Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, write to the
  17	Free Software Foundation, Inc.,
  18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22	Module: rt2400pci
  23	Abstract: rt2400pci device specific routines.
  24	Supported chipsets: RT2460.
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/etherdevice.h>
  29#include <linux/init.h>
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/pci.h>
  33#include <linux/eeprom_93cx6.h>
  34#include <linux/slab.h>
  35
  36#include "rt2x00.h"
  37#include "rt2x00pci.h"
  38#include "rt2400pci.h"
  39
  40/*
  41 * Register access.
  42 * All access to the CSR registers will go through the methods
  43 * rt2x00pci_register_read and rt2x00pci_register_write.
  44 * BBP and RF register require indirect register access,
  45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  46 * These indirect registers work with busy bits,
  47 * and we will try maximal REGISTER_BUSY_COUNT times to access
  48 * the register while taking a REGISTER_BUSY_DELAY us delay
  49 * between each attempt. When the busy bit is still set at that time,
  50 * the access attempt is considered to have failed,
  51 * and we will print an error.
  52 */
  53#define WAIT_FOR_BBP(__dev, __reg) \
  54	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  55#define WAIT_FOR_RF(__dev, __reg) \
  56	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  57
  58static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  59				const unsigned int word, const u8 value)
  60{
  61	u32 reg;
  62
  63	mutex_lock(&rt2x00dev->csr_mutex);
  64
  65	/*
  66	 * Wait until the BBP becomes available, afterwards we
  67	 * can safely write the new data into the register.
  68	 */
  69	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  70		reg = 0;
  71		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  72		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  73		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  74		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  75
  76		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  77	}
  78
  79	mutex_unlock(&rt2x00dev->csr_mutex);
  80}
  81
  82static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  83			       const unsigned int word, u8 *value)
  84{
  85	u32 reg;
  86
  87	mutex_lock(&rt2x00dev->csr_mutex);
  88
  89	/*
  90	 * Wait until the BBP becomes available, afterwards we
  91	 * can safely write the read request into the register.
  92	 * After the data has been written, we wait until hardware
  93	 * returns the correct value, if at any time the register
  94	 * doesn't become available in time, reg will be 0xffffffff
  95	 * which means we return 0xff to the caller.
  96	 */
  97	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  98		reg = 0;
  99		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
 100		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
 101		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 102
 103		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
 104
 105		WAIT_FOR_BBP(rt2x00dev, &reg);
 106	}
 107
 108	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 109
 110	mutex_unlock(&rt2x00dev->csr_mutex);
 111}
 112
 113static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
 114			       const unsigned int word, const u32 value)
 115{
 116	u32 reg;
 117
 118	mutex_lock(&rt2x00dev->csr_mutex);
 119
 120	/*
 121	 * Wait until the RF becomes available, afterwards we
 122	 * can safely write the new data into the register.
 123	 */
 124	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 125		reg = 0;
 126		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 127		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 128		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 129		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 130
 131		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
 132		rt2x00_rf_write(rt2x00dev, word, value);
 133	}
 134
 135	mutex_unlock(&rt2x00dev->csr_mutex);
 136}
 137
 138static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 139{
 140	struct rt2x00_dev *rt2x00dev = eeprom->data;
 141	u32 reg;
 142
 143	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
 144
 145	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 146	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 147	eeprom->reg_data_clock =
 148	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 149	eeprom->reg_chip_select =
 150	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 151}
 152
 153static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 154{
 155	struct rt2x00_dev *rt2x00dev = eeprom->data;
 156	u32 reg = 0;
 157
 158	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 159	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 160	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 161			   !!eeprom->reg_data_clock);
 162	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 163			   !!eeprom->reg_chip_select);
 164
 165	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
 166}
 167
 168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 169static const struct rt2x00debug rt2400pci_rt2x00debug = {
 170	.owner	= THIS_MODULE,
 171	.csr	= {
 172		.read		= rt2x00pci_register_read,
 173		.write		= rt2x00pci_register_write,
 174		.flags		= RT2X00DEBUGFS_OFFSET,
 175		.word_base	= CSR_REG_BASE,
 176		.word_size	= sizeof(u32),
 177		.word_count	= CSR_REG_SIZE / sizeof(u32),
 178	},
 179	.eeprom	= {
 180		.read		= rt2x00_eeprom_read,
 181		.write		= rt2x00_eeprom_write,
 182		.word_base	= EEPROM_BASE,
 183		.word_size	= sizeof(u16),
 184		.word_count	= EEPROM_SIZE / sizeof(u16),
 185	},
 186	.bbp	= {
 187		.read		= rt2400pci_bbp_read,
 188		.write		= rt2400pci_bbp_write,
 189		.word_base	= BBP_BASE,
 190		.word_size	= sizeof(u8),
 191		.word_count	= BBP_SIZE / sizeof(u8),
 192	},
 193	.rf	= {
 194		.read		= rt2x00_rf_read,
 195		.write		= rt2400pci_rf_write,
 196		.word_base	= RF_BASE,
 197		.word_size	= sizeof(u32),
 198		.word_count	= RF_SIZE / sizeof(u32),
 199	},
 200};
 201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 202
 203static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 204{
 205	u32 reg;
 206
 207	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
 208	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
 209}
 210
 211#ifdef CONFIG_RT2X00_LIB_LEDS
 212static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
 213				     enum led_brightness brightness)
 214{
 215	struct rt2x00_led *led =
 216	    container_of(led_cdev, struct rt2x00_led, led_dev);
 217	unsigned int enabled = brightness != LED_OFF;
 218	u32 reg;
 219
 220	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 221
 222	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 223		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 224	else if (led->type == LED_TYPE_ACTIVITY)
 225		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 226
 227	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 228}
 229
 230static int rt2400pci_blink_set(struct led_classdev *led_cdev,
 231			       unsigned long *delay_on,
 232			       unsigned long *delay_off)
 233{
 234	struct rt2x00_led *led =
 235	    container_of(led_cdev, struct rt2x00_led, led_dev);
 236	u32 reg;
 237
 238	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 239	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 240	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 241	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 242
 243	return 0;
 244}
 245
 246static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
 247			       struct rt2x00_led *led,
 248			       enum led_type type)
 249{
 250	led->rt2x00dev = rt2x00dev;
 251	led->type = type;
 252	led->led_dev.brightness_set = rt2400pci_brightness_set;
 253	led->led_dev.blink_set = rt2400pci_blink_set;
 254	led->flags = LED_INITIALIZED;
 255}
 256#endif /* CONFIG_RT2X00_LIB_LEDS */
 257
 258/*
 259 * Configuration handlers.
 260 */
 261static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
 262				    const unsigned int filter_flags)
 263{
 264	u32 reg;
 265
 266	/*
 267	 * Start configuration steps.
 268	 * Note that the version error will always be dropped
 269	 * since there is no filter for it at this time.
 270	 */
 271	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 272	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 273			   !(filter_flags & FIF_FCSFAIL));
 274	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 275			   !(filter_flags & FIF_PLCPFAIL));
 276	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 277			   !(filter_flags & FIF_CONTROL));
 278	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 279			   !(filter_flags & FIF_PROMISC_IN_BSS));
 280	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 281			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 282			   !rt2x00dev->intf_ap_count);
 283	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 284	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 285}
 286
 287static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
 288				  struct rt2x00_intf *intf,
 289				  struct rt2x00intf_conf *conf,
 290				  const unsigned int flags)
 291{
 292	unsigned int bcn_preload;
 293	u32 reg;
 294
 295	if (flags & CONFIG_UPDATE_TYPE) {
 296		/*
 297		 * Enable beacon config
 298		 */
 299		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 300		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
 301		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 302		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
 303
 304		/*
 305		 * Enable synchronisation.
 306		 */
 307		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 308		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 309		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 310	}
 311
 312	if (flags & CONFIG_UPDATE_MAC)
 313		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
 314					      conf->mac, sizeof(conf->mac));
 315
 316	if (flags & CONFIG_UPDATE_BSSID)
 317		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
 318					      conf->bssid, sizeof(conf->bssid));
 319}
 320
 321static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
 322				 struct rt2x00lib_erp *erp,
 323				 u32 changed)
 324{
 325	int preamble_mask;
 326	u32 reg;
 327
 328	/*
 329	 * When short preamble is enabled, we should set bit 0x08
 330	 */
 331	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 332		preamble_mask = erp->short_preamble << 3;
 333
 334		rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
 335		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
 336		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
 337		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 338		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 339		rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
 340
 341		rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
 342		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 343		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 344		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 345				   GET_DURATION(ACK_SIZE, 10));
 346		rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
 347
 348		rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
 349		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 350		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 351		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 352				   GET_DURATION(ACK_SIZE, 20));
 353		rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
 354
 355		rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
 356		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 357		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 358		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 359				   GET_DURATION(ACK_SIZE, 55));
 360		rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
 361
 362		rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
 363		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 364		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 365		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 366				   GET_DURATION(ACK_SIZE, 110));
 367		rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
 368	}
 369
 370	if (changed & BSS_CHANGED_BASIC_RATES)
 371		rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 372
 373	if (changed & BSS_CHANGED_ERP_SLOT) {
 374		rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 375		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 376		rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 377
 378		rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
 379		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 380		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 381		rt2x00pci_register_write(rt2x00dev, CSR18, reg);
 382
 383		rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
 384		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 385		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 386		rt2x00pci_register_write(rt2x00dev, CSR19, reg);
 387	}
 388
 389	if (changed & BSS_CHANGED_BEACON_INT) {
 390		rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
 391		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 392				   erp->beacon_int * 16);
 393		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 394				   erp->beacon_int * 16);
 395		rt2x00pci_register_write(rt2x00dev, CSR12, reg);
 396	}
 397}
 398
 399static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
 400				 struct antenna_setup *ant)
 401{
 402	u8 r1;
 403	u8 r4;
 404
 405	/*
 406	 * We should never come here because rt2x00lib is supposed
 407	 * to catch this and send us the correct antenna explicitely.
 408	 */
 409	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 410	       ant->tx == ANTENNA_SW_DIVERSITY);
 411
 412	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
 413	rt2400pci_bbp_read(rt2x00dev, 1, &r1);
 414
 415	/*
 416	 * Configure the TX antenna.
 417	 */
 418	switch (ant->tx) {
 419	case ANTENNA_HW_DIVERSITY:
 420		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
 421		break;
 422	case ANTENNA_A:
 423		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
 424		break;
 425	case ANTENNA_B:
 426	default:
 427		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
 428		break;
 429	}
 430
 431	/*
 432	 * Configure the RX antenna.
 433	 */
 434	switch (ant->rx) {
 435	case ANTENNA_HW_DIVERSITY:
 436		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
 437		break;
 438	case ANTENNA_A:
 439		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
 440		break;
 441	case ANTENNA_B:
 442	default:
 443		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
 444		break;
 445	}
 446
 447	rt2400pci_bbp_write(rt2x00dev, 4, r4);
 448	rt2400pci_bbp_write(rt2x00dev, 1, r1);
 449}
 450
 451static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
 452				     struct rf_channel *rf)
 453{
 454	/*
 455	 * Switch on tuning bits.
 456	 */
 457	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 458	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 459
 460	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 461	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
 462	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 463
 464	/*
 465	 * RF2420 chipset don't need any additional actions.
 466	 */
 467	if (rt2x00_rf(rt2x00dev, RF2420))
 468		return;
 469
 470	/*
 471	 * For the RT2421 chipsets we need to write an invalid
 472	 * reference clock rate to activate auto_tune.
 473	 * After that we set the value back to the correct channel.
 474	 */
 475	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 476	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
 477	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 478
 479	msleep(1);
 480
 481	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 482	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
 483	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 484
 485	msleep(1);
 486
 487	/*
 488	 * Switch off tuning bits.
 489	 */
 490	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 491	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 492
 493	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 494	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 495
 496	/*
 497	 * Clear false CRC during channel switch.
 498	 */
 499	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
 500}
 501
 502static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
 503{
 504	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
 505}
 506
 507static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 508					 struct rt2x00lib_conf *libconf)
 509{
 510	u32 reg;
 511
 512	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 513	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 514			   libconf->conf->long_frame_max_tx_count);
 515	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 516			   libconf->conf->short_frame_max_tx_count);
 517	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 518}
 519
 520static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
 521				struct rt2x00lib_conf *libconf)
 522{
 523	enum dev_state state =
 524	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 525		STATE_SLEEP : STATE_AWAKE;
 526	u32 reg;
 527
 528	if (state == STATE_SLEEP) {
 529		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 530		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 531				   (rt2x00dev->beacon_int - 20) * 16);
 532		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 533				   libconf->conf->listen_interval - 1);
 534
 535		/* We must first disable autowake before it can be enabled */
 536		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 537		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 538
 539		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 540		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 541	} else {
 542		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 543		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 544		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 545	}
 546
 547	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 548}
 549
 550static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
 551			     struct rt2x00lib_conf *libconf,
 552			     const unsigned int flags)
 553{
 554	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 555		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
 556	if (flags & IEEE80211_CONF_CHANGE_POWER)
 557		rt2400pci_config_txpower(rt2x00dev,
 558					 libconf->conf->power_level);
 559	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 560		rt2400pci_config_retry_limit(rt2x00dev, libconf);
 561	if (flags & IEEE80211_CONF_CHANGE_PS)
 562		rt2400pci_config_ps(rt2x00dev, libconf);
 563}
 564
 565static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
 566				const int cw_min, const int cw_max)
 567{
 568	u32 reg;
 569
 570	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 571	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
 572	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
 573	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 574}
 575
 576/*
 577 * Link tuning
 578 */
 579static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
 580				 struct link_qual *qual)
 581{
 582	u32 reg;
 583	u8 bbp;
 584
 585	/*
 586	 * Update FCS error count from register.
 587	 */
 588	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
 589	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 590
 591	/*
 592	 * Update False CCA count from register.
 593	 */
 594	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
 595	qual->false_cca = bbp;
 596}
 597
 598static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 599				     struct link_qual *qual, u8 vgc_level)
 600{
 601	if (qual->vgc_level_reg != vgc_level) {
 602		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
 603		qual->vgc_level = vgc_level;
 604		qual->vgc_level_reg = vgc_level;
 605	}
 606}
 607
 608static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 609				  struct link_qual *qual)
 610{
 611	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
 612}
 613
 614static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 615				 struct link_qual *qual, const u32 count)
 616{
 617	/*
 618	 * The link tuner should not run longer then 60 seconds,
 619	 * and should run once every 2 seconds.
 620	 */
 621	if (count > 60 || !(count & 1))
 622		return;
 623
 624	/*
 625	 * Base r13 link tuning on the false cca count.
 626	 */
 627	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
 628		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
 629	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
 630		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
 631}
 632
 633/*
 634 * Queue handlers.
 635 */
 636static void rt2400pci_start_queue(struct data_queue *queue)
 637{
 638	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 639	u32 reg;
 640
 641	switch (queue->qid) {
 642	case QID_RX:
 643		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 644		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 645		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 646		break;
 647	case QID_BEACON:
 648		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 649		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 650		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 651		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 652		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 653		break;
 654	default:
 655		break;
 656	}
 657}
 658
 659static void rt2400pci_kick_queue(struct data_queue *queue)
 660{
 661	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 662	u32 reg;
 663
 664	switch (queue->qid) {
 665	case QID_AC_VO:
 666		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 667		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 668		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 669		break;
 670	case QID_AC_VI:
 671		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 672		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 673		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 674		break;
 675	case QID_ATIM:
 676		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 677		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 678		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 679		break;
 680	default:
 681		break;
 682	}
 683}
 684
 685static void rt2400pci_stop_queue(struct data_queue *queue)
 686{
 687	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 688	u32 reg;
 689
 690	switch (queue->qid) {
 691	case QID_AC_VO:
 692	case QID_AC_VI:
 693	case QID_ATIM:
 694		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 695		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 696		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 697		break;
 698	case QID_RX:
 699		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 700		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 701		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 702		break;
 703	case QID_BEACON:
 704		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 705		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 706		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 707		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 708		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 709
 710		/*
 711		 * Wait for possibly running tbtt tasklets.
 712		 */
 713		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 714		break;
 715	default:
 716		break;
 717	}
 718}
 719
 720/*
 721 * Initialization functions.
 722 */
 723static bool rt2400pci_get_entry_state(struct queue_entry *entry)
 724{
 725	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 726	u32 word;
 727
 728	if (entry->queue->qid == QID_RX) {
 729		rt2x00_desc_read(entry_priv->desc, 0, &word);
 730
 731		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 732	} else {
 733		rt2x00_desc_read(entry_priv->desc, 0, &word);
 734
 735		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 736		        rt2x00_get_field32(word, TXD_W0_VALID));
 737	}
 738}
 739
 740static void rt2400pci_clear_entry(struct queue_entry *entry)
 741{
 742	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 743	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 744	u32 word;
 745
 746	if (entry->queue->qid == QID_RX) {
 747		rt2x00_desc_read(entry_priv->desc, 2, &word);
 748		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
 749		rt2x00_desc_write(entry_priv->desc, 2, word);
 750
 751		rt2x00_desc_read(entry_priv->desc, 1, &word);
 752		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 753		rt2x00_desc_write(entry_priv->desc, 1, word);
 754
 755		rt2x00_desc_read(entry_priv->desc, 0, &word);
 756		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 757		rt2x00_desc_write(entry_priv->desc, 0, word);
 758	} else {
 759		rt2x00_desc_read(entry_priv->desc, 0, &word);
 760		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 761		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 762		rt2x00_desc_write(entry_priv->desc, 0, word);
 763	}
 764}
 765
 766static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
 767{
 768	struct queue_entry_priv_pci *entry_priv;
 769	u32 reg;
 770
 771	/*
 772	 * Initialize registers.
 773	 */
 774	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
 775	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 776	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 777	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 778	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 779	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
 780
 781	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 782	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
 783	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 784			   entry_priv->desc_dma);
 785	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
 786
 787	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 788	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
 789	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 790			   entry_priv->desc_dma);
 791	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
 792
 793	entry_priv = rt2x00dev->atim->entries[0].priv_data;
 794	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
 795	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 796			   entry_priv->desc_dma);
 797	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
 798
 799	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 800	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
 801	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 802			   entry_priv->desc_dma);
 803	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
 804
 805	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
 806	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 807	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 808	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
 809
 810	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 811	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
 812	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 813			   entry_priv->desc_dma);
 814	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
 815
 816	return 0;
 817}
 818
 819static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
 820{
 821	u32 reg;
 822
 823	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
 824	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
 825	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
 826	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
 827
 828	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
 829	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 830	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 831	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 832	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
 833
 834	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
 835	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 836			   (rt2x00dev->rx->data_size / 128));
 837	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
 838
 839	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 840	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 841	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 842	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 843	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 844	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 845	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 846	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 847	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 848	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 849
 850	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
 851
 852	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
 853	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
 854	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
 855	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
 856	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
 857	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
 858
 859	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
 860	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
 861	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 862	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
 863	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 864	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
 865	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 866	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
 867
 868	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 869
 870	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 871		return -EBUSY;
 872
 873	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
 874	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
 875
 876	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
 877	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
 878	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
 879
 880	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
 881	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
 882	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
 883	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
 884	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
 885	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
 886
 887	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
 888	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
 889	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
 890	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
 891	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
 892
 893	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
 894	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
 895	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
 896	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
 897
 898	/*
 899	 * We must clear the FCS and FIFO error count.
 900	 * These registers are cleared on read,
 901	 * so we may pass a useless variable to store the value.
 902	 */
 903	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
 904	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
 905
 906	return 0;
 907}
 908
 909static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 910{
 911	unsigned int i;
 912	u8 value;
 913
 914	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 915		rt2400pci_bbp_read(rt2x00dev, 0, &value);
 916		if ((value != 0xff) && (value != 0x00))
 917			return 0;
 918		udelay(REGISTER_BUSY_DELAY);
 919	}
 920
 921	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
 922	return -EACCES;
 923}
 924
 925static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
 926{
 927	unsigned int i;
 928	u16 eeprom;
 929	u8 reg_id;
 930	u8 value;
 931
 932	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
 933		return -EACCES;
 934
 935	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
 936	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
 937	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
 938	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
 939	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
 940	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
 941	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
 942	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
 943	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
 944	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
 945	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
 946	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
 947	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
 948	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
 949
 950	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 951		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
 952
 953		if (eeprom != 0xffff && eeprom != 0x0000) {
 954			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 955			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 956			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
 957		}
 958	}
 959
 960	return 0;
 961}
 962
 963/*
 964 * Device state switch handlers.
 965 */
 966static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
 967				 enum dev_state state)
 968{
 969	int mask = (state == STATE_RADIO_IRQ_OFF);
 970	u32 reg;
 971	unsigned long flags;
 972
 973	/*
 974	 * When interrupts are being enabled, the interrupt registers
 975	 * should clear the register to assure a clean state.
 976	 */
 977	if (state == STATE_RADIO_IRQ_ON) {
 978		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
 979		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
 980	}
 981
 982	/*
 983	 * Only toggle the interrupts bits we are going to use.
 984	 * Non-checked interrupt bits are disabled by default.
 985	 */
 986	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
 987
 988	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
 989	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
 990	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
 991	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
 992	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
 993	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
 994	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
 995
 996	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
 997
 998	if (state == STATE_RADIO_IRQ_OFF) {
 999		/*
1000		 * Ensure that all tasklets are finished before
1001		 * disabling the interrupts.
1002		 */
1003		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1004		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1005		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1006	}
1007}
1008
1009static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1010{
1011	/*
1012	 * Initialize all registers.
1013	 */
1014	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1015		     rt2400pci_init_registers(rt2x00dev) ||
1016		     rt2400pci_init_bbp(rt2x00dev)))
1017		return -EIO;
1018
1019	return 0;
1020}
1021
1022static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1023{
1024	/*
1025	 * Disable power
1026	 */
1027	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1028}
1029
1030static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1031			       enum dev_state state)
1032{
1033	u32 reg, reg2;
1034	unsigned int i;
1035	char put_to_sleep;
1036	char bbp_state;
1037	char rf_state;
1038
1039	put_to_sleep = (state != STATE_AWAKE);
1040
1041	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1042	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1043	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1044	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1045	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1046	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1047
1048	/*
1049	 * Device is not guaranteed to be in the requested state yet.
1050	 * We must wait until the register indicates that the
1051	 * device has entered the correct state.
1052	 */
1053	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1054		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1055		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1056		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1057		if (bbp_state == state && rf_state == state)
1058			return 0;
1059		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1060		msleep(10);
1061	}
1062
1063	return -EBUSY;
1064}
1065
1066static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1067				      enum dev_state state)
1068{
1069	int retval = 0;
1070
1071	switch (state) {
1072	case STATE_RADIO_ON:
1073		retval = rt2400pci_enable_radio(rt2x00dev);
1074		break;
1075	case STATE_RADIO_OFF:
1076		rt2400pci_disable_radio(rt2x00dev);
1077		break;
1078	case STATE_RADIO_IRQ_ON:
1079	case STATE_RADIO_IRQ_OFF:
1080		rt2400pci_toggle_irq(rt2x00dev, state);
1081		break;
1082	case STATE_DEEP_SLEEP:
1083	case STATE_SLEEP:
1084	case STATE_STANDBY:
1085	case STATE_AWAKE:
1086		retval = rt2400pci_set_state(rt2x00dev, state);
1087		break;
1088	default:
1089		retval = -ENOTSUPP;
1090		break;
1091	}
1092
1093	if (unlikely(retval))
1094		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1095		      state, retval);
1096
1097	return retval;
1098}
1099
1100/*
1101 * TX descriptor initialization
1102 */
1103static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1104				    struct txentry_desc *txdesc)
1105{
1106	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1107	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1108	__le32 *txd = entry_priv->desc;
1109	u32 word;
1110
1111	/*
1112	 * Start writing the descriptor words.
1113	 */
1114	rt2x00_desc_read(txd, 1, &word);
1115	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1116	rt2x00_desc_write(txd, 1, word);
1117
1118	rt2x00_desc_read(txd, 2, &word);
1119	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1120	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1121	rt2x00_desc_write(txd, 2, word);
1122
1123	rt2x00_desc_read(txd, 3, &word);
1124	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1125	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1126	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1127	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1128	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1129	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1130	rt2x00_desc_write(txd, 3, word);
1131
1132	rt2x00_desc_read(txd, 4, &word);
1133	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1134			   txdesc->u.plcp.length_low);
1135	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1136	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1137	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1138			   txdesc->u.plcp.length_high);
1139	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1140	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1141	rt2x00_desc_write(txd, 4, word);
1142
1143	/*
1144	 * Writing TXD word 0 must the last to prevent a race condition with
1145	 * the device, whereby the device may take hold of the TXD before we
1146	 * finished updating it.
1147	 */
1148	rt2x00_desc_read(txd, 0, &word);
1149	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1150	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1151	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1152			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1153	rt2x00_set_field32(&word, TXD_W0_ACK,
1154			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1155	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1156			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1157	rt2x00_set_field32(&word, TXD_W0_RTS,
1158			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1159	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1160	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1161			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1162	rt2x00_desc_write(txd, 0, word);
1163
1164	/*
1165	 * Register descriptor details in skb frame descriptor.
1166	 */
1167	skbdesc->desc = txd;
1168	skbdesc->desc_len = TXD_DESC_SIZE;
1169}
1170
1171/*
1172 * TX data initialization
1173 */
1174static void rt2400pci_write_beacon(struct queue_entry *entry,
1175				   struct txentry_desc *txdesc)
1176{
1177	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1178	u32 reg;
1179
1180	/*
1181	 * Disable beaconing while we are reloading the beacon data,
1182	 * otherwise we might be sending out invalid data.
1183	 */
1184	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1185	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1186	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1187
1188	rt2x00queue_map_txskb(entry);
1189
1190	/*
1191	 * Write the TX descriptor for the beacon.
1192	 */
1193	rt2400pci_write_tx_desc(entry, txdesc);
1194
1195	/*
1196	 * Dump beacon to userspace through debugfs.
1197	 */
1198	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1199
1200	/*
1201	 * Enable beaconing again.
1202	 */
1203	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1204	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1205}
1206
1207/*
1208 * RX control handlers
1209 */
1210static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1211				  struct rxdone_entry_desc *rxdesc)
1212{
1213	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1214	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1215	u32 word0;
1216	u32 word2;
1217	u32 word3;
1218	u32 word4;
1219	u64 tsf;
1220	u32 rx_low;
1221	u32 rx_high;
1222
1223	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1224	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1225	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1226	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1227
1228	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1229		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1230	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1231		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1232
1233	/*
1234	 * We only get the lower 32bits from the timestamp,
1235	 * to get the full 64bits we must complement it with
1236	 * the timestamp from get_tsf().
1237	 * Note that when a wraparound of the lower 32bits
1238	 * has occurred between the frame arrival and the get_tsf()
1239	 * call, we must decrease the higher 32bits with 1 to get
1240	 * to correct value.
1241	 */
1242	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1243	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1244	rx_high = upper_32_bits(tsf);
1245
1246	if ((u32)tsf <= rx_low)
1247		rx_high--;
1248
1249	/*
1250	 * Obtain the status about this packet.
1251	 * The signal is the PLCP value, and needs to be stripped
1252	 * of the preamble bit (0x08).
1253	 */
1254	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1255	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1256	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1257	    entry->queue->rt2x00dev->rssi_offset;
1258	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1259
1260	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1261	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1262		rxdesc->dev_flags |= RXDONE_MY_BSS;
1263}
1264
1265/*
1266 * Interrupt functions.
1267 */
1268static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1269			     const enum data_queue_qid queue_idx)
1270{
1271	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1272	struct queue_entry_priv_pci *entry_priv;
1273	struct queue_entry *entry;
1274	struct txdone_entry_desc txdesc;
1275	u32 word;
1276
1277	while (!rt2x00queue_empty(queue)) {
1278		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1279		entry_priv = entry->priv_data;
1280		rt2x00_desc_read(entry_priv->desc, 0, &word);
1281
1282		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1283		    !rt2x00_get_field32(word, TXD_W0_VALID))
1284			break;
1285
1286		/*
1287		 * Obtain the status about this packet.
1288		 */
1289		txdesc.flags = 0;
1290		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1291		case 0: /* Success */
1292		case 1: /* Success with retry */
1293			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1294			break;
1295		case 2: /* Failure, excessive retries */
1296			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1297			/* Don't break, this is a failed frame! */
1298		default: /* Failure */
1299			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1300		}
1301		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1302
1303		rt2x00lib_txdone(entry, &txdesc);
1304	}
1305}
1306
1307static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1308					      struct rt2x00_field32 irq_field)
1309{
1310	u32 reg;
1311
1312	/*
1313	 * Enable a single interrupt. The interrupt mask register
1314	 * access needs locking.
1315	 */
1316	spin_lock_irq(&rt2x00dev->irqmask_lock);
1317
1318	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1319	rt2x00_set_field32(&reg, irq_field, 0);
1320	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1321
1322	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1323}
1324
1325static void rt2400pci_txstatus_tasklet(unsigned long data)
1326{
1327	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1328	u32 reg;
1329
1330	/*
1331	 * Handle all tx queues.
1332	 */
1333	rt2400pci_txdone(rt2x00dev, QID_ATIM);
1334	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1335	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1336
1337	/*
1338	 * Enable all TXDONE interrupts again.
1339	 */
1340	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1341		spin_lock_irq(&rt2x00dev->irqmask_lock);
1342
1343		rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1344		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1345		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1346		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1347		rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1348
1349		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1350	}
1351}
1352
1353static void rt2400pci_tbtt_tasklet(unsigned long data)
1354{
1355	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1356	rt2x00lib_beacondone(rt2x00dev);
1357	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1358		rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1359}
1360
1361static void rt2400pci_rxdone_tasklet(unsigned long data)
1362{
1363	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364	if (rt2x00pci_rxdone(rt2x00dev))
1365		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1366	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1367		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1368}
1369
1370static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1371{
1372	struct rt2x00_dev *rt2x00dev = dev_instance;
1373	u32 reg, mask;
1374
1375	/*
1376	 * Get the interrupt sources & saved to local variable.
1377	 * Write register value back to clear pending interrupts.
1378	 */
1379	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1380	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1381
1382	if (!reg)
1383		return IRQ_NONE;
1384
1385	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1386		return IRQ_HANDLED;
1387
1388	mask = reg;
1389
1390	/*
1391	 * Schedule tasklets for interrupt handling.
1392	 */
1393	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1394		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1395
1396	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1397		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1398
1399	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1400	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1401	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1402		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1403		/*
1404		 * Mask out all txdone interrupts.
1405		 */
1406		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1407		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1408		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1409	}
1410
1411	/*
1412	 * Disable all interrupts for which a tasklet was scheduled right now,
1413	 * the tasklet will reenable the appropriate interrupts.
1414	 */
1415	spin_lock(&rt2x00dev->irqmask_lock);
1416
1417	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1418	reg |= mask;
1419	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1420
1421	spin_unlock(&rt2x00dev->irqmask_lock);
1422
1423
1424
1425	return IRQ_HANDLED;
1426}
1427
1428/*
1429 * Device probe functions.
1430 */
1431static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1432{
1433	struct eeprom_93cx6 eeprom;
1434	u32 reg;
1435	u16 word;
1436	u8 *mac;
1437
1438	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1439
1440	eeprom.data = rt2x00dev;
1441	eeprom.register_read = rt2400pci_eepromregister_read;
1442	eeprom.register_write = rt2400pci_eepromregister_write;
1443	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1444	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1445	eeprom.reg_data_in = 0;
1446	eeprom.reg_data_out = 0;
1447	eeprom.reg_data_clock = 0;
1448	eeprom.reg_chip_select = 0;
1449
1450	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1451			       EEPROM_SIZE / sizeof(u16));
1452
1453	/*
1454	 * Start validation of the data that has been read.
1455	 */
1456	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1457	if (!is_valid_ether_addr(mac)) {
1458		random_ether_addr(mac);
1459		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1460	}
1461
1462	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1463	if (word == 0xffff) {
1464		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1465		return -EINVAL;
1466	}
1467
1468	return 0;
1469}
1470
1471static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1472{
1473	u32 reg;
1474	u16 value;
1475	u16 eeprom;
1476
1477	/*
1478	 * Read EEPROM word for configuration.
1479	 */
1480	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1481
1482	/*
1483	 * Identify RF chipset.
1484	 */
1485	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1486	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1487	rt2x00_set_chip(rt2x00dev, RT2460, value,
1488			rt2x00_get_field32(reg, CSR0_REVISION));
1489
1490	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1491		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1492		return -ENODEV;
1493	}
1494
1495	/*
1496	 * Identify default antenna configuration.
1497	 */
1498	rt2x00dev->default_ant.tx =
1499	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1500	rt2x00dev->default_ant.rx =
1501	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1502
1503	/*
1504	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1505	 * I am not 100% sure about this, but the legacy drivers do not
1506	 * indicate antenna swapping in software is required when
1507	 * diversity is enabled.
1508	 */
1509	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1510		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1511	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1512		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1513
1514	/*
1515	 * Store led mode, for correct led behaviour.
1516	 */
1517#ifdef CONFIG_RT2X00_LIB_LEDS
1518	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1519
1520	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1521	if (value == LED_MODE_TXRX_ACTIVITY ||
1522	    value == LED_MODE_DEFAULT ||
1523	    value == LED_MODE_ASUS)
1524		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1525				   LED_TYPE_ACTIVITY);
1526#endif /* CONFIG_RT2X00_LIB_LEDS */
1527
1528	/*
1529	 * Detect if this device has an hardware controlled radio.
1530	 */
1531	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1532		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1533
1534	/*
1535	 * Check if the BBP tuning should be enabled.
1536	 */
1537	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1538		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1539
1540	return 0;
1541}
1542
1543/*
1544 * RF value list for RF2420 & RF2421
1545 * Supports: 2.4 GHz
1546 */
1547static const struct rf_channel rf_vals_b[] = {
1548	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1549	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1550	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1551	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1552	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1553	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1554	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1555	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1556	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1557	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1558	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1559	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1560	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1561	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1562};
1563
1564static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1565{
1566	struct hw_mode_spec *spec = &rt2x00dev->spec;
1567	struct channel_info *info;
1568	char *tx_power;
1569	unsigned int i;
1570
1571	/*
1572	 * Initialize all hw fields.
1573	 */
1574	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1575			       IEEE80211_HW_SIGNAL_DBM |
1576			       IEEE80211_HW_SUPPORTS_PS |
1577			       IEEE80211_HW_PS_NULLFUNC_STACK;
1578
1579	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1580	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1581				rt2x00_eeprom_addr(rt2x00dev,
1582						   EEPROM_MAC_ADDR_0));
1583
1584	/*
1585	 * Initialize hw_mode information.
1586	 */
1587	spec->supported_bands = SUPPORT_BAND_2GHZ;
1588	spec->supported_rates = SUPPORT_RATE_CCK;
1589
1590	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1591	spec->channels = rf_vals_b;
1592
1593	/*
1594	 * Create channel information array
1595	 */
1596	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1597	if (!info)
1598		return -ENOMEM;
1599
1600	spec->channels_info = info;
1601
1602	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1603	for (i = 0; i < 14; i++) {
1604		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1605		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1606	}
1607
1608	return 0;
1609}
1610
1611static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1612{
1613	int retval;
1614	u32 reg;
1615
1616	/*
1617	 * Allocate eeprom data.
1618	 */
1619	retval = rt2400pci_validate_eeprom(rt2x00dev);
1620	if (retval)
1621		return retval;
1622
1623	retval = rt2400pci_init_eeprom(rt2x00dev);
1624	if (retval)
1625		return retval;
1626
1627	/*
1628	 * Enable rfkill polling by setting GPIO direction of the
1629	 * rfkill switch GPIO pin correctly.
1630	 */
1631	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
1632	rt2x00_set_field32(&reg, GPIOCSR_BIT8, 1);
1633	rt2x00pci_register_write(rt2x00dev, GPIOCSR, reg);
1634
1635	/*
1636	 * Initialize hw specifications.
1637	 */
1638	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1639	if (retval)
1640		return retval;
1641
1642	/*
1643	 * This device requires the atim queue and DMA-mapped skbs.
1644	 */
1645	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1646	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1647	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1648
1649	/*
1650	 * Set the rssi offset.
1651	 */
1652	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1653
1654	return 0;
1655}
1656
1657/*
1658 * IEEE80211 stack callback functions.
1659 */
1660static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1661			     struct ieee80211_vif *vif, u16 queue,
1662			     const struct ieee80211_tx_queue_params *params)
1663{
1664	struct rt2x00_dev *rt2x00dev = hw->priv;
1665
1666	/*
1667	 * We don't support variating cw_min and cw_max variables
1668	 * per queue. So by default we only configure the TX queue,
1669	 * and ignore all other configurations.
1670	 */
1671	if (queue != 0)
1672		return -EINVAL;
1673
1674	if (rt2x00mac_conf_tx(hw, vif, queue, params))
1675		return -EINVAL;
1676
1677	/*
1678	 * Write configuration to register.
1679	 */
1680	rt2400pci_config_cw(rt2x00dev,
1681			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1682
1683	return 0;
1684}
1685
1686static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1687			     struct ieee80211_vif *vif)
1688{
1689	struct rt2x00_dev *rt2x00dev = hw->priv;
1690	u64 tsf;
1691	u32 reg;
1692
1693	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1694	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1695	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1696	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1697
1698	return tsf;
1699}
1700
1701static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1702{
1703	struct rt2x00_dev *rt2x00dev = hw->priv;
1704	u32 reg;
1705
1706	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1707	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1708}
1709
1710static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1711	.tx			= rt2x00mac_tx,
1712	.start			= rt2x00mac_start,
1713	.stop			= rt2x00mac_stop,
1714	.add_interface		= rt2x00mac_add_interface,
1715	.remove_interface	= rt2x00mac_remove_interface,
1716	.config			= rt2x00mac_config,
1717	.configure_filter	= rt2x00mac_configure_filter,
1718	.sw_scan_start		= rt2x00mac_sw_scan_start,
1719	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1720	.get_stats		= rt2x00mac_get_stats,
1721	.bss_info_changed	= rt2x00mac_bss_info_changed,
1722	.conf_tx		= rt2400pci_conf_tx,
1723	.get_tsf		= rt2400pci_get_tsf,
1724	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1725	.rfkill_poll		= rt2x00mac_rfkill_poll,
1726	.flush			= rt2x00mac_flush,
1727	.set_antenna		= rt2x00mac_set_antenna,
1728	.get_antenna		= rt2x00mac_get_antenna,
1729	.get_ringparam		= rt2x00mac_get_ringparam,
1730	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1731};
1732
1733static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1734	.irq_handler		= rt2400pci_interrupt,
1735	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
1736	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
1737	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1738	.probe_hw		= rt2400pci_probe_hw,
1739	.initialize		= rt2x00pci_initialize,
1740	.uninitialize		= rt2x00pci_uninitialize,
1741	.get_entry_state	= rt2400pci_get_entry_state,
1742	.clear_entry		= rt2400pci_clear_entry,
1743	.set_device_state	= rt2400pci_set_device_state,
1744	.rfkill_poll		= rt2400pci_rfkill_poll,
1745	.link_stats		= rt2400pci_link_stats,
1746	.reset_tuner		= rt2400pci_reset_tuner,
1747	.link_tuner		= rt2400pci_link_tuner,
1748	.start_queue		= rt2400pci_start_queue,
1749	.kick_queue		= rt2400pci_kick_queue,
1750	.stop_queue		= rt2400pci_stop_queue,
1751	.flush_queue		= rt2x00pci_flush_queue,
1752	.write_tx_desc		= rt2400pci_write_tx_desc,
1753	.write_beacon		= rt2400pci_write_beacon,
1754	.fill_rxdone		= rt2400pci_fill_rxdone,
1755	.config_filter		= rt2400pci_config_filter,
1756	.config_intf		= rt2400pci_config_intf,
1757	.config_erp		= rt2400pci_config_erp,
1758	.config_ant		= rt2400pci_config_ant,
1759	.config			= rt2400pci_config,
1760};
1761
1762static const struct data_queue_desc rt2400pci_queue_rx = {
1763	.entry_num		= 24,
1764	.data_size		= DATA_FRAME_SIZE,
1765	.desc_size		= RXD_DESC_SIZE,
1766	.priv_size		= sizeof(struct queue_entry_priv_pci),
1767};
1768
1769static const struct data_queue_desc rt2400pci_queue_tx = {
1770	.entry_num		= 24,
1771	.data_size		= DATA_FRAME_SIZE,
1772	.desc_size		= TXD_DESC_SIZE,
1773	.priv_size		= sizeof(struct queue_entry_priv_pci),
1774};
1775
1776static const struct data_queue_desc rt2400pci_queue_bcn = {
1777	.entry_num		= 1,
1778	.data_size		= MGMT_FRAME_SIZE,
1779	.desc_size		= TXD_DESC_SIZE,
1780	.priv_size		= sizeof(struct queue_entry_priv_pci),
1781};
1782
1783static const struct data_queue_desc rt2400pci_queue_atim = {
1784	.entry_num		= 8,
1785	.data_size		= DATA_FRAME_SIZE,
1786	.desc_size		= TXD_DESC_SIZE,
1787	.priv_size		= sizeof(struct queue_entry_priv_pci),
1788};
1789
1790static const struct rt2x00_ops rt2400pci_ops = {
1791	.name			= KBUILD_MODNAME,
1792	.max_sta_intf		= 1,
1793	.max_ap_intf		= 1,
1794	.eeprom_size		= EEPROM_SIZE,
1795	.rf_size		= RF_SIZE,
1796	.tx_queues		= NUM_TX_QUEUES,
1797	.extra_tx_headroom	= 0,
1798	.rx			= &rt2400pci_queue_rx,
1799	.tx			= &rt2400pci_queue_tx,
1800	.bcn			= &rt2400pci_queue_bcn,
1801	.atim			= &rt2400pci_queue_atim,
1802	.lib			= &rt2400pci_rt2x00_ops,
1803	.hw			= &rt2400pci_mac80211_ops,
1804#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1805	.debugfs		= &rt2400pci_rt2x00debug,
1806#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1807};
1808
1809/*
1810 * RT2400pci module information.
1811 */
1812static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1813	{ PCI_DEVICE(0x1814, 0x0101) },
1814	{ 0, }
1815};
1816
1817
1818MODULE_AUTHOR(DRV_PROJECT);
1819MODULE_VERSION(DRV_VERSION);
1820MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1821MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1822MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1823MODULE_LICENSE("GPL");
1824
1825static int rt2400pci_probe(struct pci_dev *pci_dev,
1826			   const struct pci_device_id *id)
1827{
1828	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1829}
1830
1831static struct pci_driver rt2400pci_driver = {
1832	.name		= KBUILD_MODNAME,
1833	.id_table	= rt2400pci_device_table,
1834	.probe		= rt2400pci_probe,
1835	.remove		= __devexit_p(rt2x00pci_remove),
1836	.suspend	= rt2x00pci_suspend,
1837	.resume		= rt2x00pci_resume,
1838};
1839
1840module_pci_driver(rt2400pci_driver);