Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 *
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
8 */
9
10#include <linux/module.h>
11#include <linux/pci.h>
12#include <linux/dmapool.h>
13#include <linux/kernel.h>
14#include <linux/delay.h>
15#include <linux/ioport.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/errno.h>
19#include <linux/timer.h>
20#include <linux/list.h>
21#include <linux/interrupt.h>
22#include <linux/usb.h>
23#include <linux/usb/hcd.h>
24#include <linux/moduleparam.h>
25#include <linux/dma-mapping.h>
26#include <linux/io.h>
27#include <linux/iopoll.h>
28
29#include <asm/irq.h>
30#include <asm/unaligned.h>
31
32#include <linux/irq.h>
33#include <linux/platform_device.h>
34
35#define DRIVER_VERSION "0.0.50"
36
37#define OXU_DEVICEID 0x00
38 #define OXU_REV_MASK 0xffff0000
39 #define OXU_REV_SHIFT 16
40 #define OXU_REV_2100 0x2100
41 #define OXU_BO_SHIFT 8
42 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
43 #define OXU_MAJ_REV_SHIFT 4
44 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
45 #define OXU_MIN_REV_SHIFT 0
46 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
47#define OXU_HOSTIFCONFIG 0x04
48#define OXU_SOFTRESET 0x08
49 #define OXU_SRESET (1 << 0)
50
51#define OXU_PIOBURSTREADCTRL 0x0C
52
53#define OXU_CHIPIRQSTATUS 0x10
54#define OXU_CHIPIRQEN_SET 0x14
55#define OXU_CHIPIRQEN_CLR 0x18
56 #define OXU_USBSPHLPWUI 0x00000080
57 #define OXU_USBOTGLPWUI 0x00000040
58 #define OXU_USBSPHI 0x00000002
59 #define OXU_USBOTGI 0x00000001
60
61#define OXU_CLKCTRL_SET 0x1C
62 #define OXU_SYSCLKEN 0x00000008
63 #define OXU_USBSPHCLKEN 0x00000002
64 #define OXU_USBOTGCLKEN 0x00000001
65
66#define OXU_ASO 0x68
67 #define OXU_SPHPOEN 0x00000100
68 #define OXU_OVRCCURPUPDEN 0x00000800
69 #define OXU_ASO_OP (1 << 10)
70 #define OXU_COMPARATOR 0x000004000
71
72#define OXU_USBMODE 0x1A8
73 #define OXU_VBPS 0x00000020
74 #define OXU_ES_LITTLE 0x00000000
75 #define OXU_CM_HOST_ONLY 0x00000003
76
77/*
78 * Proper EHCI structs & defines
79 */
80
81/* Magic numbers that can affect system performance */
82#define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
83#define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
84#define EHCI_TUNE_RL_TT 0
85#define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
86#define EHCI_TUNE_MULT_TT 1
87#define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
88
89struct oxu_hcd;
90
91/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92
93/* Section 2.2 Host Controller Capability Registers */
94struct ehci_caps {
95 /* these fields are specified as 8 and 16 bit registers,
96 * but some hosts can't perform 8 or 16 bit PCI accesses.
97 */
98 u32 hc_capbase;
99#define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
100#define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
101 u32 hcs_params; /* HCSPARAMS - offset 0x4 */
102#define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
103#define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
104#define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
105#define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
106#define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
107#define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
108#define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
109
110 u32 hcc_params; /* HCCPARAMS - offset 0x8 */
111#define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
112#define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
113#define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
114#define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
115#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
116#define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
117 u8 portroute[8]; /* nibbles for routing - offset 0xC */
118} __packed;
119
120
121/* Section 2.3 Host Controller Operational Registers */
122struct ehci_regs {
123 /* USBCMD: offset 0x00 */
124 u32 command;
125/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126#define CMD_PARK (1<<11) /* enable "park" on async qh */
127#define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
128#define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
129#define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
130#define CMD_ASE (1<<5) /* async schedule enable */
131#define CMD_PSE (1<<4) /* periodic schedule enable */
132/* 3:2 is periodic frame list size */
133#define CMD_RESET (1<<1) /* reset HC not bus */
134#define CMD_RUN (1<<0) /* start/stop HC */
135
136 /* USBSTS: offset 0x04 */
137 u32 status;
138#define STS_ASS (1<<15) /* Async Schedule Status */
139#define STS_PSS (1<<14) /* Periodic Schedule Status */
140#define STS_RECL (1<<13) /* Reclamation */
141#define STS_HALT (1<<12) /* Not running (any reason) */
142/* some bits reserved */
143 /* these STS_* flags are also intr_enable bits (USBINTR) */
144#define STS_IAA (1<<5) /* Interrupted on async advance */
145#define STS_FATAL (1<<4) /* such as some PCI access errors */
146#define STS_FLR (1<<3) /* frame list rolled over */
147#define STS_PCD (1<<2) /* port change detect */
148#define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
149#define STS_INT (1<<0) /* "normal" completion (short, ...) */
150
151#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152
153 /* USBINTR: offset 0x08 */
154 u32 intr_enable;
155
156 /* FRINDEX: offset 0x0C */
157 u32 frame_index; /* current microframe number */
158 /* CTRLDSSEGMENT: offset 0x10 */
159 u32 segment; /* address bits 63:32 if needed */
160 /* PERIODICLISTBASE: offset 0x14 */
161 u32 frame_list; /* points to periodic list */
162 /* ASYNCLISTADDR: offset 0x18 */
163 u32 async_next; /* address of next async queue head */
164
165 u32 reserved[9];
166
167 /* CONFIGFLAG: offset 0x40 */
168 u32 configured_flag;
169#define FLAG_CF (1<<0) /* true: we'll support "high speed" */
170
171 /* PORTSC: offset 0x44 */
172 u32 port_status[]; /* up to N_PORTS */
173/* 31:23 reserved */
174#define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
175#define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
176#define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
177/* 19:16 for port testing */
178#define PORT_LED_OFF (0<<14)
179#define PORT_LED_AMBER (1<<14)
180#define PORT_LED_GREEN (2<<14)
181#define PORT_LED_MASK (3<<14)
182#define PORT_OWNER (1<<13) /* true: companion hc owns this port */
183#define PORT_POWER (1<<12) /* true: has power (see PPC) */
184#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
185/* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186/* 9 reserved */
187#define PORT_RESET (1<<8) /* reset port */
188#define PORT_SUSPEND (1<<7) /* suspend port */
189#define PORT_RESUME (1<<6) /* resume it */
190#define PORT_OCC (1<<5) /* over current change */
191#define PORT_OC (1<<4) /* over current active */
192#define PORT_PEC (1<<3) /* port enable change */
193#define PORT_PE (1<<2) /* port enable */
194#define PORT_CSC (1<<1) /* connect status change */
195#define PORT_CONNECT (1<<0) /* device connected */
196#define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
197} __packed;
198
199/* Appendix C, Debug port ... intended for use with special "debug devices"
200 * that can help if there's no serial console. (nonstandard enumeration.)
201 */
202struct ehci_dbg_port {
203 u32 control;
204#define DBGP_OWNER (1<<30)
205#define DBGP_ENABLED (1<<28)
206#define DBGP_DONE (1<<16)
207#define DBGP_INUSE (1<<10)
208#define DBGP_ERRCODE(x) (((x)>>7)&0x07)
209# define DBGP_ERR_BAD 1
210# define DBGP_ERR_SIGNAL 2
211#define DBGP_ERROR (1<<6)
212#define DBGP_GO (1<<5)
213#define DBGP_OUT (1<<4)
214#define DBGP_LEN(x) (((x)>>0)&0x0f)
215 u32 pids;
216#define DBGP_PID_GET(x) (((x)>>16)&0xff)
217#define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
218 u32 data03;
219 u32 data47;
220 u32 address;
221#define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
222} __packed;
223
224#define QTD_NEXT(dma) cpu_to_le32((u32)dma)
225
226/*
227 * EHCI Specification 0.95 Section 3.5
228 * QTD: describe data transfer components (buffer, direction, ...)
229 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
230 *
231 * These are associated only with "QH" (Queue Head) structures,
232 * used with control, bulk, and interrupt transfers.
233 */
234struct ehci_qtd {
235 /* first part defined by EHCI spec */
236 __le32 hw_next; /* see EHCI 3.5.1 */
237 __le32 hw_alt_next; /* see EHCI 3.5.2 */
238 __le32 hw_token; /* see EHCI 3.5.3 */
239#define QTD_TOGGLE (1 << 31) /* data toggle */
240#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
241#define QTD_IOC (1 << 15) /* interrupt on complete */
242#define QTD_CERR(tok) (((tok)>>10) & 0x3)
243#define QTD_PID(tok) (((tok)>>8) & 0x3)
244#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
245#define QTD_STS_HALT (1 << 6) /* halted on error */
246#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
247#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
248#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
249#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
250#define QTD_STS_STS (1 << 1) /* split transaction state */
251#define QTD_STS_PING (1 << 0) /* issue PING? */
252 __le32 hw_buf[5]; /* see EHCI 3.5.4 */
253 __le32 hw_buf_hi[5]; /* Appendix B */
254
255 /* the rest is HCD-private */
256 dma_addr_t qtd_dma; /* qtd address */
257 struct list_head qtd_list; /* sw qtd list */
258 struct urb *urb; /* qtd's urb */
259 size_t length; /* length of buffer */
260
261 u32 qtd_buffer_len;
262 void *buffer;
263 dma_addr_t buffer_dma;
264 void *transfer_buffer;
265 void *transfer_dma;
266} __aligned(32);
267
268/* mask NakCnt+T in qh->hw_alt_next */
269#define QTD_MASK cpu_to_le32 (~0x1f)
270
271#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
272
273/* Type tag from {qh, itd, sitd, fstn}->hw_next */
274#define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
275
276/* values for that type tag */
277#define Q_TYPE_QH cpu_to_le32 (1 << 1)
278
279/* next async queue entry, or pointer to interrupt/periodic QH */
280#define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
281
282/* for periodic/async schedules and qtd lists, mark end of list */
283#define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
284
285/*
286 * Entries in periodic shadow table are pointers to one of four kinds
287 * of data structure. That's dictated by the hardware; a type tag is
288 * encoded in the low bits of the hardware's periodic schedule. Use
289 * Q_NEXT_TYPE to get the tag.
290 *
291 * For entries in the async schedule, the type tag always says "qh".
292 */
293union ehci_shadow {
294 struct ehci_qh *qh; /* Q_TYPE_QH */
295 __le32 *hw_next; /* (all types) */
296 void *ptr;
297};
298
299/*
300 * EHCI Specification 0.95 Section 3.6
301 * QH: describes control/bulk/interrupt endpoints
302 * See Fig 3-7 "Queue Head Structure Layout".
303 *
304 * These appear in both the async and (for interrupt) periodic schedules.
305 */
306
307struct ehci_qh {
308 /* first part defined by EHCI spec */
309 __le32 hw_next; /* see EHCI 3.6.1 */
310 __le32 hw_info1; /* see EHCI 3.6.2 */
311#define QH_HEAD 0x00008000
312 __le32 hw_info2; /* see EHCI 3.6.2 */
313#define QH_SMASK 0x000000ff
314#define QH_CMASK 0x0000ff00
315#define QH_HUBADDR 0x007f0000
316#define QH_HUBPORT 0x3f800000
317#define QH_MULT 0xc0000000
318 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */
319
320 /* qtd overlay (hardware parts of a struct ehci_qtd) */
321 __le32 hw_qtd_next;
322 __le32 hw_alt_next;
323 __le32 hw_token;
324 __le32 hw_buf[5];
325 __le32 hw_buf_hi[5];
326
327 /* the rest is HCD-private */
328 dma_addr_t qh_dma; /* address of qh */
329 union ehci_shadow qh_next; /* ptr to qh; or periodic */
330 struct list_head qtd_list; /* sw qtd list */
331 struct ehci_qtd *dummy;
332 struct ehci_qh *reclaim; /* next to reclaim */
333
334 struct oxu_hcd *oxu;
335 struct kref kref;
336 unsigned int stamp;
337
338 u8 qh_state;
339#define QH_STATE_LINKED 1 /* HC sees this */
340#define QH_STATE_UNLINK 2 /* HC may still see this */
341#define QH_STATE_IDLE 3 /* HC doesn't see this */
342#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
343#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
344
345 /* periodic schedule info */
346 u8 usecs; /* intr bandwidth */
347 u8 gap_uf; /* uframes split/csplit gap */
348 u8 c_usecs; /* ... split completion bw */
349 u16 tt_usecs; /* tt downstream bandwidth */
350 unsigned short period; /* polling interval */
351 unsigned short start; /* where polling starts */
352#define NO_FRAME ((unsigned short)~0) /* pick new start */
353 struct usb_device *dev; /* access to TT */
354} __aligned(32);
355
356/*
357 * Proper OXU210HP structs
358 */
359
360#define OXU_OTG_CORE_OFFSET 0x00400
361#define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
362#define OXU_SPH_CORE_OFFSET 0x00800
363#define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
364
365#define OXU_OTG_MEM 0xE000
366#define OXU_SPH_MEM 0x16000
367
368/* Only how many elements & element structure are specifies here. */
369/* 2 host controllers are enabled - total size <= 28 kbytes */
370#define DEFAULT_I_TDPS 1024
371#define QHEAD_NUM 16
372#define QTD_NUM 32
373#define SITD_NUM 8
374#define MURB_NUM 8
375
376#define BUFFER_NUM 8
377#define BUFFER_SIZE 512
378
379struct oxu_info {
380 struct usb_hcd *hcd[2];
381};
382
383struct oxu_buf {
384 u8 buffer[BUFFER_SIZE];
385} __aligned(BUFFER_SIZE);
386
387struct oxu_onchip_mem {
388 struct oxu_buf db_pool[BUFFER_NUM];
389
390 u32 frame_list[DEFAULT_I_TDPS];
391 struct ehci_qh qh_pool[QHEAD_NUM];
392 struct ehci_qtd qtd_pool[QTD_NUM];
393} __aligned(4 << 10);
394
395#define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
396
397struct oxu_murb {
398 struct urb urb;
399 struct urb *main;
400 u8 last;
401};
402
403struct oxu_hcd { /* one per controller */
404 unsigned int is_otg:1;
405
406 u8 qh_used[QHEAD_NUM];
407 u8 qtd_used[QTD_NUM];
408 u8 db_used[BUFFER_NUM];
409 u8 murb_used[MURB_NUM];
410
411 struct oxu_onchip_mem __iomem *mem;
412 spinlock_t mem_lock;
413
414 struct timer_list urb_timer;
415
416 struct ehci_caps __iomem *caps;
417 struct ehci_regs __iomem *regs;
418
419 u32 hcs_params; /* cached register copy */
420 spinlock_t lock;
421
422 /* async schedule support */
423 struct ehci_qh *async;
424 struct ehci_qh *reclaim;
425 unsigned int reclaim_ready:1;
426 unsigned int scanning:1;
427
428 /* periodic schedule support */
429 unsigned int periodic_size;
430 __le32 *periodic; /* hw periodic table */
431 dma_addr_t periodic_dma;
432 unsigned int i_thresh; /* uframes HC might cache */
433
434 union ehci_shadow *pshadow; /* mirror hw periodic table */
435 int next_uframe; /* scan periodic, start here */
436 unsigned int periodic_sched; /* periodic activity count */
437
438 /* per root hub port */
439 unsigned long reset_done[EHCI_MAX_ROOT_PORTS];
440 /* bit vectors (one bit per port) */
441 unsigned long bus_suspended; /* which ports were
442 * already suspended at the
443 * start of a bus suspend
444 */
445 unsigned long companion_ports;/* which ports are dedicated
446 * to the companion controller
447 */
448
449 struct timer_list watchdog;
450 unsigned long actions;
451 unsigned int stamp;
452 unsigned long next_statechange;
453 u32 command;
454
455 /* SILICON QUIRKS */
456 struct list_head urb_list; /* this is the head to urb
457 * queue that didn't get enough
458 * resources
459 */
460 struct oxu_murb *murb_pool; /* murb per split big urb */
461 unsigned int urb_len;
462
463 u8 sbrn; /* packed release number */
464};
465
466#define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
467#define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
468#define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
469#define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
470
471enum ehci_timer_action {
472 TIMER_IO_WATCHDOG,
473 TIMER_IAA_WATCHDOG,
474 TIMER_ASYNC_SHRINK,
475 TIMER_ASYNC_OFF,
476};
477
478/*
479 * Main defines
480 */
481
482#define oxu_dbg(oxu, fmt, args...) \
483 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
484#define oxu_err(oxu, fmt, args...) \
485 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
486#define oxu_info(oxu, fmt, args...) \
487 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
488
489#ifdef CONFIG_DYNAMIC_DEBUG
490#define DEBUG
491#endif
492
493static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
494{
495 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
496}
497
498static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
499{
500 return (struct oxu_hcd *) (hcd->hcd_priv);
501}
502
503/*
504 * Debug stuff
505 */
506
507#undef OXU_URB_TRACE
508#undef OXU_VERBOSE_DEBUG
509
510#ifdef OXU_VERBOSE_DEBUG
511#define oxu_vdbg oxu_dbg
512#else
513#define oxu_vdbg(oxu, fmt, args...) /* Nop */
514#endif
515
516#ifdef DEBUG
517
518static int __attribute__((__unused__))
519dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
520{
521 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
522 label, label[0] ? " " : "", status,
523 (status & STS_ASS) ? " Async" : "",
524 (status & STS_PSS) ? " Periodic" : "",
525 (status & STS_RECL) ? " Recl" : "",
526 (status & STS_HALT) ? " Halt" : "",
527 (status & STS_IAA) ? " IAA" : "",
528 (status & STS_FATAL) ? " FATAL" : "",
529 (status & STS_FLR) ? " FLR" : "",
530 (status & STS_PCD) ? " PCD" : "",
531 (status & STS_ERR) ? " ERR" : "",
532 (status & STS_INT) ? " INT" : ""
533 );
534}
535
536static int __attribute__((__unused__))
537dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
538{
539 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
540 label, label[0] ? " " : "", enable,
541 (enable & STS_IAA) ? " IAA" : "",
542 (enable & STS_FATAL) ? " FATAL" : "",
543 (enable & STS_FLR) ? " FLR" : "",
544 (enable & STS_PCD) ? " PCD" : "",
545 (enable & STS_ERR) ? " ERR" : "",
546 (enable & STS_INT) ? " INT" : ""
547 );
548}
549
550static const char *const fls_strings[] =
551 { "1024", "512", "256", "??" };
552
553static int dbg_command_buf(char *buf, unsigned len,
554 const char *label, u32 command)
555{
556 return scnprintf(buf, len,
557 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
558 label, label[0] ? " " : "", command,
559 (command & CMD_PARK) ? "park" : "(park)",
560 CMD_PARK_CNT(command),
561 (command >> 16) & 0x3f,
562 (command & CMD_LRESET) ? " LReset" : "",
563 (command & CMD_IAAD) ? " IAAD" : "",
564 (command & CMD_ASE) ? " Async" : "",
565 (command & CMD_PSE) ? " Periodic" : "",
566 fls_strings[(command >> 2) & 0x3],
567 (command & CMD_RESET) ? " Reset" : "",
568 (command & CMD_RUN) ? "RUN" : "HALT"
569 );
570}
571
572static int dbg_port_buf(char *buf, unsigned len, const char *label,
573 int port, u32 status)
574{
575 char *sig;
576
577 /* signaling state */
578 switch (status & (3 << 10)) {
579 case 0 << 10:
580 sig = "se0";
581 break;
582 case 1 << 10:
583 sig = "k"; /* low speed */
584 break;
585 case 2 << 10:
586 sig = "j";
587 break;
588 default:
589 sig = "?";
590 break;
591 }
592
593 return scnprintf(buf, len,
594 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
595 label, label[0] ? " " : "", port, status,
596 (status & PORT_POWER) ? " POWER" : "",
597 (status & PORT_OWNER) ? " OWNER" : "",
598 sig,
599 (status & PORT_RESET) ? " RESET" : "",
600 (status & PORT_SUSPEND) ? " SUSPEND" : "",
601 (status & PORT_RESUME) ? " RESUME" : "",
602 (status & PORT_OCC) ? " OCC" : "",
603 (status & PORT_OC) ? " OC" : "",
604 (status & PORT_PEC) ? " PEC" : "",
605 (status & PORT_PE) ? " PE" : "",
606 (status & PORT_CSC) ? " CSC" : "",
607 (status & PORT_CONNECT) ? " CONNECT" : ""
608 );
609}
610
611#else
612
613static inline int __attribute__((__unused__))
614dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
615{ return 0; }
616
617static inline int __attribute__((__unused__))
618dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
619{ return 0; }
620
621static inline int __attribute__((__unused__))
622dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
623{ return 0; }
624
625static inline int __attribute__((__unused__))
626dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
627{ return 0; }
628
629#endif /* DEBUG */
630
631/* functions have the "wrong" filename when they're output... */
632#define dbg_status(oxu, label, status) { \
633 char _buf[80]; \
634 dbg_status_buf(_buf, sizeof _buf, label, status); \
635 oxu_dbg(oxu, "%s\n", _buf); \
636}
637
638#define dbg_cmd(oxu, label, command) { \
639 char _buf[80]; \
640 dbg_command_buf(_buf, sizeof _buf, label, command); \
641 oxu_dbg(oxu, "%s\n", _buf); \
642}
643
644#define dbg_port(oxu, label, port, status) { \
645 char _buf[80]; \
646 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
647 oxu_dbg(oxu, "%s\n", _buf); \
648}
649
650/*
651 * Module parameters
652 */
653
654/* Initial IRQ latency: faster than hw default */
655static int log2_irq_thresh; /* 0 to 6 */
656module_param(log2_irq_thresh, int, S_IRUGO);
657MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
658
659/* Initial park setting: slower than hw default */
660static unsigned park;
661module_param(park, uint, S_IRUGO);
662MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
663
664/* For flakey hardware, ignore overcurrent indicators */
665static bool ignore_oc;
666module_param(ignore_oc, bool, S_IRUGO);
667MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
668
669
670static void ehci_work(struct oxu_hcd *oxu);
671static int oxu_hub_control(struct usb_hcd *hcd,
672 u16 typeReq, u16 wValue, u16 wIndex,
673 char *buf, u16 wLength);
674
675/*
676 * Local functions
677 */
678
679/* Low level read/write registers functions */
680static inline u32 oxu_readl(void __iomem *base, u32 reg)
681{
682 return readl(base + reg);
683}
684
685static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
686{
687 writel(val, base + reg);
688}
689
690static inline void timer_action_done(struct oxu_hcd *oxu,
691 enum ehci_timer_action action)
692{
693 clear_bit(action, &oxu->actions);
694}
695
696static inline void timer_action(struct oxu_hcd *oxu,
697 enum ehci_timer_action action)
698{
699 if (!test_and_set_bit(action, &oxu->actions)) {
700 unsigned long t;
701
702 switch (action) {
703 case TIMER_IAA_WATCHDOG:
704 t = EHCI_IAA_JIFFIES;
705 break;
706 case TIMER_IO_WATCHDOG:
707 t = EHCI_IO_JIFFIES;
708 break;
709 case TIMER_ASYNC_OFF:
710 t = EHCI_ASYNC_JIFFIES;
711 break;
712 case TIMER_ASYNC_SHRINK:
713 default:
714 t = EHCI_SHRINK_JIFFIES;
715 break;
716 }
717 t += jiffies;
718 /* all timings except IAA watchdog can be overridden.
719 * async queue SHRINK often precedes IAA. while it's ready
720 * to go OFF neither can matter, and afterwards the IO
721 * watchdog stops unless there's still periodic traffic.
722 */
723 if (action != TIMER_IAA_WATCHDOG
724 && t > oxu->watchdog.expires
725 && timer_pending(&oxu->watchdog))
726 return;
727 mod_timer(&oxu->watchdog, t);
728 }
729}
730
731/*
732 * handshake - spin reading hc until handshake completes or fails
733 * @ptr: address of hc register to be read
734 * @mask: bits to look at in result of read
735 * @done: value of those bits when handshake succeeds
736 * @usec: timeout in microseconds
737 *
738 * Returns negative errno, or zero on success
739 *
740 * Success happens when the "mask" bits have the specified value (hardware
741 * handshake done). There are two failure modes: "usec" have passed (major
742 * hardware flakeout), or the register reads as all-ones (hardware removed).
743 *
744 * That last failure should_only happen in cases like physical cardbus eject
745 * before driver shutdown. But it also seems to be caused by bugs in cardbus
746 * bridge shutdown: shutting down the bridge before the devices using it.
747 */
748static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
749 u32 mask, u32 done, int usec)
750{
751 u32 result;
752 int ret;
753
754 ret = readl_poll_timeout_atomic(ptr, result,
755 ((result & mask) == done ||
756 result == U32_MAX),
757 1, usec);
758 if (result == U32_MAX) /* card removed */
759 return -ENODEV;
760
761 return ret;
762}
763
764/* Force HC to halt state from unknown (EHCI spec section 2.3) */
765static int ehci_halt(struct oxu_hcd *oxu)
766{
767 u32 temp = readl(&oxu->regs->status);
768
769 /* disable any irqs left enabled by previous code */
770 writel(0, &oxu->regs->intr_enable);
771
772 if ((temp & STS_HALT) != 0)
773 return 0;
774
775 temp = readl(&oxu->regs->command);
776 temp &= ~CMD_RUN;
777 writel(temp, &oxu->regs->command);
778 return handshake(oxu, &oxu->regs->status,
779 STS_HALT, STS_HALT, 16 * 125);
780}
781
782/* Put TDI/ARC silicon into EHCI mode */
783static void tdi_reset(struct oxu_hcd *oxu)
784{
785 u32 __iomem *reg_ptr;
786 u32 tmp;
787
788 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
789 tmp = readl(reg_ptr);
790 tmp |= 0x3;
791 writel(tmp, reg_ptr);
792}
793
794/* Reset a non-running (STS_HALT == 1) controller */
795static int ehci_reset(struct oxu_hcd *oxu)
796{
797 int retval;
798 u32 command = readl(&oxu->regs->command);
799
800 command |= CMD_RESET;
801 dbg_cmd(oxu, "reset", command);
802 writel(command, &oxu->regs->command);
803 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
804 oxu->next_statechange = jiffies;
805 retval = handshake(oxu, &oxu->regs->command,
806 CMD_RESET, 0, 250 * 1000);
807
808 if (retval)
809 return retval;
810
811 tdi_reset(oxu);
812
813 return retval;
814}
815
816/* Idle the controller (from running) */
817static void ehci_quiesce(struct oxu_hcd *oxu)
818{
819 u32 temp;
820
821#ifdef DEBUG
822 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
823#endif
824
825 /* wait for any schedule enables/disables to take effect */
826 temp = readl(&oxu->regs->command) << 10;
827 temp &= STS_ASS | STS_PSS;
828 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
829 temp, 16 * 125) != 0) {
830 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
831 return;
832 }
833
834 /* then disable anything that's still active */
835 temp = readl(&oxu->regs->command);
836 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
837 writel(temp, &oxu->regs->command);
838
839 /* hardware can take 16 microframes to turn off ... */
840 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
841 0, 16 * 125) != 0) {
842 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
843 return;
844 }
845}
846
847static int check_reset_complete(struct oxu_hcd *oxu, int index,
848 u32 __iomem *status_reg, int port_status)
849{
850 if (!(port_status & PORT_CONNECT)) {
851 oxu->reset_done[index] = 0;
852 return port_status;
853 }
854
855 /* if reset finished and it's still not enabled -- handoff */
856 if (!(port_status & PORT_PE)) {
857 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
858 index+1);
859 return port_status;
860 } else
861 oxu_dbg(oxu, "port %d high speed\n", index + 1);
862
863 return port_status;
864}
865
866static void ehci_hub_descriptor(struct oxu_hcd *oxu,
867 struct usb_hub_descriptor *desc)
868{
869 int ports = HCS_N_PORTS(oxu->hcs_params);
870 u16 temp;
871
872 desc->bDescriptorType = USB_DT_HUB;
873 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
874 desc->bHubContrCurrent = 0;
875
876 desc->bNbrPorts = ports;
877 temp = 1 + (ports / 8);
878 desc->bDescLength = 7 + 2 * temp;
879
880 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
881 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
882 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
883
884 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
885 if (HCS_PPC(oxu->hcs_params))
886 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
887 else
888 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
889 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
890}
891
892
893/* Allocate an OXU210HP on-chip memory data buffer
894 *
895 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
896 * Each transfer descriptor has one or more on-chip memory data buffers.
897 *
898 * Data buffers are allocated from a fix sized pool of data blocks.
899 * To minimise fragmentation and give reasonable memory utlisation,
900 * data buffers are allocated with sizes the power of 2 multiples of
901 * the block size, starting on an address a multiple of the allocated size.
902 *
903 * FIXME: callers of this function require a buffer to be allocated for
904 * len=0. This is a waste of on-chip memory and should be fix. Then this
905 * function should be changed to not allocate a buffer for len=0.
906 */
907static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
908{
909 int n_blocks; /* minium blocks needed to hold len */
910 int a_blocks; /* blocks allocated */
911 int i, j;
912
913 /* Don't allocte bigger than supported */
914 if (len > BUFFER_SIZE * BUFFER_NUM) {
915 oxu_err(oxu, "buffer too big (%d)\n", len);
916 return -ENOMEM;
917 }
918
919 spin_lock(&oxu->mem_lock);
920
921 /* Number of blocks needed to hold len */
922 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
923
924 /* Round the number of blocks up to the power of 2 */
925 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
926 ;
927
928 /* Find a suitable available data buffer */
929 for (i = 0; i < BUFFER_NUM;
930 i += max(a_blocks, (int)oxu->db_used[i])) {
931
932 /* Check all the required blocks are available */
933 for (j = 0; j < a_blocks; j++)
934 if (oxu->db_used[i + j])
935 break;
936
937 if (j != a_blocks)
938 continue;
939
940 /* Allocate blocks found! */
941 qtd->buffer = (void *) &oxu->mem->db_pool[i];
942 qtd->buffer_dma = virt_to_phys(qtd->buffer);
943
944 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
945 oxu->db_used[i] = a_blocks;
946
947 spin_unlock(&oxu->mem_lock);
948
949 return 0;
950 }
951
952 /* Failed */
953
954 spin_unlock(&oxu->mem_lock);
955
956 return -ENOMEM;
957}
958
959static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
960{
961 int index;
962
963 spin_lock(&oxu->mem_lock);
964
965 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
966 / BUFFER_SIZE;
967 oxu->db_used[index] = 0;
968 qtd->qtd_buffer_len = 0;
969 qtd->buffer_dma = 0;
970 qtd->buffer = NULL;
971
972 spin_unlock(&oxu->mem_lock);
973}
974
975static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
976{
977 memset(qtd, 0, sizeof *qtd);
978 qtd->qtd_dma = dma;
979 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
980 qtd->hw_next = EHCI_LIST_END;
981 qtd->hw_alt_next = EHCI_LIST_END;
982 INIT_LIST_HEAD(&qtd->qtd_list);
983}
984
985static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
986{
987 int index;
988
989 if (qtd->buffer)
990 oxu_buf_free(oxu, qtd);
991
992 spin_lock(&oxu->mem_lock);
993
994 index = qtd - &oxu->mem->qtd_pool[0];
995 oxu->qtd_used[index] = 0;
996
997 spin_unlock(&oxu->mem_lock);
998}
999
1000static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1001{
1002 int i;
1003 struct ehci_qtd *qtd = NULL;
1004
1005 spin_lock(&oxu->mem_lock);
1006
1007 for (i = 0; i < QTD_NUM; i++)
1008 if (!oxu->qtd_used[i])
1009 break;
1010
1011 if (i < QTD_NUM) {
1012 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1013 memset(qtd, 0, sizeof *qtd);
1014
1015 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1016 qtd->hw_next = EHCI_LIST_END;
1017 qtd->hw_alt_next = EHCI_LIST_END;
1018 INIT_LIST_HEAD(&qtd->qtd_list);
1019
1020 qtd->qtd_dma = virt_to_phys(qtd);
1021
1022 oxu->qtd_used[i] = 1;
1023 }
1024
1025 spin_unlock(&oxu->mem_lock);
1026
1027 return qtd;
1028}
1029
1030static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1031{
1032 int index;
1033
1034 spin_lock(&oxu->mem_lock);
1035
1036 index = qh - &oxu->mem->qh_pool[0];
1037 oxu->qh_used[index] = 0;
1038
1039 spin_unlock(&oxu->mem_lock);
1040}
1041
1042static void qh_destroy(struct kref *kref)
1043{
1044 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1045 struct oxu_hcd *oxu = qh->oxu;
1046
1047 /* clean qtds first, and know this is not linked */
1048 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1049 oxu_dbg(oxu, "unused qh not empty!\n");
1050 BUG();
1051 }
1052 if (qh->dummy)
1053 oxu_qtd_free(oxu, qh->dummy);
1054 oxu_qh_free(oxu, qh);
1055}
1056
1057static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1058{
1059 int i;
1060 struct ehci_qh *qh = NULL;
1061
1062 spin_lock(&oxu->mem_lock);
1063
1064 for (i = 0; i < QHEAD_NUM; i++)
1065 if (!oxu->qh_used[i])
1066 break;
1067
1068 if (i < QHEAD_NUM) {
1069 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1070 memset(qh, 0, sizeof *qh);
1071
1072 kref_init(&qh->kref);
1073 qh->oxu = oxu;
1074 qh->qh_dma = virt_to_phys(qh);
1075 INIT_LIST_HEAD(&qh->qtd_list);
1076
1077 /* dummy td enables safe urb queuing */
1078 qh->dummy = ehci_qtd_alloc(oxu);
1079 if (qh->dummy == NULL) {
1080 oxu_dbg(oxu, "no dummy td\n");
1081 oxu->qh_used[i] = 0;
1082 qh = NULL;
1083 goto unlock;
1084 }
1085
1086 oxu->qh_used[i] = 1;
1087 }
1088unlock:
1089 spin_unlock(&oxu->mem_lock);
1090
1091 return qh;
1092}
1093
1094/* to share a qh (cpu threads, or hc) */
1095static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1096{
1097 kref_get(&qh->kref);
1098 return qh;
1099}
1100
1101static inline void qh_put(struct ehci_qh *qh)
1102{
1103 kref_put(&qh->kref, qh_destroy);
1104}
1105
1106static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1107{
1108 int index;
1109
1110 spin_lock(&oxu->mem_lock);
1111
1112 index = murb - &oxu->murb_pool[0];
1113 oxu->murb_used[index] = 0;
1114
1115 spin_unlock(&oxu->mem_lock);
1116}
1117
1118static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1119
1120{
1121 int i;
1122 struct oxu_murb *murb = NULL;
1123
1124 spin_lock(&oxu->mem_lock);
1125
1126 for (i = 0; i < MURB_NUM; i++)
1127 if (!oxu->murb_used[i])
1128 break;
1129
1130 if (i < MURB_NUM) {
1131 murb = &(oxu->murb_pool)[i];
1132
1133 oxu->murb_used[i] = 1;
1134 }
1135
1136 spin_unlock(&oxu->mem_lock);
1137
1138 return murb;
1139}
1140
1141/* The queue heads and transfer descriptors are managed from pools tied
1142 * to each of the "per device" structures.
1143 * This is the initialisation and cleanup code.
1144 */
1145static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1146{
1147 kfree(oxu->murb_pool);
1148 oxu->murb_pool = NULL;
1149
1150 if (oxu->async)
1151 qh_put(oxu->async);
1152 oxu->async = NULL;
1153
1154 del_timer(&oxu->urb_timer);
1155
1156 oxu->periodic = NULL;
1157
1158 /* shadow periodic table */
1159 kfree(oxu->pshadow);
1160 oxu->pshadow = NULL;
1161}
1162
1163/* Remember to add cleanup code (above) if you add anything here.
1164 */
1165static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1166{
1167 int i;
1168
1169 for (i = 0; i < oxu->periodic_size; i++)
1170 oxu->mem->frame_list[i] = EHCI_LIST_END;
1171 for (i = 0; i < QHEAD_NUM; i++)
1172 oxu->qh_used[i] = 0;
1173 for (i = 0; i < QTD_NUM; i++)
1174 oxu->qtd_used[i] = 0;
1175
1176 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1177 if (!oxu->murb_pool)
1178 goto fail;
1179
1180 for (i = 0; i < MURB_NUM; i++)
1181 oxu->murb_used[i] = 0;
1182
1183 oxu->async = oxu_qh_alloc(oxu);
1184 if (!oxu->async)
1185 goto fail;
1186
1187 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1188 oxu->periodic_dma = virt_to_phys(oxu->periodic);
1189
1190 for (i = 0; i < oxu->periodic_size; i++)
1191 oxu->periodic[i] = EHCI_LIST_END;
1192
1193 /* software shadow of hardware table */
1194 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1195 if (oxu->pshadow != NULL)
1196 return 0;
1197
1198fail:
1199 oxu_dbg(oxu, "couldn't init memory\n");
1200 ehci_mem_cleanup(oxu);
1201 return -ENOMEM;
1202}
1203
1204/* Fill a qtd, returning how much of the buffer we were able to queue up.
1205 */
1206static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1207 int token, int maxpacket)
1208{
1209 int i, count;
1210 u64 addr = buf;
1211
1212 /* one buffer entry per 4K ... first might be short or unaligned */
1213 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1214 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1215 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1216 if (likely(len < count)) /* ... iff needed */
1217 count = len;
1218 else {
1219 buf += 0x1000;
1220 buf &= ~0x0fff;
1221
1222 /* per-qtd limit: from 16K to 20K (best alignment) */
1223 for (i = 1; count < len && i < 5; i++) {
1224 addr = buf;
1225 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1226 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1227 buf += 0x1000;
1228 if ((count + 0x1000) < len)
1229 count += 0x1000;
1230 else
1231 count = len;
1232 }
1233
1234 /* short packets may only terminate transfers */
1235 if (count != len)
1236 count -= (count % maxpacket);
1237 }
1238 qtd->hw_token = cpu_to_le32((count << 16) | token);
1239 qtd->length = count;
1240
1241 return count;
1242}
1243
1244static inline void qh_update(struct oxu_hcd *oxu,
1245 struct ehci_qh *qh, struct ehci_qtd *qtd)
1246{
1247 /* writes to an active overlay are unsafe */
1248 BUG_ON(qh->qh_state != QH_STATE_IDLE);
1249
1250 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1251 qh->hw_alt_next = EHCI_LIST_END;
1252
1253 /* Except for control endpoints, we make hardware maintain data
1254 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1255 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1256 * ever clear it.
1257 */
1258 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1259 unsigned is_out, epnum;
1260
1261 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1262 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1263 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1264 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1265 usb_settoggle(qh->dev, epnum, is_out, 1);
1266 }
1267 }
1268
1269 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1270 wmb();
1271 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1272}
1273
1274/* If it weren't for a common silicon quirk (writing the dummy into the qh
1275 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1276 * recovery (including urb dequeue) would need software changes to a QH...
1277 */
1278static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1279{
1280 struct ehci_qtd *qtd;
1281
1282 if (list_empty(&qh->qtd_list))
1283 qtd = qh->dummy;
1284 else {
1285 qtd = list_entry(qh->qtd_list.next,
1286 struct ehci_qtd, qtd_list);
1287 /* first qtd may already be partially processed */
1288 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1289 qtd = NULL;
1290 }
1291
1292 if (qtd)
1293 qh_update(oxu, qh, qtd);
1294}
1295
1296static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1297 size_t length, u32 token)
1298{
1299 /* count IN/OUT bytes, not SETUP (even short packets) */
1300 if (likely(QTD_PID(token) != 2))
1301 urb->actual_length += length - QTD_LENGTH(token);
1302
1303 /* don't modify error codes */
1304 if (unlikely(urb->status != -EINPROGRESS))
1305 return;
1306
1307 /* force cleanup after short read; not always an error */
1308 if (unlikely(IS_SHORT_READ(token)))
1309 urb->status = -EREMOTEIO;
1310
1311 /* serious "can't proceed" faults reported by the hardware */
1312 if (token & QTD_STS_HALT) {
1313 if (token & QTD_STS_BABBLE) {
1314 /* FIXME "must" disable babbling device's port too */
1315 urb->status = -EOVERFLOW;
1316 } else if (token & QTD_STS_MMF) {
1317 /* fs/ls interrupt xfer missed the complete-split */
1318 urb->status = -EPROTO;
1319 } else if (token & QTD_STS_DBE) {
1320 urb->status = (QTD_PID(token) == 1) /* IN ? */
1321 ? -ENOSR /* hc couldn't read data */
1322 : -ECOMM; /* hc couldn't write data */
1323 } else if (token & QTD_STS_XACT) {
1324 /* timeout, bad crc, wrong PID, etc; retried */
1325 if (QTD_CERR(token))
1326 urb->status = -EPIPE;
1327 else {
1328 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1329 urb->dev->devpath,
1330 usb_pipeendpoint(urb->pipe),
1331 usb_pipein(urb->pipe) ? "in" : "out");
1332 urb->status = -EPROTO;
1333 }
1334 /* CERR nonzero + no errors + halt --> stall */
1335 } else if (QTD_CERR(token))
1336 urb->status = -EPIPE;
1337 else /* unknown */
1338 urb->status = -EPROTO;
1339
1340 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1341 usb_pipedevice(urb->pipe),
1342 usb_pipeendpoint(urb->pipe),
1343 usb_pipein(urb->pipe) ? "in" : "out",
1344 token, urb->status);
1345 }
1346}
1347
1348static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1349__releases(oxu->lock)
1350__acquires(oxu->lock)
1351{
1352 if (likely(urb->hcpriv != NULL)) {
1353 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
1354
1355 /* S-mask in a QH means it's an interrupt urb */
1356 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1357
1358 /* ... update hc-wide periodic stats (for usbfs) */
1359 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1360 }
1361 qh_put(qh);
1362 }
1363
1364 urb->hcpriv = NULL;
1365 switch (urb->status) {
1366 case -EINPROGRESS: /* success */
1367 urb->status = 0;
1368 break;
1369 default: /* fault */
1370 break;
1371 case -EREMOTEIO: /* fault or normal */
1372 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373 urb->status = 0;
1374 break;
1375 case -ECONNRESET: /* canceled */
1376 case -ENOENT:
1377 break;
1378 }
1379
1380#ifdef OXU_URB_TRACE
1381 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382 __func__, urb->dev->devpath, urb,
1383 usb_pipeendpoint(urb->pipe),
1384 usb_pipein(urb->pipe) ? "in" : "out",
1385 urb->status,
1386 urb->actual_length, urb->transfer_buffer_length);
1387#endif
1388
1389 /* complete() can reenter this HCD */
1390 spin_unlock(&oxu->lock);
1391 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392 spin_lock(&oxu->lock);
1393}
1394
1395static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397
1398static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400
1401#define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402
1403/* Process and free completed qtds for a qh, returning URBs to drivers.
1404 * Chases up to qh->hw_current. Returns number of completions called,
1405 * indicating how much "real" work we did.
1406 */
1407static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408{
1409 struct ehci_qtd *last = NULL, *end = qh->dummy;
1410 struct ehci_qtd *qtd, *tmp;
1411 int stopped;
1412 unsigned count = 0;
1413 int do_status = 0;
1414 u8 state;
1415 struct oxu_murb *murb = NULL;
1416
1417 if (unlikely(list_empty(&qh->qtd_list)))
1418 return count;
1419
1420 /* completions (or tasks on other cpus) must never clobber HALT
1421 * till we've gone through and cleaned everything up, even when
1422 * they add urbs to this qh's queue or mark them for unlinking.
1423 *
1424 * NOTE: unlinking expects to be done in queue order.
1425 */
1426 state = qh->qh_state;
1427 qh->qh_state = QH_STATE_COMPLETING;
1428 stopped = (state == QH_STATE_IDLE);
1429
1430 /* remove de-activated QTDs from front of queue.
1431 * after faults (including short reads), cleanup this urb
1432 * then let the queue advance.
1433 * if queue is stopped, handles unlinks.
1434 */
1435 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436 struct urb *urb;
1437 u32 token = 0;
1438
1439 urb = qtd->urb;
1440
1441 /* Clean up any state from previous QTD ...*/
1442 if (last) {
1443 if (likely(last->urb != urb)) {
1444 if (last->urb->complete == NULL) {
1445 murb = (struct oxu_murb *) last->urb;
1446 last->urb = murb->main;
1447 if (murb->last) {
1448 ehci_urb_done(oxu, last->urb);
1449 count++;
1450 }
1451 oxu_murb_free(oxu, murb);
1452 } else {
1453 ehci_urb_done(oxu, last->urb);
1454 count++;
1455 }
1456 }
1457 oxu_qtd_free(oxu, last);
1458 last = NULL;
1459 }
1460
1461 /* ignore urbs submitted during completions we reported */
1462 if (qtd == end)
1463 break;
1464
1465 /* hardware copies qtd out of qh overlay */
1466 rmb();
1467 token = le32_to_cpu(qtd->hw_token);
1468
1469 /* always clean up qtds the hc de-activated */
1470 if ((token & QTD_STS_ACTIVE) == 0) {
1471
1472 if ((token & QTD_STS_HALT) != 0) {
1473 stopped = 1;
1474
1475 /* magic dummy for some short reads; qh won't advance.
1476 * that silicon quirk can kick in with this dummy too.
1477 */
1478 } else if (IS_SHORT_READ(token) &&
1479 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1480 stopped = 1;
1481 goto halt;
1482 }
1483
1484 /* stop scanning when we reach qtds the hc is using */
1485 } else if (likely(!stopped &&
1486 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487 break;
1488
1489 } else {
1490 stopped = 1;
1491
1492 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493 urb->status = -ESHUTDOWN;
1494
1495 /* ignore active urbs unless some previous qtd
1496 * for the urb faulted (including short read) or
1497 * its urb was canceled. we may patch qh or qtds.
1498 */
1499 if (likely(urb->status == -EINPROGRESS))
1500 continue;
1501
1502 /* issue status after short control reads */
1503 if (unlikely(do_status != 0)
1504 && QTD_PID(token) == 0 /* OUT */) {
1505 do_status = 0;
1506 continue;
1507 }
1508
1509 /* token in overlay may be most current */
1510 if (state == QH_STATE_IDLE
1511 && cpu_to_le32(qtd->qtd_dma)
1512 == qh->hw_current)
1513 token = le32_to_cpu(qh->hw_token);
1514
1515 /* force halt for unlinked or blocked qh, so we'll
1516 * patch the qh later and so that completions can't
1517 * activate it while we "know" it's stopped.
1518 */
1519 if ((HALT_BIT & qh->hw_token) == 0) {
1520halt:
1521 qh->hw_token |= HALT_BIT;
1522 wmb();
1523 }
1524 }
1525
1526 /* Remove it from the queue */
1527 qtd_copy_status(oxu, urb->complete ?
1528 urb : ((struct oxu_murb *) urb)->main,
1529 qtd->length, token);
1530 if ((usb_pipein(qtd->urb->pipe)) &&
1531 (NULL != qtd->transfer_buffer))
1532 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533 do_status = (urb->status == -EREMOTEIO)
1534 && usb_pipecontrol(urb->pipe);
1535
1536 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537 last = list_entry(qtd->qtd_list.prev,
1538 struct ehci_qtd, qtd_list);
1539 last->hw_next = qtd->hw_next;
1540 }
1541 list_del(&qtd->qtd_list);
1542 last = qtd;
1543 }
1544
1545 /* last urb's completion might still need calling */
1546 if (likely(last != NULL)) {
1547 if (last->urb->complete == NULL) {
1548 murb = (struct oxu_murb *) last->urb;
1549 last->urb = murb->main;
1550 if (murb->last) {
1551 ehci_urb_done(oxu, last->urb);
1552 count++;
1553 }
1554 oxu_murb_free(oxu, murb);
1555 } else {
1556 ehci_urb_done(oxu, last->urb);
1557 count++;
1558 }
1559 oxu_qtd_free(oxu, last);
1560 }
1561
1562 /* restore original state; caller must unlink or relink */
1563 qh->qh_state = state;
1564
1565 /* be sure the hardware's done with the qh before refreshing
1566 * it after fault cleanup, or recovering from silicon wrongly
1567 * overlaying the dummy qtd (which reduces DMA chatter).
1568 */
1569 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570 switch (state) {
1571 case QH_STATE_IDLE:
1572 qh_refresh(oxu, qh);
1573 break;
1574 case QH_STATE_LINKED:
1575 /* should be rare for periodic transfers,
1576 * except maybe high bandwidth ...
1577 */
1578 if ((cpu_to_le32(QH_SMASK)
1579 & qh->hw_info2) != 0) {
1580 intr_deschedule(oxu, qh);
1581 (void) qh_schedule(oxu, qh);
1582 } else
1583 unlink_async(oxu, qh);
1584 break;
1585 /* otherwise, unlink already started */
1586 }
1587 }
1588
1589 return count;
1590}
1591
1592/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594/* ... and packet size, for any kind of endpoint descriptor */
1595#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1596
1597/* Reverse of qh_urb_transaction: free a list of TDs.
1598 * used for cleanup after errors, before HC sees an URB's TDs.
1599 */
1600static void qtd_list_free(struct oxu_hcd *oxu,
1601 struct urb *urb, struct list_head *head)
1602{
1603 struct ehci_qtd *qtd, *temp;
1604
1605 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606 list_del(&qtd->qtd_list);
1607 oxu_qtd_free(oxu, qtd);
1608 }
1609}
1610
1611/* Create a list of filled qtds for this URB; won't link into qh.
1612 */
1613static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614 struct urb *urb,
1615 struct list_head *head,
1616 gfp_t flags)
1617{
1618 struct ehci_qtd *qtd, *qtd_prev;
1619 dma_addr_t buf;
1620 int len, maxpacket;
1621 int is_input;
1622 u32 token;
1623 void *transfer_buf = NULL;
1624 int ret;
1625
1626 /*
1627 * URBs map to sequences of QTDs: one logical transaction
1628 */
1629 qtd = ehci_qtd_alloc(oxu);
1630 if (unlikely(!qtd))
1631 return NULL;
1632 list_add_tail(&qtd->qtd_list, head);
1633 qtd->urb = urb;
1634
1635 token = QTD_STS_ACTIVE;
1636 token |= (EHCI_TUNE_CERR << 10);
1637 /* for split transactions, SplitXState initialized to zero */
1638
1639 len = urb->transfer_buffer_length;
1640 is_input = usb_pipein(urb->pipe);
1641 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643
1644 if (usb_pipecontrol(urb->pipe)) {
1645 /* SETUP pid */
1646 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647 if (ret)
1648 goto cleanup;
1649
1650 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651 token | (2 /* "setup" */ << 8), 8);
1652 memcpy(qtd->buffer, qtd->urb->setup_packet,
1653 sizeof(struct usb_ctrlrequest));
1654
1655 /* ... and always at least one more pid */
1656 token ^= QTD_TOGGLE;
1657 qtd_prev = qtd;
1658 qtd = ehci_qtd_alloc(oxu);
1659 if (unlikely(!qtd))
1660 goto cleanup;
1661 qtd->urb = urb;
1662 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663 list_add_tail(&qtd->qtd_list, head);
1664
1665 /* for zero length DATA stages, STATUS is always IN */
1666 if (len == 0)
1667 token |= (1 /* "in" */ << 8);
1668 }
1669
1670 /*
1671 * Data transfer stage: buffer setup
1672 */
1673
1674 ret = oxu_buf_alloc(oxu, qtd, len);
1675 if (ret)
1676 goto cleanup;
1677
1678 buf = qtd->buffer_dma;
1679 transfer_buf = urb->transfer_buffer;
1680
1681 if (!is_input)
1682 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683
1684 if (is_input)
1685 token |= (1 /* "in" */ << 8);
1686 /* else it's already initted to "out" pid (0 << 8) */
1687
1688 maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1689
1690 /*
1691 * buffer gets wrapped in one or more qtds;
1692 * last one may be "short" (including zero len)
1693 * and may serve as a control status ack
1694 */
1695 for (;;) {
1696 int this_qtd_len;
1697
1698 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699 qtd->transfer_buffer = transfer_buf;
1700 len -= this_qtd_len;
1701 buf += this_qtd_len;
1702 transfer_buf += this_qtd_len;
1703 if (is_input)
1704 qtd->hw_alt_next = oxu->async->hw_alt_next;
1705
1706 /* qh makes control packets use qtd toggle; maybe switch it */
1707 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708 token ^= QTD_TOGGLE;
1709
1710 if (likely(len <= 0))
1711 break;
1712
1713 qtd_prev = qtd;
1714 qtd = ehci_qtd_alloc(oxu);
1715 if (unlikely(!qtd))
1716 goto cleanup;
1717 if (likely(len > 0)) {
1718 ret = oxu_buf_alloc(oxu, qtd, len);
1719 if (ret)
1720 goto cleanup;
1721 }
1722 qtd->urb = urb;
1723 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724 list_add_tail(&qtd->qtd_list, head);
1725 }
1726
1727 /* unless the bulk/interrupt caller wants a chance to clean
1728 * up after short reads, hc should advance qh past this urb
1729 */
1730 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731 || usb_pipecontrol(urb->pipe)))
1732 qtd->hw_alt_next = EHCI_LIST_END;
1733
1734 /*
1735 * control requests may need a terminating data "status" ack;
1736 * bulk ones may need a terminating short packet (zero length).
1737 */
1738 if (likely(urb->transfer_buffer_length != 0)) {
1739 int one_more = 0;
1740
1741 if (usb_pipecontrol(urb->pipe)) {
1742 one_more = 1;
1743 token ^= 0x0100; /* "in" <--> "out" */
1744 token |= QTD_TOGGLE; /* force DATA1 */
1745 } else if (usb_pipebulk(urb->pipe)
1746 && (urb->transfer_flags & URB_ZERO_PACKET)
1747 && !(urb->transfer_buffer_length % maxpacket)) {
1748 one_more = 1;
1749 }
1750 if (one_more) {
1751 qtd_prev = qtd;
1752 qtd = ehci_qtd_alloc(oxu);
1753 if (unlikely(!qtd))
1754 goto cleanup;
1755 qtd->urb = urb;
1756 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757 list_add_tail(&qtd->qtd_list, head);
1758
1759 /* never any data in such packets */
1760 qtd_fill(qtd, 0, 0, token, 0);
1761 }
1762 }
1763
1764 /* by default, enable interrupt on urb completion */
1765 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766 return head;
1767
1768cleanup:
1769 qtd_list_free(oxu, urb, head);
1770 return NULL;
1771}
1772
1773/* Each QH holds a qtd list; a QH is used for everything except iso.
1774 *
1775 * For interrupt urbs, the scheduler must set the microframe scheduling
1776 * mask(s) each time the QH gets scheduled. For highspeed, that's
1777 * just one microframe in the s-mask. For split interrupt transactions
1778 * there are additional complications: c-mask, maybe FSTNs.
1779 */
1780static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781 struct urb *urb, gfp_t flags)
1782{
1783 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784 u32 info1 = 0, info2 = 0;
1785 int is_input, type;
1786 int maxp = 0;
1787
1788 if (!qh)
1789 return qh;
1790
1791 /*
1792 * init endpoint/device data for this QH
1793 */
1794 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795 info1 |= usb_pipedevice(urb->pipe) << 0;
1796
1797 is_input = usb_pipein(urb->pipe);
1798 type = usb_pipetype(urb->pipe);
1799 maxp = usb_maxpacket(urb->dev, urb->pipe);
1800
1801 /* Compute interrupt scheduling parameters just once, and save.
1802 * - allowing for high bandwidth, how many nsec/uframe are used?
1803 * - split transactions need a second CSPLIT uframe; same question
1804 * - splits also need a schedule gap (for full/low speed I/O)
1805 * - qh has a polling interval
1806 *
1807 * For control/bulk requests, the HC or TT handles these.
1808 */
1809 if (type == PIPE_INTERRUPT) {
1810 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811 is_input, 0,
1812 hb_mult(maxp) * max_packet(maxp)));
1813 qh->start = NO_FRAME;
1814
1815 if (urb->dev->speed == USB_SPEED_HIGH) {
1816 qh->c_usecs = 0;
1817 qh->gap_uf = 0;
1818
1819 qh->period = urb->interval >> 3;
1820 if (qh->period == 0 && urb->interval != 1) {
1821 /* NOTE interval 2 or 4 uframes could work.
1822 * But interval 1 scheduling is simpler, and
1823 * includes high bandwidth.
1824 */
1825 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826 urb->interval);
1827 goto done;
1828 }
1829 } else {
1830 struct usb_tt *tt = urb->dev->tt;
1831 int think_time;
1832
1833 /* gap is f(FS/LS transfer times) */
1834 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835 is_input, 0, maxp) / (125 * 1000);
1836
1837 /* FIXME this just approximates SPLIT/CSPLIT times */
1838 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1839 qh->c_usecs = qh->usecs + HS_USECS(0);
1840 qh->usecs = HS_USECS(1);
1841 } else { /* SPLIT+DATA, gap, CSPLIT */
1842 qh->usecs += HS_USECS(1);
1843 qh->c_usecs = HS_USECS(0);
1844 }
1845
1846 think_time = tt ? tt->think_time : 0;
1847 qh->tt_usecs = NS_TO_US(think_time +
1848 usb_calc_bus_time(urb->dev->speed,
1849 is_input, 0, max_packet(maxp)));
1850 qh->period = urb->interval;
1851 }
1852 }
1853
1854 /* support for tt scheduling, and access to toggles */
1855 qh->dev = urb->dev;
1856
1857 /* using TT? */
1858 switch (urb->dev->speed) {
1859 case USB_SPEED_LOW:
1860 info1 |= (1 << 12); /* EPS "low" */
1861 fallthrough;
1862
1863 case USB_SPEED_FULL:
1864 /* EPS 0 means "full" */
1865 if (type != PIPE_INTERRUPT)
1866 info1 |= (EHCI_TUNE_RL_TT << 28);
1867 if (type == PIPE_CONTROL) {
1868 info1 |= (1 << 27); /* for TT */
1869 info1 |= 1 << 14; /* toggle from qtd */
1870 }
1871 info1 |= maxp << 16;
1872
1873 info2 |= (EHCI_TUNE_MULT_TT << 30);
1874 info2 |= urb->dev->ttport << 23;
1875
1876 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877
1878 break;
1879
1880 case USB_SPEED_HIGH: /* no TT involved */
1881 info1 |= (2 << 12); /* EPS "high" */
1882 if (type == PIPE_CONTROL) {
1883 info1 |= (EHCI_TUNE_RL_HS << 28);
1884 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1885 info1 |= 1 << 14; /* toggle from qtd */
1886 info2 |= (EHCI_TUNE_MULT_HS << 30);
1887 } else if (type == PIPE_BULK) {
1888 info1 |= (EHCI_TUNE_RL_HS << 28);
1889 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1890 info2 |= (EHCI_TUNE_MULT_HS << 30);
1891 } else { /* PIPE_INTERRUPT */
1892 info1 |= max_packet(maxp) << 16;
1893 info2 |= hb_mult(maxp) << 30;
1894 }
1895 break;
1896 default:
1897 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898done:
1899 qh_put(qh);
1900 return NULL;
1901 }
1902
1903 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904
1905 /* init as live, toggle clear, advance to dummy */
1906 qh->qh_state = QH_STATE_IDLE;
1907 qh->hw_info1 = cpu_to_le32(info1);
1908 qh->hw_info2 = cpu_to_le32(info2);
1909 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910 qh_refresh(oxu, qh);
1911 return qh;
1912}
1913
1914/* Move qh (and its qtds) onto async queue; maybe enable queue.
1915 */
1916static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917{
1918 __le32 dma = QH_NEXT(qh->qh_dma);
1919 struct ehci_qh *head;
1920
1921 /* (re)start the async schedule? */
1922 head = oxu->async;
1923 timer_action_done(oxu, TIMER_ASYNC_OFF);
1924 if (!head->qh_next.qh) {
1925 u32 cmd = readl(&oxu->regs->command);
1926
1927 if (!(cmd & CMD_ASE)) {
1928 /* in case a clear of CMD_ASE didn't take yet */
1929 (void)handshake(oxu, &oxu->regs->status,
1930 STS_ASS, 0, 150);
1931 cmd |= CMD_ASE | CMD_RUN;
1932 writel(cmd, &oxu->regs->command);
1933 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934 /* posted write need not be known to HC yet ... */
1935 }
1936 }
1937
1938 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939 if (qh->qh_state == QH_STATE_IDLE)
1940 qh_refresh(oxu, qh);
1941
1942 /* splice right after start */
1943 qh->qh_next = head->qh_next;
1944 qh->hw_next = head->hw_next;
1945 wmb();
1946
1947 head->qh_next.qh = qh;
1948 head->hw_next = dma;
1949
1950 qh->qh_state = QH_STATE_LINKED;
1951 /* qtd completions reported later by interrupt */
1952}
1953
1954#define QH_ADDR_MASK cpu_to_le32(0x7f)
1955
1956/*
1957 * For control/bulk/interrupt, return QH with these TDs appended.
1958 * Allocates and initializes the QH if necessary.
1959 * Returns null if it can't allocate a QH it needs to.
1960 * If the QH has TDs (urbs) already, that's great.
1961 */
1962static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963 struct urb *urb, struct list_head *qtd_list,
1964 int epnum, void **ptr)
1965{
1966 struct ehci_qh *qh = NULL;
1967
1968 qh = (struct ehci_qh *) *ptr;
1969 if (unlikely(qh == NULL)) {
1970 /* can't sleep here, we have oxu->lock... */
1971 qh = qh_make(oxu, urb, GFP_ATOMIC);
1972 *ptr = qh;
1973 }
1974 if (likely(qh != NULL)) {
1975 struct ehci_qtd *qtd;
1976
1977 if (unlikely(list_empty(qtd_list)))
1978 qtd = NULL;
1979 else
1980 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981 qtd_list);
1982
1983 /* control qh may need patching ... */
1984 if (unlikely(epnum == 0)) {
1985
1986 /* usb_reset_device() briefly reverts to address 0 */
1987 if (usb_pipedevice(urb->pipe) == 0)
1988 qh->hw_info1 &= ~QH_ADDR_MASK;
1989 }
1990
1991 /* just one way to queue requests: swap with the dummy qtd.
1992 * only hc or qh_refresh() ever modify the overlay.
1993 */
1994 if (likely(qtd != NULL)) {
1995 struct ehci_qtd *dummy;
1996 dma_addr_t dma;
1997 __le32 token;
1998
1999 /* to avoid racing the HC, use the dummy td instead of
2000 * the first td of our list (becomes new dummy). both
2001 * tds stay deactivated until we're done, when the
2002 * HC is allowed to fetch the old dummy (4.10.2).
2003 */
2004 token = qtd->hw_token;
2005 qtd->hw_token = HALT_BIT;
2006 wmb();
2007 dummy = qh->dummy;
2008
2009 dma = dummy->qtd_dma;
2010 *dummy = *qtd;
2011 dummy->qtd_dma = dma;
2012
2013 list_del(&qtd->qtd_list);
2014 list_add(&dummy->qtd_list, qtd_list);
2015 list_splice(qtd_list, qh->qtd_list.prev);
2016
2017 ehci_qtd_init(qtd, qtd->qtd_dma);
2018 qh->dummy = qtd;
2019
2020 /* hc must see the new dummy at list end */
2021 dma = qtd->qtd_dma;
2022 qtd = list_entry(qh->qtd_list.prev,
2023 struct ehci_qtd, qtd_list);
2024 qtd->hw_next = QTD_NEXT(dma);
2025
2026 /* let the hc process these next qtds */
2027 dummy->hw_token = (token & ~(0x80));
2028 wmb();
2029 dummy->hw_token = token;
2030
2031 urb->hcpriv = qh_get(qh);
2032 }
2033 }
2034 return qh;
2035}
2036
2037static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
2038 struct list_head *qtd_list, gfp_t mem_flags)
2039{
2040 int epnum = urb->ep->desc.bEndpointAddress;
2041 unsigned long flags;
2042 struct ehci_qh *qh = NULL;
2043 int rc = 0;
2044#ifdef OXU_URB_TRACE
2045 struct ehci_qtd *qtd;
2046
2047 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2048
2049 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2050 __func__, urb->dev->devpath, urb,
2051 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2052 urb->transfer_buffer_length,
2053 qtd, urb->ep->hcpriv);
2054#endif
2055
2056 spin_lock_irqsave(&oxu->lock, flags);
2057 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2058 rc = -ESHUTDOWN;
2059 goto done;
2060 }
2061
2062 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2063 if (unlikely(qh == NULL)) {
2064 rc = -ENOMEM;
2065 goto done;
2066 }
2067
2068 /* Control/bulk operations through TTs don't need scheduling,
2069 * the HC and TT handle it when the TT has a buffer ready.
2070 */
2071 if (likely(qh->qh_state == QH_STATE_IDLE))
2072 qh_link_async(oxu, qh_get(qh));
2073done:
2074 spin_unlock_irqrestore(&oxu->lock, flags);
2075 if (unlikely(qh == NULL))
2076 qtd_list_free(oxu, urb, qtd_list);
2077 return rc;
2078}
2079
2080/* The async qh for the qtds being reclaimed are now unlinked from the HC */
2081
2082static void end_unlink_async(struct oxu_hcd *oxu)
2083{
2084 struct ehci_qh *qh = oxu->reclaim;
2085 struct ehci_qh *next;
2086
2087 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2088
2089 qh->qh_state = QH_STATE_IDLE;
2090 qh->qh_next.qh = NULL;
2091 qh_put(qh); /* refcount from reclaim */
2092
2093 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2094 next = qh->reclaim;
2095 oxu->reclaim = next;
2096 oxu->reclaim_ready = 0;
2097 qh->reclaim = NULL;
2098
2099 qh_completions(oxu, qh);
2100
2101 if (!list_empty(&qh->qtd_list)
2102 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2103 qh_link_async(oxu, qh);
2104 else {
2105 qh_put(qh); /* refcount from async list */
2106
2107 /* it's not free to turn the async schedule on/off; leave it
2108 * active but idle for a while once it empties.
2109 */
2110 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2111 && oxu->async->qh_next.qh == NULL)
2112 timer_action(oxu, TIMER_ASYNC_OFF);
2113 }
2114
2115 if (next) {
2116 oxu->reclaim = NULL;
2117 start_unlink_async(oxu, next);
2118 }
2119}
2120
2121/* makes sure the async qh will become idle */
2122/* caller must own oxu->lock */
2123
2124static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2125{
2126 int cmd = readl(&oxu->regs->command);
2127 struct ehci_qh *prev;
2128
2129#ifdef DEBUG
2130 assert_spin_locked(&oxu->lock);
2131 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2132 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2133#endif
2134
2135 /* stop async schedule right now? */
2136 if (unlikely(qh == oxu->async)) {
2137 /* can't get here without STS_ASS set */
2138 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2139 && !oxu->reclaim) {
2140 /* ... and CMD_IAAD clear */
2141 writel(cmd & ~CMD_ASE, &oxu->regs->command);
2142 wmb();
2143 /* handshake later, if we need to */
2144 timer_action_done(oxu, TIMER_ASYNC_OFF);
2145 }
2146 return;
2147 }
2148
2149 qh->qh_state = QH_STATE_UNLINK;
2150 oxu->reclaim = qh = qh_get(qh);
2151
2152 prev = oxu->async;
2153 while (prev->qh_next.qh != qh)
2154 prev = prev->qh_next.qh;
2155
2156 prev->hw_next = qh->hw_next;
2157 prev->qh_next = qh->qh_next;
2158 wmb();
2159
2160 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2161 /* if (unlikely(qh->reclaim != 0))
2162 * this will recurse, probably not much
2163 */
2164 end_unlink_async(oxu);
2165 return;
2166 }
2167
2168 oxu->reclaim_ready = 0;
2169 cmd |= CMD_IAAD;
2170 writel(cmd, &oxu->regs->command);
2171 (void) readl(&oxu->regs->command);
2172 timer_action(oxu, TIMER_IAA_WATCHDOG);
2173}
2174
2175static void scan_async(struct oxu_hcd *oxu)
2176{
2177 struct ehci_qh *qh;
2178 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2179
2180 if (!++(oxu->stamp))
2181 oxu->stamp++;
2182 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2183rescan:
2184 qh = oxu->async->qh_next.qh;
2185 if (likely(qh != NULL)) {
2186 do {
2187 /* clean any finished work for this qh */
2188 if (!list_empty(&qh->qtd_list)
2189 && qh->stamp != oxu->stamp) {
2190 int temp;
2191
2192 /* unlinks could happen here; completion
2193 * reporting drops the lock. rescan using
2194 * the latest schedule, but don't rescan
2195 * qhs we already finished (no looping).
2196 */
2197 qh = qh_get(qh);
2198 qh->stamp = oxu->stamp;
2199 temp = qh_completions(oxu, qh);
2200 qh_put(qh);
2201 if (temp != 0)
2202 goto rescan;
2203 }
2204
2205 /* unlink idle entries, reducing HC PCI usage as well
2206 * as HCD schedule-scanning costs. delay for any qh
2207 * we just scanned, there's a not-unusual case that it
2208 * doesn't stay idle for long.
2209 * (plus, avoids some kind of re-activation race.)
2210 */
2211 if (list_empty(&qh->qtd_list)) {
2212 if (qh->stamp == oxu->stamp)
2213 action = TIMER_ASYNC_SHRINK;
2214 else if (!oxu->reclaim
2215 && qh->qh_state == QH_STATE_LINKED)
2216 start_unlink_async(oxu, qh);
2217 }
2218
2219 qh = qh->qh_next.qh;
2220 } while (qh);
2221 }
2222 if (action == TIMER_ASYNC_SHRINK)
2223 timer_action(oxu, TIMER_ASYNC_SHRINK);
2224}
2225
2226/*
2227 * periodic_next_shadow - return "next" pointer on shadow list
2228 * @periodic: host pointer to qh/itd/sitd
2229 * @tag: hardware tag for type of this record
2230 */
2231static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2232 __le32 tag)
2233{
2234 switch (tag) {
2235 default:
2236 case Q_TYPE_QH:
2237 return &periodic->qh->qh_next;
2238 }
2239}
2240
2241/* caller must hold oxu->lock */
2242static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2243{
2244 union ehci_shadow *prev_p = &oxu->pshadow[frame];
2245 __le32 *hw_p = &oxu->periodic[frame];
2246 union ehci_shadow here = *prev_p;
2247
2248 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2249 while (here.ptr && here.ptr != ptr) {
2250 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2251 hw_p = here.hw_next;
2252 here = *prev_p;
2253 }
2254 /* an interrupt entry (at list end) could have been shared */
2255 if (!here.ptr)
2256 return;
2257
2258 /* update shadow and hardware lists ... the old "next" pointers
2259 * from ptr may still be in use, the caller updates them.
2260 */
2261 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2262 *hw_p = *here.hw_next;
2263}
2264
2265/* how many of the uframe's 125 usecs are allocated? */
2266static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2267 unsigned frame, unsigned uframe)
2268{
2269 __le32 *hw_p = &oxu->periodic[frame];
2270 union ehci_shadow *q = &oxu->pshadow[frame];
2271 unsigned usecs = 0;
2272
2273 while (q->ptr) {
2274 switch (Q_NEXT_TYPE(*hw_p)) {
2275 case Q_TYPE_QH:
2276 default:
2277 /* is it in the S-mask? */
2278 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2279 usecs += q->qh->usecs;
2280 /* ... or C-mask? */
2281 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2282 usecs += q->qh->c_usecs;
2283 hw_p = &q->qh->hw_next;
2284 q = &q->qh->qh_next;
2285 break;
2286 }
2287 }
2288#ifdef DEBUG
2289 if (usecs > 100)
2290 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2291 frame * 8 + uframe, usecs);
2292#endif
2293 return usecs;
2294}
2295
2296static int enable_periodic(struct oxu_hcd *oxu)
2297{
2298 u32 cmd;
2299 int status;
2300
2301 /* did clearing PSE did take effect yet?
2302 * takes effect only at frame boundaries...
2303 */
2304 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2305 if (status != 0) {
2306 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2307 usb_hc_died(oxu_to_hcd(oxu));
2308 return status;
2309 }
2310
2311 cmd = readl(&oxu->regs->command) | CMD_PSE;
2312 writel(cmd, &oxu->regs->command);
2313 /* posted write ... PSS happens later */
2314 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2315
2316 /* make sure ehci_work scans these */
2317 oxu->next_uframe = readl(&oxu->regs->frame_index)
2318 % (oxu->periodic_size << 3);
2319 return 0;
2320}
2321
2322static int disable_periodic(struct oxu_hcd *oxu)
2323{
2324 u32 cmd;
2325 int status;
2326
2327 /* did setting PSE not take effect yet?
2328 * takes effect only at frame boundaries...
2329 */
2330 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2331 if (status != 0) {
2332 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2333 usb_hc_died(oxu_to_hcd(oxu));
2334 return status;
2335 }
2336
2337 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2338 writel(cmd, &oxu->regs->command);
2339 /* posted write ... */
2340
2341 oxu->next_uframe = -1;
2342 return 0;
2343}
2344
2345/* periodic schedule slots have iso tds (normal or split) first, then a
2346 * sparse tree for active interrupt transfers.
2347 *
2348 * this just links in a qh; caller guarantees uframe masks are set right.
2349 * no FSTN support (yet; oxu 0.96+)
2350 */
2351static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2352{
2353 unsigned i;
2354 unsigned period = qh->period;
2355
2356 dev_dbg(&qh->dev->dev,
2357 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2358 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2359 qh, qh->start, qh->usecs, qh->c_usecs);
2360
2361 /* high bandwidth, or otherwise every microframe */
2362 if (period == 0)
2363 period = 1;
2364
2365 for (i = qh->start; i < oxu->periodic_size; i += period) {
2366 union ehci_shadow *prev = &oxu->pshadow[i];
2367 __le32 *hw_p = &oxu->periodic[i];
2368 union ehci_shadow here = *prev;
2369 __le32 type = 0;
2370
2371 /* skip the iso nodes at list head */
2372 while (here.ptr) {
2373 type = Q_NEXT_TYPE(*hw_p);
2374 if (type == Q_TYPE_QH)
2375 break;
2376 prev = periodic_next_shadow(prev, type);
2377 hw_p = &here.qh->hw_next;
2378 here = *prev;
2379 }
2380
2381 /* sorting each branch by period (slow-->fast)
2382 * enables sharing interior tree nodes
2383 */
2384 while (here.ptr && qh != here.qh) {
2385 if (qh->period > here.qh->period)
2386 break;
2387 prev = &here.qh->qh_next;
2388 hw_p = &here.qh->hw_next;
2389 here = *prev;
2390 }
2391 /* link in this qh, unless some earlier pass did that */
2392 if (qh != here.qh) {
2393 qh->qh_next = here;
2394 if (here.qh)
2395 qh->hw_next = *hw_p;
2396 wmb();
2397 prev->qh = qh;
2398 *hw_p = QH_NEXT(qh->qh_dma);
2399 }
2400 }
2401 qh->qh_state = QH_STATE_LINKED;
2402 qh_get(qh);
2403
2404 /* update per-qh bandwidth for usbfs */
2405 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2406 ? ((qh->usecs + qh->c_usecs) / qh->period)
2407 : (qh->usecs * 8);
2408
2409 /* maybe enable periodic schedule processing */
2410 if (!oxu->periodic_sched++)
2411 return enable_periodic(oxu);
2412
2413 return 0;
2414}
2415
2416static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2417{
2418 unsigned i;
2419 unsigned period;
2420
2421 /* FIXME:
2422 * IF this isn't high speed
2423 * and this qh is active in the current uframe
2424 * (and overlay token SplitXstate is false?)
2425 * THEN
2426 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2427 */
2428
2429 /* high bandwidth, or otherwise part of every microframe */
2430 period = qh->period;
2431 if (period == 0)
2432 period = 1;
2433
2434 for (i = qh->start; i < oxu->periodic_size; i += period)
2435 periodic_unlink(oxu, i, qh);
2436
2437 /* update per-qh bandwidth for usbfs */
2438 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2439 ? ((qh->usecs + qh->c_usecs) / qh->period)
2440 : (qh->usecs * 8);
2441
2442 dev_dbg(&qh->dev->dev,
2443 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2444 qh->period,
2445 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2446 qh, qh->start, qh->usecs, qh->c_usecs);
2447
2448 /* qh->qh_next still "live" to HC */
2449 qh->qh_state = QH_STATE_UNLINK;
2450 qh->qh_next.ptr = NULL;
2451 qh_put(qh);
2452
2453 /* maybe turn off periodic schedule */
2454 oxu->periodic_sched--;
2455 if (!oxu->periodic_sched)
2456 (void) disable_periodic(oxu);
2457}
2458
2459static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2460{
2461 unsigned wait;
2462
2463 qh_unlink_periodic(oxu, qh);
2464
2465 /* simple/paranoid: always delay, expecting the HC needs to read
2466 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2467 * expect hub_wq to clean up after any CSPLITs we won't issue.
2468 * active high speed queues may need bigger delays...
2469 */
2470 if (list_empty(&qh->qtd_list)
2471 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2472 wait = 2;
2473 else
2474 wait = 55; /* worst case: 3 * 1024 */
2475
2476 udelay(wait);
2477 qh->qh_state = QH_STATE_IDLE;
2478 qh->hw_next = EHCI_LIST_END;
2479 wmb();
2480}
2481
2482static int check_period(struct oxu_hcd *oxu,
2483 unsigned frame, unsigned uframe,
2484 unsigned period, unsigned usecs)
2485{
2486 int claimed;
2487
2488 /* complete split running into next frame?
2489 * given FSTN support, we could sometimes check...
2490 */
2491 if (uframe >= 8)
2492 return 0;
2493
2494 /*
2495 * 80% periodic == 100 usec/uframe available
2496 * convert "usecs we need" to "max already claimed"
2497 */
2498 usecs = 100 - usecs;
2499
2500 /* we "know" 2 and 4 uframe intervals were rejected; so
2501 * for period 0, check _every_ microframe in the schedule.
2502 */
2503 if (unlikely(period == 0)) {
2504 do {
2505 for (uframe = 0; uframe < 7; uframe++) {
2506 claimed = periodic_usecs(oxu, frame, uframe);
2507 if (claimed > usecs)
2508 return 0;
2509 }
2510 } while ((frame += 1) < oxu->periodic_size);
2511
2512 /* just check the specified uframe, at that period */
2513 } else {
2514 do {
2515 claimed = periodic_usecs(oxu, frame, uframe);
2516 if (claimed > usecs)
2517 return 0;
2518 } while ((frame += period) < oxu->periodic_size);
2519 }
2520
2521 return 1;
2522}
2523
2524static int check_intr_schedule(struct oxu_hcd *oxu,
2525 unsigned frame, unsigned uframe,
2526 const struct ehci_qh *qh, __le32 *c_maskp)
2527{
2528 int retval = -ENOSPC;
2529
2530 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2531 goto done;
2532
2533 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2534 goto done;
2535 if (!qh->c_usecs) {
2536 retval = 0;
2537 *c_maskp = 0;
2538 goto done;
2539 }
2540
2541done:
2542 return retval;
2543}
2544
2545/* "first fit" scheduling policy used the first time through,
2546 * or when the previous schedule slot can't be re-used.
2547 */
2548static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2549{
2550 int status;
2551 unsigned uframe;
2552 __le32 c_mask;
2553 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2554
2555 qh_refresh(oxu, qh);
2556 qh->hw_next = EHCI_LIST_END;
2557 frame = qh->start;
2558
2559 /* reuse the previous schedule slots, if we can */
2560 if (frame < qh->period) {
2561 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2562 status = check_intr_schedule(oxu, frame, --uframe,
2563 qh, &c_mask);
2564 } else {
2565 uframe = 0;
2566 c_mask = 0;
2567 status = -ENOSPC;
2568 }
2569
2570 /* else scan the schedule to find a group of slots such that all
2571 * uframes have enough periodic bandwidth available.
2572 */
2573 if (status) {
2574 /* "normal" case, uframing flexible except with splits */
2575 if (qh->period) {
2576 frame = qh->period - 1;
2577 do {
2578 for (uframe = 0; uframe < 8; uframe++) {
2579 status = check_intr_schedule(oxu,
2580 frame, uframe, qh,
2581 &c_mask);
2582 if (status == 0)
2583 break;
2584 }
2585 } while (status && frame--);
2586
2587 /* qh->period == 0 means every uframe */
2588 } else {
2589 frame = 0;
2590 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2591 }
2592 if (status)
2593 goto done;
2594 qh->start = frame;
2595
2596 /* reset S-frame and (maybe) C-frame masks */
2597 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2598 qh->hw_info2 |= qh->period
2599 ? cpu_to_le32(1 << uframe)
2600 : cpu_to_le32(QH_SMASK);
2601 qh->hw_info2 |= c_mask;
2602 } else
2603 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2604
2605 /* stuff into the periodic schedule */
2606 status = qh_link_periodic(oxu, qh);
2607done:
2608 return status;
2609}
2610
2611static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2612 struct list_head *qtd_list, gfp_t mem_flags)
2613{
2614 unsigned epnum;
2615 unsigned long flags;
2616 struct ehci_qh *qh;
2617 int status = 0;
2618 struct list_head empty;
2619
2620 /* get endpoint and transfer/schedule data */
2621 epnum = urb->ep->desc.bEndpointAddress;
2622
2623 spin_lock_irqsave(&oxu->lock, flags);
2624
2625 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2626 status = -ESHUTDOWN;
2627 goto done;
2628 }
2629
2630 /* get qh and force any scheduling errors */
2631 INIT_LIST_HEAD(&empty);
2632 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2633 if (qh == NULL) {
2634 status = -ENOMEM;
2635 goto done;
2636 }
2637 if (qh->qh_state == QH_STATE_IDLE) {
2638 status = qh_schedule(oxu, qh);
2639 if (status != 0)
2640 goto done;
2641 }
2642
2643 /* then queue the urb's tds to the qh */
2644 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2645 BUG_ON(qh == NULL);
2646
2647 /* ... update usbfs periodic stats */
2648 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2649
2650done:
2651 spin_unlock_irqrestore(&oxu->lock, flags);
2652 if (status)
2653 qtd_list_free(oxu, urb, qtd_list);
2654
2655 return status;
2656}
2657
2658static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2659 gfp_t mem_flags)
2660{
2661 oxu_dbg(oxu, "iso support is missing!\n");
2662 return -ENOSYS;
2663}
2664
2665static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2666 gfp_t mem_flags)
2667{
2668 oxu_dbg(oxu, "split iso support is missing!\n");
2669 return -ENOSYS;
2670}
2671
2672static void scan_periodic(struct oxu_hcd *oxu)
2673{
2674 unsigned frame, clock, now_uframe, mod;
2675 unsigned modified;
2676
2677 mod = oxu->periodic_size << 3;
2678
2679 /*
2680 * When running, scan from last scan point up to "now"
2681 * else clean up by scanning everything that's left.
2682 * Touches as few pages as possible: cache-friendly.
2683 */
2684 now_uframe = oxu->next_uframe;
2685 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2686 clock = readl(&oxu->regs->frame_index);
2687 else
2688 clock = now_uframe + mod - 1;
2689 clock %= mod;
2690
2691 for (;;) {
2692 union ehci_shadow q, *q_p;
2693 __le32 type, *hw_p;
2694
2695 /* don't scan past the live uframe */
2696 frame = now_uframe >> 3;
2697 if (frame != (clock >> 3)) {
2698 /* safe to scan the whole frame at once */
2699 now_uframe |= 0x07;
2700 }
2701
2702restart:
2703 /* scan each element in frame's queue for completions */
2704 q_p = &oxu->pshadow[frame];
2705 hw_p = &oxu->periodic[frame];
2706 q.ptr = q_p->ptr;
2707 type = Q_NEXT_TYPE(*hw_p);
2708 modified = 0;
2709
2710 while (q.ptr != NULL) {
2711 union ehci_shadow temp;
2712
2713 switch (type) {
2714 case Q_TYPE_QH:
2715 /* handle any completions */
2716 temp.qh = qh_get(q.qh);
2717 type = Q_NEXT_TYPE(q.qh->hw_next);
2718 q = q.qh->qh_next;
2719 modified = qh_completions(oxu, temp.qh);
2720 if (unlikely(list_empty(&temp.qh->qtd_list)))
2721 intr_deschedule(oxu, temp.qh);
2722 qh_put(temp.qh);
2723 break;
2724 default:
2725 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2726 type, frame, q.ptr);
2727 q.ptr = NULL;
2728 }
2729
2730 /* assume completion callbacks modify the queue */
2731 if (unlikely(modified))
2732 goto restart;
2733 }
2734
2735 /* Stop when we catch up to the HC */
2736
2737 /* FIXME: this assumes we won't get lapped when
2738 * latencies climb; that should be rare, but...
2739 * detect it, and just go all the way around.
2740 * FLR might help detect this case, so long as latencies
2741 * don't exceed periodic_size msec (default 1.024 sec).
2742 */
2743
2744 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2745
2746 if (now_uframe == clock) {
2747 unsigned now;
2748
2749 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2750 break;
2751 oxu->next_uframe = now_uframe;
2752 now = readl(&oxu->regs->frame_index) % mod;
2753 if (now_uframe == now)
2754 break;
2755
2756 /* rescan the rest of this frame, then ... */
2757 clock = now;
2758 } else {
2759 now_uframe++;
2760 now_uframe %= mod;
2761 }
2762 }
2763}
2764
2765/* On some systems, leaving remote wakeup enabled prevents system shutdown.
2766 * The firmware seems to think that powering off is a wakeup event!
2767 * This routine turns off remote wakeup and everything else, on all ports.
2768 */
2769static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2770{
2771 int port = HCS_N_PORTS(oxu->hcs_params);
2772
2773 while (port--)
2774 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2775}
2776
2777static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2778{
2779 unsigned port;
2780
2781 if (!HCS_PPC(oxu->hcs_params))
2782 return;
2783
2784 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2785 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2786 if (is_on)
2787 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2788 USB_PORT_FEAT_POWER, port--, NULL, 0);
2789 else
2790 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2791 USB_PORT_FEAT_POWER, port--, NULL, 0);
2792 }
2793
2794 msleep(20);
2795}
2796
2797/* Called from some interrupts, timers, and so on.
2798 * It calls driver completion functions, after dropping oxu->lock.
2799 */
2800static void ehci_work(struct oxu_hcd *oxu)
2801{
2802 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2803 if (oxu->reclaim_ready)
2804 end_unlink_async(oxu);
2805
2806 /* another CPU may drop oxu->lock during a schedule scan while
2807 * it reports urb completions. this flag guards against bogus
2808 * attempts at re-entrant schedule scanning.
2809 */
2810 if (oxu->scanning)
2811 return;
2812 oxu->scanning = 1;
2813 scan_async(oxu);
2814 if (oxu->next_uframe != -1)
2815 scan_periodic(oxu);
2816 oxu->scanning = 0;
2817
2818 /* the IO watchdog guards against hardware or driver bugs that
2819 * misplace IRQs, and should let us run completely without IRQs.
2820 * such lossage has been observed on both VT6202 and VT8235.
2821 */
2822 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2823 (oxu->async->qh_next.ptr != NULL ||
2824 oxu->periodic_sched != 0))
2825 timer_action(oxu, TIMER_IO_WATCHDOG);
2826}
2827
2828static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2829{
2830 /* if we need to use IAA and it's busy, defer */
2831 if (qh->qh_state == QH_STATE_LINKED
2832 && oxu->reclaim
2833 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2834 struct ehci_qh *last;
2835
2836 for (last = oxu->reclaim;
2837 last->reclaim;
2838 last = last->reclaim)
2839 continue;
2840 qh->qh_state = QH_STATE_UNLINK_WAIT;
2841 last->reclaim = qh;
2842
2843 /* bypass IAA if the hc can't care */
2844 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2845 end_unlink_async(oxu);
2846
2847 /* something else might have unlinked the qh by now */
2848 if (qh->qh_state == QH_STATE_LINKED)
2849 start_unlink_async(oxu, qh);
2850}
2851
2852/*
2853 * USB host controller methods
2854 */
2855
2856static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2857{
2858 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859 u32 status, pcd_status = 0;
2860 int bh;
2861
2862 spin_lock(&oxu->lock);
2863
2864 status = readl(&oxu->regs->status);
2865
2866 /* e.g. cardbus physical eject */
2867 if (status == ~(u32) 0) {
2868 oxu_dbg(oxu, "device removed\n");
2869 goto dead;
2870 }
2871
2872 /* Shared IRQ? */
2873 status &= INTR_MASK;
2874 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2875 spin_unlock(&oxu->lock);
2876 return IRQ_NONE;
2877 }
2878
2879 /* clear (just) interrupts */
2880 writel(status, &oxu->regs->status);
2881 readl(&oxu->regs->command); /* unblock posted write */
2882 bh = 0;
2883
2884#ifdef OXU_VERBOSE_DEBUG
2885 /* unrequested/ignored: Frame List Rollover */
2886 dbg_status(oxu, "irq", status);
2887#endif
2888
2889 /* INT, ERR, and IAA interrupt rates can be throttled */
2890
2891 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2892 if (likely((status & (STS_INT|STS_ERR)) != 0))
2893 bh = 1;
2894
2895 /* complete the unlinking of some qh [4.15.2.3] */
2896 if (status & STS_IAA) {
2897 oxu->reclaim_ready = 1;
2898 bh = 1;
2899 }
2900
2901 /* remote wakeup [4.3.1] */
2902 if (status & STS_PCD) {
2903 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2904 pcd_status = status;
2905
2906 /* resume root hub? */
2907 if (!(readl(&oxu->regs->command) & CMD_RUN))
2908 usb_hcd_resume_root_hub(hcd);
2909
2910 while (i--) {
2911 int pstatus = readl(&oxu->regs->port_status[i]);
2912
2913 if (pstatus & PORT_OWNER)
2914 continue;
2915 if (!(pstatus & PORT_RESUME)
2916 || oxu->reset_done[i] != 0)
2917 continue;
2918
2919 /* start USB_RESUME_TIMEOUT resume signaling from this
2920 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2921 * stop that signaling.
2922 */
2923 oxu->reset_done[i] = jiffies +
2924 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2925 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2926 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2927 }
2928 }
2929
2930 /* PCI errors [4.15.2.4] */
2931 if (unlikely((status & STS_FATAL) != 0)) {
2932 /* bogus "fatal" IRQs appear on some chips... why? */
2933 status = readl(&oxu->regs->status);
2934 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2935 dbg_status(oxu, "fatal", status);
2936 if (status & STS_HALT) {
2937 oxu_err(oxu, "fatal error\n");
2938dead:
2939 ehci_reset(oxu);
2940 writel(0, &oxu->regs->configured_flag);
2941 usb_hc_died(hcd);
2942 /* generic layer kills/unlinks all urbs, then
2943 * uses oxu_stop to clean up the rest
2944 */
2945 bh = 1;
2946 }
2947 }
2948
2949 if (bh)
2950 ehci_work(oxu);
2951 spin_unlock(&oxu->lock);
2952 if (pcd_status & STS_PCD)
2953 usb_hcd_poll_rh_status(hcd);
2954 return IRQ_HANDLED;
2955}
2956
2957static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2958{
2959 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2960 int ret = IRQ_HANDLED;
2961
2962 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2963 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2964
2965 /* Disable all interrupt */
2966 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2967
2968 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2969 (!oxu->is_otg && (status & OXU_USBSPHI)))
2970 oxu210_hcd_irq(hcd);
2971 else
2972 ret = IRQ_NONE;
2973
2974 /* Enable all interrupt back */
2975 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2976
2977 return ret;
2978}
2979
2980static void oxu_watchdog(struct timer_list *t)
2981{
2982 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog);
2983 unsigned long flags;
2984
2985 spin_lock_irqsave(&oxu->lock, flags);
2986
2987 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2988 if (oxu->reclaim) {
2989 u32 status = readl(&oxu->regs->status);
2990 if (status & STS_IAA) {
2991 oxu_vdbg(oxu, "lost IAA\n");
2992 writel(STS_IAA, &oxu->regs->status);
2993 oxu->reclaim_ready = 1;
2994 }
2995 }
2996
2997 /* stop async processing after it's idled a bit */
2998 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2999 start_unlink_async(oxu, oxu->async);
3000
3001 /* oxu could run by timer, without IRQs ... */
3002 ehci_work(oxu);
3003
3004 spin_unlock_irqrestore(&oxu->lock, flags);
3005}
3006
3007/* One-time init, only for memory state.
3008 */
3009static int oxu_hcd_init(struct usb_hcd *hcd)
3010{
3011 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012 u32 temp;
3013 int retval;
3014 u32 hcc_params;
3015
3016 spin_lock_init(&oxu->lock);
3017
3018 timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3019
3020 /*
3021 * hw default: 1K periodic list heads, one per frame.
3022 * periodic_size can shrink by USBCMD update if hcc_params allows.
3023 */
3024 oxu->periodic_size = DEFAULT_I_TDPS;
3025 retval = ehci_mem_init(oxu, GFP_KERNEL);
3026 if (retval < 0)
3027 return retval;
3028
3029 /* controllers may cache some of the periodic schedule ... */
3030 hcc_params = readl(&oxu->caps->hcc_params);
3031 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
3032 oxu->i_thresh = 8;
3033 else /* N microframes cached */
3034 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3035
3036 oxu->reclaim = NULL;
3037 oxu->reclaim_ready = 0;
3038 oxu->next_uframe = -1;
3039
3040 /*
3041 * dedicate a qh for the async ring head, since we couldn't unlink
3042 * a 'real' qh without stopping the async schedule [4.8]. use it
3043 * as the 'reclamation list head' too.
3044 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3045 * from automatically advancing to the next td after short reads.
3046 */
3047 oxu->async->qh_next.qh = NULL;
3048 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3049 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3050 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3051 oxu->async->hw_qtd_next = EHCI_LIST_END;
3052 oxu->async->qh_state = QH_STATE_LINKED;
3053 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3054
3055 /* clear interrupt enables, set irq latency */
3056 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3057 log2_irq_thresh = 0;
3058 temp = 1 << (16 + log2_irq_thresh);
3059 if (HCC_CANPARK(hcc_params)) {
3060 /* HW default park == 3, on hardware that supports it (like
3061 * NVidia and ALI silicon), maximizes throughput on the async
3062 * schedule by avoiding QH fetches between transfers.
3063 *
3064 * With fast usb storage devices and NForce2, "park" seems to
3065 * make problems: throughput reduction (!), data errors...
3066 */
3067 if (park) {
3068 park = min(park, (unsigned) 3);
3069 temp |= CMD_PARK;
3070 temp |= park << 8;
3071 }
3072 oxu_dbg(oxu, "park %d\n", park);
3073 }
3074 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3075 /* periodic schedule size can be smaller than default */
3076 temp &= ~(3 << 2);
3077 temp |= (EHCI_TUNE_FLS << 2);
3078 }
3079 oxu->command = temp;
3080
3081 return 0;
3082}
3083
3084/* Called during probe() after chip reset completes.
3085 */
3086static int oxu_reset(struct usb_hcd *hcd)
3087{
3088 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3089
3090 spin_lock_init(&oxu->mem_lock);
3091 INIT_LIST_HEAD(&oxu->urb_list);
3092 oxu->urb_len = 0;
3093
3094 if (oxu->is_otg) {
3095 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3096 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3097 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3098
3099 oxu->mem = hcd->regs + OXU_SPH_MEM;
3100 } else {
3101 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3102 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3103 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3104
3105 oxu->mem = hcd->regs + OXU_OTG_MEM;
3106 }
3107
3108 oxu->hcs_params = readl(&oxu->caps->hcs_params);
3109 oxu->sbrn = 0x20;
3110
3111 return oxu_hcd_init(hcd);
3112}
3113
3114static int oxu_run(struct usb_hcd *hcd)
3115{
3116 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3117 int retval;
3118 u32 temp, hcc_params;
3119
3120 hcd->uses_new_polling = 1;
3121
3122 /* EHCI spec section 4.1 */
3123 retval = ehci_reset(oxu);
3124 if (retval != 0) {
3125 ehci_mem_cleanup(oxu);
3126 return retval;
3127 }
3128 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3129 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3130
3131 /* hcc_params controls whether oxu->regs->segment must (!!!)
3132 * be used; it constrains QH/ITD/SITD and QTD locations.
3133 * dma_pool consistent memory always uses segment zero.
3134 * streaming mappings for I/O buffers, like dma_map_single(),
3135 * can return segments above 4GB, if the device allows.
3136 *
3137 * NOTE: the dma mask is visible through dev->dma_mask, so
3138 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3139 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3140 * host side drivers though.
3141 */
3142 hcc_params = readl(&oxu->caps->hcc_params);
3143 if (HCC_64BIT_ADDR(hcc_params))
3144 writel(0, &oxu->regs->segment);
3145
3146 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3147 CMD_ASE | CMD_RESET);
3148 oxu->command |= CMD_RUN;
3149 writel(oxu->command, &oxu->regs->command);
3150 dbg_cmd(oxu, "init", oxu->command);
3151
3152 /*
3153 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3154 * are explicitly handed to companion controller(s), so no TT is
3155 * involved with the root hub. (Except where one is integrated,
3156 * and there's no companion controller unless maybe for USB OTG.)
3157 */
3158 hcd->state = HC_STATE_RUNNING;
3159 writel(FLAG_CF, &oxu->regs->configured_flag);
3160 readl(&oxu->regs->command); /* unblock posted writes */
3161
3162 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3163 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3164 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3165 temp >> 8, temp & 0xff, DRIVER_VERSION,
3166 ignore_oc ? ", overcurrent ignored" : "");
3167
3168 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3169
3170 return 0;
3171}
3172
3173static void oxu_stop(struct usb_hcd *hcd)
3174{
3175 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3176
3177 /* Turn off port power on all root hub ports. */
3178 ehci_port_power(oxu, 0);
3179
3180 /* no more interrupts ... */
3181 del_timer_sync(&oxu->watchdog);
3182
3183 spin_lock_irq(&oxu->lock);
3184 if (HC_IS_RUNNING(hcd->state))
3185 ehci_quiesce(oxu);
3186
3187 ehci_reset(oxu);
3188 writel(0, &oxu->regs->intr_enable);
3189 spin_unlock_irq(&oxu->lock);
3190
3191 /* let companion controllers work when we aren't */
3192 writel(0, &oxu->regs->configured_flag);
3193
3194 /* root hub is shut down separately (first, when possible) */
3195 spin_lock_irq(&oxu->lock);
3196 if (oxu->async)
3197 ehci_work(oxu);
3198 spin_unlock_irq(&oxu->lock);
3199 ehci_mem_cleanup(oxu);
3200
3201 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3202}
3203
3204/* Kick in for silicon on any bus (not just pci, etc).
3205 * This forcibly disables dma and IRQs, helping kexec and other cases
3206 * where the next system software may expect clean state.
3207 */
3208static void oxu_shutdown(struct usb_hcd *hcd)
3209{
3210 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3211
3212 (void) ehci_halt(oxu);
3213 ehci_turn_off_all_ports(oxu);
3214
3215 /* make BIOS/etc use companion controller during reboot */
3216 writel(0, &oxu->regs->configured_flag);
3217
3218 /* unblock posted writes */
3219 readl(&oxu->regs->configured_flag);
3220}
3221
3222/* Non-error returns are a promise to giveback() the urb later
3223 * we drop ownership so next owner (or urb unlink) can get it
3224 *
3225 * urb + dev is in hcd.self.controller.urb_list
3226 * we're queueing TDs onto software and hardware lists
3227 *
3228 * hcd-specific init for hcpriv hasn't been done yet
3229 *
3230 * NOTE: control, bulk, and interrupt share the same code to append TDs
3231 * to a (possibly active) QH, and the same QH scanning code.
3232 */
3233static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3234 gfp_t mem_flags)
3235{
3236 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3237 struct list_head qtd_list;
3238
3239 INIT_LIST_HEAD(&qtd_list);
3240
3241 switch (usb_pipetype(urb->pipe)) {
3242 case PIPE_CONTROL:
3243 case PIPE_BULK:
3244 default:
3245 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3246 return -ENOMEM;
3247 return submit_async(oxu, urb, &qtd_list, mem_flags);
3248
3249 case PIPE_INTERRUPT:
3250 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3251 return -ENOMEM;
3252 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3253
3254 case PIPE_ISOCHRONOUS:
3255 if (urb->dev->speed == USB_SPEED_HIGH)
3256 return itd_submit(oxu, urb, mem_flags);
3257 else
3258 return sitd_submit(oxu, urb, mem_flags);
3259 }
3260}
3261
3262/* This function is responsible for breaking URBs with big data size
3263 * into smaller size and processing small urbs in sequence.
3264 */
3265static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3266 gfp_t mem_flags)
3267{
3268 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3269 int num, rem;
3270 void *transfer_buffer;
3271 struct urb *murb;
3272 int i, ret;
3273
3274 /* If not bulk pipe just enqueue the URB */
3275 if (!usb_pipebulk(urb->pipe))
3276 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3277
3278 /* Otherwise we should verify the USB transfer buffer size! */
3279 transfer_buffer = urb->transfer_buffer;
3280
3281 num = urb->transfer_buffer_length / 4096;
3282 rem = urb->transfer_buffer_length % 4096;
3283 if (rem != 0)
3284 num++;
3285
3286 /* If URB is smaller than 4096 bytes just enqueue it! */
3287 if (num == 1)
3288 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3289
3290 /* Ok, we have more job to do! :) */
3291
3292 for (i = 0; i < num - 1; i++) {
3293 /* Get free micro URB poll till a free urb is received */
3294
3295 do {
3296 murb = (struct urb *) oxu_murb_alloc(oxu);
3297 if (!murb)
3298 schedule();
3299 } while (!murb);
3300
3301 /* Coping the urb */
3302 memcpy(murb, urb, sizeof(struct urb));
3303
3304 murb->transfer_buffer_length = 4096;
3305 murb->transfer_buffer = transfer_buffer + i * 4096;
3306
3307 /* Null pointer for the encodes that this is a micro urb */
3308 murb->complete = NULL;
3309
3310 ((struct oxu_murb *) murb)->main = urb;
3311 ((struct oxu_murb *) murb)->last = 0;
3312
3313 /* This loop is to guarantee urb to be processed when there's
3314 * not enough resources at a particular time by retrying.
3315 */
3316 do {
3317 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3318 if (ret)
3319 schedule();
3320 } while (ret);
3321 }
3322
3323 /* Last urb requires special handling */
3324
3325 /* Get free micro URB poll till a free urb is received */
3326 do {
3327 murb = (struct urb *) oxu_murb_alloc(oxu);
3328 if (!murb)
3329 schedule();
3330 } while (!murb);
3331
3332 /* Coping the urb */
3333 memcpy(murb, urb, sizeof(struct urb));
3334
3335 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3336 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3337
3338 /* Null pointer for the encodes that this is a micro urb */
3339 murb->complete = NULL;
3340
3341 ((struct oxu_murb *) murb)->main = urb;
3342 ((struct oxu_murb *) murb)->last = 1;
3343
3344 do {
3345 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3346 if (ret)
3347 schedule();
3348 } while (ret);
3349
3350 return ret;
3351}
3352
3353/* Remove from hardware lists.
3354 * Completions normally happen asynchronously
3355 */
3356static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3357{
3358 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3359 struct ehci_qh *qh;
3360 unsigned long flags;
3361
3362 spin_lock_irqsave(&oxu->lock, flags);
3363 switch (usb_pipetype(urb->pipe)) {
3364 case PIPE_CONTROL:
3365 case PIPE_BULK:
3366 default:
3367 qh = (struct ehci_qh *) urb->hcpriv;
3368 if (!qh)
3369 break;
3370 unlink_async(oxu, qh);
3371 break;
3372
3373 case PIPE_INTERRUPT:
3374 qh = (struct ehci_qh *) urb->hcpriv;
3375 if (!qh)
3376 break;
3377 switch (qh->qh_state) {
3378 case QH_STATE_LINKED:
3379 intr_deschedule(oxu, qh);
3380 fallthrough;
3381 case QH_STATE_IDLE:
3382 qh_completions(oxu, qh);
3383 break;
3384 default:
3385 oxu_dbg(oxu, "bogus qh %p state %d\n",
3386 qh, qh->qh_state);
3387 goto done;
3388 }
3389
3390 /* reschedule QH iff another request is queued */
3391 if (!list_empty(&qh->qtd_list)
3392 && HC_IS_RUNNING(hcd->state)) {
3393 int status;
3394
3395 status = qh_schedule(oxu, qh);
3396 spin_unlock_irqrestore(&oxu->lock, flags);
3397
3398 if (status != 0) {
3399 /* shouldn't happen often, but ...
3400 * FIXME kill those tds' urbs
3401 */
3402 dev_err(hcd->self.controller,
3403 "can't reschedule qh %p, err %d\n", qh,
3404 status);
3405 }
3406 return status;
3407 }
3408 break;
3409 }
3410done:
3411 spin_unlock_irqrestore(&oxu->lock, flags);
3412 return 0;
3413}
3414
3415/* Bulk qh holds the data toggle */
3416static void oxu_endpoint_disable(struct usb_hcd *hcd,
3417 struct usb_host_endpoint *ep)
3418{
3419 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3420 unsigned long flags;
3421 struct ehci_qh *qh, *tmp;
3422
3423 /* ASSERT: any requests/urbs are being unlinked */
3424 /* ASSERT: nobody can be submitting urbs for this any more */
3425
3426rescan:
3427 spin_lock_irqsave(&oxu->lock, flags);
3428 qh = ep->hcpriv;
3429 if (!qh)
3430 goto done;
3431
3432 /* endpoints can be iso streams. for now, we don't
3433 * accelerate iso completions ... so spin a while.
3434 */
3435 if (qh->hw_info1 == 0) {
3436 oxu_vdbg(oxu, "iso delay\n");
3437 goto idle_timeout;
3438 }
3439
3440 if (!HC_IS_RUNNING(hcd->state))
3441 qh->qh_state = QH_STATE_IDLE;
3442 switch (qh->qh_state) {
3443 case QH_STATE_LINKED:
3444 for (tmp = oxu->async->qh_next.qh;
3445 tmp && tmp != qh;
3446 tmp = tmp->qh_next.qh)
3447 continue;
3448 /* periodic qh self-unlinks on empty */
3449 if (!tmp)
3450 goto nogood;
3451 unlink_async(oxu, qh);
3452 fallthrough;
3453 case QH_STATE_UNLINK: /* wait for hw to finish? */
3454idle_timeout:
3455 spin_unlock_irqrestore(&oxu->lock, flags);
3456 schedule_timeout_uninterruptible(1);
3457 goto rescan;
3458 case QH_STATE_IDLE: /* fully unlinked */
3459 if (list_empty(&qh->qtd_list)) {
3460 qh_put(qh);
3461 break;
3462 }
3463 fallthrough;
3464 default:
3465nogood:
3466 /* caller was supposed to have unlinked any requests;
3467 * that's not our job. just leak this memory.
3468 */
3469 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3470 qh, ep->desc.bEndpointAddress, qh->qh_state,
3471 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3472 break;
3473 }
3474 ep->hcpriv = NULL;
3475done:
3476 spin_unlock_irqrestore(&oxu->lock, flags);
3477}
3478
3479static int oxu_get_frame(struct usb_hcd *hcd)
3480{
3481 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3482
3483 return (readl(&oxu->regs->frame_index) >> 3) %
3484 oxu->periodic_size;
3485}
3486
3487/* Build "status change" packet (one or two bytes) from HC registers */
3488static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3489{
3490 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3491 u32 temp, mask, status = 0;
3492 int ports, i, retval = 1;
3493 unsigned long flags;
3494
3495 /* if !PM, root hub timers won't get shut down ... */
3496 if (!HC_IS_RUNNING(hcd->state))
3497 return 0;
3498
3499 /* init status to no-changes */
3500 buf[0] = 0;
3501 ports = HCS_N_PORTS(oxu->hcs_params);
3502 if (ports > 7) {
3503 buf[1] = 0;
3504 retval++;
3505 }
3506
3507 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3508 * causing massive log spam unless we completely ignore them. It
3509 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3510 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3511 * PORT_POWER; that's surprising, but maybe within-spec.
3512 */
3513 if (!ignore_oc)
3514 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3515 else
3516 mask = PORT_CSC | PORT_PEC;
3517
3518 /* no hub change reports (bit 0) for now (power, ...) */
3519
3520 /* port N changes (bit N)? */
3521 spin_lock_irqsave(&oxu->lock, flags);
3522 for (i = 0; i < ports; i++) {
3523 temp = readl(&oxu->regs->port_status[i]);
3524
3525 /*
3526 * Return status information even for ports with OWNER set.
3527 * Otherwise hub_wq wouldn't see the disconnect event when a
3528 * high-speed device is switched over to the companion
3529 * controller by the user.
3530 */
3531
3532 if (!(temp & PORT_CONNECT))
3533 oxu->reset_done[i] = 0;
3534 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3535 time_after_eq(jiffies, oxu->reset_done[i]))) {
3536 if (i < 7)
3537 buf[0] |= 1 << (i + 1);
3538 else
3539 buf[1] |= 1 << (i - 7);
3540 status = STS_PCD;
3541 }
3542 }
3543 /* FIXME autosuspend idle root hubs */
3544 spin_unlock_irqrestore(&oxu->lock, flags);
3545 return status ? retval : 0;
3546}
3547
3548/* Returns the speed of a device attached to a port on the root hub. */
3549static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3550 unsigned int portsc)
3551{
3552 switch ((portsc >> 26) & 3) {
3553 case 0:
3554 return 0;
3555 case 1:
3556 return USB_PORT_STAT_LOW_SPEED;
3557 case 2:
3558 default:
3559 return USB_PORT_STAT_HIGH_SPEED;
3560 }
3561}
3562
3563#define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3564static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3565 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3566{
3567 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3568 int ports = HCS_N_PORTS(oxu->hcs_params);
3569 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3570 u32 temp, status;
3571 unsigned long flags;
3572 int retval = 0;
3573 unsigned selector;
3574
3575 /*
3576 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3577 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3578 * (track current state ourselves) ... blink for diagnostics,
3579 * power, "this is the one", etc. EHCI spec supports this.
3580 */
3581
3582 spin_lock_irqsave(&oxu->lock, flags);
3583 switch (typeReq) {
3584 case ClearHubFeature:
3585 switch (wValue) {
3586 case C_HUB_LOCAL_POWER:
3587 case C_HUB_OVER_CURRENT:
3588 /* no hub-wide feature/status flags */
3589 break;
3590 default:
3591 goto error;
3592 }
3593 break;
3594 case ClearPortFeature:
3595 if (!wIndex || wIndex > ports)
3596 goto error;
3597 wIndex--;
3598 temp = readl(status_reg);
3599
3600 /*
3601 * Even if OWNER is set, so the port is owned by the
3602 * companion controller, hub_wq needs to be able to clear
3603 * the port-change status bits (especially
3604 * USB_PORT_STAT_C_CONNECTION).
3605 */
3606
3607 switch (wValue) {
3608 case USB_PORT_FEAT_ENABLE:
3609 writel(temp & ~PORT_PE, status_reg);
3610 break;
3611 case USB_PORT_FEAT_C_ENABLE:
3612 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3613 break;
3614 case USB_PORT_FEAT_SUSPEND:
3615 if (temp & PORT_RESET)
3616 goto error;
3617 if (temp & PORT_SUSPEND) {
3618 if ((temp & PORT_PE) == 0)
3619 goto error;
3620 /* resume signaling for 20 msec */
3621 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3622 writel(temp | PORT_RESUME, status_reg);
3623 oxu->reset_done[wIndex] = jiffies
3624 + msecs_to_jiffies(20);
3625 }
3626 break;
3627 case USB_PORT_FEAT_C_SUSPEND:
3628 /* we auto-clear this feature */
3629 break;
3630 case USB_PORT_FEAT_POWER:
3631 if (HCS_PPC(oxu->hcs_params))
3632 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3633 status_reg);
3634 break;
3635 case USB_PORT_FEAT_C_CONNECTION:
3636 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3637 break;
3638 case USB_PORT_FEAT_C_OVER_CURRENT:
3639 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3640 break;
3641 case USB_PORT_FEAT_C_RESET:
3642 /* GetPortStatus clears reset */
3643 break;
3644 default:
3645 goto error;
3646 }
3647 readl(&oxu->regs->command); /* unblock posted write */
3648 break;
3649 case GetHubDescriptor:
3650 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3651 buf);
3652 break;
3653 case GetHubStatus:
3654 /* no hub-wide feature/status flags */
3655 memset(buf, 0, 4);
3656 break;
3657 case GetPortStatus:
3658 if (!wIndex || wIndex > ports)
3659 goto error;
3660 wIndex--;
3661 status = 0;
3662 temp = readl(status_reg);
3663
3664 /* wPortChange bits */
3665 if (temp & PORT_CSC)
3666 status |= USB_PORT_STAT_C_CONNECTION << 16;
3667 if (temp & PORT_PEC)
3668 status |= USB_PORT_STAT_C_ENABLE << 16;
3669 if ((temp & PORT_OCC) && !ignore_oc)
3670 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3671
3672 /* whoever resumes must GetPortStatus to complete it!! */
3673 if (temp & PORT_RESUME) {
3674
3675 /* Remote Wakeup received? */
3676 if (!oxu->reset_done[wIndex]) {
3677 /* resume signaling for 20 msec */
3678 oxu->reset_done[wIndex] = jiffies
3679 + msecs_to_jiffies(20);
3680 /* check the port again */
3681 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3682 oxu->reset_done[wIndex]);
3683 }
3684
3685 /* resume completed? */
3686 else if (time_after_eq(jiffies,
3687 oxu->reset_done[wIndex])) {
3688 status |= USB_PORT_STAT_C_SUSPEND << 16;
3689 oxu->reset_done[wIndex] = 0;
3690
3691 /* stop resume signaling */
3692 temp = readl(status_reg);
3693 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3694 status_reg);
3695 retval = handshake(oxu, status_reg,
3696 PORT_RESUME, 0, 2000 /* 2msec */);
3697 if (retval != 0) {
3698 oxu_err(oxu,
3699 "port %d resume error %d\n",
3700 wIndex + 1, retval);
3701 goto error;
3702 }
3703 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3704 }
3705 }
3706
3707 /* whoever resets must GetPortStatus to complete it!! */
3708 if ((temp & PORT_RESET)
3709 && time_after_eq(jiffies,
3710 oxu->reset_done[wIndex])) {
3711 status |= USB_PORT_STAT_C_RESET << 16;
3712 oxu->reset_done[wIndex] = 0;
3713
3714 /* force reset to complete */
3715 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3716 status_reg);
3717 /* REVISIT: some hardware needs 550+ usec to clear
3718 * this bit; seems too long to spin routinely...
3719 */
3720 retval = handshake(oxu, status_reg,
3721 PORT_RESET, 0, 750);
3722 if (retval != 0) {
3723 oxu_err(oxu, "port %d reset error %d\n",
3724 wIndex + 1, retval);
3725 goto error;
3726 }
3727
3728 /* see what we found out */
3729 temp = check_reset_complete(oxu, wIndex, status_reg,
3730 readl(status_reg));
3731 }
3732
3733 /* transfer dedicated ports to the companion hc */
3734 if ((temp & PORT_CONNECT) &&
3735 test_bit(wIndex, &oxu->companion_ports)) {
3736 temp &= ~PORT_RWC_BITS;
3737 temp |= PORT_OWNER;
3738 writel(temp, status_reg);
3739 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3740 temp = readl(status_reg);
3741 }
3742
3743 /*
3744 * Even if OWNER is set, there's no harm letting hub_wq
3745 * see the wPortStatus values (they should all be 0 except
3746 * for PORT_POWER anyway).
3747 */
3748
3749 if (temp & PORT_CONNECT) {
3750 status |= USB_PORT_STAT_CONNECTION;
3751 /* status may be from integrated TT */
3752 status |= oxu_port_speed(oxu, temp);
3753 }
3754 if (temp & PORT_PE)
3755 status |= USB_PORT_STAT_ENABLE;
3756 if (temp & (PORT_SUSPEND|PORT_RESUME))
3757 status |= USB_PORT_STAT_SUSPEND;
3758 if (temp & PORT_OC)
3759 status |= USB_PORT_STAT_OVERCURRENT;
3760 if (temp & PORT_RESET)
3761 status |= USB_PORT_STAT_RESET;
3762 if (temp & PORT_POWER)
3763 status |= USB_PORT_STAT_POWER;
3764
3765#ifndef OXU_VERBOSE_DEBUG
3766 if (status & ~0xffff) /* only if wPortChange is interesting */
3767#endif
3768 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3769 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3770 break;
3771 case SetHubFeature:
3772 switch (wValue) {
3773 case C_HUB_LOCAL_POWER:
3774 case C_HUB_OVER_CURRENT:
3775 /* no hub-wide feature/status flags */
3776 break;
3777 default:
3778 goto error;
3779 }
3780 break;
3781 case SetPortFeature:
3782 selector = wIndex >> 8;
3783 wIndex &= 0xff;
3784 if (!wIndex || wIndex > ports)
3785 goto error;
3786 wIndex--;
3787 temp = readl(status_reg);
3788 if (temp & PORT_OWNER)
3789 break;
3790
3791 temp &= ~PORT_RWC_BITS;
3792 switch (wValue) {
3793 case USB_PORT_FEAT_SUSPEND:
3794 if ((temp & PORT_PE) == 0
3795 || (temp & PORT_RESET) != 0)
3796 goto error;
3797 if (device_may_wakeup(&hcd->self.root_hub->dev))
3798 temp |= PORT_WAKE_BITS;
3799 writel(temp | PORT_SUSPEND, status_reg);
3800 break;
3801 case USB_PORT_FEAT_POWER:
3802 if (HCS_PPC(oxu->hcs_params))
3803 writel(temp | PORT_POWER, status_reg);
3804 break;
3805 case USB_PORT_FEAT_RESET:
3806 if (temp & PORT_RESUME)
3807 goto error;
3808 /* line status bits may report this as low speed,
3809 * which can be fine if this root hub has a
3810 * transaction translator built in.
3811 */
3812 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3813 temp |= PORT_RESET;
3814 temp &= ~PORT_PE;
3815
3816 /*
3817 * caller must wait, then call GetPortStatus
3818 * usb 2.0 spec says 50 ms resets on root
3819 */
3820 oxu->reset_done[wIndex] = jiffies
3821 + msecs_to_jiffies(50);
3822 writel(temp, status_reg);
3823 break;
3824
3825 /* For downstream facing ports (these): one hub port is put
3826 * into test mode according to USB2 11.24.2.13, then the hub
3827 * must be reset (which for root hub now means rmmod+modprobe,
3828 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3829 * about the EHCI-specific stuff.
3830 */
3831 case USB_PORT_FEAT_TEST:
3832 if (!selector || selector > 5)
3833 goto error;
3834 ehci_quiesce(oxu);
3835 ehci_halt(oxu);
3836 temp |= selector << 16;
3837 writel(temp, status_reg);
3838 break;
3839
3840 default:
3841 goto error;
3842 }
3843 readl(&oxu->regs->command); /* unblock posted writes */
3844 break;
3845
3846 default:
3847error:
3848 /* "stall" on error */
3849 retval = -EPIPE;
3850 }
3851 spin_unlock_irqrestore(&oxu->lock, flags);
3852 return retval;
3853}
3854
3855#ifdef CONFIG_PM
3856
3857static int oxu_bus_suspend(struct usb_hcd *hcd)
3858{
3859 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3860 int port;
3861 int mask;
3862
3863 oxu_dbg(oxu, "suspend root hub\n");
3864
3865 if (time_before(jiffies, oxu->next_statechange))
3866 msleep(5);
3867
3868 port = HCS_N_PORTS(oxu->hcs_params);
3869 spin_lock_irq(&oxu->lock);
3870
3871 /* stop schedules, clean any completed work */
3872 if (HC_IS_RUNNING(hcd->state)) {
3873 ehci_quiesce(oxu);
3874 hcd->state = HC_STATE_QUIESCING;
3875 }
3876 oxu->command = readl(&oxu->regs->command);
3877 if (oxu->reclaim)
3878 oxu->reclaim_ready = 1;
3879 ehci_work(oxu);
3880
3881 /* Unlike other USB host controller types, EHCI doesn't have
3882 * any notion of "global" or bus-wide suspend. The driver has
3883 * to manually suspend all the active unsuspended ports, and
3884 * then manually resume them in the bus_resume() routine.
3885 */
3886 oxu->bus_suspended = 0;
3887 while (port--) {
3888 u32 __iomem *reg = &oxu->regs->port_status[port];
3889 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3890 u32 t2 = t1;
3891
3892 /* keep track of which ports we suspend */
3893 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3894 !(t1 & PORT_SUSPEND)) {
3895 t2 |= PORT_SUSPEND;
3896 set_bit(port, &oxu->bus_suspended);
3897 }
3898
3899 /* enable remote wakeup on all ports */
3900 if (device_may_wakeup(&hcd->self.root_hub->dev))
3901 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3902 else
3903 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3904
3905 if (t1 != t2) {
3906 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3907 port + 1, t1, t2);
3908 writel(t2, reg);
3909 }
3910 }
3911
3912 spin_unlock_irq(&oxu->lock);
3913 /* turn off now-idle HC */
3914 del_timer_sync(&oxu->watchdog);
3915 spin_lock_irq(&oxu->lock);
3916 ehci_halt(oxu);
3917 hcd->state = HC_STATE_SUSPENDED;
3918
3919 /* allow remote wakeup */
3920 mask = INTR_MASK;
3921 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3922 mask &= ~STS_PCD;
3923 writel(mask, &oxu->regs->intr_enable);
3924 readl(&oxu->regs->intr_enable);
3925
3926 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3927 spin_unlock_irq(&oxu->lock);
3928 return 0;
3929}
3930
3931/* Caller has locked the root hub, and should reset/reinit on error */
3932static int oxu_bus_resume(struct usb_hcd *hcd)
3933{
3934 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3935 u32 temp;
3936 int i;
3937
3938 if (time_before(jiffies, oxu->next_statechange))
3939 msleep(5);
3940 spin_lock_irq(&oxu->lock);
3941
3942 /* Ideally and we've got a real resume here, and no port's power
3943 * was lost. (For PCI, that means Vaux was maintained.) But we
3944 * could instead be restoring a swsusp snapshot -- so that BIOS was
3945 * the last user of the controller, not reset/pm hardware keeping
3946 * state we gave to it.
3947 */
3948 temp = readl(&oxu->regs->intr_enable);
3949 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3950
3951 /* at least some APM implementations will try to deliver
3952 * IRQs right away, so delay them until we're ready.
3953 */
3954 writel(0, &oxu->regs->intr_enable);
3955
3956 /* re-init operational registers */
3957 writel(0, &oxu->regs->segment);
3958 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3959 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3960
3961 /* restore CMD_RUN, framelist size, and irq threshold */
3962 writel(oxu->command, &oxu->regs->command);
3963
3964 /* Some controller/firmware combinations need a delay during which
3965 * they set up the port statuses. See Bugzilla #8190. */
3966 mdelay(8);
3967
3968 /* manually resume the ports we suspended during bus_suspend() */
3969 i = HCS_N_PORTS(oxu->hcs_params);
3970 while (i--) {
3971 temp = readl(&oxu->regs->port_status[i]);
3972 temp &= ~(PORT_RWC_BITS
3973 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3974 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3975 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3976 temp |= PORT_RESUME;
3977 }
3978 writel(temp, &oxu->regs->port_status[i]);
3979 }
3980 i = HCS_N_PORTS(oxu->hcs_params);
3981 mdelay(20);
3982 while (i--) {
3983 temp = readl(&oxu->regs->port_status[i]);
3984 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3985 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3986 writel(temp, &oxu->regs->port_status[i]);
3987 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3988 }
3989 }
3990 (void) readl(&oxu->regs->command);
3991
3992 /* maybe re-activate the schedule(s) */
3993 temp = 0;
3994 if (oxu->async->qh_next.qh)
3995 temp |= CMD_ASE;
3996 if (oxu->periodic_sched)
3997 temp |= CMD_PSE;
3998 if (temp) {
3999 oxu->command |= temp;
4000 writel(oxu->command, &oxu->regs->command);
4001 }
4002
4003 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
4004 hcd->state = HC_STATE_RUNNING;
4005
4006 /* Now we can safely re-enable irqs */
4007 writel(INTR_MASK, &oxu->regs->intr_enable);
4008
4009 spin_unlock_irq(&oxu->lock);
4010 return 0;
4011}
4012
4013#else
4014
4015static int oxu_bus_suspend(struct usb_hcd *hcd)
4016{
4017 return 0;
4018}
4019
4020static int oxu_bus_resume(struct usb_hcd *hcd)
4021{
4022 return 0;
4023}
4024
4025#endif /* CONFIG_PM */
4026
4027static const struct hc_driver oxu_hc_driver = {
4028 .description = "oxu210hp_hcd",
4029 .product_desc = "oxu210hp HCD",
4030 .hcd_priv_size = sizeof(struct oxu_hcd),
4031
4032 /*
4033 * Generic hardware linkage
4034 */
4035 .irq = oxu_irq,
4036 .flags = HCD_MEMORY | HCD_USB2,
4037
4038 /*
4039 * Basic lifecycle operations
4040 */
4041 .reset = oxu_reset,
4042 .start = oxu_run,
4043 .stop = oxu_stop,
4044 .shutdown = oxu_shutdown,
4045
4046 /*
4047 * Managing i/o requests and associated device resources
4048 */
4049 .urb_enqueue = oxu_urb_enqueue,
4050 .urb_dequeue = oxu_urb_dequeue,
4051 .endpoint_disable = oxu_endpoint_disable,
4052
4053 /*
4054 * Scheduling support
4055 */
4056 .get_frame_number = oxu_get_frame,
4057
4058 /*
4059 * Root hub support
4060 */
4061 .hub_status_data = oxu_hub_status_data,
4062 .hub_control = oxu_hub_control,
4063 .bus_suspend = oxu_bus_suspend,
4064 .bus_resume = oxu_bus_resume,
4065};
4066
4067/*
4068 * Module stuff
4069 */
4070
4071static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4072{
4073 u32 tmp;
4074
4075 /* Initialize top level registers.
4076 * First write ever
4077 */
4078 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4079 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4080 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4081
4082 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4083 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4084
4085 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4086 OXU_COMPARATOR | OXU_ASO_OP);
4087
4088 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4089 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4090
4091 /* Clear all top interrupt enable */
4092 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4093
4094 /* Clear all top interrupt status */
4095 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4096
4097 /* Enable all needed top interrupt except OTG SPH core */
4098 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4099}
4100
4101static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4102{
4103 u32 id;
4104 static const char * const bo[] = {
4105 "reserved",
4106 "128-pin LQFP",
4107 "84-pin TFBGA",
4108 "reserved",
4109 };
4110
4111 /* Read controller signature register to find a match */
4112 id = oxu_readl(base, OXU_DEVICEID);
4113 dev_info(&pdev->dev, "device ID %x\n", id);
4114 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4115 return -1;
4116
4117 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4118 id >> OXU_REV_SHIFT,
4119 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4120 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4121 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4122
4123 return 0;
4124}
4125
4126static const struct hc_driver oxu_hc_driver;
4127static struct usb_hcd *oxu_create(struct platform_device *pdev,
4128 unsigned long memstart, unsigned long memlen,
4129 void __iomem *base, int irq, int otg)
4130{
4131 struct device *dev = &pdev->dev;
4132
4133 struct usb_hcd *hcd;
4134 struct oxu_hcd *oxu;
4135 int ret;
4136
4137 /* Set endian mode and host mode */
4138 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4139 OXU_USBMODE,
4140 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4141
4142 hcd = usb_create_hcd(&oxu_hc_driver, dev,
4143 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4144 if (!hcd)
4145 return ERR_PTR(-ENOMEM);
4146
4147 hcd->rsrc_start = memstart;
4148 hcd->rsrc_len = memlen;
4149 hcd->regs = base;
4150 hcd->irq = irq;
4151 hcd->state = HC_STATE_HALT;
4152
4153 oxu = hcd_to_oxu(hcd);
4154 oxu->is_otg = otg;
4155
4156 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4157 if (ret < 0) {
4158 usb_put_hcd(hcd);
4159 return ERR_PTR(ret);
4160 }
4161
4162 device_wakeup_enable(hcd->self.controller);
4163 return hcd;
4164}
4165
4166static int oxu_init(struct platform_device *pdev,
4167 unsigned long memstart, unsigned long memlen,
4168 void __iomem *base, int irq)
4169{
4170 struct oxu_info *info = platform_get_drvdata(pdev);
4171 struct usb_hcd *hcd;
4172 int ret;
4173
4174 /* First time configuration at start up */
4175 oxu_configuration(pdev, base);
4176
4177 ret = oxu_verify_id(pdev, base);
4178 if (ret) {
4179 dev_err(&pdev->dev, "no devices found!\n");
4180 return -ENODEV;
4181 }
4182
4183 /* Create the OTG controller */
4184 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4185 if (IS_ERR(hcd)) {
4186 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4187 ret = PTR_ERR(hcd);
4188 goto error_create_otg;
4189 }
4190 info->hcd[0] = hcd;
4191
4192 /* Create the SPH host controller */
4193 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4194 if (IS_ERR(hcd)) {
4195 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4196 ret = PTR_ERR(hcd);
4197 goto error_create_sph;
4198 }
4199 info->hcd[1] = hcd;
4200
4201 oxu_writel(base, OXU_CHIPIRQEN_SET,
4202 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4203
4204 return 0;
4205
4206error_create_sph:
4207 usb_remove_hcd(info->hcd[0]);
4208 usb_put_hcd(info->hcd[0]);
4209
4210error_create_otg:
4211 return ret;
4212}
4213
4214static int oxu_drv_probe(struct platform_device *pdev)
4215{
4216 struct resource *res;
4217 void __iomem *base;
4218 unsigned long memstart, memlen;
4219 int irq, ret;
4220 struct oxu_info *info;
4221
4222 if (usb_disabled())
4223 return -ENODEV;
4224
4225 /*
4226 * Get the platform resources
4227 */
4228 irq = platform_get_irq(pdev, 0);
4229 if (irq < 0)
4230 return irq;
4231 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4232
4233 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4234 if (IS_ERR(base)) {
4235 ret = PTR_ERR(base);
4236 goto error;
4237 }
4238 memstart = res->start;
4239 memlen = resource_size(res);
4240
4241 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4242 if (ret) {
4243 dev_err(&pdev->dev, "error setting irq type\n");
4244 ret = -EFAULT;
4245 goto error;
4246 }
4247
4248 /* Allocate a driver data struct to hold useful info for both
4249 * SPH & OTG devices
4250 */
4251 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4252 if (!info) {
4253 ret = -EFAULT;
4254 goto error;
4255 }
4256 platform_set_drvdata(pdev, info);
4257
4258 ret = oxu_init(pdev, memstart, memlen, base, irq);
4259 if (ret < 0) {
4260 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4261 goto error;
4262 }
4263
4264 dev_info(&pdev->dev, "devices enabled and running\n");
4265 platform_set_drvdata(pdev, info);
4266
4267 return 0;
4268
4269error:
4270 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4271 return ret;
4272}
4273
4274static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4275{
4276 usb_remove_hcd(hcd);
4277 usb_put_hcd(hcd);
4278}
4279
4280static void oxu_drv_remove(struct platform_device *pdev)
4281{
4282 struct oxu_info *info = platform_get_drvdata(pdev);
4283
4284 oxu_remove(pdev, info->hcd[0]);
4285 oxu_remove(pdev, info->hcd[1]);
4286}
4287
4288static void oxu_drv_shutdown(struct platform_device *pdev)
4289{
4290 oxu_drv_remove(pdev);
4291}
4292
4293#if 0
4294/* FIXME: TODO */
4295static int oxu_drv_suspend(struct device *dev)
4296{
4297 struct platform_device *pdev = to_platform_device(dev);
4298 struct usb_hcd *hcd = dev_get_drvdata(dev);
4299
4300 return 0;
4301}
4302
4303static int oxu_drv_resume(struct device *dev)
4304{
4305 struct platform_device *pdev = to_platform_device(dev);
4306 struct usb_hcd *hcd = dev_get_drvdata(dev);
4307
4308 return 0;
4309}
4310#else
4311#define oxu_drv_suspend NULL
4312#define oxu_drv_resume NULL
4313#endif
4314
4315static struct platform_driver oxu_driver = {
4316 .probe = oxu_drv_probe,
4317 .remove_new = oxu_drv_remove,
4318 .shutdown = oxu_drv_shutdown,
4319 .suspend = oxu_drv_suspend,
4320 .resume = oxu_drv_resume,
4321 .driver = {
4322 .name = "oxu210hp-hcd",
4323 .bus = &platform_bus_type
4324 }
4325};
4326
4327module_platform_driver(oxu_driver);
4328
4329MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4330MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331MODULE_LICENSE("GPL");
1/*
2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4 *
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/module.h>
24#include <linux/pci.h>
25#include <linux/dmapool.h>
26#include <linux/kernel.h>
27#include <linux/delay.h>
28#include <linux/ioport.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31#include <linux/errno.h>
32#include <linux/init.h>
33#include <linux/timer.h>
34#include <linux/list.h>
35#include <linux/interrupt.h>
36#include <linux/usb.h>
37#include <linux/usb/hcd.h>
38#include <linux/moduleparam.h>
39#include <linux/dma-mapping.h>
40#include <linux/io.h>
41
42#include <asm/irq.h>
43#include <asm/unaligned.h>
44
45#include <linux/irq.h>
46#include <linux/platform_device.h>
47
48#include "oxu210hp.h"
49
50#define DRIVER_VERSION "0.0.50"
51
52/*
53 * Main defines
54 */
55
56#define oxu_dbg(oxu, fmt, args...) \
57 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
58#define oxu_err(oxu, fmt, args...) \
59 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
60#define oxu_info(oxu, fmt, args...) \
61 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
62
63static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
64{
65 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
66}
67
68static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
69{
70 return (struct oxu_hcd *) (hcd->hcd_priv);
71}
72
73/*
74 * Debug stuff
75 */
76
77#undef OXU_URB_TRACE
78#undef OXU_VERBOSE_DEBUG
79
80#ifdef OXU_VERBOSE_DEBUG
81#define oxu_vdbg oxu_dbg
82#else
83#define oxu_vdbg(oxu, fmt, args...) /* Nop */
84#endif
85
86#ifdef DEBUG
87
88static int __attribute__((__unused__))
89dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
90{
91 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
92 label, label[0] ? " " : "", status,
93 (status & STS_ASS) ? " Async" : "",
94 (status & STS_PSS) ? " Periodic" : "",
95 (status & STS_RECL) ? " Recl" : "",
96 (status & STS_HALT) ? " Halt" : "",
97 (status & STS_IAA) ? " IAA" : "",
98 (status & STS_FATAL) ? " FATAL" : "",
99 (status & STS_FLR) ? " FLR" : "",
100 (status & STS_PCD) ? " PCD" : "",
101 (status & STS_ERR) ? " ERR" : "",
102 (status & STS_INT) ? " INT" : ""
103 );
104}
105
106static int __attribute__((__unused__))
107dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
108{
109 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
110 label, label[0] ? " " : "", enable,
111 (enable & STS_IAA) ? " IAA" : "",
112 (enable & STS_FATAL) ? " FATAL" : "",
113 (enable & STS_FLR) ? " FLR" : "",
114 (enable & STS_PCD) ? " PCD" : "",
115 (enable & STS_ERR) ? " ERR" : "",
116 (enable & STS_INT) ? " INT" : ""
117 );
118}
119
120static const char *const fls_strings[] =
121 { "1024", "512", "256", "??" };
122
123static int dbg_command_buf(char *buf, unsigned len,
124 const char *label, u32 command)
125{
126 return scnprintf(buf, len,
127 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
128 label, label[0] ? " " : "", command,
129 (command & CMD_PARK) ? "park" : "(park)",
130 CMD_PARK_CNT(command),
131 (command >> 16) & 0x3f,
132 (command & CMD_LRESET) ? " LReset" : "",
133 (command & CMD_IAAD) ? " IAAD" : "",
134 (command & CMD_ASE) ? " Async" : "",
135 (command & CMD_PSE) ? " Periodic" : "",
136 fls_strings[(command >> 2) & 0x3],
137 (command & CMD_RESET) ? " Reset" : "",
138 (command & CMD_RUN) ? "RUN" : "HALT"
139 );
140}
141
142static int dbg_port_buf(char *buf, unsigned len, const char *label,
143 int port, u32 status)
144{
145 char *sig;
146
147 /* signaling state */
148 switch (status & (3 << 10)) {
149 case 0 << 10:
150 sig = "se0";
151 break;
152 case 1 << 10:
153 sig = "k"; /* low speed */
154 break;
155 case 2 << 10:
156 sig = "j";
157 break;
158 default:
159 sig = "?";
160 break;
161 }
162
163 return scnprintf(buf, len,
164 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
165 label, label[0] ? " " : "", port, status,
166 (status & PORT_POWER) ? " POWER" : "",
167 (status & PORT_OWNER) ? " OWNER" : "",
168 sig,
169 (status & PORT_RESET) ? " RESET" : "",
170 (status & PORT_SUSPEND) ? " SUSPEND" : "",
171 (status & PORT_RESUME) ? " RESUME" : "",
172 (status & PORT_OCC) ? " OCC" : "",
173 (status & PORT_OC) ? " OC" : "",
174 (status & PORT_PEC) ? " PEC" : "",
175 (status & PORT_PE) ? " PE" : "",
176 (status & PORT_CSC) ? " CSC" : "",
177 (status & PORT_CONNECT) ? " CONNECT" : ""
178 );
179}
180
181#else
182
183static inline int __attribute__((__unused__))
184dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
185{ return 0; }
186
187static inline int __attribute__((__unused__))
188dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
189{ return 0; }
190
191static inline int __attribute__((__unused__))
192dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
193{ return 0; }
194
195static inline int __attribute__((__unused__))
196dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
197{ return 0; }
198
199#endif /* DEBUG */
200
201/* functions have the "wrong" filename when they're output... */
202#define dbg_status(oxu, label, status) { \
203 char _buf[80]; \
204 dbg_status_buf(_buf, sizeof _buf, label, status); \
205 oxu_dbg(oxu, "%s\n", _buf); \
206}
207
208#define dbg_cmd(oxu, label, command) { \
209 char _buf[80]; \
210 dbg_command_buf(_buf, sizeof _buf, label, command); \
211 oxu_dbg(oxu, "%s\n", _buf); \
212}
213
214#define dbg_port(oxu, label, port, status) { \
215 char _buf[80]; \
216 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
217 oxu_dbg(oxu, "%s\n", _buf); \
218}
219
220/*
221 * Module parameters
222 */
223
224/* Initial IRQ latency: faster than hw default */
225static int log2_irq_thresh; /* 0 to 6 */
226module_param(log2_irq_thresh, int, S_IRUGO);
227MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
228
229/* Initial park setting: slower than hw default */
230static unsigned park;
231module_param(park, uint, S_IRUGO);
232MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
233
234/* For flakey hardware, ignore overcurrent indicators */
235static bool ignore_oc;
236module_param(ignore_oc, bool, S_IRUGO);
237MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
238
239
240static void ehci_work(struct oxu_hcd *oxu);
241static int oxu_hub_control(struct usb_hcd *hcd,
242 u16 typeReq, u16 wValue, u16 wIndex,
243 char *buf, u16 wLength);
244
245/*
246 * Local functions
247 */
248
249/* Low level read/write registers functions */
250static inline u32 oxu_readl(void *base, u32 reg)
251{
252 return readl(base + reg);
253}
254
255static inline void oxu_writel(void *base, u32 reg, u32 val)
256{
257 writel(val, base + reg);
258}
259
260static inline void timer_action_done(struct oxu_hcd *oxu,
261 enum ehci_timer_action action)
262{
263 clear_bit(action, &oxu->actions);
264}
265
266static inline void timer_action(struct oxu_hcd *oxu,
267 enum ehci_timer_action action)
268{
269 if (!test_and_set_bit(action, &oxu->actions)) {
270 unsigned long t;
271
272 switch (action) {
273 case TIMER_IAA_WATCHDOG:
274 t = EHCI_IAA_JIFFIES;
275 break;
276 case TIMER_IO_WATCHDOG:
277 t = EHCI_IO_JIFFIES;
278 break;
279 case TIMER_ASYNC_OFF:
280 t = EHCI_ASYNC_JIFFIES;
281 break;
282 case TIMER_ASYNC_SHRINK:
283 default:
284 t = EHCI_SHRINK_JIFFIES;
285 break;
286 }
287 t += jiffies;
288 /* all timings except IAA watchdog can be overridden.
289 * async queue SHRINK often precedes IAA. while it's ready
290 * to go OFF neither can matter, and afterwards the IO
291 * watchdog stops unless there's still periodic traffic.
292 */
293 if (action != TIMER_IAA_WATCHDOG
294 && t > oxu->watchdog.expires
295 && timer_pending(&oxu->watchdog))
296 return;
297 mod_timer(&oxu->watchdog, t);
298 }
299}
300
301/*
302 * handshake - spin reading hc until handshake completes or fails
303 * @ptr: address of hc register to be read
304 * @mask: bits to look at in result of read
305 * @done: value of those bits when handshake succeeds
306 * @usec: timeout in microseconds
307 *
308 * Returns negative errno, or zero on success
309 *
310 * Success happens when the "mask" bits have the specified value (hardware
311 * handshake done). There are two failure modes: "usec" have passed (major
312 * hardware flakeout), or the register reads as all-ones (hardware removed).
313 *
314 * That last failure should_only happen in cases like physical cardbus eject
315 * before driver shutdown. But it also seems to be caused by bugs in cardbus
316 * bridge shutdown: shutting down the bridge before the devices using it.
317 */
318static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
319 u32 mask, u32 done, int usec)
320{
321 u32 result;
322
323 do {
324 result = readl(ptr);
325 if (result == ~(u32)0) /* card removed */
326 return -ENODEV;
327 result &= mask;
328 if (result == done)
329 return 0;
330 udelay(1);
331 usec--;
332 } while (usec > 0);
333 return -ETIMEDOUT;
334}
335
336/* Force HC to halt state from unknown (EHCI spec section 2.3) */
337static int ehci_halt(struct oxu_hcd *oxu)
338{
339 u32 temp = readl(&oxu->regs->status);
340
341 /* disable any irqs left enabled by previous code */
342 writel(0, &oxu->regs->intr_enable);
343
344 if ((temp & STS_HALT) != 0)
345 return 0;
346
347 temp = readl(&oxu->regs->command);
348 temp &= ~CMD_RUN;
349 writel(temp, &oxu->regs->command);
350 return handshake(oxu, &oxu->regs->status,
351 STS_HALT, STS_HALT, 16 * 125);
352}
353
354/* Put TDI/ARC silicon into EHCI mode */
355static void tdi_reset(struct oxu_hcd *oxu)
356{
357 u32 __iomem *reg_ptr;
358 u32 tmp;
359
360 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
361 tmp = readl(reg_ptr);
362 tmp |= 0x3;
363 writel(tmp, reg_ptr);
364}
365
366/* Reset a non-running (STS_HALT == 1) controller */
367static int ehci_reset(struct oxu_hcd *oxu)
368{
369 int retval;
370 u32 command = readl(&oxu->regs->command);
371
372 command |= CMD_RESET;
373 dbg_cmd(oxu, "reset", command);
374 writel(command, &oxu->regs->command);
375 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
376 oxu->next_statechange = jiffies;
377 retval = handshake(oxu, &oxu->regs->command,
378 CMD_RESET, 0, 250 * 1000);
379
380 if (retval)
381 return retval;
382
383 tdi_reset(oxu);
384
385 return retval;
386}
387
388/* Idle the controller (from running) */
389static void ehci_quiesce(struct oxu_hcd *oxu)
390{
391 u32 temp;
392
393#ifdef DEBUG
394 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
395 BUG();
396#endif
397
398 /* wait for any schedule enables/disables to take effect */
399 temp = readl(&oxu->regs->command) << 10;
400 temp &= STS_ASS | STS_PSS;
401 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
402 temp, 16 * 125) != 0) {
403 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
404 return;
405 }
406
407 /* then disable anything that's still active */
408 temp = readl(&oxu->regs->command);
409 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
410 writel(temp, &oxu->regs->command);
411
412 /* hardware can take 16 microframes to turn off ... */
413 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
414 0, 16 * 125) != 0) {
415 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
416 return;
417 }
418}
419
420static int check_reset_complete(struct oxu_hcd *oxu, int index,
421 u32 __iomem *status_reg, int port_status)
422{
423 if (!(port_status & PORT_CONNECT)) {
424 oxu->reset_done[index] = 0;
425 return port_status;
426 }
427
428 /* if reset finished and it's still not enabled -- handoff */
429 if (!(port_status & PORT_PE)) {
430 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
431 index+1);
432 return port_status;
433 } else
434 oxu_dbg(oxu, "port %d high speed\n", index + 1);
435
436 return port_status;
437}
438
439static void ehci_hub_descriptor(struct oxu_hcd *oxu,
440 struct usb_hub_descriptor *desc)
441{
442 int ports = HCS_N_PORTS(oxu->hcs_params);
443 u16 temp;
444
445 desc->bDescriptorType = 0x29;
446 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
447 desc->bHubContrCurrent = 0;
448
449 desc->bNbrPorts = ports;
450 temp = 1 + (ports / 8);
451 desc->bDescLength = 7 + 2 * temp;
452
453 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
454 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
455 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
456
457 temp = 0x0008; /* per-port overcurrent reporting */
458 if (HCS_PPC(oxu->hcs_params))
459 temp |= 0x0001; /* per-port power control */
460 else
461 temp |= 0x0002; /* no power switching */
462 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
463}
464
465
466/* Allocate an OXU210HP on-chip memory data buffer
467 *
468 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
469 * Each transfer descriptor has one or more on-chip memory data buffers.
470 *
471 * Data buffers are allocated from a fix sized pool of data blocks.
472 * To minimise fragmentation and give reasonable memory utlisation,
473 * data buffers are allocated with sizes the power of 2 multiples of
474 * the block size, starting on an address a multiple of the allocated size.
475 *
476 * FIXME: callers of this function require a buffer to be allocated for
477 * len=0. This is a waste of on-chip memory and should be fix. Then this
478 * function should be changed to not allocate a buffer for len=0.
479 */
480static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
481{
482 int n_blocks; /* minium blocks needed to hold len */
483 int a_blocks; /* blocks allocated */
484 int i, j;
485
486 /* Don't allocte bigger than supported */
487 if (len > BUFFER_SIZE * BUFFER_NUM) {
488 oxu_err(oxu, "buffer too big (%d)\n", len);
489 return -ENOMEM;
490 }
491
492 spin_lock(&oxu->mem_lock);
493
494 /* Number of blocks needed to hold len */
495 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
496
497 /* Round the number of blocks up to the power of 2 */
498 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
499 ;
500
501 /* Find a suitable available data buffer */
502 for (i = 0; i < BUFFER_NUM;
503 i += max(a_blocks, (int)oxu->db_used[i])) {
504
505 /* Check all the required blocks are available */
506 for (j = 0; j < a_blocks; j++)
507 if (oxu->db_used[i + j])
508 break;
509
510 if (j != a_blocks)
511 continue;
512
513 /* Allocate blocks found! */
514 qtd->buffer = (void *) &oxu->mem->db_pool[i];
515 qtd->buffer_dma = virt_to_phys(qtd->buffer);
516
517 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
518 oxu->db_used[i] = a_blocks;
519
520 spin_unlock(&oxu->mem_lock);
521
522 return 0;
523 }
524
525 /* Failed */
526
527 spin_unlock(&oxu->mem_lock);
528
529 return -ENOMEM;
530}
531
532static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
533{
534 int index;
535
536 spin_lock(&oxu->mem_lock);
537
538 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
539 / BUFFER_SIZE;
540 oxu->db_used[index] = 0;
541 qtd->qtd_buffer_len = 0;
542 qtd->buffer_dma = 0;
543 qtd->buffer = NULL;
544
545 spin_unlock(&oxu->mem_lock);
546}
547
548static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
549{
550 memset(qtd, 0, sizeof *qtd);
551 qtd->qtd_dma = dma;
552 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
553 qtd->hw_next = EHCI_LIST_END;
554 qtd->hw_alt_next = EHCI_LIST_END;
555 INIT_LIST_HEAD(&qtd->qtd_list);
556}
557
558static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
559{
560 int index;
561
562 if (qtd->buffer)
563 oxu_buf_free(oxu, qtd);
564
565 spin_lock(&oxu->mem_lock);
566
567 index = qtd - &oxu->mem->qtd_pool[0];
568 oxu->qtd_used[index] = 0;
569
570 spin_unlock(&oxu->mem_lock);
571}
572
573static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
574{
575 int i;
576 struct ehci_qtd *qtd = NULL;
577
578 spin_lock(&oxu->mem_lock);
579
580 for (i = 0; i < QTD_NUM; i++)
581 if (!oxu->qtd_used[i])
582 break;
583
584 if (i < QTD_NUM) {
585 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
586 memset(qtd, 0, sizeof *qtd);
587
588 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
589 qtd->hw_next = EHCI_LIST_END;
590 qtd->hw_alt_next = EHCI_LIST_END;
591 INIT_LIST_HEAD(&qtd->qtd_list);
592
593 qtd->qtd_dma = virt_to_phys(qtd);
594
595 oxu->qtd_used[i] = 1;
596 }
597
598 spin_unlock(&oxu->mem_lock);
599
600 return qtd;
601}
602
603static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
604{
605 int index;
606
607 spin_lock(&oxu->mem_lock);
608
609 index = qh - &oxu->mem->qh_pool[0];
610 oxu->qh_used[index] = 0;
611
612 spin_unlock(&oxu->mem_lock);
613}
614
615static void qh_destroy(struct kref *kref)
616{
617 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
618 struct oxu_hcd *oxu = qh->oxu;
619
620 /* clean qtds first, and know this is not linked */
621 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
622 oxu_dbg(oxu, "unused qh not empty!\n");
623 BUG();
624 }
625 if (qh->dummy)
626 oxu_qtd_free(oxu, qh->dummy);
627 oxu_qh_free(oxu, qh);
628}
629
630static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
631{
632 int i;
633 struct ehci_qh *qh = NULL;
634
635 spin_lock(&oxu->mem_lock);
636
637 for (i = 0; i < QHEAD_NUM; i++)
638 if (!oxu->qh_used[i])
639 break;
640
641 if (i < QHEAD_NUM) {
642 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
643 memset(qh, 0, sizeof *qh);
644
645 kref_init(&qh->kref);
646 qh->oxu = oxu;
647 qh->qh_dma = virt_to_phys(qh);
648 INIT_LIST_HEAD(&qh->qtd_list);
649
650 /* dummy td enables safe urb queuing */
651 qh->dummy = ehci_qtd_alloc(oxu);
652 if (qh->dummy == NULL) {
653 oxu_dbg(oxu, "no dummy td\n");
654 oxu->qh_used[i] = 0;
655 qh = NULL;
656 goto unlock;
657 }
658
659 oxu->qh_used[i] = 1;
660 }
661unlock:
662 spin_unlock(&oxu->mem_lock);
663
664 return qh;
665}
666
667/* to share a qh (cpu threads, or hc) */
668static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
669{
670 kref_get(&qh->kref);
671 return qh;
672}
673
674static inline void qh_put(struct ehci_qh *qh)
675{
676 kref_put(&qh->kref, qh_destroy);
677}
678
679static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
680{
681 int index;
682
683 spin_lock(&oxu->mem_lock);
684
685 index = murb - &oxu->murb_pool[0];
686 oxu->murb_used[index] = 0;
687
688 spin_unlock(&oxu->mem_lock);
689}
690
691static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
692
693{
694 int i;
695 struct oxu_murb *murb = NULL;
696
697 spin_lock(&oxu->mem_lock);
698
699 for (i = 0; i < MURB_NUM; i++)
700 if (!oxu->murb_used[i])
701 break;
702
703 if (i < MURB_NUM) {
704 murb = &(oxu->murb_pool)[i];
705
706 oxu->murb_used[i] = 1;
707 }
708
709 spin_unlock(&oxu->mem_lock);
710
711 return murb;
712}
713
714/* The queue heads and transfer descriptors are managed from pools tied
715 * to each of the "per device" structures.
716 * This is the initialisation and cleanup code.
717 */
718static void ehci_mem_cleanup(struct oxu_hcd *oxu)
719{
720 kfree(oxu->murb_pool);
721 oxu->murb_pool = NULL;
722
723 if (oxu->async)
724 qh_put(oxu->async);
725 oxu->async = NULL;
726
727 del_timer(&oxu->urb_timer);
728
729 oxu->periodic = NULL;
730
731 /* shadow periodic table */
732 kfree(oxu->pshadow);
733 oxu->pshadow = NULL;
734}
735
736/* Remember to add cleanup code (above) if you add anything here.
737 */
738static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
739{
740 int i;
741
742 for (i = 0; i < oxu->periodic_size; i++)
743 oxu->mem->frame_list[i] = EHCI_LIST_END;
744 for (i = 0; i < QHEAD_NUM; i++)
745 oxu->qh_used[i] = 0;
746 for (i = 0; i < QTD_NUM; i++)
747 oxu->qtd_used[i] = 0;
748
749 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
750 if (!oxu->murb_pool)
751 goto fail;
752
753 for (i = 0; i < MURB_NUM; i++)
754 oxu->murb_used[i] = 0;
755
756 oxu->async = oxu_qh_alloc(oxu);
757 if (!oxu->async)
758 goto fail;
759
760 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
761 oxu->periodic_dma = virt_to_phys(oxu->periodic);
762
763 for (i = 0; i < oxu->periodic_size; i++)
764 oxu->periodic[i] = EHCI_LIST_END;
765
766 /* software shadow of hardware table */
767 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
768 if (oxu->pshadow != NULL)
769 return 0;
770
771fail:
772 oxu_dbg(oxu, "couldn't init memory\n");
773 ehci_mem_cleanup(oxu);
774 return -ENOMEM;
775}
776
777/* Fill a qtd, returning how much of the buffer we were able to queue up.
778 */
779static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
780 int token, int maxpacket)
781{
782 int i, count;
783 u64 addr = buf;
784
785 /* one buffer entry per 4K ... first might be short or unaligned */
786 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
787 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
788 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
789 if (likely(len < count)) /* ... iff needed */
790 count = len;
791 else {
792 buf += 0x1000;
793 buf &= ~0x0fff;
794
795 /* per-qtd limit: from 16K to 20K (best alignment) */
796 for (i = 1; count < len && i < 5; i++) {
797 addr = buf;
798 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
799 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
800 buf += 0x1000;
801 if ((count + 0x1000) < len)
802 count += 0x1000;
803 else
804 count = len;
805 }
806
807 /* short packets may only terminate transfers */
808 if (count != len)
809 count -= (count % maxpacket);
810 }
811 qtd->hw_token = cpu_to_le32((count << 16) | token);
812 qtd->length = count;
813
814 return count;
815}
816
817static inline void qh_update(struct oxu_hcd *oxu,
818 struct ehci_qh *qh, struct ehci_qtd *qtd)
819{
820 /* writes to an active overlay are unsafe */
821 BUG_ON(qh->qh_state != QH_STATE_IDLE);
822
823 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
824 qh->hw_alt_next = EHCI_LIST_END;
825
826 /* Except for control endpoints, we make hardware maintain data
827 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
828 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
829 * ever clear it.
830 */
831 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
832 unsigned is_out, epnum;
833
834 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
835 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
836 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
837 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
838 usb_settoggle(qh->dev, epnum, is_out, 1);
839 }
840 }
841
842 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
843 wmb();
844 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
845}
846
847/* If it weren't for a common silicon quirk (writing the dummy into the qh
848 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
849 * recovery (including urb dequeue) would need software changes to a QH...
850 */
851static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
852{
853 struct ehci_qtd *qtd;
854
855 if (list_empty(&qh->qtd_list))
856 qtd = qh->dummy;
857 else {
858 qtd = list_entry(qh->qtd_list.next,
859 struct ehci_qtd, qtd_list);
860 /* first qtd may already be partially processed */
861 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
862 qtd = NULL;
863 }
864
865 if (qtd)
866 qh_update(oxu, qh, qtd);
867}
868
869static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
870 size_t length, u32 token)
871{
872 /* count IN/OUT bytes, not SETUP (even short packets) */
873 if (likely(QTD_PID(token) != 2))
874 urb->actual_length += length - QTD_LENGTH(token);
875
876 /* don't modify error codes */
877 if (unlikely(urb->status != -EINPROGRESS))
878 return;
879
880 /* force cleanup after short read; not always an error */
881 if (unlikely(IS_SHORT_READ(token)))
882 urb->status = -EREMOTEIO;
883
884 /* serious "can't proceed" faults reported by the hardware */
885 if (token & QTD_STS_HALT) {
886 if (token & QTD_STS_BABBLE) {
887 /* FIXME "must" disable babbling device's port too */
888 urb->status = -EOVERFLOW;
889 } else if (token & QTD_STS_MMF) {
890 /* fs/ls interrupt xfer missed the complete-split */
891 urb->status = -EPROTO;
892 } else if (token & QTD_STS_DBE) {
893 urb->status = (QTD_PID(token) == 1) /* IN ? */
894 ? -ENOSR /* hc couldn't read data */
895 : -ECOMM; /* hc couldn't write data */
896 } else if (token & QTD_STS_XACT) {
897 /* timeout, bad crc, wrong PID, etc; retried */
898 if (QTD_CERR(token))
899 urb->status = -EPIPE;
900 else {
901 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
902 urb->dev->devpath,
903 usb_pipeendpoint(urb->pipe),
904 usb_pipein(urb->pipe) ? "in" : "out");
905 urb->status = -EPROTO;
906 }
907 /* CERR nonzero + no errors + halt --> stall */
908 } else if (QTD_CERR(token))
909 urb->status = -EPIPE;
910 else /* unknown */
911 urb->status = -EPROTO;
912
913 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
914 usb_pipedevice(urb->pipe),
915 usb_pipeendpoint(urb->pipe),
916 usb_pipein(urb->pipe) ? "in" : "out",
917 token, urb->status);
918 }
919}
920
921static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
922__releases(oxu->lock)
923__acquires(oxu->lock)
924{
925 if (likely(urb->hcpriv != NULL)) {
926 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
927
928 /* S-mask in a QH means it's an interrupt urb */
929 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
930
931 /* ... update hc-wide periodic stats (for usbfs) */
932 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
933 }
934 qh_put(qh);
935 }
936
937 urb->hcpriv = NULL;
938 switch (urb->status) {
939 case -EINPROGRESS: /* success */
940 urb->status = 0;
941 default: /* fault */
942 break;
943 case -EREMOTEIO: /* fault or normal */
944 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
945 urb->status = 0;
946 break;
947 case -ECONNRESET: /* canceled */
948 case -ENOENT:
949 break;
950 }
951
952#ifdef OXU_URB_TRACE
953 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
954 __func__, urb->dev->devpath, urb,
955 usb_pipeendpoint(urb->pipe),
956 usb_pipein(urb->pipe) ? "in" : "out",
957 urb->status,
958 urb->actual_length, urb->transfer_buffer_length);
959#endif
960
961 /* complete() can reenter this HCD */
962 spin_unlock(&oxu->lock);
963 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
964 spin_lock(&oxu->lock);
965}
966
967static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
968static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
969
970static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
971static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
972
973#define HALT_BIT cpu_to_le32(QTD_STS_HALT)
974
975/* Process and free completed qtds for a qh, returning URBs to drivers.
976 * Chases up to qh->hw_current. Returns number of completions called,
977 * indicating how much "real" work we did.
978 */
979static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
980{
981 struct ehci_qtd *last = NULL, *end = qh->dummy;
982 struct list_head *entry, *tmp;
983 int stopped;
984 unsigned count = 0;
985 int do_status = 0;
986 u8 state;
987 struct oxu_murb *murb = NULL;
988
989 if (unlikely(list_empty(&qh->qtd_list)))
990 return count;
991
992 /* completions (or tasks on other cpus) must never clobber HALT
993 * till we've gone through and cleaned everything up, even when
994 * they add urbs to this qh's queue or mark them for unlinking.
995 *
996 * NOTE: unlinking expects to be done in queue order.
997 */
998 state = qh->qh_state;
999 qh->qh_state = QH_STATE_COMPLETING;
1000 stopped = (state == QH_STATE_IDLE);
1001
1002 /* remove de-activated QTDs from front of queue.
1003 * after faults (including short reads), cleanup this urb
1004 * then let the queue advance.
1005 * if queue is stopped, handles unlinks.
1006 */
1007 list_for_each_safe(entry, tmp, &qh->qtd_list) {
1008 struct ehci_qtd *qtd;
1009 struct urb *urb;
1010 u32 token = 0;
1011
1012 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1013 urb = qtd->urb;
1014
1015 /* Clean up any state from previous QTD ...*/
1016 if (last) {
1017 if (likely(last->urb != urb)) {
1018 if (last->urb->complete == NULL) {
1019 murb = (struct oxu_murb *) last->urb;
1020 last->urb = murb->main;
1021 if (murb->last) {
1022 ehci_urb_done(oxu, last->urb);
1023 count++;
1024 }
1025 oxu_murb_free(oxu, murb);
1026 } else {
1027 ehci_urb_done(oxu, last->urb);
1028 count++;
1029 }
1030 }
1031 oxu_qtd_free(oxu, last);
1032 last = NULL;
1033 }
1034
1035 /* ignore urbs submitted during completions we reported */
1036 if (qtd == end)
1037 break;
1038
1039 /* hardware copies qtd out of qh overlay */
1040 rmb();
1041 token = le32_to_cpu(qtd->hw_token);
1042
1043 /* always clean up qtds the hc de-activated */
1044 if ((token & QTD_STS_ACTIVE) == 0) {
1045
1046 if ((token & QTD_STS_HALT) != 0) {
1047 stopped = 1;
1048
1049 /* magic dummy for some short reads; qh won't advance.
1050 * that silicon quirk can kick in with this dummy too.
1051 */
1052 } else if (IS_SHORT_READ(token) &&
1053 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1054 stopped = 1;
1055 goto halt;
1056 }
1057
1058 /* stop scanning when we reach qtds the hc is using */
1059 } else if (likely(!stopped &&
1060 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1061 break;
1062
1063 } else {
1064 stopped = 1;
1065
1066 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1067 urb->status = -ESHUTDOWN;
1068
1069 /* ignore active urbs unless some previous qtd
1070 * for the urb faulted (including short read) or
1071 * its urb was canceled. we may patch qh or qtds.
1072 */
1073 if (likely(urb->status == -EINPROGRESS))
1074 continue;
1075
1076 /* issue status after short control reads */
1077 if (unlikely(do_status != 0)
1078 && QTD_PID(token) == 0 /* OUT */) {
1079 do_status = 0;
1080 continue;
1081 }
1082
1083 /* token in overlay may be most current */
1084 if (state == QH_STATE_IDLE
1085 && cpu_to_le32(qtd->qtd_dma)
1086 == qh->hw_current)
1087 token = le32_to_cpu(qh->hw_token);
1088
1089 /* force halt for unlinked or blocked qh, so we'll
1090 * patch the qh later and so that completions can't
1091 * activate it while we "know" it's stopped.
1092 */
1093 if ((HALT_BIT & qh->hw_token) == 0) {
1094halt:
1095 qh->hw_token |= HALT_BIT;
1096 wmb();
1097 }
1098 }
1099
1100 /* Remove it from the queue */
1101 qtd_copy_status(oxu, urb->complete ?
1102 urb : ((struct oxu_murb *) urb)->main,
1103 qtd->length, token);
1104 if ((usb_pipein(qtd->urb->pipe)) &&
1105 (NULL != qtd->transfer_buffer))
1106 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1107 do_status = (urb->status == -EREMOTEIO)
1108 && usb_pipecontrol(urb->pipe);
1109
1110 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1111 last = list_entry(qtd->qtd_list.prev,
1112 struct ehci_qtd, qtd_list);
1113 last->hw_next = qtd->hw_next;
1114 }
1115 list_del(&qtd->qtd_list);
1116 last = qtd;
1117 }
1118
1119 /* last urb's completion might still need calling */
1120 if (likely(last != NULL)) {
1121 if (last->urb->complete == NULL) {
1122 murb = (struct oxu_murb *) last->urb;
1123 last->urb = murb->main;
1124 if (murb->last) {
1125 ehci_urb_done(oxu, last->urb);
1126 count++;
1127 }
1128 oxu_murb_free(oxu, murb);
1129 } else {
1130 ehci_urb_done(oxu, last->urb);
1131 count++;
1132 }
1133 oxu_qtd_free(oxu, last);
1134 }
1135
1136 /* restore original state; caller must unlink or relink */
1137 qh->qh_state = state;
1138
1139 /* be sure the hardware's done with the qh before refreshing
1140 * it after fault cleanup, or recovering from silicon wrongly
1141 * overlaying the dummy qtd (which reduces DMA chatter).
1142 */
1143 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1144 switch (state) {
1145 case QH_STATE_IDLE:
1146 qh_refresh(oxu, qh);
1147 break;
1148 case QH_STATE_LINKED:
1149 /* should be rare for periodic transfers,
1150 * except maybe high bandwidth ...
1151 */
1152 if ((cpu_to_le32(QH_SMASK)
1153 & qh->hw_info2) != 0) {
1154 intr_deschedule(oxu, qh);
1155 (void) qh_schedule(oxu, qh);
1156 } else
1157 unlink_async(oxu, qh);
1158 break;
1159 /* otherwise, unlink already started */
1160 }
1161 }
1162
1163 return count;
1164}
1165
1166/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1167#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1168/* ... and packet size, for any kind of endpoint descriptor */
1169#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1170
1171/* Reverse of qh_urb_transaction: free a list of TDs.
1172 * used for cleanup after errors, before HC sees an URB's TDs.
1173 */
1174static void qtd_list_free(struct oxu_hcd *oxu,
1175 struct urb *urb, struct list_head *qtd_list)
1176{
1177 struct list_head *entry, *temp;
1178
1179 list_for_each_safe(entry, temp, qtd_list) {
1180 struct ehci_qtd *qtd;
1181
1182 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1183 list_del(&qtd->qtd_list);
1184 oxu_qtd_free(oxu, qtd);
1185 }
1186}
1187
1188/* Create a list of filled qtds for this URB; won't link into qh.
1189 */
1190static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1191 struct urb *urb,
1192 struct list_head *head,
1193 gfp_t flags)
1194{
1195 struct ehci_qtd *qtd, *qtd_prev;
1196 dma_addr_t buf;
1197 int len, maxpacket;
1198 int is_input;
1199 u32 token;
1200 void *transfer_buf = NULL;
1201 int ret;
1202
1203 /*
1204 * URBs map to sequences of QTDs: one logical transaction
1205 */
1206 qtd = ehci_qtd_alloc(oxu);
1207 if (unlikely(!qtd))
1208 return NULL;
1209 list_add_tail(&qtd->qtd_list, head);
1210 qtd->urb = urb;
1211
1212 token = QTD_STS_ACTIVE;
1213 token |= (EHCI_TUNE_CERR << 10);
1214 /* for split transactions, SplitXState initialized to zero */
1215
1216 len = urb->transfer_buffer_length;
1217 is_input = usb_pipein(urb->pipe);
1218 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1219 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1220
1221 if (usb_pipecontrol(urb->pipe)) {
1222 /* SETUP pid */
1223 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1224 if (ret)
1225 goto cleanup;
1226
1227 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1228 token | (2 /* "setup" */ << 8), 8);
1229 memcpy(qtd->buffer, qtd->urb->setup_packet,
1230 sizeof(struct usb_ctrlrequest));
1231
1232 /* ... and always at least one more pid */
1233 token ^= QTD_TOGGLE;
1234 qtd_prev = qtd;
1235 qtd = ehci_qtd_alloc(oxu);
1236 if (unlikely(!qtd))
1237 goto cleanup;
1238 qtd->urb = urb;
1239 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1240 list_add_tail(&qtd->qtd_list, head);
1241
1242 /* for zero length DATA stages, STATUS is always IN */
1243 if (len == 0)
1244 token |= (1 /* "in" */ << 8);
1245 }
1246
1247 /*
1248 * Data transfer stage: buffer setup
1249 */
1250
1251 ret = oxu_buf_alloc(oxu, qtd, len);
1252 if (ret)
1253 goto cleanup;
1254
1255 buf = qtd->buffer_dma;
1256 transfer_buf = urb->transfer_buffer;
1257
1258 if (!is_input)
1259 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1260
1261 if (is_input)
1262 token |= (1 /* "in" */ << 8);
1263 /* else it's already initted to "out" pid (0 << 8) */
1264
1265 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1266
1267 /*
1268 * buffer gets wrapped in one or more qtds;
1269 * last one may be "short" (including zero len)
1270 * and may serve as a control status ack
1271 */
1272 for (;;) {
1273 int this_qtd_len;
1274
1275 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1276 qtd->transfer_buffer = transfer_buf;
1277 len -= this_qtd_len;
1278 buf += this_qtd_len;
1279 transfer_buf += this_qtd_len;
1280 if (is_input)
1281 qtd->hw_alt_next = oxu->async->hw_alt_next;
1282
1283 /* qh makes control packets use qtd toggle; maybe switch it */
1284 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1285 token ^= QTD_TOGGLE;
1286
1287 if (likely(len <= 0))
1288 break;
1289
1290 qtd_prev = qtd;
1291 qtd = ehci_qtd_alloc(oxu);
1292 if (unlikely(!qtd))
1293 goto cleanup;
1294 if (likely(len > 0)) {
1295 ret = oxu_buf_alloc(oxu, qtd, len);
1296 if (ret)
1297 goto cleanup;
1298 }
1299 qtd->urb = urb;
1300 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1301 list_add_tail(&qtd->qtd_list, head);
1302 }
1303
1304 /* unless the bulk/interrupt caller wants a chance to clean
1305 * up after short reads, hc should advance qh past this urb
1306 */
1307 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1308 || usb_pipecontrol(urb->pipe)))
1309 qtd->hw_alt_next = EHCI_LIST_END;
1310
1311 /*
1312 * control requests may need a terminating data "status" ack;
1313 * bulk ones may need a terminating short packet (zero length).
1314 */
1315 if (likely(urb->transfer_buffer_length != 0)) {
1316 int one_more = 0;
1317
1318 if (usb_pipecontrol(urb->pipe)) {
1319 one_more = 1;
1320 token ^= 0x0100; /* "in" <--> "out" */
1321 token |= QTD_TOGGLE; /* force DATA1 */
1322 } else if (usb_pipebulk(urb->pipe)
1323 && (urb->transfer_flags & URB_ZERO_PACKET)
1324 && !(urb->transfer_buffer_length % maxpacket)) {
1325 one_more = 1;
1326 }
1327 if (one_more) {
1328 qtd_prev = qtd;
1329 qtd = ehci_qtd_alloc(oxu);
1330 if (unlikely(!qtd))
1331 goto cleanup;
1332 qtd->urb = urb;
1333 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1334 list_add_tail(&qtd->qtd_list, head);
1335
1336 /* never any data in such packets */
1337 qtd_fill(qtd, 0, 0, token, 0);
1338 }
1339 }
1340
1341 /* by default, enable interrupt on urb completion */
1342 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1343 return head;
1344
1345cleanup:
1346 qtd_list_free(oxu, urb, head);
1347 return NULL;
1348}
1349
1350/* Each QH holds a qtd list; a QH is used for everything except iso.
1351 *
1352 * For interrupt urbs, the scheduler must set the microframe scheduling
1353 * mask(s) each time the QH gets scheduled. For highspeed, that's
1354 * just one microframe in the s-mask. For split interrupt transactions
1355 * there are additional complications: c-mask, maybe FSTNs.
1356 */
1357static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1358 struct urb *urb, gfp_t flags)
1359{
1360 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1361 u32 info1 = 0, info2 = 0;
1362 int is_input, type;
1363 int maxp = 0;
1364
1365 if (!qh)
1366 return qh;
1367
1368 /*
1369 * init endpoint/device data for this QH
1370 */
1371 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1372 info1 |= usb_pipedevice(urb->pipe) << 0;
1373
1374 is_input = usb_pipein(urb->pipe);
1375 type = usb_pipetype(urb->pipe);
1376 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1377
1378 /* Compute interrupt scheduling parameters just once, and save.
1379 * - allowing for high bandwidth, how many nsec/uframe are used?
1380 * - split transactions need a second CSPLIT uframe; same question
1381 * - splits also need a schedule gap (for full/low speed I/O)
1382 * - qh has a polling interval
1383 *
1384 * For control/bulk requests, the HC or TT handles these.
1385 */
1386 if (type == PIPE_INTERRUPT) {
1387 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1388 is_input, 0,
1389 hb_mult(maxp) * max_packet(maxp)));
1390 qh->start = NO_FRAME;
1391
1392 if (urb->dev->speed == USB_SPEED_HIGH) {
1393 qh->c_usecs = 0;
1394 qh->gap_uf = 0;
1395
1396 qh->period = urb->interval >> 3;
1397 if (qh->period == 0 && urb->interval != 1) {
1398 /* NOTE interval 2 or 4 uframes could work.
1399 * But interval 1 scheduling is simpler, and
1400 * includes high bandwidth.
1401 */
1402 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1403 urb->interval);
1404 goto done;
1405 }
1406 } else {
1407 struct usb_tt *tt = urb->dev->tt;
1408 int think_time;
1409
1410 /* gap is f(FS/LS transfer times) */
1411 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1412 is_input, 0, maxp) / (125 * 1000);
1413
1414 /* FIXME this just approximates SPLIT/CSPLIT times */
1415 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1416 qh->c_usecs = qh->usecs + HS_USECS(0);
1417 qh->usecs = HS_USECS(1);
1418 } else { /* SPLIT+DATA, gap, CSPLIT */
1419 qh->usecs += HS_USECS(1);
1420 qh->c_usecs = HS_USECS(0);
1421 }
1422
1423 think_time = tt ? tt->think_time : 0;
1424 qh->tt_usecs = NS_TO_US(think_time +
1425 usb_calc_bus_time(urb->dev->speed,
1426 is_input, 0, max_packet(maxp)));
1427 qh->period = urb->interval;
1428 }
1429 }
1430
1431 /* support for tt scheduling, and access to toggles */
1432 qh->dev = urb->dev;
1433
1434 /* using TT? */
1435 switch (urb->dev->speed) {
1436 case USB_SPEED_LOW:
1437 info1 |= (1 << 12); /* EPS "low" */
1438 /* FALL THROUGH */
1439
1440 case USB_SPEED_FULL:
1441 /* EPS 0 means "full" */
1442 if (type != PIPE_INTERRUPT)
1443 info1 |= (EHCI_TUNE_RL_TT << 28);
1444 if (type == PIPE_CONTROL) {
1445 info1 |= (1 << 27); /* for TT */
1446 info1 |= 1 << 14; /* toggle from qtd */
1447 }
1448 info1 |= maxp << 16;
1449
1450 info2 |= (EHCI_TUNE_MULT_TT << 30);
1451 info2 |= urb->dev->ttport << 23;
1452
1453 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1454
1455 break;
1456
1457 case USB_SPEED_HIGH: /* no TT involved */
1458 info1 |= (2 << 12); /* EPS "high" */
1459 if (type == PIPE_CONTROL) {
1460 info1 |= (EHCI_TUNE_RL_HS << 28);
1461 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1462 info1 |= 1 << 14; /* toggle from qtd */
1463 info2 |= (EHCI_TUNE_MULT_HS << 30);
1464 } else if (type == PIPE_BULK) {
1465 info1 |= (EHCI_TUNE_RL_HS << 28);
1466 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1467 info2 |= (EHCI_TUNE_MULT_HS << 30);
1468 } else { /* PIPE_INTERRUPT */
1469 info1 |= max_packet(maxp) << 16;
1470 info2 |= hb_mult(maxp) << 30;
1471 }
1472 break;
1473 default:
1474 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1475done:
1476 qh_put(qh);
1477 return NULL;
1478 }
1479
1480 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1481
1482 /* init as live, toggle clear, advance to dummy */
1483 qh->qh_state = QH_STATE_IDLE;
1484 qh->hw_info1 = cpu_to_le32(info1);
1485 qh->hw_info2 = cpu_to_le32(info2);
1486 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1487 qh_refresh(oxu, qh);
1488 return qh;
1489}
1490
1491/* Move qh (and its qtds) onto async queue; maybe enable queue.
1492 */
1493static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1494{
1495 __le32 dma = QH_NEXT(qh->qh_dma);
1496 struct ehci_qh *head;
1497
1498 /* (re)start the async schedule? */
1499 head = oxu->async;
1500 timer_action_done(oxu, TIMER_ASYNC_OFF);
1501 if (!head->qh_next.qh) {
1502 u32 cmd = readl(&oxu->regs->command);
1503
1504 if (!(cmd & CMD_ASE)) {
1505 /* in case a clear of CMD_ASE didn't take yet */
1506 (void)handshake(oxu, &oxu->regs->status,
1507 STS_ASS, 0, 150);
1508 cmd |= CMD_ASE | CMD_RUN;
1509 writel(cmd, &oxu->regs->command);
1510 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1511 /* posted write need not be known to HC yet ... */
1512 }
1513 }
1514
1515 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1516 if (qh->qh_state == QH_STATE_IDLE)
1517 qh_refresh(oxu, qh);
1518
1519 /* splice right after start */
1520 qh->qh_next = head->qh_next;
1521 qh->hw_next = head->hw_next;
1522 wmb();
1523
1524 head->qh_next.qh = qh;
1525 head->hw_next = dma;
1526
1527 qh->qh_state = QH_STATE_LINKED;
1528 /* qtd completions reported later by interrupt */
1529}
1530
1531#define QH_ADDR_MASK cpu_to_le32(0x7f)
1532
1533/*
1534 * For control/bulk/interrupt, return QH with these TDs appended.
1535 * Allocates and initializes the QH if necessary.
1536 * Returns null if it can't allocate a QH it needs to.
1537 * If the QH has TDs (urbs) already, that's great.
1538 */
1539static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1540 struct urb *urb, struct list_head *qtd_list,
1541 int epnum, void **ptr)
1542{
1543 struct ehci_qh *qh = NULL;
1544
1545 qh = (struct ehci_qh *) *ptr;
1546 if (unlikely(qh == NULL)) {
1547 /* can't sleep here, we have oxu->lock... */
1548 qh = qh_make(oxu, urb, GFP_ATOMIC);
1549 *ptr = qh;
1550 }
1551 if (likely(qh != NULL)) {
1552 struct ehci_qtd *qtd;
1553
1554 if (unlikely(list_empty(qtd_list)))
1555 qtd = NULL;
1556 else
1557 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1558 qtd_list);
1559
1560 /* control qh may need patching ... */
1561 if (unlikely(epnum == 0)) {
1562
1563 /* usb_reset_device() briefly reverts to address 0 */
1564 if (usb_pipedevice(urb->pipe) == 0)
1565 qh->hw_info1 &= ~QH_ADDR_MASK;
1566 }
1567
1568 /* just one way to queue requests: swap with the dummy qtd.
1569 * only hc or qh_refresh() ever modify the overlay.
1570 */
1571 if (likely(qtd != NULL)) {
1572 struct ehci_qtd *dummy;
1573 dma_addr_t dma;
1574 __le32 token;
1575
1576 /* to avoid racing the HC, use the dummy td instead of
1577 * the first td of our list (becomes new dummy). both
1578 * tds stay deactivated until we're done, when the
1579 * HC is allowed to fetch the old dummy (4.10.2).
1580 */
1581 token = qtd->hw_token;
1582 qtd->hw_token = HALT_BIT;
1583 wmb();
1584 dummy = qh->dummy;
1585
1586 dma = dummy->qtd_dma;
1587 *dummy = *qtd;
1588 dummy->qtd_dma = dma;
1589
1590 list_del(&qtd->qtd_list);
1591 list_add(&dummy->qtd_list, qtd_list);
1592 list_splice(qtd_list, qh->qtd_list.prev);
1593
1594 ehci_qtd_init(qtd, qtd->qtd_dma);
1595 qh->dummy = qtd;
1596
1597 /* hc must see the new dummy at list end */
1598 dma = qtd->qtd_dma;
1599 qtd = list_entry(qh->qtd_list.prev,
1600 struct ehci_qtd, qtd_list);
1601 qtd->hw_next = QTD_NEXT(dma);
1602
1603 /* let the hc process these next qtds */
1604 dummy->hw_token = (token & ~(0x80));
1605 wmb();
1606 dummy->hw_token = token;
1607
1608 urb->hcpriv = qh_get(qh);
1609 }
1610 }
1611 return qh;
1612}
1613
1614static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
1615 struct list_head *qtd_list, gfp_t mem_flags)
1616{
1617 struct ehci_qtd *qtd;
1618 int epnum;
1619 unsigned long flags;
1620 struct ehci_qh *qh = NULL;
1621 int rc = 0;
1622
1623 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1624 epnum = urb->ep->desc.bEndpointAddress;
1625
1626#ifdef OXU_URB_TRACE
1627 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1628 __func__, urb->dev->devpath, urb,
1629 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1630 urb->transfer_buffer_length,
1631 qtd, urb->ep->hcpriv);
1632#endif
1633
1634 spin_lock_irqsave(&oxu->lock, flags);
1635 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1636 rc = -ESHUTDOWN;
1637 goto done;
1638 }
1639
1640 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1641 if (unlikely(qh == NULL)) {
1642 rc = -ENOMEM;
1643 goto done;
1644 }
1645
1646 /* Control/bulk operations through TTs don't need scheduling,
1647 * the HC and TT handle it when the TT has a buffer ready.
1648 */
1649 if (likely(qh->qh_state == QH_STATE_IDLE))
1650 qh_link_async(oxu, qh_get(qh));
1651done:
1652 spin_unlock_irqrestore(&oxu->lock, flags);
1653 if (unlikely(qh == NULL))
1654 qtd_list_free(oxu, urb, qtd_list);
1655 return rc;
1656}
1657
1658/* The async qh for the qtds being reclaimed are now unlinked from the HC */
1659
1660static void end_unlink_async(struct oxu_hcd *oxu)
1661{
1662 struct ehci_qh *qh = oxu->reclaim;
1663 struct ehci_qh *next;
1664
1665 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1666
1667 qh->qh_state = QH_STATE_IDLE;
1668 qh->qh_next.qh = NULL;
1669 qh_put(qh); /* refcount from reclaim */
1670
1671 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1672 next = qh->reclaim;
1673 oxu->reclaim = next;
1674 oxu->reclaim_ready = 0;
1675 qh->reclaim = NULL;
1676
1677 qh_completions(oxu, qh);
1678
1679 if (!list_empty(&qh->qtd_list)
1680 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1681 qh_link_async(oxu, qh);
1682 else {
1683 qh_put(qh); /* refcount from async list */
1684
1685 /* it's not free to turn the async schedule on/off; leave it
1686 * active but idle for a while once it empties.
1687 */
1688 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1689 && oxu->async->qh_next.qh == NULL)
1690 timer_action(oxu, TIMER_ASYNC_OFF);
1691 }
1692
1693 if (next) {
1694 oxu->reclaim = NULL;
1695 start_unlink_async(oxu, next);
1696 }
1697}
1698
1699/* makes sure the async qh will become idle */
1700/* caller must own oxu->lock */
1701
1702static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1703{
1704 int cmd = readl(&oxu->regs->command);
1705 struct ehci_qh *prev;
1706
1707#ifdef DEBUG
1708 assert_spin_locked(&oxu->lock);
1709 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1710 && qh->qh_state != QH_STATE_UNLINK_WAIT))
1711 BUG();
1712#endif
1713
1714 /* stop async schedule right now? */
1715 if (unlikely(qh == oxu->async)) {
1716 /* can't get here without STS_ASS set */
1717 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1718 && !oxu->reclaim) {
1719 /* ... and CMD_IAAD clear */
1720 writel(cmd & ~CMD_ASE, &oxu->regs->command);
1721 wmb();
1722 /* handshake later, if we need to */
1723 timer_action_done(oxu, TIMER_ASYNC_OFF);
1724 }
1725 return;
1726 }
1727
1728 qh->qh_state = QH_STATE_UNLINK;
1729 oxu->reclaim = qh = qh_get(qh);
1730
1731 prev = oxu->async;
1732 while (prev->qh_next.qh != qh)
1733 prev = prev->qh_next.qh;
1734
1735 prev->hw_next = qh->hw_next;
1736 prev->qh_next = qh->qh_next;
1737 wmb();
1738
1739 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1740 /* if (unlikely(qh->reclaim != 0))
1741 * this will recurse, probably not much
1742 */
1743 end_unlink_async(oxu);
1744 return;
1745 }
1746
1747 oxu->reclaim_ready = 0;
1748 cmd |= CMD_IAAD;
1749 writel(cmd, &oxu->regs->command);
1750 (void) readl(&oxu->regs->command);
1751 timer_action(oxu, TIMER_IAA_WATCHDOG);
1752}
1753
1754static void scan_async(struct oxu_hcd *oxu)
1755{
1756 struct ehci_qh *qh;
1757 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1758
1759 if (!++(oxu->stamp))
1760 oxu->stamp++;
1761 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1762rescan:
1763 qh = oxu->async->qh_next.qh;
1764 if (likely(qh != NULL)) {
1765 do {
1766 /* clean any finished work for this qh */
1767 if (!list_empty(&qh->qtd_list)
1768 && qh->stamp != oxu->stamp) {
1769 int temp;
1770
1771 /* unlinks could happen here; completion
1772 * reporting drops the lock. rescan using
1773 * the latest schedule, but don't rescan
1774 * qhs we already finished (no looping).
1775 */
1776 qh = qh_get(qh);
1777 qh->stamp = oxu->stamp;
1778 temp = qh_completions(oxu, qh);
1779 qh_put(qh);
1780 if (temp != 0)
1781 goto rescan;
1782 }
1783
1784 /* unlink idle entries, reducing HC PCI usage as well
1785 * as HCD schedule-scanning costs. delay for any qh
1786 * we just scanned, there's a not-unusual case that it
1787 * doesn't stay idle for long.
1788 * (plus, avoids some kind of re-activation race.)
1789 */
1790 if (list_empty(&qh->qtd_list)) {
1791 if (qh->stamp == oxu->stamp)
1792 action = TIMER_ASYNC_SHRINK;
1793 else if (!oxu->reclaim
1794 && qh->qh_state == QH_STATE_LINKED)
1795 start_unlink_async(oxu, qh);
1796 }
1797
1798 qh = qh->qh_next.qh;
1799 } while (qh);
1800 }
1801 if (action == TIMER_ASYNC_SHRINK)
1802 timer_action(oxu, TIMER_ASYNC_SHRINK);
1803}
1804
1805/*
1806 * periodic_next_shadow - return "next" pointer on shadow list
1807 * @periodic: host pointer to qh/itd/sitd
1808 * @tag: hardware tag for type of this record
1809 */
1810static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1811 __le32 tag)
1812{
1813 switch (tag) {
1814 default:
1815 case Q_TYPE_QH:
1816 return &periodic->qh->qh_next;
1817 }
1818}
1819
1820/* caller must hold oxu->lock */
1821static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1822{
1823 union ehci_shadow *prev_p = &oxu->pshadow[frame];
1824 __le32 *hw_p = &oxu->periodic[frame];
1825 union ehci_shadow here = *prev_p;
1826
1827 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1828 while (here.ptr && here.ptr != ptr) {
1829 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1830 hw_p = here.hw_next;
1831 here = *prev_p;
1832 }
1833 /* an interrupt entry (at list end) could have been shared */
1834 if (!here.ptr)
1835 return;
1836
1837 /* update shadow and hardware lists ... the old "next" pointers
1838 * from ptr may still be in use, the caller updates them.
1839 */
1840 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1841 *hw_p = *here.hw_next;
1842}
1843
1844/* how many of the uframe's 125 usecs are allocated? */
1845static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1846 unsigned frame, unsigned uframe)
1847{
1848 __le32 *hw_p = &oxu->periodic[frame];
1849 union ehci_shadow *q = &oxu->pshadow[frame];
1850 unsigned usecs = 0;
1851
1852 while (q->ptr) {
1853 switch (Q_NEXT_TYPE(*hw_p)) {
1854 case Q_TYPE_QH:
1855 default:
1856 /* is it in the S-mask? */
1857 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1858 usecs += q->qh->usecs;
1859 /* ... or C-mask? */
1860 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1861 usecs += q->qh->c_usecs;
1862 hw_p = &q->qh->hw_next;
1863 q = &q->qh->qh_next;
1864 break;
1865 }
1866 }
1867#ifdef DEBUG
1868 if (usecs > 100)
1869 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1870 frame * 8 + uframe, usecs);
1871#endif
1872 return usecs;
1873}
1874
1875static int enable_periodic(struct oxu_hcd *oxu)
1876{
1877 u32 cmd;
1878 int status;
1879
1880 /* did clearing PSE did take effect yet?
1881 * takes effect only at frame boundaries...
1882 */
1883 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1884 if (status != 0) {
1885 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1886 usb_hc_died(oxu_to_hcd(oxu));
1887 return status;
1888 }
1889
1890 cmd = readl(&oxu->regs->command) | CMD_PSE;
1891 writel(cmd, &oxu->regs->command);
1892 /* posted write ... PSS happens later */
1893 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1894
1895 /* make sure ehci_work scans these */
1896 oxu->next_uframe = readl(&oxu->regs->frame_index)
1897 % (oxu->periodic_size << 3);
1898 return 0;
1899}
1900
1901static int disable_periodic(struct oxu_hcd *oxu)
1902{
1903 u32 cmd;
1904 int status;
1905
1906 /* did setting PSE not take effect yet?
1907 * takes effect only at frame boundaries...
1908 */
1909 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1910 if (status != 0) {
1911 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1912 usb_hc_died(oxu_to_hcd(oxu));
1913 return status;
1914 }
1915
1916 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1917 writel(cmd, &oxu->regs->command);
1918 /* posted write ... */
1919
1920 oxu->next_uframe = -1;
1921 return 0;
1922}
1923
1924/* periodic schedule slots have iso tds (normal or split) first, then a
1925 * sparse tree for active interrupt transfers.
1926 *
1927 * this just links in a qh; caller guarantees uframe masks are set right.
1928 * no FSTN support (yet; oxu 0.96+)
1929 */
1930static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1931{
1932 unsigned i;
1933 unsigned period = qh->period;
1934
1935 dev_dbg(&qh->dev->dev,
1936 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1937 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1938 qh, qh->start, qh->usecs, qh->c_usecs);
1939
1940 /* high bandwidth, or otherwise every microframe */
1941 if (period == 0)
1942 period = 1;
1943
1944 for (i = qh->start; i < oxu->periodic_size; i += period) {
1945 union ehci_shadow *prev = &oxu->pshadow[i];
1946 __le32 *hw_p = &oxu->periodic[i];
1947 union ehci_shadow here = *prev;
1948 __le32 type = 0;
1949
1950 /* skip the iso nodes at list head */
1951 while (here.ptr) {
1952 type = Q_NEXT_TYPE(*hw_p);
1953 if (type == Q_TYPE_QH)
1954 break;
1955 prev = periodic_next_shadow(prev, type);
1956 hw_p = &here.qh->hw_next;
1957 here = *prev;
1958 }
1959
1960 /* sorting each branch by period (slow-->fast)
1961 * enables sharing interior tree nodes
1962 */
1963 while (here.ptr && qh != here.qh) {
1964 if (qh->period > here.qh->period)
1965 break;
1966 prev = &here.qh->qh_next;
1967 hw_p = &here.qh->hw_next;
1968 here = *prev;
1969 }
1970 /* link in this qh, unless some earlier pass did that */
1971 if (qh != here.qh) {
1972 qh->qh_next = here;
1973 if (here.qh)
1974 qh->hw_next = *hw_p;
1975 wmb();
1976 prev->qh = qh;
1977 *hw_p = QH_NEXT(qh->qh_dma);
1978 }
1979 }
1980 qh->qh_state = QH_STATE_LINKED;
1981 qh_get(qh);
1982
1983 /* update per-qh bandwidth for usbfs */
1984 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1985 ? ((qh->usecs + qh->c_usecs) / qh->period)
1986 : (qh->usecs * 8);
1987
1988 /* maybe enable periodic schedule processing */
1989 if (!oxu->periodic_sched++)
1990 return enable_periodic(oxu);
1991
1992 return 0;
1993}
1994
1995static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1996{
1997 unsigned i;
1998 unsigned period;
1999
2000 /* FIXME:
2001 * IF this isn't high speed
2002 * and this qh is active in the current uframe
2003 * (and overlay token SplitXstate is false?)
2004 * THEN
2005 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2006 */
2007
2008 /* high bandwidth, or otherwise part of every microframe */
2009 period = qh->period;
2010 if (period == 0)
2011 period = 1;
2012
2013 for (i = qh->start; i < oxu->periodic_size; i += period)
2014 periodic_unlink(oxu, i, qh);
2015
2016 /* update per-qh bandwidth for usbfs */
2017 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2018 ? ((qh->usecs + qh->c_usecs) / qh->period)
2019 : (qh->usecs * 8);
2020
2021 dev_dbg(&qh->dev->dev,
2022 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2023 qh->period,
2024 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2025 qh, qh->start, qh->usecs, qh->c_usecs);
2026
2027 /* qh->qh_next still "live" to HC */
2028 qh->qh_state = QH_STATE_UNLINK;
2029 qh->qh_next.ptr = NULL;
2030 qh_put(qh);
2031
2032 /* maybe turn off periodic schedule */
2033 oxu->periodic_sched--;
2034 if (!oxu->periodic_sched)
2035 (void) disable_periodic(oxu);
2036}
2037
2038static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2039{
2040 unsigned wait;
2041
2042 qh_unlink_periodic(oxu, qh);
2043
2044 /* simple/paranoid: always delay, expecting the HC needs to read
2045 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2046 * expect khubd to clean up after any CSPLITs we won't issue.
2047 * active high speed queues may need bigger delays...
2048 */
2049 if (list_empty(&qh->qtd_list)
2050 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2051 wait = 2;
2052 else
2053 wait = 55; /* worst case: 3 * 1024 */
2054
2055 udelay(wait);
2056 qh->qh_state = QH_STATE_IDLE;
2057 qh->hw_next = EHCI_LIST_END;
2058 wmb();
2059}
2060
2061static int check_period(struct oxu_hcd *oxu,
2062 unsigned frame, unsigned uframe,
2063 unsigned period, unsigned usecs)
2064{
2065 int claimed;
2066
2067 /* complete split running into next frame?
2068 * given FSTN support, we could sometimes check...
2069 */
2070 if (uframe >= 8)
2071 return 0;
2072
2073 /*
2074 * 80% periodic == 100 usec/uframe available
2075 * convert "usecs we need" to "max already claimed"
2076 */
2077 usecs = 100 - usecs;
2078
2079 /* we "know" 2 and 4 uframe intervals were rejected; so
2080 * for period 0, check _every_ microframe in the schedule.
2081 */
2082 if (unlikely(period == 0)) {
2083 do {
2084 for (uframe = 0; uframe < 7; uframe++) {
2085 claimed = periodic_usecs(oxu, frame, uframe);
2086 if (claimed > usecs)
2087 return 0;
2088 }
2089 } while ((frame += 1) < oxu->periodic_size);
2090
2091 /* just check the specified uframe, at that period */
2092 } else {
2093 do {
2094 claimed = periodic_usecs(oxu, frame, uframe);
2095 if (claimed > usecs)
2096 return 0;
2097 } while ((frame += period) < oxu->periodic_size);
2098 }
2099
2100 return 1;
2101}
2102
2103static int check_intr_schedule(struct oxu_hcd *oxu,
2104 unsigned frame, unsigned uframe,
2105 const struct ehci_qh *qh, __le32 *c_maskp)
2106{
2107 int retval = -ENOSPC;
2108
2109 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2110 goto done;
2111
2112 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2113 goto done;
2114 if (!qh->c_usecs) {
2115 retval = 0;
2116 *c_maskp = 0;
2117 goto done;
2118 }
2119
2120done:
2121 return retval;
2122}
2123
2124/* "first fit" scheduling policy used the first time through,
2125 * or when the previous schedule slot can't be re-used.
2126 */
2127static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2128{
2129 int status;
2130 unsigned uframe;
2131 __le32 c_mask;
2132 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2133
2134 qh_refresh(oxu, qh);
2135 qh->hw_next = EHCI_LIST_END;
2136 frame = qh->start;
2137
2138 /* reuse the previous schedule slots, if we can */
2139 if (frame < qh->period) {
2140 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2141 status = check_intr_schedule(oxu, frame, --uframe,
2142 qh, &c_mask);
2143 } else {
2144 uframe = 0;
2145 c_mask = 0;
2146 status = -ENOSPC;
2147 }
2148
2149 /* else scan the schedule to find a group of slots such that all
2150 * uframes have enough periodic bandwidth available.
2151 */
2152 if (status) {
2153 /* "normal" case, uframing flexible except with splits */
2154 if (qh->period) {
2155 frame = qh->period - 1;
2156 do {
2157 for (uframe = 0; uframe < 8; uframe++) {
2158 status = check_intr_schedule(oxu,
2159 frame, uframe, qh,
2160 &c_mask);
2161 if (status == 0)
2162 break;
2163 }
2164 } while (status && frame--);
2165
2166 /* qh->period == 0 means every uframe */
2167 } else {
2168 frame = 0;
2169 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2170 }
2171 if (status)
2172 goto done;
2173 qh->start = frame;
2174
2175 /* reset S-frame and (maybe) C-frame masks */
2176 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2177 qh->hw_info2 |= qh->period
2178 ? cpu_to_le32(1 << uframe)
2179 : cpu_to_le32(QH_SMASK);
2180 qh->hw_info2 |= c_mask;
2181 } else
2182 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2183
2184 /* stuff into the periodic schedule */
2185 status = qh_link_periodic(oxu, qh);
2186done:
2187 return status;
2188}
2189
2190static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2191 struct list_head *qtd_list, gfp_t mem_flags)
2192{
2193 unsigned epnum;
2194 unsigned long flags;
2195 struct ehci_qh *qh;
2196 int status = 0;
2197 struct list_head empty;
2198
2199 /* get endpoint and transfer/schedule data */
2200 epnum = urb->ep->desc.bEndpointAddress;
2201
2202 spin_lock_irqsave(&oxu->lock, flags);
2203
2204 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2205 status = -ESHUTDOWN;
2206 goto done;
2207 }
2208
2209 /* get qh and force any scheduling errors */
2210 INIT_LIST_HEAD(&empty);
2211 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2212 if (qh == NULL) {
2213 status = -ENOMEM;
2214 goto done;
2215 }
2216 if (qh->qh_state == QH_STATE_IDLE) {
2217 status = qh_schedule(oxu, qh);
2218 if (status != 0)
2219 goto done;
2220 }
2221
2222 /* then queue the urb's tds to the qh */
2223 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2224 BUG_ON(qh == NULL);
2225
2226 /* ... update usbfs periodic stats */
2227 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2228
2229done:
2230 spin_unlock_irqrestore(&oxu->lock, flags);
2231 if (status)
2232 qtd_list_free(oxu, urb, qtd_list);
2233
2234 return status;
2235}
2236
2237static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2238 gfp_t mem_flags)
2239{
2240 oxu_dbg(oxu, "iso support is missing!\n");
2241 return -ENOSYS;
2242}
2243
2244static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2245 gfp_t mem_flags)
2246{
2247 oxu_dbg(oxu, "split iso support is missing!\n");
2248 return -ENOSYS;
2249}
2250
2251static void scan_periodic(struct oxu_hcd *oxu)
2252{
2253 unsigned frame, clock, now_uframe, mod;
2254 unsigned modified;
2255
2256 mod = oxu->periodic_size << 3;
2257
2258 /*
2259 * When running, scan from last scan point up to "now"
2260 * else clean up by scanning everything that's left.
2261 * Touches as few pages as possible: cache-friendly.
2262 */
2263 now_uframe = oxu->next_uframe;
2264 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2265 clock = readl(&oxu->regs->frame_index);
2266 else
2267 clock = now_uframe + mod - 1;
2268 clock %= mod;
2269
2270 for (;;) {
2271 union ehci_shadow q, *q_p;
2272 __le32 type, *hw_p;
2273 unsigned uframes;
2274
2275 /* don't scan past the live uframe */
2276 frame = now_uframe >> 3;
2277 if (frame == (clock >> 3))
2278 uframes = now_uframe & 0x07;
2279 else {
2280 /* safe to scan the whole frame at once */
2281 now_uframe |= 0x07;
2282 uframes = 8;
2283 }
2284
2285restart:
2286 /* scan each element in frame's queue for completions */
2287 q_p = &oxu->pshadow[frame];
2288 hw_p = &oxu->periodic[frame];
2289 q.ptr = q_p->ptr;
2290 type = Q_NEXT_TYPE(*hw_p);
2291 modified = 0;
2292
2293 while (q.ptr != NULL) {
2294 union ehci_shadow temp;
2295 int live;
2296
2297 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2298 switch (type) {
2299 case Q_TYPE_QH:
2300 /* handle any completions */
2301 temp.qh = qh_get(q.qh);
2302 type = Q_NEXT_TYPE(q.qh->hw_next);
2303 q = q.qh->qh_next;
2304 modified = qh_completions(oxu, temp.qh);
2305 if (unlikely(list_empty(&temp.qh->qtd_list)))
2306 intr_deschedule(oxu, temp.qh);
2307 qh_put(temp.qh);
2308 break;
2309 default:
2310 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2311 type, frame, q.ptr);
2312 q.ptr = NULL;
2313 }
2314
2315 /* assume completion callbacks modify the queue */
2316 if (unlikely(modified))
2317 goto restart;
2318 }
2319
2320 /* Stop when we catch up to the HC */
2321
2322 /* FIXME: this assumes we won't get lapped when
2323 * latencies climb; that should be rare, but...
2324 * detect it, and just go all the way around.
2325 * FLR might help detect this case, so long as latencies
2326 * don't exceed periodic_size msec (default 1.024 sec).
2327 */
2328
2329 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2330
2331 if (now_uframe == clock) {
2332 unsigned now;
2333
2334 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2335 break;
2336 oxu->next_uframe = now_uframe;
2337 now = readl(&oxu->regs->frame_index) % mod;
2338 if (now_uframe == now)
2339 break;
2340
2341 /* rescan the rest of this frame, then ... */
2342 clock = now;
2343 } else {
2344 now_uframe++;
2345 now_uframe %= mod;
2346 }
2347 }
2348}
2349
2350/* On some systems, leaving remote wakeup enabled prevents system shutdown.
2351 * The firmware seems to think that powering off is a wakeup event!
2352 * This routine turns off remote wakeup and everything else, on all ports.
2353 */
2354static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2355{
2356 int port = HCS_N_PORTS(oxu->hcs_params);
2357
2358 while (port--)
2359 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2360}
2361
2362static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2363{
2364 unsigned port;
2365
2366 if (!HCS_PPC(oxu->hcs_params))
2367 return;
2368
2369 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2370 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2371 (void) oxu_hub_control(oxu_to_hcd(oxu),
2372 is_on ? SetPortFeature : ClearPortFeature,
2373 USB_PORT_FEAT_POWER,
2374 port--, NULL, 0);
2375 msleep(20);
2376}
2377
2378/* Called from some interrupts, timers, and so on.
2379 * It calls driver completion functions, after dropping oxu->lock.
2380 */
2381static void ehci_work(struct oxu_hcd *oxu)
2382{
2383 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2384 if (oxu->reclaim_ready)
2385 end_unlink_async(oxu);
2386
2387 /* another CPU may drop oxu->lock during a schedule scan while
2388 * it reports urb completions. this flag guards against bogus
2389 * attempts at re-entrant schedule scanning.
2390 */
2391 if (oxu->scanning)
2392 return;
2393 oxu->scanning = 1;
2394 scan_async(oxu);
2395 if (oxu->next_uframe != -1)
2396 scan_periodic(oxu);
2397 oxu->scanning = 0;
2398
2399 /* the IO watchdog guards against hardware or driver bugs that
2400 * misplace IRQs, and should let us run completely without IRQs.
2401 * such lossage has been observed on both VT6202 and VT8235.
2402 */
2403 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2404 (oxu->async->qh_next.ptr != NULL ||
2405 oxu->periodic_sched != 0))
2406 timer_action(oxu, TIMER_IO_WATCHDOG);
2407}
2408
2409static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2410{
2411 /* if we need to use IAA and it's busy, defer */
2412 if (qh->qh_state == QH_STATE_LINKED
2413 && oxu->reclaim
2414 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2415 struct ehci_qh *last;
2416
2417 for (last = oxu->reclaim;
2418 last->reclaim;
2419 last = last->reclaim)
2420 continue;
2421 qh->qh_state = QH_STATE_UNLINK_WAIT;
2422 last->reclaim = qh;
2423
2424 /* bypass IAA if the hc can't care */
2425 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2426 end_unlink_async(oxu);
2427
2428 /* something else might have unlinked the qh by now */
2429 if (qh->qh_state == QH_STATE_LINKED)
2430 start_unlink_async(oxu, qh);
2431}
2432
2433/*
2434 * USB host controller methods
2435 */
2436
2437static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2438{
2439 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2440 u32 status, pcd_status = 0;
2441 int bh;
2442
2443 spin_lock(&oxu->lock);
2444
2445 status = readl(&oxu->regs->status);
2446
2447 /* e.g. cardbus physical eject */
2448 if (status == ~(u32) 0) {
2449 oxu_dbg(oxu, "device removed\n");
2450 goto dead;
2451 }
2452
2453 /* Shared IRQ? */
2454 status &= INTR_MASK;
2455 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2456 spin_unlock(&oxu->lock);
2457 return IRQ_NONE;
2458 }
2459
2460 /* clear (just) interrupts */
2461 writel(status, &oxu->regs->status);
2462 readl(&oxu->regs->command); /* unblock posted write */
2463 bh = 0;
2464
2465#ifdef OXU_VERBOSE_DEBUG
2466 /* unrequested/ignored: Frame List Rollover */
2467 dbg_status(oxu, "irq", status);
2468#endif
2469
2470 /* INT, ERR, and IAA interrupt rates can be throttled */
2471
2472 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2473 if (likely((status & (STS_INT|STS_ERR)) != 0))
2474 bh = 1;
2475
2476 /* complete the unlinking of some qh [4.15.2.3] */
2477 if (status & STS_IAA) {
2478 oxu->reclaim_ready = 1;
2479 bh = 1;
2480 }
2481
2482 /* remote wakeup [4.3.1] */
2483 if (status & STS_PCD) {
2484 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2485 pcd_status = status;
2486
2487 /* resume root hub? */
2488 if (!(readl(&oxu->regs->command) & CMD_RUN))
2489 usb_hcd_resume_root_hub(hcd);
2490
2491 while (i--) {
2492 int pstatus = readl(&oxu->regs->port_status[i]);
2493
2494 if (pstatus & PORT_OWNER)
2495 continue;
2496 if (!(pstatus & PORT_RESUME)
2497 || oxu->reset_done[i] != 0)
2498 continue;
2499
2500 /* start 20 msec resume signaling from this port,
2501 * and make khubd collect PORT_STAT_C_SUSPEND to
2502 * stop that signaling.
2503 */
2504 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
2505 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2506 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2507 }
2508 }
2509
2510 /* PCI errors [4.15.2.4] */
2511 if (unlikely((status & STS_FATAL) != 0)) {
2512 /* bogus "fatal" IRQs appear on some chips... why? */
2513 status = readl(&oxu->regs->status);
2514 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2515 dbg_status(oxu, "fatal", status);
2516 if (status & STS_HALT) {
2517 oxu_err(oxu, "fatal error\n");
2518dead:
2519 ehci_reset(oxu);
2520 writel(0, &oxu->regs->configured_flag);
2521 usb_hc_died(hcd);
2522 /* generic layer kills/unlinks all urbs, then
2523 * uses oxu_stop to clean up the rest
2524 */
2525 bh = 1;
2526 }
2527 }
2528
2529 if (bh)
2530 ehci_work(oxu);
2531 spin_unlock(&oxu->lock);
2532 if (pcd_status & STS_PCD)
2533 usb_hcd_poll_rh_status(hcd);
2534 return IRQ_HANDLED;
2535}
2536
2537static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2538{
2539 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2540 int ret = IRQ_HANDLED;
2541
2542 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2543 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2544
2545 /* Disable all interrupt */
2546 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2547
2548 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2549 (!oxu->is_otg && (status & OXU_USBSPHI)))
2550 oxu210_hcd_irq(hcd);
2551 else
2552 ret = IRQ_NONE;
2553
2554 /* Enable all interrupt back */
2555 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2556
2557 return ret;
2558}
2559
2560static void oxu_watchdog(unsigned long param)
2561{
2562 struct oxu_hcd *oxu = (struct oxu_hcd *) param;
2563 unsigned long flags;
2564
2565 spin_lock_irqsave(&oxu->lock, flags);
2566
2567 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2568 if (oxu->reclaim) {
2569 u32 status = readl(&oxu->regs->status);
2570 if (status & STS_IAA) {
2571 oxu_vdbg(oxu, "lost IAA\n");
2572 writel(STS_IAA, &oxu->regs->status);
2573 oxu->reclaim_ready = 1;
2574 }
2575 }
2576
2577 /* stop async processing after it's idled a bit */
2578 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2579 start_unlink_async(oxu, oxu->async);
2580
2581 /* oxu could run by timer, without IRQs ... */
2582 ehci_work(oxu);
2583
2584 spin_unlock_irqrestore(&oxu->lock, flags);
2585}
2586
2587/* One-time init, only for memory state.
2588 */
2589static int oxu_hcd_init(struct usb_hcd *hcd)
2590{
2591 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2592 u32 temp;
2593 int retval;
2594 u32 hcc_params;
2595
2596 spin_lock_init(&oxu->lock);
2597
2598 init_timer(&oxu->watchdog);
2599 oxu->watchdog.function = oxu_watchdog;
2600 oxu->watchdog.data = (unsigned long) oxu;
2601
2602 /*
2603 * hw default: 1K periodic list heads, one per frame.
2604 * periodic_size can shrink by USBCMD update if hcc_params allows.
2605 */
2606 oxu->periodic_size = DEFAULT_I_TDPS;
2607 retval = ehci_mem_init(oxu, GFP_KERNEL);
2608 if (retval < 0)
2609 return retval;
2610
2611 /* controllers may cache some of the periodic schedule ... */
2612 hcc_params = readl(&oxu->caps->hcc_params);
2613 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
2614 oxu->i_thresh = 8;
2615 else /* N microframes cached */
2616 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2617
2618 oxu->reclaim = NULL;
2619 oxu->reclaim_ready = 0;
2620 oxu->next_uframe = -1;
2621
2622 /*
2623 * dedicate a qh for the async ring head, since we couldn't unlink
2624 * a 'real' qh without stopping the async schedule [4.8]. use it
2625 * as the 'reclamation list head' too.
2626 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2627 * from automatically advancing to the next td after short reads.
2628 */
2629 oxu->async->qh_next.qh = NULL;
2630 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2631 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2632 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2633 oxu->async->hw_qtd_next = EHCI_LIST_END;
2634 oxu->async->qh_state = QH_STATE_LINKED;
2635 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2636
2637 /* clear interrupt enables, set irq latency */
2638 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2639 log2_irq_thresh = 0;
2640 temp = 1 << (16 + log2_irq_thresh);
2641 if (HCC_CANPARK(hcc_params)) {
2642 /* HW default park == 3, on hardware that supports it (like
2643 * NVidia and ALI silicon), maximizes throughput on the async
2644 * schedule by avoiding QH fetches between transfers.
2645 *
2646 * With fast usb storage devices and NForce2, "park" seems to
2647 * make problems: throughput reduction (!), data errors...
2648 */
2649 if (park) {
2650 park = min(park, (unsigned) 3);
2651 temp |= CMD_PARK;
2652 temp |= park << 8;
2653 }
2654 oxu_dbg(oxu, "park %d\n", park);
2655 }
2656 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2657 /* periodic schedule size can be smaller than default */
2658 temp &= ~(3 << 2);
2659 temp |= (EHCI_TUNE_FLS << 2);
2660 }
2661 oxu->command = temp;
2662
2663 return 0;
2664}
2665
2666/* Called during probe() after chip reset completes.
2667 */
2668static int oxu_reset(struct usb_hcd *hcd)
2669{
2670 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2671 int ret;
2672
2673 spin_lock_init(&oxu->mem_lock);
2674 INIT_LIST_HEAD(&oxu->urb_list);
2675 oxu->urb_len = 0;
2676
2677 /* FIMXE */
2678 hcd->self.controller->dma_mask = NULL;
2679
2680 if (oxu->is_otg) {
2681 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2682 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2683 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2684
2685 oxu->mem = hcd->regs + OXU_SPH_MEM;
2686 } else {
2687 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2688 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2689 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2690
2691 oxu->mem = hcd->regs + OXU_OTG_MEM;
2692 }
2693
2694 oxu->hcs_params = readl(&oxu->caps->hcs_params);
2695 oxu->sbrn = 0x20;
2696
2697 ret = oxu_hcd_init(hcd);
2698 if (ret)
2699 return ret;
2700
2701 return 0;
2702}
2703
2704static int oxu_run(struct usb_hcd *hcd)
2705{
2706 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2707 int retval;
2708 u32 temp, hcc_params;
2709
2710 hcd->uses_new_polling = 1;
2711
2712 /* EHCI spec section 4.1 */
2713 retval = ehci_reset(oxu);
2714 if (retval != 0) {
2715 ehci_mem_cleanup(oxu);
2716 return retval;
2717 }
2718 writel(oxu->periodic_dma, &oxu->regs->frame_list);
2719 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2720
2721 /* hcc_params controls whether oxu->regs->segment must (!!!)
2722 * be used; it constrains QH/ITD/SITD and QTD locations.
2723 * pci_pool consistent memory always uses segment zero.
2724 * streaming mappings for I/O buffers, like pci_map_single(),
2725 * can return segments above 4GB, if the device allows.
2726 *
2727 * NOTE: the dma mask is visible through dma_supported(), so
2728 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2729 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2730 * host side drivers though.
2731 */
2732 hcc_params = readl(&oxu->caps->hcc_params);
2733 if (HCC_64BIT_ADDR(hcc_params))
2734 writel(0, &oxu->regs->segment);
2735
2736 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2737 CMD_ASE | CMD_RESET);
2738 oxu->command |= CMD_RUN;
2739 writel(oxu->command, &oxu->regs->command);
2740 dbg_cmd(oxu, "init", oxu->command);
2741
2742 /*
2743 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2744 * are explicitly handed to companion controller(s), so no TT is
2745 * involved with the root hub. (Except where one is integrated,
2746 * and there's no companion controller unless maybe for USB OTG.)
2747 */
2748 hcd->state = HC_STATE_RUNNING;
2749 writel(FLAG_CF, &oxu->regs->configured_flag);
2750 readl(&oxu->regs->command); /* unblock posted writes */
2751
2752 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2753 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2754 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2755 temp >> 8, temp & 0xff, DRIVER_VERSION,
2756 ignore_oc ? ", overcurrent ignored" : "");
2757
2758 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2759
2760 return 0;
2761}
2762
2763static void oxu_stop(struct usb_hcd *hcd)
2764{
2765 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2766
2767 /* Turn off port power on all root hub ports. */
2768 ehci_port_power(oxu, 0);
2769
2770 /* no more interrupts ... */
2771 del_timer_sync(&oxu->watchdog);
2772
2773 spin_lock_irq(&oxu->lock);
2774 if (HC_IS_RUNNING(hcd->state))
2775 ehci_quiesce(oxu);
2776
2777 ehci_reset(oxu);
2778 writel(0, &oxu->regs->intr_enable);
2779 spin_unlock_irq(&oxu->lock);
2780
2781 /* let companion controllers work when we aren't */
2782 writel(0, &oxu->regs->configured_flag);
2783
2784 /* root hub is shut down separately (first, when possible) */
2785 spin_lock_irq(&oxu->lock);
2786 if (oxu->async)
2787 ehci_work(oxu);
2788 spin_unlock_irq(&oxu->lock);
2789 ehci_mem_cleanup(oxu);
2790
2791 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2792}
2793
2794/* Kick in for silicon on any bus (not just pci, etc).
2795 * This forcibly disables dma and IRQs, helping kexec and other cases
2796 * where the next system software may expect clean state.
2797 */
2798static void oxu_shutdown(struct usb_hcd *hcd)
2799{
2800 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2801
2802 (void) ehci_halt(oxu);
2803 ehci_turn_off_all_ports(oxu);
2804
2805 /* make BIOS/etc use companion controller during reboot */
2806 writel(0, &oxu->regs->configured_flag);
2807
2808 /* unblock posted writes */
2809 readl(&oxu->regs->configured_flag);
2810}
2811
2812/* Non-error returns are a promise to giveback() the urb later
2813 * we drop ownership so next owner (or urb unlink) can get it
2814 *
2815 * urb + dev is in hcd.self.controller.urb_list
2816 * we're queueing TDs onto software and hardware lists
2817 *
2818 * hcd-specific init for hcpriv hasn't been done yet
2819 *
2820 * NOTE: control, bulk, and interrupt share the same code to append TDs
2821 * to a (possibly active) QH, and the same QH scanning code.
2822 */
2823static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2824 gfp_t mem_flags)
2825{
2826 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2827 struct list_head qtd_list;
2828
2829 INIT_LIST_HEAD(&qtd_list);
2830
2831 switch (usb_pipetype(urb->pipe)) {
2832 case PIPE_CONTROL:
2833 case PIPE_BULK:
2834 default:
2835 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2836 return -ENOMEM;
2837 return submit_async(oxu, urb, &qtd_list, mem_flags);
2838
2839 case PIPE_INTERRUPT:
2840 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2841 return -ENOMEM;
2842 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2843
2844 case PIPE_ISOCHRONOUS:
2845 if (urb->dev->speed == USB_SPEED_HIGH)
2846 return itd_submit(oxu, urb, mem_flags);
2847 else
2848 return sitd_submit(oxu, urb, mem_flags);
2849 }
2850}
2851
2852/* This function is responsible for breaking URBs with big data size
2853 * into smaller size and processing small urbs in sequence.
2854 */
2855static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2856 gfp_t mem_flags)
2857{
2858 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859 int num, rem;
2860 int transfer_buffer_length;
2861 void *transfer_buffer;
2862 struct urb *murb;
2863 int i, ret;
2864
2865 /* If not bulk pipe just enqueue the URB */
2866 if (!usb_pipebulk(urb->pipe))
2867 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2868
2869 /* Otherwise we should verify the USB transfer buffer size! */
2870 transfer_buffer = urb->transfer_buffer;
2871 transfer_buffer_length = urb->transfer_buffer_length;
2872
2873 num = urb->transfer_buffer_length / 4096;
2874 rem = urb->transfer_buffer_length % 4096;
2875 if (rem != 0)
2876 num++;
2877
2878 /* If URB is smaller than 4096 bytes just enqueue it! */
2879 if (num == 1)
2880 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2881
2882 /* Ok, we have more job to do! :) */
2883
2884 for (i = 0; i < num - 1; i++) {
2885 /* Get free micro URB poll till a free urb is received */
2886
2887 do {
2888 murb = (struct urb *) oxu_murb_alloc(oxu);
2889 if (!murb)
2890 schedule();
2891 } while (!murb);
2892
2893 /* Coping the urb */
2894 memcpy(murb, urb, sizeof(struct urb));
2895
2896 murb->transfer_buffer_length = 4096;
2897 murb->transfer_buffer = transfer_buffer + i * 4096;
2898
2899 /* Null pointer for the encodes that this is a micro urb */
2900 murb->complete = NULL;
2901
2902 ((struct oxu_murb *) murb)->main = urb;
2903 ((struct oxu_murb *) murb)->last = 0;
2904
2905 /* This loop is to guarantee urb to be processed when there's
2906 * not enough resources at a particular time by retrying.
2907 */
2908 do {
2909 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2910 if (ret)
2911 schedule();
2912 } while (ret);
2913 }
2914
2915 /* Last urb requires special handling */
2916
2917 /* Get free micro URB poll till a free urb is received */
2918 do {
2919 murb = (struct urb *) oxu_murb_alloc(oxu);
2920 if (!murb)
2921 schedule();
2922 } while (!murb);
2923
2924 /* Coping the urb */
2925 memcpy(murb, urb, sizeof(struct urb));
2926
2927 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2928 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2929
2930 /* Null pointer for the encodes that this is a micro urb */
2931 murb->complete = NULL;
2932
2933 ((struct oxu_murb *) murb)->main = urb;
2934 ((struct oxu_murb *) murb)->last = 1;
2935
2936 do {
2937 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2938 if (ret)
2939 schedule();
2940 } while (ret);
2941
2942 return ret;
2943}
2944
2945/* Remove from hardware lists.
2946 * Completions normally happen asynchronously
2947 */
2948static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2949{
2950 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2951 struct ehci_qh *qh;
2952 unsigned long flags;
2953
2954 spin_lock_irqsave(&oxu->lock, flags);
2955 switch (usb_pipetype(urb->pipe)) {
2956 case PIPE_CONTROL:
2957 case PIPE_BULK:
2958 default:
2959 qh = (struct ehci_qh *) urb->hcpriv;
2960 if (!qh)
2961 break;
2962 unlink_async(oxu, qh);
2963 break;
2964
2965 case PIPE_INTERRUPT:
2966 qh = (struct ehci_qh *) urb->hcpriv;
2967 if (!qh)
2968 break;
2969 switch (qh->qh_state) {
2970 case QH_STATE_LINKED:
2971 intr_deschedule(oxu, qh);
2972 /* FALL THROUGH */
2973 case QH_STATE_IDLE:
2974 qh_completions(oxu, qh);
2975 break;
2976 default:
2977 oxu_dbg(oxu, "bogus qh %p state %d\n",
2978 qh, qh->qh_state);
2979 goto done;
2980 }
2981
2982 /* reschedule QH iff another request is queued */
2983 if (!list_empty(&qh->qtd_list)
2984 && HC_IS_RUNNING(hcd->state)) {
2985 int status;
2986
2987 status = qh_schedule(oxu, qh);
2988 spin_unlock_irqrestore(&oxu->lock, flags);
2989
2990 if (status != 0) {
2991 /* shouldn't happen often, but ...
2992 * FIXME kill those tds' urbs
2993 */
2994 dev_err(hcd->self.controller,
2995 "can't reschedule qh %p, err %d\n", qh,
2996 status);
2997 }
2998 return status;
2999 }
3000 break;
3001 }
3002done:
3003 spin_unlock_irqrestore(&oxu->lock, flags);
3004 return 0;
3005}
3006
3007/* Bulk qh holds the data toggle */
3008static void oxu_endpoint_disable(struct usb_hcd *hcd,
3009 struct usb_host_endpoint *ep)
3010{
3011 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012 unsigned long flags;
3013 struct ehci_qh *qh, *tmp;
3014
3015 /* ASSERT: any requests/urbs are being unlinked */
3016 /* ASSERT: nobody can be submitting urbs for this any more */
3017
3018rescan:
3019 spin_lock_irqsave(&oxu->lock, flags);
3020 qh = ep->hcpriv;
3021 if (!qh)
3022 goto done;
3023
3024 /* endpoints can be iso streams. for now, we don't
3025 * accelerate iso completions ... so spin a while.
3026 */
3027 if (qh->hw_info1 == 0) {
3028 oxu_vdbg(oxu, "iso delay\n");
3029 goto idle_timeout;
3030 }
3031
3032 if (!HC_IS_RUNNING(hcd->state))
3033 qh->qh_state = QH_STATE_IDLE;
3034 switch (qh->qh_state) {
3035 case QH_STATE_LINKED:
3036 for (tmp = oxu->async->qh_next.qh;
3037 tmp && tmp != qh;
3038 tmp = tmp->qh_next.qh)
3039 continue;
3040 /* periodic qh self-unlinks on empty */
3041 if (!tmp)
3042 goto nogood;
3043 unlink_async(oxu, qh);
3044 /* FALL THROUGH */
3045 case QH_STATE_UNLINK: /* wait for hw to finish? */
3046idle_timeout:
3047 spin_unlock_irqrestore(&oxu->lock, flags);
3048 schedule_timeout_uninterruptible(1);
3049 goto rescan;
3050 case QH_STATE_IDLE: /* fully unlinked */
3051 if (list_empty(&qh->qtd_list)) {
3052 qh_put(qh);
3053 break;
3054 }
3055 /* else FALL THROUGH */
3056 default:
3057nogood:
3058 /* caller was supposed to have unlinked any requests;
3059 * that's not our job. just leak this memory.
3060 */
3061 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3062 qh, ep->desc.bEndpointAddress, qh->qh_state,
3063 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3064 break;
3065 }
3066 ep->hcpriv = NULL;
3067done:
3068 spin_unlock_irqrestore(&oxu->lock, flags);
3069}
3070
3071static int oxu_get_frame(struct usb_hcd *hcd)
3072{
3073 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3074
3075 return (readl(&oxu->regs->frame_index) >> 3) %
3076 oxu->periodic_size;
3077}
3078
3079/* Build "status change" packet (one or two bytes) from HC registers */
3080static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3081{
3082 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3083 u32 temp, mask, status = 0;
3084 int ports, i, retval = 1;
3085 unsigned long flags;
3086
3087 /* if !USB_SUSPEND, root hub timers won't get shut down ... */
3088 if (!HC_IS_RUNNING(hcd->state))
3089 return 0;
3090
3091 /* init status to no-changes */
3092 buf[0] = 0;
3093 ports = HCS_N_PORTS(oxu->hcs_params);
3094 if (ports > 7) {
3095 buf[1] = 0;
3096 retval++;
3097 }
3098
3099 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3100 * causing massive log spam unless we completely ignore them. It
3101 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3102 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3103 * PORT_POWER; that's surprising, but maybe within-spec.
3104 */
3105 if (!ignore_oc)
3106 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3107 else
3108 mask = PORT_CSC | PORT_PEC;
3109
3110 /* no hub change reports (bit 0) for now (power, ...) */
3111
3112 /* port N changes (bit N)? */
3113 spin_lock_irqsave(&oxu->lock, flags);
3114 for (i = 0; i < ports; i++) {
3115 temp = readl(&oxu->regs->port_status[i]);
3116
3117 /*
3118 * Return status information even for ports with OWNER set.
3119 * Otherwise khubd wouldn't see the disconnect event when a
3120 * high-speed device is switched over to the companion
3121 * controller by the user.
3122 */
3123
3124 if (!(temp & PORT_CONNECT))
3125 oxu->reset_done[i] = 0;
3126 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3127 time_after_eq(jiffies, oxu->reset_done[i]))) {
3128 if (i < 7)
3129 buf[0] |= 1 << (i + 1);
3130 else
3131 buf[1] |= 1 << (i - 7);
3132 status = STS_PCD;
3133 }
3134 }
3135 /* FIXME autosuspend idle root hubs */
3136 spin_unlock_irqrestore(&oxu->lock, flags);
3137 return status ? retval : 0;
3138}
3139
3140/* Returns the speed of a device attached to a port on the root hub. */
3141static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3142 unsigned int portsc)
3143{
3144 switch ((portsc >> 26) & 3) {
3145 case 0:
3146 return 0;
3147 case 1:
3148 return USB_PORT_STAT_LOW_SPEED;
3149 case 2:
3150 default:
3151 return USB_PORT_STAT_HIGH_SPEED;
3152 }
3153}
3154
3155#define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3156static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3157 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3158{
3159 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3160 int ports = HCS_N_PORTS(oxu->hcs_params);
3161 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3162 u32 temp, status;
3163 unsigned long flags;
3164 int retval = 0;
3165 unsigned selector;
3166
3167 /*
3168 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3169 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3170 * (track current state ourselves) ... blink for diagnostics,
3171 * power, "this is the one", etc. EHCI spec supports this.
3172 */
3173
3174 spin_lock_irqsave(&oxu->lock, flags);
3175 switch (typeReq) {
3176 case ClearHubFeature:
3177 switch (wValue) {
3178 case C_HUB_LOCAL_POWER:
3179 case C_HUB_OVER_CURRENT:
3180 /* no hub-wide feature/status flags */
3181 break;
3182 default:
3183 goto error;
3184 }
3185 break;
3186 case ClearPortFeature:
3187 if (!wIndex || wIndex > ports)
3188 goto error;
3189 wIndex--;
3190 temp = readl(status_reg);
3191
3192 /*
3193 * Even if OWNER is set, so the port is owned by the
3194 * companion controller, khubd needs to be able to clear
3195 * the port-change status bits (especially
3196 * USB_PORT_STAT_C_CONNECTION).
3197 */
3198
3199 switch (wValue) {
3200 case USB_PORT_FEAT_ENABLE:
3201 writel(temp & ~PORT_PE, status_reg);
3202 break;
3203 case USB_PORT_FEAT_C_ENABLE:
3204 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3205 break;
3206 case USB_PORT_FEAT_SUSPEND:
3207 if (temp & PORT_RESET)
3208 goto error;
3209 if (temp & PORT_SUSPEND) {
3210 if ((temp & PORT_PE) == 0)
3211 goto error;
3212 /* resume signaling for 20 msec */
3213 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3214 writel(temp | PORT_RESUME, status_reg);
3215 oxu->reset_done[wIndex] = jiffies
3216 + msecs_to_jiffies(20);
3217 }
3218 break;
3219 case USB_PORT_FEAT_C_SUSPEND:
3220 /* we auto-clear this feature */
3221 break;
3222 case USB_PORT_FEAT_POWER:
3223 if (HCS_PPC(oxu->hcs_params))
3224 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3225 status_reg);
3226 break;
3227 case USB_PORT_FEAT_C_CONNECTION:
3228 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3229 break;
3230 case USB_PORT_FEAT_C_OVER_CURRENT:
3231 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3232 break;
3233 case USB_PORT_FEAT_C_RESET:
3234 /* GetPortStatus clears reset */
3235 break;
3236 default:
3237 goto error;
3238 }
3239 readl(&oxu->regs->command); /* unblock posted write */
3240 break;
3241 case GetHubDescriptor:
3242 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3243 buf);
3244 break;
3245 case GetHubStatus:
3246 /* no hub-wide feature/status flags */
3247 memset(buf, 0, 4);
3248 break;
3249 case GetPortStatus:
3250 if (!wIndex || wIndex > ports)
3251 goto error;
3252 wIndex--;
3253 status = 0;
3254 temp = readl(status_reg);
3255
3256 /* wPortChange bits */
3257 if (temp & PORT_CSC)
3258 status |= USB_PORT_STAT_C_CONNECTION << 16;
3259 if (temp & PORT_PEC)
3260 status |= USB_PORT_STAT_C_ENABLE << 16;
3261 if ((temp & PORT_OCC) && !ignore_oc)
3262 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3263
3264 /* whoever resumes must GetPortStatus to complete it!! */
3265 if (temp & PORT_RESUME) {
3266
3267 /* Remote Wakeup received? */
3268 if (!oxu->reset_done[wIndex]) {
3269 /* resume signaling for 20 msec */
3270 oxu->reset_done[wIndex] = jiffies
3271 + msecs_to_jiffies(20);
3272 /* check the port again */
3273 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3274 oxu->reset_done[wIndex]);
3275 }
3276
3277 /* resume completed? */
3278 else if (time_after_eq(jiffies,
3279 oxu->reset_done[wIndex])) {
3280 status |= USB_PORT_STAT_C_SUSPEND << 16;
3281 oxu->reset_done[wIndex] = 0;
3282
3283 /* stop resume signaling */
3284 temp = readl(status_reg);
3285 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3286 status_reg);
3287 retval = handshake(oxu, status_reg,
3288 PORT_RESUME, 0, 2000 /* 2msec */);
3289 if (retval != 0) {
3290 oxu_err(oxu,
3291 "port %d resume error %d\n",
3292 wIndex + 1, retval);
3293 goto error;
3294 }
3295 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3296 }
3297 }
3298
3299 /* whoever resets must GetPortStatus to complete it!! */
3300 if ((temp & PORT_RESET)
3301 && time_after_eq(jiffies,
3302 oxu->reset_done[wIndex])) {
3303 status |= USB_PORT_STAT_C_RESET << 16;
3304 oxu->reset_done[wIndex] = 0;
3305
3306 /* force reset to complete */
3307 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3308 status_reg);
3309 /* REVISIT: some hardware needs 550+ usec to clear
3310 * this bit; seems too long to spin routinely...
3311 */
3312 retval = handshake(oxu, status_reg,
3313 PORT_RESET, 0, 750);
3314 if (retval != 0) {
3315 oxu_err(oxu, "port %d reset error %d\n",
3316 wIndex + 1, retval);
3317 goto error;
3318 }
3319
3320 /* see what we found out */
3321 temp = check_reset_complete(oxu, wIndex, status_reg,
3322 readl(status_reg));
3323 }
3324
3325 /* transfer dedicated ports to the companion hc */
3326 if ((temp & PORT_CONNECT) &&
3327 test_bit(wIndex, &oxu->companion_ports)) {
3328 temp &= ~PORT_RWC_BITS;
3329 temp |= PORT_OWNER;
3330 writel(temp, status_reg);
3331 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3332 temp = readl(status_reg);
3333 }
3334
3335 /*
3336 * Even if OWNER is set, there's no harm letting khubd
3337 * see the wPortStatus values (they should all be 0 except
3338 * for PORT_POWER anyway).
3339 */
3340
3341 if (temp & PORT_CONNECT) {
3342 status |= USB_PORT_STAT_CONNECTION;
3343 /* status may be from integrated TT */
3344 status |= oxu_port_speed(oxu, temp);
3345 }
3346 if (temp & PORT_PE)
3347 status |= USB_PORT_STAT_ENABLE;
3348 if (temp & (PORT_SUSPEND|PORT_RESUME))
3349 status |= USB_PORT_STAT_SUSPEND;
3350 if (temp & PORT_OC)
3351 status |= USB_PORT_STAT_OVERCURRENT;
3352 if (temp & PORT_RESET)
3353 status |= USB_PORT_STAT_RESET;
3354 if (temp & PORT_POWER)
3355 status |= USB_PORT_STAT_POWER;
3356
3357#ifndef OXU_VERBOSE_DEBUG
3358 if (status & ~0xffff) /* only if wPortChange is interesting */
3359#endif
3360 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3361 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3362 break;
3363 case SetHubFeature:
3364 switch (wValue) {
3365 case C_HUB_LOCAL_POWER:
3366 case C_HUB_OVER_CURRENT:
3367 /* no hub-wide feature/status flags */
3368 break;
3369 default:
3370 goto error;
3371 }
3372 break;
3373 case SetPortFeature:
3374 selector = wIndex >> 8;
3375 wIndex &= 0xff;
3376 if (!wIndex || wIndex > ports)
3377 goto error;
3378 wIndex--;
3379 temp = readl(status_reg);
3380 if (temp & PORT_OWNER)
3381 break;
3382
3383 temp &= ~PORT_RWC_BITS;
3384 switch (wValue) {
3385 case USB_PORT_FEAT_SUSPEND:
3386 if ((temp & PORT_PE) == 0
3387 || (temp & PORT_RESET) != 0)
3388 goto error;
3389 if (device_may_wakeup(&hcd->self.root_hub->dev))
3390 temp |= PORT_WAKE_BITS;
3391 writel(temp | PORT_SUSPEND, status_reg);
3392 break;
3393 case USB_PORT_FEAT_POWER:
3394 if (HCS_PPC(oxu->hcs_params))
3395 writel(temp | PORT_POWER, status_reg);
3396 break;
3397 case USB_PORT_FEAT_RESET:
3398 if (temp & PORT_RESUME)
3399 goto error;
3400 /* line status bits may report this as low speed,
3401 * which can be fine if this root hub has a
3402 * transaction translator built in.
3403 */
3404 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3405 temp |= PORT_RESET;
3406 temp &= ~PORT_PE;
3407
3408 /*
3409 * caller must wait, then call GetPortStatus
3410 * usb 2.0 spec says 50 ms resets on root
3411 */
3412 oxu->reset_done[wIndex] = jiffies
3413 + msecs_to_jiffies(50);
3414 writel(temp, status_reg);
3415 break;
3416
3417 /* For downstream facing ports (these): one hub port is put
3418 * into test mode according to USB2 11.24.2.13, then the hub
3419 * must be reset (which for root hub now means rmmod+modprobe,
3420 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3421 * about the EHCI-specific stuff.
3422 */
3423 case USB_PORT_FEAT_TEST:
3424 if (!selector || selector > 5)
3425 goto error;
3426 ehci_quiesce(oxu);
3427 ehci_halt(oxu);
3428 temp |= selector << 16;
3429 writel(temp, status_reg);
3430 break;
3431
3432 default:
3433 goto error;
3434 }
3435 readl(&oxu->regs->command); /* unblock posted writes */
3436 break;
3437
3438 default:
3439error:
3440 /* "stall" on error */
3441 retval = -EPIPE;
3442 }
3443 spin_unlock_irqrestore(&oxu->lock, flags);
3444 return retval;
3445}
3446
3447#ifdef CONFIG_PM
3448
3449static int oxu_bus_suspend(struct usb_hcd *hcd)
3450{
3451 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3452 int port;
3453 int mask;
3454
3455 oxu_dbg(oxu, "suspend root hub\n");
3456
3457 if (time_before(jiffies, oxu->next_statechange))
3458 msleep(5);
3459
3460 port = HCS_N_PORTS(oxu->hcs_params);
3461 spin_lock_irq(&oxu->lock);
3462
3463 /* stop schedules, clean any completed work */
3464 if (HC_IS_RUNNING(hcd->state)) {
3465 ehci_quiesce(oxu);
3466 hcd->state = HC_STATE_QUIESCING;
3467 }
3468 oxu->command = readl(&oxu->regs->command);
3469 if (oxu->reclaim)
3470 oxu->reclaim_ready = 1;
3471 ehci_work(oxu);
3472
3473 /* Unlike other USB host controller types, EHCI doesn't have
3474 * any notion of "global" or bus-wide suspend. The driver has
3475 * to manually suspend all the active unsuspended ports, and
3476 * then manually resume them in the bus_resume() routine.
3477 */
3478 oxu->bus_suspended = 0;
3479 while (port--) {
3480 u32 __iomem *reg = &oxu->regs->port_status[port];
3481 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3482 u32 t2 = t1;
3483
3484 /* keep track of which ports we suspend */
3485 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3486 !(t1 & PORT_SUSPEND)) {
3487 t2 |= PORT_SUSPEND;
3488 set_bit(port, &oxu->bus_suspended);
3489 }
3490
3491 /* enable remote wakeup on all ports */
3492 if (device_may_wakeup(&hcd->self.root_hub->dev))
3493 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3494 else
3495 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3496
3497 if (t1 != t2) {
3498 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3499 port + 1, t1, t2);
3500 writel(t2, reg);
3501 }
3502 }
3503
3504 /* turn off now-idle HC */
3505 del_timer_sync(&oxu->watchdog);
3506 ehci_halt(oxu);
3507 hcd->state = HC_STATE_SUSPENDED;
3508
3509 /* allow remote wakeup */
3510 mask = INTR_MASK;
3511 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3512 mask &= ~STS_PCD;
3513 writel(mask, &oxu->regs->intr_enable);
3514 readl(&oxu->regs->intr_enable);
3515
3516 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3517 spin_unlock_irq(&oxu->lock);
3518 return 0;
3519}
3520
3521/* Caller has locked the root hub, and should reset/reinit on error */
3522static int oxu_bus_resume(struct usb_hcd *hcd)
3523{
3524 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3525 u32 temp;
3526 int i;
3527
3528 if (time_before(jiffies, oxu->next_statechange))
3529 msleep(5);
3530 spin_lock_irq(&oxu->lock);
3531
3532 /* Ideally and we've got a real resume here, and no port's power
3533 * was lost. (For PCI, that means Vaux was maintained.) But we
3534 * could instead be restoring a swsusp snapshot -- so that BIOS was
3535 * the last user of the controller, not reset/pm hardware keeping
3536 * state we gave to it.
3537 */
3538 temp = readl(&oxu->regs->intr_enable);
3539 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3540
3541 /* at least some APM implementations will try to deliver
3542 * IRQs right away, so delay them until we're ready.
3543 */
3544 writel(0, &oxu->regs->intr_enable);
3545
3546 /* re-init operational registers */
3547 writel(0, &oxu->regs->segment);
3548 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3549 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3550
3551 /* restore CMD_RUN, framelist size, and irq threshold */
3552 writel(oxu->command, &oxu->regs->command);
3553
3554 /* Some controller/firmware combinations need a delay during which
3555 * they set up the port statuses. See Bugzilla #8190. */
3556 mdelay(8);
3557
3558 /* manually resume the ports we suspended during bus_suspend() */
3559 i = HCS_N_PORTS(oxu->hcs_params);
3560 while (i--) {
3561 temp = readl(&oxu->regs->port_status[i]);
3562 temp &= ~(PORT_RWC_BITS
3563 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3564 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3565 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3566 temp |= PORT_RESUME;
3567 }
3568 writel(temp, &oxu->regs->port_status[i]);
3569 }
3570 i = HCS_N_PORTS(oxu->hcs_params);
3571 mdelay(20);
3572 while (i--) {
3573 temp = readl(&oxu->regs->port_status[i]);
3574 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3575 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3576 writel(temp, &oxu->regs->port_status[i]);
3577 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3578 }
3579 }
3580 (void) readl(&oxu->regs->command);
3581
3582 /* maybe re-activate the schedule(s) */
3583 temp = 0;
3584 if (oxu->async->qh_next.qh)
3585 temp |= CMD_ASE;
3586 if (oxu->periodic_sched)
3587 temp |= CMD_PSE;
3588 if (temp) {
3589 oxu->command |= temp;
3590 writel(oxu->command, &oxu->regs->command);
3591 }
3592
3593 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3594 hcd->state = HC_STATE_RUNNING;
3595
3596 /* Now we can safely re-enable irqs */
3597 writel(INTR_MASK, &oxu->regs->intr_enable);
3598
3599 spin_unlock_irq(&oxu->lock);
3600 return 0;
3601}
3602
3603#else
3604
3605static int oxu_bus_suspend(struct usb_hcd *hcd)
3606{
3607 return 0;
3608}
3609
3610static int oxu_bus_resume(struct usb_hcd *hcd)
3611{
3612 return 0;
3613}
3614
3615#endif /* CONFIG_PM */
3616
3617static const struct hc_driver oxu_hc_driver = {
3618 .description = "oxu210hp_hcd",
3619 .product_desc = "oxu210hp HCD",
3620 .hcd_priv_size = sizeof(struct oxu_hcd),
3621
3622 /*
3623 * Generic hardware linkage
3624 */
3625 .irq = oxu_irq,
3626 .flags = HCD_MEMORY | HCD_USB2,
3627
3628 /*
3629 * Basic lifecycle operations
3630 */
3631 .reset = oxu_reset,
3632 .start = oxu_run,
3633 .stop = oxu_stop,
3634 .shutdown = oxu_shutdown,
3635
3636 /*
3637 * Managing i/o requests and associated device resources
3638 */
3639 .urb_enqueue = oxu_urb_enqueue,
3640 .urb_dequeue = oxu_urb_dequeue,
3641 .endpoint_disable = oxu_endpoint_disable,
3642
3643 /*
3644 * Scheduling support
3645 */
3646 .get_frame_number = oxu_get_frame,
3647
3648 /*
3649 * Root hub support
3650 */
3651 .hub_status_data = oxu_hub_status_data,
3652 .hub_control = oxu_hub_control,
3653 .bus_suspend = oxu_bus_suspend,
3654 .bus_resume = oxu_bus_resume,
3655};
3656
3657/*
3658 * Module stuff
3659 */
3660
3661static void oxu_configuration(struct platform_device *pdev, void *base)
3662{
3663 u32 tmp;
3664
3665 /* Initialize top level registers.
3666 * First write ever
3667 */
3668 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3669 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3670 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3671
3672 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3673 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3674
3675 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3676 OXU_COMPARATOR | OXU_ASO_OP);
3677
3678 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3679 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3680
3681 /* Clear all top interrupt enable */
3682 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3683
3684 /* Clear all top interrupt status */
3685 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3686
3687 /* Enable all needed top interrupt except OTG SPH core */
3688 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3689}
3690
3691static int oxu_verify_id(struct platform_device *pdev, void *base)
3692{
3693 u32 id;
3694 static const char * const bo[] = {
3695 "reserved",
3696 "128-pin LQFP",
3697 "84-pin TFBGA",
3698 "reserved",
3699 };
3700
3701 /* Read controller signature register to find a match */
3702 id = oxu_readl(base, OXU_DEVICEID);
3703 dev_info(&pdev->dev, "device ID %x\n", id);
3704 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3705 return -1;
3706
3707 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3708 id >> OXU_REV_SHIFT,
3709 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3710 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3711 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3712
3713 return 0;
3714}
3715
3716static const struct hc_driver oxu_hc_driver;
3717static struct usb_hcd *oxu_create(struct platform_device *pdev,
3718 unsigned long memstart, unsigned long memlen,
3719 void *base, int irq, int otg)
3720{
3721 struct device *dev = &pdev->dev;
3722
3723 struct usb_hcd *hcd;
3724 struct oxu_hcd *oxu;
3725 int ret;
3726
3727 /* Set endian mode and host mode */
3728 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3729 OXU_USBMODE,
3730 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3731
3732 hcd = usb_create_hcd(&oxu_hc_driver, dev,
3733 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3734 if (!hcd)
3735 return ERR_PTR(-ENOMEM);
3736
3737 hcd->rsrc_start = memstart;
3738 hcd->rsrc_len = memlen;
3739 hcd->regs = base;
3740 hcd->irq = irq;
3741 hcd->state = HC_STATE_HALT;
3742
3743 oxu = hcd_to_oxu(hcd);
3744 oxu->is_otg = otg;
3745
3746 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3747 if (ret < 0)
3748 return ERR_PTR(ret);
3749
3750 return hcd;
3751}
3752
3753static int oxu_init(struct platform_device *pdev,
3754 unsigned long memstart, unsigned long memlen,
3755 void *base, int irq)
3756{
3757 struct oxu_info *info = platform_get_drvdata(pdev);
3758 struct usb_hcd *hcd;
3759 int ret;
3760
3761 /* First time configuration at start up */
3762 oxu_configuration(pdev, base);
3763
3764 ret = oxu_verify_id(pdev, base);
3765 if (ret) {
3766 dev_err(&pdev->dev, "no devices found!\n");
3767 return -ENODEV;
3768 }
3769
3770 /* Create the OTG controller */
3771 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3772 if (IS_ERR(hcd)) {
3773 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3774 ret = PTR_ERR(hcd);
3775 goto error_create_otg;
3776 }
3777 info->hcd[0] = hcd;
3778
3779 /* Create the SPH host controller */
3780 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3781 if (IS_ERR(hcd)) {
3782 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3783 ret = PTR_ERR(hcd);
3784 goto error_create_sph;
3785 }
3786 info->hcd[1] = hcd;
3787
3788 oxu_writel(base, OXU_CHIPIRQEN_SET,
3789 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3790
3791 return 0;
3792
3793error_create_sph:
3794 usb_remove_hcd(info->hcd[0]);
3795 usb_put_hcd(info->hcd[0]);
3796
3797error_create_otg:
3798 return ret;
3799}
3800
3801static int oxu_drv_probe(struct platform_device *pdev)
3802{
3803 struct resource *res;
3804 void *base;
3805 unsigned long memstart, memlen;
3806 int irq, ret;
3807 struct oxu_info *info;
3808
3809 if (usb_disabled())
3810 return -ENODEV;
3811
3812 /*
3813 * Get the platform resources
3814 */
3815 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3816 if (!res) {
3817 dev_err(&pdev->dev,
3818 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3819 return -ENODEV;
3820 }
3821 irq = res->start;
3822 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3823
3824 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3825 if (!res) {
3826 dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3827 dev_name(&pdev->dev));
3828 return -ENODEV;
3829 }
3830 memstart = res->start;
3831 memlen = resource_size(res);
3832 dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3833 if (!request_mem_region(memstart, memlen,
3834 oxu_hc_driver.description)) {
3835 dev_dbg(&pdev->dev, "memory area already in use\n");
3836 return -EBUSY;
3837 }
3838
3839 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3840 if (ret) {
3841 dev_err(&pdev->dev, "error setting irq type\n");
3842 ret = -EFAULT;
3843 goto error_set_irq_type;
3844 }
3845
3846 base = ioremap(memstart, memlen);
3847 if (!base) {
3848 dev_dbg(&pdev->dev, "error mapping memory\n");
3849 ret = -EFAULT;
3850 goto error_ioremap;
3851 }
3852
3853 /* Allocate a driver data struct to hold useful info for both
3854 * SPH & OTG devices
3855 */
3856 info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3857 if (!info) {
3858 dev_dbg(&pdev->dev, "error allocating memory\n");
3859 ret = -EFAULT;
3860 goto error_alloc;
3861 }
3862 platform_set_drvdata(pdev, info);
3863
3864 ret = oxu_init(pdev, memstart, memlen, base, irq);
3865 if (ret < 0) {
3866 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3867 goto error_init;
3868 }
3869
3870 dev_info(&pdev->dev, "devices enabled and running\n");
3871 platform_set_drvdata(pdev, info);
3872
3873 return 0;
3874
3875error_init:
3876 kfree(info);
3877 platform_set_drvdata(pdev, NULL);
3878
3879error_alloc:
3880 iounmap(base);
3881
3882error_set_irq_type:
3883error_ioremap:
3884 release_mem_region(memstart, memlen);
3885
3886 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3887 return ret;
3888}
3889
3890static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3891{
3892 usb_remove_hcd(hcd);
3893 usb_put_hcd(hcd);
3894}
3895
3896static int oxu_drv_remove(struct platform_device *pdev)
3897{
3898 struct oxu_info *info = platform_get_drvdata(pdev);
3899 unsigned long memstart = info->hcd[0]->rsrc_start,
3900 memlen = info->hcd[0]->rsrc_len;
3901 void *base = info->hcd[0]->regs;
3902
3903 oxu_remove(pdev, info->hcd[0]);
3904 oxu_remove(pdev, info->hcd[1]);
3905
3906 iounmap(base);
3907 release_mem_region(memstart, memlen);
3908
3909 kfree(info);
3910 platform_set_drvdata(pdev, NULL);
3911
3912 return 0;
3913}
3914
3915static void oxu_drv_shutdown(struct platform_device *pdev)
3916{
3917 oxu_drv_remove(pdev);
3918}
3919
3920#if 0
3921/* FIXME: TODO */
3922static int oxu_drv_suspend(struct device *dev)
3923{
3924 struct platform_device *pdev = to_platform_device(dev);
3925 struct usb_hcd *hcd = dev_get_drvdata(dev);
3926
3927 return 0;
3928}
3929
3930static int oxu_drv_resume(struct device *dev)
3931{
3932 struct platform_device *pdev = to_platform_device(dev);
3933 struct usb_hcd *hcd = dev_get_drvdata(dev);
3934
3935 return 0;
3936}
3937#else
3938#define oxu_drv_suspend NULL
3939#define oxu_drv_resume NULL
3940#endif
3941
3942static struct platform_driver oxu_driver = {
3943 .probe = oxu_drv_probe,
3944 .remove = oxu_drv_remove,
3945 .shutdown = oxu_drv_shutdown,
3946 .suspend = oxu_drv_suspend,
3947 .resume = oxu_drv_resume,
3948 .driver = {
3949 .name = "oxu210hp-hcd",
3950 .bus = &platform_bus_type
3951 }
3952};
3953
3954module_platform_driver(oxu_driver);
3955
3956MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3957MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3958MODULE_LICENSE("GPL");