Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * u_serial.c - utilities for USB gadget "serial port"/TTY support
   3 *
   4 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
   5 * Copyright (C) 2008 David Brownell
   6 * Copyright (C) 2008 by Nokia Corporation
   7 *
   8 * This code also borrows from usbserial.c, which is
   9 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
  10 * Copyright (C) 2000 Peter Berger (pberger@brimson.com)
  11 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
  12 *
  13 * This software is distributed under the terms of the GNU General
  14 * Public License ("GPL") as published by the Free Software Foundation,
  15 * either version 2 of that License or (at your option) any later version.
  16 */
  17
  18/* #define VERBOSE_DEBUG */
  19
  20#include <linux/kernel.h>
  21#include <linux/sched.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/delay.h>
  25#include <linux/tty.h>
  26#include <linux/tty_flip.h>
  27#include <linux/slab.h>
  28#include <linux/export.h>
  29
  30#include "u_serial.h"
  31
  32
  33/*
  34 * This component encapsulates the TTY layer glue needed to provide basic
  35 * "serial port" functionality through the USB gadget stack.  Each such
  36 * port is exposed through a /dev/ttyGS* node.
  37 *
  38 * After initialization (gserial_setup), these TTY port devices stay
  39 * available until they are removed (gserial_cleanup).  Each one may be
  40 * connected to a USB function (gserial_connect), or disconnected (with
  41 * gserial_disconnect) when the USB host issues a config change event.
  42 * Data can only flow when the port is connected to the host.
  43 *
  44 * A given TTY port can be made available in multiple configurations.
  45 * For example, each one might expose a ttyGS0 node which provides a
  46 * login application.  In one case that might use CDC ACM interface 0,
  47 * while another configuration might use interface 3 for that.  The
  48 * work to handle that (including descriptor management) is not part
  49 * of this component.
  50 *
  51 * Configurations may expose more than one TTY port.  For example, if
  52 * ttyGS0 provides login service, then ttyGS1 might provide dialer access
  53 * for a telephone or fax link.  And ttyGS2 might be something that just
  54 * needs a simple byte stream interface for some messaging protocol that
  55 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned.
  56 */
  57
  58#define PREFIX	"ttyGS"
  59
  60/*
  61 * gserial is the lifecycle interface, used by USB functions
  62 * gs_port is the I/O nexus, used by the tty driver
  63 * tty_struct links to the tty/filesystem framework
  64 *
  65 * gserial <---> gs_port ... links will be null when the USB link is
  66 * inactive; managed by gserial_{connect,disconnect}().  each gserial
  67 * instance can wrap its own USB control protocol.
  68 *	gserial->ioport == usb_ep->driver_data ... gs_port
  69 *	gs_port->port_usb ... gserial
  70 *
  71 * gs_port <---> tty_struct ... links will be null when the TTY file
  72 * isn't opened; managed by gs_open()/gs_close()
  73 *	gserial->port_tty ... tty_struct
  74 *	tty_struct->driver_data ... gserial
  75 */
  76
  77/* RX and TX queues can buffer QUEUE_SIZE packets before they hit the
  78 * next layer of buffering.  For TX that's a circular buffer; for RX
  79 * consider it a NOP.  A third layer is provided by the TTY code.
  80 */
  81#define QUEUE_SIZE		16
  82#define WRITE_BUF_SIZE		8192		/* TX only */
  83
  84/* circular buffer */
  85struct gs_buf {
  86	unsigned		buf_size;
  87	char			*buf_buf;
  88	char			*buf_get;
  89	char			*buf_put;
  90};
  91
  92/*
  93 * The port structure holds info for each port, one for each minor number
  94 * (and thus for each /dev/ node).
  95 */
  96struct gs_port {
  97	struct tty_port		port;
  98	spinlock_t		port_lock;	/* guard port_* access */
  99
 100	struct gserial		*port_usb;
 101
 102	bool			openclose;	/* open/close in progress */
 103	u8			port_num;
 104
 105	struct list_head	read_pool;
 106	int read_started;
 107	int read_allocated;
 108	struct list_head	read_queue;
 109	unsigned		n_read;
 110	struct tasklet_struct	push;
 111
 112	struct list_head	write_pool;
 113	int write_started;
 114	int write_allocated;
 115	struct gs_buf		port_write_buf;
 116	wait_queue_head_t	drain_wait;	/* wait while writes drain */
 117
 118	/* REVISIT this state ... */
 119	struct usb_cdc_line_coding port_line_coding;	/* 8-N-1 etc */
 120};
 121
 122/* increase N_PORTS if you need more */
 123#define N_PORTS		4
 124static struct portmaster {
 125	struct mutex	lock;			/* protect open/close */
 126	struct gs_port	*port;
 127} ports[N_PORTS];
 128static unsigned	n_ports;
 129
 130#define GS_CLOSE_TIMEOUT		15		/* seconds */
 131
 132
 133
 134#ifdef VERBOSE_DEBUG
 135#define pr_vdebug(fmt, arg...) \
 136	pr_debug(fmt, ##arg)
 137#else
 138#define pr_vdebug(fmt, arg...) \
 139	({ if (0) pr_debug(fmt, ##arg); })
 140#endif
 141
 142/*-------------------------------------------------------------------------*/
 143
 144/* Circular Buffer */
 145
 146/*
 147 * gs_buf_alloc
 148 *
 149 * Allocate a circular buffer and all associated memory.
 150 */
 151static int gs_buf_alloc(struct gs_buf *gb, unsigned size)
 152{
 153	gb->buf_buf = kmalloc(size, GFP_KERNEL);
 154	if (gb->buf_buf == NULL)
 155		return -ENOMEM;
 156
 157	gb->buf_size = size;
 158	gb->buf_put = gb->buf_buf;
 159	gb->buf_get = gb->buf_buf;
 160
 161	return 0;
 162}
 163
 164/*
 165 * gs_buf_free
 166 *
 167 * Free the buffer and all associated memory.
 168 */
 169static void gs_buf_free(struct gs_buf *gb)
 170{
 171	kfree(gb->buf_buf);
 172	gb->buf_buf = NULL;
 173}
 174
 175/*
 176 * gs_buf_clear
 177 *
 178 * Clear out all data in the circular buffer.
 179 */
 180static void gs_buf_clear(struct gs_buf *gb)
 181{
 182	gb->buf_get = gb->buf_put;
 183	/* equivalent to a get of all data available */
 184}
 185
 186/*
 187 * gs_buf_data_avail
 188 *
 189 * Return the number of bytes of data written into the circular
 190 * buffer.
 191 */
 192static unsigned gs_buf_data_avail(struct gs_buf *gb)
 193{
 194	return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size;
 195}
 196
 197/*
 198 * gs_buf_space_avail
 199 *
 200 * Return the number of bytes of space available in the circular
 201 * buffer.
 202 */
 203static unsigned gs_buf_space_avail(struct gs_buf *gb)
 204{
 205	return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size;
 206}
 207
 208/*
 209 * gs_buf_put
 210 *
 211 * Copy data data from a user buffer and put it into the circular buffer.
 212 * Restrict to the amount of space available.
 213 *
 214 * Return the number of bytes copied.
 215 */
 216static unsigned
 217gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count)
 218{
 219	unsigned len;
 220
 221	len  = gs_buf_space_avail(gb);
 222	if (count > len)
 223		count = len;
 224
 225	if (count == 0)
 226		return 0;
 227
 228	len = gb->buf_buf + gb->buf_size - gb->buf_put;
 229	if (count > len) {
 230		memcpy(gb->buf_put, buf, len);
 231		memcpy(gb->buf_buf, buf+len, count - len);
 232		gb->buf_put = gb->buf_buf + count - len;
 233	} else {
 234		memcpy(gb->buf_put, buf, count);
 235		if (count < len)
 236			gb->buf_put += count;
 237		else /* count == len */
 238			gb->buf_put = gb->buf_buf;
 239	}
 240
 241	return count;
 242}
 243
 244/*
 245 * gs_buf_get
 246 *
 247 * Get data from the circular buffer and copy to the given buffer.
 248 * Restrict to the amount of data available.
 249 *
 250 * Return the number of bytes copied.
 251 */
 252static unsigned
 253gs_buf_get(struct gs_buf *gb, char *buf, unsigned count)
 254{
 255	unsigned len;
 256
 257	len = gs_buf_data_avail(gb);
 258	if (count > len)
 259		count = len;
 260
 261	if (count == 0)
 262		return 0;
 263
 264	len = gb->buf_buf + gb->buf_size - gb->buf_get;
 265	if (count > len) {
 266		memcpy(buf, gb->buf_get, len);
 267		memcpy(buf+len, gb->buf_buf, count - len);
 268		gb->buf_get = gb->buf_buf + count - len;
 269	} else {
 270		memcpy(buf, gb->buf_get, count);
 271		if (count < len)
 272			gb->buf_get += count;
 273		else /* count == len */
 274			gb->buf_get = gb->buf_buf;
 275	}
 276
 277	return count;
 278}
 279
 280/*-------------------------------------------------------------------------*/
 281
 282/* I/O glue between TTY (upper) and USB function (lower) driver layers */
 283
 284/*
 285 * gs_alloc_req
 286 *
 287 * Allocate a usb_request and its buffer.  Returns a pointer to the
 288 * usb_request or NULL if there is an error.
 289 */
 290struct usb_request *
 291gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags)
 292{
 293	struct usb_request *req;
 294
 295	req = usb_ep_alloc_request(ep, kmalloc_flags);
 296
 297	if (req != NULL) {
 298		req->length = len;
 299		req->buf = kmalloc(len, kmalloc_flags);
 300		if (req->buf == NULL) {
 301			usb_ep_free_request(ep, req);
 302			return NULL;
 303		}
 304	}
 305
 306	return req;
 307}
 308
 309/*
 310 * gs_free_req
 311 *
 312 * Free a usb_request and its buffer.
 313 */
 314void gs_free_req(struct usb_ep *ep, struct usb_request *req)
 315{
 316	kfree(req->buf);
 317	usb_ep_free_request(ep, req);
 318}
 319
 320/*
 321 * gs_send_packet
 322 *
 323 * If there is data to send, a packet is built in the given
 324 * buffer and the size is returned.  If there is no data to
 325 * send, 0 is returned.
 326 *
 327 * Called with port_lock held.
 328 */
 329static unsigned
 330gs_send_packet(struct gs_port *port, char *packet, unsigned size)
 331{
 332	unsigned len;
 333
 334	len = gs_buf_data_avail(&port->port_write_buf);
 335	if (len < size)
 336		size = len;
 337	if (size != 0)
 338		size = gs_buf_get(&port->port_write_buf, packet, size);
 339	return size;
 340}
 341
 342/*
 343 * gs_start_tx
 344 *
 345 * This function finds available write requests, calls
 346 * gs_send_packet to fill these packets with data, and
 347 * continues until either there are no more write requests
 348 * available or no more data to send.  This function is
 349 * run whenever data arrives or write requests are available.
 350 *
 351 * Context: caller owns port_lock; port_usb is non-null.
 352 */
 353static int gs_start_tx(struct gs_port *port)
 354/*
 355__releases(&port->port_lock)
 356__acquires(&port->port_lock)
 357*/
 358{
 359	struct list_head	*pool = &port->write_pool;
 360	struct usb_ep		*in = port->port_usb->in;
 361	int			status = 0;
 362	bool			do_tty_wake = false;
 363
 364	while (!list_empty(pool)) {
 365		struct usb_request	*req;
 366		int			len;
 367
 368		if (port->write_started >= QUEUE_SIZE)
 369			break;
 370
 371		req = list_entry(pool->next, struct usb_request, list);
 372		len = gs_send_packet(port, req->buf, in->maxpacket);
 373		if (len == 0) {
 374			wake_up_interruptible(&port->drain_wait);
 375			break;
 376		}
 377		do_tty_wake = true;
 378
 379		req->length = len;
 380		list_del(&req->list);
 381		req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0);
 382
 383		pr_vdebug(PREFIX "%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n",
 384				port->port_num, len, *((u8 *)req->buf),
 385				*((u8 *)req->buf+1), *((u8 *)req->buf+2));
 386
 387		/* Drop lock while we call out of driver; completions
 388		 * could be issued while we do so.  Disconnection may
 389		 * happen too; maybe immediately before we queue this!
 390		 *
 391		 * NOTE that we may keep sending data for a while after
 392		 * the TTY closed (dev->ioport->port_tty is NULL).
 393		 */
 394		spin_unlock(&port->port_lock);
 395		status = usb_ep_queue(in, req, GFP_ATOMIC);
 396		spin_lock(&port->port_lock);
 397
 398		if (status) {
 399			pr_debug("%s: %s %s err %d\n",
 400					__func__, "queue", in->name, status);
 401			list_add(&req->list, pool);
 402			break;
 403		}
 404
 405		port->write_started++;
 406
 407		/* abort immediately after disconnect */
 408		if (!port->port_usb)
 409			break;
 410	}
 411
 412	if (do_tty_wake && port->port.tty)
 413		tty_wakeup(port->port.tty);
 414	return status;
 415}
 416
 417/*
 418 * Context: caller owns port_lock, and port_usb is set
 419 */
 420static unsigned gs_start_rx(struct gs_port *port)
 421/*
 422__releases(&port->port_lock)
 423__acquires(&port->port_lock)
 424*/
 425{
 426	struct list_head	*pool = &port->read_pool;
 427	struct usb_ep		*out = port->port_usb->out;
 428
 429	while (!list_empty(pool)) {
 430		struct usb_request	*req;
 431		int			status;
 432		struct tty_struct	*tty;
 433
 434		/* no more rx if closed */
 435		tty = port->port.tty;
 436		if (!tty)
 437			break;
 438
 439		if (port->read_started >= QUEUE_SIZE)
 440			break;
 441
 442		req = list_entry(pool->next, struct usb_request, list);
 443		list_del(&req->list);
 444		req->length = out->maxpacket;
 445
 446		/* drop lock while we call out; the controller driver
 447		 * may need to call us back (e.g. for disconnect)
 448		 */
 449		spin_unlock(&port->port_lock);
 450		status = usb_ep_queue(out, req, GFP_ATOMIC);
 451		spin_lock(&port->port_lock);
 452
 453		if (status) {
 454			pr_debug("%s: %s %s err %d\n",
 455					__func__, "queue", out->name, status);
 456			list_add(&req->list, pool);
 457			break;
 458		}
 459		port->read_started++;
 460
 461		/* abort immediately after disconnect */
 462		if (!port->port_usb)
 463			break;
 464	}
 465	return port->read_started;
 466}
 467
 468/*
 469 * RX tasklet takes data out of the RX queue and hands it up to the TTY
 470 * layer until it refuses to take any more data (or is throttled back).
 471 * Then it issues reads for any further data.
 472 *
 473 * If the RX queue becomes full enough that no usb_request is queued,
 474 * the OUT endpoint may begin NAKing as soon as its FIFO fills up.
 475 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two)
 476 * can be buffered before the TTY layer's buffers (currently 64 KB).
 477 */
 478static void gs_rx_push(unsigned long _port)
 479{
 480	struct gs_port		*port = (void *)_port;
 481	struct tty_struct	*tty;
 482	struct list_head	*queue = &port->read_queue;
 483	bool			disconnect = false;
 484	bool			do_push = false;
 485
 486	/* hand any queued data to the tty */
 487	spin_lock_irq(&port->port_lock);
 488	tty = port->port.tty;
 489	while (!list_empty(queue)) {
 490		struct usb_request	*req;
 491
 492		req = list_first_entry(queue, struct usb_request, list);
 493
 494		/* discard data if tty was closed */
 495		if (!tty)
 496			goto recycle;
 497
 498		/* leave data queued if tty was rx throttled */
 499		if (test_bit(TTY_THROTTLED, &tty->flags))
 500			break;
 501
 502		switch (req->status) {
 503		case -ESHUTDOWN:
 504			disconnect = true;
 505			pr_vdebug(PREFIX "%d: shutdown\n", port->port_num);
 506			break;
 507
 508		default:
 509			/* presumably a transient fault */
 510			pr_warning(PREFIX "%d: unexpected RX status %d\n",
 511					port->port_num, req->status);
 512			/* FALLTHROUGH */
 513		case 0:
 514			/* normal completion */
 515			break;
 516		}
 517
 518		/* push data to (open) tty */
 519		if (req->actual) {
 520			char		*packet = req->buf;
 521			unsigned	size = req->actual;
 522			unsigned	n;
 523			int		count;
 524
 525			/* we may have pushed part of this packet already... */
 526			n = port->n_read;
 527			if (n) {
 528				packet += n;
 529				size -= n;
 530			}
 531
 532			count = tty_insert_flip_string(tty, packet, size);
 533			if (count)
 534				do_push = true;
 535			if (count != size) {
 536				/* stop pushing; TTY layer can't handle more */
 537				port->n_read += count;
 538				pr_vdebug(PREFIX "%d: rx block %d/%d\n",
 539						port->port_num,
 540						count, req->actual);
 541				break;
 542			}
 543			port->n_read = 0;
 544		}
 545recycle:
 546		list_move(&req->list, &port->read_pool);
 547		port->read_started--;
 548	}
 549
 550	/* Push from tty to ldisc; without low_latency set this is handled by
 551	 * a workqueue, so we won't get callbacks and can hold port_lock
 552	 */
 553	if (tty && do_push)
 554		tty_flip_buffer_push(tty);
 555
 556
 557	/* We want our data queue to become empty ASAP, keeping data
 558	 * in the tty and ldisc (not here).  If we couldn't push any
 559	 * this time around, there may be trouble unless there's an
 560	 * implicit tty_unthrottle() call on its way...
 561	 *
 562	 * REVISIT we should probably add a timer to keep the tasklet
 563	 * from starving ... but it's not clear that case ever happens.
 564	 */
 565	if (!list_empty(queue) && tty) {
 566		if (!test_bit(TTY_THROTTLED, &tty->flags)) {
 567			if (do_push)
 568				tasklet_schedule(&port->push);
 569			else
 570				pr_warning(PREFIX "%d: RX not scheduled?\n",
 571					port->port_num);
 572		}
 573	}
 574
 575	/* If we're still connected, refill the USB RX queue. */
 576	if (!disconnect && port->port_usb)
 577		gs_start_rx(port);
 578
 579	spin_unlock_irq(&port->port_lock);
 580}
 581
 582static void gs_read_complete(struct usb_ep *ep, struct usb_request *req)
 583{
 584	struct gs_port	*port = ep->driver_data;
 585
 586	/* Queue all received data until the tty layer is ready for it. */
 587	spin_lock(&port->port_lock);
 588	list_add_tail(&req->list, &port->read_queue);
 589	tasklet_schedule(&port->push);
 590	spin_unlock(&port->port_lock);
 591}
 592
 593static void gs_write_complete(struct usb_ep *ep, struct usb_request *req)
 594{
 595	struct gs_port	*port = ep->driver_data;
 596
 597	spin_lock(&port->port_lock);
 598	list_add(&req->list, &port->write_pool);
 599	port->write_started--;
 600
 601	switch (req->status) {
 602	default:
 603		/* presumably a transient fault */
 604		pr_warning("%s: unexpected %s status %d\n",
 605				__func__, ep->name, req->status);
 606		/* FALL THROUGH */
 607	case 0:
 608		/* normal completion */
 609		gs_start_tx(port);
 610		break;
 611
 612	case -ESHUTDOWN:
 613		/* disconnect */
 614		pr_vdebug("%s: %s shutdown\n", __func__, ep->name);
 615		break;
 616	}
 617
 618	spin_unlock(&port->port_lock);
 619}
 620
 621static void gs_free_requests(struct usb_ep *ep, struct list_head *head,
 622							 int *allocated)
 623{
 624	struct usb_request	*req;
 625
 626	while (!list_empty(head)) {
 627		req = list_entry(head->next, struct usb_request, list);
 628		list_del(&req->list);
 629		gs_free_req(ep, req);
 630		if (allocated)
 631			(*allocated)--;
 632	}
 633}
 634
 635static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head,
 636		void (*fn)(struct usb_ep *, struct usb_request *),
 637		int *allocated)
 638{
 639	int			i;
 640	struct usb_request	*req;
 641	int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE;
 642
 643	/* Pre-allocate up to QUEUE_SIZE transfers, but if we can't
 644	 * do quite that many this time, don't fail ... we just won't
 645	 * be as speedy as we might otherwise be.
 646	 */
 647	for (i = 0; i < n; i++) {
 648		req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC);
 649		if (!req)
 650			return list_empty(head) ? -ENOMEM : 0;
 651		req->complete = fn;
 652		list_add_tail(&req->list, head);
 653		if (allocated)
 654			(*allocated)++;
 655	}
 656	return 0;
 657}
 658
 659/**
 660 * gs_start_io - start USB I/O streams
 661 * @dev: encapsulates endpoints to use
 662 * Context: holding port_lock; port_tty and port_usb are non-null
 663 *
 664 * We only start I/O when something is connected to both sides of
 665 * this port.  If nothing is listening on the host side, we may
 666 * be pointlessly filling up our TX buffers and FIFO.
 667 */
 668static int gs_start_io(struct gs_port *port)
 669{
 670	struct list_head	*head = &port->read_pool;
 671	struct usb_ep		*ep = port->port_usb->out;
 672	int			status;
 673	unsigned		started;
 674
 675	/* Allocate RX and TX I/O buffers.  We can't easily do this much
 676	 * earlier (with GFP_KERNEL) because the requests are coupled to
 677	 * endpoints, as are the packet sizes we'll be using.  Different
 678	 * configurations may use different endpoints with a given port;
 679	 * and high speed vs full speed changes packet sizes too.
 680	 */
 681	status = gs_alloc_requests(ep, head, gs_read_complete,
 682		&port->read_allocated);
 683	if (status)
 684		return status;
 685
 686	status = gs_alloc_requests(port->port_usb->in, &port->write_pool,
 687			gs_write_complete, &port->write_allocated);
 688	if (status) {
 689		gs_free_requests(ep, head, &port->read_allocated);
 690		return status;
 691	}
 692
 693	/* queue read requests */
 694	port->n_read = 0;
 695	started = gs_start_rx(port);
 696
 697	/* unblock any pending writes into our circular buffer */
 698	if (started) {
 699		tty_wakeup(port->port.tty);
 700	} else {
 701		gs_free_requests(ep, head, &port->read_allocated);
 702		gs_free_requests(port->port_usb->in, &port->write_pool,
 703			&port->write_allocated);
 704		status = -EIO;
 705	}
 706
 707	return status;
 708}
 709
 710/*-------------------------------------------------------------------------*/
 711
 712/* TTY Driver */
 713
 714/*
 715 * gs_open sets up the link between a gs_port and its associated TTY.
 716 * That link is broken *only* by TTY close(), and all driver methods
 717 * know that.
 718 */
 719static int gs_open(struct tty_struct *tty, struct file *file)
 720{
 721	int		port_num = tty->index;
 722	struct gs_port	*port;
 723	int		status;
 724
 725	do {
 726		mutex_lock(&ports[port_num].lock);
 727		port = ports[port_num].port;
 728		if (!port)
 729			status = -ENODEV;
 730		else {
 731			spin_lock_irq(&port->port_lock);
 732
 733			/* already open?  Great. */
 734			if (port->port.count) {
 735				status = 0;
 736				port->port.count++;
 737
 738			/* currently opening/closing? wait ... */
 739			} else if (port->openclose) {
 740				status = -EBUSY;
 741
 742			/* ... else we do the work */
 743			} else {
 744				status = -EAGAIN;
 745				port->openclose = true;
 746			}
 747			spin_unlock_irq(&port->port_lock);
 748		}
 749		mutex_unlock(&ports[port_num].lock);
 750
 751		switch (status) {
 752		default:
 753			/* fully handled */
 754			return status;
 755		case -EAGAIN:
 756			/* must do the work */
 757			break;
 758		case -EBUSY:
 759			/* wait for EAGAIN task to finish */
 760			msleep(1);
 761			/* REVISIT could have a waitchannel here, if
 762			 * concurrent open performance is important
 763			 */
 764			break;
 765		}
 766	} while (status != -EAGAIN);
 767
 768	/* Do the "real open" */
 769	spin_lock_irq(&port->port_lock);
 770
 771	/* allocate circular buffer on first open */
 772	if (port->port_write_buf.buf_buf == NULL) {
 773
 774		spin_unlock_irq(&port->port_lock);
 775		status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE);
 776		spin_lock_irq(&port->port_lock);
 777
 778		if (status) {
 779			pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n",
 780				port->port_num, tty, file);
 781			port->openclose = false;
 782			goto exit_unlock_port;
 783		}
 784	}
 785
 786	/* REVISIT if REMOVED (ports[].port NULL), abort the open
 787	 * to let rmmod work faster (but this way isn't wrong).
 788	 */
 789
 790	/* REVISIT maybe wait for "carrier detect" */
 791
 792	tty->driver_data = port;
 793	port->port.tty = tty;
 794
 795	port->port.count = 1;
 796	port->openclose = false;
 797
 798	/* if connected, start the I/O stream */
 799	if (port->port_usb) {
 800		struct gserial	*gser = port->port_usb;
 801
 802		pr_debug("gs_open: start ttyGS%d\n", port->port_num);
 803		gs_start_io(port);
 804
 805		if (gser->connect)
 806			gser->connect(gser);
 807	}
 808
 809	pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file);
 810
 811	status = 0;
 812
 813exit_unlock_port:
 814	spin_unlock_irq(&port->port_lock);
 815	return status;
 816}
 817
 818static int gs_writes_finished(struct gs_port *p)
 819{
 820	int cond;
 821
 822	/* return true on disconnect or empty buffer */
 823	spin_lock_irq(&p->port_lock);
 824	cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf);
 825	spin_unlock_irq(&p->port_lock);
 826
 827	return cond;
 828}
 829
 830static void gs_close(struct tty_struct *tty, struct file *file)
 831{
 832	struct gs_port *port = tty->driver_data;
 833	struct gserial	*gser;
 834
 835	spin_lock_irq(&port->port_lock);
 836
 837	if (port->port.count != 1) {
 838		if (port->port.count == 0)
 839			WARN_ON(1);
 840		else
 841			--port->port.count;
 842		goto exit;
 843	}
 844
 845	pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file);
 846
 847	/* mark port as closing but in use; we can drop port lock
 848	 * and sleep if necessary
 849	 */
 850	port->openclose = true;
 851	port->port.count = 0;
 852
 853	gser = port->port_usb;
 854	if (gser && gser->disconnect)
 855		gser->disconnect(gser);
 856
 857	/* wait for circular write buffer to drain, disconnect, or at
 858	 * most GS_CLOSE_TIMEOUT seconds; then discard the rest
 859	 */
 860	if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) {
 861		spin_unlock_irq(&port->port_lock);
 862		wait_event_interruptible_timeout(port->drain_wait,
 863					gs_writes_finished(port),
 864					GS_CLOSE_TIMEOUT * HZ);
 865		spin_lock_irq(&port->port_lock);
 866		gser = port->port_usb;
 867	}
 868
 869	/* Iff we're disconnected, there can be no I/O in flight so it's
 870	 * ok to free the circular buffer; else just scrub it.  And don't
 871	 * let the push tasklet fire again until we're re-opened.
 872	 */
 873	if (gser == NULL)
 874		gs_buf_free(&port->port_write_buf);
 875	else
 876		gs_buf_clear(&port->port_write_buf);
 877
 878	tty->driver_data = NULL;
 879	port->port.tty = NULL;
 880
 881	port->openclose = false;
 882
 883	pr_debug("gs_close: ttyGS%d (%p,%p) done!\n",
 884			port->port_num, tty, file);
 885
 886	wake_up_interruptible(&port->port.close_wait);
 887exit:
 888	spin_unlock_irq(&port->port_lock);
 889}
 890
 891static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count)
 892{
 893	struct gs_port	*port = tty->driver_data;
 894	unsigned long	flags;
 895	int		status;
 896
 897	pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n",
 898			port->port_num, tty, count);
 899
 900	spin_lock_irqsave(&port->port_lock, flags);
 901	if (count)
 902		count = gs_buf_put(&port->port_write_buf, buf, count);
 903	/* treat count == 0 as flush_chars() */
 904	if (port->port_usb)
 905		status = gs_start_tx(port);
 906	spin_unlock_irqrestore(&port->port_lock, flags);
 907
 908	return count;
 909}
 910
 911static int gs_put_char(struct tty_struct *tty, unsigned char ch)
 912{
 913	struct gs_port	*port = tty->driver_data;
 914	unsigned long	flags;
 915	int		status;
 916
 917	pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %pf\n",
 918		port->port_num, tty, ch, __builtin_return_address(0));
 919
 920	spin_lock_irqsave(&port->port_lock, flags);
 921	status = gs_buf_put(&port->port_write_buf, &ch, 1);
 922	spin_unlock_irqrestore(&port->port_lock, flags);
 923
 924	return status;
 925}
 926
 927static void gs_flush_chars(struct tty_struct *tty)
 928{
 929	struct gs_port	*port = tty->driver_data;
 930	unsigned long	flags;
 931
 932	pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty);
 933
 934	spin_lock_irqsave(&port->port_lock, flags);
 935	if (port->port_usb)
 936		gs_start_tx(port);
 937	spin_unlock_irqrestore(&port->port_lock, flags);
 938}
 939
 940static int gs_write_room(struct tty_struct *tty)
 941{
 942	struct gs_port	*port = tty->driver_data;
 943	unsigned long	flags;
 944	int		room = 0;
 945
 946	spin_lock_irqsave(&port->port_lock, flags);
 947	if (port->port_usb)
 948		room = gs_buf_space_avail(&port->port_write_buf);
 949	spin_unlock_irqrestore(&port->port_lock, flags);
 950
 951	pr_vdebug("gs_write_room: (%d,%p) room=%d\n",
 952		port->port_num, tty, room);
 953
 954	return room;
 955}
 956
 957static int gs_chars_in_buffer(struct tty_struct *tty)
 958{
 959	struct gs_port	*port = tty->driver_data;
 960	unsigned long	flags;
 961	int		chars = 0;
 962
 963	spin_lock_irqsave(&port->port_lock, flags);
 964	chars = gs_buf_data_avail(&port->port_write_buf);
 965	spin_unlock_irqrestore(&port->port_lock, flags);
 966
 967	pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n",
 968		port->port_num, tty, chars);
 969
 970	return chars;
 971}
 972
 973/* undo side effects of setting TTY_THROTTLED */
 974static void gs_unthrottle(struct tty_struct *tty)
 975{
 976	struct gs_port		*port = tty->driver_data;
 977	unsigned long		flags;
 978
 979	spin_lock_irqsave(&port->port_lock, flags);
 980	if (port->port_usb) {
 981		/* Kickstart read queue processing.  We don't do xon/xoff,
 982		 * rts/cts, or other handshaking with the host, but if the
 983		 * read queue backs up enough we'll be NAKing OUT packets.
 984		 */
 985		tasklet_schedule(&port->push);
 986		pr_vdebug(PREFIX "%d: unthrottle\n", port->port_num);
 987	}
 988	spin_unlock_irqrestore(&port->port_lock, flags);
 989}
 990
 991static int gs_break_ctl(struct tty_struct *tty, int duration)
 992{
 993	struct gs_port	*port = tty->driver_data;
 994	int		status = 0;
 995	struct gserial	*gser;
 996
 997	pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n",
 998			port->port_num, duration);
 999
1000	spin_lock_irq(&port->port_lock);
1001	gser = port->port_usb;
1002	if (gser && gser->send_break)
1003		status = gser->send_break(gser, duration);
1004	spin_unlock_irq(&port->port_lock);
1005
1006	return status;
1007}
1008
1009static const struct tty_operations gs_tty_ops = {
1010	.open =			gs_open,
1011	.close =		gs_close,
1012	.write =		gs_write,
1013	.put_char =		gs_put_char,
1014	.flush_chars =		gs_flush_chars,
1015	.write_room =		gs_write_room,
1016	.chars_in_buffer =	gs_chars_in_buffer,
1017	.unthrottle =		gs_unthrottle,
1018	.break_ctl =		gs_break_ctl,
1019};
1020
1021/*-------------------------------------------------------------------------*/
1022
1023static struct tty_driver *gs_tty_driver;
1024
1025static int
1026gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding)
1027{
1028	struct gs_port	*port;
1029
1030	port = kzalloc(sizeof(struct gs_port), GFP_KERNEL);
1031	if (port == NULL)
1032		return -ENOMEM;
1033
1034	tty_port_init(&port->port);
1035	spin_lock_init(&port->port_lock);
1036	init_waitqueue_head(&port->drain_wait);
1037
1038	tasklet_init(&port->push, gs_rx_push, (unsigned long) port);
1039
1040	INIT_LIST_HEAD(&port->read_pool);
1041	INIT_LIST_HEAD(&port->read_queue);
1042	INIT_LIST_HEAD(&port->write_pool);
1043
1044	port->port_num = port_num;
1045	port->port_line_coding = *coding;
1046
1047	ports[port_num].port = port;
1048
1049	return 0;
1050}
1051
1052/**
1053 * gserial_setup - initialize TTY driver for one or more ports
1054 * @g: gadget to associate with these ports
1055 * @count: how many ports to support
1056 * Context: may sleep
1057 *
1058 * The TTY stack needs to know in advance how many devices it should
1059 * plan to manage.  Use this call to set up the ports you will be
1060 * exporting through USB.  Later, connect them to functions based
1061 * on what configuration is activated by the USB host; and disconnect
1062 * them as appropriate.
1063 *
1064 * An example would be a two-configuration device in which both
1065 * configurations expose port 0, but through different functions.
1066 * One configuration could even expose port 1 while the other
1067 * one doesn't.
1068 *
1069 * Returns negative errno or zero.
1070 */
1071int gserial_setup(struct usb_gadget *g, unsigned count)
1072{
1073	unsigned			i;
1074	struct usb_cdc_line_coding	coding;
1075	int				status;
1076
1077	if (count == 0 || count > N_PORTS)
1078		return -EINVAL;
1079
1080	gs_tty_driver = alloc_tty_driver(count);
1081	if (!gs_tty_driver)
1082		return -ENOMEM;
1083
1084	gs_tty_driver->driver_name = "g_serial";
1085	gs_tty_driver->name = PREFIX;
1086	/* uses dynamically assigned dev_t values */
1087
1088	gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1089	gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1090	gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1091	gs_tty_driver->init_termios = tty_std_termios;
1092
1093	/* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on
1094	 * MS-Windows.  Otherwise, most of these flags shouldn't affect
1095	 * anything unless we were to actually hook up to a serial line.
1096	 */
1097	gs_tty_driver->init_termios.c_cflag =
1098			B9600 | CS8 | CREAD | HUPCL | CLOCAL;
1099	gs_tty_driver->init_termios.c_ispeed = 9600;
1100	gs_tty_driver->init_termios.c_ospeed = 9600;
1101
1102	coding.dwDTERate = cpu_to_le32(9600);
1103	coding.bCharFormat = 8;
1104	coding.bParityType = USB_CDC_NO_PARITY;
1105	coding.bDataBits = USB_CDC_1_STOP_BITS;
1106
1107	tty_set_operations(gs_tty_driver, &gs_tty_ops);
1108
1109	/* make devices be openable */
1110	for (i = 0; i < count; i++) {
1111		mutex_init(&ports[i].lock);
1112		status = gs_port_alloc(i, &coding);
1113		if (status) {
1114			count = i;
1115			goto fail;
1116		}
1117	}
1118	n_ports = count;
1119
1120	/* export the driver ... */
1121	status = tty_register_driver(gs_tty_driver);
1122	if (status) {
1123		pr_err("%s: cannot register, err %d\n",
1124				__func__, status);
1125		goto fail;
1126	}
1127
1128	/* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */
1129	for (i = 0; i < count; i++) {
1130		struct device	*tty_dev;
1131
1132		tty_dev = tty_register_device(gs_tty_driver, i, &g->dev);
1133		if (IS_ERR(tty_dev))
1134			pr_warning("%s: no classdev for port %d, err %ld\n",
1135				__func__, i, PTR_ERR(tty_dev));
1136	}
1137
1138	pr_debug("%s: registered %d ttyGS* device%s\n", __func__,
1139			count, (count == 1) ? "" : "s");
1140
1141	return status;
1142fail:
1143	while (count--)
1144		kfree(ports[count].port);
1145	put_tty_driver(gs_tty_driver);
1146	gs_tty_driver = NULL;
1147	return status;
1148}
1149
1150static int gs_closed(struct gs_port *port)
1151{
1152	int cond;
1153
1154	spin_lock_irq(&port->port_lock);
1155	cond = (port->port.count == 0) && !port->openclose;
1156	spin_unlock_irq(&port->port_lock);
1157	return cond;
1158}
1159
1160/**
1161 * gserial_cleanup - remove TTY-over-USB driver and devices
1162 * Context: may sleep
1163 *
1164 * This is called to free all resources allocated by @gserial_setup().
1165 * Accordingly, it may need to wait until some open /dev/ files have
1166 * closed.
1167 *
1168 * The caller must have issued @gserial_disconnect() for any ports
1169 * that had previously been connected, so that there is never any
1170 * I/O pending when it's called.
1171 */
1172void gserial_cleanup(void)
1173{
1174	unsigned	i;
1175	struct gs_port	*port;
1176
1177	if (!gs_tty_driver)
1178		return;
1179
1180	/* start sysfs and /dev/ttyGS* node removal */
1181	for (i = 0; i < n_ports; i++)
1182		tty_unregister_device(gs_tty_driver, i);
1183
1184	for (i = 0; i < n_ports; i++) {
1185		/* prevent new opens */
1186		mutex_lock(&ports[i].lock);
1187		port = ports[i].port;
1188		ports[i].port = NULL;
1189		mutex_unlock(&ports[i].lock);
1190
1191		tasklet_kill(&port->push);
1192
1193		/* wait for old opens to finish */
1194		wait_event(port->port.close_wait, gs_closed(port));
1195
1196		WARN_ON(port->port_usb != NULL);
1197
1198		kfree(port);
1199	}
1200	n_ports = 0;
1201
1202	tty_unregister_driver(gs_tty_driver);
1203	put_tty_driver(gs_tty_driver);
1204	gs_tty_driver = NULL;
1205
1206	pr_debug("%s: cleaned up ttyGS* support\n", __func__);
1207}
1208
1209/**
1210 * gserial_connect - notify TTY I/O glue that USB link is active
1211 * @gser: the function, set up with endpoints and descriptors
1212 * @port_num: which port is active
1213 * Context: any (usually from irq)
1214 *
1215 * This is called activate endpoints and let the TTY layer know that
1216 * the connection is active ... not unlike "carrier detect".  It won't
1217 * necessarily start I/O queues; unless the TTY is held open by any
1218 * task, there would be no point.  However, the endpoints will be
1219 * activated so the USB host can perform I/O, subject to basic USB
1220 * hardware flow control.
1221 *
1222 * Caller needs to have set up the endpoints and USB function in @dev
1223 * before calling this, as well as the appropriate (speed-specific)
1224 * endpoint descriptors, and also have set up the TTY driver by calling
1225 * @gserial_setup().
1226 *
1227 * Returns negative errno or zero.
1228 * On success, ep->driver_data will be overwritten.
1229 */
1230int gserial_connect(struct gserial *gser, u8 port_num)
1231{
1232	struct gs_port	*port;
1233	unsigned long	flags;
1234	int		status;
1235
1236	if (!gs_tty_driver || port_num >= n_ports)
1237		return -ENXIO;
1238
1239	/* we "know" gserial_cleanup() hasn't been called */
1240	port = ports[port_num].port;
1241
1242	/* activate the endpoints */
1243	status = usb_ep_enable(gser->in);
1244	if (status < 0)
1245		return status;
1246	gser->in->driver_data = port;
1247
1248	status = usb_ep_enable(gser->out);
1249	if (status < 0)
1250		goto fail_out;
1251	gser->out->driver_data = port;
1252
1253	/* then tell the tty glue that I/O can work */
1254	spin_lock_irqsave(&port->port_lock, flags);
1255	gser->ioport = port;
1256	port->port_usb = gser;
1257
1258	/* REVISIT unclear how best to handle this state...
1259	 * we don't really couple it with the Linux TTY.
1260	 */
1261	gser->port_line_coding = port->port_line_coding;
1262
1263	/* REVISIT if waiting on "carrier detect", signal. */
1264
1265	/* if it's already open, start I/O ... and notify the serial
1266	 * protocol about open/close status (connect/disconnect).
1267	 */
1268	if (port->port.count) {
1269		pr_debug("gserial_connect: start ttyGS%d\n", port->port_num);
1270		gs_start_io(port);
1271		if (gser->connect)
1272			gser->connect(gser);
1273	} else {
1274		if (gser->disconnect)
1275			gser->disconnect(gser);
1276	}
1277
1278	spin_unlock_irqrestore(&port->port_lock, flags);
1279
1280	return status;
1281
1282fail_out:
1283	usb_ep_disable(gser->in);
1284	gser->in->driver_data = NULL;
1285	return status;
1286}
1287
1288/**
1289 * gserial_disconnect - notify TTY I/O glue that USB link is inactive
1290 * @gser: the function, on which gserial_connect() was called
1291 * Context: any (usually from irq)
1292 *
1293 * This is called to deactivate endpoints and let the TTY layer know
1294 * that the connection went inactive ... not unlike "hangup".
1295 *
1296 * On return, the state is as if gserial_connect() had never been called;
1297 * there is no active USB I/O on these endpoints.
1298 */
1299void gserial_disconnect(struct gserial *gser)
1300{
1301	struct gs_port	*port = gser->ioport;
1302	unsigned long	flags;
1303
1304	if (!port)
1305		return;
1306
1307	/* tell the TTY glue not to do I/O here any more */
1308	spin_lock_irqsave(&port->port_lock, flags);
1309
1310	/* REVISIT as above: how best to track this? */
1311	port->port_line_coding = gser->port_line_coding;
1312
1313	port->port_usb = NULL;
1314	gser->ioport = NULL;
1315	if (port->port.count > 0 || port->openclose) {
1316		wake_up_interruptible(&port->drain_wait);
1317		if (port->port.tty)
1318			tty_hangup(port->port.tty);
1319	}
1320	spin_unlock_irqrestore(&port->port_lock, flags);
1321
1322	/* disable endpoints, aborting down any active I/O */
1323	usb_ep_disable(gser->out);
1324	gser->out->driver_data = NULL;
1325
1326	usb_ep_disable(gser->in);
1327	gser->in->driver_data = NULL;
1328
1329	/* finally, free any unused/unusable I/O buffers */
1330	spin_lock_irqsave(&port->port_lock, flags);
1331	if (port->port.count == 0 && !port->openclose)
1332		gs_buf_free(&port->port_write_buf);
1333	gs_free_requests(gser->out, &port->read_pool, NULL);
1334	gs_free_requests(gser->out, &port->read_queue, NULL);
1335	gs_free_requests(gser->in, &port->write_pool, NULL);
1336
1337	port->read_allocated = port->read_started =
1338		port->write_allocated = port->write_started = 0;
1339
1340	spin_unlock_irqrestore(&port->port_lock, flags);
1341}