4920			free_diff = old_size - device->bytes_used;
4921		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4922	}
4923
4924	/*
4925	 * Once the device's size has been set to the new size, ensure all
4926	 * in-memory chunks are synced to disk so that the loop below sees them
4927	 * and relocates them accordingly.
4928	 */
4929	if (contains_pending_extent(device, &start, diff)) {
4930		mutex_unlock(&fs_info->chunk_mutex);
4931		ret = btrfs_commit_transaction(trans);
4932		if (ret)
4933			goto done;
4934	} else {
4935		mutex_unlock(&fs_info->chunk_mutex);
4936		btrfs_end_transaction(trans);
4937	}
 
4938
4939again:
4940	key.objectid = device->devid;
4941	key.offset = (u64)-1;
4942	key.type = BTRFS_DEV_EXTENT_KEY;
4943
4944	do {
4945		mutex_lock(&fs_info->reclaim_bgs_lock);
4946		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4947		if (ret < 0) {
4948			mutex_unlock(&fs_info->reclaim_bgs_lock);
4949			goto done;
4950		}
4951
4952		ret = btrfs_previous_item(root, path, 0, key.type);
 
 
4953		if (ret) {
4954			mutex_unlock(&fs_info->reclaim_bgs_lock);
4955			if (ret < 0)
4956				goto done;
4957			ret = 0;
4958			btrfs_release_path(path);
4959			break;
4960		}
4961
4962		l = path->nodes[0];
4963		slot = path->slots[0];
4964		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4965
4966		if (key.objectid != device->devid) {
4967			mutex_unlock(&fs_info->reclaim_bgs_lock);
4968			btrfs_release_path(path);
4969			break;
4970		}
4971
4972		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4973		length = btrfs_dev_extent_length(l, dev_extent);
4974
4975		if (key.offset + length <= new_size) {
4976			mutex_unlock(&fs_info->reclaim_bgs_lock);
4977			btrfs_release_path(path);
4978			break;
4979		}
4980
 
 
4981		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4982		btrfs_release_path(path);
4983
4984		/*
4985		 * We may be relocating the only data chunk we have,
4986		 * which could potentially end up with losing data's
4987		 * raid profile, so lets allocate an empty one in
4988		 * advance.
4989		 */
4990		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4991		if (ret < 0) {
4992			mutex_unlock(&fs_info->reclaim_bgs_lock);
4993			goto done;
4994		}
4995
4996		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4997		mutex_unlock(&fs_info->reclaim_bgs_lock);
4998		if (ret == -ENOSPC) {
4999			failed++;
5000		} else if (ret) {
5001			if (ret == -ETXTBSY) {
5002				btrfs_warn(fs_info,
5003		   "could not shrink block group %llu due to active swapfile",
5004					   chunk_offset);
5005			}
5006			goto done;
5007		}
 
5008	} while (key.offset-- > 0);
5009
5010	if (failed && !retried) {
5011		failed = 0;
5012		retried = true;
5013		goto again;
5014	} else if (failed && retried) {
5015		ret = -ENOSPC;
 
 
 
 
 
 
 
 
 
5016		goto done;
5017	}
5018
5019	/* Shrinking succeeded, else we would be at "done". */
5020	trans = btrfs_start_transaction(root, 0);
5021	if (IS_ERR(trans)) {
5022		ret = PTR_ERR(trans);
5023		goto done;
5024	}
5025
5026	mutex_lock(&fs_info->chunk_mutex);
5027	/* Clear all state bits beyond the shrunk device size */
5028	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5029			  CHUNK_STATE_MASK);
5030
5031	btrfs_device_set_disk_total_bytes(device, new_size);
5032	if (list_empty(&device->post_commit_list))
5033		list_add_tail(&device->post_commit_list,
5034			      &trans->transaction->dev_update_list);
5035
5036	WARN_ON(diff > old_total);
5037	btrfs_set_super_total_bytes(super_copy,
5038			round_down(old_total - diff, fs_info->sectorsize));
5039	mutex_unlock(&fs_info->chunk_mutex);
5040
5041	btrfs_reserve_chunk_metadata(trans, false);
5042	/* Now btrfs_update_device() will change the on-disk size. */
5043	ret = btrfs_update_device(trans, device);
5044	btrfs_trans_release_chunk_metadata(trans);
5045	if (ret < 0) {
5046		btrfs_abort_transaction(trans, ret);
5047		btrfs_end_transaction(trans);
5048	} else {
5049		ret = btrfs_commit_transaction(trans);
5050	}
 
 
 
 
5051done:
5052	btrfs_free_path(path);
5053	if (ret) {
5054		mutex_lock(&fs_info->chunk_mutex);
5055		btrfs_device_set_total_bytes(device, old_size);
5056		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5057			device->fs_devices->total_rw_bytes += diff;
5058			atomic64_add(free_diff, &fs_info->free_chunk_space);
5059		}
5060		mutex_unlock(&fs_info->chunk_mutex);
5061	}
5062	return ret;
5063}
5064
5065static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5066			   struct btrfs_key *key,
5067			   struct btrfs_chunk *chunk, int item_size)
5068{
5069	struct btrfs_super_block *super_copy = fs_info->super_copy;
5070	struct btrfs_disk_key disk_key;
5071	u32 array_size;
5072	u8 *ptr;
5073
5074	lockdep_assert_held(&fs_info->chunk_mutex);
5075
5076	array_size = btrfs_super_sys_array_size(super_copy);
5077	if (array_size + item_size + sizeof(disk_key)
5078			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5079		return -EFBIG;
5080
5081	ptr = super_copy->sys_chunk_array + array_size;
5082	btrfs_cpu_key_to_disk(&disk_key, key);
5083	memcpy(ptr, &disk_key, sizeof(disk_key));
5084	ptr += sizeof(disk_key);
5085	memcpy(ptr, chunk, item_size);
5086	item_size += sizeof(disk_key);
5087	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5088
5089	return 0;
5090}
5091
5092/*
5093 * sort the devices in descending order by max_avail, total_avail
5094 */
5095static int btrfs_cmp_device_info(const void *a, const void *b)
5096{
5097	const struct btrfs_device_info *di_a = a;
5098	const struct btrfs_device_info *di_b = b;
5099
5100	if (di_a->max_avail > di_b->max_avail)
5101		return -1;
5102	if (di_a->max_avail < di_b->max_avail)
5103		return 1;
5104	if (di_a->total_avail > di_b->total_avail)
5105		return -1;
5106	if (di_a->total_avail < di_b->total_avail)
5107		return 1;
5108	return 0;
5109}
5110
5111static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5112{
5113	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5114		return;
5115
5116	btrfs_set_fs_incompat(info, RAID56);
5117}
5118
5119static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5120{
5121	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5122		return;
5123
5124	btrfs_set_fs_incompat(info, RAID1C34);
5125}
5126
5127/*
5128 * Structure used internally for btrfs_create_chunk() function.
5129 * Wraps needed parameters.
5130 */
5131struct alloc_chunk_ctl {
5132	u64 start;
5133	u64 type;
5134	/* Total number of stripes to allocate */
5135	int num_stripes;
5136	/* sub_stripes info for map */
5137	int sub_stripes;
5138	/* Stripes per device */
5139	int dev_stripes;
5140	/* Maximum number of devices to use */
5141	int devs_max;
5142	/* Minimum number of devices to use */
5143	int devs_min;
5144	/* ndevs has to be a multiple of this */
5145	int devs_increment;
5146	/* Number of copies */
5147	int ncopies;
5148	/* Number of stripes worth of bytes to store parity information */
5149	int nparity;
5150	u64 max_stripe_size;
5151	u64 max_chunk_size;
5152	u64 dev_extent_min;
5153	u64 stripe_size;
5154	u64 chunk_size;
5155	int ndevs;
5156};
5157
5158static void init_alloc_chunk_ctl_policy_regular(
5159				struct btrfs_fs_devices *fs_devices,
5160				struct alloc_chunk_ctl *ctl)
5161{
5162	struct btrfs_space_info *space_info;
5163
5164	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5165	ASSERT(space_info);
5166
5167	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5168	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5169
5170	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5171		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5172
5173	/* We don't want a chunk larger than 10% of writable space */
5174	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5175				  ctl->max_chunk_size);
5176	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5177}
5178
5179static void init_alloc_chunk_ctl_policy_zoned(
5180				      struct btrfs_fs_devices *fs_devices,
5181				      struct alloc_chunk_ctl *ctl)
5182{
5183	u64 zone_size = fs_devices->fs_info->zone_size;
5184	u64 limit;
5185	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5186	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5187	u64 min_chunk_size = min_data_stripes * zone_size;
5188	u64 type = ctl->type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5189
5190	ctl->max_stripe_size = zone_size;
5191	if (type & BTRFS_BLOCK_GROUP_DATA) {
5192		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5193						 zone_size);
5194	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5195		ctl->max_chunk_size = ctl->max_stripe_size;
 
 
 
 
 
5196	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5197		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5198		ctl->devs_max = min_t(int, ctl->devs_max,
5199				      BTRFS_MAX_DEVS_SYS_CHUNK);
5200	} else {
5201		BUG();
 
 
5202	}
5203
5204	/* We don't want a chunk larger than 10% of writable space */
5205	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5206			       zone_size),
5207		    min_chunk_size);
5208	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5209	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5210}
5211
5212static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5213				 struct alloc_chunk_ctl *ctl)
5214{
5215	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5216
5217	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5218	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5219	ctl->devs_max = btrfs_raid_array[index].devs_max;
5220	if (!ctl->devs_max)
5221		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5222	ctl->devs_min = btrfs_raid_array[index].devs_min;
5223	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5224	ctl->ncopies = btrfs_raid_array[index].ncopies;
5225	ctl->nparity = btrfs_raid_array[index].nparity;
5226	ctl->ndevs = 0;
5227
5228	switch (fs_devices->chunk_alloc_policy) {
5229	case BTRFS_CHUNK_ALLOC_REGULAR:
5230		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5231		break;
5232	case BTRFS_CHUNK_ALLOC_ZONED:
5233		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5234		break;
5235	default:
5236		BUG();
5237	}
5238}
5239
5240static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5241			      struct alloc_chunk_ctl *ctl,
5242			      struct btrfs_device_info *devices_info)
5243{
5244	struct btrfs_fs_info *info = fs_devices->fs_info;
5245	struct btrfs_device *device;
5246	u64 total_avail;
5247	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5248	int ret;
5249	int ndevs = 0;
5250	u64 max_avail;
5251	u64 dev_offset;
5252
5253	/*
5254	 * in the first pass through the devices list, we gather information
5255	 * about the available holes on each device.
5256	 */
5257	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5258		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5259			WARN(1, KERN_ERR
5260			       "BTRFS: read-only device in alloc_list\n");
 
 
 
 
 
 
 
 
 
 
5261			continue;
5262		}
5263
5264		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5265					&device->dev_state) ||
5266		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5267			continue;
5268
5269		if (device->total_bytes > device->bytes_used)
5270			total_avail = device->total_bytes - device->bytes_used;
5271		else
5272			total_avail = 0;
5273
5274		/* If there is no space on this device, skip it. */
5275		if (total_avail < ctl->dev_extent_min)
5276			continue;
5277
5278		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5279					   &max_avail);
 
5280		if (ret && ret != -ENOSPC)
5281			return ret;
5282
5283		if (ret == 0)
5284			max_avail = dev_extent_want;
5285
5286		if (max_avail < ctl->dev_extent_min) {
5287			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5288				btrfs_debug(info,
5289			"%s: devid %llu has no free space, have=%llu want=%llu",
5290					    __func__, device->devid, max_avail,
5291					    ctl->dev_extent_min);
5292			continue;
5293		}
5294
5295		if (ndevs == fs_devices->rw_devices) {
5296			WARN(1, "%s: found more than %llu devices\n",
5297			     __func__, fs_devices->rw_devices);
5298			break;
5299		}
5300		devices_info[ndevs].dev_offset = dev_offset;
5301		devices_info[ndevs].max_avail = max_avail;
5302		devices_info[ndevs].total_avail = total_avail;
5303		devices_info[ndevs].dev = device;
5304		++ndevs;
5305	}
5306	ctl->ndevs = ndevs;
5307
5308	/*
5309	 * now sort the devices by hole size / available space
5310	 */
5311	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5312	     btrfs_cmp_device_info, NULL);
5313
5314	return 0;
5315}
5316
5317static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5318				      struct btrfs_device_info *devices_info)
5319{
5320	/* Number of stripes that count for block group size */
5321	int data_stripes;
5322
5323	/*
5324	 * The primary goal is to maximize the number of stripes, so use as
5325	 * many devices as possible, even if the stripes are not maximum sized.
5326	 *
5327	 * The DUP profile stores more than one stripe per device, the
5328	 * max_avail is the total size so we have to adjust.
5329	 */
5330	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5331				   ctl->dev_stripes);
5332	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333
5334	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5335	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5336
5337	/*
5338	 * Use the number of data stripes to figure out how big this chunk is
5339	 * really going to be in terms of logical address space, and compare
5340	 * that answer with the max chunk size. If it's higher, we try to
5341	 * reduce stripe_size.
5342	 */
5343	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5344		/*
5345		 * Reduce stripe_size, round it up to a 16MB boundary again and
5346		 * then use it, unless it ends up being even bigger than the
5347		 * previous value we had already.
5348		 */
5349		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5350							data_stripes), SZ_16M),
5351				       ctl->stripe_size);
5352	}
5353
5354	/* Stripe size should not go beyond 1G. */
5355	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5356
5357	/* Align to BTRFS_STRIPE_LEN */
5358	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5359	ctl->chunk_size = ctl->stripe_size * data_stripes;
5360
5361	return 0;
5362}
5363
5364static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5365				    struct btrfs_device_info *devices_info)
5366{
5367	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5368	/* Number of stripes that count for block group size */
5369	int data_stripes;
5370
5371	/*
5372	 * It should hold because:
5373	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5374	 */
5375	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5376
5377	ctl->stripe_size = zone_size;
5378	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5379	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5380
5381	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5382	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5383		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5384					     ctl->stripe_size) + ctl->nparity,
5385				     ctl->dev_stripes);
5386		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5387		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5388		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5389	}
5390
5391	ctl->chunk_size = ctl->stripe_size * data_stripes;
5392
5393	return 0;
5394}
5395
5396static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5397			      struct alloc_chunk_ctl *ctl,
5398			      struct btrfs_device_info *devices_info)
5399{
5400	struct btrfs_fs_info *info = fs_devices->fs_info;
5401
5402	/*
5403	 * Round down to number of usable stripes, devs_increment can be any
5404	 * number so we can't use round_down() that requires power of 2, while
5405	 * rounddown is safe.
5406	 */
5407	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5408
5409	if (ctl->ndevs < ctl->devs_min) {
5410		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5411			btrfs_debug(info,
5412	"%s: not enough devices with free space: have=%d minimum required=%d",
5413				    __func__, ctl->ndevs, ctl->devs_min);
5414		}
5415		return -ENOSPC;
5416	}
5417
5418	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5419
5420	switch (fs_devices->chunk_alloc_policy) {
5421	case BTRFS_CHUNK_ALLOC_REGULAR:
5422		return decide_stripe_size_regular(ctl, devices_info);
5423	case BTRFS_CHUNK_ALLOC_ZONED:
5424		return decide_stripe_size_zoned(ctl, devices_info);
5425	default:
5426		BUG();
5427	}
5428}
5429
5430static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5431{
5432	for (int i = 0; i < map->num_stripes; i++) {
5433		struct btrfs_io_stripe *stripe = &map->stripes[i];
5434		struct btrfs_device *device = stripe->dev;
5435
5436		set_extent_bit(&device->alloc_state, stripe->physical,
5437			       stripe->physical + map->stripe_size - 1,
5438			       bits | EXTENT_NOWAIT, NULL);
5439	}
5440}
5441
5442static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5443{
5444	for (int i = 0; i < map->num_stripes; i++) {
5445		struct btrfs_io_stripe *stripe = &map->stripes[i];
5446		struct btrfs_device *device = stripe->dev;
5447
5448		__clear_extent_bit(&device->alloc_state, stripe->physical,
5449				   stripe->physical + map->stripe_size - 1,
5450				   bits | EXTENT_NOWAIT,
5451				   NULL, NULL);
5452	}
5453}
5454
5455void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5456{
5457	write_lock(&fs_info->mapping_tree_lock);
5458	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5459	RB_CLEAR_NODE(&map->rb_node);
5460	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5461	write_unlock(&fs_info->mapping_tree_lock);
5462
5463	/* Once for the tree reference. */
5464	btrfs_free_chunk_map(map);
5465}
5466
5467EXPORT_FOR_TESTS
5468int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5469{
5470	struct rb_node **p;
5471	struct rb_node *parent = NULL;
5472	bool leftmost = true;
5473
5474	write_lock(&fs_info->mapping_tree_lock);
5475	p = &fs_info->mapping_tree.rb_root.rb_node;
5476	while (*p) {
5477		struct btrfs_chunk_map *entry;
5478
5479		parent = *p;
5480		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5481
5482		if (map->start < entry->start) {
5483			p = &(*p)->rb_left;
5484		} else if (map->start > entry->start) {
5485			p = &(*p)->rb_right;
5486			leftmost = false;
5487		} else {
5488			write_unlock(&fs_info->mapping_tree_lock);
5489			return -EEXIST;
5490		}
5491	}
5492	rb_link_node(&map->rb_node, parent, p);
5493	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5494	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5495	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5496	write_unlock(&fs_info->mapping_tree_lock);
5497
5498	return 0;
5499}
5500
5501EXPORT_FOR_TESTS
5502struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5503{
5504	struct btrfs_chunk_map *map;
5505
5506	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5507	if (!map)
5508		return NULL;
5509
5510	refcount_set(&map->refs, 1);
5511	RB_CLEAR_NODE(&map->rb_node);
5512
5513	return map;
5514}
5515
5516struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5517{
5518	const int size = btrfs_chunk_map_size(map->num_stripes);
5519	struct btrfs_chunk_map *clone;
5520
5521	clone = kmemdup(map, size, gfp);
5522	if (!clone)
5523		return NULL;
5524
5525	refcount_set(&clone->refs, 1);
5526	RB_CLEAR_NODE(&clone->rb_node);
5527
5528	return clone;
5529}
5530
5531static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5532			struct alloc_chunk_ctl *ctl,
5533			struct btrfs_device_info *devices_info)
5534{
5535	struct btrfs_fs_info *info = trans->fs_info;
5536	struct btrfs_chunk_map *map;
5537	struct btrfs_block_group *block_group;
5538	u64 start = ctl->start;
5539	u64 type = ctl->type;
5540	int ret;
5541	int i;
5542	int j;
5543
5544	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5545	if (!map)
5546		return ERR_PTR(-ENOMEM);
5547
5548	map->start = start;
5549	map->chunk_len = ctl->chunk_size;
5550	map->stripe_size = ctl->stripe_size;
5551	map->type = type;
5552	map->io_align = BTRFS_STRIPE_LEN;
5553	map->io_width = BTRFS_STRIPE_LEN;
5554	map->sub_stripes = ctl->sub_stripes;
5555	map->num_stripes = ctl->num_stripes;
5556
5557	for (i = 0; i < ctl->ndevs; ++i) {
5558		for (j = 0; j < ctl->dev_stripes; ++j) {
5559			int s = i * ctl->dev_stripes + j;
5560			map->stripes[s].dev = devices_info[i].dev;
5561			map->stripes[s].physical = devices_info[i].dev_offset +
5562						   j * ctl->stripe_size;
5563		}
5564	}
 
 
 
 
 
 
5565
5566	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5567
5568	ret = btrfs_add_chunk_map(info, map);
5569	if (ret) {
5570		btrfs_free_chunk_map(map);
5571		return ERR_PTR(ret);
5572	}
5573
5574	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5575	if (IS_ERR(block_group)) {
5576		btrfs_remove_chunk_map(info, map);
5577		return block_group;
5578	}
5579
5580	for (int i = 0; i < map->num_stripes; i++) {
5581		struct btrfs_device *dev = map->stripes[i].dev;
5582
5583		btrfs_device_set_bytes_used(dev,
5584					    dev->bytes_used + ctl->stripe_size);
5585		if (list_empty(&dev->post_commit_list))
5586			list_add_tail(&dev->post_commit_list,
5587				      &trans->transaction->dev_update_list);
5588	}
5589
5590	atomic64_sub(ctl->stripe_size * map->num_stripes,
5591		     &info->free_chunk_space);
5592
5593	check_raid56_incompat_flag(info, type);
5594	check_raid1c34_incompat_flag(info, type);
5595
5596	return block_group;
5597}
5598
5599struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5600					    u64 type)
5601{
5602	struct btrfs_fs_info *info = trans->fs_info;
5603	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5604	struct btrfs_device_info *devices_info = NULL;
5605	struct alloc_chunk_ctl ctl;
5606	struct btrfs_block_group *block_group;
5607	int ret;
5608
5609	lockdep_assert_held(&info->chunk_mutex);
5610
5611	if (!alloc_profile_is_valid(type, 0)) {
5612		ASSERT(0);
5613		return ERR_PTR(-EINVAL);
5614	}
5615
5616	if (list_empty(&fs_devices->alloc_list)) {
5617		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5618			btrfs_debug(info, "%s: no writable device", __func__);
5619		return ERR_PTR(-ENOSPC);
5620	}
5621
5622	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5623		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5624		ASSERT(0);
5625		return ERR_PTR(-EINVAL);
5626	}
 
 
 
 
 
 
 
 
 
 
 
 
 
5627
5628	ctl.start = find_next_chunk(info);
5629	ctl.type = type;
5630	init_alloc_chunk_ctl(fs_devices, &ctl);
 
 
5631
5632	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5633			       GFP_NOFS);
5634	if (!devices_info)
5635		return ERR_PTR(-ENOMEM);
5636
5637	ret = gather_device_info(fs_devices, &ctl, devices_info);
5638	if (ret < 0) {
5639		block_group = ERR_PTR(ret);
5640		goto out;
5641	}
5642
5643	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5644	if (ret < 0) {
5645		block_group = ERR_PTR(ret);
5646		goto out;
 
 
 
 
5647	}
5648
5649	block_group = create_chunk(trans, &ctl, devices_info);
 
5650
5651out:
 
5652	kfree(devices_info);
5653	return block_group;
5654}
5655
5656/*
5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5659 * chunks.
5660 *
5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5662 * phases.
5663 */
5664int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5665				     struct btrfs_block_group *bg)
5666{
5667	struct btrfs_fs_info *fs_info = trans->fs_info;
5668	struct btrfs_root *chunk_root = fs_info->chunk_root;
5669	struct btrfs_key key;
 
 
5670	struct btrfs_chunk *chunk;
5671	struct btrfs_stripe *stripe;
5672	struct btrfs_chunk_map *map;
5673	size_t item_size;
5674	int i;
5675	int ret;
5676
5677	/*
5678	 * We take the chunk_mutex for 2 reasons:
5679	 *
5680	 * 1) Updates and insertions in the chunk btree must be done while holding
5681	 *    the chunk_mutex, as well as updating the system chunk array in the
5682	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5683	 *    details;
5684	 *
5685	 * 2) To prevent races with the final phase of a device replace operation
5686	 *    that replaces the device object associated with the map's stripes,
5687	 *    because the device object's id can change at any time during that
5688	 *    final phase of the device replace operation
5689	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5690	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5691	 *    which would cause a failure when updating the device item, which does
5692	 *    not exists, or persisting a stripe of the chunk item with such ID.
5693	 *    Here we can't use the device_list_mutex because our caller already
5694	 *    has locked the chunk_mutex, and the final phase of device replace
5695	 *    acquires both mutexes - first the device_list_mutex and then the
5696	 *    chunk_mutex. Using any of those two mutexes protects us from a
5697	 *    concurrent device replace.
5698	 */
5699	lockdep_assert_held(&fs_info->chunk_mutex);
5700
5701	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5702	if (IS_ERR(map)) {
5703		ret = PTR_ERR(map);
5704		btrfs_abort_transaction(trans, ret);
5705		return ret;
5706	}
5707
5708	item_size = btrfs_chunk_item_size(map->num_stripes);
5709
5710	chunk = kzalloc(item_size, GFP_NOFS);
5711	if (!chunk) {
5712		ret = -ENOMEM;
5713		btrfs_abort_transaction(trans, ret);
5714		goto out;
5715	}
5716
5717	for (i = 0; i < map->num_stripes; i++) {
5718		struct btrfs_device *device = map->stripes[i].dev;
5719
 
 
 
 
5720		ret = btrfs_update_device(trans, device);
5721		if (ret)
5722			goto out;
 
5723	}
5724
 
 
 
 
 
 
5725	stripe = &chunk->stripe;
5726	for (i = 0; i < map->num_stripes; i++) {
5727		struct btrfs_device *device = map->stripes[i].dev;
5728		const u64 dev_offset = map->stripes[i].physical;
5729
5730		btrfs_set_stack_stripe_devid(stripe, device->devid);
5731		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5732		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5733		stripe++;
 
5734	}
5735
5736	btrfs_set_stack_chunk_length(chunk, bg->length);
5737	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5738	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5739	btrfs_set_stack_chunk_type(chunk, map->type);
5740	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5741	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5742	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5743	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5744	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5745
5746	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5747	key.type = BTRFS_CHUNK_ITEM_KEY;
5748	key.offset = bg->start;
5749
5750	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5751	if (ret)
5752		goto out;
5753
5754	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5755
5756	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5757		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5758		if (ret)
5759			goto out;
 
 
 
5760	}
5761
5762out:
5763	kfree(chunk);
5764	btrfs_free_chunk_map(map);
5765	return ret;
5766}
5767
5768static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
5769{
5770	struct btrfs_fs_info *fs_info = trans->fs_info;
5771	u64 alloc_profile;
5772	struct btrfs_block_group *meta_bg;
5773	struct btrfs_block_group *sys_bg;
 
 
5774
5775	/*
5776	 * When adding a new device for sprouting, the seed device is read-only
5777	 * so we must first allocate a metadata and a system chunk. But before
5778	 * adding the block group items to the extent, device and chunk btrees,
5779	 * we must first:
5780	 *
5781	 * 1) Create both chunks without doing any changes to the btrees, as
5782	 *    otherwise we would get -ENOSPC since the block groups from the
5783	 *    seed device are read-only;
5784	 *
5785	 * 2) Add the device item for the new sprout device - finishing the setup
5786	 *    of a new block group requires updating the device item in the chunk
5787	 *    btree, so it must exist when we attempt to do it. The previous step
5788	 *    ensures this does not fail with -ENOSPC.
5789	 *
5790	 * After that we can add the block group items to their btrees:
5791	 * update existing device item in the chunk btree, add a new block group
5792	 * item to the extent btree, add a new chunk item to the chunk btree and
5793	 * finally add the new device extent items to the devices btree.
5794	 */
5795
5796	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5797	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5798	if (IS_ERR(meta_bg))
5799		return PTR_ERR(meta_bg);
5800
5801	alloc_profile = btrfs_system_alloc_profile(fs_info);
5802	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5803	if (IS_ERR(sys_bg))
5804		return PTR_ERR(sys_bg);
5805
 
 
 
 
5806	return 0;
5807}
5808
5809static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
 
 
5810{
5811	const int index = btrfs_bg_flags_to_raid_index(map->type);
 
 
 
 
 
 
 
 
 
 
 
5812
5813	return btrfs_raid_array[index].tolerated_failures;
5814}
 
 
5815
5816bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5817{
5818	struct btrfs_chunk_map *map;
5819	int miss_ndevs = 0;
5820	int i;
5821	bool ret = true;
 
 
5822
5823	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5824	if (IS_ERR(map))
5825		return false;
5826
5827	for (i = 0; i < map->num_stripes; i++) {
5828		if (test_bit(BTRFS_DEV_STATE_MISSING,
5829					&map->stripes[i].dev->dev_state)) {
5830			miss_ndevs++;
5831			continue;
5832		}
5833		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834					&map->stripes[i].dev->dev_state)) {
5835			ret = false;
5836			goto end;
5837		}
5838	}
 
5839
5840	/*
5841	 * If the number of missing devices is larger than max errors, we can
5842	 * not write the data into that chunk successfully.
 
 
5843	 */
5844	if (miss_ndevs > btrfs_chunk_max_errors(map))
5845		ret = false;
5846end:
5847	btrfs_free_chunk_map(map);
5848	return ret;
5849}
5850
5851void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5852{
5853	write_lock(&fs_info->mapping_tree_lock);
5854	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855		struct btrfs_chunk_map *map;
5856		struct rb_node *node;
5857
5858		node = rb_first_cached(&fs_info->mapping_tree);
5859		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861		RB_CLEAR_NODE(&map->rb_node);
5862		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863		/* Once for the tree ref. */
5864		btrfs_free_chunk_map(map);
5865		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5866	}
5867	write_unlock(&fs_info->mapping_tree_lock);
5868}
5869
5870int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5871{
5872	struct btrfs_chunk_map *map;
5873	enum btrfs_raid_types index;
5874	int ret = 1;
 
 
5875
5876	map = btrfs_get_chunk_map(fs_info, logical, len);
5877	if (IS_ERR(map))
5878		/*
5879		 * We could return errors for these cases, but that could get
5880		 * ugly and we'd probably do the same thing which is just not do
5881		 * anything else and exit, so return 1 so the callers don't try
5882		 * to use other copies.
5883		 */
5884		return 1;
5885
5886	index = btrfs_bg_flags_to_raid_index(map->type);
 
 
 
5887
5888	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5889	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5890		ret = btrfs_raid_array[index].ncopies;
5891	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5892		ret = 2;
5893	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5894		/*
5895		 * There could be two corrupted data stripes, we need
5896		 * to loop retry in order to rebuild the correct data.
5897		 *
5898		 * Fail a stripe at a time on every retry except the
5899		 * stripe under reconstruction.
5900		 */
5901		ret = map->num_stripes;
5902	btrfs_free_chunk_map(map);
5903	return ret;
5904}
5905
5906unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5907				    u64 logical)
5908{
5909	struct btrfs_chunk_map *map;
5910	unsigned long len = fs_info->sectorsize;
5911
5912	if (!btrfs_fs_incompat(fs_info, RAID56))
5913		return len;
5914
5915	map = btrfs_get_chunk_map(fs_info, logical, len);
 
 
5916
5917	if (!WARN_ON(IS_ERR(map))) {
5918		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5919			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5920		btrfs_free_chunk_map(map);
 
 
 
 
 
 
 
 
 
5921	}
5922	return len;
5923}
5924
5925int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5926{
5927	struct btrfs_chunk_map *map;
5928	int ret = 0;
5929
5930	if (!btrfs_fs_incompat(fs_info, RAID56))
5931		return 0;
5932
5933	map = btrfs_get_chunk_map(fs_info, logical, len);
 
 
 
5934
5935	if (!WARN_ON(IS_ERR(map))) {
5936		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5937			ret = 1;
5938		btrfs_free_chunk_map(map);
5939	}
 
 
 
 
5940	return ret;
5941}
5942
5943static int find_live_mirror(struct btrfs_fs_info *fs_info,
5944			    struct btrfs_chunk_map *map, int first,
5945			    int dev_replace_is_ongoing)
5946{
5947	int i;
5948	int num_stripes;
5949	int preferred_mirror;
5950	int tolerance;
5951	struct btrfs_device *srcdev;
5952
5953	ASSERT((map->type &
5954		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5955
5956	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5957		num_stripes = map->sub_stripes;
5958	else
5959		num_stripes = map->num_stripes;
5960
5961	switch (fs_info->fs_devices->read_policy) {
5962	default:
5963		/* Shouldn't happen, just warn and use pid instead of failing */
5964		btrfs_warn_rl(fs_info,
5965			      "unknown read_policy type %u, reset to pid",
5966			      fs_info->fs_devices->read_policy);
5967		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5968		fallthrough;
5969	case BTRFS_READ_POLICY_PID:
5970		preferred_mirror = first + (current->pid % num_stripes);
5971		break;
5972	}
5973
5974	if (dev_replace_is_ongoing &&
5975	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5976	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5977		srcdev = fs_info->dev_replace.srcdev;
5978	else
5979		srcdev = NULL;
5980
5981	/*
5982	 * try to avoid the drive that is the source drive for a
5983	 * dev-replace procedure, only choose it if no other non-missing
5984	 * mirror is available
5985	 */
5986	for (tolerance = 0; tolerance < 2; tolerance++) {
5987		if (map->stripes[preferred_mirror].dev->bdev &&
5988		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5989			return preferred_mirror;
5990		for (i = first; i < first + num_stripes; i++) {
5991			if (map->stripes[i].dev->bdev &&
5992			    (tolerance || map->stripes[i].dev != srcdev))
5993				return i;
5994		}
5995	}
5996
5997	/* we couldn't find one that doesn't fail.  Just return something
5998	 * and the io error handling code will clean up eventually
5999	 */
6000	return preferred_mirror;
6001}
6002
6003static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6004						       u64 logical,
6005						       u16 total_stripes)
6006{
6007	struct btrfs_io_context *bioc;
6008
6009	bioc = kzalloc(
6010		 /* The size of btrfs_io_context */
6011		sizeof(struct btrfs_io_context) +
6012		/* Plus the variable array for the stripes */
6013		sizeof(struct btrfs_io_stripe) * (total_stripes),
6014		GFP_NOFS);
6015
6016	if (!bioc)
6017		return NULL;
6018
6019	refcount_set(&bioc->refs, 1);
6020
6021	bioc->fs_info = fs_info;
6022	bioc->replace_stripe_src = -1;
6023	bioc->full_stripe_logical = (u64)-1;
6024	bioc->logical = logical;
6025
6026	return bioc;
6027}
6028
6029void btrfs_get_bioc(struct btrfs_io_context *bioc)
 
 
 
6030{
6031	WARN_ON(!refcount_read(&bioc->refs));
6032	refcount_inc(&bioc->refs);
6033}
6034
6035void btrfs_put_bioc(struct btrfs_io_context *bioc)
6036{
6037	if (!bioc)
6038		return;
6039	if (refcount_dec_and_test(&bioc->refs))
6040		kfree(bioc);
6041}
6042
6043/*
6044 * Please note that, discard won't be sent to target device of device
6045 * replace.
6046 */
6047struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6048					       u64 logical, u64 *length_ret,
6049					       u32 *num_stripes)
6050{
6051	struct btrfs_chunk_map *map;
6052	struct btrfs_discard_stripe *stripes;
6053	u64 length = *length_ret;
6054	u64 offset;
6055	u32 stripe_nr;
6056	u32 stripe_nr_end;
6057	u32 stripe_cnt;
6058	u64 stripe_end_offset;
6059	u64 stripe_offset;
6060	u32 stripe_index;
6061	u32 factor = 0;
6062	u32 sub_stripes = 0;
6063	u32 stripes_per_dev = 0;
6064	u32 remaining_stripes = 0;
6065	u32 last_stripe = 0;
6066	int ret;
6067	int i;
 
 
 
 
6068
6069	map = btrfs_get_chunk_map(fs_info, logical, length);
6070	if (IS_ERR(map))
6071		return ERR_CAST(map);
6072
6073	/* we don't discard raid56 yet */
6074	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075		ret = -EOPNOTSUPP;
6076		goto out_free_map;
 
6077	}
6078
6079	offset = logical - map->start;
6080	length = min_t(u64, map->start + map->chunk_len - logical, length);
6081	*length_ret = length;
 
 
 
6082
 
6083	/*
6084	 * stripe_nr counts the total number of stripes we have to stride
6085	 * to get to this block
6086	 */
6087	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6088
6089	/* stripe_offset is the offset of this block in its stripe */
6090	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6091
6092	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6093			BTRFS_STRIPE_LEN_SHIFT;
6094	stripe_cnt = stripe_nr_end - stripe_nr;
6095	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6096			    (offset + length);
6097	/*
6098	 * after this, stripe_nr is the number of stripes on this
6099	 * device we have to walk to find the data, and stripe_index is
6100	 * the number of our device in the stripe array
6101	 */
6102	*num_stripes = 1;
 
 
 
 
 
 
6103	stripe_index = 0;
6104	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105			 BTRFS_BLOCK_GROUP_RAID10)) {
6106		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6107			sub_stripes = 1;
6108		else
6109			sub_stripes = map->sub_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6110
6111		factor = map->num_stripes / sub_stripes;
6112		*num_stripes = min_t(u64, map->num_stripes,
6113				    sub_stripes * stripe_cnt);
6114		stripe_index = stripe_nr % factor;
6115		stripe_nr /= factor;
6116		stripe_index *= sub_stripes;
6117
6118		remaining_stripes = stripe_cnt % factor;
6119		stripes_per_dev = stripe_cnt / factor;
6120		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6121	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6122				BTRFS_BLOCK_GROUP_DUP)) {
6123		*num_stripes = map->num_stripes;
 
 
 
 
 
6124	} else {
6125		stripe_index = stripe_nr % map->num_stripes;
6126		stripe_nr /= map->num_stripes;
 
 
 
 
 
6127	}
 
6128
6129	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6130	if (!stripes) {
6131		ret = -ENOMEM;
6132		goto out_free_map;
6133	}
 
6134
6135	for (i = 0; i < *num_stripes; i++) {
6136		stripes[i].physical =
6137			map->stripes[stripe_index].physical +
6138			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6139		stripes[i].dev = map->stripes[stripe_index].dev;
6140
6141		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6142				 BTRFS_BLOCK_GROUP_RAID10)) {
6143			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
 
 
 
 
6144
6145			if (i / sub_stripes < remaining_stripes)
6146				stripes[i].length += BTRFS_STRIPE_LEN;
 
 
 
 
 
 
6147
6148			/*
6149			 * Special for the first stripe and
6150			 * the last stripe:
6151			 *
6152			 * |-------|...|-------|
6153			 *     |----------|
6154			 *    off     end_off
6155			 */
6156			if (i < sub_stripes)
6157				stripes[i].length -= stripe_offset;
6158
6159			if (stripe_index >= last_stripe &&
6160			    stripe_index <= (last_stripe +
6161					     sub_stripes - 1))
6162				stripes[i].length -= stripe_end_offset;
 
 
 
 
6163
6164			if (i == sub_stripes - 1)
6165				stripe_offset = 0;
6166		} else {
6167			stripes[i].length = length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6168		}
 
6169
6170		stripe_index++;
6171		if (stripe_index == map->num_stripes) {
6172			stripe_index = 0;
6173			stripe_nr++;
 
6174		}
6175	}
6176
6177	btrfs_free_chunk_map(map);
6178	return stripes;
6179out_free_map:
6180	btrfs_free_chunk_map(map);
6181	return ERR_PTR(ret);
 
 
6182}
6183
6184static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
 
 
6185{
6186	struct btrfs_block_group *cache;
6187	bool ret;
6188
6189	/* Non zoned filesystem does not use "to_copy" flag */
6190	if (!btrfs_is_zoned(fs_info))
6191		return false;
6192
6193	cache = btrfs_lookup_block_group(fs_info, logical);
6194
6195	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6196
6197	btrfs_put_block_group(cache);
6198	return ret;
6199}
6200
6201static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6202				      struct btrfs_io_context *bioc,
6203				      struct btrfs_dev_replace *dev_replace,
6204				      u64 logical,
6205				      int *num_stripes_ret, int *max_errors_ret)
6206{
6207	u64 srcdev_devid = dev_replace->srcdev->devid;
6208	/*
6209	 * At this stage, num_stripes is still the real number of stripes,
6210	 * excluding the duplicated stripes.
6211	 */
6212	int num_stripes = *num_stripes_ret;
6213	int nr_extra_stripes = 0;
6214	int max_errors = *max_errors_ret;
6215	int i;
6216
6217	/*
6218	 * A block group which has "to_copy" set will eventually be copied by
6219	 * the dev-replace process. We can avoid cloning IO here.
6220	 */
6221	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6222		return;
6223
6224	/*
6225	 * Duplicate the write operations while the dev-replace procedure is
6226	 * running. Since the copying of the old disk to the new disk takes
6227	 * place at run time while the filesystem is mounted writable, the
6228	 * regular write operations to the old disk have to be duplicated to go
6229	 * to the new disk as well.
6230	 *
6231	 * Note that device->missing is handled by the caller, and that the
6232	 * write to the old disk is already set up in the stripes array.
6233	 */
6234	for (i = 0; i < num_stripes; i++) {
6235		struct btrfs_io_stripe *old = &bioc->stripes[i];
6236		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6237
6238		if (old->dev->devid != srcdev_devid)
6239			continue;
 
 
 
6240
6241		new->physical = old->physical;
6242		new->dev = dev_replace->tgtdev;
6243		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6244			bioc->replace_stripe_src = i;
6245		nr_extra_stripes++;
6246	}
6247
6248	/* We can only have at most 2 extra nr_stripes (for DUP). */
6249	ASSERT(nr_extra_stripes <= 2);
6250	/*
6251	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6252	 * replace.
6253	 * If we have 2 extra stripes, only choose the one with smaller physical.
6254	 */
6255	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6256		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6257		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6258
6259		/* Only DUP can have two extra stripes. */
6260		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6261
6262		/*
6263		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6264		 * The extra stripe would still be there, but won't be accessed.
6265		 */
6266		if (first->physical > second->physical) {
6267			swap(second->physical, first->physical);
6268			swap(second->dev, first->dev);
6269			nr_extra_stripes--;
 
 
 
 
 
 
 
6270		}
6271	}
6272
6273	*num_stripes_ret = num_stripes + nr_extra_stripes;
6274	*max_errors_ret = max_errors + nr_extra_stripes;
6275	bioc->replace_nr_stripes = nr_extra_stripes;
 
 
 
6276}
6277
6278static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6279			    struct btrfs_io_geometry *io_geom)
6280{
6281	/*
6282	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6283	 * the offset of this block in its stripe.
 
 
 
6284	 */
6285	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6286	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6287	ASSERT(io_geom->stripe_offset < U32_MAX);
6288
6289	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6290		unsigned long full_stripe_len =
6291			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6292
6293		/*
6294		 * For full stripe start, we use previously calculated
6295		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6296		 * STRIPE_LEN.
6297		 *
6298		 * By this we can avoid u64 division completely.  And we have
6299		 * to go rounddown(), not round_down(), as nr_data_stripes is
6300		 * not ensured to be power of 2.
6301		 */
6302		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6303			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6304
6305		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6306		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6307		/*
6308		 * For writes to RAID56, allow to write a full stripe set, but
6309		 * no straddling of stripe sets.
6310		 */
6311		if (io_geom->op == BTRFS_MAP_WRITE)
6312			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6313	}
6314
6315	/*
6316	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6317	 * a single disk).
6318	 */
6319	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6320		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6321	return U64_MAX;
6322}
6323
6324static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6325			 u64 *length, struct btrfs_io_stripe *dst,
6326			 struct btrfs_chunk_map *map,
6327			 struct btrfs_io_geometry *io_geom)
6328{
6329	dst->dev = map->stripes[io_geom->stripe_index].dev;
6330
6331	if (io_geom->op == BTRFS_MAP_READ &&
6332	    btrfs_need_stripe_tree_update(fs_info, map->type))
6333		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6334						    map->type,
6335						    io_geom->stripe_index, dst);
6336
6337	dst->physical = map->stripes[io_geom->stripe_index].physical +
6338			io_geom->stripe_offset +
6339			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6340	return 0;
6341}
6342
6343static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6344				const struct btrfs_io_stripe *smap,
6345				const struct btrfs_chunk_map *map,
6346				int num_alloc_stripes,
6347				enum btrfs_map_op op, int mirror_num)
6348{
6349	if (!smap)
6350		return false;
6351
6352	if (num_alloc_stripes != 1)
6353		return false;
6354
6355	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6356		return false;
6357
6358	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6359		return false;
6360
6361	return true;
6362}
6363
6364static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6365			     struct btrfs_io_geometry *io_geom)
6366{
6367	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6368	io_geom->stripe_nr /= map->num_stripes;
6369	if (io_geom->op == BTRFS_MAP_READ)
6370		io_geom->mirror_num = 1;
6371}
6372
6373static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6374			     struct btrfs_chunk_map *map,
6375			     struct btrfs_io_geometry *io_geom,
6376			     bool dev_replace_is_ongoing)
6377{
6378	if (io_geom->op != BTRFS_MAP_READ) {
6379		io_geom->num_stripes = map->num_stripes;
6380		return;
6381	}
6382
6383	if (io_geom->mirror_num) {
6384		io_geom->stripe_index = io_geom->mirror_num - 1;
6385		return;
6386	}
 
 
 
6387
6388	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6389						 dev_replace_is_ongoing);
6390	io_geom->mirror_num = io_geom->stripe_index + 1;
6391}
6392
6393static void map_blocks_dup(const struct btrfs_chunk_map *map,
6394			   struct btrfs_io_geometry *io_geom)
6395{
6396	if (io_geom->op != BTRFS_MAP_READ) {
6397		io_geom->num_stripes = map->num_stripes;
6398		return;
6399	}
6400
6401	if (io_geom->mirror_num) {
6402		io_geom->stripe_index = io_geom->mirror_num - 1;
6403		return;
6404	}
6405
6406	io_geom->mirror_num = 1;
6407}
6408
6409static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6410			      struct btrfs_chunk_map *map,
6411			      struct btrfs_io_geometry *io_geom,
6412			      bool dev_replace_is_ongoing)
6413{
6414	u32 factor = map->num_stripes / map->sub_stripes;
6415	int old_stripe_index;
6416
6417	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6418	io_geom->stripe_nr /= factor;
6419
6420	if (io_geom->op != BTRFS_MAP_READ) {
6421		io_geom->num_stripes = map->sub_stripes;
6422		return;
6423	}
 
 
 
 
 
 
 
 
6424
6425	if (io_geom->mirror_num) {
6426		io_geom->stripe_index += io_geom->mirror_num - 1;
6427		return;
6428	}
6429
6430	old_stripe_index = io_geom->stripe_index;
6431	io_geom->stripe_index = find_live_mirror(fs_info, map,
6432						 io_geom->stripe_index,
6433						 dev_replace_is_ongoing);
6434	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6435}
6436
6437static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6438				    struct btrfs_io_geometry *io_geom,
6439				    u64 logical, u64 *length)
6440{
6441	int data_stripes = nr_data_stripes(map);
6442
6443	/*
6444	 * Needs full stripe mapping.
6445	 *
6446	 * Push stripe_nr back to the start of the full stripe For those cases
6447	 * needing a full stripe, @stripe_nr is the full stripe number.
6448	 *
6449	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6450	 * that can be expensive.  Here we just divide @stripe_nr with
6451	 * @data_stripes.
6452	 */
6453	io_geom->stripe_nr /= data_stripes;
6454
6455	/* RAID[56] write or recovery. Return all stripes */
6456	io_geom->num_stripes = map->num_stripes;
6457	io_geom->max_errors = btrfs_chunk_max_errors(map);
6458
6459	/* Return the length to the full stripe end. */
6460	*length = min(logical + *length,
6461		      io_geom->raid56_full_stripe_start + map->start +
6462		      btrfs_stripe_nr_to_offset(data_stripes)) -
6463		logical;
6464	io_geom->stripe_index = 0;
6465	io_geom->stripe_offset = 0;
6466}
6467
6468static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6469				   struct btrfs_io_geometry *io_geom)
6470{
6471	int data_stripes = nr_data_stripes(map);
6472
6473	ASSERT(io_geom->mirror_num <= 1);
6474	/* Just grab the data stripe directly. */
6475	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6476	io_geom->stripe_nr /= data_stripes;
6477
6478	/* We distribute the parity blocks across stripes. */
6479	io_geom->stripe_index =
6480		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6481
6482	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6483		io_geom->mirror_num = 1;
6484}
6485
6486static void map_blocks_single(const struct btrfs_chunk_map *map,
6487			      struct btrfs_io_geometry *io_geom)
6488{
6489	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6490	io_geom->stripe_nr /= map->num_stripes;
6491	io_geom->mirror_num = io_geom->stripe_index + 1;
6492}
6493
6494/*
6495 * Map one logical range to one or more physical ranges.
6496 *
6497 * @length:		(Mandatory) mapped length of this run.
6498 *			One logical range can be split into different segments
6499 *			due to factors like zones and RAID0/5/6/10 stripe
6500 *			boundaries.
6501 *
6502 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6503 *			which has one or more physical ranges (btrfs_io_stripe)
6504 *			recorded inside.
6505 *			Caller should call btrfs_put_bioc() to free it after use.
6506 *
6507 * @smap:		(Optional) single physical range optimization.
6508 *			If the map request can be fulfilled by one single
6509 *			physical range, and this is parameter is not NULL,
6510 *			then @bioc_ret would be NULL, and @smap would be
6511 *			updated.
6512 *
6513 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6514 *			value is 0.
6515 *
6516 *			Mirror number 0 means to choose any live mirrors.
6517 *
6518 *			For non-RAID56 profiles, non-zero mirror_num means
6519 *			the Nth mirror. (e.g. mirror_num 1 means the first
6520 *			copy).
6521 *
6522 *			For RAID56 profile, mirror 1 means rebuild from P and
6523 *			the remaining data stripes.
6524 *
6525 *			For RAID6 profile, mirror > 2 means mark another
6526 *			data/P stripe error and rebuild from the remaining
6527 *			stripes..
6528 */
6529int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6530		    u64 logical, u64 *length,
6531		    struct btrfs_io_context **bioc_ret,
6532		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6533{
6534	struct btrfs_chunk_map *map;
6535	struct btrfs_io_geometry io_geom = { 0 };
6536	u64 map_offset;
6537	int i;
6538	int ret = 0;
6539	int num_copies;
6540	struct btrfs_io_context *bioc = NULL;
6541	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6542	int dev_replace_is_ongoing = 0;
6543	u16 num_alloc_stripes;
6544	u64 max_len;
6545
6546	ASSERT(bioc_ret);
6547
6548	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6549	io_geom.num_stripes = 1;
6550	io_geom.stripe_index = 0;
6551	io_geom.op = op;
6552
6553	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6554	if (io_geom.mirror_num > num_copies)
6555		return -EINVAL;
6556
6557	map = btrfs_get_chunk_map(fs_info, logical, *length);
6558	if (IS_ERR(map))
6559		return PTR_ERR(map);
6560
6561	map_offset = logical - map->start;
6562	io_geom.raid56_full_stripe_start = (u64)-1;
6563	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6564	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6565
6566	down_read(&dev_replace->rwsem);
6567	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6568	/*
6569	 * Hold the semaphore for read during the whole operation, write is
6570	 * requested at commit time but must wait.
6571	 */
6572	if (!dev_replace_is_ongoing)
6573		up_read(&dev_replace->rwsem);
6574
6575	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6576	case BTRFS_BLOCK_GROUP_RAID0:
6577		map_blocks_raid0(map, &io_geom);
6578		break;
6579	case BTRFS_BLOCK_GROUP_RAID1:
6580	case BTRFS_BLOCK_GROUP_RAID1C3:
6581	case BTRFS_BLOCK_GROUP_RAID1C4:
6582		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6583		break;
6584	case BTRFS_BLOCK_GROUP_DUP:
6585		map_blocks_dup(map, &io_geom);
6586		break;
6587	case BTRFS_BLOCK_GROUP_RAID10:
6588		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6589		break;
6590	case BTRFS_BLOCK_GROUP_RAID5:
6591	case BTRFS_BLOCK_GROUP_RAID6:
6592		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6593			map_blocks_raid56_write(map, &io_geom, logical, length);
6594		else
6595			map_blocks_raid56_read(map, &io_geom);
6596		break;
6597	default:
6598		/*
6599		 * After this, stripe_nr is the number of stripes on this
6600		 * device we have to walk to find the data, and stripe_index is
6601		 * the number of our device in the stripe array
6602		 */
6603		map_blocks_single(map, &io_geom);
6604		break;
6605	}
6606	if (io_geom.stripe_index >= map->num_stripes) {
6607		btrfs_crit(fs_info,
6608			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6609			   io_geom.stripe_index, map->num_stripes);
6610		ret = -EINVAL;
6611		goto out;
6612	}
6613
6614	num_alloc_stripes = io_geom.num_stripes;
6615	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6616	    op != BTRFS_MAP_READ)
6617		/*
6618		 * For replace case, we need to add extra stripes for extra
6619		 * duplicated stripes.
6620		 *
6621		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6622		 * 2 more stripes (DUP types, otherwise 1).
6623		 */
6624		num_alloc_stripes += 2;
6625
6626	/*
6627	 * If this I/O maps to a single device, try to return the device and
6628	 * physical block information on the stack instead of allocating an
6629	 * I/O context structure.
6630	 */
6631	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6632				io_geom.mirror_num)) {
6633		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6634		if (mirror_num_ret)
6635			*mirror_num_ret = io_geom.mirror_num;
6636		*bioc_ret = NULL;
6637		goto out;
6638	}
6639
6640	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6641	if (!bioc) {
6642		ret = -ENOMEM;
6643		goto out;
6644	}
6645	bioc->map_type = map->type;
6646
6647	/*
6648	 * For RAID56 full map, we need to make sure the stripes[] follows the
6649	 * rule that data stripes are all ordered, then followed with P and Q
6650	 * (if we have).
6651	 *
6652	 * It's still mostly the same as other profiles, just with extra rotation.
6653	 */
6654	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6655	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6656		/*
6657		 * For RAID56 @stripe_nr is already the number of full stripes
6658		 * before us, which is also the rotation value (needs to modulo
6659		 * with num_stripes).
6660		 *
6661		 * In this case, we just add @stripe_nr with @i, then do the
6662		 * modulo, to reduce one modulo call.
6663		 */
6664		bioc->full_stripe_logical = map->start +
6665			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6666						  nr_data_stripes(map));
6667		for (int i = 0; i < io_geom.num_stripes; i++) {
6668			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6669			u32 stripe_index;
6670
6671			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6672			dst->dev = map->stripes[stripe_index].dev;
6673			dst->physical =
6674				map->stripes[stripe_index].physical +
6675				io_geom.stripe_offset +
6676				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6677		}
6678	} else {
6679		/*
6680		 * For all other non-RAID56 profiles, just copy the target
6681		 * stripe into the bioc.
6682		 */
6683		for (i = 0; i < io_geom.num_stripes; i++) {
6684			ret = set_io_stripe(fs_info, logical, length,
6685					    &bioc->stripes[i], map, &io_geom);
6686			if (ret < 0)
6687				break;
6688			io_geom.stripe_index++;
6689		}
6690	}
6691
6692	if (ret) {
6693		*bioc_ret = NULL;
6694		btrfs_put_bioc(bioc);
6695		goto out;
6696	}
6697
6698	if (op != BTRFS_MAP_READ)
6699		io_geom.max_errors = btrfs_chunk_max_errors(map);
6700
6701	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6702	    op != BTRFS_MAP_READ) {
6703		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6704					  &io_geom.num_stripes, &io_geom.max_errors);
6705	}
6706
6707	*bioc_ret = bioc;
6708	bioc->num_stripes = io_geom.num_stripes;
6709	bioc->max_errors = io_geom.max_errors;
6710	bioc->mirror_num = io_geom.mirror_num;
6711
6712out:
6713	if (dev_replace_is_ongoing) {
6714		lockdep_assert_held(&dev_replace->rwsem);
6715		/* Unlock and let waiting writers proceed */
6716		up_read(&dev_replace->rwsem);
6717	}
6718	btrfs_free_chunk_map(map);
6719	return ret;
6720}
6721
6722static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6723				      const struct btrfs_fs_devices *fs_devices)
6724{
6725	if (args->fsid == NULL)
6726		return true;
6727	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6728		return true;
6729	return false;
6730}
 
 
 
 
 
 
 
 
 
 
 
 
 
6731
6732static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6733				  const struct btrfs_device *device)
6734{
6735	if (args->missing) {
6736		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6737		    !device->bdev)
6738			return true;
6739		return false;
6740	}
6741
6742	if (device->devid != args->devid)
6743		return false;
6744	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6745		return false;
6746	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6747}
6748
6749/*
6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6751 * return NULL.
6752 *
6753 * If devid and uuid are both specified, the match must be exact, otherwise
6754 * only devid is used.
6755 */
6756struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6757				       const struct btrfs_dev_lookup_args *args)
6758{
6759	struct btrfs_device *device;
6760	struct btrfs_fs_devices *seed_devs;
6761
6762	if (dev_args_match_fs_devices(args, fs_devices)) {
6763		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6764			if (dev_args_match_device(args, device))
6765				return device;
6766		}
6767	}
6768
6769	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6770		if (!dev_args_match_fs_devices(args, seed_devs))
6771			continue;
6772		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6773			if (dev_args_match_device(args, device))
 
 
6774				return device;
6775		}
 
6776	}
6777
6778	return NULL;
6779}
6780
6781static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6782					    u64 devid, u8 *dev_uuid)
6783{
6784	struct btrfs_device *device;
6785	unsigned int nofs_flag;
6786
6787	/*
6788	 * We call this under the chunk_mutex, so we want to use NOFS for this
6789	 * allocation, however we don't want to change btrfs_alloc_device() to
6790	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6791	 * places.
6792	 */
6793
6794	nofs_flag = memalloc_nofs_save();
6795	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6796	memalloc_nofs_restore(nofs_flag);
6797	if (IS_ERR(device))
6798		return device;
6799
6800	list_add(&device->dev_list, &fs_devices->devices);
 
 
 
 
 
 
 
6801	device->fs_devices = fs_devices;
 
6802	fs_devices->num_devices++;
6803
6804	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6805	fs_devices->missing_devices++;
6806
 
 
6807	return device;
6808}
6809
6810/*
6811 * Allocate new device struct, set up devid and UUID.
6812 *
6813 * @fs_info:	used only for generating a new devid, can be NULL if
6814 *		devid is provided (i.e. @devid != NULL).
6815 * @devid:	a pointer to devid for this device.  If NULL a new devid
6816 *		is generated.
6817 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6818 *		is generated.
6819 * @path:	a pointer to device path if available, NULL otherwise.
6820 *
6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6822 * on error.  Returned struct is not linked onto any lists and must be
6823 * destroyed with btrfs_free_device.
6824 */
6825struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6826					const u64 *devid, const u8 *uuid,
6827					const char *path)
6828{
6829	struct btrfs_device *dev;
6830	u64 tmp;
6831
6832	if (WARN_ON(!devid && !fs_info))
6833		return ERR_PTR(-EINVAL);
6834
6835	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6836	if (!dev)
6837		return ERR_PTR(-ENOMEM);
6838
6839	INIT_LIST_HEAD(&dev->dev_list);
6840	INIT_LIST_HEAD(&dev->dev_alloc_list);
6841	INIT_LIST_HEAD(&dev->post_commit_list);
6842
6843	atomic_set(&dev->dev_stats_ccnt, 0);
6844	btrfs_device_data_ordered_init(dev);
6845	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6846
6847	if (devid)
6848		tmp = *devid;
6849	else {
6850		int ret;
6851
6852		ret = find_next_devid(fs_info, &tmp);
6853		if (ret) {
6854			btrfs_free_device(dev);
6855			return ERR_PTR(ret);
6856		}
6857	}
6858	dev->devid = tmp;
6859
6860	if (uuid)
6861		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6862	else
6863		generate_random_uuid(dev->uuid);
6864
6865	if (path) {
6866		struct rcu_string *name;
6867
6868		name = rcu_string_strdup(path, GFP_KERNEL);
6869		if (!name) {
6870			btrfs_free_device(dev);
6871			return ERR_PTR(-ENOMEM);
6872		}
6873		rcu_assign_pointer(dev->name, name);
6874	}
6875
6876	return dev;
6877}
6878
6879static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6880					u64 devid, u8 *uuid, bool error)
6881{
6882	if (error)
6883		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6884			      devid, uuid);
6885	else
6886		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6887			      devid, uuid);
6888}
6889
6890u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6891{
6892	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6893
6894	return div_u64(map->chunk_len, data_stripes);
6895}
6896
6897#if BITS_PER_LONG == 32
6898/*
6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6900 * can't be accessed on 32bit systems.
6901 *
6902 * This function do mount time check to reject the fs if it already has
6903 * metadata chunk beyond that limit.
6904 */
6905static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6906				  u64 logical, u64 length, u64 type)
6907{
6908	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6909		return 0;
6910
6911	if (logical + length < MAX_LFS_FILESIZE)
6912		return 0;
6913
6914	btrfs_err_32bit_limit(fs_info);
6915	return -EOVERFLOW;
6916}
6917
6918/*
6919 * This is to give early warning for any metadata chunk reaching
6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6921 * Although we can still access the metadata, it's not going to be possible
6922 * once the limit is reached.
6923 */
6924static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925				  u64 logical, u64 length, u64 type)
6926{
6927	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6928		return;
6929
6930	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6931		return;
6932
6933	btrfs_warn_32bit_limit(fs_info);
6934}
6935#endif
6936
6937static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6938						  u64 devid, u8 *uuid)
6939{
6940	struct btrfs_device *dev;
6941
6942	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943		btrfs_report_missing_device(fs_info, devid, uuid, true);
6944		return ERR_PTR(-ENOENT);
6945	}
6946
6947	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6948	if (IS_ERR(dev)) {
6949		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6950			  devid, PTR_ERR(dev));
6951		return dev;
6952	}
6953	btrfs_report_missing_device(fs_info, devid, uuid, false);
6954
6955	return dev;
6956}
6957
6958static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6959			  struct btrfs_chunk *chunk)
6960{
6961	BTRFS_DEV_LOOKUP_ARGS(args);
6962	struct btrfs_fs_info *fs_info = leaf->fs_info;
6963	struct btrfs_chunk_map *map;
6964	u64 logical;
6965	u64 length;
6966	u64 devid;
6967	u64 type;
6968	u8 uuid[BTRFS_UUID_SIZE];
6969	int index;
6970	int num_stripes;
6971	int ret;
6972	int i;
6973
6974	logical = key->offset;
6975	length = btrfs_chunk_length(leaf, chunk);
6976	type = btrfs_chunk_type(leaf, chunk);
6977	index = btrfs_bg_flags_to_raid_index(type);
6978	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6979
6980#if BITS_PER_LONG == 32
6981	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6982	if (ret < 0)
6983		return ret;
6984	warn_32bit_meta_chunk(fs_info, logical, length, type);
6985#endif
6986
6987	/*
6988	 * Only need to verify chunk item if we're reading from sys chunk array,
6989	 * as chunk item in tree block is already verified by tree-checker.
6990	 */
6991	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6993		if (ret)
6994			return ret;
6995	}
6996
6997	map = btrfs_find_chunk_map(fs_info, logical, 1);
 
 
6998
6999	/* already mapped? */
7000	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7001		btrfs_free_chunk_map(map);
7002		return 0;
7003	} else if (map) {
7004		btrfs_free_chunk_map(map);
7005	}
7006
7007	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7008	if (!map)
 
 
 
 
 
7009		return -ENOMEM;
 
 
 
 
 
 
 
7010
7011	map->start = logical;
7012	map->chunk_len = length;
7013	map->num_stripes = num_stripes;
7014	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7015	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7016	map->type = type;
7017	/*
7018	 * We can't use the sub_stripes value, as for profiles other than
7019	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7020	 * older mkfs (<v5.4).
7021	 * In that case, it can cause divide-by-zero errors later.
7022	 * Since currently sub_stripes is fixed for each profile, let's
7023	 * use the trusted value instead.
7024	 */
7025	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7026	map->verified_stripes = 0;
7027	map->stripe_size = btrfs_calc_stripe_length(map);
7028	for (i = 0; i < num_stripes; i++) {
7029		map->stripes[i].physical =
7030			btrfs_stripe_offset_nr(leaf, chunk, i);
7031		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032		args.devid = devid;
7033		read_extent_buffer(leaf, uuid, (unsigned long)
7034				   btrfs_stripe_dev_uuid_nr(chunk, i),
7035				   BTRFS_UUID_SIZE);
7036		args.uuid = uuid;
7037		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
 
 
 
 
 
7038		if (!map->stripes[i].dev) {
7039			map->stripes[i].dev = handle_missing_device(fs_info,
7040								    devid, uuid);
7041			if (IS_ERR(map->stripes[i].dev)) {
7042				ret = PTR_ERR(map->stripes[i].dev);
7043				btrfs_free_chunk_map(map);
7044				return ret;
7045			}
7046		}
7047
7048		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7049				&(map->stripes[i].dev->dev_state));
7050	}
7051
7052	ret = btrfs_add_chunk_map(fs_info, map);
7053	if (ret < 0) {
7054		btrfs_err(fs_info,
7055			  "failed to add chunk map, start=%llu len=%llu: %d",
7056			  map->start, map->chunk_len, ret);
7057	}
7058
7059	return ret;
7060}
7061
7062static void fill_device_from_item(struct extent_buffer *leaf,
7063				 struct btrfs_dev_item *dev_item,
7064				 struct btrfs_device *device)
7065{
7066	unsigned long ptr;
7067
7068	device->devid = btrfs_device_id(leaf, dev_item);
7069	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7070	device->total_bytes = device->disk_total_bytes;
7071	device->commit_total_bytes = device->disk_total_bytes;
7072	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7073	device->commit_bytes_used = device->bytes_used;
7074	device->type = btrfs_device_type(leaf, dev_item);
7075	device->io_align = btrfs_device_io_align(leaf, dev_item);
7076	device->io_width = btrfs_device_io_width(leaf, dev_item);
7077	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7078	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7079	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7080
7081	ptr = btrfs_device_uuid(dev_item);
7082	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7083}
7084
7085static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7086						  u8 *fsid)
7087{
7088	struct btrfs_fs_devices *fs_devices;
7089	int ret;
7090
7091	lockdep_assert_held(&uuid_mutex);
7092	ASSERT(fsid);
7093
7094	/* This will match only for multi-device seed fs */
7095	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7096		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7097			return fs_devices;
7098
 
 
 
 
 
 
 
 
7099
7100	fs_devices = find_fsid(fsid, NULL);
7101	if (!fs_devices) {
7102		if (!btrfs_test_opt(fs_info, DEGRADED))
7103			return ERR_PTR(-ENOENT);
7104
7105		fs_devices = alloc_fs_devices(fsid);
7106		if (IS_ERR(fs_devices))
7107			return fs_devices;
7108
7109		fs_devices->seeding = true;
7110		fs_devices->opened = 1;
7111		return fs_devices;
7112	}
7113
7114	/*
7115	 * Upon first call for a seed fs fsid, just create a private copy of the
7116	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7117	 */
7118	fs_devices = clone_fs_devices(fs_devices);
7119	if (IS_ERR(fs_devices))
7120		return fs_devices;
 
 
7121
7122	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
 
7123	if (ret) {
7124		free_fs_devices(fs_devices);
7125		return ERR_PTR(ret);
7126	}
7127
7128	if (!fs_devices->seeding) {
7129		close_fs_devices(fs_devices);
7130		free_fs_devices(fs_devices);
7131		return ERR_PTR(-EINVAL);
 
7132	}
7133
7134	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7135
7136	return fs_devices;
 
7137}
7138
7139static int read_one_dev(struct extent_buffer *leaf,
 
7140			struct btrfs_dev_item *dev_item)
7141{
7142	BTRFS_DEV_LOOKUP_ARGS(args);
7143	struct btrfs_fs_info *fs_info = leaf->fs_info;
7144	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145	struct btrfs_device *device;
7146	u64 devid;
7147	int ret;
7148	u8 fs_uuid[BTRFS_FSID_SIZE];
7149	u8 dev_uuid[BTRFS_UUID_SIZE];
7150
7151	devid = btrfs_device_id(leaf, dev_item);
7152	args.devid = devid;
7153	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
 
 
 
7154			   BTRFS_UUID_SIZE);
7155	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7156			   BTRFS_FSID_SIZE);
7157	args.uuid = dev_uuid;
7158	args.fsid = fs_uuid;
7159
7160	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7161		fs_devices = open_seed_devices(fs_info, fs_uuid);
7162		if (IS_ERR(fs_devices))
7163			return PTR_ERR(fs_devices);
7164	}
7165
7166	device = btrfs_find_device(fs_info->fs_devices, &args);
7167	if (!device) {
7168		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169			btrfs_report_missing_device(fs_info, devid,
7170							dev_uuid, true);
7171			return -ENOENT;
7172		}
7173
7174		device = add_missing_dev(fs_devices, devid, dev_uuid);
7175		if (IS_ERR(device)) {
7176			btrfs_err(fs_info,
7177				"failed to add missing dev %llu: %ld",
7178				devid, PTR_ERR(device));
7179			return PTR_ERR(device);
7180		}
7181		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7182	} else {
7183		if (!device->bdev) {
7184			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185				btrfs_report_missing_device(fs_info,
7186						devid, dev_uuid, true);
7187				return -ENOENT;
7188			}
7189			btrfs_report_missing_device(fs_info, devid,
7190							dev_uuid, false);
7191		}
7192
7193		if (!device->bdev &&
7194		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 
 
 
 
 
 
 
 
 
 
7195			/*
7196			 * this happens when a device that was properly setup
7197			 * in the device info lists suddenly goes bad.
7198			 * device->bdev is NULL, and so we have to set
7199			 * device->missing to one here
7200			 */
7201			device->fs_devices->missing_devices++;
7202			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7203		}
7204
7205		/* Move the device to its own fs_devices */
7206		if (device->fs_devices != fs_devices) {
7207			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7208							&device->dev_state));
7209
7210			list_move(&device->dev_list, &fs_devices->devices);
7211			device->fs_devices->num_devices--;
7212			fs_devices->num_devices++;
7213
7214			device->fs_devices->missing_devices--;
7215			fs_devices->missing_devices++;
7216
7217			device->fs_devices = fs_devices;
7218		}
7219	}
7220
7221	if (device->fs_devices != fs_info->fs_devices) {
7222		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7223		if (device->generation !=
7224		    btrfs_device_generation(leaf, dev_item))
7225			return -EINVAL;
7226	}
7227
7228	fill_device_from_item(leaf, dev_item, device);
7229	if (device->bdev) {
7230		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7231
7232		if (device->total_bytes > max_total_bytes) {
7233			btrfs_err(fs_info,
7234			"device total_bytes should be at most %llu but found %llu",
7235				  max_total_bytes, device->total_bytes);
7236			return -EINVAL;
7237		}
7238	}
7239	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7240	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7241	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7242		device->fs_devices->total_rw_bytes += device->total_bytes;
7243		atomic64_add(device->total_bytes - device->bytes_used,
7244				&fs_info->free_chunk_space);
 
 
7245	}
7246	ret = 0;
7247	return ret;
7248}
7249
7250int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7251{
7252	struct btrfs_super_block *super_copy = fs_info->super_copy;
7253	struct extent_buffer *sb;
7254	struct btrfs_disk_key *disk_key;
7255	struct btrfs_chunk *chunk;
7256	u8 *array_ptr;
7257	unsigned long sb_array_offset;
7258	int ret = 0;
7259	u32 num_stripes;
7260	u32 array_size;
7261	u32 len = 0;
7262	u32 cur_offset;
7263	u64 type;
7264	struct btrfs_key key;
7265
7266	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7267
7268	/*
7269	 * We allocated a dummy extent, just to use extent buffer accessors.
7270	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7271	 * that's fine, we will not go beyond system chunk array anyway.
7272	 */
7273	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7274	if (!sb)
7275		return -ENOMEM;
7276	set_extent_buffer_uptodate(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7277
7278	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7279	array_size = btrfs_super_sys_array_size(super_copy);
7280
7281	array_ptr = super_copy->sys_chunk_array;
7282	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7283	cur_offset = 0;
7284
7285	while (cur_offset < array_size) {
7286		disk_key = (struct btrfs_disk_key *)array_ptr;
7287		len = sizeof(*disk_key);
7288		if (cur_offset + len > array_size)
7289			goto out_short_read;
7290
 
 
7291		btrfs_disk_key_to_cpu(&key, disk_key);
7292
7293		array_ptr += len;
7294		sb_array_offset += len;
7295		cur_offset += len;
7296
7297		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7298			btrfs_err(fs_info,
7299			    "unexpected item type %u in sys_array at offset %u",
7300				  (u32)key.type, cur_offset);
7301			ret = -EIO;
7302			break;
7303		}
7304
7305		chunk = (struct btrfs_chunk *)sb_array_offset;
7306		/*
7307		 * At least one btrfs_chunk with one stripe must be present,
7308		 * exact stripe count check comes afterwards
7309		 */
7310		len = btrfs_chunk_item_size(1);
7311		if (cur_offset + len > array_size)
7312			goto out_short_read;
7313
7314		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7315		if (!num_stripes) {
7316			btrfs_err(fs_info,
7317			"invalid number of stripes %u in sys_array at offset %u",
7318				  num_stripes, cur_offset);
7319			ret = -EIO;
7320			break;
7321		}
7322
7323		type = btrfs_chunk_type(sb, chunk);
7324		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7325			btrfs_err(fs_info,
7326			"invalid chunk type %llu in sys_array at offset %u",
7327				  type, cur_offset);
 
 
 
7328			ret = -EIO;
7329			break;
7330		}
7331
7332		len = btrfs_chunk_item_size(num_stripes);
7333		if (cur_offset + len > array_size)
7334			goto out_short_read;
7335
7336		ret = read_one_chunk(&key, sb, chunk);
7337		if (ret)
7338			break;
7339
7340		array_ptr += len;
7341		sb_array_offset += len;
7342		cur_offset += len;
7343	}
7344	clear_extent_buffer_uptodate(sb);
7345	free_extent_buffer_stale(sb);
7346	return ret;
7347
7348out_short_read:
7349	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7350			len, cur_offset);
7351	clear_extent_buffer_uptodate(sb);
7352	free_extent_buffer_stale(sb);
7353	return -EIO;
7354}
7355
7356/*
7357 * Check if all chunks in the fs are OK for read-write degraded mount
7358 *
7359 * If the @failing_dev is specified, it's accounted as missing.
7360 *
7361 * Return true if all chunks meet the minimal RW mount requirements.
7362 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7363 */
7364bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7365					struct btrfs_device *failing_dev)
7366{
7367	struct btrfs_chunk_map *map;
7368	u64 next_start;
7369	bool ret = true;
7370
7371	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7372	/* No chunk at all? Return false anyway */
7373	if (!map) {
7374		ret = false;
7375		goto out;
7376	}
7377	while (map) {
7378		int missing = 0;
7379		int max_tolerated;
7380		int i;
7381
7382		max_tolerated =
7383			btrfs_get_num_tolerated_disk_barrier_failures(
7384					map->type);
7385		for (i = 0; i < map->num_stripes; i++) {
7386			struct btrfs_device *dev = map->stripes[i].dev;
7387
7388			if (!dev || !dev->bdev ||
7389			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7390			    dev->last_flush_error)
7391				missing++;
7392			else if (failing_dev && failing_dev == dev)
7393				missing++;
7394		}
7395		if (missing > max_tolerated) {
7396			if (!failing_dev)
7397				btrfs_warn(fs_info,
7398	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7399				   map->start, missing, max_tolerated);
7400			btrfs_free_chunk_map(map);
7401			ret = false;
7402			goto out;
7403		}
7404		next_start = map->start + map->chunk_len;
7405		btrfs_free_chunk_map(map);
7406
7407		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7408	}
7409out:
7410	return ret;
7411}
7412
7413static void readahead_tree_node_children(struct extent_buffer *node)
7414{
7415	int i;
7416	const int nr_items = btrfs_header_nritems(node);
7417
7418	for (i = 0; i < nr_items; i++)
7419		btrfs_readahead_node_child(node, i);
7420}
7421
7422int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7423{
7424	struct btrfs_root *root = fs_info->chunk_root;
7425	struct btrfs_path *path;
7426	struct extent_buffer *leaf;
7427	struct btrfs_key key;
7428	struct btrfs_key found_key;
7429	int ret;
7430	int slot;
7431	int iter_ret = 0;
7432	u64 total_dev = 0;
7433	u64 last_ra_node = 0;
7434
7435	path = btrfs_alloc_path();
7436	if (!path)
7437		return -ENOMEM;
7438
7439	/*
7440	 * uuid_mutex is needed only if we are mounting a sprout FS
7441	 * otherwise we don't need it.
7442	 */
7443	mutex_lock(&uuid_mutex);
 
7444
7445	/*
7446	 * It is possible for mount and umount to race in such a way that
7447	 * we execute this code path, but open_fs_devices failed to clear
7448	 * total_rw_bytes. We certainly want it cleared before reading the
7449	 * device items, so clear it here.
7450	 */
7451	fs_info->fs_devices->total_rw_bytes = 0;
7452
7453	/*
7454	 * Lockdep complains about possible circular locking dependency between
7455	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7456	 * used for freeze procection of a fs (struct super_block.s_writers),
7457	 * which we take when starting a transaction, and extent buffers of the
7458	 * chunk tree if we call read_one_dev() while holding a lock on an
7459	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7460	 * and at this point there can't be any concurrent task modifying the
7461	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7462	 */
7463	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7464	path->skip_locking = 1;
7465
7466	/*
7467	 * Read all device items, and then all the chunk items. All
7468	 * device items are found before any chunk item (their object id
7469	 * is smaller than the lowest possible object id for a chunk
7470	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7471	 */
7472	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7473	key.offset = 0;
7474	key.type = 0;
7475	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7476		struct extent_buffer *node = path->nodes[1];
7477
 
 
7478		leaf = path->nodes[0];
7479		slot = path->slots[0];
7480
7481		if (node) {
7482			if (last_ra_node != node->start) {
7483				readahead_tree_node_children(node);
7484				last_ra_node = node->start;
7485			}
 
7486		}
7487		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7488			struct btrfs_dev_item *dev_item;
7489			dev_item = btrfs_item_ptr(leaf, slot,
 
 
 
 
7490						  struct btrfs_dev_item);
7491			ret = read_one_dev(leaf, dev_item);
7492			if (ret)
7493				goto error;
7494			total_dev++;
7495		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7496			struct btrfs_chunk *chunk;
7497
7498			/*
7499			 * We are only called at mount time, so no need to take
7500			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7501			 * we always lock first fs_info->chunk_mutex before
7502			 * acquiring any locks on the chunk tree. This is a
7503			 * requirement for chunk allocation, see the comment on
7504			 * top of btrfs_chunk_alloc() for details.
7505			 */
7506			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7507			ret = read_one_chunk(&found_key, leaf, chunk);
7508			if (ret)
7509				goto error;
7510		}
 
7511	}
7512	/* Catch error found during iteration */
7513	if (iter_ret < 0) {
7514		ret = iter_ret;
7515		goto error;
7516	}
7517
7518	/*
7519	 * After loading chunk tree, we've got all device information,
7520	 * do another round of validation checks.
7521	 */
7522	if (total_dev != fs_info->fs_devices->total_devices) {
7523		btrfs_warn(fs_info,
7524"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7525			  btrfs_super_num_devices(fs_info->super_copy),
7526			  total_dev);
7527		fs_info->fs_devices->total_devices = total_dev;
7528		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7529	}
7530	if (btrfs_super_total_bytes(fs_info->super_copy) <
7531	    fs_info->fs_devices->total_rw_bytes) {
7532		btrfs_err(fs_info,
7533	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7534			  btrfs_super_total_bytes(fs_info->super_copy),
7535			  fs_info->fs_devices->total_rw_bytes);
7536		ret = -EINVAL;
7537		goto error;
7538	}
7539	ret = 0;
7540error:
 
7541	mutex_unlock(&uuid_mutex);
7542
7543	btrfs_free_path(path);
7544	return ret;
7545}
7546
7547int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7548{
7549	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7550	struct btrfs_device *device;
7551	int ret = 0;
7552
7553	fs_devices->fs_info = fs_info;
7554
7555	mutex_lock(&fs_devices->device_list_mutex);
7556	list_for_each_entry(device, &fs_devices->devices, dev_list)
7557		device->fs_info = fs_info;
7558
7559	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7560		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7561			device->fs_info = fs_info;
7562			ret = btrfs_get_dev_zone_info(device, false);
7563			if (ret)
7564				break;
7565		}
7566
7567		seed_devs->fs_info = fs_info;
7568	}
7569	mutex_unlock(&fs_devices->device_list_mutex);
7570
7571	return ret;
7572}
7573
7574static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7575				 const struct btrfs_dev_stats_item *ptr,
7576				 int index)
7577{
7578	u64 val;
7579
7580	read_extent_buffer(eb, &val,
7581			   offsetof(struct btrfs_dev_stats_item, values) +
7582			    ((unsigned long)ptr) + (index * sizeof(u64)),
7583			   sizeof(val));
7584	return val;
7585}
7586
7587static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7588				      struct btrfs_dev_stats_item *ptr,
7589				      int index, u64 val)
7590{
7591	write_extent_buffer(eb, &val,
7592			    offsetof(struct btrfs_dev_stats_item, values) +
7593			     ((unsigned long)ptr) + (index * sizeof(u64)),
7594			    sizeof(val));
7595}
7596
7597static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7598				       struct btrfs_path *path)
7599{
7600	struct btrfs_dev_stats_item *ptr;
7601	struct extent_buffer *eb;
7602	struct btrfs_key key;
7603	int item_size;
7604	int i, ret, slot;
7605
7606	if (!device->fs_info->dev_root)
7607		return 0;
7608
7609	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7610	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7611	key.offset = device->devid;
7612	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7613	if (ret) {
7614		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7615			btrfs_dev_stat_set(device, i, 0);
7616		device->dev_stats_valid = 1;
7617		btrfs_release_path(path);
7618		return ret < 0 ? ret : 0;
7619	}
7620	slot = path->slots[0];
7621	eb = path->nodes[0];
7622	item_size = btrfs_item_size(eb, slot);
7623
7624	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7625
7626	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7627		if (item_size >= (1 + i) * sizeof(__le64))
7628			btrfs_dev_stat_set(device, i,
7629					   btrfs_dev_stats_value(eb, ptr, i));
7630		else
7631			btrfs_dev_stat_set(device, i, 0);
7632	}
7633
7634	device->dev_stats_valid = 1;
7635	btrfs_dev_stat_print_on_load(device);
7636	btrfs_release_path(path);
7637
7638	return 0;
 
7639}
7640
7641int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7642{
7643	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 
 
 
 
 
 
7644	struct btrfs_device *device;
7645	struct btrfs_path *path = NULL;
7646	int ret = 0;
7647
7648	path = btrfs_alloc_path();
7649	if (!path)
7650		return -ENOMEM;
 
 
7651
7652	mutex_lock(&fs_devices->device_list_mutex);
7653	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7654		ret = btrfs_device_init_dev_stats(device, path);
7655		if (ret)
7656			goto out;
7657	}
7658	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7659		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7660			ret = btrfs_device_init_dev_stats(device, path);
7661			if (ret)
7662				goto out;
 
 
 
 
 
 
7663		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7664	}
7665out:
7666	mutex_unlock(&fs_devices->device_list_mutex);
7667
 
7668	btrfs_free_path(path);
7669	return ret;
7670}
7671
7672static int update_dev_stat_item(struct btrfs_trans_handle *trans,
 
7673				struct btrfs_device *device)
7674{
7675	struct btrfs_fs_info *fs_info = trans->fs_info;
7676	struct btrfs_root *dev_root = fs_info->dev_root;
7677	struct btrfs_path *path;
7678	struct btrfs_key key;
7679	struct extent_buffer *eb;
7680	struct btrfs_dev_stats_item *ptr;
7681	int ret;
7682	int i;
7683
7684	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7685	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7686	key.offset = device->devid;
7687
7688	path = btrfs_alloc_path();
7689	if (!path)
7690		return -ENOMEM;
7691	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7692	if (ret < 0) {
7693		btrfs_warn_in_rcu(fs_info,
7694			"error %d while searching for dev_stats item for device %s",
7695				  ret, btrfs_dev_name(device));
7696		goto out;
7697	}
7698
7699	if (ret == 0 &&
7700	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7701		/* need to delete old one and insert a new one */
7702		ret = btrfs_del_item(trans, dev_root, path);
7703		if (ret != 0) {
7704			btrfs_warn_in_rcu(fs_info,
7705				"delete too small dev_stats item for device %s failed %d",
7706					  btrfs_dev_name(device), ret);
7707			goto out;
7708		}
7709		ret = 1;
7710	}
7711
7712	if (ret == 1) {
7713		/* need to insert a new item */
7714		btrfs_release_path(path);
7715		ret = btrfs_insert_empty_item(trans, dev_root, path,
7716					      &key, sizeof(*ptr));
7717		if (ret < 0) {
7718			btrfs_warn_in_rcu(fs_info,
7719				"insert dev_stats item for device %s failed %d",
7720				btrfs_dev_name(device), ret);
7721			goto out;
7722		}
7723	}
7724
7725	eb = path->nodes[0];
7726	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7727	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7728		btrfs_set_dev_stats_value(eb, ptr, i,
7729					  btrfs_dev_stat_read(device, i));
7730	btrfs_mark_buffer_dirty(trans, eb);
7731
7732out:
7733	btrfs_free_path(path);
7734	return ret;
7735}
7736
7737/*
7738 * called from commit_transaction. Writes all changed device stats to disk.
7739 */
7740int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
 
7741{
7742	struct btrfs_fs_info *fs_info = trans->fs_info;
7743	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7744	struct btrfs_device *device;
7745	int stats_cnt;
7746	int ret = 0;
7747
7748	mutex_lock(&fs_devices->device_list_mutex);
7749	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7750		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7751		if (!device->dev_stats_valid || stats_cnt == 0)
7752			continue;
7753
7754
7755		/*
7756		 * There is a LOAD-LOAD control dependency between the value of
7757		 * dev_stats_ccnt and updating the on-disk values which requires
7758		 * reading the in-memory counters. Such control dependencies
7759		 * require explicit read memory barriers.
7760		 *
7761		 * This memory barriers pairs with smp_mb__before_atomic in
7762		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7763		 * barrier implied by atomic_xchg in
7764		 * btrfs_dev_stats_read_and_reset
7765		 */
7766		smp_rmb();
7767
7768		ret = update_dev_stat_item(trans, device);
7769		if (!ret)
7770			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7771	}
7772	mutex_unlock(&fs_devices->device_list_mutex);
7773
7774	return ret;
7775}
7776
7777void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7778{
7779	btrfs_dev_stat_inc(dev, index);
 
 
7780
 
 
7781	if (!dev->dev_stats_valid)
7782		return;
7783	btrfs_err_rl_in_rcu(dev->fs_info,
7784		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785			   btrfs_dev_name(dev),
7786			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
 
 
7791}
7792
7793static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7794{
7795	int i;
7796
7797	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798		if (btrfs_dev_stat_read(dev, i) != 0)
7799			break;
7800	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801		return; /* all values == 0, suppress message */
7802
7803	btrfs_info_in_rcu(dev->fs_info,
7804		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805	       btrfs_dev_name(dev),
7806	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7811}
7812
7813int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814			struct btrfs_ioctl_get_dev_stats *stats)
 
7815{
7816	BTRFS_DEV_LOOKUP_ARGS(args);
7817	struct btrfs_device *dev;
7818	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7819	int i;
7820
7821	mutex_lock(&fs_devices->device_list_mutex);
7822	args.devid = stats->devid;
7823	dev = btrfs_find_device(fs_info->fs_devices, &args);
7824	mutex_unlock(&fs_devices->device_list_mutex);
7825
7826	if (!dev) {
7827		btrfs_warn(fs_info, "get dev_stats failed, device not found");
 
7828		return -ENODEV;
7829	} else if (!dev->dev_stats_valid) {
7830		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
 
7831		return -ENODEV;
7832	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7833		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7834			if (stats->nr_items > i)
7835				stats->values[i] =
7836					btrfs_dev_stat_read_and_reset(dev, i);
7837			else
7838				btrfs_dev_stat_set(dev, i, 0);
7839		}
7840		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7841			   current->comm, task_pid_nr(current));
7842	} else {
7843		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7844			if (stats->nr_items > i)
7845				stats->values[i] = btrfs_dev_stat_read(dev, i);
7846	}
7847	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7848		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7849	return 0;
7850}
7851
7852/*
7853 * Update the size and bytes used for each device where it changed.  This is
7854 * delayed since we would otherwise get errors while writing out the
7855 * superblocks.
7856 *
7857 * Must be invoked during transaction commit.
7858 */
7859void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7860{
7861	struct btrfs_device *curr, *next;
7862
7863	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7864
7865	if (list_empty(&trans->dev_update_list))
7866		return;
7867
7868	/*
7869	 * We don't need the device_list_mutex here.  This list is owned by the
7870	 * transaction and the transaction must complete before the device is
7871	 * released.
7872	 */
7873	mutex_lock(&trans->fs_info->chunk_mutex);
7874	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7875				 post_commit_list) {
7876		list_del_init(&curr->post_commit_list);
7877		curr->commit_total_bytes = curr->disk_total_bytes;
7878		curr->commit_bytes_used = curr->bytes_used;
7879	}
7880	mutex_unlock(&trans->fs_info->chunk_mutex);
7881}
7882
7883/*
7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7885 */
7886int btrfs_bg_type_to_factor(u64 flags)
7887{
7888	const int index = btrfs_bg_flags_to_raid_index(flags);
7889
7890	return btrfs_raid_array[index].ncopies;
7891}
7892
7893
7894
7895static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7896				 u64 chunk_offset, u64 devid,
7897				 u64 physical_offset, u64 physical_len)
7898{
7899	struct btrfs_dev_lookup_args args = { .devid = devid };
7900	struct btrfs_chunk_map *map;
7901	struct btrfs_device *dev;
7902	u64 stripe_len;
7903	bool found = false;
7904	int ret = 0;
7905	int i;
7906
7907	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7908	if (!map) {
7909		btrfs_err(fs_info,
7910"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911			  physical_offset, devid);
7912		ret = -EUCLEAN;
7913		goto out;
7914	}
7915
7916	stripe_len = btrfs_calc_stripe_length(map);
7917	if (physical_len != stripe_len) {
7918		btrfs_err(fs_info,
7919"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7920			  physical_offset, devid, map->start, physical_len,
7921			  stripe_len);
7922		ret = -EUCLEAN;
7923		goto out;
7924	}
7925
7926	/*
7927	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7928	 * space. Although kernel can handle it without problem, better to warn
7929	 * the users.
7930	 */
7931	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7932		btrfs_warn(fs_info,
7933		"devid %llu physical %llu len %llu inside the reserved space",
7934			   devid, physical_offset, physical_len);
7935
7936	for (i = 0; i < map->num_stripes; i++) {
7937		if (map->stripes[i].dev->devid == devid &&
7938		    map->stripes[i].physical == physical_offset) {
7939			found = true;
7940			if (map->verified_stripes >= map->num_stripes) {
7941				btrfs_err(fs_info,
7942				"too many dev extents for chunk %llu found",
7943					  map->start);
7944				ret = -EUCLEAN;
7945				goto out;
7946			}
7947			map->verified_stripes++;
7948			break;
7949		}
7950	}
7951	if (!found) {
7952		btrfs_err(fs_info,
7953	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7954			physical_offset, devid);
7955		ret = -EUCLEAN;
7956	}
7957
7958	/* Make sure no dev extent is beyond device boundary */
7959	dev = btrfs_find_device(fs_info->fs_devices, &args);
7960	if (!dev) {
7961		btrfs_err(fs_info, "failed to find devid %llu", devid);
7962		ret = -EUCLEAN;
7963		goto out;
7964	}
7965
7966	if (physical_offset + physical_len > dev->disk_total_bytes) {
7967		btrfs_err(fs_info,
7968"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7969			  devid, physical_offset, physical_len,
7970			  dev->disk_total_bytes);
7971		ret = -EUCLEAN;
7972		goto out;
7973	}
7974
7975	if (dev->zone_info) {
7976		u64 zone_size = dev->zone_info->zone_size;
7977
7978		if (!IS_ALIGNED(physical_offset, zone_size) ||
7979		    !IS_ALIGNED(physical_len, zone_size)) {
7980			btrfs_err(fs_info,
7981"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7982				  devid, physical_offset, physical_len);
7983			ret = -EUCLEAN;
7984			goto out;
7985		}
7986	}
7987
7988out:
7989	btrfs_free_chunk_map(map);
7990	return ret;
7991}
7992
7993static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7994{
7995	struct rb_node *node;
7996	int ret = 0;
7997
7998	read_lock(&fs_info->mapping_tree_lock);
7999	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8000		struct btrfs_chunk_map *map;
8001
8002		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8003		if (map->num_stripes != map->verified_stripes) {
8004			btrfs_err(fs_info,
8005			"chunk %llu has missing dev extent, have %d expect %d",
8006				  map->start, map->verified_stripes, map->num_stripes);
8007			ret = -EUCLEAN;
8008			goto out;
8009		}
8010	}
8011out:
8012	read_unlock(&fs_info->mapping_tree_lock);
8013	return ret;
8014}
8015
8016/*
8017 * Ensure that all dev extents are mapped to correct chunk, otherwise
8018 * later chunk allocation/free would cause unexpected behavior.
8019 *
8020 * NOTE: This will iterate through the whole device tree, which should be of
8021 * the same size level as the chunk tree.  This slightly increases mount time.
8022 */
8023int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8024{
8025	struct btrfs_path *path;
8026	struct btrfs_root *root = fs_info->dev_root;
8027	struct btrfs_key key;
8028	u64 prev_devid = 0;
8029	u64 prev_dev_ext_end = 0;
8030	int ret = 0;
8031
8032	/*
8033	 * We don't have a dev_root because we mounted with ignorebadroots and
8034	 * failed to load the root, so we want to skip the verification in this
8035	 * case for sure.
8036	 *
8037	 * However if the dev root is fine, but the tree itself is corrupted
8038	 * we'd still fail to mount.  This verification is only to make sure
8039	 * writes can happen safely, so instead just bypass this check
8040	 * completely in the case of IGNOREBADROOTS.
8041	 */
8042	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8043		return 0;
8044
8045	key.objectid = 1;
8046	key.type = BTRFS_DEV_EXTENT_KEY;
8047	key.offset = 0;
8048
8049	path = btrfs_alloc_path();
8050	if (!path)
8051		return -ENOMEM;
8052
8053	path->reada = READA_FORWARD;
8054	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8055	if (ret < 0)
8056		goto out;
8057
8058	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8059		ret = btrfs_next_leaf(root, path);
8060		if (ret < 0)
8061			goto out;
8062		/* No dev extents at all? Not good */
8063		if (ret > 0) {
8064			ret = -EUCLEAN;
8065			goto out;
8066		}
8067	}
8068	while (1) {
8069		struct extent_buffer *leaf = path->nodes[0];
8070		struct btrfs_dev_extent *dext;
8071		int slot = path->slots[0];
8072		u64 chunk_offset;
8073		u64 physical_offset;
8074		u64 physical_len;
8075		u64 devid;
8076
8077		btrfs_item_key_to_cpu(leaf, &key, slot);
8078		if (key.type != BTRFS_DEV_EXTENT_KEY)
8079			break;
8080		devid = key.objectid;
8081		physical_offset = key.offset;
8082
8083		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8084		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8085		physical_len = btrfs_dev_extent_length(leaf, dext);
8086
8087		/* Check if this dev extent overlaps with the previous one */
8088		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8089			btrfs_err(fs_info,
8090"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8091				  devid, physical_offset, prev_dev_ext_end);
8092			ret = -EUCLEAN;
8093			goto out;
8094		}
8095
8096		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8097					    physical_offset, physical_len);
8098		if (ret < 0)
8099			goto out;
8100		prev_devid = devid;
8101		prev_dev_ext_end = physical_offset + physical_len;
8102
8103		ret = btrfs_next_item(root, path);
8104		if (ret < 0)
8105			goto out;
8106		if (ret > 0) {
8107			ret = 0;
8108			break;
8109		}
8110	}
8111
8112	/* Ensure all chunks have corresponding dev extents */
8113	ret = verify_chunk_dev_extent_mapping(fs_info);
8114out:
8115	btrfs_free_path(path);
8116	return ret;
8117}
8118
8119/*
8120 * Check whether the given block group or device is pinned by any inode being
8121 * used as a swapfile.
8122 */
8123bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8124{
8125	struct btrfs_swapfile_pin *sp;
8126	struct rb_node *node;
8127
8128	spin_lock(&fs_info->swapfile_pins_lock);
8129	node = fs_info->swapfile_pins.rb_node;
8130	while (node) {
8131		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8132		if (ptr < sp->ptr)
8133			node = node->rb_left;
8134		else if (ptr > sp->ptr)
8135			node = node->rb_right;
8136		else
8137			break;
8138	}
8139	spin_unlock(&fs_info->swapfile_pins_lock);
8140	return node != NULL;
8141}
8142
8143static int relocating_repair_kthread(void *data)
8144{
8145	struct btrfs_block_group *cache = data;
8146	struct btrfs_fs_info *fs_info = cache->fs_info;
8147	u64 target;
8148	int ret = 0;
8149
8150	target = cache->start;
8151	btrfs_put_block_group(cache);
8152
8153	sb_start_write(fs_info->sb);
8154	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8155		btrfs_info(fs_info,
8156			   "zoned: skip relocating block group %llu to repair: EBUSY",
8157			   target);
8158		sb_end_write(fs_info->sb);
8159		return -EBUSY;
8160	}
8161
8162	mutex_lock(&fs_info->reclaim_bgs_lock);
8163
8164	/* Ensure block group still exists */
8165	cache = btrfs_lookup_block_group(fs_info, target);
8166	if (!cache)
8167		goto out;
8168
8169	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8170		goto out;
8171
8172	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8173	if (ret < 0)
8174		goto out;
8175
8176	btrfs_info(fs_info,
8177		   "zoned: relocating block group %llu to repair IO failure",
8178		   target);
8179	ret = btrfs_relocate_chunk(fs_info, target);
8180
8181out:
8182	if (cache)
8183		btrfs_put_block_group(cache);
8184	mutex_unlock(&fs_info->reclaim_bgs_lock);
8185	btrfs_exclop_finish(fs_info);
8186	sb_end_write(fs_info->sb);
8187
8188	return ret;
8189}
8190
8191bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8192{
8193	struct btrfs_block_group *cache;
8194
8195	if (!btrfs_is_zoned(fs_info))
8196		return false;
8197
8198	/* Do not attempt to repair in degraded state */
8199	if (btrfs_test_opt(fs_info, DEGRADED))
8200		return true;
8201
8202	cache = btrfs_lookup_block_group(fs_info, logical);
8203	if (!cache)
8204		return true;
8205
8206	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8207		btrfs_put_block_group(cache);
8208		return true;
8209	}
8210
8211	kthread_run(relocating_repair_kthread, cache,
8212		    "btrfs-relocating-repair");
8213
8214	return true;
8215}
8216
8217static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8218				    struct btrfs_io_stripe *smap,
8219				    u64 logical)
8220{
8221	int data_stripes = nr_bioc_data_stripes(bioc);
8222	int i;
8223
8224	for (i = 0; i < data_stripes; i++) {
8225		u64 stripe_start = bioc->full_stripe_logical +
8226				   btrfs_stripe_nr_to_offset(i);
8227
8228		if (logical >= stripe_start &&
8229		    logical < stripe_start + BTRFS_STRIPE_LEN)
8230			break;
8231	}
8232	ASSERT(i < data_stripes);
8233	smap->dev = bioc->stripes[i].dev;
8234	smap->physical = bioc->stripes[i].physical +
8235			((logical - bioc->full_stripe_logical) &
8236			 BTRFS_STRIPE_LEN_MASK);
8237}
8238
8239/*
8240 * Map a repair write into a single device.
8241 *
8242 * A repair write is triggered by read time repair or scrub, which would only
8243 * update the contents of a single device.
8244 * Not update any other mirrors nor go through RMW path.
8245 *
8246 * Callers should ensure:
8247 *
8248 * - Call btrfs_bio_counter_inc_blocked() first
8249 * - The range does not cross stripe boundary
8250 * - Has a valid @mirror_num passed in.
8251 */
8252int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8253			   struct btrfs_io_stripe *smap, u64 logical,
8254			   u32 length, int mirror_num)
8255{
8256	struct btrfs_io_context *bioc = NULL;
8257	u64 map_length = length;
8258	int mirror_ret = mirror_num;
8259	int ret;
8260
8261	ASSERT(mirror_num > 0);
8262
8263	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8264			      &bioc, smap, &mirror_ret);
8265	if (ret < 0)
8266		return ret;
8267
8268	/* The map range should not cross stripe boundary. */
8269	ASSERT(map_length >= length);
8270
8271	/* Already mapped to single stripe. */
8272	if (!bioc)
8273		goto out;
8274
8275	/* Map the RAID56 multi-stripe writes to a single one. */
8276	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8277		map_raid56_repair_block(bioc, smap, logical);
8278		goto out;
8279	}
8280
8281	ASSERT(mirror_num <= bioc->num_stripes);
8282	smap->dev = bioc->stripes[mirror_num - 1].dev;
8283	smap->physical = bioc->stripes[mirror_num - 1].physical;
8284out:
8285	btrfs_put_bioc(bioc);
8286	ASSERT(smap->dev);
8287	return 0;
8288}
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
 
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <asm/div64.h>
  29#include "compat.h"
 
 
 
  30#include "ctree.h"
  31#include "extent_map.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "print-tree.h"
  35#include "volumes.h"
  36#include "async-thread.h"
  37#include "check-integrity.h"
  38#include "rcu-string.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40static int init_first_rw_device(struct btrfs_trans_handle *trans,
  41				struct btrfs_root *root,
  42				struct btrfs_device *device);
  43static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  44static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
  45static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
  46
  47static DEFINE_MUTEX(uuid_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48static LIST_HEAD(fs_uuids);
 
 
 
 
  49
  50static void lock_chunks(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
  51{
  52	mutex_lock(&root->fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53}
  54
  55static void unlock_chunks(struct btrfs_root *root)
  56{
  57	mutex_unlock(&root->fs_info->chunk_mutex);
 
 
 
 
  58}
  59
  60static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
  61{
  62	struct btrfs_device *device;
 
  63	WARN_ON(fs_devices->opened);
  64	while (!list_empty(&fs_devices->devices)) {
  65		device = list_entry(fs_devices->devices.next,
  66				    struct btrfs_device, dev_list);
  67		list_del(&device->dev_list);
  68		rcu_string_free(device->name);
  69		kfree(device);
  70	}
  71	kfree(fs_devices);
  72}
  73
  74void btrfs_cleanup_fs_uuids(void)
  75{
  76	struct btrfs_fs_devices *fs_devices;
  77
  78	while (!list_empty(&fs_uuids)) {
  79		fs_devices = list_entry(fs_uuids.next,
  80					struct btrfs_fs_devices, list);
  81		list_del(&fs_devices->list);
  82		free_fs_devices(fs_devices);
  83	}
  84}
  85
  86static noinline struct btrfs_device *__find_device(struct list_head *head,
  87						   u64 devid, u8 *uuid)
  88{
  89	struct btrfs_device *dev;
 
 
 
 
 
 
 
  90
  91	list_for_each_entry(dev, head, dev_list) {
  92		if (dev->devid == devid &&
  93		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
  94			return dev;
  95		}
  96	}
  97	return NULL;
  98}
  99
 100static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 
 101{
 102	struct btrfs_fs_devices *fs_devices;
 103
 104	list_for_each_entry(fs_devices, &fs_uuids, list) {
 105		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 
 
 
 106			return fs_devices;
 107	}
 108	return NULL;
 109}
 110
 111static void requeue_list(struct btrfs_pending_bios *pending_bios,
 112			struct bio *head, struct bio *tail)
 
 
 113{
 
 
 
 
 
 
 
 
 
 
 114
 115	struct bio *old_head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 116
 117	old_head = pending_bios->head;
 118	pending_bios->head = head;
 119	if (pending_bios->tail)
 120		tail->bi_next = old_head;
 121	else
 122		pending_bios->tail = tail;
 123}
 124
 125/*
 126 * we try to collect pending bios for a device so we don't get a large
 127 * number of procs sending bios down to the same device.  This greatly
 128 * improves the schedulers ability to collect and merge the bios.
 129 *
 130 * But, it also turns into a long list of bios to process and that is sure
 131 * to eventually make the worker thread block.  The solution here is to
 132 * make some progress and then put this work struct back at the end of
 133 * the list if the block device is congested.  This way, multiple devices
 134 * can make progress from a single worker thread.
 135 */
 136static noinline void run_scheduled_bios(struct btrfs_device *device)
 137{
 138	struct bio *pending;
 139	struct backing_dev_info *bdi;
 140	struct btrfs_fs_info *fs_info;
 141	struct btrfs_pending_bios *pending_bios;
 142	struct bio *tail;
 143	struct bio *cur;
 144	int again = 0;
 145	unsigned long num_run;
 146	unsigned long batch_run = 0;
 147	unsigned long limit;
 148	unsigned long last_waited = 0;
 149	int force_reg = 0;
 150	int sync_pending = 0;
 151	struct blk_plug plug;
 152
 153	/*
 154	 * this function runs all the bios we've collected for
 155	 * a particular device.  We don't want to wander off to
 156	 * another device without first sending all of these down.
 157	 * So, setup a plug here and finish it off before we return
 158	 */
 159	blk_start_plug(&plug);
 160
 161	bdi = blk_get_backing_dev_info(device->bdev);
 162	fs_info = device->dev_root->fs_info;
 163	limit = btrfs_async_submit_limit(fs_info);
 164	limit = limit * 2 / 3;
 165
 166loop:
 167	spin_lock(&device->io_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168
 169loop_lock:
 170	num_run = 0;
 
 171
 172	/* take all the bios off the list at once and process them
 173	 * later on (without the lock held).  But, remember the
 174	 * tail and other pointers so the bios can be properly reinserted
 175	 * into the list if we hit congestion
 176	 */
 177	if (!force_reg && device->pending_sync_bios.head) {
 178		pending_bios = &device->pending_sync_bios;
 179		force_reg = 1;
 180	} else {
 181		pending_bios = &device->pending_bios;
 182		force_reg = 0;
 183	}
 184
 185	pending = pending_bios->head;
 186	tail = pending_bios->tail;
 187	WARN_ON(pending && !tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189	/*
 190	 * if pending was null this time around, no bios need processing
 191	 * at all and we can stop.  Otherwise it'll loop back up again
 192	 * and do an additional check so no bios are missed.
 193	 *
 194	 * device->running_pending is used to synchronize with the
 195	 * schedule_bio code.
 196	 */
 197	if (device->pending_sync_bios.head == NULL &&
 198	    device->pending_bios.head == NULL) {
 199		again = 0;
 200		device->running_pending = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201	} else {
 202		again = 1;
 203		device->running_pending = 1;
 
 
 
 
 
 
 204	}
 205
 206	pending_bios->head = NULL;
 207	pending_bios->tail = NULL;
 208
 209	spin_unlock(&device->io_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 210
 211	while (pending) {
 
 
 
 212
 213		rmb();
 214		/* we want to work on both lists, but do more bios on the
 215		 * sync list than the regular list
 216		 */
 217		if ((num_run > 32 &&
 218		    pending_bios != &device->pending_sync_bios &&
 219		    device->pending_sync_bios.head) ||
 220		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 221		    device->pending_bios.head)) {
 222			spin_lock(&device->io_lock);
 223			requeue_list(pending_bios, pending, tail);
 224			goto loop_lock;
 225		}
 226
 227		cur = pending;
 228		pending = pending->bi_next;
 229		cur->bi_next = NULL;
 230		atomic_dec(&fs_info->nr_async_bios);
 231
 232		if (atomic_read(&fs_info->nr_async_bios) < limit &&
 233		    waitqueue_active(&fs_info->async_submit_wait))
 234			wake_up(&fs_info->async_submit_wait);
 235
 236		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 237
 238		/*
 239		 * if we're doing the sync list, record that our
 240		 * plug has some sync requests on it
 241		 *
 242		 * If we're doing the regular list and there are
 243		 * sync requests sitting around, unplug before
 244		 * we add more
 245		 */
 246		if (pending_bios == &device->pending_sync_bios) {
 247			sync_pending = 1;
 248		} else if (sync_pending) {
 249			blk_finish_plug(&plug);
 250			blk_start_plug(&plug);
 251			sync_pending = 0;
 252		}
 253
 254		btrfsic_submit_bio(cur->bi_rw, cur);
 255		num_run++;
 256		batch_run++;
 257		if (need_resched())
 258			cond_resched();
 
 
 
 259
 260		/*
 261		 * we made progress, there is more work to do and the bdi
 262		 * is now congested.  Back off and let other work structs
 263		 * run instead
 264		 */
 265		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 266		    fs_info->fs_devices->open_devices > 1) {
 267			struct io_context *ioc;
 268
 269			ioc = current->io_context;
 
 270
 271			/*
 272			 * the main goal here is that we don't want to
 273			 * block if we're going to be able to submit
 274			 * more requests without blocking.
 275			 *
 276			 * This code does two great things, it pokes into
 277			 * the elevator code from a filesystem _and_
 278			 * it makes assumptions about how batching works.
 279			 */
 280			if (ioc && ioc->nr_batch_requests > 0 &&
 281			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 282			    (last_waited == 0 ||
 283			     ioc->last_waited == last_waited)) {
 284				/*
 285				 * we want to go through our batch of
 286				 * requests and stop.  So, we copy out
 287				 * the ioc->last_waited time and test
 288				 * against it before looping
 289				 */
 290				last_waited = ioc->last_waited;
 291				if (need_resched())
 292					cond_resched();
 293				continue;
 294			}
 295			spin_lock(&device->io_lock);
 296			requeue_list(pending_bios, pending, tail);
 297			device->running_pending = 1;
 298
 299			spin_unlock(&device->io_lock);
 300			btrfs_requeue_work(&device->work);
 301			goto done;
 302		}
 303		/* unplug every 64 requests just for good measure */
 304		if (batch_run % 64 == 0) {
 305			blk_finish_plug(&plug);
 306			blk_start_plug(&plug);
 307			sync_pending = 0;
 308		}
 309	}
 
 
 
 310
 311	cond_resched();
 312	if (again)
 313		goto loop;
 314
 315	spin_lock(&device->io_lock);
 316	if (device->pending_bios.head || device->pending_sync_bios.head)
 317		goto loop_lock;
 318	spin_unlock(&device->io_lock);
 319
 320done:
 321	blk_finish_plug(&plug);
 322}
 323
 324static void pending_bios_fn(struct btrfs_work *work)
 325{
 326	struct btrfs_device *device;
 
 327
 328	device = container_of(work, struct btrfs_device, work);
 329	run_scheduled_bios(device);
 330}
 331
 332static noinline int device_list_add(const char *path,
 
 
 
 
 
 
 
 333			   struct btrfs_super_block *disk_super,
 334			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 335{
 336	struct btrfs_device *device;
 337	struct btrfs_fs_devices *fs_devices;
 338	struct rcu_string *name;
 339	u64 found_transid = btrfs_super_generation(disk_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341	fs_devices = find_fsid(disk_super->fsid);
 342	if (!fs_devices) {
 343		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 344		if (!fs_devices)
 345			return -ENOMEM;
 346		INIT_LIST_HEAD(&fs_devices->devices);
 347		INIT_LIST_HEAD(&fs_devices->alloc_list);
 348		list_add(&fs_devices->list, &fs_uuids);
 349		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 350		fs_devices->latest_devid = devid;
 351		fs_devices->latest_trans = found_transid;
 352		mutex_init(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 353		device = NULL;
 354	} else {
 355		device = __find_device(&fs_devices->devices, devid,
 356				       disk_super->dev_item.uuid);
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 
 358	if (!device) {
 359		if (fs_devices->opened)
 360			return -EBUSY;
 361
 362		device = kzalloc(sizeof(*device), GFP_NOFS);
 363		if (!device) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 364			/* we can safely leave the fs_devices entry around */
 365			return -ENOMEM;
 366		}
 367		device->devid = devid;
 368		device->dev_stats_valid = 0;
 369		device->work.func = pending_bios_fn;
 370		memcpy(device->uuid, disk_super->dev_item.uuid,
 371		       BTRFS_UUID_SIZE);
 372		spin_lock_init(&device->io_lock);
 373
 374		name = rcu_string_strdup(path, GFP_NOFS);
 375		if (!name) {
 376			kfree(device);
 377			return -ENOMEM;
 378		}
 379		rcu_assign_pointer(device->name, name);
 380		INIT_LIST_HEAD(&device->dev_alloc_list);
 381
 382		/* init readahead state */
 383		spin_lock_init(&device->reada_lock);
 384		device->reada_curr_zone = NULL;
 385		atomic_set(&device->reada_in_flight, 0);
 386		device->reada_next = 0;
 387		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 388		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 389
 390		mutex_lock(&fs_devices->device_list_mutex);
 391		list_add_rcu(&device->dev_list, &fs_devices->devices);
 392		mutex_unlock(&fs_devices->device_list_mutex);
 393
 394		device->fs_devices = fs_devices;
 395		fs_devices->num_devices++;
 
 
 
 
 
 
 
 
 
 
 
 
 396	} else if (!device->name || strcmp(device->name->str, path)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397		name = rcu_string_strdup(path, GFP_NOFS);
 398		if (!name)
 399			return -ENOMEM;
 
 
 400		rcu_string_free(device->name);
 401		rcu_assign_pointer(device->name, name);
 402		if (device->missing) {
 403			fs_devices->missing_devices--;
 404			device->missing = 0;
 405		}
 
 406	}
 407
 408	if (found_transid > fs_devices->latest_trans) {
 409		fs_devices->latest_devid = devid;
 410		fs_devices->latest_trans = found_transid;
 
 
 
 
 
 
 
 411	}
 412	*fs_devices_ret = fs_devices;
 413	return 0;
 
 
 
 414}
 415
 416static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 417{
 418	struct btrfs_fs_devices *fs_devices;
 419	struct btrfs_device *device;
 420	struct btrfs_device *orig_dev;
 
 421
 422	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 423	if (!fs_devices)
 424		return ERR_PTR(-ENOMEM);
 
 
 425
 426	INIT_LIST_HEAD(&fs_devices->devices);
 427	INIT_LIST_HEAD(&fs_devices->alloc_list);
 428	INIT_LIST_HEAD(&fs_devices->list);
 429	mutex_init(&fs_devices->device_list_mutex);
 430	fs_devices->latest_devid = orig->latest_devid;
 431	fs_devices->latest_trans = orig->latest_trans;
 432	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
 433
 434	/* We have held the volume lock, it is safe to get the devices. */
 435	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 436		struct rcu_string *name;
 437
 438		device = kzalloc(sizeof(*device), GFP_NOFS);
 439		if (!device)
 440			goto error;
 441
 442		/*
 443		 * This is ok to do without rcu read locked because we hold the
 444		 * uuid mutex so nothing we touch in here is going to disappear.
 445		 */
 446		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
 447		if (!name) {
 448			kfree(device);
 
 
 
 
 449			goto error;
 450		}
 451		rcu_assign_pointer(device->name, name);
 452
 453		device->devid = orig_dev->devid;
 454		device->work.func = pending_bios_fn;
 455		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
 456		spin_lock_init(&device->io_lock);
 457		INIT_LIST_HEAD(&device->dev_list);
 458		INIT_LIST_HEAD(&device->dev_alloc_list);
 
 
 
 
 
 459
 460		list_add(&device->dev_list, &fs_devices->devices);
 461		device->fs_devices = fs_devices;
 462		fs_devices->num_devices++;
 463	}
 464	return fs_devices;
 465error:
 466	free_fs_devices(fs_devices);
 467	return ERR_PTR(-ENOMEM);
 468}
 469
 470void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
 
 471{
 472	struct btrfs_device *device, *next;
 473
 474	struct block_device *latest_bdev = NULL;
 475	u64 latest_devid = 0;
 476	u64 latest_transid = 0;
 477
 478	mutex_lock(&uuid_mutex);
 479again:
 480	/* This is the initialized path, it is safe to release the devices. */
 481	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 482		if (device->in_fs_metadata) {
 483			if (!latest_transid ||
 484			    device->generation > latest_transid) {
 485				latest_devid = device->devid;
 486				latest_transid = device->generation;
 487				latest_bdev = device->bdev;
 
 
 488			}
 489			continue;
 490		}
 491
 492		if (device->bdev) {
 493			blkdev_put(device->bdev, device->mode);
 
 
 
 
 
 
 
 494			device->bdev = NULL;
 
 495			fs_devices->open_devices--;
 496		}
 497		if (device->writeable) {
 498			list_del_init(&device->dev_alloc_list);
 499			device->writeable = 0;
 500			fs_devices->rw_devices--;
 501		}
 502		list_del_init(&device->dev_list);
 503		fs_devices->num_devices--;
 504		rcu_string_free(device->name);
 505		kfree(device);
 506	}
 507
 508	if (fs_devices->seed) {
 509		fs_devices = fs_devices->seed;
 510		goto again;
 511	}
 
 
 
 
 
 
 
 
 
 
 
 
 512
 513	fs_devices->latest_bdev = latest_bdev;
 514	fs_devices->latest_devid = latest_devid;
 515	fs_devices->latest_trans = latest_transid;
 516
 517	mutex_unlock(&uuid_mutex);
 518}
 519
 520static void __free_device(struct work_struct *work)
 521{
 522	struct btrfs_device *device;
 
 523
 524	device = container_of(work, struct btrfs_device, rcu_work);
 525
 526	if (device->bdev)
 527		blkdev_put(device->bdev, device->mode);
 528
 529	rcu_string_free(device->name);
 530	kfree(device);
 531}
 532
 533static void free_device(struct rcu_head *head)
 534{
 535	struct btrfs_device *device;
 
 
 
 
 
 
 536
 537	device = container_of(head, struct btrfs_device, rcu);
 
 538
 539	INIT_WORK(&device->rcu_work, __free_device);
 540	schedule_work(&device->rcu_work);
 541}
 
 542
 543static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 544{
 545	struct btrfs_device *device;
 
 
 
 
 546
 547	if (--fs_devices->opened > 0)
 548		return 0;
 
 549
 550	mutex_lock(&fs_devices->device_list_mutex);
 551	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 552		struct btrfs_device *new_device;
 553		struct rcu_string *name;
 
 
 
 
 
 
 
 
 554
 555		if (device->bdev)
 556			fs_devices->open_devices--;
 
 
 
 
 557
 558		if (device->writeable) {
 559			list_del_init(&device->dev_alloc_list);
 560			fs_devices->rw_devices--;
 561		}
 562
 563		if (device->can_discard)
 564			fs_devices->num_can_discard--;
 565
 566		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
 567		BUG_ON(!new_device); /* -ENOMEM */
 568		memcpy(new_device, device, sizeof(*new_device));
 569
 570		/* Safe because we are under uuid_mutex */
 571		name = rcu_string_strdup(device->name->str, GFP_NOFS);
 572		BUG_ON(device->name && !name); /* -ENOMEM */
 573		rcu_assign_pointer(new_device->name, name);
 574		new_device->bdev = NULL;
 575		new_device->writeable = 0;
 576		new_device->in_fs_metadata = 0;
 577		new_device->can_discard = 0;
 578		list_replace_rcu(&device->dev_list, &new_device->dev_list);
 579
 580		call_rcu(&device->rcu, free_device);
 581	}
 582	mutex_unlock(&fs_devices->device_list_mutex);
 583
 584	WARN_ON(fs_devices->open_devices);
 585	WARN_ON(fs_devices->rw_devices);
 586	fs_devices->opened = 0;
 587	fs_devices->seeding = 0;
 588
 589	return 0;
 590}
 591
 592int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 593{
 594	struct btrfs_fs_devices *seed_devices = NULL;
 595	int ret;
 596
 597	mutex_lock(&uuid_mutex);
 598	ret = __btrfs_close_devices(fs_devices);
 599	if (!fs_devices->opened) {
 600		seed_devices = fs_devices->seed;
 601		fs_devices->seed = NULL;
 
 
 
 
 
 
 
 
 
 
 602	}
 603	mutex_unlock(&uuid_mutex);
 604
 605	while (seed_devices) {
 606		fs_devices = seed_devices;
 607		seed_devices = fs_devices->seed;
 608		__btrfs_close_devices(fs_devices);
 609		free_fs_devices(fs_devices);
 610	}
 611	return ret;
 612}
 613
 614static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 615				fmode_t flags, void *holder)
 616{
 617	struct request_queue *q;
 618	struct block_device *bdev;
 619	struct list_head *head = &fs_devices->devices;
 620	struct btrfs_device *device;
 621	struct block_device *latest_bdev = NULL;
 622	struct buffer_head *bh;
 623	struct btrfs_super_block *disk_super;
 624	u64 latest_devid = 0;
 625	u64 latest_transid = 0;
 626	u64 devid;
 627	int seeding = 1;
 628	int ret = 0;
 629
 630	flags |= FMODE_EXCL;
 631
 632	list_for_each_entry(device, head, dev_list) {
 633		if (device->bdev)
 634			continue;
 635		if (!device->name)
 636			continue;
 637
 638		bdev = blkdev_get_by_path(device->name->str, flags, holder);
 639		if (IS_ERR(bdev)) {
 640			printk(KERN_INFO "open %s failed\n", device->name->str);
 641			goto error;
 642		}
 643		filemap_write_and_wait(bdev->bd_inode->i_mapping);
 644		invalidate_bdev(bdev);
 645		set_blocksize(bdev, 4096);
 646
 647		bh = btrfs_read_dev_super(bdev);
 648		if (!bh)
 649			goto error_close;
 650
 651		disk_super = (struct btrfs_super_block *)bh->b_data;
 652		devid = btrfs_stack_device_id(&disk_super->dev_item);
 653		if (devid != device->devid)
 654			goto error_brelse;
 655
 656		if (memcmp(device->uuid, disk_super->dev_item.uuid,
 657			   BTRFS_UUID_SIZE))
 658			goto error_brelse;
 659
 660		device->generation = btrfs_super_generation(disk_super);
 661		if (!latest_transid || device->generation > latest_transid) {
 662			latest_devid = devid;
 663			latest_transid = device->generation;
 664			latest_bdev = bdev;
 665		}
 
 
 
 666
 667		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 668			device->writeable = 0;
 669		} else {
 670			device->writeable = !bdev_read_only(bdev);
 671			seeding = 0;
 672		}
 673
 674		q = bdev_get_queue(bdev);
 675		if (blk_queue_discard(q)) {
 676			device->can_discard = 1;
 677			fs_devices->num_can_discard++;
 678		}
 679
 680		device->bdev = bdev;
 681		device->in_fs_metadata = 0;
 682		device->mode = flags;
 
 683
 684		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 685			fs_devices->rotating = 1;
 686
 687		fs_devices->open_devices++;
 688		if (device->writeable) {
 689			fs_devices->rw_devices++;
 690			list_add(&device->dev_alloc_list,
 691				 &fs_devices->alloc_list);
 692		}
 693		brelse(bh);
 694		continue;
 695
 696error_brelse:
 697		brelse(bh);
 698error_close:
 699		blkdev_put(bdev, flags);
 700error:
 701		continue;
 702	}
 703	if (fs_devices->open_devices == 0) {
 704		ret = -EINVAL;
 705		goto out;
 706	}
 707	fs_devices->seeding = seeding;
 708	fs_devices->opened = 1;
 709	fs_devices->latest_bdev = latest_bdev;
 710	fs_devices->latest_devid = latest_devid;
 711	fs_devices->latest_trans = latest_transid;
 712	fs_devices->total_rw_bytes = 0;
 713out:
 714	return ret;
 715}
 716
 717int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 718		       fmode_t flags, void *holder)
 719{
 720	int ret;
 721
 722	mutex_lock(&uuid_mutex);
 
 
 
 
 
 
 
 
 723	if (fs_devices->opened) {
 724		fs_devices->opened++;
 725		ret = 0;
 726	} else {
 727		ret = __btrfs_open_devices(fs_devices, flags, holder);
 
 728	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729	mutex_unlock(&uuid_mutex);
 
 730	return ret;
 731}
 732
 733int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 734			  struct btrfs_fs_devices **fs_devices_ret)
 
 
 
 
 
 
 
 
 
 735{
 736	struct btrfs_super_block *disk_super;
 737	struct block_device *bdev;
 738	struct buffer_head *bh;
 
 
 739	int ret;
 740	u64 devid;
 741	u64 transid;
 742
 743	flags |= FMODE_EXCL;
 744	bdev = blkdev_get_by_path(path, flags, holder);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 746	if (IS_ERR(bdev)) {
 747		ret = PTR_ERR(bdev);
 748		goto error;
 
 
 749	}
 750
 751	mutex_lock(&uuid_mutex);
 752	ret = set_blocksize(bdev, 4096);
 753	if (ret)
 754		goto error_close;
 755	bh = btrfs_read_dev_super(bdev);
 756	if (!bh) {
 757		ret = -EINVAL;
 758		goto error_close;
 
 
 
 
 
 
 759	}
 760	disk_super = (struct btrfs_super_block *)bh->b_data;
 761	devid = btrfs_stack_device_id(&disk_super->dev_item);
 762	transid = btrfs_super_generation(disk_super);
 763	if (disk_super->label[0])
 764		printk(KERN_INFO "device label %s ", disk_super->label);
 765	else
 766		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
 767	printk(KERN_CONT "devid %llu transid %llu %s\n",
 768	       (unsigned long long)devid, (unsigned long long)transid, path);
 769	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 770
 771	brelse(bh);
 772error_close:
 773	mutex_unlock(&uuid_mutex);
 774	blkdev_put(bdev, flags);
 775error:
 776	return ret;
 
 
 
 
 
 777}
 778
 779/* helper to account the used device space in the range */
 780int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
 781				   u64 end, u64 *length)
 
 
 
 782{
 783	struct btrfs_key key;
 784	struct btrfs_root *root = device->dev_root;
 785	struct btrfs_dev_extent *dev_extent;
 786	struct btrfs_path *path;
 787	u64 extent_end;
 788	int ret;
 789	int slot;
 790	struct extent_buffer *l;
 791
 792	*length = 0;
 
 
 
 
 
 
 
 
 793
 794	if (start >= device->total_bytes)
 
 
 
 
 
 
 
 
 
 
 795		return 0;
 
 
 
 
 796
 797	path = btrfs_alloc_path();
 798	if (!path)
 799		return -ENOMEM;
 800	path->reada = 2;
 
 
 
 
 
 
 801
 802	key.objectid = device->devid;
 803	key.offset = start;
 804	key.type = BTRFS_DEV_EXTENT_KEY;
 
 
 
 
 
 
 
 
 805
 806	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 807	if (ret < 0)
 808		goto out;
 809	if (ret > 0) {
 810		ret = btrfs_previous_item(root, path, key.objectid, key.type);
 811		if (ret < 0)
 812			goto out;
 813	}
 814
 815	while (1) {
 816		l = path->nodes[0];
 817		slot = path->slots[0];
 818		if (slot >= btrfs_header_nritems(l)) {
 819			ret = btrfs_next_leaf(root, path);
 820			if (ret == 0)
 821				continue;
 822			if (ret < 0)
 823				goto out;
 824
 825			break;
 
 
 
 
 826		}
 827		btrfs_item_key_to_cpu(l, &key, slot);
 828
 829		if (key.objectid < device->devid)
 830			goto next;
 
 
 
 
 
 831
 832		if (key.objectid > device->devid)
 833			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834
 835		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 836			goto next;
 
 
 
 
 
 
 
 
 
 
 837
 838		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 839		extent_end = key.offset + btrfs_dev_extent_length(l,
 840								  dev_extent);
 841		if (key.offset <= start && extent_end > end) {
 842			*length = end - start + 1;
 843			break;
 844		} else if (key.offset <= start && extent_end > start)
 845			*length += extent_end - start;
 846		else if (key.offset > start && extent_end <= end)
 847			*length += extent_end - key.offset;
 848		else if (key.offset > start && key.offset <= end) {
 849			*length += end - key.offset + 1;
 850			break;
 851		} else if (key.offset > end)
 
 
 852			break;
 
 
 
 853
 854next:
 855		path->slots[0]++;
 856	}
 857	ret = 0;
 858out:
 859	btrfs_free_path(path);
 860	return ret;
 861}
 862
 863/*
 864 * find_free_dev_extent - find free space in the specified device
 865 * @device:	the device which we search the free space in
 866 * @num_bytes:	the size of the free space that we need
 867 * @start:	store the start of the free space.
 868 * @len:	the size of the free space. that we find, or the size of the max
 869 * 		free space if we don't find suitable free space
 870 *
 871 * this uses a pretty simple search, the expectation is that it is
 872 * called very infrequently and that a given device has a small number
 873 * of extents
 
 874 *
 875 * @start is used to store the start of the free space if we find. But if we
 876 * don't find suitable free space, it will be used to store the start position
 877 * of the max free space.
 878 *
 879 * @len is used to store the size of the free space that we find.
 880 * But if we don't find suitable free space, it is used to store the size of
 881 * the max free space.
 
 
 
 
 
 
 882 */
 883int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
 884			 u64 *start, u64 *len)
 885{
 
 
 886	struct btrfs_key key;
 887	struct btrfs_root *root = device->dev_root;
 888	struct btrfs_dev_extent *dev_extent;
 889	struct btrfs_path *path;
 
 890	u64 hole_size;
 891	u64 max_hole_start;
 892	u64 max_hole_size;
 893	u64 extent_end;
 894	u64 search_start;
 895	u64 search_end = device->total_bytes;
 896	int ret;
 897	int slot;
 898	struct extent_buffer *l;
 899
 900	/* FIXME use last free of some kind */
 901
 902	/* we don't want to overwrite the superblock on the drive,
 903	 * so we make sure to start at an offset of at least 1MB
 904	 */
 905	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
 906
 907	max_hole_start = search_start;
 908	max_hole_size = 0;
 909	hole_size = 0;
 910
 911	if (search_start >= search_end) {
 912		ret = -ENOSPC;
 913		goto error;
 914	}
 915
 916	path = btrfs_alloc_path();
 917	if (!path) {
 918		ret = -ENOMEM;
 919		goto error;
 
 
 
 
 
 
 920	}
 921	path->reada = 2;
 
 
 
 922
 923	key.objectid = device->devid;
 924	key.offset = search_start;
 925	key.type = BTRFS_DEV_EXTENT_KEY;
 926
 927	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 928	if (ret < 0)
 929		goto out;
 930	if (ret > 0) {
 931		ret = btrfs_previous_item(root, path, key.objectid, key.type);
 932		if (ret < 0)
 933			goto out;
 934	}
 935
 936	while (1) {
 937		l = path->nodes[0];
 938		slot = path->slots[0];
 939		if (slot >= btrfs_header_nritems(l)) {
 940			ret = btrfs_next_leaf(root, path);
 941			if (ret == 0)
 942				continue;
 943			if (ret < 0)
 944				goto out;
 945
 946			break;
 947		}
 948		btrfs_item_key_to_cpu(l, &key, slot);
 949
 950		if (key.objectid < device->devid)
 951			goto next;
 952
 953		if (key.objectid > device->devid)
 954			break;
 955
 956		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 957			goto next;
 958
 
 
 
 959		if (key.offset > search_start) {
 960			hole_size = key.offset - search_start;
 
 
 961
 962			if (hole_size > max_hole_size) {
 963				max_hole_start = search_start;
 964				max_hole_size = hole_size;
 965			}
 966
 967			/*
 968			 * If this free space is greater than which we need,
 969			 * it must be the max free space that we have found
 970			 * until now, so max_hole_start must point to the start
 971			 * of this free space and the length of this free space
 972			 * is stored in max_hole_size. Thus, we return
 973			 * max_hole_start and max_hole_size and go back to the
 974			 * caller.
 975			 */
 976			if (hole_size >= num_bytes) {
 977				ret = 0;
 978				goto out;
 979			}
 980		}
 981
 982		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 983		extent_end = key.offset + btrfs_dev_extent_length(l,
 984								  dev_extent);
 985		if (extent_end > search_start)
 986			search_start = extent_end;
 987next:
 988		path->slots[0]++;
 989		cond_resched();
 990	}
 991
 992	/*
 993	 * At this point, search_start should be the end of
 994	 * allocated dev extents, and when shrinking the device,
 995	 * search_end may be smaller than search_start.
 996	 */
 997	if (search_end > search_start)
 998		hole_size = search_end - search_start;
 
 
 
 
 
 999
1000	if (hole_size > max_hole_size) {
1001		max_hole_start = search_start;
1002		max_hole_size = hole_size;
 
1003	}
1004
1005	/* See above. */
1006	if (hole_size < num_bytes)
1007		ret = -ENOSPC;
1008	else
1009		ret = 0;
1010
 
1011out:
1012	btrfs_free_path(path);
1013error:
1014	*start = max_hole_start;
1015	if (len)
1016		*len = max_hole_size;
1017	return ret;
1018}
1019
1020static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1021			  struct btrfs_device *device,
1022			  u64 start)
1023{
 
 
1024	int ret;
1025	struct btrfs_path *path;
1026	struct btrfs_root *root = device->dev_root;
1027	struct btrfs_key key;
1028	struct btrfs_key found_key;
1029	struct extent_buffer *leaf = NULL;
1030	struct btrfs_dev_extent *extent = NULL;
1031
1032	path = btrfs_alloc_path();
1033	if (!path)
1034		return -ENOMEM;
1035
1036	key.objectid = device->devid;
1037	key.offset = start;
1038	key.type = BTRFS_DEV_EXTENT_KEY;
1039again:
1040	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041	if (ret > 0) {
1042		ret = btrfs_previous_item(root, path, key.objectid,
1043					  BTRFS_DEV_EXTENT_KEY);
1044		if (ret)
1045			goto out;
1046		leaf = path->nodes[0];
1047		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1048		extent = btrfs_item_ptr(leaf, path->slots[0],
1049					struct btrfs_dev_extent);
1050		BUG_ON(found_key.offset > start || found_key.offset +
1051		       btrfs_dev_extent_length(leaf, extent) < start);
1052		key = found_key;
1053		btrfs_release_path(path);
1054		goto again;
1055	} else if (ret == 0) {
1056		leaf = path->nodes[0];
1057		extent = btrfs_item_ptr(leaf, path->slots[0],
1058					struct btrfs_dev_extent);
1059	} else {
1060		btrfs_error(root->fs_info, ret, "Slot search failed");
1061		goto out;
1062	}
1063
1064	if (device->bytes_used > 0) {
1065		u64 len = btrfs_dev_extent_length(leaf, extent);
1066		device->bytes_used -= len;
1067		spin_lock(&root->fs_info->free_chunk_lock);
1068		root->fs_info->free_chunk_space += len;
1069		spin_unlock(&root->fs_info->free_chunk_lock);
1070	}
1071	ret = btrfs_del_item(trans, root, path);
1072	if (ret) {
1073		btrfs_error(root->fs_info, ret,
1074			    "Failed to remove dev extent item");
1075	}
1076out:
1077	btrfs_free_path(path);
1078	return ret;
1079}
1080
1081int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1082			   struct btrfs_device *device,
1083			   u64 chunk_tree, u64 chunk_objectid,
1084			   u64 chunk_offset, u64 start, u64 num_bytes)
1085{
1086	int ret;
1087	struct btrfs_path *path;
1088	struct btrfs_root *root = device->dev_root;
1089	struct btrfs_dev_extent *extent;
1090	struct extent_buffer *leaf;
1091	struct btrfs_key key;
1092
1093	WARN_ON(!device->in_fs_metadata);
1094	path = btrfs_alloc_path();
1095	if (!path)
1096		return -ENOMEM;
1097
1098	key.objectid = device->devid;
1099	key.offset = start;
1100	key.type = BTRFS_DEV_EXTENT_KEY;
1101	ret = btrfs_insert_empty_item(trans, root, path, &key,
1102				      sizeof(*extent));
1103	if (ret)
1104		goto out;
1105
1106	leaf = path->nodes[0];
1107	extent = btrfs_item_ptr(leaf, path->slots[0],
1108				struct btrfs_dev_extent);
1109	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1110	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1111	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1112
1113	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1114		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1115		    BTRFS_UUID_SIZE);
1116
1117	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1118	btrfs_mark_buffer_dirty(leaf);
1119out:
1120	btrfs_free_path(path);
1121	return ret;
1122}
1123
1124static noinline int find_next_chunk(struct btrfs_root *root,
1125				    u64 objectid, u64 *offset)
1126{
1127	struct btrfs_path *path;
1128	int ret;
1129	struct btrfs_key key;
1130	struct btrfs_chunk *chunk;
1131	struct btrfs_key found_key;
1132
1133	path = btrfs_alloc_path();
1134	if (!path)
1135		return -ENOMEM;
1136
1137	key.objectid = objectid;
1138	key.offset = (u64)-1;
1139	key.type = BTRFS_CHUNK_ITEM_KEY;
1140
1141	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1142	if (ret < 0)
1143		goto error;
1144
1145	BUG_ON(ret == 0); /* Corruption */
1146
1147	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1148	if (ret) {
1149		*offset = 0;
1150	} else {
1151		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1152				      path->slots[0]);
1153		if (found_key.objectid != objectid)
1154			*offset = 0;
1155		else {
1156			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1157					       struct btrfs_chunk);
1158			*offset = found_key.offset +
1159				btrfs_chunk_length(path->nodes[0], chunk);
1160		}
1161	}
1162	ret = 0;
1163error:
1164	btrfs_free_path(path);
1165	return ret;
1166}
1167
1168static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1169{
1170	int ret;
1171	struct btrfs_key key;
1172	struct btrfs_key found_key;
1173	struct btrfs_path *path;
1174
1175	root = root->fs_info->chunk_root;
1176
1177	path = btrfs_alloc_path();
1178	if (!path)
1179		return -ENOMEM;
1180
1181	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1182	key.type = BTRFS_DEV_ITEM_KEY;
1183	key.offset = (u64)-1;
1184
1185	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1186	if (ret < 0)
1187		goto error;
1188
1189	BUG_ON(ret == 0); /* Corruption */
 
 
 
 
 
1190
1191	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
 
1192				  BTRFS_DEV_ITEM_KEY);
1193	if (ret) {
1194		*objectid = 1;
1195	} else {
1196		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1197				      path->slots[0]);
1198		*objectid = found_key.offset + 1;
1199	}
1200	ret = 0;
1201error:
1202	btrfs_free_path(path);
1203	return ret;
1204}
1205
1206/*
1207 * the device information is stored in the chunk root
1208 * the btrfs_device struct should be fully filled in
1209 */
1210int btrfs_add_device(struct btrfs_trans_handle *trans,
1211		     struct btrfs_root *root,
1212		     struct btrfs_device *device)
1213{
1214	int ret;
1215	struct btrfs_path *path;
1216	struct btrfs_dev_item *dev_item;
1217	struct extent_buffer *leaf;
1218	struct btrfs_key key;
1219	unsigned long ptr;
1220
1221	root = root->fs_info->chunk_root;
1222
1223	path = btrfs_alloc_path();
1224	if (!path)
1225		return -ENOMEM;
1226
1227	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1228	key.type = BTRFS_DEV_ITEM_KEY;
1229	key.offset = device->devid;
1230
1231	ret = btrfs_insert_empty_item(trans, root, path, &key,
1232				      sizeof(*dev_item));
 
 
1233	if (ret)
1234		goto out;
1235
1236	leaf = path->nodes[0];
1237	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1238
1239	btrfs_set_device_id(leaf, dev_item, device->devid);
1240	btrfs_set_device_generation(leaf, dev_item, 0);
1241	btrfs_set_device_type(leaf, dev_item, device->type);
1242	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1243	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1244	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1245	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1246	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
 
 
1247	btrfs_set_device_group(leaf, dev_item, 0);
1248	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1249	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1250	btrfs_set_device_start_offset(leaf, dev_item, 0);
1251
1252	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1253	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1254	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1255	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1256	btrfs_mark_buffer_dirty(leaf);
 
1257
1258	ret = 0;
1259out:
1260	btrfs_free_path(path);
1261	return ret;
1262}
1263
1264static int btrfs_rm_dev_item(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265			     struct btrfs_device *device)
1266{
 
1267	int ret;
1268	struct btrfs_path *path;
1269	struct btrfs_key key;
1270	struct btrfs_trans_handle *trans;
1271
1272	root = root->fs_info->chunk_root;
1273
1274	path = btrfs_alloc_path();
1275	if (!path)
1276		return -ENOMEM;
1277
1278	trans = btrfs_start_transaction(root, 0);
1279	if (IS_ERR(trans)) {
1280		btrfs_free_path(path);
1281		return PTR_ERR(trans);
1282	}
1283	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1284	key.type = BTRFS_DEV_ITEM_KEY;
1285	key.offset = device->devid;
1286	lock_chunks(root);
1287
 
1288	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1289	if (ret < 0)
1290		goto out;
1291
1292	if (ret > 0) {
1293		ret = -ENOENT;
1294		goto out;
1295	}
1296
1297	ret = btrfs_del_item(trans, root, path);
1298	if (ret)
1299		goto out;
1300out:
1301	btrfs_free_path(path);
1302	unlock_chunks(root);
1303	btrfs_commit_transaction(trans, root);
1304	return ret;
1305}
1306
1307int btrfs_rm_device(struct btrfs_root *root, char *device_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308{
1309	struct btrfs_device *device;
1310	struct btrfs_device *next_device;
1311	struct block_device *bdev;
1312	struct buffer_head *bh = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313	struct btrfs_super_block *disk_super;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314	struct btrfs_fs_devices *cur_devices;
1315	u64 all_avail;
1316	u64 devid;
1317	u64 num_devices;
1318	u8 *dev_uuid;
1319	int ret = 0;
1320	bool clear_super = false;
1321
1322	mutex_lock(&uuid_mutex);
1323
1324	all_avail = root->fs_info->avail_data_alloc_bits |
1325		root->fs_info->avail_system_alloc_bits |
1326		root->fs_info->avail_metadata_alloc_bits;
1327
1328	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1329	    root->fs_info->fs_devices->num_devices <= 4) {
1330		printk(KERN_ERR "btrfs: unable to go below four devices "
1331		       "on raid10\n");
1332		ret = -EINVAL;
1333		goto out;
1334	}
1335
1336	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1337	    root->fs_info->fs_devices->num_devices <= 2) {
1338		printk(KERN_ERR "btrfs: unable to go below two "
1339		       "devices on raid1\n");
1340		ret = -EINVAL;
1341		goto out;
1342	}
1343
1344	if (strcmp(device_path, "missing") == 0) {
1345		struct list_head *devices;
1346		struct btrfs_device *tmp;
1347
1348		device = NULL;
1349		devices = &root->fs_info->fs_devices->devices;
1350		/*
1351		 * It is safe to read the devices since the volume_mutex
1352		 * is held.
1353		 */
1354		list_for_each_entry(tmp, devices, dev_list) {
1355			if (tmp->in_fs_metadata && !tmp->bdev) {
1356				device = tmp;
1357				break;
1358			}
1359		}
1360		bdev = NULL;
1361		bh = NULL;
1362		disk_super = NULL;
1363		if (!device) {
1364			printk(KERN_ERR "btrfs: no missing devices found to "
1365			       "remove\n");
1366			goto out;
1367		}
1368	} else {
1369		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1370					  root->fs_info->bdev_holder);
1371		if (IS_ERR(bdev)) {
1372			ret = PTR_ERR(bdev);
1373			goto out;
1374		}
1375
1376		set_blocksize(bdev, 4096);
1377		invalidate_bdev(bdev);
1378		bh = btrfs_read_dev_super(bdev);
1379		if (!bh) {
1380			ret = -EINVAL;
1381			goto error_close;
1382		}
1383		disk_super = (struct btrfs_super_block *)bh->b_data;
1384		devid = btrfs_stack_device_id(&disk_super->dev_item);
1385		dev_uuid = disk_super->dev_item.uuid;
1386		device = btrfs_find_device(root, devid, dev_uuid,
1387					   disk_super->fsid);
1388		if (!device) {
1389			ret = -ENOENT;
1390			goto error_brelse;
1391		}
1392	}
1393
1394	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1395		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1396		       "device\n");
1397		ret = -EINVAL;
1398		goto error_brelse;
1399	}
 
 
 
 
 
 
 
1400
1401	if (device->writeable) {
1402		lock_chunks(root);
1403		list_del_init(&device->dev_alloc_list);
1404		unlock_chunks(root);
1405		root->fs_info->fs_devices->rw_devices--;
1406		clear_super = true;
1407	}
1408
1409	ret = btrfs_shrink_device(device, 0);
1410	if (ret)
1411		goto error_undo;
1412
1413	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1414	if (ret)
 
1415		goto error_undo;
 
1416
1417	spin_lock(&root->fs_info->free_chunk_lock);
1418	root->fs_info->free_chunk_space = device->total_bytes -
1419		device->bytes_used;
1420	spin_unlock(&root->fs_info->free_chunk_lock);
 
 
 
 
 
 
1421
1422	device->in_fs_metadata = 0;
1423	btrfs_scrub_cancel_dev(root, device);
1424
1425	/*
1426	 * the device list mutex makes sure that we don't change
1427	 * the device list while someone else is writing out all
1428	 * the device supers.
 
 
 
 
1429	 */
1430
 
 
 
 
 
1431	cur_devices = device->fs_devices;
1432	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1433	list_del_rcu(&device->dev_list);
1434
1435	device->fs_devices->num_devices--;
 
 
 
 
1436
1437	if (device->missing)
1438		root->fs_info->fs_devices->missing_devices--;
1439
1440	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1441				 struct btrfs_device, dev_list);
1442	if (device->bdev == root->fs_info->sb->s_bdev)
1443		root->fs_info->sb->s_bdev = next_device->bdev;
1444	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1445		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1446
1447	if (device->bdev)
1448		device->fs_devices->open_devices--;
 
 
 
1449
1450	call_rcu(&device->rcu, free_device);
1451	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
 
1452
1453	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1454	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1455
1456	if (cur_devices->open_devices == 0) {
1457		struct btrfs_fs_devices *fs_devices;
1458		fs_devices = root->fs_info->fs_devices;
1459		while (fs_devices) {
1460			if (fs_devices->seed == cur_devices)
1461				break;
1462			fs_devices = fs_devices->seed;
 
 
 
 
 
 
1463		}
1464		fs_devices->seed = cur_devices->seed;
1465		cur_devices->seed = NULL;
1466		lock_chunks(root);
1467		__btrfs_close_devices(cur_devices);
1468		unlock_chunks(root);
1469		free_fs_devices(cur_devices);
1470	}
1471
 
 
 
 
1472	/*
1473	 * at this point, the device is zero sized.  We want to
1474	 * remove it from the devices list and zero out the old super
 
 
 
1475	 */
1476	if (clear_super) {
1477		/* make sure this device isn't detected as part of
1478		 * the FS anymore
1479		 */
1480		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1481		set_buffer_dirty(bh);
1482		sync_dirty_buffer(bh);
1483	}
1484
1485	ret = 0;
1486
1487error_brelse:
1488	brelse(bh);
1489error_close:
1490	if (bdev)
1491		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1492out:
1493	mutex_unlock(&uuid_mutex);
1494	return ret;
 
1495error_undo:
1496	if (device->writeable) {
1497		lock_chunks(root);
1498		list_add(&device->dev_alloc_list,
1499			 &root->fs_info->fs_devices->alloc_list);
1500		unlock_chunks(root);
1501		root->fs_info->fs_devices->rw_devices++;
1502	}
1503	goto error_brelse;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504}
1505
1506/*
1507 * does all the dirty work required for changing file system's UUID.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508 */
1509static int btrfs_prepare_sprout(struct btrfs_root *root)
 
 
1510{
1511	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512	struct btrfs_fs_devices *old_devices;
1513	struct btrfs_fs_devices *seed_devices;
1514	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1515	struct btrfs_device *device;
1516	u64 super_flags;
1517
1518	BUG_ON(!mutex_is_locked(&uuid_mutex));
1519	if (!fs_devices->seeding)
1520		return -EINVAL;
1521
1522	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1523	if (!seed_devices)
1524		return -ENOMEM;
 
 
 
 
1525
 
 
 
 
 
 
1526	old_devices = clone_fs_devices(fs_devices);
1527	if (IS_ERR(old_devices)) {
1528		kfree(seed_devices);
1529		return PTR_ERR(old_devices);
1530	}
1531
1532	list_add(&old_devices->list, &fs_uuids);
1533
1534	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1535	seed_devices->opened = 1;
1536	INIT_LIST_HEAD(&seed_devices->devices);
1537	INIT_LIST_HEAD(&seed_devices->alloc_list);
1538	mutex_init(&seed_devices->device_list_mutex);
1539
1540	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1542			      synchronize_rcu);
1543	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1544
1545	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1546	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1547		device->fs_devices = seed_devices;
1548	}
1549
1550	fs_devices->seeding = 0;
1551	fs_devices->num_devices = 0;
1552	fs_devices->open_devices = 0;
1553	fs_devices->seed = seed_devices;
 
 
1554
1555	generate_random_uuid(fs_devices->fsid);
1556	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1557	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 
1558	super_flags = btrfs_super_flags(disk_super) &
1559		      ~BTRFS_SUPER_FLAG_SEEDING;
1560	btrfs_set_super_flags(disk_super, super_flags);
1561
1562	return 0;
1563}
1564
1565/*
1566 * strore the expected generation for seed devices in device items.
1567 */
1568static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1569			       struct btrfs_root *root)
1570{
 
 
 
1571	struct btrfs_path *path;
1572	struct extent_buffer *leaf;
1573	struct btrfs_dev_item *dev_item;
1574	struct btrfs_device *device;
1575	struct btrfs_key key;
1576	u8 fs_uuid[BTRFS_UUID_SIZE];
1577	u8 dev_uuid[BTRFS_UUID_SIZE];
1578	u64 devid;
1579	int ret;
1580
1581	path = btrfs_alloc_path();
1582	if (!path)
1583		return -ENOMEM;
1584
1585	root = root->fs_info->chunk_root;
1586	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1587	key.offset = 0;
1588	key.type = BTRFS_DEV_ITEM_KEY;
1589
1590	while (1) {
 
1591		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
1592		if (ret < 0)
1593			goto error;
1594
1595		leaf = path->nodes[0];
1596next_slot:
1597		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1598			ret = btrfs_next_leaf(root, path);
1599			if (ret > 0)
1600				break;
1601			if (ret < 0)
1602				goto error;
1603			leaf = path->nodes[0];
1604			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1605			btrfs_release_path(path);
1606			continue;
1607		}
1608
1609		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1610		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1611		    key.type != BTRFS_DEV_ITEM_KEY)
1612			break;
1613
1614		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1615					  struct btrfs_dev_item);
1616		devid = btrfs_device_id(leaf, dev_item);
1617		read_extent_buffer(leaf, dev_uuid,
1618				   (unsigned long)btrfs_device_uuid(dev_item),
1619				   BTRFS_UUID_SIZE);
1620		read_extent_buffer(leaf, fs_uuid,
1621				   (unsigned long)btrfs_device_fsid(dev_item),
1622				   BTRFS_UUID_SIZE);
1623		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
 
1624		BUG_ON(!device); /* Logic error */
1625
1626		if (device->fs_devices->seeding) {
1627			btrfs_set_device_generation(leaf, dev_item,
1628						    device->generation);
1629			btrfs_mark_buffer_dirty(leaf);
1630		}
1631
1632		path->slots[0]++;
1633		goto next_slot;
1634	}
1635	ret = 0;
1636error:
1637	btrfs_free_path(path);
1638	return ret;
1639}
1640
1641int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1642{
1643	struct request_queue *q;
1644	struct btrfs_trans_handle *trans;
1645	struct btrfs_device *device;
1646	struct block_device *bdev;
1647	struct list_head *devices;
1648	struct super_block *sb = root->fs_info->sb;
1649	struct rcu_string *name;
1650	u64 total_bytes;
1651	int seeding_dev = 0;
1652	int ret = 0;
 
 
1653
1654	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1655		return -EROFS;
1656
1657	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1658				  root->fs_info->bdev_holder);
1659	if (IS_ERR(bdev))
1660		return PTR_ERR(bdev);
1661
1662	if (root->fs_info->fs_devices->seeding) {
1663		seeding_dev = 1;
 
 
 
 
 
1664		down_write(&sb->s_umount);
1665		mutex_lock(&uuid_mutex);
 
1666	}
1667
1668	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1669
1670	devices = &root->fs_info->fs_devices->devices;
1671	/*
1672	 * we have the volume lock, so we don't need the extra
1673	 * device list mutex while reading the list here.
1674	 */
1675	list_for_each_entry(device, devices, dev_list) {
1676		if (device->bdev == bdev) {
1677			ret = -EEXIST;
 
1678			goto error;
1679		}
1680	}
 
1681
1682	device = kzalloc(sizeof(*device), GFP_NOFS);
1683	if (!device) {
1684		/* we can safely leave the fs_devices entry around */
1685		ret = -ENOMEM;
1686		goto error;
1687	}
1688
1689	name = rcu_string_strdup(device_path, GFP_NOFS);
1690	if (!name) {
1691		kfree(device);
1692		ret = -ENOMEM;
1693		goto error;
1694	}
1695	rcu_assign_pointer(device->name, name);
1696
1697	ret = find_next_devid(root, &device->devid);
1698	if (ret) {
1699		rcu_string_free(device->name);
1700		kfree(device);
1701		goto error;
1702	}
1703
1704	trans = btrfs_start_transaction(root, 0);
1705	if (IS_ERR(trans)) {
1706		rcu_string_free(device->name);
1707		kfree(device);
1708		ret = PTR_ERR(trans);
1709		goto error;
1710	}
1711
1712	lock_chunks(root);
1713
1714	q = bdev_get_queue(bdev);
1715	if (blk_queue_discard(q))
1716		device->can_discard = 1;
1717	device->writeable = 1;
1718	device->work.func = pending_bios_fn;
1719	generate_random_uuid(device->uuid);
1720	spin_lock_init(&device->io_lock);
1721	device->generation = trans->transid;
1722	device->io_width = root->sectorsize;
1723	device->io_align = root->sectorsize;
1724	device->sector_size = root->sectorsize;
1725	device->total_bytes = i_size_read(bdev->bd_inode);
 
1726	device->disk_total_bytes = device->total_bytes;
1727	device->dev_root = root->fs_info->dev_root;
1728	device->bdev = bdev;
1729	device->in_fs_metadata = 1;
1730	device->mode = FMODE_EXCL;
1731	set_blocksize(device->bdev, 4096);
1732
1733	if (seeding_dev) {
1734		sb->s_flags &= ~MS_RDONLY;
1735		ret = btrfs_prepare_sprout(root);
1736		BUG_ON(ret); /* -ENOMEM */
1737	}
1738
1739	device->fs_devices = root->fs_info->fs_devices;
1740
1741	/*
1742	 * we don't want write_supers to jump in here with our device
1743	 * half setup
1744	 */
1745	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1746	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1747	list_add(&device->dev_alloc_list,
1748		 &root->fs_info->fs_devices->alloc_list);
1749	root->fs_info->fs_devices->num_devices++;
1750	root->fs_info->fs_devices->open_devices++;
1751	root->fs_info->fs_devices->rw_devices++;
1752	if (device->can_discard)
1753		root->fs_info->fs_devices->num_can_discard++;
1754	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1755
1756	spin_lock(&root->fs_info->free_chunk_lock);
1757	root->fs_info->free_chunk_space += device->total_bytes;
1758	spin_unlock(&root->fs_info->free_chunk_lock);
1759
1760	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1761		root->fs_info->fs_devices->rotating = 1;
1762
1763	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1764	btrfs_set_super_total_bytes(root->fs_info->super_copy,
1765				    total_bytes + device->total_bytes);
1766
1767	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1768	btrfs_set_super_num_devices(root->fs_info->super_copy,
1769				    total_bytes + 1);
1770	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1771
 
1772	if (seeding_dev) {
1773		ret = init_first_rw_device(trans, root, device);
1774		if (ret)
1775			goto error_trans;
1776		ret = btrfs_finish_sprout(trans, root);
1777		if (ret)
1778			goto error_trans;
1779	} else {
1780		ret = btrfs_add_device(trans, root, device);
1781		if (ret)
1782			goto error_trans;
1783	}
1784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785	/*
1786	 * we've got more storage, clear any full flags on the space
1787	 * infos
1788	 */
1789	btrfs_clear_space_info_full(root->fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790
1791	unlock_chunks(root);
1792	ret = btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
1793
1794	if (seeding_dev) {
1795		mutex_unlock(&uuid_mutex);
1796		up_write(&sb->s_umount);
 
1797
1798		if (ret) /* transaction commit */
1799			return ret;
1800
1801		ret = btrfs_relocate_sys_chunks(root);
1802		if (ret < 0)
1803			btrfs_error(root->fs_info, ret,
1804				    "Failed to relocate sys chunks after "
1805				    "device initialization. This can be fixed "
1806				    "using the \"btrfs balance\" command.");
 
 
 
 
 
 
 
1807	}
1808
 
 
 
 
 
 
 
 
 
 
 
 
1809	return ret;
1810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811error_trans:
1812	unlock_chunks(root);
1813	btrfs_abort_transaction(trans, root, ret);
1814	btrfs_end_transaction(trans, root);
1815	rcu_string_free(device->name);
1816	kfree(device);
 
 
 
1817error:
1818	blkdev_put(bdev, FMODE_EXCL);
1819	if (seeding_dev) {
1820		mutex_unlock(&uuid_mutex);
1821		up_write(&sb->s_umount);
1822	}
1823	return ret;
1824}
1825
1826static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1827					struct btrfs_device *device)
1828{
1829	int ret;
1830	struct btrfs_path *path;
1831	struct btrfs_root *root;
1832	struct btrfs_dev_item *dev_item;
1833	struct extent_buffer *leaf;
1834	struct btrfs_key key;
1835
1836	root = device->dev_root->fs_info->chunk_root;
1837
1838	path = btrfs_alloc_path();
1839	if (!path)
1840		return -ENOMEM;
1841
1842	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843	key.type = BTRFS_DEV_ITEM_KEY;
1844	key.offset = device->devid;
1845
1846	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1847	if (ret < 0)
1848		goto out;
1849
1850	if (ret > 0) {
1851		ret = -ENOENT;
1852		goto out;
1853	}
1854
1855	leaf = path->nodes[0];
1856	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1857
1858	btrfs_set_device_id(leaf, dev_item, device->devid);
1859	btrfs_set_device_type(leaf, dev_item, device->type);
1860	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1861	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1862	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1863	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1864	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1865	btrfs_mark_buffer_dirty(leaf);
 
 
1866
1867out:
1868	btrfs_free_path(path);
1869	return ret;
1870}
1871
1872static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1873		      struct btrfs_device *device, u64 new_size)
1874{
1875	struct btrfs_super_block *super_copy =
1876		device->dev_root->fs_info->super_copy;
1877	u64 old_total = btrfs_super_total_bytes(super_copy);
1878	u64 diff = new_size - device->total_bytes;
 
1879
1880	if (!device->writeable)
1881		return -EACCES;
1882	if (new_size <= device->total_bytes)
 
 
 
 
 
 
 
 
 
1883		return -EINVAL;
 
1884
1885	btrfs_set_super_total_bytes(super_copy, old_total + diff);
 
1886	device->fs_devices->total_rw_bytes += diff;
 
1887
1888	device->total_bytes = new_size;
1889	device->disk_total_bytes = new_size;
1890	btrfs_clear_space_info_full(device->dev_root->fs_info);
 
 
 
 
1891
1892	return btrfs_update_device(trans, device);
1893}
 
1894
1895int btrfs_grow_device(struct btrfs_trans_handle *trans,
1896		      struct btrfs_device *device, u64 new_size)
1897{
1898	int ret;
1899	lock_chunks(device->dev_root);
1900	ret = __btrfs_grow_device(trans, device, new_size);
1901	unlock_chunks(device->dev_root);
1902	return ret;
1903}
1904
1905static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1906			    struct btrfs_root *root,
1907			    u64 chunk_tree, u64 chunk_objectid,
1908			    u64 chunk_offset)
1909{
 
 
1910	int ret;
1911	struct btrfs_path *path;
1912	struct btrfs_key key;
1913
1914	root = root->fs_info->chunk_root;
1915	path = btrfs_alloc_path();
1916	if (!path)
1917		return -ENOMEM;
1918
1919	key.objectid = chunk_objectid;
1920	key.offset = chunk_offset;
1921	key.type = BTRFS_CHUNK_ITEM_KEY;
1922
1923	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1924	if (ret < 0)
1925		goto out;
1926	else if (ret > 0) { /* Logic error or corruption */
1927		btrfs_error(root->fs_info, -ENOENT,
1928			    "Failed lookup while freeing chunk.");
1929		ret = -ENOENT;
1930		goto out;
1931	}
1932
1933	ret = btrfs_del_item(trans, root, path);
1934	if (ret < 0)
1935		btrfs_error(root->fs_info, ret,
1936			    "Failed to delete chunk item.");
1937out:
1938	btrfs_free_path(path);
1939	return ret;
1940}
1941
1942static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1943			chunk_offset)
1944{
1945	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1946	struct btrfs_disk_key *disk_key;
1947	struct btrfs_chunk *chunk;
1948	u8 *ptr;
1949	int ret = 0;
1950	u32 num_stripes;
1951	u32 array_size;
1952	u32 len = 0;
1953	u32 cur;
1954	struct btrfs_key key;
1955
 
1956	array_size = btrfs_super_sys_array_size(super_copy);
1957
1958	ptr = super_copy->sys_chunk_array;
1959	cur = 0;
1960
1961	while (cur < array_size) {
1962		disk_key = (struct btrfs_disk_key *)ptr;
1963		btrfs_disk_key_to_cpu(&key, disk_key);
1964
1965		len = sizeof(*disk_key);
1966
1967		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1968			chunk = (struct btrfs_chunk *)(ptr + len);
1969			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1970			len += btrfs_chunk_item_size(num_stripes);
1971		} else {
1972			ret = -EIO;
1973			break;
1974		}
1975		if (key.objectid == chunk_objectid &&
1976		    key.offset == chunk_offset) {
1977			memmove(ptr, ptr + len, array_size - (cur + len));
1978			array_size -= len;
1979			btrfs_set_super_sys_array_size(super_copy, array_size);
1980		} else {
1981			ptr += len;
1982			cur += len;
1983		}
1984	}
1985	return ret;
1986}
1987
1988static int btrfs_relocate_chunk(struct btrfs_root *root,
1989			 u64 chunk_tree, u64 chunk_objectid,
1990			 u64 chunk_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991{
1992	struct extent_map_tree *em_tree;
1993	struct btrfs_root *extent_root;
1994	struct btrfs_trans_handle *trans;
1995	struct extent_map *em;
1996	struct map_lookup *map;
1997	int ret;
1998	int i;
1999
2000	root = root->fs_info->chunk_root;
2001	extent_root = root->fs_info->extent_root;
2002	em_tree = &root->fs_info->mapping_tree.map_tree;
 
 
 
2003
2004	ret = btrfs_can_relocate(extent_root, chunk_offset);
2005	if (ret)
2006		return -ENOSPC;
 
 
 
 
2007
2008	/* step one, relocate all the extents inside this chunk */
2009	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2010	if (ret)
2011		return ret;
2012
2013	trans = btrfs_start_transaction(root, 0);
2014	BUG_ON(IS_ERR(trans));
 
 
 
 
 
2015
2016	lock_chunks(root);
 
 
 
 
 
 
 
 
 
2017
2018	/*
2019	 * step two, delete the device extents and the
2020	 * chunk tree entries
 
 
 
 
 
 
2021	 */
2022	read_lock(&em_tree->lock);
2023	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2024	read_unlock(&em_tree->lock);
2025
2026	BUG_ON(!em || em->start > chunk_offset ||
2027	       em->start + em->len < chunk_offset);
2028	map = (struct map_lookup *)em->bdev;
2029
2030	for (i = 0; i < map->num_stripes; i++) {
2031		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2032					    map->stripes[i].physical);
2033		BUG_ON(ret);
 
 
 
 
 
 
2034
2035		if (map->stripes[i].dev) {
2036			ret = btrfs_update_device(trans, map->stripes[i].dev);
2037			BUG_ON(ret);
 
 
 
 
2038		}
2039	}
2040	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2041			       chunk_offset);
2042
2043	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044
2045	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046
2047	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2048		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2049		BUG_ON(ret);
 
 
 
2050	}
2051
2052	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2053	BUG_ON(ret);
2054
2055	write_lock(&em_tree->lock);
2056	remove_extent_mapping(em_tree, em);
2057	write_unlock(&em_tree->lock);
 
 
2058
2059	kfree(map);
2060	em->bdev = NULL;
 
 
 
2061
2062	/* once for the tree */
2063	free_extent_map(em);
 
 
 
2064	/* once for us */
2065	free_extent_map(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	unlock_chunks(root);
2068	btrfs_end_transaction(trans, root);
2069	return 0;
 
 
 
 
2070}
2071
2072static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2073{
2074	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2075	struct btrfs_path *path;
2076	struct extent_buffer *leaf;
2077	struct btrfs_chunk *chunk;
2078	struct btrfs_key key;
2079	struct btrfs_key found_key;
2080	u64 chunk_tree = chunk_root->root_key.objectid;
2081	u64 chunk_type;
2082	bool retried = false;
2083	int failed = 0;
2084	int ret;
2085
2086	path = btrfs_alloc_path();
2087	if (!path)
2088		return -ENOMEM;
2089
2090again:
2091	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2092	key.offset = (u64)-1;
2093	key.type = BTRFS_CHUNK_ITEM_KEY;
2094
2095	while (1) {
 
2096		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2097		if (ret < 0)
 
2098			goto error;
 
2099		BUG_ON(ret == 0); /* Corruption */
2100
2101		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2102					  key.type);
 
 
2103		if (ret < 0)
2104			goto error;
2105		if (ret > 0)
2106			break;
2107
2108		leaf = path->nodes[0];
2109		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2110
2111		chunk = btrfs_item_ptr(leaf, path->slots[0],
2112				       struct btrfs_chunk);
2113		chunk_type = btrfs_chunk_type(leaf, chunk);
2114		btrfs_release_path(path);
2115
2116		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2117			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2118						   found_key.objectid,
2119						   found_key.offset);
2120			if (ret == -ENOSPC)
2121				failed++;
2122			else if (ret)
2123				BUG();
2124		}
 
2125
2126		if (found_key.offset == 0)
2127			break;
2128		key.offset = found_key.offset - 1;
2129	}
2130	ret = 0;
2131	if (failed && !retried) {
2132		failed = 0;
2133		retried = true;
2134		goto again;
2135	} else if (failed && retried) {
2136		WARN_ON(1);
2137		ret = -ENOSPC;
2138	}
2139error:
2140	btrfs_free_path(path);
2141	return ret;
2142}
2143
2144static int insert_balance_item(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145			       struct btrfs_balance_control *bctl)
2146{
 
2147	struct btrfs_trans_handle *trans;
2148	struct btrfs_balance_item *item;
2149	struct btrfs_disk_balance_args disk_bargs;
2150	struct btrfs_path *path;
2151	struct extent_buffer *leaf;
2152	struct btrfs_key key;
2153	int ret, err;
2154
2155	path = btrfs_alloc_path();
2156	if (!path)
2157		return -ENOMEM;
2158
2159	trans = btrfs_start_transaction(root, 0);
2160	if (IS_ERR(trans)) {
2161		btrfs_free_path(path);
2162		return PTR_ERR(trans);
2163	}
2164
2165	key.objectid = BTRFS_BALANCE_OBJECTID;
2166	key.type = BTRFS_BALANCE_ITEM_KEY;
2167	key.offset = 0;
2168
2169	ret = btrfs_insert_empty_item(trans, root, path, &key,
2170				      sizeof(*item));
2171	if (ret)
2172		goto out;
2173
2174	leaf = path->nodes[0];
2175	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2176
2177	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2178
2179	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2180	btrfs_set_balance_data(leaf, item, &disk_bargs);
2181	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2182	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2183	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2184	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2185
2186	btrfs_set_balance_flags(leaf, item, bctl->flags);
2187
2188	btrfs_mark_buffer_dirty(leaf);
2189out:
2190	btrfs_free_path(path);
2191	err = btrfs_commit_transaction(trans, root);
2192	if (err && !ret)
2193		ret = err;
2194	return ret;
2195}
2196
2197static int del_balance_item(struct btrfs_root *root)
2198{
 
2199	struct btrfs_trans_handle *trans;
2200	struct btrfs_path *path;
2201	struct btrfs_key key;
2202	int ret, err;
2203
2204	path = btrfs_alloc_path();
2205	if (!path)
2206		return -ENOMEM;
2207
2208	trans = btrfs_start_transaction(root, 0);
2209	if (IS_ERR(trans)) {
2210		btrfs_free_path(path);
2211		return PTR_ERR(trans);
2212	}
2213
2214	key.objectid = BTRFS_BALANCE_OBJECTID;
2215	key.type = BTRFS_BALANCE_ITEM_KEY;
2216	key.offset = 0;
2217
2218	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2219	if (ret < 0)
2220		goto out;
2221	if (ret > 0) {
2222		ret = -ENOENT;
2223		goto out;
2224	}
2225
2226	ret = btrfs_del_item(trans, root, path);
2227out:
2228	btrfs_free_path(path);
2229	err = btrfs_commit_transaction(trans, root);
2230	if (err && !ret)
2231		ret = err;
2232	return ret;
2233}
2234
2235/*
2236 * This is a heuristic used to reduce the number of chunks balanced on
2237 * resume after balance was interrupted.
2238 */
2239static void update_balance_args(struct btrfs_balance_control *bctl)
2240{
2241	/*
2242	 * Turn on soft mode for chunk types that were being converted.
2243	 */
2244	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2245		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2246	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2247		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2248	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2249		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2250
2251	/*
2252	 * Turn on usage filter if is not already used.  The idea is
2253	 * that chunks that we have already balanced should be
2254	 * reasonably full.  Don't do it for chunks that are being
2255	 * converted - that will keep us from relocating unconverted
2256	 * (albeit full) chunks.
2257	 */
2258	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 
2259	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2260		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2261		bctl->data.usage = 90;
2262	}
2263	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 
2264	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2265		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2266		bctl->sys.usage = 90;
2267	}
2268	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 
2269	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2270		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2271		bctl->meta.usage = 90;
2272	}
2273}
2274
2275/*
2276 * Should be called with both balance and volume mutexes held to
2277 * serialize other volume operations (add_dev/rm_dev/resize) with
2278 * restriper.  Same goes for unset_balance_control.
2279 */
2280static void set_balance_control(struct btrfs_balance_control *bctl)
2281{
2282	struct btrfs_fs_info *fs_info = bctl->fs_info;
2283
2284	BUG_ON(fs_info->balance_ctl);
2285
2286	spin_lock(&fs_info->balance_lock);
2287	fs_info->balance_ctl = bctl;
2288	spin_unlock(&fs_info->balance_lock);
2289}
2290
2291static void unset_balance_control(struct btrfs_fs_info *fs_info)
2292{
2293	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 
2294
2295	BUG_ON(!fs_info->balance_ctl);
2296
2297	spin_lock(&fs_info->balance_lock);
2298	fs_info->balance_ctl = NULL;
2299	spin_unlock(&fs_info->balance_lock);
2300
2301	kfree(bctl);
 
 
 
2302}
2303
2304/*
2305 * Balance filters.  Return 1 if chunk should be filtered out
2306 * (should not be balanced).
2307 */
2308static int chunk_profiles_filter(u64 chunk_type,
2309				 struct btrfs_balance_args *bargs)
2310{
2311	chunk_type = chunk_to_extended(chunk_type) &
2312				BTRFS_EXTENDED_PROFILE_MASK;
2313
2314	if (bargs->profiles & chunk_type)
2315		return 0;
2316
2317	return 1;
2318}
2319
2320static u64 div_factor_fine(u64 num, int factor)
 
2321{
2322	if (factor <= 0)
2323		return 0;
2324	if (factor >= 100)
2325		return num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2326
2327	num *= factor;
2328	do_div(num, 100);
2329	return num;
2330}
2331
2332static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2333			      struct btrfs_balance_args *bargs)
2334{
2335	struct btrfs_block_group_cache *cache;
2336	u64 chunk_used, user_thresh;
2337	int ret = 1;
2338
2339	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2340	chunk_used = btrfs_block_group_used(&cache->item);
 
 
 
 
 
 
 
2341
2342	user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2343	if (chunk_used < user_thresh)
2344		ret = 0;
2345
2346	btrfs_put_block_group(cache);
2347	return ret;
2348}
2349
2350static int chunk_devid_filter(struct extent_buffer *leaf,
2351			      struct btrfs_chunk *chunk,
2352			      struct btrfs_balance_args *bargs)
2353{
2354	struct btrfs_stripe *stripe;
2355	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2356	int i;
2357
2358	for (i = 0; i < num_stripes; i++) {
2359		stripe = btrfs_stripe_nr(chunk, i);
2360		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2361			return 0;
2362	}
2363
2364	return 1;
2365}
2366
 
 
 
 
 
 
 
 
 
2367/* [pstart, pend) */
2368static int chunk_drange_filter(struct extent_buffer *leaf,
2369			       struct btrfs_chunk *chunk,
2370			       u64 chunk_offset,
2371			       struct btrfs_balance_args *bargs)
2372{
2373	struct btrfs_stripe *stripe;
2374	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2375	u64 stripe_offset;
2376	u64 stripe_length;
 
2377	int factor;
2378	int i;
2379
2380	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2381		return 0;
2382
2383	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2384	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2385		factor = 2;
2386	else
2387		factor = 1;
2388	factor = num_stripes / factor;
2389
2390	for (i = 0; i < num_stripes; i++) {
2391		stripe = btrfs_stripe_nr(chunk, i);
2392		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2393			continue;
2394
2395		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2396		stripe_length = btrfs_chunk_length(leaf, chunk);
2397		do_div(stripe_length, factor);
2398
2399		if (stripe_offset < bargs->pend &&
2400		    stripe_offset + stripe_length > bargs->pstart)
2401			return 0;
2402	}
2403
2404	return 1;
2405}
2406
2407/* [vstart, vend) */
2408static int chunk_vrange_filter(struct extent_buffer *leaf,
2409			       struct btrfs_chunk *chunk,
2410			       u64 chunk_offset,
2411			       struct btrfs_balance_args *bargs)
2412{
2413	if (chunk_offset < bargs->vend &&
2414	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2415		/* at least part of the chunk is inside this vrange */
2416		return 0;
2417
2418	return 1;
2419}
2420
 
 
 
 
 
 
 
 
 
 
 
 
 
2421static int chunk_soft_convert_filter(u64 chunk_type,
2422				     struct btrfs_balance_args *bargs)
2423{
2424	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2425		return 0;
2426
2427	chunk_type = chunk_to_extended(chunk_type) &
2428				BTRFS_EXTENDED_PROFILE_MASK;
2429
2430	if (bargs->target == chunk_type)
2431		return 1;
2432
2433	return 0;
2434}
2435
2436static int should_balance_chunk(struct btrfs_root *root,
2437				struct extent_buffer *leaf,
2438				struct btrfs_chunk *chunk, u64 chunk_offset)
2439{
2440	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
 
2441	struct btrfs_balance_args *bargs = NULL;
2442	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2443
2444	/* type filter */
2445	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2446	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2447		return 0;
2448	}
2449
2450	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2451		bargs = &bctl->data;
2452	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2453		bargs = &bctl->sys;
2454	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2455		bargs = &bctl->meta;
2456
2457	/* profiles filter */
2458	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2459	    chunk_profiles_filter(chunk_type, bargs)) {
2460		return 0;
2461	}
2462
2463	/* usage filter */
2464	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2465	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
 
 
 
2466		return 0;
2467	}
2468
2469	/* devid filter */
2470	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2471	    chunk_devid_filter(leaf, chunk, bargs)) {
2472		return 0;
2473	}
2474
2475	/* drange filter, makes sense only with devid filter */
2476	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2477	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2478		return 0;
2479	}
2480
2481	/* vrange filter */
2482	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2483	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2484		return 0;
2485	}
2486
 
 
 
 
 
 
2487	/* soft profile changing mode */
2488	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2489	    chunk_soft_convert_filter(chunk_type, bargs)) {
2490		return 0;
2491	}
2492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493	return 1;
2494}
2495
2496static u64 div_factor(u64 num, int factor)
2497{
2498	if (factor == 10)
2499		return num;
2500	num *= factor;
2501	do_div(num, 10);
2502	return num;
2503}
2504
2505static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2506{
2507	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2508	struct btrfs_root *chunk_root = fs_info->chunk_root;
2509	struct btrfs_root *dev_root = fs_info->dev_root;
2510	struct list_head *devices;
2511	struct btrfs_device *device;
2512	u64 old_size;
2513	u64 size_to_free;
2514	struct btrfs_chunk *chunk;
2515	struct btrfs_path *path;
2516	struct btrfs_key key;
2517	struct btrfs_key found_key;
2518	struct btrfs_trans_handle *trans;
2519	struct extent_buffer *leaf;
2520	int slot;
2521	int ret;
2522	int enospc_errors = 0;
2523	bool counting = true;
 
 
 
 
 
 
 
 
2524
2525	/* step one make some room on all the devices */
2526	devices = &fs_info->fs_devices->devices;
2527	list_for_each_entry(device, devices, dev_list) {
2528		old_size = device->total_bytes;
2529		size_to_free = div_factor(old_size, 1);
2530		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2531		if (!device->writeable ||
2532		    device->total_bytes - device->bytes_used > size_to_free)
2533			continue;
2534
2535		ret = btrfs_shrink_device(device, old_size - size_to_free);
2536		if (ret == -ENOSPC)
2537			break;
2538		BUG_ON(ret);
2539
2540		trans = btrfs_start_transaction(dev_root, 0);
2541		BUG_ON(IS_ERR(trans));
2542
2543		ret = btrfs_grow_device(trans, device, old_size);
2544		BUG_ON(ret);
2545
2546		btrfs_end_transaction(trans, dev_root);
2547	}
2548
2549	/* step two, relocate all the chunks */
2550	path = btrfs_alloc_path();
2551	if (!path) {
2552		ret = -ENOMEM;
2553		goto error;
2554	}
2555
2556	/* zero out stat counters */
2557	spin_lock(&fs_info->balance_lock);
2558	memset(&bctl->stat, 0, sizeof(bctl->stat));
2559	spin_unlock(&fs_info->balance_lock);
2560again:
 
 
 
 
 
 
 
 
 
2561	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2562	key.offset = (u64)-1;
2563	key.type = BTRFS_CHUNK_ITEM_KEY;
2564
2565	while (1) {
2566		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2567		    atomic_read(&fs_info->balance_cancel_req)) {
2568			ret = -ECANCELED;
2569			goto error;
2570		}
2571
 
2572		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2573		if (ret < 0)
 
2574			goto error;
 
2575
2576		/*
2577		 * this shouldn't happen, it means the last relocate
2578		 * failed
2579		 */
2580		if (ret == 0)
2581			BUG(); /* FIXME break ? */
2582
2583		ret = btrfs_previous_item(chunk_root, path, 0,
2584					  BTRFS_CHUNK_ITEM_KEY);
2585		if (ret) {
 
2586			ret = 0;
2587			break;
2588		}
2589
2590		leaf = path->nodes[0];
2591		slot = path->slots[0];
2592		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2593
2594		if (found_key.objectid != key.objectid)
2595			break;
2596
2597		/* chunk zero is special */
2598		if (found_key.offset == 0)
2599			break;
 
2600
2601		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
 
2602
2603		if (!counting) {
2604			spin_lock(&fs_info->balance_lock);
2605			bctl->stat.considered++;
2606			spin_unlock(&fs_info->balance_lock);
2607		}
2608
2609		ret = should_balance_chunk(chunk_root, leaf, chunk,
2610					   found_key.offset);
2611		btrfs_release_path(path);
2612		if (!ret)
 
2613			goto loop;
 
2614
2615		if (counting) {
 
2616			spin_lock(&fs_info->balance_lock);
2617			bctl->stat.expected++;
2618			spin_unlock(&fs_info->balance_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619			goto loop;
2620		}
2621
2622		ret = btrfs_relocate_chunk(chunk_root,
2623					   chunk_root->root_key.objectid,
2624					   found_key.objectid,
2625					   found_key.offset);
2626		if (ret && ret != -ENOSPC)
2627			goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
2628		if (ret == -ENOSPC) {
2629			enospc_errors++;
 
 
 
 
 
 
 
2630		} else {
2631			spin_lock(&fs_info->balance_lock);
2632			bctl->stat.completed++;
2633			spin_unlock(&fs_info->balance_lock);
2634		}
2635loop:
 
 
2636		key.offset = found_key.offset - 1;
2637	}
2638
2639	if (counting) {
2640		btrfs_release_path(path);
2641		counting = false;
2642		goto again;
2643	}
2644error:
2645	btrfs_free_path(path);
2646	if (enospc_errors) {
2647		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2648		       enospc_errors);
2649		if (!ret)
2650			ret = -ENOSPC;
2651	}
2652
2653	return ret;
2654}
2655
2656/**
2657 * alloc_profile_is_valid - see if a given profile is valid and reduced
2658 * @flags: profile to validate
2659 * @extended: if true @flags is treated as an extended profile
 
2660 */
2661static int alloc_profile_is_valid(u64 flags, int extended)
2662{
2663	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2664			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
2665
2666	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2667
2668	/* 1) check that all other bits are zeroed */
2669	if (flags & ~mask)
2670		return 0;
2671
2672	/* 2) see if profile is reduced */
2673	if (flags == 0)
2674		return !extended; /* "0" is valid for usual profiles */
2675
2676	/* true if exactly one bit set */
2677	return (flags & (flags - 1)) == 0;
2678}
2679
2680static inline int balance_need_close(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
2681{
2682	/* cancel requested || normal exit path */
2683	return atomic_read(&fs_info->balance_cancel_req) ||
2684		(atomic_read(&fs_info->balance_pause_req) == 0 &&
2685		 atomic_read(&fs_info->balance_cancel_req) == 0);
 
 
 
 
 
 
 
2686}
2687
2688static void __cancel_balance(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
2689{
2690	int ret;
 
 
 
 
2691
2692	unset_balance_control(fs_info);
2693	ret = del_balance_item(fs_info->tree_root);
2694	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2695}
2696
2697void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2698			       struct btrfs_ioctl_balance_args *bargs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700/*
2701 * Should be called with both balance and volume mutexes held
2702 */
2703int btrfs_balance(struct btrfs_balance_control *bctl,
 
2704		  struct btrfs_ioctl_balance_args *bargs)
2705{
2706	struct btrfs_fs_info *fs_info = bctl->fs_info;
2707	u64 allowed;
2708	int mixed = 0;
2709	int ret;
 
 
 
 
 
2710
2711	if (btrfs_fs_closing(fs_info) ||
2712	    atomic_read(&fs_info->balance_pause_req) ||
2713	    atomic_read(&fs_info->balance_cancel_req)) {
2714		ret = -EINVAL;
2715		goto out;
2716	}
2717
2718	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2719	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2720		mixed = 1;
2721
2722	/*
2723	 * In case of mixed groups both data and meta should be picked,
2724	 * and identical options should be given for both of them.
2725	 */
2726	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2727	if (mixed && (bctl->flags & allowed)) {
2728		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2729		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2730		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2731			printk(KERN_ERR "btrfs: with mixed groups data and "
2732			       "metadata balance options must be the same\n");
2733			ret = -EINVAL;
2734			goto out;
2735		}
2736	}
2737
 
 
 
 
 
 
 
 
 
 
 
2738	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2739	if (fs_info->fs_devices->num_devices == 1)
2740		allowed |= BTRFS_BLOCK_GROUP_DUP;
2741	else if (fs_info->fs_devices->num_devices < 4)
2742		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2743	else
2744		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2745				BTRFS_BLOCK_GROUP_RAID10);
2746
2747	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2748	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
2749	     (bctl->data.target & ~allowed))) {
2750		printk(KERN_ERR "btrfs: unable to start balance with target "
2751		       "data profile %llu\n",
2752		       (unsigned long long)bctl->data.target);
2753		ret = -EINVAL;
2754		goto out;
2755	}
2756	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2757	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2758	     (bctl->meta.target & ~allowed))) {
2759		printk(KERN_ERR "btrfs: unable to start balance with target "
2760		       "metadata profile %llu\n",
2761		       (unsigned long long)bctl->meta.target);
2762		ret = -EINVAL;
2763		goto out;
2764	}
2765	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2766	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2767	     (bctl->sys.target & ~allowed))) {
2768		printk(KERN_ERR "btrfs: unable to start balance with target "
2769		       "system profile %llu\n",
2770		       (unsigned long long)bctl->sys.target);
2771		ret = -EINVAL;
2772		goto out;
2773	}
 
 
 
 
 
 
 
 
 
 
 
 
2774
2775	/* allow dup'ed data chunks only in mixed mode */
2776	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2777	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2778		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2779		ret = -EINVAL;
2780		goto out;
2781	}
2782
2783	/* allow to reduce meta or sys integrity only if force set */
2784	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2785			BTRFS_BLOCK_GROUP_RAID10;
2786	if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2787	     (fs_info->avail_system_alloc_bits & allowed) &&
2788	     !(bctl->sys.target & allowed)) ||
2789	    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2790	     (fs_info->avail_metadata_alloc_bits & allowed) &&
2791	     !(bctl->meta.target & allowed))) {
2792		if (bctl->flags & BTRFS_BALANCE_FORCE) {
2793			printk(KERN_INFO "btrfs: force reducing metadata "
2794			       "integrity\n");
2795		} else {
2796			printk(KERN_ERR "btrfs: balance will reduce metadata "
2797			       "integrity, use force if you want this\n");
2798			ret = -EINVAL;
2799			goto out;
2800		}
2801	}
2802
2803	ret = insert_balance_item(fs_info->tree_root, bctl);
 
 
 
 
 
 
 
 
2804	if (ret && ret != -EEXIST)
2805		goto out;
2806
2807	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2808		BUG_ON(ret == -EEXIST);
2809		set_balance_control(bctl);
 
 
 
2810	} else {
2811		BUG_ON(ret != -EEXIST);
2812		spin_lock(&fs_info->balance_lock);
2813		update_balance_args(bctl);
2814		spin_unlock(&fs_info->balance_lock);
2815	}
2816
2817	atomic_inc(&fs_info->balance_running);
 
 
2818	mutex_unlock(&fs_info->balance_mutex);
2819
2820	ret = __btrfs_balance(fs_info);
2821
2822	mutex_lock(&fs_info->balance_mutex);
2823	atomic_dec(&fs_info->balance_running);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824
2825	if (bargs) {
2826		memset(bargs, 0, sizeof(*bargs));
2827		update_ioctl_balance_args(fs_info, 0, bargs);
2828	}
2829
2830	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2831	    balance_need_close(fs_info)) {
2832		__cancel_balance(fs_info);
 
2833	}
2834
2835	wake_up(&fs_info->balance_wait_q);
2836
2837	return ret;
2838out:
2839	if (bctl->flags & BTRFS_BALANCE_RESUME)
2840		__cancel_balance(fs_info);
2841	else
2842		kfree(bctl);
 
 
2843	return ret;
2844}
2845
2846static int balance_kthread(void *data)
2847{
2848	struct btrfs_fs_info *fs_info = data;
2849	int ret = 0;
2850
2851	mutex_lock(&fs_info->volume_mutex);
2852	mutex_lock(&fs_info->balance_mutex);
2853
2854	if (fs_info->balance_ctl) {
2855		printk(KERN_INFO "btrfs: continuing balance\n");
2856		ret = btrfs_balance(fs_info->balance_ctl, NULL);
2857	}
2858
2859	mutex_unlock(&fs_info->balance_mutex);
2860	mutex_unlock(&fs_info->volume_mutex);
2861
2862	return ret;
2863}
2864
2865int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2866{
2867	struct task_struct *tsk;
2868
2869	spin_lock(&fs_info->balance_lock);
2870	if (!fs_info->balance_ctl) {
2871		spin_unlock(&fs_info->balance_lock);
2872		return 0;
2873	}
2874	spin_unlock(&fs_info->balance_lock);
2875
2876	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2877		printk(KERN_INFO "btrfs: force skipping balance\n");
2878		return 0;
2879	}
2880
 
 
 
 
 
 
 
 
 
 
 
 
 
2881	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2882	if (IS_ERR(tsk))
2883		return PTR_ERR(tsk);
2884
2885	return 0;
2886}
2887
2888int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2889{
2890	struct btrfs_balance_control *bctl;
2891	struct btrfs_balance_item *item;
2892	struct btrfs_disk_balance_args disk_bargs;
2893	struct btrfs_path *path;
2894	struct extent_buffer *leaf;
2895	struct btrfs_key key;
2896	int ret;
2897
2898	path = btrfs_alloc_path();
2899	if (!path)
2900		return -ENOMEM;
2901
2902	key.objectid = BTRFS_BALANCE_OBJECTID;
2903	key.type = BTRFS_BALANCE_ITEM_KEY;
2904	key.offset = 0;
2905
2906	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2907	if (ret < 0)
2908		goto out;
2909	if (ret > 0) { /* ret = -ENOENT; */
2910		ret = 0;
2911		goto out;
2912	}
2913
2914	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2915	if (!bctl) {
2916		ret = -ENOMEM;
2917		goto out;
2918	}
2919
2920	leaf = path->nodes[0];
2921	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2922
2923	bctl->fs_info = fs_info;
2924	bctl->flags = btrfs_balance_flags(leaf, item);
2925	bctl->flags |= BTRFS_BALANCE_RESUME;
2926
2927	btrfs_balance_data(leaf, item, &disk_bargs);
2928	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2929	btrfs_balance_meta(leaf, item, &disk_bargs);
2930	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2931	btrfs_balance_sys(leaf, item, &disk_bargs);
2932	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2933
2934	mutex_lock(&fs_info->volume_mutex);
2935	mutex_lock(&fs_info->balance_mutex);
 
 
 
 
 
 
 
 
 
 
 
2936
2937	set_balance_control(bctl);
2938
 
 
 
 
 
2939	mutex_unlock(&fs_info->balance_mutex);
2940	mutex_unlock(&fs_info->volume_mutex);
2941out:
2942	btrfs_free_path(path);
2943	return ret;
2944}
2945
2946int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2947{
2948	int ret = 0;
2949
2950	mutex_lock(&fs_info->balance_mutex);
2951	if (!fs_info->balance_ctl) {
2952		mutex_unlock(&fs_info->balance_mutex);
2953		return -ENOTCONN;
2954	}
2955
2956	if (atomic_read(&fs_info->balance_running)) {
2957		atomic_inc(&fs_info->balance_pause_req);
2958		mutex_unlock(&fs_info->balance_mutex);
2959
2960		wait_event(fs_info->balance_wait_q,
2961			   atomic_read(&fs_info->balance_running) == 0);
2962
2963		mutex_lock(&fs_info->balance_mutex);
2964		/* we are good with balance_ctl ripped off from under us */
2965		BUG_ON(atomic_read(&fs_info->balance_running));
2966		atomic_dec(&fs_info->balance_pause_req);
2967	} else {
2968		ret = -ENOTCONN;
2969	}
2970
2971	mutex_unlock(&fs_info->balance_mutex);
2972	return ret;
2973}
2974
2975int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2976{
2977	mutex_lock(&fs_info->balance_mutex);
2978	if (!fs_info->balance_ctl) {
2979		mutex_unlock(&fs_info->balance_mutex);
2980		return -ENOTCONN;
2981	}
2982
 
 
 
 
 
 
 
 
 
 
2983	atomic_inc(&fs_info->balance_cancel_req);
2984	/*
2985	 * if we are running just wait and return, balance item is
2986	 * deleted in btrfs_balance in this case
2987	 */
2988	if (atomic_read(&fs_info->balance_running)) {
2989		mutex_unlock(&fs_info->balance_mutex);
2990		wait_event(fs_info->balance_wait_q,
2991			   atomic_read(&fs_info->balance_running) == 0);
2992		mutex_lock(&fs_info->balance_mutex);
2993	} else {
2994		/* __cancel_balance needs volume_mutex */
2995		mutex_unlock(&fs_info->balance_mutex);
2996		mutex_lock(&fs_info->volume_mutex);
 
 
 
2997		mutex_lock(&fs_info->balance_mutex);
2998
2999		if (fs_info->balance_ctl)
3000			__cancel_balance(fs_info);
3001
3002		mutex_unlock(&fs_info->volume_mutex);
 
3003	}
3004
3005	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3006	atomic_dec(&fs_info->balance_cancel_req);
3007	mutex_unlock(&fs_info->balance_mutex);
3008	return 0;
3009}
3010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011/*
3012 * shrinking a device means finding all of the device extents past
3013 * the new size, and then following the back refs to the chunks.
3014 * The chunk relocation code actually frees the device extent
3015 */
3016int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3017{
 
 
3018	struct btrfs_trans_handle *trans;
3019	struct btrfs_root *root = device->dev_root;
3020	struct btrfs_dev_extent *dev_extent = NULL;
3021	struct btrfs_path *path;
3022	u64 length;
3023	u64 chunk_tree;
3024	u64 chunk_objectid;
3025	u64 chunk_offset;
3026	int ret;
3027	int slot;
3028	int failed = 0;
3029	bool retried = false;
3030	struct extent_buffer *l;
3031	struct btrfs_key key;
3032	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3033	u64 old_total = btrfs_super_total_bytes(super_copy);
3034	u64 old_size = device->total_bytes;
3035	u64 diff = device->total_bytes - new_size;
 
 
 
 
 
 
3036
3037	if (new_size >= device->total_bytes)
3038		return -EINVAL;
3039
3040	path = btrfs_alloc_path();
3041	if (!path)
3042		return -ENOMEM;
3043
3044	path->reada = 2;
 
 
 
 
 
 
3045
3046	lock_chunks(root);
3047
3048	device->total_bytes = new_size;
3049	if (device->writeable) {
3050		device->fs_devices->total_rw_bytes -= diff;
3051		spin_lock(&root->fs_info->free_chunk_lock);
3052		root->fs_info->free_chunk_space -= diff;
3053		spin_unlock(&root->fs_info->free_chunk_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054	}
3055	unlock_chunks(root);
3056
3057again:
3058	key.objectid = device->devid;
3059	key.offset = (u64)-1;
3060	key.type = BTRFS_DEV_EXTENT_KEY;
3061
3062	do {
 
3063		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3064		if (ret < 0)
 
3065			goto done;
 
3066
3067		ret = btrfs_previous_item(root, path, 0, key.type);
3068		if (ret < 0)
3069			goto done;
3070		if (ret) {
 
 
 
3071			ret = 0;
3072			btrfs_release_path(path);
3073			break;
3074		}
3075
3076		l = path->nodes[0];
3077		slot = path->slots[0];
3078		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3079
3080		if (key.objectid != device->devid) {
 
3081			btrfs_release_path(path);
3082			break;
3083		}
3084
3085		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3086		length = btrfs_dev_extent_length(l, dev_extent);
3087
3088		if (key.offset + length <= new_size) {
 
3089			btrfs_release_path(path);
3090			break;
3091		}
3092
3093		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3094		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3095		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3096		btrfs_release_path(path);
3097
3098		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3099					   chunk_offset);
3100		if (ret && ret != -ENOSPC)
3101			goto done;
3102		if (ret == -ENOSPC)
3103			failed++;
3104	} while (key.offset-- > 0);
3105
3106	if (failed && !retried) {
3107		failed = 0;
3108		retried = true;
3109		goto again;
3110	} else if (failed && retried) {
3111		ret = -ENOSPC;
3112		lock_chunks(root);
3113
3114		device->total_bytes = old_size;
3115		if (device->writeable)
3116			device->fs_devices->total_rw_bytes += diff;
3117		spin_lock(&root->fs_info->free_chunk_lock);
3118		root->fs_info->free_chunk_space += diff;
3119		spin_unlock(&root->fs_info->free_chunk_lock);
3120		unlock_chunks(root);
3121		goto done;
3122	}
3123
3124	/* Shrinking succeeded, else we would be at "done". */
3125	trans = btrfs_start_transaction(root, 0);
3126	if (IS_ERR(trans)) {
3127		ret = PTR_ERR(trans);
3128		goto done;
3129	}
3130
3131	lock_chunks(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
3132
3133	device->disk_total_bytes = new_size;
3134	/* Now btrfs_update_device() will change the on-disk size. */
3135	ret = btrfs_update_device(trans, device);
3136	if (ret) {
3137		unlock_chunks(root);
3138		btrfs_end_transaction(trans, root);
3139		goto done;
 
 
3140	}
3141	WARN_ON(diff > old_total);
3142	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3143	unlock_chunks(root);
3144	btrfs_end_transaction(trans, root);
3145done:
3146	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
3147	return ret;
3148}
3149
3150static int btrfs_add_system_chunk(struct btrfs_root *root,
3151			   struct btrfs_key *key,
3152			   struct btrfs_chunk *chunk, int item_size)
3153{
3154	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3155	struct btrfs_disk_key disk_key;
3156	u32 array_size;
3157	u8 *ptr;
3158
 
 
3159	array_size = btrfs_super_sys_array_size(super_copy);
3160	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
 
3161		return -EFBIG;
3162
3163	ptr = super_copy->sys_chunk_array + array_size;
3164	btrfs_cpu_key_to_disk(&disk_key, key);
3165	memcpy(ptr, &disk_key, sizeof(disk_key));
3166	ptr += sizeof(disk_key);
3167	memcpy(ptr, chunk, item_size);
3168	item_size += sizeof(disk_key);
3169	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
 
3170	return 0;
3171}
3172
3173/*
3174 * sort the devices in descending order by max_avail, total_avail
3175 */
3176static int btrfs_cmp_device_info(const void *a, const void *b)
3177{
3178	const struct btrfs_device_info *di_a = a;
3179	const struct btrfs_device_info *di_b = b;
3180
3181	if (di_a->max_avail > di_b->max_avail)
3182		return -1;
3183	if (di_a->max_avail < di_b->max_avail)
3184		return 1;
3185	if (di_a->total_avail > di_b->total_avail)
3186		return -1;
3187	if (di_a->total_avail < di_b->total_avail)
3188		return 1;
3189	return 0;
3190}
3191
3192static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3193			       struct btrfs_root *extent_root,
3194			       struct map_lookup **map_ret,
3195			       u64 *num_bytes_out, u64 *stripe_size_out,
3196			       u64 start, u64 type)
 
 
 
 
3197{
3198	struct btrfs_fs_info *info = extent_root->fs_info;
3199	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3200	struct list_head *cur;
3201	struct map_lookup *map = NULL;
3202	struct extent_map_tree *em_tree;
3203	struct extent_map *em;
3204	struct btrfs_device_info *devices_info = NULL;
3205	u64 total_avail;
3206	int num_stripes;	/* total number of stripes to allocate */
3207	int sub_stripes;	/* sub_stripes info for map */
3208	int dev_stripes;	/* stripes per dev */
3209	int devs_max;		/* max devs to use */
3210	int devs_min;		/* min devs needed */
3211	int devs_increment;	/* ndevs has to be a multiple of this */
3212	int ncopies;		/* how many copies to data has */
3213	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
3214	u64 max_stripe_size;
3215	u64 max_chunk_size;
 
3216	u64 stripe_size;
3217	u64 num_bytes;
3218	int ndevs;
3219	int i;
3220	int j;
 
 
 
 
 
 
 
 
 
 
 
3221
3222	BUG_ON(!alloc_profile_is_valid(type, 0));
 
3223
3224	if (list_empty(&fs_devices->alloc_list))
3225		return -ENOSPC;
 
 
 
3226
3227	sub_stripes = 1;
3228	dev_stripes = 1;
3229	devs_increment = 1;
3230	ncopies = 1;
3231	devs_max = 0;	/* 0 == as many as possible */
3232	devs_min = 1;
3233
3234	/*
3235	 * define the properties of each RAID type.
3236	 * FIXME: move this to a global table and use it in all RAID
3237	 * calculation code
3238	 */
3239	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3240		dev_stripes = 2;
3241		ncopies = 2;
3242		devs_max = 1;
3243	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3244		devs_min = 2;
3245	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3246		devs_increment = 2;
3247		ncopies = 2;
3248		devs_max = 2;
3249		devs_min = 2;
3250	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3251		sub_stripes = 2;
3252		devs_increment = 2;
3253		ncopies = 2;
3254		devs_min = 4;
3255	} else {
3256		devs_max = 1;
3257	}
3258
 
3259	if (type & BTRFS_BLOCK_GROUP_DATA) {
3260		max_stripe_size = 1024 * 1024 * 1024;
3261		max_chunk_size = 10 * max_stripe_size;
3262	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3263		/* for larger filesystems, use larger metadata chunks */
3264		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3265			max_stripe_size = 1024 * 1024 * 1024;
3266		else
3267			max_stripe_size = 256 * 1024 * 1024;
3268		max_chunk_size = max_stripe_size;
3269	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3270		max_stripe_size = 32 * 1024 * 1024;
3271		max_chunk_size = 2 * max_stripe_size;
 
3272	} else {
3273		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3274		       type);
3275		BUG_ON(1);
3276	}
3277
3278	/* we don't want a chunk larger than 10% of writeable space */
3279	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3280			     max_chunk_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3281
3282	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3283			       GFP_NOFS);
3284	if (!devices_info)
3285		return -ENOMEM;
3286
3287	cur = fs_devices->alloc_list.next;
 
 
 
 
 
 
3288
3289	/*
3290	 * in the first pass through the devices list, we gather information
3291	 * about the available holes on each device.
3292	 */
3293	ndevs = 0;
3294	while (cur != &fs_devices->alloc_list) {
3295		struct btrfs_device *device;
3296		u64 max_avail;
3297		u64 dev_offset;
3298
3299		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3300
3301		cur = cur->next;
3302
3303		if (!device->writeable) {
3304			printk(KERN_ERR
3305			       "btrfs: read-only device in alloc_list\n");
3306			WARN_ON(1);
3307			continue;
3308		}
3309
3310		if (!device->in_fs_metadata)
 
 
3311			continue;
3312
3313		if (device->total_bytes > device->bytes_used)
3314			total_avail = device->total_bytes - device->bytes_used;
3315		else
3316			total_avail = 0;
3317
3318		/* If there is no space on this device, skip it. */
3319		if (total_avail == 0)
3320			continue;
3321
3322		ret = find_free_dev_extent(device,
3323					   max_stripe_size * dev_stripes,
3324					   &dev_offset, &max_avail);
3325		if (ret && ret != -ENOSPC)
3326			goto error;
3327
3328		if (ret == 0)
3329			max_avail = max_stripe_size * dev_stripes;
3330
3331		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
 
 
 
 
 
3332			continue;
 
3333
 
 
 
 
 
3334		devices_info[ndevs].dev_offset = dev_offset;
3335		devices_info[ndevs].max_avail = max_avail;
3336		devices_info[ndevs].total_avail = total_avail;
3337		devices_info[ndevs].dev = device;
3338		++ndevs;
3339	}
 
3340
3341	/*
3342	 * now sort the devices by hole size / available space
3343	 */
3344	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3345	     btrfs_cmp_device_info, NULL);
3346
3347	/* round down to number of usable stripes */
3348	ndevs -= ndevs % devs_increment;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3349
3350	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3351		ret = -ENOSPC;
3352		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353	}
3354
3355	if (devs_max && ndevs > devs_max)
3356		ndevs = devs_max;
 
 
 
 
 
 
 
 
 
3357	/*
3358	 * the primary goal is to maximize the number of stripes, so use as many
3359	 * devices as possible, even if the stripes are not maximum sized.
 
3360	 */
3361	stripe_size = devices_info[ndevs-1].max_avail;
3362	num_stripes = ndevs * dev_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3363
3364	if (stripe_size * ndevs > max_chunk_size * ncopies) {
3365		stripe_size = max_chunk_size * ncopies;
3366		do_div(stripe_size, ndevs);
3367	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368
3369	do_div(stripe_size, dev_stripes);
 
 
 
 
 
 
3370
3371	/* align to BTRFS_STRIPE_LEN */
3372	do_div(stripe_size, BTRFS_STRIPE_LEN);
3373	stripe_size *= BTRFS_STRIPE_LEN;
 
 
 
 
 
 
 
3374
3375	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3376	if (!map) {
3377		ret = -ENOMEM;
3378		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
3379	}
3380	map->num_stripes = num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3381
3382	for (i = 0; i < ndevs; ++i) {
3383		for (j = 0; j < dev_stripes; ++j) {
3384			int s = i * dev_stripes + j;
3385			map->stripes[s].dev = devices_info[i].dev;
3386			map->stripes[s].physical = devices_info[i].dev_offset +
3387						   j * stripe_size;
3388		}
3389	}
3390	map->sector_size = extent_root->sectorsize;
3391	map->stripe_len = BTRFS_STRIPE_LEN;
3392	map->io_align = BTRFS_STRIPE_LEN;
3393	map->io_width = BTRFS_STRIPE_LEN;
3394	map->type = type;
3395	map->sub_stripes = sub_stripes;
3396
3397	*map_ret = map;
3398	num_bytes = stripe_size * (num_stripes / ncopies);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399
3400	*stripe_size_out = stripe_size;
3401	*num_bytes_out = num_bytes;
 
 
3402
3403	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
 
 
 
 
3404
3405	em = alloc_extent_map();
3406	if (!em) {
3407		ret = -ENOMEM;
3408		goto error;
3409	}
3410	em->bdev = (struct block_device *)map;
3411	em->start = start;
3412	em->len = num_bytes;
3413	em->block_start = 0;
3414	em->block_len = em->len;
3415
3416	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3417	write_lock(&em_tree->lock);
3418	ret = add_extent_mapping(em_tree, em);
3419	write_unlock(&em_tree->lock);
3420	free_extent_map(em);
3421	if (ret)
3422		goto error;
3423
3424	ret = btrfs_make_block_group(trans, extent_root, 0, type,
3425				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3426				     start, num_bytes);
3427	if (ret)
3428		goto error;
3429
3430	for (i = 0; i < map->num_stripes; ++i) {
3431		struct btrfs_device *device;
3432		u64 dev_offset;
 
3433
3434		device = map->stripes[i].dev;
3435		dev_offset = map->stripes[i].physical;
 
 
 
3436
3437		ret = btrfs_alloc_dev_extent(trans, device,
3438				info->chunk_root->root_key.objectid,
3439				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3440				start, dev_offset, stripe_size);
3441		if (ret) {
3442			btrfs_abort_transaction(trans, extent_root, ret);
3443			goto error;
3444		}
3445	}
3446
3447	kfree(devices_info);
3448	return 0;
3449
3450error:
3451	kfree(map);
3452	kfree(devices_info);
3453	return ret;
3454}
3455
3456static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3457				struct btrfs_root *extent_root,
3458				struct map_lookup *map, u64 chunk_offset,
3459				u64 chunk_size, u64 stripe_size)
 
 
 
 
 
 
3460{
3461	u64 dev_offset;
 
3462	struct btrfs_key key;
3463	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3464	struct btrfs_device *device;
3465	struct btrfs_chunk *chunk;
3466	struct btrfs_stripe *stripe;
3467	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3468	int index = 0;
 
3469	int ret;
3470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471	chunk = kzalloc(item_size, GFP_NOFS);
3472	if (!chunk)
3473		return -ENOMEM;
 
 
 
 
 
 
3474
3475	index = 0;
3476	while (index < map->num_stripes) {
3477		device = map->stripes[index].dev;
3478		device->bytes_used += stripe_size;
3479		ret = btrfs_update_device(trans, device);
3480		if (ret)
3481			goto out_free;
3482		index++;
3483	}
3484
3485	spin_lock(&extent_root->fs_info->free_chunk_lock);
3486	extent_root->fs_info->free_chunk_space -= (stripe_size *
3487						   map->num_stripes);
3488	spin_unlock(&extent_root->fs_info->free_chunk_lock);
3489
3490	index = 0;
3491	stripe = &chunk->stripe;
3492	while (index < map->num_stripes) {
3493		device = map->stripes[index].dev;
3494		dev_offset = map->stripes[index].physical;
3495
3496		btrfs_set_stack_stripe_devid(stripe, device->devid);
3497		btrfs_set_stack_stripe_offset(stripe, dev_offset);
3498		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3499		stripe++;
3500		index++;
3501	}
3502
3503	btrfs_set_stack_chunk_length(chunk, chunk_size);
3504	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3505	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3506	btrfs_set_stack_chunk_type(chunk, map->type);
3507	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3508	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3509	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3510	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3511	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3512
3513	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3514	key.type = BTRFS_CHUNK_ITEM_KEY;
3515	key.offset = chunk_offset;
3516
3517	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
 
 
 
 
3518
3519	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3520		/*
3521		 * TODO: Cleanup of inserted chunk root in case of
3522		 * failure.
3523		 */
3524		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3525					     item_size);
3526	}
3527
3528out_free:
3529	kfree(chunk);
 
3530	return ret;
3531}
3532
3533/*
3534 * Chunk allocation falls into two parts. The first part does works
3535 * that make the new allocated chunk useable, but not do any operation
3536 * that modifies the chunk tree. The second part does the works that
3537 * require modifying the chunk tree. This division is important for the
3538 * bootstrap process of adding storage to a seed btrfs.
3539 */
3540int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3541		      struct btrfs_root *extent_root, u64 type)
3542{
3543	u64 chunk_offset;
3544	u64 chunk_size;
3545	u64 stripe_size;
3546	struct map_lookup *map;
3547	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3548	int ret;
3549
3550	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3551			      &chunk_offset);
3552	if (ret)
3553		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3554
3555	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3556				  &stripe_size, chunk_offset, type);
3557	if (ret)
3558		return ret;
 
 
 
 
 
3559
3560	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3561				   chunk_size, stripe_size);
3562	if (ret)
3563		return ret;
3564	return 0;
3565}
3566
3567static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3568					 struct btrfs_root *root,
3569					 struct btrfs_device *device)
3570{
3571	u64 chunk_offset;
3572	u64 sys_chunk_offset;
3573	u64 chunk_size;
3574	u64 sys_chunk_size;
3575	u64 stripe_size;
3576	u64 sys_stripe_size;
3577	u64 alloc_profile;
3578	struct map_lookup *map;
3579	struct map_lookup *sys_map;
3580	struct btrfs_fs_info *fs_info = root->fs_info;
3581	struct btrfs_root *extent_root = fs_info->extent_root;
3582	int ret;
3583
3584	ret = find_next_chunk(fs_info->chunk_root,
3585			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3586	if (ret)
3587		return ret;
3588
3589	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3590				fs_info->avail_metadata_alloc_bits;
3591	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3592
3593	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3594				  &stripe_size, chunk_offset, alloc_profile);
3595	if (ret)
3596		return ret;
3597
3598	sys_chunk_offset = chunk_offset + chunk_size;
 
 
3599
3600	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3601				fs_info->avail_system_alloc_bits;
3602	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3603
3604	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3605				  &sys_chunk_size, &sys_stripe_size,
3606				  sys_chunk_offset, alloc_profile);
3607	if (ret)
3608		goto abort;
3609
3610	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3611	if (ret)
3612		goto abort;
3613
3614	/*
3615	 * Modifying chunk tree needs allocating new blocks from both
3616	 * system block group and metadata block group. So we only can
3617	 * do operations require modifying the chunk tree after both
3618	 * block groups were created.
3619	 */
3620	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3621				   chunk_size, stripe_size);
3622	if (ret)
3623		goto abort;
 
 
3624
3625	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3626				   sys_chunk_offset, sys_chunk_size,
3627				   sys_stripe_size);
3628	if (ret)
3629		goto abort;
 
3630
3631	return 0;
3632
3633abort:
3634	btrfs_abort_transaction(trans, root, ret);
3635	return ret;
 
 
 
 
 
3636}
3637
3638int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3639{
3640	struct extent_map *em;
3641	struct map_lookup *map;
3642	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3643	int readonly = 0;
3644	int i;
3645
3646	read_lock(&map_tree->map_tree.lock);
3647	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3648	read_unlock(&map_tree->map_tree.lock);
3649	if (!em)
 
 
 
 
3650		return 1;
3651
3652	if (btrfs_test_opt(root, DEGRADED)) {
3653		free_extent_map(em);
3654		return 0;
3655	}
3656
3657	map = (struct map_lookup *)em->bdev;
3658	for (i = 0; i < map->num_stripes; i++) {
3659		if (!map->stripes[i].dev->writeable) {
3660			readonly = 1;
3661			break;
3662		}
3663	}
3664	free_extent_map(em);
3665	return readonly;
 
 
 
 
 
 
 
3666}
3667
3668void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
 
3669{
3670	extent_map_tree_init(&tree->map_tree);
3671}
 
 
 
3672
3673void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3674{
3675	struct extent_map *em;
3676
3677	while (1) {
3678		write_lock(&tree->map_tree.lock);
3679		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3680		if (em)
3681			remove_extent_mapping(&tree->map_tree, em);
3682		write_unlock(&tree->map_tree.lock);
3683		if (!em)
3684			break;
3685		kfree(em->bdev);
3686		/* once for us */
3687		free_extent_map(em);
3688		/* once for the tree */
3689		free_extent_map(em);
3690	}
 
3691}
3692
3693int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3694{
3695	struct extent_map *em;
3696	struct map_lookup *map;
3697	struct extent_map_tree *em_tree = &map_tree->map_tree;
3698	int ret;
 
3699
3700	read_lock(&em_tree->lock);
3701	em = lookup_extent_mapping(em_tree, logical, len);
3702	read_unlock(&em_tree->lock);
3703	BUG_ON(!em);
3704
3705	BUG_ON(em->start > logical || em->start + em->len < logical);
3706	map = (struct map_lookup *)em->bdev;
3707	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3708		ret = map->num_stripes;
3709	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3710		ret = map->sub_stripes;
3711	else
3712		ret = 1;
3713	free_extent_map(em);
3714	return ret;
3715}
3716
3717static int find_live_mirror(struct map_lookup *map, int first, int num,
3718			    int optimal)
 
3719{
3720	int i;
3721	if (map->stripes[optimal].dev->bdev)
3722		return optimal;
3723	for (i = first; i < first + num; i++) {
3724		if (map->stripes[i].dev->bdev)
3725			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726	}
 
3727	/* we couldn't find one that doesn't fail.  Just return something
3728	 * and the io error handling code will clean up eventually
3729	 */
3730	return optimal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3731}
3732
3733static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3734			     u64 logical, u64 *length,
3735			     struct btrfs_bio **bbio_ret,
3736			     int mirror_num)
3737{
3738	struct extent_map *em;
3739	struct map_lookup *map;
3740	struct extent_map_tree *em_tree = &map_tree->map_tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3741	u64 offset;
 
 
 
 
3742	u64 stripe_offset;
3743	u64 stripe_end_offset;
3744	u64 stripe_nr;
3745	u64 stripe_nr_orig;
3746	u64 stripe_nr_end;
3747	int stripe_index;
 
 
3748	int i;
3749	int ret = 0;
3750	int num_stripes;
3751	int max_errors = 0;
3752	struct btrfs_bio *bbio = NULL;
3753
3754	read_lock(&em_tree->lock);
3755	em = lookup_extent_mapping(em_tree, logical, *length);
3756	read_unlock(&em_tree->lock);
3757
3758	if (!em) {
3759		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3760		       (unsigned long long)logical,
3761		       (unsigned long long)*length);
3762		BUG();
3763	}
3764
3765	BUG_ON(em->start > logical || em->start + em->len < logical);
3766	map = (struct map_lookup *)em->bdev;
3767	offset = logical - em->start;
3768
3769	if (mirror_num > map->num_stripes)
3770		mirror_num = 0;
3771
3772	stripe_nr = offset;
3773	/*
3774	 * stripe_nr counts the total number of stripes we have to stride
3775	 * to get to this block
3776	 */
3777	do_div(stripe_nr, map->stripe_len);
3778
3779	stripe_offset = stripe_nr * map->stripe_len;
3780	BUG_ON(offset < stripe_offset);
3781
3782	/* stripe_offset is the offset of this block in its stripe*/
3783	stripe_offset = offset - stripe_offset;
3784
3785	if (rw & REQ_DISCARD)
3786		*length = min_t(u64, em->len - offset, *length);
3787	else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3788		/* we limit the length of each bio to what fits in a stripe */
3789		*length = min_t(u64, em->len - offset,
3790				map->stripe_len - stripe_offset);
3791	} else {
3792		*length = em->len - offset;
3793	}
3794
3795	if (!bbio_ret)
3796		goto out;
3797
3798	num_stripes = 1;
3799	stripe_index = 0;
3800	stripe_nr_orig = stripe_nr;
3801	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3802			(~(map->stripe_len - 1));
3803	do_div(stripe_nr_end, map->stripe_len);
3804	stripe_end_offset = stripe_nr_end * map->stripe_len -
3805			    (offset + *length);
3806	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3807		if (rw & REQ_DISCARD)
3808			num_stripes = min_t(u64, map->num_stripes,
3809					    stripe_nr_end - stripe_nr_orig);
3810		stripe_index = do_div(stripe_nr, map->num_stripes);
3811	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3812		if (rw & (REQ_WRITE | REQ_DISCARD))
3813			num_stripes = map->num_stripes;
3814		else if (mirror_num)
3815			stripe_index = mirror_num - 1;
3816		else {
3817			stripe_index = find_live_mirror(map, 0,
3818					    map->num_stripes,
3819					    current->pid % map->num_stripes);
3820			mirror_num = stripe_index + 1;
3821		}
3822
3823	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3824		if (rw & (REQ_WRITE | REQ_DISCARD)) {
3825			num_stripes = map->num_stripes;
3826		} else if (mirror_num) {
3827			stripe_index = mirror_num - 1;
3828		} else {
3829			mirror_num = 1;
3830		}
3831
3832	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3833		int factor = map->num_stripes / map->sub_stripes;
3834
3835		stripe_index = do_div(stripe_nr, factor);
3836		stripe_index *= map->sub_stripes;
3837
3838		if (rw & REQ_WRITE)
3839			num_stripes = map->sub_stripes;
3840		else if (rw & REQ_DISCARD)
3841			num_stripes = min_t(u64, map->sub_stripes *
3842					    (stripe_nr_end - stripe_nr_orig),
3843					    map->num_stripes);
3844		else if (mirror_num)
3845			stripe_index += mirror_num - 1;
3846		else {
3847			int old_stripe_index = stripe_index;
3848			stripe_index = find_live_mirror(map, stripe_index,
3849					      map->sub_stripes, stripe_index +
3850					      current->pid % map->sub_stripes);
3851			mirror_num = stripe_index - old_stripe_index + 1;
3852		}
3853	} else {
3854		/*
3855		 * after this do_div call, stripe_nr is the number of stripes
3856		 * on this device we have to walk to find the data, and
3857		 * stripe_index is the number of our device in the stripe array
3858		 */
3859		stripe_index = do_div(stripe_nr, map->num_stripes);
3860		mirror_num = stripe_index + 1;
3861	}
3862	BUG_ON(stripe_index >= map->num_stripes);
3863
3864	bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3865	if (!bbio) {
3866		ret = -ENOMEM;
3867		goto out;
3868	}
3869	atomic_set(&bbio->error, 0);
3870
3871	if (rw & REQ_DISCARD) {
3872		int factor = 0;
3873		int sub_stripes = 0;
3874		u64 stripes_per_dev = 0;
3875		u32 remaining_stripes = 0;
3876		u32 last_stripe = 0;
3877
3878		if (map->type &
3879		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3880			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3881				sub_stripes = 1;
3882			else
3883				sub_stripes = map->sub_stripes;
3884
3885			factor = map->num_stripes / sub_stripes;
3886			stripes_per_dev = div_u64_rem(stripe_nr_end -
3887						      stripe_nr_orig,
3888						      factor,
3889						      &remaining_stripes);
3890			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3891			last_stripe *= sub_stripes;
3892		}
3893
3894		for (i = 0; i < num_stripes; i++) {
3895			bbio->stripes[i].physical =
3896				map->stripes[stripe_index].physical +
3897				stripe_offset + stripe_nr * map->stripe_len;
3898			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
 
 
 
 
 
3899
3900			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3901					 BTRFS_BLOCK_GROUP_RAID10)) {
3902				bbio->stripes[i].length = stripes_per_dev *
3903							  map->stripe_len;
3904
3905				if (i / sub_stripes < remaining_stripes)
3906					bbio->stripes[i].length +=
3907						map->stripe_len;
3908
3909				/*
3910				 * Special for the first stripe and
3911				 * the last stripe:
3912				 *
3913				 * |-------|...|-------|
3914				 *     |----------|
3915				 *    off     end_off
3916				 */
3917				if (i < sub_stripes)
3918					bbio->stripes[i].length -=
3919						stripe_offset;
3920
3921				if (stripe_index >= last_stripe &&
3922				    stripe_index <= (last_stripe +
3923						     sub_stripes - 1))
3924					bbio->stripes[i].length -=
3925						stripe_end_offset;
3926
3927				if (i == sub_stripes - 1)
3928					stripe_offset = 0;
3929			} else
3930				bbio->stripes[i].length = *length;
3931
3932			stripe_index++;
3933			if (stripe_index == map->num_stripes) {
3934				/* This could only happen for RAID0/10 */
3935				stripe_index = 0;
3936				stripe_nr++;
3937			}
3938		}
3939	} else {
3940		for (i = 0; i < num_stripes; i++) {
3941			bbio->stripes[i].physical =
3942				map->stripes[stripe_index].physical +
3943				stripe_offset +
3944				stripe_nr * map->stripe_len;
3945			bbio->stripes[i].dev =
3946				map->stripes[stripe_index].dev;
3947			stripe_index++;
3948		}
3949	}
3950
3951	if (rw & REQ_WRITE) {
3952		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3953				 BTRFS_BLOCK_GROUP_RAID10 |
3954				 BTRFS_BLOCK_GROUP_DUP)) {
3955			max_errors = 1;
3956		}
3957	}
3958
3959	*bbio_ret = bbio;
3960	bbio->num_stripes = num_stripes;
3961	bbio->max_errors = max_errors;
3962	bbio->mirror_num = mirror_num;
3963out:
3964	free_extent_map(em);
3965	return ret;
3966}
3967
3968int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3969		      u64 logical, u64 *length,
3970		      struct btrfs_bio **bbio_ret, int mirror_num)
3971{
3972	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3973				 mirror_num);
 
 
 
 
 
 
 
 
 
 
 
3974}
3975
3976int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3977		     u64 chunk_start, u64 physical, u64 devid,
3978		     u64 **logical, int *naddrs, int *stripe_len)
 
 
3979{
3980	struct extent_map_tree *em_tree = &map_tree->map_tree;
3981	struct extent_map *em;
3982	struct map_lookup *map;
3983	u64 *buf;
3984	u64 bytenr;
3985	u64 length;
3986	u64 stripe_nr;
3987	int i, j, nr = 0;
 
3988
3989	read_lock(&em_tree->lock);
3990	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3991	read_unlock(&em_tree->lock);
 
 
 
3992
3993	BUG_ON(!em || em->start != chunk_start);
3994	map = (struct map_lookup *)em->bdev;
 
 
 
 
 
 
 
 
 
 
 
3995
3996	length = em->len;
3997	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3998		do_div(length, map->num_stripes / map->sub_stripes);
3999	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4000		do_div(length, map->num_stripes);
4001
4002	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4003	BUG_ON(!buf); /* -ENOMEM */
 
 
 
 
4004
4005	for (i = 0; i < map->num_stripes; i++) {
4006		if (devid && map->stripes[i].dev->devid != devid)
4007			continue;
4008		if (map->stripes[i].physical > physical ||
4009		    map->stripes[i].physical + length <= physical)
4010			continue;
 
 
 
 
4011
4012		stripe_nr = physical - map->stripes[i].physical;
4013		do_div(stripe_nr, map->stripe_len);
4014
4015		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4016			stripe_nr = stripe_nr * map->num_stripes + i;
4017			do_div(stripe_nr, map->sub_stripes);
4018		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4019			stripe_nr = stripe_nr * map->num_stripes + i;
4020		}
4021		bytenr = chunk_start + stripe_nr * map->stripe_len;
4022		WARN_ON(nr >= map->num_stripes);
4023		for (j = 0; j < nr; j++) {
4024			if (buf[j] == bytenr)
4025				break;
4026		}
4027		if (j == nr) {
4028			WARN_ON(nr >= map->num_stripes);
4029			buf[nr++] = bytenr;
4030		}
4031	}
4032
4033	*logical = buf;
4034	*naddrs = nr;
4035	*stripe_len = map->stripe_len;
4036
4037	free_extent_map(em);
4038	return 0;
4039}
4040
4041static void *merge_stripe_index_into_bio_private(void *bi_private,
4042						 unsigned int stripe_index)
4043{
4044	/*
4045	 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4046	 * at most 1.
4047	 * The alternative solution (instead of stealing bits from the
4048	 * pointer) would be to allocate an intermediate structure
4049	 * that contains the old private pointer plus the stripe_index.
4050	 */
4051	BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4052	BUG_ON(stripe_index > 3);
4053	return (void *)(((uintptr_t)bi_private) | stripe_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4054}
4055
4056static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
 
 
 
 
4057{
4058	return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
 
 
 
 
 
 
 
 
 
 
 
 
4059}
4060
4061static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
 
4062{
4063	return (unsigned int)((uintptr_t)bi_private) & 3;
 
 
 
4064}
4065
4066static void btrfs_end_bio(struct bio *bio, int err)
 
 
 
4067{
4068	struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4069	int is_orig_bio = 0;
 
 
4070
4071	if (err) {
4072		atomic_inc(&bbio->error);
4073		if (err == -EIO || err == -EREMOTEIO) {
4074			unsigned int stripe_index =
4075				extract_stripe_index_from_bio_private(
4076					bio->bi_private);
4077			struct btrfs_device *dev;
4078
4079			BUG_ON(stripe_index >= bbio->num_stripes);
4080			dev = bbio->stripes[stripe_index].dev;
4081			if (dev->bdev) {
4082				if (bio->bi_rw & WRITE)
4083					btrfs_dev_stat_inc(dev,
4084						BTRFS_DEV_STAT_WRITE_ERRS);
4085				else
4086					btrfs_dev_stat_inc(dev,
4087						BTRFS_DEV_STAT_READ_ERRS);
4088				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4089					btrfs_dev_stat_inc(dev,
4090						BTRFS_DEV_STAT_FLUSH_ERRS);
4091				btrfs_dev_stat_print_on_error(dev);
4092			}
4093		}
 
4094	}
4095
4096	if (bio == bbio->orig_bio)
4097		is_orig_bio = 1;
4098
4099	if (atomic_dec_and_test(&bbio->stripes_pending)) {
4100		if (!is_orig_bio) {
4101			bio_put(bio);
4102			bio = bbio->orig_bio;
4103		}
4104		bio->bi_private = bbio->private;
4105		bio->bi_end_io = bbio->end_io;
4106		bio->bi_bdev = (struct block_device *)
4107					(unsigned long)bbio->mirror_num;
4108		/* only send an error to the higher layers if it is
4109		 * beyond the tolerance of the multi-bio
4110		 */
4111		if (atomic_read(&bbio->error) > bbio->max_errors) {
4112			err = -EIO;
4113		} else {
4114			/*
4115			 * this bio is actually up to date, we didn't
4116			 * go over the max number of errors
4117			 */
4118			set_bit(BIO_UPTODATE, &bio->bi_flags);
4119			err = 0;
4120		}
4121		kfree(bbio);
4122
4123		bio_endio(bio, err);
4124	} else if (!is_orig_bio) {
4125		bio_put(bio);
4126	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4127}
4128
4129struct async_sched {
4130	struct bio *bio;
4131	int rw;
4132	struct btrfs_fs_info *info;
4133	struct btrfs_work work;
4134};
 
4135
4136/*
4137 * see run_scheduled_bios for a description of why bios are collected for
4138 * async submit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4139 *
4140 * This will add one bio to the pending list for a device and make sure
4141 * the work struct is scheduled.
 
 
 
 
 
 
 
 
 
 
 
 
 
4142 */
4143static noinline void schedule_bio(struct btrfs_root *root,
4144				 struct btrfs_device *device,
4145				 int rw, struct bio *bio)
4146{
4147	int should_queue = 1;
4148	struct btrfs_pending_bios *pending_bios;
4149
4150	/* don't bother with additional async steps for reads, right now */
4151	if (!(rw & REQ_WRITE)) {
4152		bio_get(bio);
4153		btrfsic_submit_bio(rw, bio);
4154		bio_put(bio);
4155		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4156	}
 
4157
4158	/*
4159	 * nr_async_bios allows us to reliably return congestion to the
4160	 * higher layers.  Otherwise, the async bio makes it appear we have
4161	 * made progress against dirty pages when we've really just put it
4162	 * on a queue for later
4163	 */
4164	atomic_inc(&root->fs_info->nr_async_bios);
4165	WARN_ON(bio->bi_next);
4166	bio->bi_next = NULL;
4167	bio->bi_rw |= rw;
4168
4169	spin_lock(&device->io_lock);
4170	if (bio->bi_rw & REQ_SYNC)
4171		pending_bios = &device->pending_sync_bios;
4172	else
4173		pending_bios = &device->pending_bios;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4174
4175	if (pending_bios->tail)
4176		pending_bios->tail->bi_next = bio;
4177
4178	pending_bios->tail = bio;
4179	if (!pending_bios->head)
4180		pending_bios->head = bio;
4181	if (device->running_pending)
4182		should_queue = 0;
4183
4184	spin_unlock(&device->io_lock);
 
 
 
4185
4186	if (should_queue)
4187		btrfs_queue_worker(&root->fs_info->submit_workers,
4188				   &device->work);
 
 
 
 
 
4189}
4190
4191int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4192		  int mirror_num, int async_submit)
4193{
4194	struct btrfs_mapping_tree *map_tree;
4195	struct btrfs_device *dev;
4196	struct bio *first_bio = bio;
4197	u64 logical = (u64)bio->bi_sector << 9;
4198	u64 length = 0;
4199	u64 map_length;
4200	int ret;
4201	int dev_nr = 0;
4202	int total_devs = 1;
4203	struct btrfs_bio *bbio = NULL;
4204
4205	length = bio->bi_size;
4206	map_tree = &root->fs_info->mapping_tree;
4207	map_length = length;
4208
4209	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4210			      mirror_num);
4211	if (ret) /* -ENOMEM */
4212		return ret;
4213
4214	total_devs = bbio->num_stripes;
4215	if (map_length < length) {
4216		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4217		       "len %llu\n", (unsigned long long)logical,
4218		       (unsigned long long)length,
4219		       (unsigned long long)map_length);
4220		BUG();
 
4221	}
4222
4223	bbio->orig_bio = first_bio;
4224	bbio->private = first_bio->bi_private;
4225	bbio->end_io = first_bio->bi_end_io;
4226	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4227
4228	while (dev_nr < total_devs) {
4229		if (dev_nr < total_devs - 1) {
4230			bio = bio_clone(first_bio, GFP_NOFS);
4231			BUG_ON(!bio); /* -ENOMEM */
4232		} else {
4233			bio = first_bio;
4234		}
4235		bio->bi_private = bbio;
4236		bio->bi_private = merge_stripe_index_into_bio_private(
4237				bio->bi_private, (unsigned int)dev_nr);
4238		bio->bi_end_io = btrfs_end_bio;
4239		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4240		dev = bbio->stripes[dev_nr].dev;
4241		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4242#ifdef DEBUG
4243			struct rcu_string *name;
4244
4245			rcu_read_lock();
4246			name = rcu_dereference(dev->name);
4247			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4248				 "(%s id %llu), size=%u\n", rw,
4249				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4250				 name->str, dev->devid, bio->bi_size);
4251			rcu_read_unlock();
4252#endif
4253			bio->bi_bdev = dev->bdev;
4254			if (async_submit)
4255				schedule_bio(root, dev, rw, bio);
4256			else
4257				btrfsic_submit_bio(rw, bio);
4258		} else {
4259			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4260			bio->bi_sector = logical >> 9;
4261			bio_endio(bio, -EIO);
4262		}
4263		dev_nr++;
4264	}
4265	return 0;
4266}
4267
4268struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4269				       u8 *uuid, u8 *fsid)
 
 
 
 
 
 
 
4270{
4271	struct btrfs_device *device;
4272	struct btrfs_fs_devices *cur_devices;
 
 
 
 
 
 
 
4273
4274	cur_devices = root->fs_info->fs_devices;
4275	while (cur_devices) {
4276		if (!fsid ||
4277		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4278			device = __find_device(&cur_devices->devices,
4279					       devid, uuid);
4280			if (device)
4281				return device;
4282		}
4283		cur_devices = cur_devices->seed;
4284	}
 
4285	return NULL;
4286}
4287
4288static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4289					    u64 devid, u8 *dev_uuid)
4290{
4291	struct btrfs_device *device;
4292	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 
 
 
 
 
 
 
 
 
 
 
 
 
4293
4294	device = kzalloc(sizeof(*device), GFP_NOFS);
4295	if (!device)
4296		return NULL;
4297	list_add(&device->dev_list,
4298		 &fs_devices->devices);
4299	device->dev_root = root->fs_info->dev_root;
4300	device->devid = devid;
4301	device->work.func = pending_bios_fn;
4302	device->fs_devices = fs_devices;
4303	device->missing = 1;
4304	fs_devices->num_devices++;
 
 
4305	fs_devices->missing_devices++;
4306	spin_lock_init(&device->io_lock);
4307	INIT_LIST_HEAD(&device->dev_alloc_list);
4308	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4309	return device;
4310}
4311
4312static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4313			  struct extent_buffer *leaf,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4314			  struct btrfs_chunk *chunk)
4315{
4316	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4317	struct map_lookup *map;
4318	struct extent_map *em;
4319	u64 logical;
4320	u64 length;
4321	u64 devid;
 
4322	u8 uuid[BTRFS_UUID_SIZE];
 
4323	int num_stripes;
4324	int ret;
4325	int i;
4326
4327	logical = key->offset;
4328	length = btrfs_chunk_length(leaf, chunk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4329
4330	read_lock(&map_tree->map_tree.lock);
4331	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4332	read_unlock(&map_tree->map_tree.lock);
4333
4334	/* already mapped? */
4335	if (em && em->start <= logical && em->start + em->len > logical) {
4336		free_extent_map(em);
4337		return 0;
4338	} else if (em) {
4339		free_extent_map(em);
4340	}
4341
4342	em = alloc_extent_map();
4343	if (!em)
4344		return -ENOMEM;
4345	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4346	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4347	if (!map) {
4348		free_extent_map(em);
4349		return -ENOMEM;
4350	}
4351
4352	em->bdev = (struct block_device *)map;
4353	em->start = logical;
4354	em->len = length;
4355	em->block_start = 0;
4356	em->block_len = em->len;
4357
 
 
4358	map->num_stripes = num_stripes;
4359	map->io_width = btrfs_chunk_io_width(leaf, chunk);
4360	map->io_align = btrfs_chunk_io_align(leaf, chunk);
4361	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4362	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4363	map->type = btrfs_chunk_type(leaf, chunk);
4364	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 
 
 
 
 
 
 
 
4365	for (i = 0; i < num_stripes; i++) {
4366		map->stripes[i].physical =
4367			btrfs_stripe_offset_nr(leaf, chunk, i);
4368		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 
4369		read_extent_buffer(leaf, uuid, (unsigned long)
4370				   btrfs_stripe_dev_uuid_nr(chunk, i),
4371				   BTRFS_UUID_SIZE);
4372		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4373							NULL);
4374		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4375			kfree(map);
4376			free_extent_map(em);
4377			return -EIO;
4378		}
4379		if (!map->stripes[i].dev) {
4380			map->stripes[i].dev =
4381				add_missing_dev(root, devid, uuid);
4382			if (!map->stripes[i].dev) {
4383				kfree(map);
4384				free_extent_map(em);
4385				return -EIO;
4386			}
4387		}
4388		map->stripes[i].dev->in_fs_metadata = 1;
 
 
4389	}
4390
4391	write_lock(&map_tree->map_tree.lock);
4392	ret = add_extent_mapping(&map_tree->map_tree, em);
4393	write_unlock(&map_tree->map_tree.lock);
4394	BUG_ON(ret); /* Tree corruption */
4395	free_extent_map(em);
 
4396
4397	return 0;
4398}
4399
4400static void fill_device_from_item(struct extent_buffer *leaf,
4401				 struct btrfs_dev_item *dev_item,
4402				 struct btrfs_device *device)
4403{
4404	unsigned long ptr;
4405
4406	device->devid = btrfs_device_id(leaf, dev_item);
4407	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4408	device->total_bytes = device->disk_total_bytes;
 
4409	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
 
4410	device->type = btrfs_device_type(leaf, dev_item);
4411	device->io_align = btrfs_device_io_align(leaf, dev_item);
4412	device->io_width = btrfs_device_io_width(leaf, dev_item);
4413	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
 
 
4414
4415	ptr = (unsigned long)btrfs_device_uuid(dev_item);
4416	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4417}
4418
4419static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
 
4420{
4421	struct btrfs_fs_devices *fs_devices;
4422	int ret;
4423
4424	BUG_ON(!mutex_is_locked(&uuid_mutex));
 
 
 
 
 
 
4425
4426	fs_devices = root->fs_info->fs_devices->seed;
4427	while (fs_devices) {
4428		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4429			ret = 0;
4430			goto out;
4431		}
4432		fs_devices = fs_devices->seed;
4433	}
4434
4435	fs_devices = find_fsid(fsid);
4436	if (!fs_devices) {
4437		ret = -ENOENT;
4438		goto out;
 
 
 
 
 
 
 
 
4439	}
4440
 
 
 
 
4441	fs_devices = clone_fs_devices(fs_devices);
4442	if (IS_ERR(fs_devices)) {
4443		ret = PTR_ERR(fs_devices);
4444		goto out;
4445	}
4446
4447	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4448				   root->fs_info->bdev_holder);
4449	if (ret) {
4450		free_fs_devices(fs_devices);
4451		goto out;
4452	}
4453
4454	if (!fs_devices->seeding) {
4455		__btrfs_close_devices(fs_devices);
4456		free_fs_devices(fs_devices);
4457		ret = -EINVAL;
4458		goto out;
4459	}
4460
4461	fs_devices->seed = root->fs_info->fs_devices->seed;
4462	root->fs_info->fs_devices->seed = fs_devices;
4463out:
4464	return ret;
4465}
4466
4467static int read_one_dev(struct btrfs_root *root,
4468			struct extent_buffer *leaf,
4469			struct btrfs_dev_item *dev_item)
4470{
 
 
 
4471	struct btrfs_device *device;
4472	u64 devid;
4473	int ret;
4474	u8 fs_uuid[BTRFS_UUID_SIZE];
4475	u8 dev_uuid[BTRFS_UUID_SIZE];
4476
4477	devid = btrfs_device_id(leaf, dev_item);
4478	read_extent_buffer(leaf, dev_uuid,
4479			   (unsigned long)btrfs_device_uuid(dev_item),
4480			   BTRFS_UUID_SIZE);
4481	read_extent_buffer(leaf, fs_uuid,
4482			   (unsigned long)btrfs_device_fsid(dev_item),
4483			   BTRFS_UUID_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4484
4485	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4486		ret = open_seed_devices(root, fs_uuid);
4487		if (ret && !btrfs_test_opt(root, DEGRADED))
4488			return ret;
4489	}
 
 
 
 
 
 
 
 
 
 
 
 
 
4490
4491	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4492	if (!device || !device->bdev) {
4493		if (!btrfs_test_opt(root, DEGRADED))
4494			return -EIO;
4495
4496		if (!device) {
4497			printk(KERN_WARNING "warning devid %llu missing\n",
4498			       (unsigned long long)devid);
4499			device = add_missing_dev(root, devid, dev_uuid);
4500			if (!device)
4501				return -ENOMEM;
4502		} else if (!device->missing) {
4503			/*
4504			 * this happens when a device that was properly setup
4505			 * in the device info lists suddenly goes bad.
4506			 * device->bdev is NULL, and so we have to set
4507			 * device->missing to one here
4508			 */
4509			root->fs_info->fs_devices->missing_devices++;
4510			device->missing = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511		}
4512	}
4513
4514	if (device->fs_devices != root->fs_info->fs_devices) {
4515		BUG_ON(device->writeable);
4516		if (device->generation !=
4517		    btrfs_device_generation(leaf, dev_item))
4518			return -EINVAL;
4519	}
4520
4521	fill_device_from_item(leaf, dev_item, device);
4522	device->dev_root = root->fs_info->dev_root;
4523	device->in_fs_metadata = 1;
4524	if (device->writeable) {
 
 
 
 
 
 
 
 
 
 
4525		device->fs_devices->total_rw_bytes += device->total_bytes;
4526		spin_lock(&root->fs_info->free_chunk_lock);
4527		root->fs_info->free_chunk_space += device->total_bytes -
4528			device->bytes_used;
4529		spin_unlock(&root->fs_info->free_chunk_lock);
4530	}
4531	ret = 0;
4532	return ret;
4533}
4534
4535int btrfs_read_sys_array(struct btrfs_root *root)
4536{
4537	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4538	struct extent_buffer *sb;
4539	struct btrfs_disk_key *disk_key;
4540	struct btrfs_chunk *chunk;
4541	u8 *ptr;
4542	unsigned long sb_ptr;
4543	int ret = 0;
4544	u32 num_stripes;
4545	u32 array_size;
4546	u32 len = 0;
4547	u32 cur;
 
4548	struct btrfs_key key;
4549
4550	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4551					  BTRFS_SUPER_INFO_SIZE);
 
 
 
 
 
 
4552	if (!sb)
4553		return -ENOMEM;
4554	btrfs_set_buffer_uptodate(sb);
4555	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4556	/*
4557	 * The sb extent buffer is artifical and just used to read the system array.
4558	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4559	 * pages up-to-date when the page is larger: extent does not cover the
4560	 * whole page and consequently check_page_uptodate does not find all
4561	 * the page's extents up-to-date (the hole beyond sb),
4562	 * write_extent_buffer then triggers a WARN_ON.
4563	 *
4564	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4565	 * but sb spans only this function. Add an explicit SetPageUptodate call
4566	 * to silence the warning eg. on PowerPC 64.
4567	 */
4568	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4569		SetPageUptodate(sb->pages[0]);
4570
4571	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4572	array_size = btrfs_super_sys_array_size(super_copy);
4573
4574	ptr = super_copy->sys_chunk_array;
4575	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4576	cur = 0;
 
 
 
 
 
 
4577
4578	while (cur < array_size) {
4579		disk_key = (struct btrfs_disk_key *)ptr;
4580		btrfs_disk_key_to_cpu(&key, disk_key);
4581
4582		len = sizeof(*disk_key); ptr += len;
4583		sb_ptr += len;
4584		cur += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4585
4586		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4587			chunk = (struct btrfs_chunk *)sb_ptr;
4588			ret = read_one_chunk(root, &key, sb, chunk);
4589			if (ret)
4590				break;
4591			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4592			len = btrfs_chunk_item_size(num_stripes);
4593		} else {
4594			ret = -EIO;
4595			break;
4596		}
4597		ptr += len;
4598		sb_ptr += len;
4599		cur += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4600	}
4601	free_extent_buffer(sb);
4602	return ret;
4603}
4604
4605int btrfs_read_chunk_tree(struct btrfs_root *root)
4606{
 
 
 
 
 
 
 
 
 
 
4607	struct btrfs_path *path;
4608	struct extent_buffer *leaf;
4609	struct btrfs_key key;
4610	struct btrfs_key found_key;
4611	int ret;
4612	int slot;
4613
4614	root = root->fs_info->chunk_root;
 
4615
4616	path = btrfs_alloc_path();
4617	if (!path)
4618		return -ENOMEM;
4619
 
 
 
 
4620	mutex_lock(&uuid_mutex);
4621	lock_chunks(root);
4622
4623	/* first we search for all of the device items, and then we
4624	 * read in all of the chunk items.  This way we can create chunk
4625	 * mappings that reference all of the devices that are afound
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4626	 */
4627	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4628	key.offset = 0;
4629	key.type = 0;
4630again:
4631	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4632	if (ret < 0)
4633		goto error;
4634	while (1) {
4635		leaf = path->nodes[0];
4636		slot = path->slots[0];
4637		if (slot >= btrfs_header_nritems(leaf)) {
4638			ret = btrfs_next_leaf(root, path);
4639			if (ret == 0)
4640				continue;
4641			if (ret < 0)
4642				goto error;
4643			break;
4644		}
4645		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4646		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4647			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4648				break;
4649			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4650				struct btrfs_dev_item *dev_item;
4651				dev_item = btrfs_item_ptr(leaf, slot,
4652						  struct btrfs_dev_item);
4653				ret = read_one_dev(root, leaf, dev_item);
4654				if (ret)
4655					goto error;
4656			}
4657		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4658			struct btrfs_chunk *chunk;
 
 
 
 
 
 
 
 
 
4659			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4660			ret = read_one_chunk(root, &found_key, leaf, chunk);
4661			if (ret)
4662				goto error;
4663		}
4664		path->slots[0]++;
4665	}
4666	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4667		key.objectid = 0;
4668		btrfs_release_path(path);
4669		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4670	}
4671	ret = 0;
4672error:
4673	unlock_chunks(root);
4674	mutex_unlock(&uuid_mutex);
4675
4676	btrfs_free_path(path);
4677	return ret;
4678}
4679
4680static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4681{
4682	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4683
4684	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4685		btrfs_dev_stat_reset(dev, i);
4686}
4687
4688int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4689{
4690	struct btrfs_key key;
4691	struct btrfs_key found_key;
4692	struct btrfs_root *dev_root = fs_info->dev_root;
4693	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4694	struct extent_buffer *eb;
4695	int slot;
4696	int ret = 0;
4697	struct btrfs_device *device;
4698	struct btrfs_path *path = NULL;
4699	int i;
4700
4701	path = btrfs_alloc_path();
4702	if (!path) {
4703		ret = -ENOMEM;
4704		goto out;
4705	}
4706
4707	mutex_lock(&fs_devices->device_list_mutex);
4708	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4709		int item_size;
4710		struct btrfs_dev_stats_item *ptr;
4711
4712		key.objectid = 0;
4713		key.type = BTRFS_DEV_STATS_KEY;
4714		key.offset = device->devid;
4715		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4716		if (ret) {
4717			printk_in_rcu(KERN_WARNING "btrfs: no dev_stats entry found for device %s (devid %llu) (OK on first mount after mkfs)\n",
4718				      rcu_str_deref(device->name),
4719				      (unsigned long long)device->devid);
4720			__btrfs_reset_dev_stats(device);
4721			device->dev_stats_valid = 1;
4722			btrfs_release_path(path);
4723			continue;
4724		}
4725		slot = path->slots[0];
4726		eb = path->nodes[0];
4727		btrfs_item_key_to_cpu(eb, &found_key, slot);
4728		item_size = btrfs_item_size_nr(eb, slot);
4729
4730		ptr = btrfs_item_ptr(eb, slot,
4731				     struct btrfs_dev_stats_item);
4732
4733		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4734			if (item_size >= (1 + i) * sizeof(__le64))
4735				btrfs_dev_stat_set(device, i,
4736					btrfs_dev_stats_value(eb, ptr, i));
4737			else
4738				btrfs_dev_stat_reset(device, i);
4739		}
4740
4741		device->dev_stats_valid = 1;
4742		btrfs_dev_stat_print_on_load(device);
4743		btrfs_release_path(path);
4744	}
 
4745	mutex_unlock(&fs_devices->device_list_mutex);
4746
4747out:
4748	btrfs_free_path(path);
4749	return ret < 0 ? ret : 0;
4750}
4751
4752static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4753				struct btrfs_root *dev_root,
4754				struct btrfs_device *device)
4755{
 
 
4756	struct btrfs_path *path;
4757	struct btrfs_key key;
4758	struct extent_buffer *eb;
4759	struct btrfs_dev_stats_item *ptr;
4760	int ret;
4761	int i;
4762
4763	key.objectid = 0;
4764	key.type = BTRFS_DEV_STATS_KEY;
4765	key.offset = device->devid;
4766
4767	path = btrfs_alloc_path();
4768	BUG_ON(!path);
 
4769	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4770	if (ret < 0) {
4771		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4772			      ret, rcu_str_deref(device->name));
 
4773		goto out;
4774	}
4775
4776	if (ret == 0 &&
4777	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4778		/* need to delete old one and insert a new one */
4779		ret = btrfs_del_item(trans, dev_root, path);
4780		if (ret != 0) {
4781			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4782				      rcu_str_deref(device->name), ret);
 
4783			goto out;
4784		}
4785		ret = 1;
4786	}
4787
4788	if (ret == 1) {
4789		/* need to insert a new item */
4790		btrfs_release_path(path);
4791		ret = btrfs_insert_empty_item(trans, dev_root, path,
4792					      &key, sizeof(*ptr));
4793		if (ret < 0) {
4794			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4795				      rcu_str_deref(device->name), ret);
 
4796			goto out;
4797		}
4798	}
4799
4800	eb = path->nodes[0];
4801	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4802	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4803		btrfs_set_dev_stats_value(eb, ptr, i,
4804					  btrfs_dev_stat_read(device, i));
4805	btrfs_mark_buffer_dirty(eb);
4806
4807out:
4808	btrfs_free_path(path);
4809	return ret;
4810}
4811
4812/*
4813 * called from commit_transaction. Writes all changed device stats to disk.
4814 */
4815int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4816			struct btrfs_fs_info *fs_info)
4817{
4818	struct btrfs_root *dev_root = fs_info->dev_root;
4819	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4820	struct btrfs_device *device;
 
4821	int ret = 0;
4822
4823	mutex_lock(&fs_devices->device_list_mutex);
4824	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4825		if (!device->dev_stats_valid || !device->dev_stats_dirty)
 
4826			continue;
4827
4828		ret = update_dev_stat_item(trans, dev_root, device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4829		if (!ret)
4830			device->dev_stats_dirty = 0;
4831	}
4832	mutex_unlock(&fs_devices->device_list_mutex);
4833
4834	return ret;
4835}
4836
4837void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4838{
4839	btrfs_dev_stat_inc(dev, index);
4840	btrfs_dev_stat_print_on_error(dev);
4841}
4842
4843void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4844{
4845	if (!dev->dev_stats_valid)
4846		return;
4847	printk_ratelimited_in_rcu(KERN_ERR
4848			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4849			   rcu_str_deref(dev->name),
4850			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4851			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4852			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4853			   btrfs_dev_stat_read(dev,
4854					       BTRFS_DEV_STAT_CORRUPTION_ERRS),
4855			   btrfs_dev_stat_read(dev,
4856					       BTRFS_DEV_STAT_GENERATION_ERRS));
4857}
4858
4859static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4860{
4861	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4862	       rcu_str_deref(dev->name),
 
 
 
 
 
 
 
 
 
4863	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4864	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4865	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4866	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4867	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4868}
4869
4870int btrfs_get_dev_stats(struct btrfs_root *root,
4871			struct btrfs_ioctl_get_dev_stats *stats,
4872			int reset_after_read)
4873{
 
4874	struct btrfs_device *dev;
4875	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4876	int i;
4877
4878	mutex_lock(&fs_devices->device_list_mutex);
4879	dev = btrfs_find_device(root, stats->devid, NULL, NULL);
 
4880	mutex_unlock(&fs_devices->device_list_mutex);
4881
4882	if (!dev) {
4883		printk(KERN_WARNING
4884		       "btrfs: get dev_stats failed, device not found\n");
4885		return -ENODEV;
4886	} else if (!dev->dev_stats_valid) {
4887		printk(KERN_WARNING
4888		       "btrfs: get dev_stats failed, not yet valid\n");
4889		return -ENODEV;
4890	} else if (reset_after_read) {
4891		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4892			if (stats->nr_items > i)
4893				stats->values[i] =
4894					btrfs_dev_stat_read_and_reset(dev, i);
4895			else
4896				btrfs_dev_stat_reset(dev, i);
4897		}
 
 
4898	} else {
4899		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4900			if (stats->nr_items > i)
4901				stats->values[i] = btrfs_dev_stat_read(dev, i);
4902	}
4903	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4904		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4905	return 0;
4906}