Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "messages.h"
  11#include "misc.h"
  12#include "ctree.h"
  13#include "transaction.h"
  14#include "btrfs_inode.h"
  15#include "extent_io.h"
  16#include "disk-io.h"
  17#include "compression.h"
  18#include "delalloc-space.h"
  19#include "qgroup.h"
  20#include "subpage.h"
  21#include "file.h"
  22#include "super.h"
  23
  24static struct kmem_cache *btrfs_ordered_extent_cache;
  25
  26static u64 entry_end(struct btrfs_ordered_extent *entry)
  27{
  28	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  29		return (u64)-1;
  30	return entry->file_offset + entry->num_bytes;
  31}
  32
  33/* returns NULL if the insertion worked, or it returns the node it did find
  34 * in the tree
  35 */
  36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37				   struct rb_node *node)
  38{
  39	struct rb_node **p = &root->rb_node;
  40	struct rb_node *parent = NULL;
  41	struct btrfs_ordered_extent *entry;
  42
  43	while (*p) {
  44		parent = *p;
  45		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46
  47		if (file_offset < entry->file_offset)
  48			p = &(*p)->rb_left;
  49		else if (file_offset >= entry_end(entry))
  50			p = &(*p)->rb_right;
  51		else
  52			return parent;
  53	}
  54
  55	rb_link_node(node, parent, p);
  56	rb_insert_color(node, root);
  57	return NULL;
  58}
  59
 
 
 
 
 
 
 
 
  60/*
  61 * look for a given offset in the tree, and if it can't be found return the
  62 * first lesser offset
  63 */
  64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  65				     struct rb_node **prev_ret)
  66{
  67	struct rb_node *n = root->rb_node;
  68	struct rb_node *prev = NULL;
  69	struct rb_node *test;
  70	struct btrfs_ordered_extent *entry;
  71	struct btrfs_ordered_extent *prev_entry = NULL;
  72
  73	while (n) {
  74		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  75		prev = n;
  76		prev_entry = entry;
  77
  78		if (file_offset < entry->file_offset)
  79			n = n->rb_left;
  80		else if (file_offset >= entry_end(entry))
  81			n = n->rb_right;
  82		else
  83			return n;
  84	}
  85	if (!prev_ret)
  86		return NULL;
  87
  88	while (prev && file_offset >= entry_end(prev_entry)) {
  89		test = rb_next(prev);
  90		if (!test)
  91			break;
  92		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  93				      rb_node);
  94		if (file_offset < entry_end(prev_entry))
  95			break;
  96
  97		prev = test;
  98	}
  99	if (prev)
 100		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 101				      rb_node);
 102	while (prev && file_offset < entry_end(prev_entry)) {
 103		test = rb_prev(prev);
 104		if (!test)
 105			break;
 106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107				      rb_node);
 108		prev = test;
 109	}
 110	*prev_ret = prev;
 111	return NULL;
 112}
 113
 
 
 
 
 
 
 
 
 
 
 
 114static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 115			  u64 len)
 116{
 117	if (file_offset + len <= entry->file_offset ||
 118	    entry->file_offset + entry->num_bytes <= file_offset)
 119		return 0;
 120	return 1;
 121}
 122
 123/*
 124 * look find the first ordered struct that has this offset, otherwise
 125 * the first one less than this offset
 126 */
 127static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
 128						  u64 file_offset)
 129{
 
 130	struct rb_node *prev = NULL;
 131	struct rb_node *ret;
 132	struct btrfs_ordered_extent *entry;
 133
 134	if (inode->ordered_tree_last) {
 135		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
 136				 rb_node);
 137		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 138			return inode->ordered_tree_last;
 139	}
 140	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
 141	if (!ret)
 142		ret = prev;
 143	if (ret)
 144		inode->ordered_tree_last = ret;
 145	return ret;
 146}
 147
 148static struct btrfs_ordered_extent *alloc_ordered_extent(
 149			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
 150			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
 151			u64 offset, unsigned long flags, int compress_type)
 
 
 
 
 
 
 
 
 
 
 152{
 
 
 153	struct btrfs_ordered_extent *entry;
 154	int ret;
 155	u64 qgroup_rsv = 0;
 156
 157	if (flags &
 158	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 159		/* For nocow write, we can release the qgroup rsv right now */
 160		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
 161		if (ret < 0)
 162			return ERR_PTR(ret);
 163	} else {
 164		/*
 165		 * The ordered extent has reserved qgroup space, release now
 166		 * and pass the reserved number for qgroup_record to free.
 167		 */
 168		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
 169		if (ret < 0)
 170			return ERR_PTR(ret);
 171	}
 172	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 173	if (!entry)
 174		return ERR_PTR(-ENOMEM);
 175
 176	entry->file_offset = file_offset;
 177	entry->num_bytes = num_bytes;
 178	entry->ram_bytes = ram_bytes;
 179	entry->disk_bytenr = disk_bytenr;
 180	entry->disk_num_bytes = disk_num_bytes;
 181	entry->offset = offset;
 182	entry->bytes_left = num_bytes;
 183	entry->inode = igrab(&inode->vfs_inode);
 184	entry->compress_type = compress_type;
 185	entry->truncated_len = (u64)-1;
 186	entry->qgroup_rsv = qgroup_rsv;
 187	entry->flags = flags;
 188	refcount_set(&entry->refs, 1);
 
 
 
 
 189	init_waitqueue_head(&entry->wait);
 190	INIT_LIST_HEAD(&entry->list);
 191	INIT_LIST_HEAD(&entry->log_list);
 192	INIT_LIST_HEAD(&entry->root_extent_list);
 193	INIT_LIST_HEAD(&entry->work_list);
 194	INIT_LIST_HEAD(&entry->bioc_list);
 195	init_completion(&entry->completion);
 196
 197	/*
 198	 * We don't need the count_max_extents here, we can assume that all of
 199	 * that work has been done at higher layers, so this is truly the
 200	 * smallest the extent is going to get.
 201	 */
 202	spin_lock(&inode->lock);
 203	btrfs_mod_outstanding_extents(inode, 1);
 204	spin_unlock(&inode->lock);
 205
 206	return entry;
 207}
 208
 209static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
 210{
 211	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 212	struct btrfs_root *root = inode->root;
 213	struct btrfs_fs_info *fs_info = root->fs_info;
 214	struct rb_node *node;
 215
 216	trace_btrfs_ordered_extent_add(inode, entry);
 217
 218	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
 219				 fs_info->delalloc_batch);
 220
 221	/* One ref for the tree. */
 222	refcount_inc(&entry->refs);
 223
 224	spin_lock_irq(&inode->ordered_tree_lock);
 225	node = tree_insert(&inode->ordered_tree, entry->file_offset,
 226			   &entry->rb_node);
 227	if (node)
 228		btrfs_panic(fs_info, -EEXIST,
 229				"inconsistency in ordered tree at offset %llu",
 230				entry->file_offset);
 231	spin_unlock_irq(&inode->ordered_tree_lock);
 232
 233	spin_lock(&root->ordered_extent_lock);
 234	list_add_tail(&entry->root_extent_list,
 235		      &root->ordered_extents);
 236	root->nr_ordered_extents++;
 237	if (root->nr_ordered_extents == 1) {
 238		spin_lock(&fs_info->ordered_root_lock);
 239		BUG_ON(!list_empty(&root->ordered_root));
 240		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 241		spin_unlock(&fs_info->ordered_root_lock);
 242	}
 243	spin_unlock(&root->ordered_extent_lock);
 244}
 245
 246/*
 247 * Add an ordered extent to the per-inode tree.
 248 *
 249 * @inode:           Inode that this extent is for.
 250 * @file_offset:     Logical offset in file where the extent starts.
 251 * @num_bytes:       Logical length of extent in file.
 252 * @ram_bytes:       Full length of unencoded data.
 253 * @disk_bytenr:     Offset of extent on disk.
 254 * @disk_num_bytes:  Size of extent on disk.
 255 * @offset:          Offset into unencoded data where file data starts.
 256 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 257 * @compress_type:   Compression algorithm used for data.
 258 *
 259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 260 * tree is given a single reference on the ordered extent that was inserted, and
 261 * the returned pointer is given a second reference.
 262 *
 263 * Return: the new ordered extent or error pointer.
 264 */
 265struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
 266			struct btrfs_inode *inode, u64 file_offset,
 267			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
 268			u64 disk_num_bytes, u64 offset, unsigned long flags,
 269			int compress_type)
 270{
 271	struct btrfs_ordered_extent *entry;
 
 
 
 272
 273	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 
 
 
 
 
 
 274
 275	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
 276				     disk_bytenr, disk_num_bytes, offset, flags,
 277				     compress_type);
 278	if (!IS_ERR(entry))
 279		insert_ordered_extent(entry);
 280	return entry;
 
 281}
 282
 283/*
 284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 285 * when an ordered extent is finished.  If the list covers more than one
 286 * ordered extent, it is split across multiples.
 287 */
 288void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 
 289			   struct btrfs_ordered_sum *sum)
 290{
 291	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 292
 293	spin_lock_irq(&inode->ordered_tree_lock);
 
 294	list_add_tail(&sum->list, &entry->list);
 295	spin_unlock_irq(&inode->ordered_tree_lock);
 296}
 297
 298static void finish_ordered_fn(struct btrfs_work *work)
 299{
 300	struct btrfs_ordered_extent *ordered_extent;
 301
 302	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 303	btrfs_finish_ordered_io(ordered_extent);
 304}
 305
 306static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 307				      struct page *page, u64 file_offset,
 308				      u64 len, bool uptodate)
 309{
 310	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 311	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 312
 313	lockdep_assert_held(&inode->ordered_tree_lock);
 314
 315	if (page) {
 316		ASSERT(page->mapping);
 317		ASSERT(page_offset(page) <= file_offset);
 318		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
 319
 320		/*
 321		 * Ordered (Private2) bit indicates whether we still have
 322		 * pending io unfinished for the ordered extent.
 323		 *
 324		 * If there's no such bit, we need to skip to next range.
 325		 */
 326		if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
 327					      file_offset, len))
 328			return false;
 329		btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
 330	}
 331
 332	/* Now we're fine to update the accounting. */
 333	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
 334		btrfs_crit(fs_info,
 335"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
 336			   inode->root->root_key.objectid, btrfs_ino(inode),
 337			   ordered->file_offset, ordered->num_bytes,
 338			   len, ordered->bytes_left);
 339		ordered->bytes_left = 0;
 340	} else {
 341		ordered->bytes_left -= len;
 342	}
 343
 344	if (!uptodate)
 345		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 346
 347	if (ordered->bytes_left)
 348		return false;
 349
 350	/*
 351	 * All the IO of the ordered extent is finished, we need to queue
 352	 * the finish_func to be executed.
 353	 */
 354	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
 355	cond_wake_up(&ordered->wait);
 356	refcount_inc(&ordered->refs);
 357	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
 358	return true;
 359}
 360
 361static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
 362{
 363	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 364	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 365	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
 366		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
 367
 368	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
 369	btrfs_queue_work(wq, &ordered->work);
 370}
 371
 372bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 373				 struct page *page, u64 file_offset, u64 len,
 374				 bool uptodate)
 375{
 376	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 377	unsigned long flags;
 378	bool ret;
 379
 380	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
 381
 382	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 383	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
 384	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 385
 386	if (ret)
 387		btrfs_queue_ordered_fn(ordered);
 388	return ret;
 389}
 390
 391/*
 392 * Mark all ordered extents io inside the specified range finished.
 
 
 
 393 *
 394 * @page:	 The involved page for the operation.
 395 *		 For uncompressed buffered IO, the page status also needs to be
 396 *		 updated to indicate whether the pending ordered io is finished.
 397 *		 Can be NULL for direct IO and compressed write.
 398 *		 For these cases, callers are ensured they won't execute the
 399 *		 endio function twice.
 400 *
 401 * This function is called for endio, thus the range must have ordered
 402 * extent(s) covering it.
 403 */
 404void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 405				    struct page *page, u64 file_offset,
 406				    u64 num_bytes, bool uptodate)
 407{
 
 408	struct rb_node *node;
 409	struct btrfs_ordered_extent *entry = NULL;
 
 410	unsigned long flags;
 411	u64 cur = file_offset;
 412
 413	trace_btrfs_writepage_end_io_hook(inode, file_offset,
 414					  file_offset + num_bytes - 1,
 415					  uptodate);
 416
 417	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 418	while (cur < file_offset + num_bytes) {
 419		u64 entry_end;
 420		u64 end;
 421		u32 len;
 422
 423		node = ordered_tree_search(inode, cur);
 424		/* No ordered extents at all */
 425		if (!node)
 426			break;
 427
 428		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 429		entry_end = entry->file_offset + entry->num_bytes;
 430		/*
 431		 * |<-- OE --->|  |
 432		 *		  cur
 433		 * Go to next OE.
 434		 */
 435		if (cur >= entry_end) {
 436			node = rb_next(node);
 437			/* No more ordered extents, exit */
 438			if (!node)
 439				break;
 440			entry = rb_entry(node, struct btrfs_ordered_extent,
 441					 rb_node);
 442
 443			/* Go to next ordered extent and continue */
 444			cur = entry->file_offset;
 445			continue;
 446		}
 447		/*
 448		 * |	|<--- OE --->|
 449		 * cur
 450		 * Go to the start of OE.
 451		 */
 452		if (cur < entry->file_offset) {
 453			cur = entry->file_offset;
 454			continue;
 455		}
 
 
 
 
 
 456
 457		/*
 458		 * Now we are definitely inside one ordered extent.
 459		 *
 460		 * |<--- OE --->|
 461		 *	|
 462		 *	cur
 463		 */
 464		end = min(entry->file_offset + entry->num_bytes,
 465			  file_offset + num_bytes) - 1;
 466		ASSERT(end + 1 - cur < U32_MAX);
 467		len = end + 1 - cur;
 468
 469		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
 470			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 471			btrfs_queue_ordered_fn(entry);
 472			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 473		}
 474		cur += len;
 475	}
 476	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 
 477}
 478
 479/*
 480 * Finish IO for one ordered extent across a given range.  The range can only
 481 * contain one ordered extent.
 482 *
 483 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 484 *               search and use the ordered extent directly.
 485 * 		 Will be also used to store the finished ordered extent.
 486 * @file_offset: File offset for the finished IO
 487 * @io_size:	 Length of the finish IO range
 488 *
 489 * Return true if the ordered extent is finished in the range, and update
 490 * @cached.
 491 * Return false otherwise.
 492 *
 493 * NOTE: The range can NOT cross multiple ordered extents.
 494 * Thus caller should ensure the range doesn't cross ordered extents.
 495 */
 496bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 497				    struct btrfs_ordered_extent **cached,
 498				    u64 file_offset, u64 io_size)
 499{
 
 500	struct rb_node *node;
 501	struct btrfs_ordered_extent *entry = NULL;
 502	unsigned long flags;
 503	bool finished = false;
 504
 505	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 
 506	if (cached && *cached) {
 507		entry = *cached;
 508		goto have_entry;
 509	}
 510
 511	node = ordered_tree_search(inode, file_offset);
 512	if (!node)
 
 513		goto out;
 
 514
 515	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 516have_entry:
 517	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 
 518		goto out;
 
 519
 520	if (io_size > entry->bytes_left)
 521		btrfs_crit(inode->root->fs_info,
 522			   "bad ordered accounting left %llu size %llu",
 523		       entry->bytes_left, io_size);
 524
 525	entry->bytes_left -= io_size;
 
 
 526
 527	if (entry->bytes_left == 0) {
 528		/*
 529		 * Ensure only one caller can set the flag and finished_ret
 530		 * accordingly
 531		 */
 532		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 533		/* test_and_set_bit implies a barrier */
 534		cond_wake_up_nomb(&entry->wait);
 535	}
 536out:
 537	if (finished && cached && entry) {
 538		*cached = entry;
 539		refcount_inc(&entry->refs);
 540		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 541	}
 542	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 543	return finished;
 544}
 545
 546/*
 547 * used to drop a reference on an ordered extent.  This will free
 548 * the extent if the last reference is dropped
 549 */
 550void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 551{
 552	struct list_head *cur;
 553	struct btrfs_ordered_sum *sum;
 554
 555	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 556
 557	if (refcount_dec_and_test(&entry->refs)) {
 558		ASSERT(list_empty(&entry->root_extent_list));
 559		ASSERT(list_empty(&entry->log_list));
 560		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 561		if (entry->inode)
 562			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
 563		while (!list_empty(&entry->list)) {
 564			cur = entry->list.next;
 565			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 566			list_del(&sum->list);
 567			kvfree(sum);
 568		}
 569		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 570	}
 571}
 572
 573/*
 574 * remove an ordered extent from the tree.  No references are dropped
 575 * and waiters are woken up.
 576 */
 577void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 578				 struct btrfs_ordered_extent *entry)
 579{
 580	struct btrfs_root *root = btrfs_inode->root;
 581	struct btrfs_fs_info *fs_info = root->fs_info;
 582	struct rb_node *node;
 583	bool pending;
 584	bool freespace_inode;
 585
 586	/*
 587	 * If this is a free space inode the thread has not acquired the ordered
 588	 * extents lockdep map.
 589	 */
 590	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 591
 592	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 593	/* This is paired with btrfs_alloc_ordered_extent. */
 594	spin_lock(&btrfs_inode->lock);
 595	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 596	spin_unlock(&btrfs_inode->lock);
 597	if (root != fs_info->tree_root) {
 598		u64 release;
 599
 600		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 601			release = entry->disk_num_bytes;
 602		else
 603			release = entry->num_bytes;
 604		btrfs_delalloc_release_metadata(btrfs_inode, release,
 605						test_bit(BTRFS_ORDERED_IOERR,
 606							 &entry->flags));
 607	}
 608
 609	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 610				 fs_info->delalloc_batch);
 611
 612	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
 613	node = &entry->rb_node;
 614	rb_erase(node, &btrfs_inode->ordered_tree);
 615	RB_CLEAR_NODE(node);
 616	if (btrfs_inode->ordered_tree_last == node)
 617		btrfs_inode->ordered_tree_last = NULL;
 618	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 619	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 620	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
 621
 622	/*
 623	 * The current running transaction is waiting on us, we need to let it
 624	 * know that we're complete and wake it up.
 625	 */
 626	if (pending) {
 627		struct btrfs_transaction *trans;
 628
 629		/*
 630		 * The checks for trans are just a formality, it should be set,
 631		 * but if it isn't we don't want to deref/assert under the spin
 632		 * lock, so be nice and check if trans is set, but ASSERT() so
 633		 * if it isn't set a developer will notice.
 634		 */
 635		spin_lock(&fs_info->trans_lock);
 636		trans = fs_info->running_transaction;
 637		if (trans)
 638			refcount_inc(&trans->use_count);
 639		spin_unlock(&fs_info->trans_lock);
 640
 641		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
 642		if (trans) {
 643			if (atomic_dec_and_test(&trans->pending_ordered))
 644				wake_up(&trans->pending_wait);
 645			btrfs_put_transaction(trans);
 646		}
 647	}
 648
 649	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 650
 651	spin_lock(&root->ordered_extent_lock);
 652	list_del_init(&entry->root_extent_list);
 653	root->nr_ordered_extents--;
 654
 655	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 656
 657	if (!root->nr_ordered_extents) {
 658		spin_lock(&fs_info->ordered_root_lock);
 659		BUG_ON(list_empty(&root->ordered_root));
 660		list_del_init(&root->ordered_root);
 661		spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 662	}
 663	spin_unlock(&root->ordered_extent_lock);
 664	wake_up(&entry->wait);
 665	if (!freespace_inode)
 666		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 667}
 668
 669static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 670{
 671	struct btrfs_ordered_extent *ordered;
 672
 673	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 674	btrfs_start_ordered_extent(ordered);
 675	complete(&ordered->completion);
 676}
 677
 678/*
 679 * wait for all the ordered extents in a root.  This is done when balancing
 680 * space between drives.
 681 */
 682u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 683			       const u64 range_start, const u64 range_len)
 684{
 685	struct btrfs_fs_info *fs_info = root->fs_info;
 686	LIST_HEAD(splice);
 687	LIST_HEAD(skipped);
 688	LIST_HEAD(works);
 689	struct btrfs_ordered_extent *ordered, *next;
 690	u64 count = 0;
 691	const u64 range_end = range_start + range_len;
 692
 693	mutex_lock(&root->ordered_extent_mutex);
 694	spin_lock(&root->ordered_extent_lock);
 695	list_splice_init(&root->ordered_extents, &splice);
 696	while (!list_empty(&splice) && nr) {
 697		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 698					   root_extent_list);
 699
 700		if (range_end <= ordered->disk_bytenr ||
 701		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 702			list_move_tail(&ordered->root_extent_list, &skipped);
 703			cond_resched_lock(&root->ordered_extent_lock);
 704			continue;
 705		}
 706
 707		list_move_tail(&ordered->root_extent_list,
 708			       &root->ordered_extents);
 709		refcount_inc(&ordered->refs);
 710		spin_unlock(&root->ordered_extent_lock);
 711
 712		btrfs_init_work(&ordered->flush_work,
 713				btrfs_run_ordered_extent_work, NULL);
 714		list_add_tail(&ordered->work_list, &works);
 715		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 716
 717		cond_resched();
 718		spin_lock(&root->ordered_extent_lock);
 719		if (nr != U64_MAX)
 720			nr--;
 721		count++;
 722	}
 723	list_splice_tail(&skipped, &root->ordered_extents);
 724	list_splice_tail(&splice, &root->ordered_extents);
 725	spin_unlock(&root->ordered_extent_lock);
 726
 727	list_for_each_entry_safe(ordered, next, &works, work_list) {
 728		list_del_init(&ordered->work_list);
 729		wait_for_completion(&ordered->completion);
 730		btrfs_put_ordered_extent(ordered);
 731		cond_resched();
 732	}
 733	mutex_unlock(&root->ordered_extent_mutex);
 734
 735	return count;
 
 
 736}
 737
 738void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 739			     const u64 range_start, const u64 range_len)
 
 
 
 
 
 
 
 
 
 740{
 741	struct btrfs_root *root;
 742	LIST_HEAD(splice);
 743	u64 done;
 744
 745	mutex_lock(&fs_info->ordered_operations_mutex);
 746	spin_lock(&fs_info->ordered_root_lock);
 747	list_splice_init(&fs_info->ordered_roots, &splice);
 748	while (!list_empty(&splice) && nr) {
 749		root = list_first_entry(&splice, struct btrfs_root,
 750					ordered_root);
 751		root = btrfs_grab_root(root);
 752		BUG_ON(!root);
 753		list_move_tail(&root->ordered_root,
 754			       &fs_info->ordered_roots);
 755		spin_unlock(&fs_info->ordered_root_lock);
 756
 757		done = btrfs_wait_ordered_extents(root, nr,
 758						  range_start, range_len);
 759		btrfs_put_root(root);
 760
 761		spin_lock(&fs_info->ordered_root_lock);
 762		if (nr != U64_MAX) {
 763			nr -= done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 764		}
 
 
 
 765	}
 766	list_splice_tail(&splice, &fs_info->ordered_roots);
 767	spin_unlock(&fs_info->ordered_root_lock);
 768	mutex_unlock(&fs_info->ordered_operations_mutex);
 
 
 769}
 770
 771/*
 772 * Start IO and wait for a given ordered extent to finish.
 773 *
 774 * Wait on page writeback for all the pages in the extent and the IO completion
 775 * code to insert metadata into the btree corresponding to the extent.
 
 776 */
 777void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
 
 
 778{
 779	u64 start = entry->file_offset;
 780	u64 end = start + entry->num_bytes - 1;
 781	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 782	bool freespace_inode;
 783
 784	trace_btrfs_ordered_extent_start(inode, entry);
 785
 786	/*
 787	 * If this is a free space inode do not take the ordered extents lockdep
 788	 * map.
 789	 */
 790	freespace_inode = btrfs_is_free_space_inode(inode);
 791
 792	/*
 793	 * pages in the range can be dirty, clean or writeback.  We
 794	 * start IO on any dirty ones so the wait doesn't stall waiting
 795	 * for the flusher thread to find them
 796	 */
 797	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 798		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 799
 800	if (!freespace_inode)
 801		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 802	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
 803}
 804
 805/*
 806 * Used to wait on ordered extents across a large range of bytes.
 807 */
 808int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 809{
 810	int ret = 0;
 811	int ret_wb = 0;
 812	u64 end;
 813	u64 orig_end;
 814	struct btrfs_ordered_extent *ordered;
 
 815
 816	if (start + len < start) {
 817		orig_end = OFFSET_MAX;
 818	} else {
 819		orig_end = start + len - 1;
 820		if (orig_end > OFFSET_MAX)
 821			orig_end = OFFSET_MAX;
 822	}
 823
 824	/* start IO across the range first to instantiate any delalloc
 825	 * extents
 826	 */
 827	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 828	if (ret)
 829		return ret;
 830
 831	/*
 832	 * If we have a writeback error don't return immediately. Wait first
 833	 * for any ordered extents that haven't completed yet. This is to make
 834	 * sure no one can dirty the same page ranges and call writepages()
 835	 * before the ordered extents complete - to avoid failures (-EEXIST)
 836	 * when adding the new ordered extents to the ordered tree.
 
 
 
 
 
 
 
 837	 */
 838	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 
 
 
 
 839
 840	end = orig_end;
 
 841	while (1) {
 842		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 843		if (!ordered)
 844			break;
 845		if (ordered->file_offset > orig_end) {
 846			btrfs_put_ordered_extent(ordered);
 847			break;
 848		}
 849		if (ordered->file_offset + ordered->num_bytes <= start) {
 850			btrfs_put_ordered_extent(ordered);
 851			break;
 852		}
 853		btrfs_start_ordered_extent(ordered);
 
 854		end = ordered->file_offset;
 855		/*
 856		 * If the ordered extent had an error save the error but don't
 857		 * exit without waiting first for all other ordered extents in
 858		 * the range to complete.
 859		 */
 860		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 861			ret = -EIO;
 862		btrfs_put_ordered_extent(ordered);
 863		if (end == 0 || end == start)
 864			break;
 865		end--;
 866	}
 867	return ret_wb ? ret_wb : ret;
 868}
 869
 870/*
 871 * find an ordered extent corresponding to file_offset.  return NULL if
 872 * nothing is found, otherwise take a reference on the extent and return it
 873 */
 874struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 875							 u64 file_offset)
 876{
 
 877	struct rb_node *node;
 878	struct btrfs_ordered_extent *entry = NULL;
 879	unsigned long flags;
 880
 881	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 882	node = ordered_tree_search(inode, file_offset);
 
 883	if (!node)
 884		goto out;
 885
 886	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 887	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 888		entry = NULL;
 889	if (entry) {
 890		refcount_inc(&entry->refs);
 891		trace_btrfs_ordered_extent_lookup(inode, entry);
 892	}
 893out:
 894	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 895	return entry;
 896}
 897
 898/* Since the DIO code tries to lock a wide area we need to look for any ordered
 899 * extents that exist in the range, rather than just the start of the range.
 900 */
 901struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 902		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
 903{
 
 904	struct rb_node *node;
 905	struct btrfs_ordered_extent *entry = NULL;
 906
 907	spin_lock_irq(&inode->ordered_tree_lock);
 908	node = ordered_tree_search(inode, file_offset);
 
 909	if (!node) {
 910		node = ordered_tree_search(inode, file_offset + len);
 911		if (!node)
 912			goto out;
 913	}
 914
 915	while (1) {
 916		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 917		if (range_overlaps(entry, file_offset, len))
 918			break;
 919
 920		if (entry->file_offset >= file_offset + len) {
 921			entry = NULL;
 922			break;
 923		}
 924		entry = NULL;
 925		node = rb_next(node);
 926		if (!node)
 927			break;
 928	}
 929out:
 930	if (entry) {
 931		refcount_inc(&entry->refs);
 932		trace_btrfs_ordered_extent_lookup_range(inode, entry);
 933	}
 934	spin_unlock_irq(&inode->ordered_tree_lock);
 935	return entry;
 936}
 937
 938/*
 939 * Adds all ordered extents to the given list. The list ends up sorted by the
 940 * file_offset of the ordered extents.
 941 */
 942void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 943					   struct list_head *list)
 944{
 945	struct rb_node *n;
 946
 947	ASSERT(inode_is_locked(&inode->vfs_inode));
 948
 949	spin_lock_irq(&inode->ordered_tree_lock);
 950	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
 951		struct btrfs_ordered_extent *ordered;
 952
 953		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 954
 955		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 956			continue;
 957
 958		ASSERT(list_empty(&ordered->log_list));
 959		list_add_tail(&ordered->log_list, list);
 960		refcount_inc(&ordered->refs);
 961		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
 962	}
 963	spin_unlock_irq(&inode->ordered_tree_lock);
 964}
 965
 966/*
 967 * lookup and return any extent before 'file_offset'.  NULL is returned
 968 * if none is found
 969 */
 970struct btrfs_ordered_extent *
 971btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 972{
 
 973	struct rb_node *node;
 974	struct btrfs_ordered_extent *entry = NULL;
 975
 976	spin_lock_irq(&inode->ordered_tree_lock);
 977	node = ordered_tree_search(inode, file_offset);
 
 978	if (!node)
 979		goto out;
 980
 981	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 982	refcount_inc(&entry->refs);
 983	trace_btrfs_ordered_extent_lookup_first(inode, entry);
 984out:
 985	spin_unlock_irq(&inode->ordered_tree_lock);
 986	return entry;
 987}
 988
 989/*
 990 * Lookup the first ordered extent that overlaps the range
 991 * [@file_offset, @file_offset + @len).
 992 *
 993 * The difference between this and btrfs_lookup_first_ordered_extent() is
 994 * that this one won't return any ordered extent that does not overlap the range.
 995 * And the difference against btrfs_lookup_ordered_extent() is, this function
 996 * ensures the first ordered extent gets returned.
 997 */
 998struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 999			struct btrfs_inode *inode, u64 file_offset, u64 len)
1000{
 
 
 
 
 
1001	struct rb_node *node;
1002	struct rb_node *cur;
1003	struct rb_node *prev;
1004	struct rb_node *next;
1005	struct btrfs_ordered_extent *entry = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006
1007	spin_lock_irq(&inode->ordered_tree_lock);
1008	node = inode->ordered_tree.rb_node;
1009	/*
1010	 * Here we don't want to use tree_search() which will use tree->last
1011	 * and screw up the search order.
1012	 * And __tree_search() can't return the adjacent ordered extents
1013	 * either, thus here we do our own search.
1014	 */
1015	while (node) {
1016		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1017
1018		if (file_offset < entry->file_offset) {
1019			node = node->rb_left;
1020		} else if (file_offset >= entry_end(entry)) {
1021			node = node->rb_right;
1022		} else {
1023			/*
1024			 * Direct hit, got an ordered extent that starts at
1025			 * @file_offset
1026			 */
1027			goto out;
1028		}
1029	}
1030	if (!entry) {
1031		/* Empty tree */
1032		goto out;
1033	}
1034
1035	cur = &entry->rb_node;
1036	/* We got an entry around @file_offset, check adjacent entries */
1037	if (entry->file_offset < file_offset) {
1038		prev = cur;
1039		next = rb_next(cur);
 
 
1040	} else {
1041		prev = rb_prev(cur);
1042		next = cur;
1043	}
1044	if (prev) {
1045		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1046		if (range_overlaps(entry, file_offset, len))
1047			goto out;
 
 
 
 
1048	}
1049	if (next) {
1050		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1051		if (range_overlaps(entry, file_offset, len))
 
 
 
 
 
 
 
 
1052			goto out;
1053	}
1054	/* No ordered extent in the range */
1055	entry = NULL;
1056out:
1057	if (entry) {
1058		refcount_inc(&entry->refs);
1059		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1060	}
1061
1062	spin_unlock_irq(&inode->ordered_tree_lock);
1063	return entry;
1064}
1065
1066/*
1067 * Lock the passed range and ensures all pending ordered extents in it are run
1068 * to completion.
1069 *
1070 * @inode:        Inode whose ordered tree is to be searched
1071 * @start:        Beginning of range to flush
1072 * @end:          Last byte of range to lock
1073 * @cached_state: If passed, will return the extent state responsible for the
1074 *                locked range. It's the caller's responsibility to free the
1075 *                cached state.
1076 *
1077 * Always return with the given range locked, ensuring after it's called no
1078 * order extent can be pending.
1079 */
1080void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1081					u64 end,
1082					struct extent_state **cached_state)
1083{
1084	struct btrfs_ordered_extent *ordered;
1085	struct extent_state *cache = NULL;
1086	struct extent_state **cachedp = &cache;
1087
1088	if (cached_state)
1089		cachedp = cached_state;
 
 
 
 
 
 
 
 
 
 
 
1090
1091	while (1) {
1092		lock_extent(&inode->io_tree, start, end, cachedp);
1093		ordered = btrfs_lookup_ordered_range(inode, start,
1094						     end - start + 1);
1095		if (!ordered) {
1096			/*
1097			 * If no external cached_state has been passed then
1098			 * decrement the extra ref taken for cachedp since we
1099			 * aren't exposing it outside of this function
1100			 */
1101			if (!cached_state)
1102				refcount_dec(&cache->refs);
1103			break;
1104		}
1105		unlock_extent(&inode->io_tree, start, end, cachedp);
1106		btrfs_start_ordered_extent(ordered);
1107		btrfs_put_ordered_extent(ordered);
1108	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109}
1110
1111/*
1112 * Lock the passed range and ensure all pending ordered extents in it are run
1113 * to completion in nowait mode.
1114 *
1115 * Return true if btrfs_lock_ordered_range does not return any extents,
1116 * otherwise false.
1117 */
1118bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1119				  struct extent_state **cached_state)
1120{
 
 
1121	struct btrfs_ordered_extent *ordered;
 
 
 
 
 
1122
1123	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1124		return false;
1125
1126	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1127	if (!ordered)
1128		return true;
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130	btrfs_put_ordered_extent(ordered);
1131	unlock_extent(&inode->io_tree, start, end, cached_state);
1132
1133	return false;
1134}
1135
1136/* Split out a new ordered extent for this first @len bytes of @ordered. */
1137struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1138			struct btrfs_ordered_extent *ordered, u64 len)
1139{
1140	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1141	struct btrfs_root *root = inode->root;
1142	struct btrfs_fs_info *fs_info = root->fs_info;
1143	u64 file_offset = ordered->file_offset;
1144	u64 disk_bytenr = ordered->disk_bytenr;
1145	unsigned long flags = ordered->flags;
1146	struct btrfs_ordered_sum *sum, *tmpsum;
1147	struct btrfs_ordered_extent *new;
1148	struct rb_node *node;
1149	u64 offset = 0;
1150
1151	trace_btrfs_ordered_extent_split(inode, ordered);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152
1153	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1154
1155	/*
1156	 * The entire bio must be covered by the ordered extent, but we can't
1157	 * reduce the original extent to a zero length either.
1158	 */
1159	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1160		return ERR_PTR(-EINVAL);
1161	/* We cannot split partially completed ordered extents. */
1162	if (ordered->bytes_left) {
1163		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1164		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1165			return ERR_PTR(-EINVAL);
1166	}
1167	/* We cannot split a compressed ordered extent. */
1168	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1169		return ERR_PTR(-EINVAL);
1170
1171	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1172				   len, 0, flags, ordered->compress_type);
1173	if (IS_ERR(new))
1174		return new;
1175
1176	/* One ref for the tree. */
1177	refcount_inc(&new->refs);
1178
1179	spin_lock_irq(&root->ordered_extent_lock);
1180	spin_lock(&inode->ordered_tree_lock);
1181	/* Remove from tree once */
1182	node = &ordered->rb_node;
1183	rb_erase(node, &inode->ordered_tree);
1184	RB_CLEAR_NODE(node);
1185	if (inode->ordered_tree_last == node)
1186		inode->ordered_tree_last = NULL;
1187
1188	ordered->file_offset += len;
1189	ordered->disk_bytenr += len;
1190	ordered->num_bytes -= len;
1191	ordered->disk_num_bytes -= len;
1192
1193	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1194		ASSERT(ordered->bytes_left == 0);
1195		new->bytes_left = 0;
1196	} else {
1197		ordered->bytes_left -= len;
1198	}
1199
1200	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1201		if (ordered->truncated_len > len) {
1202			ordered->truncated_len -= len;
1203		} else {
1204			new->truncated_len = ordered->truncated_len;
1205			ordered->truncated_len = 0;
1206		}
1207	}
1208
1209	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210		if (offset == len)
1211			break;
1212		list_move_tail(&sum->list, &new->list);
1213		offset += sum->len;
1214	}
1215
1216	/* Re-insert the node */
1217	node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218			   &ordered->rb_node);
1219	if (node)
1220		btrfs_panic(fs_info, -EEXIST,
1221			"zoned: inconsistency in ordered tree at offset %llu",
1222			ordered->file_offset);
1223
1224	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1225	if (node)
1226		btrfs_panic(fs_info, -EEXIST,
1227			"zoned: inconsistency in ordered tree at offset %llu",
1228			new->file_offset);
1229	spin_unlock(&inode->ordered_tree_lock);
1230
1231	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1232	root->nr_ordered_extents++;
1233	spin_unlock_irq(&root->ordered_extent_lock);
1234	return new;
1235}
1236
1237int __init ordered_data_init(void)
1238{
1239	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1240				     sizeof(struct btrfs_ordered_extent), 0,
1241				     SLAB_MEM_SPREAD,
1242				     NULL);
1243	if (!btrfs_ordered_extent_cache)
1244		return -ENOMEM;
1245
1246	return 0;
1247}
1248
1249void __cold ordered_data_exit(void)
1250{
1251	kmem_cache_destroy(btrfs_ordered_extent_cache);
1252}
v3.5.6
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/slab.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include <linux/pagevec.h>
 
 
 23#include "ctree.h"
 24#include "transaction.h"
 25#include "btrfs_inode.h"
 26#include "extent_io.h"
 
 
 
 
 
 
 
 
 
 27
 28static u64 entry_end(struct btrfs_ordered_extent *entry)
 29{
 30	if (entry->file_offset + entry->len < entry->file_offset)
 31		return (u64)-1;
 32	return entry->file_offset + entry->len;
 33}
 34
 35/* returns NULL if the insertion worked, or it returns the node it did find
 36 * in the tree
 37 */
 38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 39				   struct rb_node *node)
 40{
 41	struct rb_node **p = &root->rb_node;
 42	struct rb_node *parent = NULL;
 43	struct btrfs_ordered_extent *entry;
 44
 45	while (*p) {
 46		parent = *p;
 47		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 48
 49		if (file_offset < entry->file_offset)
 50			p = &(*p)->rb_left;
 51		else if (file_offset >= entry_end(entry))
 52			p = &(*p)->rb_right;
 53		else
 54			return parent;
 55	}
 56
 57	rb_link_node(node, parent, p);
 58	rb_insert_color(node, root);
 59	return NULL;
 60}
 61
 62static void ordered_data_tree_panic(struct inode *inode, int errno,
 63					       u64 offset)
 64{
 65	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 66	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
 67		    "%llu\n", (unsigned long long)offset);
 68}
 69
 70/*
 71 * look for a given offset in the tree, and if it can't be found return the
 72 * first lesser offset
 73 */
 74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 75				     struct rb_node **prev_ret)
 76{
 77	struct rb_node *n = root->rb_node;
 78	struct rb_node *prev = NULL;
 79	struct rb_node *test;
 80	struct btrfs_ordered_extent *entry;
 81	struct btrfs_ordered_extent *prev_entry = NULL;
 82
 83	while (n) {
 84		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 85		prev = n;
 86		prev_entry = entry;
 87
 88		if (file_offset < entry->file_offset)
 89			n = n->rb_left;
 90		else if (file_offset >= entry_end(entry))
 91			n = n->rb_right;
 92		else
 93			return n;
 94	}
 95	if (!prev_ret)
 96		return NULL;
 97
 98	while (prev && file_offset >= entry_end(prev_entry)) {
 99		test = rb_next(prev);
100		if (!test)
101			break;
102		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103				      rb_node);
104		if (file_offset < entry_end(prev_entry))
105			break;
106
107		prev = test;
108	}
109	if (prev)
110		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111				      rb_node);
112	while (prev && file_offset < entry_end(prev_entry)) {
113		test = rb_prev(prev);
114		if (!test)
115			break;
116		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117				      rb_node);
118		prev = test;
119	}
120	*prev_ret = prev;
121	return NULL;
122}
123
124/*
125 * helper to check if a given offset is inside a given entry
126 */
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129	if (file_offset < entry->file_offset ||
130	    entry->file_offset + entry->len <= file_offset)
131		return 0;
132	return 1;
133}
134
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136			  u64 len)
137{
138	if (file_offset + len <= entry->file_offset ||
139	    entry->file_offset + entry->len <= file_offset)
140		return 0;
141	return 1;
142}
143
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149					  u64 file_offset)
150{
151	struct rb_root *root = &tree->tree;
152	struct rb_node *prev = NULL;
153	struct rb_node *ret;
154	struct btrfs_ordered_extent *entry;
155
156	if (tree->last) {
157		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158				 rb_node);
159		if (offset_in_entry(entry, file_offset))
160			return tree->last;
161	}
162	ret = __tree_search(root, file_offset, &prev);
163	if (!ret)
164		ret = prev;
165	if (ret)
166		tree->last = ret;
167	return ret;
168}
169
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182				      u64 start, u64 len, u64 disk_len,
183				      int type, int dio, int compress_type)
184{
185	struct btrfs_ordered_inode_tree *tree;
186	struct rb_node *node;
187	struct btrfs_ordered_extent *entry;
 
 
188
189	tree = &BTRFS_I(inode)->ordered_tree;
190	entry = kzalloc(sizeof(*entry), GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191	if (!entry)
192		return -ENOMEM;
193
194	entry->file_offset = file_offset;
195	entry->start = start;
196	entry->len = len;
197	entry->disk_len = disk_len;
198	entry->bytes_left = len;
199	entry->inode = igrab(inode);
 
 
200	entry->compress_type = compress_type;
201	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202		set_bit(type, &entry->flags);
203
204	if (dio)
205		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207	/* one ref for the tree */
208	atomic_set(&entry->refs, 1);
209	init_waitqueue_head(&entry->wait);
210	INIT_LIST_HEAD(&entry->list);
 
211	INIT_LIST_HEAD(&entry->root_extent_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
213	trace_btrfs_ordered_extent_add(inode, entry);
214
215	spin_lock_irq(&tree->lock);
216	node = tree_insert(&tree->tree, file_offset,
 
 
 
 
 
 
217			   &entry->rb_node);
218	if (node)
219		ordered_data_tree_panic(inode, -EEXIST, file_offset);
220	spin_unlock_irq(&tree->lock);
 
 
221
222	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223	list_add_tail(&entry->root_extent_list,
224		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
225	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
227	return 0;
 
 
 
 
 
228}
229
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231			     u64 start, u64 len, u64 disk_len, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232{
233	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234					  disk_len, type, 0,
235					  BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239				 u64 start, u64 len, u64 disk_len, int type)
240{
241	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242					  disk_len, type, 1,
243					  BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247				      u64 start, u64 len, u64 disk_len,
248				      int type, int compress_type)
249{
250	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251					  disk_len, type, 0,
252					  compress_type);
253}
254
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished.  If the list covers more than one
258 * ordered extent, it is split across multiples.
259 */
260void btrfs_add_ordered_sum(struct inode *inode,
261			   struct btrfs_ordered_extent *entry,
262			   struct btrfs_ordered_sum *sum)
263{
264	struct btrfs_ordered_inode_tree *tree;
265
266	tree = &BTRFS_I(inode)->ordered_tree;
267	spin_lock_irq(&tree->lock);
268	list_add_tail(&sum->list, &entry->list);
269	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270}
271
272/*
273 * this is used to account for finished IO across a given range
274 * of the file.  The IO may span ordered extents.  If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete.  This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285				   struct btrfs_ordered_extent **cached,
286				   u64 *file_offset, u64 io_size, int uptodate)
287{
288	struct btrfs_ordered_inode_tree *tree;
289	struct rb_node *node;
290	struct btrfs_ordered_extent *entry = NULL;
291	int ret;
292	unsigned long flags;
293	u64 dec_end;
294	u64 dec_start;
295	u64 to_dec;
296
297	tree = &BTRFS_I(inode)->ordered_tree;
298	spin_lock_irqsave(&tree->lock, flags);
299	node = tree_search(tree, *file_offset);
300	if (!node) {
301		ret = 1;
302		goto out;
303	}
 
 
 
 
 
304
305	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306	if (!offset_in_entry(entry, *file_offset)) {
307		ret = 1;
308		goto out;
309	}
 
 
 
 
 
 
 
 
 
310
311	dec_start = max(*file_offset, entry->file_offset);
312	dec_end = min(*file_offset + io_size, entry->file_offset +
313		      entry->len);
314	*file_offset = dec_end;
315	if (dec_start > dec_end) {
316		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317		       (unsigned long long)dec_start,
318		       (unsigned long long)dec_end);
319	}
320	to_dec = dec_end - dec_start;
321	if (to_dec > entry->bytes_left) {
322		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323		       (unsigned long long)entry->bytes_left,
324		       (unsigned long long)to_dec);
325	}
326	entry->bytes_left -= to_dec;
327	if (!uptodate)
328		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
329
330	if (entry->bytes_left == 0)
331		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
332	else
333		ret = 1;
334out:
335	if (!ret && cached && entry) {
336		*cached = entry;
337		atomic_inc(&entry->refs);
 
 
 
 
 
 
 
 
 
 
338	}
339	spin_unlock_irqrestore(&tree->lock, flags);
340	return ret == 0;
341}
342
343/*
344 * this is used to account for finished IO across a given range
345 * of the file.  The IO should not span ordered extents.  If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
347 * 0.
 
 
 
 
 
 
 
 
348 *
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
351 */
352int btrfs_dec_test_ordered_pending(struct inode *inode,
353				   struct btrfs_ordered_extent **cached,
354				   u64 file_offset, u64 io_size, int uptodate)
355{
356	struct btrfs_ordered_inode_tree *tree;
357	struct rb_node *node;
358	struct btrfs_ordered_extent *entry = NULL;
359	unsigned long flags;
360	int ret;
361
362	tree = &BTRFS_I(inode)->ordered_tree;
363	spin_lock_irqsave(&tree->lock, flags);
364	if (cached && *cached) {
365		entry = *cached;
366		goto have_entry;
367	}
368
369	node = tree_search(tree, file_offset);
370	if (!node) {
371		ret = 1;
372		goto out;
373	}
374
375	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
376have_entry:
377	if (!offset_in_entry(entry, file_offset)) {
378		ret = 1;
379		goto out;
380	}
381
382	if (io_size > entry->bytes_left) {
383		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384		       (unsigned long long)entry->bytes_left,
385		       (unsigned long long)io_size);
386	}
387	entry->bytes_left -= io_size;
388	if (!uptodate)
389		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
390
391	if (entry->bytes_left == 0)
392		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
393	else
394		ret = 1;
 
 
 
 
 
395out:
396	if (!ret && cached && entry) {
397		*cached = entry;
398		atomic_inc(&entry->refs);
 
399	}
400	spin_unlock_irqrestore(&tree->lock, flags);
401	return ret == 0;
402}
403
404/*
405 * used to drop a reference on an ordered extent.  This will free
406 * the extent if the last reference is dropped
407 */
408void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
409{
410	struct list_head *cur;
411	struct btrfs_ordered_sum *sum;
412
413	trace_btrfs_ordered_extent_put(entry->inode, entry);
414
415	if (atomic_dec_and_test(&entry->refs)) {
 
 
 
416		if (entry->inode)
417			btrfs_add_delayed_iput(entry->inode);
418		while (!list_empty(&entry->list)) {
419			cur = entry->list.next;
420			sum = list_entry(cur, struct btrfs_ordered_sum, list);
421			list_del(&sum->list);
422			kfree(sum);
423		}
424		kfree(entry);
425	}
426}
427
428/*
429 * remove an ordered extent from the tree.  No references are dropped
430 * and waiters are woken up.
431 */
432void btrfs_remove_ordered_extent(struct inode *inode,
433				 struct btrfs_ordered_extent *entry)
434{
435	struct btrfs_ordered_inode_tree *tree;
436	struct btrfs_root *root = BTRFS_I(inode)->root;
437	struct rb_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438
439	tree = &BTRFS_I(inode)->ordered_tree;
440	spin_lock_irq(&tree->lock);
 
 
441	node = &entry->rb_node;
442	rb_erase(node, &tree->tree);
443	tree->last = NULL;
 
 
444	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
446
447	spin_lock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448	list_del_init(&entry->root_extent_list);
 
449
450	trace_btrfs_ordered_extent_remove(inode, entry);
451
452	/*
453	 * we have no more ordered extents for this inode and
454	 * no dirty pages.  We can safely remove it from the
455	 * list of ordered extents
456	 */
457	if (RB_EMPTY_ROOT(&tree->tree) &&
458	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459		list_del_init(&BTRFS_I(inode)->ordered_operations);
460	}
461	spin_unlock(&root->fs_info->ordered_extent_lock);
462	wake_up(&entry->wait);
 
 
 
 
 
 
 
 
 
 
 
463}
464
465/*
466 * wait for all the ordered extents in a root.  This is done when balancing
467 * space between drives.
468 */
469void btrfs_wait_ordered_extents(struct btrfs_root *root,
470				int nocow_only, int delay_iput)
471{
472	struct list_head splice;
473	struct list_head *cur;
474	struct btrfs_ordered_extent *ordered;
475	struct inode *inode;
476
477	INIT_LIST_HEAD(&splice);
478
479	spin_lock(&root->fs_info->ordered_extent_lock);
480	list_splice_init(&root->fs_info->ordered_extents, &splice);
481	while (!list_empty(&splice)) {
482		cur = splice.next;
483		ordered = list_entry(cur, struct btrfs_ordered_extent,
484				     root_extent_list);
485		if (nocow_only &&
486		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488			list_move(&ordered->root_extent_list,
489				  &root->fs_info->ordered_extents);
490			cond_resched_lock(&root->fs_info->ordered_extent_lock);
491			continue;
492		}
493
494		list_del_init(&ordered->root_extent_list);
495		atomic_inc(&ordered->refs);
 
 
 
 
 
 
 
496
497		/*
498		 * the inode may be getting freed (in sys_unlink path).
499		 */
500		inode = igrab(ordered->inode);
501
502		spin_unlock(&root->fs_info->ordered_extent_lock);
503
504		if (inode) {
505			btrfs_start_ordered_extent(inode, ordered, 1);
506			btrfs_put_ordered_extent(ordered);
507			if (delay_iput)
508				btrfs_add_delayed_iput(inode);
509			else
510				iput(inode);
511		} else {
512			btrfs_put_ordered_extent(ordered);
513		}
514
515		spin_lock(&root->fs_info->ordered_extent_lock);
516	}
517	spin_unlock(&root->fs_info->ordered_extent_lock);
518}
519
520/*
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list.  These files must be fully on
523 * disk before the transaction commits.
524 *
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io.  When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
528 * before we return
529 */
530void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
531{
532	struct btrfs_inode *btrfs_inode;
533	struct inode *inode;
534	struct list_head splice;
535
536	INIT_LIST_HEAD(&splice);
537
538	mutex_lock(&root->fs_info->ordered_operations_mutex);
539	spin_lock(&root->fs_info->ordered_extent_lock);
540again:
541	list_splice_init(&root->fs_info->ordered_operations, &splice);
542
543	while (!list_empty(&splice)) {
544		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
545				   ordered_operations);
546
547		inode = &btrfs_inode->vfs_inode;
548
549		list_del_init(&btrfs_inode->ordered_operations);
550
551		/*
552		 * the inode may be getting freed (in sys_unlink path).
553		 */
554		inode = igrab(inode);
555
556		if (!wait && inode) {
557			list_add_tail(&BTRFS_I(inode)->ordered_operations,
558			      &root->fs_info->ordered_operations);
559		}
560		spin_unlock(&root->fs_info->ordered_extent_lock);
561
562		if (inode) {
563			if (wait)
564				btrfs_wait_ordered_range(inode, 0, (u64)-1);
565			else
566				filemap_flush(inode->i_mapping);
567			btrfs_add_delayed_iput(inode);
568		}
569
570		cond_resched();
571		spin_lock(&root->fs_info->ordered_extent_lock);
572	}
573	if (wait && !list_empty(&root->fs_info->ordered_operations))
574		goto again;
575
576	spin_unlock(&root->fs_info->ordered_extent_lock);
577	mutex_unlock(&root->fs_info->ordered_operations_mutex);
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588				       struct btrfs_ordered_extent *entry,
589				       int wait)
590{
591	u64 start = entry->file_offset;
592	u64 end = start + entry->len - 1;
 
 
593
594	trace_btrfs_ordered_extent_start(inode, entry);
595
596	/*
 
 
 
 
 
 
597	 * pages in the range can be dirty, clean or writeback.  We
598	 * start IO on any dirty ones so the wait doesn't stall waiting
599	 * for pdflush to find them
600	 */
601	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602		filemap_fdatawrite_range(inode->i_mapping, start, end);
603	if (wait) {
604		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605						 &entry->flags));
606	}
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
 
 
614	u64 end;
615	u64 orig_end;
616	struct btrfs_ordered_extent *ordered;
617	int found;
618
619	if (start + len < start) {
620		orig_end = INT_LIMIT(loff_t);
621	} else {
622		orig_end = start + len - 1;
623		if (orig_end > INT_LIMIT(loff_t))
624			orig_end = INT_LIMIT(loff_t);
625	}
626
627	/* start IO across the range first to instantiate any delalloc
628	 * extents
629	 */
630	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 
 
631
632	/*
633	 * So with compression we will find and lock a dirty page and clear the
634	 * first one as dirty, setup an async extent, and immediately return
635	 * with the entire range locked but with nobody actually marked with
636	 * writeback.  So we can't just filemap_write_and_wait_range() and
637	 * expect it to work since it will just kick off a thread to do the
638	 * actual work.  So we need to call filemap_fdatawrite_range _again_
639	 * since it will wait on the page lock, which won't be unlocked until
640	 * after the pages have been marked as writeback and so we're good to go
641	 * from there.  We have to do this otherwise we'll miss the ordered
642	 * extents and that results in badness.  Please Josef, do not think you
643	 * know better and pull this out at some point in the future, it is
644	 * right and you are wrong.
645	 */
646	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647		     &BTRFS_I(inode)->runtime_flags))
648		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
649
650	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
651
652	end = orig_end;
653	found = 0;
654	while (1) {
655		ordered = btrfs_lookup_first_ordered_extent(inode, end);
656		if (!ordered)
657			break;
658		if (ordered->file_offset > orig_end) {
659			btrfs_put_ordered_extent(ordered);
660			break;
661		}
662		if (ordered->file_offset + ordered->len < start) {
663			btrfs_put_ordered_extent(ordered);
664			break;
665		}
666		found++;
667		btrfs_start_ordered_extent(inode, ordered, 1);
668		end = ordered->file_offset;
 
 
 
 
 
 
 
669		btrfs_put_ordered_extent(ordered);
670		if (end == 0 || end == start)
671			break;
672		end--;
673	}
 
674}
675
676/*
677 * find an ordered extent corresponding to file_offset.  return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
681							 u64 file_offset)
682{
683	struct btrfs_ordered_inode_tree *tree;
684	struct rb_node *node;
685	struct btrfs_ordered_extent *entry = NULL;
 
686
687	tree = &BTRFS_I(inode)->ordered_tree;
688	spin_lock_irq(&tree->lock);
689	node = tree_search(tree, file_offset);
690	if (!node)
691		goto out;
692
693	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694	if (!offset_in_entry(entry, file_offset))
695		entry = NULL;
696	if (entry)
697		atomic_inc(&entry->refs);
 
 
698out:
699	spin_unlock_irq(&tree->lock);
700	return entry;
701}
702
703/* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
705 */
706struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
707							u64 file_offset,
708							u64 len)
709{
710	struct btrfs_ordered_inode_tree *tree;
711	struct rb_node *node;
712	struct btrfs_ordered_extent *entry = NULL;
713
714	tree = &BTRFS_I(inode)->ordered_tree;
715	spin_lock_irq(&tree->lock);
716	node = tree_search(tree, file_offset);
717	if (!node) {
718		node = tree_search(tree, file_offset + len);
719		if (!node)
720			goto out;
721	}
722
723	while (1) {
724		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725		if (range_overlaps(entry, file_offset, len))
726			break;
727
728		if (entry->file_offset >= file_offset + len) {
729			entry = NULL;
730			break;
731		}
732		entry = NULL;
733		node = rb_next(node);
734		if (!node)
735			break;
736	}
737out:
738	if (entry)
739		atomic_inc(&entry->refs);
740	spin_unlock_irq(&tree->lock);
 
 
741	return entry;
742}
743
744/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
745 * lookup and return any extent before 'file_offset'.  NULL is returned
746 * if none is found
747 */
748struct btrfs_ordered_extent *
749btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
750{
751	struct btrfs_ordered_inode_tree *tree;
752	struct rb_node *node;
753	struct btrfs_ordered_extent *entry = NULL;
754
755	tree = &BTRFS_I(inode)->ordered_tree;
756	spin_lock_irq(&tree->lock);
757	node = tree_search(tree, file_offset);
758	if (!node)
759		goto out;
760
761	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762	atomic_inc(&entry->refs);
 
763out:
764	spin_unlock_irq(&tree->lock);
765	return entry;
766}
767
768/*
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size.  i_size is updated to cover any fully written part of the file.
 
 
 
 
 
771 */
772int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773				struct btrfs_ordered_extent *ordered)
774{
775	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
776	u64 disk_i_size;
777	u64 new_i_size;
778	u64 i_size_test;
779	u64 i_size = i_size_read(inode);
780	struct rb_node *node;
781	struct rb_node *prev = NULL;
782	struct btrfs_ordered_extent *test;
783	int ret = 1;
784
785	if (ordered)
786		offset = entry_end(ordered);
787	else
788		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
789
790	spin_lock_irq(&tree->lock);
791	disk_i_size = BTRFS_I(inode)->disk_i_size;
792
793	/* truncate file */
794	if (disk_i_size > i_size) {
795		BTRFS_I(inode)->disk_i_size = i_size;
796		ret = 0;
797		goto out;
798	}
799
 
 
800	/*
801	 * if the disk i_size is already at the inode->i_size, or
802	 * this ordered extent is inside the disk i_size, we're done
 
 
803	 */
804	if (disk_i_size == i_size || offset <= disk_i_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805		goto out;
806	}
807
808	/*
809	 * walk backward from this ordered extent to disk_i_size.
810	 * if we find an ordered extent then we can't update disk i_size
811	 * yet
812	 */
813	if (ordered) {
814		node = rb_prev(&ordered->rb_node);
815	} else {
816		prev = tree_search(tree, offset);
817		/*
818		 * we insert file extents without involving ordered struct,
819		 * so there should be no ordered struct cover this offset
820		 */
821		if (prev) {
822			test = rb_entry(prev, struct btrfs_ordered_extent,
823					rb_node);
824			BUG_ON(offset_in_entry(test, offset));
825		}
826		node = prev;
827	}
828	for (; node; node = rb_prev(node)) {
829		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830
831		/* We treat this entry as if it doesnt exist */
832		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
833			continue;
834		if (test->file_offset + test->len <= disk_i_size)
835			break;
836		if (test->file_offset >= i_size)
837			break;
838		if (test->file_offset >= disk_i_size)
839			goto out;
840	}
841	new_i_size = min_t(u64, offset, i_size);
 
 
 
 
 
 
 
 
 
 
842
843	/*
844	 * at this point, we know we can safely update i_size to at least
845	 * the offset from this ordered extent.  But, we need to
846	 * walk forward and see if ios from higher up in the file have
847	 * finished.
848	 */
849	if (ordered) {
850		node = rb_next(&ordered->rb_node);
851	} else {
852		if (prev)
853			node = rb_next(prev);
854		else
855			node = rb_first(&tree->tree);
856	}
 
 
 
 
 
 
 
857
858	/*
859	 * We are looking for an area between our current extent and the next
860	 * ordered extent to update the i_size to.  There are 3 cases here
861	 *
862	 * 1) We don't actually have anything and we can update to i_size.
863	 * 2) We have stuff but they already did their i_size update so again we
864	 * can just update to i_size.
865	 * 3) We have an outstanding ordered extent so the most we can update
866	 * our disk_i_size to is the start of the next offset.
867	 */
868	i_size_test = i_size;
869	for (; node; node = rb_next(node)) {
870		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873			continue;
874		if (test->file_offset > offset) {
875			i_size_test = test->file_offset;
 
 
 
 
 
 
 
 
876			break;
877		}
 
 
 
878	}
879
880	/*
881	 * i_size_test is the end of a region after this ordered
882	 * extent where there are no ordered extents, we can safely set
883	 * disk_i_size to this.
884	 */
885	if (i_size_test > offset)
886		new_i_size = min_t(u64, i_size_test, i_size);
887	BTRFS_I(inode)->disk_i_size = new_i_size;
888	ret = 0;
889out:
890	/*
891	 * We need to do this because we can't remove ordered extents until
892	 * after the i_disk_size has been updated and then the inode has been
893	 * updated to reflect the change, so we need to tell anybody who finds
894	 * this ordered extent that we've already done all the real work, we
895	 * just haven't completed all the other work.
896	 */
897	if (ordered)
898		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899	spin_unlock_irq(&tree->lock);
900	return ret;
901}
902
903/*
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum.  This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
 
 
907 */
908int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
909			   u32 *sum)
910{
911	struct btrfs_ordered_sum *ordered_sum;
912	struct btrfs_sector_sum *sector_sums;
913	struct btrfs_ordered_extent *ordered;
914	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915	unsigned long num_sectors;
916	unsigned long i;
917	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
918	int ret = 1;
919
920	ordered = btrfs_lookup_ordered_extent(inode, offset);
 
 
 
921	if (!ordered)
922		return 1;
923
924	spin_lock_irq(&tree->lock);
925	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926		if (disk_bytenr >= ordered_sum->bytenr) {
927			num_sectors = ordered_sum->len / sectorsize;
928			sector_sums = ordered_sum->sums;
929			for (i = 0; i < num_sectors; i++) {
930				if (sector_sums[i].bytenr == disk_bytenr) {
931					*sum = sector_sums[i].sum;
932					ret = 0;
933					goto out;
934				}
935			}
936		}
937	}
938out:
939	spin_unlock_irq(&tree->lock);
940	btrfs_put_ordered_extent(ordered);
941	return ret;
 
 
942}
943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944
945/*
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
948 *
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
951 *
952 * It is a noop if the inode is already fully on disk.
953 *
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
956 */
957void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958				 struct btrfs_root *root, struct inode *inode)
959{
960	u64 last_mod;
961
962	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
963
964	/*
965	 * if this file hasn't been changed since the last transaction
966	 * commit, we can safely return without doing anything
967	 */
968	if (last_mod < root->fs_info->last_trans_committed)
969		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
970
971	/*
972	 * the transaction is already committing.  Just start the IO and
973	 * don't bother with all of this list nonsense
974	 */
975	if (trans && root->fs_info->running_transaction->blocked) {
976		btrfs_wait_ordered_range(inode, 0, (u64)-1);
977		return;
978	}
979
980	spin_lock(&root->fs_info->ordered_extent_lock);
981	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982		list_add_tail(&BTRFS_I(inode)->ordered_operations,
983			      &root->fs_info->ordered_operations);
 
984	}
985	spin_unlock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
986}