Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 * Copyright (C) 2022 Christoph Hellwig.
  5 */
  6
  7#include <linux/bio.h>
  8#include "bio.h"
  9#include "ctree.h"
 10#include "volumes.h"
 11#include "raid56.h"
 12#include "async-thread.h"
 13#include "dev-replace.h"
 14#include "rcu-string.h"
 15#include "zoned.h"
 16#include "file-item.h"
 17#include "raid-stripe-tree.h"
 18
 19static struct bio_set btrfs_bioset;
 20static struct bio_set btrfs_clone_bioset;
 21static struct bio_set btrfs_repair_bioset;
 22static mempool_t btrfs_failed_bio_pool;
 23
 24struct btrfs_failed_bio {
 25	struct btrfs_bio *bbio;
 26	int num_copies;
 27	atomic_t repair_count;
 28};
 29
 30/* Is this a data path I/O that needs storage layer checksum and repair? */
 31static inline bool is_data_bbio(struct btrfs_bio *bbio)
 32{
 33	return bbio->inode && is_data_inode(&bbio->inode->vfs_inode);
 34}
 35
 36static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
 37{
 38	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
 39}
 40
 41/*
 42 * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
 43 * is already initialized by the block layer.
 44 */
 45void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
 46		    btrfs_bio_end_io_t end_io, void *private)
 47{
 48	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
 49	bbio->fs_info = fs_info;
 50	bbio->end_io = end_io;
 51	bbio->private = private;
 52	atomic_set(&bbio->pending_ios, 1);
 53}
 54
 55/*
 56 * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
 58 *
 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
 60 * a mempool.
 61 */
 62struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
 63				  struct btrfs_fs_info *fs_info,
 64				  btrfs_bio_end_io_t end_io, void *private)
 65{
 66	struct btrfs_bio *bbio;
 67	struct bio *bio;
 68
 69	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
 70	bbio = btrfs_bio(bio);
 71	btrfs_bio_init(bbio, fs_info, end_io, private);
 72	return bbio;
 73}
 74
 75static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
 76					 struct btrfs_bio *orig_bbio,
 77					 u64 map_length, bool use_append)
 78{
 79	struct btrfs_bio *bbio;
 80	struct bio *bio;
 81
 82	if (use_append) {
 83		unsigned int nr_segs;
 84
 85		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
 86				   &btrfs_clone_bioset, map_length);
 87	} else {
 88		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
 89				GFP_NOFS, &btrfs_clone_bioset);
 90	}
 91	bbio = btrfs_bio(bio);
 92	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
 93	bbio->inode = orig_bbio->inode;
 94	bbio->file_offset = orig_bbio->file_offset;
 95	orig_bbio->file_offset += map_length;
 96	if (bbio_has_ordered_extent(bbio)) {
 97		refcount_inc(&orig_bbio->ordered->refs);
 98		bbio->ordered = orig_bbio->ordered;
 99	}
100	atomic_inc(&orig_bbio->pending_ios);
101	return bbio;
102}
103
104/* Free a bio that was never submitted to the underlying device. */
105static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
106{
107	if (bbio_has_ordered_extent(bbio))
108		btrfs_put_ordered_extent(bbio->ordered);
109	bio_put(&bbio->bio);
110}
111
112static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
113{
114	if (bbio_has_ordered_extent(bbio)) {
115		struct btrfs_ordered_extent *ordered = bbio->ordered;
116
117		bbio->end_io(bbio);
118		btrfs_put_ordered_extent(ordered);
119	} else {
120		bbio->end_io(bbio);
121	}
122}
123
124void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
125{
126	bbio->bio.bi_status = status;
127	__btrfs_bio_end_io(bbio);
128}
129
130static void btrfs_orig_write_end_io(struct bio *bio);
131
132static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
133				       struct btrfs_bio *orig_bbio)
134{
135	/*
136	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
137	 * just blindly propagate a write failure here.  Instead increment the
138	 * error count in the original I/O context so that it is guaranteed to
139	 * be larger than the error tolerance.
140	 */
141	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
142		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
143		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
144
145		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
146	} else {
147		orig_bbio->bio.bi_status = bbio->bio.bi_status;
148	}
149}
150
151static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
152{
153	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
154		struct btrfs_bio *orig_bbio = bbio->private;
155
156		if (bbio->bio.bi_status)
157			btrfs_bbio_propagate_error(bbio, orig_bbio);
158		btrfs_cleanup_bio(bbio);
159		bbio = orig_bbio;
160	}
161
162	if (atomic_dec_and_test(&bbio->pending_ios))
163		__btrfs_bio_end_io(bbio);
164}
165
166static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
167{
168	if (cur_mirror == fbio->num_copies)
169		return cur_mirror + 1 - fbio->num_copies;
170	return cur_mirror + 1;
171}
172
173static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
174{
175	if (cur_mirror == 1)
176		return fbio->num_copies;
177	return cur_mirror - 1;
178}
179
180static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
181{
182	if (atomic_dec_and_test(&fbio->repair_count)) {
183		btrfs_orig_bbio_end_io(fbio->bbio);
184		mempool_free(fbio, &btrfs_failed_bio_pool);
185	}
186}
187
188static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
189				 struct btrfs_device *dev)
190{
191	struct btrfs_failed_bio *fbio = repair_bbio->private;
192	struct btrfs_inode *inode = repair_bbio->inode;
193	struct btrfs_fs_info *fs_info = inode->root->fs_info;
194	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
195	int mirror = repair_bbio->mirror_num;
196
197	/*
198	 * We can only trigger this for data bio, which doesn't support larger
199	 * folios yet.
200	 */
201	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
202
203	if (repair_bbio->bio.bi_status ||
204	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
205		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
206		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
207
208		mirror = next_repair_mirror(fbio, mirror);
209		if (mirror == fbio->bbio->mirror_num) {
210			btrfs_debug(fs_info, "no mirror left");
211			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
212			goto done;
213		}
214
215		btrfs_submit_bio(repair_bbio, mirror);
216		return;
217	}
218
219	do {
220		mirror = prev_repair_mirror(fbio, mirror);
221		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
222				  repair_bbio->file_offset, fs_info->sectorsize,
223				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
224				  page_folio(bv->bv_page), bv->bv_offset, mirror);
225	} while (mirror != fbio->bbio->mirror_num);
226
227done:
228	btrfs_repair_done(fbio);
229	bio_put(&repair_bbio->bio);
230}
231
232/*
233 * Try to kick off a repair read to the next available mirror for a bad sector.
234 *
235 * This primarily tries to recover good data to serve the actual read request,
236 * but also tries to write the good data back to the bad mirror(s) when a
237 * read succeeded to restore the redundancy.
238 */
239static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
240						  u32 bio_offset,
241						  struct bio_vec *bv,
242						  struct btrfs_failed_bio *fbio)
243{
244	struct btrfs_inode *inode = failed_bbio->inode;
245	struct btrfs_fs_info *fs_info = inode->root->fs_info;
246	const u32 sectorsize = fs_info->sectorsize;
247	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
248	struct btrfs_bio *repair_bbio;
249	struct bio *repair_bio;
250	int num_copies;
251	int mirror;
252
253	btrfs_debug(fs_info, "repair read error: read error at %llu",
254		    failed_bbio->file_offset + bio_offset);
255
256	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
257	if (num_copies == 1) {
258		btrfs_debug(fs_info, "no copy to repair from");
259		failed_bbio->bio.bi_status = BLK_STS_IOERR;
260		return fbio;
261	}
262
263	if (!fbio) {
264		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
265		fbio->bbio = failed_bbio;
266		fbio->num_copies = num_copies;
267		atomic_set(&fbio->repair_count, 1);
268	}
269
270	atomic_inc(&fbio->repair_count);
271
272	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
273				      &btrfs_repair_bioset);
274	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
275	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
276
277	repair_bbio = btrfs_bio(repair_bio);
278	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
279	repair_bbio->inode = failed_bbio->inode;
280	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
281
282	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
283	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
284	btrfs_submit_bio(repair_bbio, mirror);
285	return fbio;
286}
287
288static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
289{
290	struct btrfs_inode *inode = bbio->inode;
291	struct btrfs_fs_info *fs_info = inode->root->fs_info;
292	u32 sectorsize = fs_info->sectorsize;
293	struct bvec_iter *iter = &bbio->saved_iter;
294	blk_status_t status = bbio->bio.bi_status;
295	struct btrfs_failed_bio *fbio = NULL;
296	u32 offset = 0;
297
298	/* Read-repair requires the inode field to be set by the submitter. */
299	ASSERT(inode);
300
301	/*
302	 * Hand off repair bios to the repair code as there is no upper level
303	 * submitter for them.
304	 */
305	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
306		btrfs_end_repair_bio(bbio, dev);
307		return;
308	}
309
310	/* Clear the I/O error. A failed repair will reset it. */
311	bbio->bio.bi_status = BLK_STS_OK;
312
313	while (iter->bi_size) {
314		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
315
316		bv.bv_len = min(bv.bv_len, sectorsize);
317		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
318			fbio = repair_one_sector(bbio, offset, &bv, fbio);
319
320		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
321		offset += sectorsize;
322	}
323
324	if (bbio->csum != bbio->csum_inline)
325		kfree(bbio->csum);
326
327	if (fbio)
328		btrfs_repair_done(fbio);
329	else
330		btrfs_orig_bbio_end_io(bbio);
331}
332
333static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
334{
335	if (!dev || !dev->bdev)
336		return;
337	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
338		return;
339
340	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
341		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
342	else if (!(bio->bi_opf & REQ_RAHEAD))
343		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
344	if (bio->bi_opf & REQ_PREFLUSH)
345		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
346}
347
348static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
349						struct bio *bio)
350{
351	if (bio->bi_opf & REQ_META)
352		return fs_info->endio_meta_workers;
353	return fs_info->endio_workers;
354}
355
356static void btrfs_end_bio_work(struct work_struct *work)
357{
358	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
359
360	/* Metadata reads are checked and repaired by the submitter. */
361	if (is_data_bbio(bbio))
362		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
363	else
364		btrfs_orig_bbio_end_io(bbio);
365}
366
367static void btrfs_simple_end_io(struct bio *bio)
368{
369	struct btrfs_bio *bbio = btrfs_bio(bio);
370	struct btrfs_device *dev = bio->bi_private;
371	struct btrfs_fs_info *fs_info = bbio->fs_info;
372
373	btrfs_bio_counter_dec(fs_info);
374
375	if (bio->bi_status)
376		btrfs_log_dev_io_error(bio, dev);
377
378	if (bio_op(bio) == REQ_OP_READ) {
379		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
380		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
381	} else {
382		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
383			btrfs_record_physical_zoned(bbio);
384		btrfs_orig_bbio_end_io(bbio);
385	}
386}
387
388static void btrfs_raid56_end_io(struct bio *bio)
389{
390	struct btrfs_io_context *bioc = bio->bi_private;
391	struct btrfs_bio *bbio = btrfs_bio(bio);
392
393	btrfs_bio_counter_dec(bioc->fs_info);
394	bbio->mirror_num = bioc->mirror_num;
395	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
396		btrfs_check_read_bio(bbio, NULL);
397	else
398		btrfs_orig_bbio_end_io(bbio);
399
400	btrfs_put_bioc(bioc);
401}
402
403static void btrfs_orig_write_end_io(struct bio *bio)
404{
405	struct btrfs_io_stripe *stripe = bio->bi_private;
406	struct btrfs_io_context *bioc = stripe->bioc;
407	struct btrfs_bio *bbio = btrfs_bio(bio);
408
409	btrfs_bio_counter_dec(bioc->fs_info);
410
411	if (bio->bi_status) {
412		atomic_inc(&bioc->error);
413		btrfs_log_dev_io_error(bio, stripe->dev);
414	}
415
416	/*
417	 * Only send an error to the higher layers if it is beyond the tolerance
418	 * threshold.
419	 */
420	if (atomic_read(&bioc->error) > bioc->max_errors)
421		bio->bi_status = BLK_STS_IOERR;
422	else
423		bio->bi_status = BLK_STS_OK;
424
425	if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
426		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
427
428	btrfs_orig_bbio_end_io(bbio);
429	btrfs_put_bioc(bioc);
430}
431
432static void btrfs_clone_write_end_io(struct bio *bio)
433{
434	struct btrfs_io_stripe *stripe = bio->bi_private;
435
436	if (bio->bi_status) {
437		atomic_inc(&stripe->bioc->error);
438		btrfs_log_dev_io_error(bio, stripe->dev);
439	} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
440		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
441	}
442
443	/* Pass on control to the original bio this one was cloned from */
444	bio_endio(stripe->bioc->orig_bio);
445	bio_put(bio);
446}
447
448static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
449{
450	if (!dev || !dev->bdev ||
451	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
452	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
453	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
454		bio_io_error(bio);
455		return;
456	}
457
458	bio_set_dev(bio, dev->bdev);
459
460	/*
461	 * For zone append writing, bi_sector must point the beginning of the
462	 * zone
463	 */
464	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
465		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
466		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
467
468		ASSERT(btrfs_dev_is_sequential(dev, physical));
469		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
470	}
471	btrfs_debug_in_rcu(dev->fs_info,
472	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
473		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
474		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
475		dev->devid, bio->bi_iter.bi_size);
476
477	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
478		blkcg_punt_bio_submit(bio);
479	else
480		submit_bio(bio);
481}
482
483static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
484{
485	struct bio *orig_bio = bioc->orig_bio, *bio;
486
487	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
488
489	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
490	if (dev_nr == bioc->num_stripes - 1) {
491		bio = orig_bio;
492		bio->bi_end_io = btrfs_orig_write_end_io;
493	} else {
494		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
495		bio_inc_remaining(orig_bio);
496		bio->bi_end_io = btrfs_clone_write_end_io;
497	}
498
499	bio->bi_private = &bioc->stripes[dev_nr];
500	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
501	bioc->stripes[dev_nr].bioc = bioc;
502	bioc->size = bio->bi_iter.bi_size;
503	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
504}
505
506static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
507			       struct btrfs_io_stripe *smap, int mirror_num)
508{
509	if (!bioc) {
510		/* Single mirror read/write fast path. */
511		btrfs_bio(bio)->mirror_num = mirror_num;
512		if (bio_op(bio) != REQ_OP_READ)
513			btrfs_bio(bio)->orig_physical = smap->physical;
514		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
515		if (bio_op(bio) != REQ_OP_READ)
516			btrfs_bio(bio)->orig_physical = smap->physical;
517		bio->bi_private = smap->dev;
518		bio->bi_end_io = btrfs_simple_end_io;
519		btrfs_submit_dev_bio(smap->dev, bio);
520	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
521		/* Parity RAID write or read recovery. */
522		bio->bi_private = bioc;
523		bio->bi_end_io = btrfs_raid56_end_io;
524		if (bio_op(bio) == REQ_OP_READ)
525			raid56_parity_recover(bio, bioc, mirror_num);
526		else
527			raid56_parity_write(bio, bioc);
528	} else {
529		/* Write to multiple mirrors. */
530		int total_devs = bioc->num_stripes;
531
532		bioc->orig_bio = bio;
533		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
534			btrfs_submit_mirrored_bio(bioc, dev_nr);
535	}
536}
537
538static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
539{
540	if (bbio->bio.bi_opf & REQ_META)
541		return btree_csum_one_bio(bbio);
542	return btrfs_csum_one_bio(bbio);
543}
544
545/*
546 * Async submit bios are used to offload expensive checksumming onto the worker
547 * threads.
548 */
549struct async_submit_bio {
550	struct btrfs_bio *bbio;
551	struct btrfs_io_context *bioc;
552	struct btrfs_io_stripe smap;
553	int mirror_num;
554	struct btrfs_work work;
555};
556
557/*
558 * In order to insert checksums into the metadata in large chunks, we wait
559 * until bio submission time.   All the pages in the bio are checksummed and
560 * sums are attached onto the ordered extent record.
561 *
562 * At IO completion time the csums attached on the ordered extent record are
563 * inserted into the btree.
564 */
565static void run_one_async_start(struct btrfs_work *work)
566{
567	struct async_submit_bio *async =
568		container_of(work, struct async_submit_bio, work);
569	blk_status_t ret;
570
571	ret = btrfs_bio_csum(async->bbio);
572	if (ret)
573		async->bbio->bio.bi_status = ret;
574}
575
576/*
577 * In order to insert checksums into the metadata in large chunks, we wait
578 * until bio submission time.   All the pages in the bio are checksummed and
579 * sums are attached onto the ordered extent record.
580 *
581 * At IO completion time the csums attached on the ordered extent record are
582 * inserted into the tree.
583 *
584 * If called with @do_free == true, then it will free the work struct.
585 */
586static void run_one_async_done(struct btrfs_work *work, bool do_free)
587{
588	struct async_submit_bio *async =
589		container_of(work, struct async_submit_bio, work);
590	struct bio *bio = &async->bbio->bio;
591
592	if (do_free) {
593		kfree(container_of(work, struct async_submit_bio, work));
594		return;
595	}
596
597	/* If an error occurred we just want to clean up the bio and move on. */
598	if (bio->bi_status) {
599		btrfs_orig_bbio_end_io(async->bbio);
600		return;
601	}
602
603	/*
604	 * All of the bios that pass through here are from async helpers.
605	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
606	 * context.  This changes nothing when cgroups aren't in use.
607	 */
608	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
609	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
610}
611
612static bool should_async_write(struct btrfs_bio *bbio)
613{
614	/* Submit synchronously if the checksum implementation is fast. */
615	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
616		return false;
617
618	/*
619	 * Try to defer the submission to a workqueue to parallelize the
620	 * checksum calculation unless the I/O is issued synchronously.
621	 */
622	if (op_is_sync(bbio->bio.bi_opf))
623		return false;
624
625	/* Zoned devices require I/O to be submitted in order. */
626	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
627		return false;
628
629	return true;
630}
631
632/*
633 * Submit bio to an async queue.
634 *
635 * Return true if the work has been successfully submitted, else false.
636 */
637static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
638				struct btrfs_io_context *bioc,
639				struct btrfs_io_stripe *smap, int mirror_num)
640{
641	struct btrfs_fs_info *fs_info = bbio->fs_info;
642	struct async_submit_bio *async;
643
644	async = kmalloc(sizeof(*async), GFP_NOFS);
645	if (!async)
646		return false;
647
648	async->bbio = bbio;
649	async->bioc = bioc;
650	async->smap = *smap;
651	async->mirror_num = mirror_num;
652
653	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
654	btrfs_queue_work(fs_info->workers, &async->work);
655	return true;
656}
657
658static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
659{
660	struct btrfs_inode *inode = bbio->inode;
661	struct btrfs_fs_info *fs_info = bbio->fs_info;
662	struct btrfs_bio *orig_bbio = bbio;
663	struct bio *bio = &bbio->bio;
664	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
665	u64 length = bio->bi_iter.bi_size;
666	u64 map_length = length;
667	bool use_append = btrfs_use_zone_append(bbio);
668	struct btrfs_io_context *bioc = NULL;
669	struct btrfs_io_stripe smap;
670	blk_status_t ret;
671	int error;
672
673	smap.is_scrub = !bbio->inode;
674
675	btrfs_bio_counter_inc_blocked(fs_info);
676	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
677				&bioc, &smap, &mirror_num);
678	if (error) {
679		ret = errno_to_blk_status(error);
680		goto fail;
681	}
682
683	map_length = min(map_length, length);
684	if (use_append)
685		map_length = min(map_length, fs_info->max_zone_append_size);
686
687	if (map_length < length) {
688		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
689		bio = &bbio->bio;
690	}
691
692	/*
693	 * Save the iter for the end_io handler and preload the checksums for
694	 * data reads.
695	 */
696	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
697		bbio->saved_iter = bio->bi_iter;
698		ret = btrfs_lookup_bio_sums(bbio);
699		if (ret)
700			goto fail_put_bio;
701	}
702
703	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
704		if (use_append) {
705			bio->bi_opf &= ~REQ_OP_WRITE;
706			bio->bi_opf |= REQ_OP_ZONE_APPEND;
707		}
708
709		if (is_data_bbio(bbio) && bioc &&
710		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
711			/*
712			 * No locking for the list update, as we only add to
713			 * the list in the I/O submission path, and list
714			 * iteration only happens in the completion path, which
715			 * can't happen until after the last submission.
716			 */
717			btrfs_get_bioc(bioc);
718			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
719		}
720
721		/*
722		 * Csum items for reloc roots have already been cloned at this
723		 * point, so they are handled as part of the no-checksum case.
724		 */
725		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
726		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
727		    !btrfs_is_data_reloc_root(inode->root)) {
728			if (should_async_write(bbio) &&
729			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
730				goto done;
731
732			ret = btrfs_bio_csum(bbio);
733			if (ret)
734				goto fail_put_bio;
735		} else if (use_append) {
736			ret = btrfs_alloc_dummy_sum(bbio);
737			if (ret)
738				goto fail_put_bio;
739		}
740	}
741
742	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
743done:
744	return map_length == length;
745
746fail_put_bio:
747	if (map_length < length)
748		btrfs_cleanup_bio(bbio);
749fail:
750	btrfs_bio_counter_dec(fs_info);
751	btrfs_bio_end_io(orig_bbio, ret);
752	/* Do not submit another chunk */
753	return true;
754}
755
756void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
757{
758	/* If bbio->inode is not populated, its file_offset must be 0. */
759	ASSERT(bbio->inode || bbio->file_offset == 0);
760
761	while (!btrfs_submit_chunk(bbio, mirror_num))
762		;
763}
764
765/*
766 * Submit a repair write.
767 *
768 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
769 * RAID setup.  Here we only want to write the one bad copy, so we do the
770 * mapping ourselves and submit the bio directly.
771 *
772 * The I/O is issued synchronously to block the repair read completion from
773 * freeing the bio.
774 */
775int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
776			    u64 length, u64 logical, struct folio *folio,
777			    unsigned int folio_offset, int mirror_num)
778{
779	struct btrfs_io_stripe smap = { 0 };
780	struct bio_vec bvec;
781	struct bio bio;
782	int ret = 0;
783
784	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
785	BUG_ON(!mirror_num);
786
787	if (btrfs_repair_one_zone(fs_info, logical))
788		return 0;
789
790	/*
791	 * Avoid races with device replace and make sure our bioc has devices
792	 * associated to its stripes that don't go away while we are doing the
793	 * read repair operation.
794	 */
795	btrfs_bio_counter_inc_blocked(fs_info);
796	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
797	if (ret < 0)
798		goto out_counter_dec;
799
800	if (!smap.dev->bdev ||
801	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
802		ret = -EIO;
803		goto out_counter_dec;
804	}
805
806	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
807	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
808	ret = bio_add_folio(&bio, folio, length, folio_offset);
809	ASSERT(ret);
810	ret = submit_bio_wait(&bio);
811	if (ret) {
812		/* try to remap that extent elsewhere? */
813		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
814		goto out_bio_uninit;
815	}
816
817	btrfs_info_rl_in_rcu(fs_info,
818		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
819			     ino, start, btrfs_dev_name(smap.dev),
820			     smap.physical >> SECTOR_SHIFT);
821	ret = 0;
822
823out_bio_uninit:
824	bio_uninit(&bio);
825out_counter_dec:
826	btrfs_bio_counter_dec(fs_info);
827	return ret;
828}
829
830/*
831 * Submit a btrfs_bio based repair write.
832 *
833 * If @dev_replace is true, the write would be submitted to dev-replace target.
834 */
835void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
836{
837	struct btrfs_fs_info *fs_info = bbio->fs_info;
838	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
839	u64 length = bbio->bio.bi_iter.bi_size;
840	struct btrfs_io_stripe smap = { 0 };
841	int ret;
842
843	ASSERT(fs_info);
844	ASSERT(mirror_num > 0);
845	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
846	ASSERT(!bbio->inode);
847
848	btrfs_bio_counter_inc_blocked(fs_info);
849	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
850	if (ret < 0)
851		goto fail;
852
853	if (dev_replace) {
854		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
855		smap.dev = fs_info->dev_replace.tgtdev;
856	}
857	__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
858	return;
859
860fail:
861	btrfs_bio_counter_dec(fs_info);
862	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
863}
864
865int __init btrfs_bioset_init(void)
866{
867	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
868			offsetof(struct btrfs_bio, bio),
869			BIOSET_NEED_BVECS))
870		return -ENOMEM;
871	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
872			offsetof(struct btrfs_bio, bio), 0))
873		goto out_free_bioset;
874	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
875			offsetof(struct btrfs_bio, bio),
876			BIOSET_NEED_BVECS))
877		goto out_free_clone_bioset;
878	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
879				      sizeof(struct btrfs_failed_bio)))
880		goto out_free_repair_bioset;
881	return 0;
882
883out_free_repair_bioset:
884	bioset_exit(&btrfs_repair_bioset);
885out_free_clone_bioset:
886	bioset_exit(&btrfs_clone_bioset);
887out_free_bioset:
888	bioset_exit(&btrfs_bioset);
889	return -ENOMEM;
890}
891
892void __cold btrfs_bioset_exit(void)
893{
894	mempool_exit(&btrfs_failed_bio_pool);
895	bioset_exit(&btrfs_repair_bioset);
896	bioset_exit(&btrfs_clone_bioset);
897	bioset_exit(&btrfs_bioset);
898}