Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v6.8.
   1/*
   2 * QLogic qlge NIC HBA Driver
   3 * Copyright (c)  2003-2008 QLogic Corporation
   4 * See LICENSE.qlge for copyright and licensing details.
   5 * Author:     Linux qlge network device driver by
   6 *                      Ron Mercer <ron.mercer@qlogic.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10#include <linux/bitops.h>
  11#include <linux/types.h>
  12#include <linux/module.h>
  13#include <linux/list.h>
  14#include <linux/pci.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/pagemap.h>
  17#include <linux/sched.h>
  18#include <linux/slab.h>
  19#include <linux/dmapool.h>
  20#include <linux/mempool.h>
  21#include <linux/spinlock.h>
  22#include <linux/kthread.h>
  23#include <linux/interrupt.h>
  24#include <linux/errno.h>
  25#include <linux/ioport.h>
  26#include <linux/in.h>
  27#include <linux/ip.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include <linux/tcp.h>
  31#include <linux/udp.h>
  32#include <linux/if_arp.h>
  33#include <linux/if_ether.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/ethtool.h>
  37#include <linux/if_vlan.h>
  38#include <linux/skbuff.h>
  39#include <linux/delay.h>
  40#include <linux/mm.h>
  41#include <linux/vmalloc.h>
  42#include <linux/prefetch.h>
  43#include <net/ip6_checksum.h>
  44
  45#include "qlge.h"
  46
  47char qlge_driver_name[] = DRV_NAME;
  48const char qlge_driver_version[] = DRV_VERSION;
  49
  50MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  51MODULE_DESCRIPTION(DRV_STRING " ");
  52MODULE_LICENSE("GPL");
  53MODULE_VERSION(DRV_VERSION);
  54
  55static const u32 default_msg =
  56    NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  57/* NETIF_MSG_TIMER |	*/
  58    NETIF_MSG_IFDOWN |
  59    NETIF_MSG_IFUP |
  60    NETIF_MSG_RX_ERR |
  61    NETIF_MSG_TX_ERR |
  62/*  NETIF_MSG_TX_QUEUED | */
  63/*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  64/* NETIF_MSG_PKTDATA | */
  65    NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  66
  67static int debug = -1;	/* defaults above */
  68module_param(debug, int, 0664);
  69MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  70
  71#define MSIX_IRQ 0
  72#define MSI_IRQ 1
  73#define LEG_IRQ 2
  74static int qlge_irq_type = MSIX_IRQ;
  75module_param(qlge_irq_type, int, 0664);
  76MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  77
  78static int qlge_mpi_coredump;
  79module_param(qlge_mpi_coredump, int, 0);
  80MODULE_PARM_DESC(qlge_mpi_coredump,
  81		"Option to enable MPI firmware dump. "
  82		"Default is OFF - Do Not allocate memory. ");
  83
  84static int qlge_force_coredump;
  85module_param(qlge_force_coredump, int, 0);
  86MODULE_PARM_DESC(qlge_force_coredump,
  87		"Option to allow force of firmware core dump. "
  88		"Default is OFF - Do not allow.");
  89
  90static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  91	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  92	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  93	/* required last entry */
  94	{0,}
  95};
  96
  97MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  98
  99static int ql_wol(struct ql_adapter *qdev);
 100static void qlge_set_multicast_list(struct net_device *ndev);
 101
 102/* This hardware semaphore causes exclusive access to
 103 * resources shared between the NIC driver, MPI firmware,
 104 * FCOE firmware and the FC driver.
 105 */
 106static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
 107{
 108	u32 sem_bits = 0;
 109
 110	switch (sem_mask) {
 111	case SEM_XGMAC0_MASK:
 112		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
 113		break;
 114	case SEM_XGMAC1_MASK:
 115		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
 116		break;
 117	case SEM_ICB_MASK:
 118		sem_bits = SEM_SET << SEM_ICB_SHIFT;
 119		break;
 120	case SEM_MAC_ADDR_MASK:
 121		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
 122		break;
 123	case SEM_FLASH_MASK:
 124		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
 125		break;
 126	case SEM_PROBE_MASK:
 127		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
 128		break;
 129	case SEM_RT_IDX_MASK:
 130		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
 131		break;
 132	case SEM_PROC_REG_MASK:
 133		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
 134		break;
 135	default:
 136		netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
 137		return -EINVAL;
 138	}
 139
 140	ql_write32(qdev, SEM, sem_bits | sem_mask);
 141	return !(ql_read32(qdev, SEM) & sem_bits);
 142}
 143
 144int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
 145{
 146	unsigned int wait_count = 30;
 147	do {
 148		if (!ql_sem_trylock(qdev, sem_mask))
 149			return 0;
 150		udelay(100);
 151	} while (--wait_count);
 152	return -ETIMEDOUT;
 153}
 154
 155void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
 156{
 157	ql_write32(qdev, SEM, sem_mask);
 158	ql_read32(qdev, SEM);	/* flush */
 159}
 160
 161/* This function waits for a specific bit to come ready
 162 * in a given register.  It is used mostly by the initialize
 163 * process, but is also used in kernel thread API such as
 164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
 165 */
 166int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
 167{
 168	u32 temp;
 169	int count = UDELAY_COUNT;
 170
 171	while (count) {
 172		temp = ql_read32(qdev, reg);
 173
 174		/* check for errors */
 175		if (temp & err_bit) {
 176			netif_alert(qdev, probe, qdev->ndev,
 177				    "register 0x%.08x access error, value = 0x%.08x!.\n",
 178				    reg, temp);
 179			return -EIO;
 180		} else if (temp & bit)
 181			return 0;
 182		udelay(UDELAY_DELAY);
 183		count--;
 184	}
 185	netif_alert(qdev, probe, qdev->ndev,
 186		    "Timed out waiting for reg %x to come ready.\n", reg);
 187	return -ETIMEDOUT;
 188}
 189
 190/* The CFG register is used to download TX and RX control blocks
 191 * to the chip. This function waits for an operation to complete.
 192 */
 193static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
 194{
 195	int count = UDELAY_COUNT;
 196	u32 temp;
 197
 198	while (count) {
 199		temp = ql_read32(qdev, CFG);
 200		if (temp & CFG_LE)
 201			return -EIO;
 202		if (!(temp & bit))
 203			return 0;
 204		udelay(UDELAY_DELAY);
 205		count--;
 206	}
 207	return -ETIMEDOUT;
 208}
 209
 210
 211/* Used to issue init control blocks to hw. Maps control block,
 212 * sets address, triggers download, waits for completion.
 213 */
 214int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
 215		 u16 q_id)
 216{
 217	u64 map;
 218	int status = 0;
 219	int direction;
 220	u32 mask;
 221	u32 value;
 222
 223	direction =
 224	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
 225	    PCI_DMA_FROMDEVICE;
 226
 227	map = pci_map_single(qdev->pdev, ptr, size, direction);
 228	if (pci_dma_mapping_error(qdev->pdev, map)) {
 229		netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
 230		return -ENOMEM;
 231	}
 232
 233	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
 234	if (status)
 235		return status;
 236
 237	status = ql_wait_cfg(qdev, bit);
 238	if (status) {
 239		netif_err(qdev, ifup, qdev->ndev,
 240			  "Timed out waiting for CFG to come ready.\n");
 241		goto exit;
 242	}
 243
 244	ql_write32(qdev, ICB_L, (u32) map);
 245	ql_write32(qdev, ICB_H, (u32) (map >> 32));
 246
 247	mask = CFG_Q_MASK | (bit << 16);
 248	value = bit | (q_id << CFG_Q_SHIFT);
 249	ql_write32(qdev, CFG, (mask | value));
 250
 251	/*
 252	 * Wait for the bit to clear after signaling hw.
 253	 */
 254	status = ql_wait_cfg(qdev, bit);
 255exit:
 256	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
 257	pci_unmap_single(qdev->pdev, map, size, direction);
 258	return status;
 259}
 260
 261/* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
 262int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
 263			u32 *value)
 264{
 265	u32 offset = 0;
 266	int status;
 267
 268	switch (type) {
 269	case MAC_ADDR_TYPE_MULTI_MAC:
 270	case MAC_ADDR_TYPE_CAM_MAC:
 271		{
 272			status =
 273			    ql_wait_reg_rdy(qdev,
 274				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 275			if (status)
 276				goto exit;
 277			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 278				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 279				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
 280			status =
 281			    ql_wait_reg_rdy(qdev,
 282				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
 283			if (status)
 284				goto exit;
 285			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
 286			status =
 287			    ql_wait_reg_rdy(qdev,
 288				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 289			if (status)
 290				goto exit;
 291			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 292				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 293				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
 294			status =
 295			    ql_wait_reg_rdy(qdev,
 296				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
 297			if (status)
 298				goto exit;
 299			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
 300			if (type == MAC_ADDR_TYPE_CAM_MAC) {
 301				status =
 302				    ql_wait_reg_rdy(qdev,
 303					MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 304				if (status)
 305					goto exit;
 306				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 307					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 308					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
 309				status =
 310				    ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
 311						    MAC_ADDR_MR, 0);
 312				if (status)
 313					goto exit;
 314				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
 315			}
 316			break;
 317		}
 318	case MAC_ADDR_TYPE_VLAN:
 319	case MAC_ADDR_TYPE_MULTI_FLTR:
 320	default:
 321		netif_crit(qdev, ifup, qdev->ndev,
 322			   "Address type %d not yet supported.\n", type);
 323		status = -EPERM;
 324	}
 325exit:
 326	return status;
 327}
 328
 329/* Set up a MAC, multicast or VLAN address for the
 330 * inbound frame matching.
 331 */
 332static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
 333			       u16 index)
 334{
 335	u32 offset = 0;
 336	int status = 0;
 337
 338	switch (type) {
 339	case MAC_ADDR_TYPE_MULTI_MAC:
 340		{
 341			u32 upper = (addr[0] << 8) | addr[1];
 342			u32 lower = (addr[2] << 24) | (addr[3] << 16) |
 343					(addr[4] << 8) | (addr[5]);
 344
 345			status =
 346				ql_wait_reg_rdy(qdev,
 347				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 348			if (status)
 349				goto exit;
 350			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
 351				(index << MAC_ADDR_IDX_SHIFT) |
 352				type | MAC_ADDR_E);
 353			ql_write32(qdev, MAC_ADDR_DATA, lower);
 354			status =
 355				ql_wait_reg_rdy(qdev,
 356				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 357			if (status)
 358				goto exit;
 359			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
 360				(index << MAC_ADDR_IDX_SHIFT) |
 361				type | MAC_ADDR_E);
 362
 363			ql_write32(qdev, MAC_ADDR_DATA, upper);
 364			status =
 365				ql_wait_reg_rdy(qdev,
 366				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 367			if (status)
 368				goto exit;
 369			break;
 370		}
 371	case MAC_ADDR_TYPE_CAM_MAC:
 372		{
 373			u32 cam_output;
 374			u32 upper = (addr[0] << 8) | addr[1];
 375			u32 lower =
 376			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
 377			    (addr[5]);
 378			status =
 379			    ql_wait_reg_rdy(qdev,
 380				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 381			if (status)
 382				goto exit;
 383			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 384				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 385				   type);	/* type */
 386			ql_write32(qdev, MAC_ADDR_DATA, lower);
 387			status =
 388			    ql_wait_reg_rdy(qdev,
 389				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 390			if (status)
 391				goto exit;
 392			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 393				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 394				   type);	/* type */
 395			ql_write32(qdev, MAC_ADDR_DATA, upper);
 396			status =
 397			    ql_wait_reg_rdy(qdev,
 398				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 399			if (status)
 400				goto exit;
 401			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
 402				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
 403				   type);	/* type */
 404			/* This field should also include the queue id
 405			   and possibly the function id.  Right now we hardcode
 406			   the route field to NIC core.
 407			 */
 408			cam_output = (CAM_OUT_ROUTE_NIC |
 409				      (qdev->
 410				       func << CAM_OUT_FUNC_SHIFT) |
 411					(0 << CAM_OUT_CQ_ID_SHIFT));
 412			if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
 413				cam_output |= CAM_OUT_RV;
 414			/* route to NIC core */
 415			ql_write32(qdev, MAC_ADDR_DATA, cam_output);
 416			break;
 417		}
 418	case MAC_ADDR_TYPE_VLAN:
 419		{
 420			u32 enable_bit = *((u32 *) &addr[0]);
 421			/* For VLAN, the addr actually holds a bit that
 422			 * either enables or disables the vlan id we are
 423			 * addressing. It's either MAC_ADDR_E on or off.
 424			 * That's bit-27 we're talking about.
 425			 */
 426			status =
 427			    ql_wait_reg_rdy(qdev,
 428				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 429			if (status)
 430				goto exit;
 431			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
 432				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
 433				   type |	/* type */
 434				   enable_bit);	/* enable/disable */
 435			break;
 436		}
 437	case MAC_ADDR_TYPE_MULTI_FLTR:
 438	default:
 439		netif_crit(qdev, ifup, qdev->ndev,
 440			   "Address type %d not yet supported.\n", type);
 441		status = -EPERM;
 442	}
 443exit:
 444	return status;
 445}
 446
 447/* Set or clear MAC address in hardware. We sometimes
 448 * have to clear it to prevent wrong frame routing
 449 * especially in a bonding environment.
 450 */
 451static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
 452{
 453	int status;
 454	char zero_mac_addr[ETH_ALEN];
 455	char *addr;
 456
 457	if (set) {
 458		addr = &qdev->current_mac_addr[0];
 459		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 460			     "Set Mac addr %pM\n", addr);
 461	} else {
 462		memset(zero_mac_addr, 0, ETH_ALEN);
 463		addr = &zero_mac_addr[0];
 464		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 465			     "Clearing MAC address\n");
 466	}
 467	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
 468	if (status)
 469		return status;
 470	status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
 471			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
 472	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
 473	if (status)
 474		netif_err(qdev, ifup, qdev->ndev,
 475			  "Failed to init mac address.\n");
 476	return status;
 477}
 478
 479void ql_link_on(struct ql_adapter *qdev)
 480{
 481	netif_err(qdev, link, qdev->ndev, "Link is up.\n");
 482	netif_carrier_on(qdev->ndev);
 483	ql_set_mac_addr(qdev, 1);
 484}
 485
 486void ql_link_off(struct ql_adapter *qdev)
 487{
 488	netif_err(qdev, link, qdev->ndev, "Link is down.\n");
 489	netif_carrier_off(qdev->ndev);
 490	ql_set_mac_addr(qdev, 0);
 491}
 492
 493/* Get a specific frame routing value from the CAM.
 494 * Used for debug and reg dump.
 495 */
 496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
 497{
 498	int status = 0;
 499
 500	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
 501	if (status)
 502		goto exit;
 503
 504	ql_write32(qdev, RT_IDX,
 505		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
 506	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
 507	if (status)
 508		goto exit;
 509	*value = ql_read32(qdev, RT_DATA);
 510exit:
 511	return status;
 512}
 513
 514/* The NIC function for this chip has 16 routing indexes.  Each one can be used
 515 * to route different frame types to various inbound queues.  We send broadcast/
 516 * multicast/error frames to the default queue for slow handling,
 517 * and CAM hit/RSS frames to the fast handling queues.
 518 */
 519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
 520			      int enable)
 521{
 522	int status = -EINVAL; /* Return error if no mask match. */
 523	u32 value = 0;
 524
 525	switch (mask) {
 526	case RT_IDX_CAM_HIT:
 527		{
 528			value = RT_IDX_DST_CAM_Q |	/* dest */
 529			    RT_IDX_TYPE_NICQ |	/* type */
 530			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
 531			break;
 532		}
 533	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
 534		{
 535			value = RT_IDX_DST_DFLT_Q |	/* dest */
 536			    RT_IDX_TYPE_NICQ |	/* type */
 537			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
 538			break;
 539		}
 540	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
 541		{
 542			value = RT_IDX_DST_DFLT_Q |	/* dest */
 543			    RT_IDX_TYPE_NICQ |	/* type */
 544			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
 545			break;
 546		}
 547	case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
 548		{
 549			value = RT_IDX_DST_DFLT_Q | /* dest */
 550				RT_IDX_TYPE_NICQ | /* type */
 551				(RT_IDX_IP_CSUM_ERR_SLOT <<
 552				RT_IDX_IDX_SHIFT); /* index */
 553			break;
 554		}
 555	case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
 556		{
 557			value = RT_IDX_DST_DFLT_Q | /* dest */
 558				RT_IDX_TYPE_NICQ | /* type */
 559				(RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
 560				RT_IDX_IDX_SHIFT); /* index */
 561			break;
 562		}
 563	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
 564		{
 565			value = RT_IDX_DST_DFLT_Q |	/* dest */
 566			    RT_IDX_TYPE_NICQ |	/* type */
 567			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
 568			break;
 569		}
 570	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
 571		{
 572			value = RT_IDX_DST_DFLT_Q |	/* dest */
 573			    RT_IDX_TYPE_NICQ |	/* type */
 574			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
 575			break;
 576		}
 577	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
 578		{
 579			value = RT_IDX_DST_DFLT_Q |	/* dest */
 580			    RT_IDX_TYPE_NICQ |	/* type */
 581			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
 582			break;
 583		}
 584	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
 585		{
 586			value = RT_IDX_DST_RSS |	/* dest */
 587			    RT_IDX_TYPE_NICQ |	/* type */
 588			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
 589			break;
 590		}
 591	case 0:		/* Clear the E-bit on an entry. */
 592		{
 593			value = RT_IDX_DST_DFLT_Q |	/* dest */
 594			    RT_IDX_TYPE_NICQ |	/* type */
 595			    (index << RT_IDX_IDX_SHIFT);/* index */
 596			break;
 597		}
 598	default:
 599		netif_err(qdev, ifup, qdev->ndev,
 600			  "Mask type %d not yet supported.\n", mask);
 601		status = -EPERM;
 602		goto exit;
 603	}
 604
 605	if (value) {
 606		status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
 607		if (status)
 608			goto exit;
 609		value |= (enable ? RT_IDX_E : 0);
 610		ql_write32(qdev, RT_IDX, value);
 611		ql_write32(qdev, RT_DATA, enable ? mask : 0);
 612	}
 613exit:
 614	return status;
 615}
 616
 617static void ql_enable_interrupts(struct ql_adapter *qdev)
 618{
 619	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
 620}
 621
 622static void ql_disable_interrupts(struct ql_adapter *qdev)
 623{
 624	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
 625}
 626
 627/* If we're running with multiple MSI-X vectors then we enable on the fly.
 628 * Otherwise, we may have multiple outstanding workers and don't want to
 629 * enable until the last one finishes. In this case, the irq_cnt gets
 630 * incremented every time we queue a worker and decremented every time
 631 * a worker finishes.  Once it hits zero we enable the interrupt.
 632 */
 633u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
 634{
 635	u32 var = 0;
 636	unsigned long hw_flags = 0;
 637	struct intr_context *ctx = qdev->intr_context + intr;
 638
 639	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
 640		/* Always enable if we're MSIX multi interrupts and
 641		 * it's not the default (zeroeth) interrupt.
 642		 */
 643		ql_write32(qdev, INTR_EN,
 644			   ctx->intr_en_mask);
 645		var = ql_read32(qdev, STS);
 646		return var;
 647	}
 648
 649	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
 650	if (atomic_dec_and_test(&ctx->irq_cnt)) {
 651		ql_write32(qdev, INTR_EN,
 652			   ctx->intr_en_mask);
 653		var = ql_read32(qdev, STS);
 654	}
 655	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
 656	return var;
 657}
 658
 659static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
 660{
 661	u32 var = 0;
 662	struct intr_context *ctx;
 663
 664	/* HW disables for us if we're MSIX multi interrupts and
 665	 * it's not the default (zeroeth) interrupt.
 666	 */
 667	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
 668		return 0;
 669
 670	ctx = qdev->intr_context + intr;
 671	spin_lock(&qdev->hw_lock);
 672	if (!atomic_read(&ctx->irq_cnt)) {
 673		ql_write32(qdev, INTR_EN,
 674		ctx->intr_dis_mask);
 675		var = ql_read32(qdev, STS);
 676	}
 677	atomic_inc(&ctx->irq_cnt);
 678	spin_unlock(&qdev->hw_lock);
 679	return var;
 680}
 681
 682static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
 683{
 684	int i;
 685	for (i = 0; i < qdev->intr_count; i++) {
 686		/* The enable call does a atomic_dec_and_test
 687		 * and enables only if the result is zero.
 688		 * So we precharge it here.
 689		 */
 690		if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
 691			i == 0))
 692			atomic_set(&qdev->intr_context[i].irq_cnt, 1);
 693		ql_enable_completion_interrupt(qdev, i);
 694	}
 695
 696}
 697
 698static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
 699{
 700	int status, i;
 701	u16 csum = 0;
 702	__le16 *flash = (__le16 *)&qdev->flash;
 703
 704	status = strncmp((char *)&qdev->flash, str, 4);
 705	if (status) {
 706		netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
 707		return	status;
 708	}
 709
 710	for (i = 0; i < size; i++)
 711		csum += le16_to_cpu(*flash++);
 712
 713	if (csum)
 714		netif_err(qdev, ifup, qdev->ndev,
 715			  "Invalid flash checksum, csum = 0x%.04x.\n", csum);
 716
 717	return csum;
 718}
 719
 720static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
 721{
 722	int status = 0;
 723	/* wait for reg to come ready */
 724	status = ql_wait_reg_rdy(qdev,
 725			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
 726	if (status)
 727		goto exit;
 728	/* set up for reg read */
 729	ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
 730	/* wait for reg to come ready */
 731	status = ql_wait_reg_rdy(qdev,
 732			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
 733	if (status)
 734		goto exit;
 735	 /* This data is stored on flash as an array of
 736	 * __le32.  Since ql_read32() returns cpu endian
 737	 * we need to swap it back.
 738	 */
 739	*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
 740exit:
 741	return status;
 742}
 743
 744static int ql_get_8000_flash_params(struct ql_adapter *qdev)
 745{
 746	u32 i, size;
 747	int status;
 748	__le32 *p = (__le32 *)&qdev->flash;
 749	u32 offset;
 750	u8 mac_addr[6];
 751
 752	/* Get flash offset for function and adjust
 753	 * for dword access.
 754	 */
 755	if (!qdev->port)
 756		offset = FUNC0_FLASH_OFFSET / sizeof(u32);
 757	else
 758		offset = FUNC1_FLASH_OFFSET / sizeof(u32);
 759
 760	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
 761		return -ETIMEDOUT;
 762
 763	size = sizeof(struct flash_params_8000) / sizeof(u32);
 764	for (i = 0; i < size; i++, p++) {
 765		status = ql_read_flash_word(qdev, i+offset, p);
 766		if (status) {
 767			netif_err(qdev, ifup, qdev->ndev,
 768				  "Error reading flash.\n");
 769			goto exit;
 770		}
 771	}
 772
 773	status = ql_validate_flash(qdev,
 774			sizeof(struct flash_params_8000) / sizeof(u16),
 775			"8000");
 776	if (status) {
 777		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
 778		status = -EINVAL;
 779		goto exit;
 780	}
 781
 782	/* Extract either manufacturer or BOFM modified
 783	 * MAC address.
 784	 */
 785	if (qdev->flash.flash_params_8000.data_type1 == 2)
 786		memcpy(mac_addr,
 787			qdev->flash.flash_params_8000.mac_addr1,
 788			qdev->ndev->addr_len);
 789	else
 790		memcpy(mac_addr,
 791			qdev->flash.flash_params_8000.mac_addr,
 792			qdev->ndev->addr_len);
 793
 794	if (!is_valid_ether_addr(mac_addr)) {
 795		netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
 796		status = -EINVAL;
 797		goto exit;
 798	}
 799
 800	memcpy(qdev->ndev->dev_addr,
 801		mac_addr,
 802		qdev->ndev->addr_len);
 803
 804exit:
 805	ql_sem_unlock(qdev, SEM_FLASH_MASK);
 806	return status;
 807}
 808
 809static int ql_get_8012_flash_params(struct ql_adapter *qdev)
 810{
 811	int i;
 812	int status;
 813	__le32 *p = (__le32 *)&qdev->flash;
 814	u32 offset = 0;
 815	u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
 816
 817	/* Second function's parameters follow the first
 818	 * function's.
 819	 */
 820	if (qdev->port)
 821		offset = size;
 822
 823	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
 824		return -ETIMEDOUT;
 825
 826	for (i = 0; i < size; i++, p++) {
 827		status = ql_read_flash_word(qdev, i+offset, p);
 828		if (status) {
 829			netif_err(qdev, ifup, qdev->ndev,
 830				  "Error reading flash.\n");
 831			goto exit;
 832		}
 833
 834	}
 835
 836	status = ql_validate_flash(qdev,
 837			sizeof(struct flash_params_8012) / sizeof(u16),
 838			"8012");
 839	if (status) {
 840		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
 841		status = -EINVAL;
 842		goto exit;
 843	}
 844
 845	if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
 846		status = -EINVAL;
 847		goto exit;
 848	}
 849
 850	memcpy(qdev->ndev->dev_addr,
 851		qdev->flash.flash_params_8012.mac_addr,
 852		qdev->ndev->addr_len);
 853
 854exit:
 855	ql_sem_unlock(qdev, SEM_FLASH_MASK);
 856	return status;
 857}
 858
 859/* xgmac register are located behind the xgmac_addr and xgmac_data
 860 * register pair.  Each read/write requires us to wait for the ready
 861 * bit before reading/writing the data.
 862 */
 863static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
 864{
 865	int status;
 866	/* wait for reg to come ready */
 867	status = ql_wait_reg_rdy(qdev,
 868			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
 869	if (status)
 870		return status;
 871	/* write the data to the data reg */
 872	ql_write32(qdev, XGMAC_DATA, data);
 873	/* trigger the write */
 874	ql_write32(qdev, XGMAC_ADDR, reg);
 875	return status;
 876}
 877
 878/* xgmac register are located behind the xgmac_addr and xgmac_data
 879 * register pair.  Each read/write requires us to wait for the ready
 880 * bit before reading/writing the data.
 881 */
 882int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
 883{
 884	int status = 0;
 885	/* wait for reg to come ready */
 886	status = ql_wait_reg_rdy(qdev,
 887			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
 888	if (status)
 889		goto exit;
 890	/* set up for reg read */
 891	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
 892	/* wait for reg to come ready */
 893	status = ql_wait_reg_rdy(qdev,
 894			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
 895	if (status)
 896		goto exit;
 897	/* get the data */
 898	*data = ql_read32(qdev, XGMAC_DATA);
 899exit:
 900	return status;
 901}
 902
 903/* This is used for reading the 64-bit statistics regs. */
 904int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
 905{
 906	int status = 0;
 907	u32 hi = 0;
 908	u32 lo = 0;
 909
 910	status = ql_read_xgmac_reg(qdev, reg, &lo);
 911	if (status)
 912		goto exit;
 913
 914	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
 915	if (status)
 916		goto exit;
 917
 918	*data = (u64) lo | ((u64) hi << 32);
 919
 920exit:
 921	return status;
 922}
 923
 924static int ql_8000_port_initialize(struct ql_adapter *qdev)
 925{
 926	int status;
 927	/*
 928	 * Get MPI firmware version for driver banner
 929	 * and ethool info.
 930	 */
 931	status = ql_mb_about_fw(qdev);
 932	if (status)
 933		goto exit;
 934	status = ql_mb_get_fw_state(qdev);
 935	if (status)
 936		goto exit;
 937	/* Wake up a worker to get/set the TX/RX frame sizes. */
 938	queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
 939exit:
 940	return status;
 941}
 942
 943/* Take the MAC Core out of reset.
 944 * Enable statistics counting.
 945 * Take the transmitter/receiver out of reset.
 946 * This functionality may be done in the MPI firmware at a
 947 * later date.
 948 */
 949static int ql_8012_port_initialize(struct ql_adapter *qdev)
 950{
 951	int status = 0;
 952	u32 data;
 953
 954	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
 955		/* Another function has the semaphore, so
 956		 * wait for the port init bit to come ready.
 957		 */
 958		netif_info(qdev, link, qdev->ndev,
 959			   "Another function has the semaphore, so wait for the port init bit to come ready.\n");
 960		status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
 961		if (status) {
 962			netif_crit(qdev, link, qdev->ndev,
 963				   "Port initialize timed out.\n");
 964		}
 965		return status;
 966	}
 967
 968	netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
 969	/* Set the core reset. */
 970	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
 971	if (status)
 972		goto end;
 973	data |= GLOBAL_CFG_RESET;
 974	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
 975	if (status)
 976		goto end;
 977
 978	/* Clear the core reset and turn on jumbo for receiver. */
 979	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
 980	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
 981	data |= GLOBAL_CFG_TX_STAT_EN;
 982	data |= GLOBAL_CFG_RX_STAT_EN;
 983	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
 984	if (status)
 985		goto end;
 986
 987	/* Enable transmitter, and clear it's reset. */
 988	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
 989	if (status)
 990		goto end;
 991	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
 992	data |= TX_CFG_EN;	/* Enable the transmitter. */
 993	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
 994	if (status)
 995		goto end;
 996
 997	/* Enable receiver and clear it's reset. */
 998	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
 999	if (status)
1000		goto end;
1001	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
1002	data |= RX_CFG_EN;	/* Enable the receiver. */
1003	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004	if (status)
1005		goto end;
1006
1007	/* Turn on jumbo. */
1008	status =
1009	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010	if (status)
1011		goto end;
1012	status =
1013	    ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014	if (status)
1015		goto end;
1016
1017	/* Signal to the world that the port is enabled.        */
1018	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019end:
1020	ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021	return status;
1022}
1023
1024static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025{
1026	return PAGE_SIZE << qdev->lbq_buf_order;
1027}
1028
1029/* Get the next large buffer. */
1030static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031{
1032	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033	rx_ring->lbq_curr_idx++;
1034	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035		rx_ring->lbq_curr_idx = 0;
1036	rx_ring->lbq_free_cnt++;
1037	return lbq_desc;
1038}
1039
1040static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041		struct rx_ring *rx_ring)
1042{
1043	struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045	pci_dma_sync_single_for_cpu(qdev->pdev,
1046					dma_unmap_addr(lbq_desc, mapaddr),
1047				    rx_ring->lbq_buf_size,
1048					PCI_DMA_FROMDEVICE);
1049
1050	/* If it's the last chunk of our master page then
1051	 * we unmap it.
1052	 */
1053	if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054					== ql_lbq_block_size(qdev))
1055		pci_unmap_page(qdev->pdev,
1056				lbq_desc->p.pg_chunk.map,
1057				ql_lbq_block_size(qdev),
1058				PCI_DMA_FROMDEVICE);
1059	return lbq_desc;
1060}
1061
1062/* Get the next small buffer. */
1063static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064{
1065	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066	rx_ring->sbq_curr_idx++;
1067	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068		rx_ring->sbq_curr_idx = 0;
1069	rx_ring->sbq_free_cnt++;
1070	return sbq_desc;
1071}
1072
1073/* Update an rx ring index. */
1074static void ql_update_cq(struct rx_ring *rx_ring)
1075{
1076	rx_ring->cnsmr_idx++;
1077	rx_ring->curr_entry++;
1078	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079		rx_ring->cnsmr_idx = 0;
1080		rx_ring->curr_entry = rx_ring->cq_base;
1081	}
1082}
1083
1084static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085{
1086	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087}
1088
1089static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090						struct bq_desc *lbq_desc)
1091{
1092	if (!rx_ring->pg_chunk.page) {
1093		u64 map;
1094		rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095						GFP_ATOMIC,
1096						qdev->lbq_buf_order);
1097		if (unlikely(!rx_ring->pg_chunk.page)) {
1098			netif_err(qdev, drv, qdev->ndev,
1099				  "page allocation failed.\n");
1100			return -ENOMEM;
1101		}
1102		rx_ring->pg_chunk.offset = 0;
1103		map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104					0, ql_lbq_block_size(qdev),
1105					PCI_DMA_FROMDEVICE);
1106		if (pci_dma_mapping_error(qdev->pdev, map)) {
1107			__free_pages(rx_ring->pg_chunk.page,
1108					qdev->lbq_buf_order);
1109			netif_err(qdev, drv, qdev->ndev,
1110				  "PCI mapping failed.\n");
1111			return -ENOMEM;
1112		}
1113		rx_ring->pg_chunk.map = map;
1114		rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115	}
1116
1117	/* Copy the current master pg_chunk info
1118	 * to the current descriptor.
1119	 */
1120	lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122	/* Adjust the master page chunk for next
1123	 * buffer get.
1124	 */
1125	rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126	if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127		rx_ring->pg_chunk.page = NULL;
1128		lbq_desc->p.pg_chunk.last_flag = 1;
1129	} else {
1130		rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131		get_page(rx_ring->pg_chunk.page);
1132		lbq_desc->p.pg_chunk.last_flag = 0;
1133	}
1134	return 0;
1135}
1136/* Process (refill) a large buffer queue. */
1137static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138{
1139	u32 clean_idx = rx_ring->lbq_clean_idx;
1140	u32 start_idx = clean_idx;
1141	struct bq_desc *lbq_desc;
1142	u64 map;
1143	int i;
1144
1145	while (rx_ring->lbq_free_cnt > 32) {
1146		for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1147			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148				     "lbq: try cleaning clean_idx = %d.\n",
1149				     clean_idx);
1150			lbq_desc = &rx_ring->lbq[clean_idx];
1151			if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1152				rx_ring->lbq_clean_idx = clean_idx;
1153				netif_err(qdev, ifup, qdev->ndev,
1154						"Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155						i, clean_idx);
1156				return;
1157			}
1158
1159			map = lbq_desc->p.pg_chunk.map +
1160				lbq_desc->p.pg_chunk.offset;
1161				dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162			dma_unmap_len_set(lbq_desc, maplen,
1163					rx_ring->lbq_buf_size);
1164				*lbq_desc->addr = cpu_to_le64(map);
1165
1166			pci_dma_sync_single_for_device(qdev->pdev, map,
1167						rx_ring->lbq_buf_size,
1168						PCI_DMA_FROMDEVICE);
1169			clean_idx++;
1170			if (clean_idx == rx_ring->lbq_len)
1171				clean_idx = 0;
1172		}
1173
1174		rx_ring->lbq_clean_idx = clean_idx;
1175		rx_ring->lbq_prod_idx += 16;
1176		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177			rx_ring->lbq_prod_idx = 0;
1178		rx_ring->lbq_free_cnt -= 16;
1179	}
1180
1181	if (start_idx != clean_idx) {
1182		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183			     "lbq: updating prod idx = %d.\n",
1184			     rx_ring->lbq_prod_idx);
1185		ql_write_db_reg(rx_ring->lbq_prod_idx,
1186				rx_ring->lbq_prod_idx_db_reg);
1187	}
1188}
1189
1190/* Process (refill) a small buffer queue. */
1191static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192{
1193	u32 clean_idx = rx_ring->sbq_clean_idx;
1194	u32 start_idx = clean_idx;
1195	struct bq_desc *sbq_desc;
1196	u64 map;
1197	int i;
1198
1199	while (rx_ring->sbq_free_cnt > 16) {
1200		for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1201			sbq_desc = &rx_ring->sbq[clean_idx];
1202			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203				     "sbq: try cleaning clean_idx = %d.\n",
1204				     clean_idx);
1205			if (sbq_desc->p.skb == NULL) {
1206				netif_printk(qdev, rx_status, KERN_DEBUG,
1207					     qdev->ndev,
1208					     "sbq: getting new skb for index %d.\n",
1209					     sbq_desc->index);
1210				sbq_desc->p.skb =
1211				    netdev_alloc_skb(qdev->ndev,
1212						     SMALL_BUFFER_SIZE);
1213				if (sbq_desc->p.skb == NULL) {
1214					netif_err(qdev, probe, qdev->ndev,
1215						  "Couldn't get an skb.\n");
1216					rx_ring->sbq_clean_idx = clean_idx;
1217					return;
1218				}
1219				skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220				map = pci_map_single(qdev->pdev,
1221						     sbq_desc->p.skb->data,
1222						     rx_ring->sbq_buf_size,
1223						     PCI_DMA_FROMDEVICE);
1224				if (pci_dma_mapping_error(qdev->pdev, map)) {
1225					netif_err(qdev, ifup, qdev->ndev,
1226						  "PCI mapping failed.\n");
1227					rx_ring->sbq_clean_idx = clean_idx;
1228					dev_kfree_skb_any(sbq_desc->p.skb);
1229					sbq_desc->p.skb = NULL;
1230					return;
1231				}
1232				dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233				dma_unmap_len_set(sbq_desc, maplen,
1234						  rx_ring->sbq_buf_size);
1235				*sbq_desc->addr = cpu_to_le64(map);
1236			}
1237
1238			clean_idx++;
1239			if (clean_idx == rx_ring->sbq_len)
1240				clean_idx = 0;
1241		}
1242		rx_ring->sbq_clean_idx = clean_idx;
1243		rx_ring->sbq_prod_idx += 16;
1244		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245			rx_ring->sbq_prod_idx = 0;
1246		rx_ring->sbq_free_cnt -= 16;
1247	}
1248
1249	if (start_idx != clean_idx) {
1250		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251			     "sbq: updating prod idx = %d.\n",
1252			     rx_ring->sbq_prod_idx);
1253		ql_write_db_reg(rx_ring->sbq_prod_idx,
1254				rx_ring->sbq_prod_idx_db_reg);
1255	}
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259				    struct rx_ring *rx_ring)
1260{
1261	ql_update_sbq(qdev, rx_ring);
1262	ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269			  struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271	int i;
1272	for (i = 0; i < mapped; i++) {
1273		if (i == 0 || (i == 7 && mapped > 7)) {
1274			/*
1275			 * Unmap the skb->data area, or the
1276			 * external sglist (AKA the Outbound
1277			 * Address List (OAL)).
1278			 * If its the zeroeth element, then it's
1279			 * the skb->data area.  If it's the 7th
1280			 * element and there is more than 6 frags,
1281			 * then its an OAL.
1282			 */
1283			if (i == 7) {
1284				netif_printk(qdev, tx_done, KERN_DEBUG,
1285					     qdev->ndev,
1286					     "unmapping OAL area.\n");
1287			}
1288			pci_unmap_single(qdev->pdev,
1289					 dma_unmap_addr(&tx_ring_desc->map[i],
1290							mapaddr),
1291					 dma_unmap_len(&tx_ring_desc->map[i],
1292						       maplen),
1293					 PCI_DMA_TODEVICE);
1294		} else {
1295			netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296				     "unmapping frag %d.\n", i);
1297			pci_unmap_page(qdev->pdev,
1298				       dma_unmap_addr(&tx_ring_desc->map[i],
1299						      mapaddr),
1300				       dma_unmap_len(&tx_ring_desc->map[i],
1301						     maplen), PCI_DMA_TODEVICE);
1302		}
1303	}
1304
1305}
1306
1307/* Map the buffers for this transmit.  This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311		       struct ob_mac_iocb_req *mac_iocb_ptr,
1312		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314	int len = skb_headlen(skb);
1315	dma_addr_t map;
1316	int frag_idx, err, map_idx = 0;
1317	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318	int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320	if (frag_cnt) {
1321		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322			     "frag_cnt = %d.\n", frag_cnt);
1323	}
1324	/*
1325	 * Map the skb buffer first.
1326	 */
1327	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329	err = pci_dma_mapping_error(qdev->pdev, map);
1330	if (err) {
1331		netif_err(qdev, tx_queued, qdev->ndev,
1332			  "PCI mapping failed with error: %d\n", err);
1333
1334		return NETDEV_TX_BUSY;
1335	}
1336
1337	tbd->len = cpu_to_le32(len);
1338	tbd->addr = cpu_to_le64(map);
1339	dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340	dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341	map_idx++;
1342
1343	/*
1344	 * This loop fills the remainder of the 8 address descriptors
1345	 * in the IOCB.  If there are more than 7 fragments, then the
1346	 * eighth address desc will point to an external list (OAL).
1347	 * When this happens, the remainder of the frags will be stored
1348	 * in this list.
1349	 */
1350	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352		tbd++;
1353		if (frag_idx == 6 && frag_cnt > 7) {
1354			/* Let's tack on an sglist.
1355			 * Our control block will now
1356			 * look like this:
1357			 * iocb->seg[0] = skb->data
1358			 * iocb->seg[1] = frag[0]
1359			 * iocb->seg[2] = frag[1]
1360			 * iocb->seg[3] = frag[2]
1361			 * iocb->seg[4] = frag[3]
1362			 * iocb->seg[5] = frag[4]
1363			 * iocb->seg[6] = frag[5]
1364			 * iocb->seg[7] = ptr to OAL (external sglist)
1365			 * oal->seg[0] = frag[6]
1366			 * oal->seg[1] = frag[7]
1367			 * oal->seg[2] = frag[8]
1368			 * oal->seg[3] = frag[9]
1369			 * oal->seg[4] = frag[10]
1370			 *      etc...
1371			 */
1372			/* Tack on the OAL in the eighth segment of IOCB. */
1373			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374					     sizeof(struct oal),
1375					     PCI_DMA_TODEVICE);
1376			err = pci_dma_mapping_error(qdev->pdev, map);
1377			if (err) {
1378				netif_err(qdev, tx_queued, qdev->ndev,
1379					  "PCI mapping outbound address list with error: %d\n",
1380					  err);
1381				goto map_error;
1382			}
1383
1384			tbd->addr = cpu_to_le64(map);
1385			/*
1386			 * The length is the number of fragments
1387			 * that remain to be mapped times the length
1388			 * of our sglist (OAL).
1389			 */
1390			tbd->len =
1391			    cpu_to_le32((sizeof(struct tx_buf_desc) *
1392					 (frag_cnt - frag_idx)) | TX_DESC_C);
1393			dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394					   map);
1395			dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396					  sizeof(struct oal));
1397			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398			map_idx++;
1399		}
1400
1401		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402				       DMA_TO_DEVICE);
1403
1404		err = dma_mapping_error(&qdev->pdev->dev, map);
1405		if (err) {
1406			netif_err(qdev, tx_queued, qdev->ndev,
1407				  "PCI mapping frags failed with error: %d.\n",
1408				  err);
1409			goto map_error;
1410		}
1411
1412		tbd->addr = cpu_to_le64(map);
1413		tbd->len = cpu_to_le32(skb_frag_size(frag));
1414		dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415		dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416				  skb_frag_size(frag));
1417
1418	}
1419	/* Save the number of segments we've mapped. */
1420	tx_ring_desc->map_cnt = map_idx;
1421	/* Terminate the last segment. */
1422	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423	return NETDEV_TX_OK;
1424
1425map_error:
1426	/*
1427	 * If the first frag mapping failed, then i will be zero.
1428	 * This causes the unmap of the skb->data area.  Otherwise
1429	 * we pass in the number of frags that mapped successfully
1430	 * so they can be umapped.
1431	 */
1432	ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433	return NETDEV_TX_BUSY;
1434}
1435
1436/* Process an inbound completion from an rx ring. */
1437static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1438					struct rx_ring *rx_ring,
1439					struct ib_mac_iocb_rsp *ib_mac_rsp,
1440					u32 length,
1441					u16 vlan_id)
1442{
1443	struct sk_buff *skb;
1444	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1445	struct napi_struct *napi = &rx_ring->napi;
1446
1447	napi->dev = qdev->ndev;
1448
1449	skb = napi_get_frags(napi);
1450	if (!skb) {
1451		netif_err(qdev, drv, qdev->ndev,
1452			  "Couldn't get an skb, exiting.\n");
1453		rx_ring->rx_dropped++;
1454		put_page(lbq_desc->p.pg_chunk.page);
1455		return;
1456	}
1457	prefetch(lbq_desc->p.pg_chunk.va);
1458	__skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1459			     lbq_desc->p.pg_chunk.page,
1460			     lbq_desc->p.pg_chunk.offset,
1461			     length);
1462
1463	skb->len += length;
1464	skb->data_len += length;
1465	skb->truesize += length;
1466	skb_shinfo(skb)->nr_frags++;
1467
1468	rx_ring->rx_packets++;
1469	rx_ring->rx_bytes += length;
1470	skb->ip_summed = CHECKSUM_UNNECESSARY;
1471	skb_record_rx_queue(skb, rx_ring->cq_id);
1472	if (vlan_id != 0xffff)
1473		__vlan_hwaccel_put_tag(skb, vlan_id);
1474	napi_gro_frags(napi);
1475}
1476
1477/* Process an inbound completion from an rx ring. */
1478static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1479					struct rx_ring *rx_ring,
1480					struct ib_mac_iocb_rsp *ib_mac_rsp,
1481					u32 length,
1482					u16 vlan_id)
1483{
1484	struct net_device *ndev = qdev->ndev;
1485	struct sk_buff *skb = NULL;
1486	void *addr;
1487	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1488	struct napi_struct *napi = &rx_ring->napi;
1489
1490	skb = netdev_alloc_skb(ndev, length);
1491	if (!skb) {
1492		netif_err(qdev, drv, qdev->ndev,
1493			  "Couldn't get an skb, need to unwind!.\n");
1494		rx_ring->rx_dropped++;
1495		put_page(lbq_desc->p.pg_chunk.page);
1496		return;
1497	}
1498
1499	addr = lbq_desc->p.pg_chunk.va;
1500	prefetch(addr);
1501
1502
1503	/* Frame error, so drop the packet. */
1504	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1505		netif_info(qdev, drv, qdev->ndev,
1506			  "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1507		rx_ring->rx_errors++;
1508		goto err_out;
1509	}
1510
1511	/* The max framesize filter on this chip is set higher than
1512	 * MTU since FCoE uses 2k frames.
1513	 */
1514	if (skb->len > ndev->mtu + ETH_HLEN) {
1515		netif_err(qdev, drv, qdev->ndev,
1516			  "Segment too small, dropping.\n");
1517		rx_ring->rx_dropped++;
1518		goto err_out;
1519	}
1520	memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1521	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1522		     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1523		     length);
1524	skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1525				lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1526				length-ETH_HLEN);
1527	skb->len += length-ETH_HLEN;
1528	skb->data_len += length-ETH_HLEN;
1529	skb->truesize += length-ETH_HLEN;
1530
1531	rx_ring->rx_packets++;
1532	rx_ring->rx_bytes += skb->len;
1533	skb->protocol = eth_type_trans(skb, ndev);
1534	skb_checksum_none_assert(skb);
1535
1536	if ((ndev->features & NETIF_F_RXCSUM) &&
1537		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1538		/* TCP frame. */
1539		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1540			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1541				     "TCP checksum done!\n");
1542			skb->ip_summed = CHECKSUM_UNNECESSARY;
1543		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1544				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1545			/* Unfragmented ipv4 UDP frame. */
1546			struct iphdr *iph =
1547				(struct iphdr *) ((u8 *)addr + ETH_HLEN);
1548			if (!(iph->frag_off &
1549				cpu_to_be16(IP_MF|IP_OFFSET))) {
1550				skb->ip_summed = CHECKSUM_UNNECESSARY;
1551				netif_printk(qdev, rx_status, KERN_DEBUG,
1552					     qdev->ndev,
1553					     "UDP checksum done!\n");
1554			}
1555		}
1556	}
1557
1558	skb_record_rx_queue(skb, rx_ring->cq_id);
1559	if (vlan_id != 0xffff)
1560		__vlan_hwaccel_put_tag(skb, vlan_id);
1561	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1562		napi_gro_receive(napi, skb);
1563	else
1564		netif_receive_skb(skb);
1565	return;
1566err_out:
1567	dev_kfree_skb_any(skb);
1568	put_page(lbq_desc->p.pg_chunk.page);
1569}
1570
1571/* Process an inbound completion from an rx ring. */
1572static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1573					struct rx_ring *rx_ring,
1574					struct ib_mac_iocb_rsp *ib_mac_rsp,
1575					u32 length,
1576					u16 vlan_id)
1577{
1578	struct net_device *ndev = qdev->ndev;
1579	struct sk_buff *skb = NULL;
1580	struct sk_buff *new_skb = NULL;
1581	struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1582
1583	skb = sbq_desc->p.skb;
1584	/* Allocate new_skb and copy */
1585	new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1586	if (new_skb == NULL) {
1587		netif_err(qdev, probe, qdev->ndev,
1588			  "No skb available, drop the packet.\n");
1589		rx_ring->rx_dropped++;
1590		return;
1591	}
1592	skb_reserve(new_skb, NET_IP_ALIGN);
1593	memcpy(skb_put(new_skb, length), skb->data, length);
1594	skb = new_skb;
1595
1596	/* Frame error, so drop the packet. */
1597	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1598		netif_info(qdev, drv, qdev->ndev,
1599			  "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1600		dev_kfree_skb_any(skb);
1601		rx_ring->rx_errors++;
1602		return;
1603	}
1604
1605	/* loopback self test for ethtool */
1606	if (test_bit(QL_SELFTEST, &qdev->flags)) {
1607		ql_check_lb_frame(qdev, skb);
1608		dev_kfree_skb_any(skb);
1609		return;
1610	}
1611
1612	/* The max framesize filter on this chip is set higher than
1613	 * MTU since FCoE uses 2k frames.
1614	 */
1615	if (skb->len > ndev->mtu + ETH_HLEN) {
1616		dev_kfree_skb_any(skb);
1617		rx_ring->rx_dropped++;
1618		return;
1619	}
1620
1621	prefetch(skb->data);
1622	skb->dev = ndev;
1623	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1624		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1625			     "%s Multicast.\n",
1626			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1627			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1628			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1629			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1630			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1631			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1632	}
1633	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1634		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1635			     "Promiscuous Packet.\n");
1636
1637	rx_ring->rx_packets++;
1638	rx_ring->rx_bytes += skb->len;
1639	skb->protocol = eth_type_trans(skb, ndev);
1640	skb_checksum_none_assert(skb);
1641
1642	/* If rx checksum is on, and there are no
1643	 * csum or frame errors.
1644	 */
1645	if ((ndev->features & NETIF_F_RXCSUM) &&
1646		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1647		/* TCP frame. */
1648		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1649			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1650				     "TCP checksum done!\n");
1651			skb->ip_summed = CHECKSUM_UNNECESSARY;
1652		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1653				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1654			/* Unfragmented ipv4 UDP frame. */
1655			struct iphdr *iph = (struct iphdr *) skb->data;
1656			if (!(iph->frag_off &
1657				ntohs(IP_MF|IP_OFFSET))) {
1658				skb->ip_summed = CHECKSUM_UNNECESSARY;
1659				netif_printk(qdev, rx_status, KERN_DEBUG,
1660					     qdev->ndev,
1661					     "UDP checksum done!\n");
1662			}
1663		}
1664	}
1665
1666	skb_record_rx_queue(skb, rx_ring->cq_id);
1667	if (vlan_id != 0xffff)
1668		__vlan_hwaccel_put_tag(skb, vlan_id);
1669	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1670		napi_gro_receive(&rx_ring->napi, skb);
1671	else
1672		netif_receive_skb(skb);
1673}
1674
1675static void ql_realign_skb(struct sk_buff *skb, int len)
1676{
1677	void *temp_addr = skb->data;
1678
1679	/* Undo the skb_reserve(skb,32) we did before
1680	 * giving to hardware, and realign data on
1681	 * a 2-byte boundary.
1682	 */
1683	skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1684	skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1685	skb_copy_to_linear_data(skb, temp_addr,
1686		(unsigned int)len);
1687}
1688
1689/*
1690 * This function builds an skb for the given inbound
1691 * completion.  It will be rewritten for readability in the near
1692 * future, but for not it works well.
1693 */
1694static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1695				       struct rx_ring *rx_ring,
1696				       struct ib_mac_iocb_rsp *ib_mac_rsp)
1697{
1698	struct bq_desc *lbq_desc;
1699	struct bq_desc *sbq_desc;
1700	struct sk_buff *skb = NULL;
1701	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1702       u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1703
1704	/*
1705	 * Handle the header buffer if present.
1706	 */
1707	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1708	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1709		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1710			     "Header of %d bytes in small buffer.\n", hdr_len);
1711		/*
1712		 * Headers fit nicely into a small buffer.
1713		 */
1714		sbq_desc = ql_get_curr_sbuf(rx_ring);
1715		pci_unmap_single(qdev->pdev,
1716				dma_unmap_addr(sbq_desc, mapaddr),
1717				dma_unmap_len(sbq_desc, maplen),
1718				PCI_DMA_FROMDEVICE);
1719		skb = sbq_desc->p.skb;
1720		ql_realign_skb(skb, hdr_len);
1721		skb_put(skb, hdr_len);
1722		sbq_desc->p.skb = NULL;
1723	}
1724
1725	/*
1726	 * Handle the data buffer(s).
1727	 */
1728	if (unlikely(!length)) {	/* Is there data too? */
1729		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1730			     "No Data buffer in this packet.\n");
1731		return skb;
1732	}
1733
1734	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1735		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1736			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1737				     "Headers in small, data of %d bytes in small, combine them.\n",
1738				     length);
1739			/*
1740			 * Data is less than small buffer size so it's
1741			 * stuffed in a small buffer.
1742			 * For this case we append the data
1743			 * from the "data" small buffer to the "header" small
1744			 * buffer.
1745			 */
1746			sbq_desc = ql_get_curr_sbuf(rx_ring);
1747			pci_dma_sync_single_for_cpu(qdev->pdev,
1748						    dma_unmap_addr
1749						    (sbq_desc, mapaddr),
1750						    dma_unmap_len
1751						    (sbq_desc, maplen),
1752						    PCI_DMA_FROMDEVICE);
1753			memcpy(skb_put(skb, length),
1754			       sbq_desc->p.skb->data, length);
1755			pci_dma_sync_single_for_device(qdev->pdev,
1756						       dma_unmap_addr
1757						       (sbq_desc,
1758							mapaddr),
1759						       dma_unmap_len
1760						       (sbq_desc,
1761							maplen),
1762						       PCI_DMA_FROMDEVICE);
1763		} else {
1764			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1765				     "%d bytes in a single small buffer.\n",
1766				     length);
1767			sbq_desc = ql_get_curr_sbuf(rx_ring);
1768			skb = sbq_desc->p.skb;
1769			ql_realign_skb(skb, length);
1770			skb_put(skb, length);
1771			pci_unmap_single(qdev->pdev,
1772					 dma_unmap_addr(sbq_desc,
1773							mapaddr),
1774					 dma_unmap_len(sbq_desc,
1775						       maplen),
1776					 PCI_DMA_FROMDEVICE);
1777			sbq_desc->p.skb = NULL;
1778		}
1779	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1780		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1781			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1782				     "Header in small, %d bytes in large. Chain large to small!\n",
1783				     length);
1784			/*
1785			 * The data is in a single large buffer.  We
1786			 * chain it to the header buffer's skb and let
1787			 * it rip.
1788			 */
1789			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1790			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1791				     "Chaining page at offset = %d, for %d bytes  to skb.\n",
1792				     lbq_desc->p.pg_chunk.offset, length);
1793			skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1794						lbq_desc->p.pg_chunk.offset,
1795						length);
1796			skb->len += length;
1797			skb->data_len += length;
1798			skb->truesize += length;
1799		} else {
1800			/*
1801			 * The headers and data are in a single large buffer. We
1802			 * copy it to a new skb and let it go. This can happen with
1803			 * jumbo mtu on a non-TCP/UDP frame.
1804			 */
1805			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1806			skb = netdev_alloc_skb(qdev->ndev, length);
1807			if (skb == NULL) {
1808				netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1809					     "No skb available, drop the packet.\n");
1810				return NULL;
1811			}
1812			pci_unmap_page(qdev->pdev,
1813				       dma_unmap_addr(lbq_desc,
1814						      mapaddr),
1815				       dma_unmap_len(lbq_desc, maplen),
1816				       PCI_DMA_FROMDEVICE);
1817			skb_reserve(skb, NET_IP_ALIGN);
1818			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1819				     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1820				     length);
1821			skb_fill_page_desc(skb, 0,
1822						lbq_desc->p.pg_chunk.page,
1823						lbq_desc->p.pg_chunk.offset,
1824						length);
1825			skb->len += length;
1826			skb->data_len += length;
1827			skb->truesize += length;
1828			length -= length;
1829			__pskb_pull_tail(skb,
1830				(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1831				VLAN_ETH_HLEN : ETH_HLEN);
1832		}
1833	} else {
1834		/*
1835		 * The data is in a chain of large buffers
1836		 * pointed to by a small buffer.  We loop
1837		 * thru and chain them to the our small header
1838		 * buffer's skb.
1839		 * frags:  There are 18 max frags and our small
1840		 *         buffer will hold 32 of them. The thing is,
1841		 *         we'll use 3 max for our 9000 byte jumbo
1842		 *         frames.  If the MTU goes up we could
1843		 *          eventually be in trouble.
1844		 */
1845		int size, i = 0;
1846		sbq_desc = ql_get_curr_sbuf(rx_ring);
1847		pci_unmap_single(qdev->pdev,
1848				 dma_unmap_addr(sbq_desc, mapaddr),
1849				 dma_unmap_len(sbq_desc, maplen),
1850				 PCI_DMA_FROMDEVICE);
1851		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1852			/*
1853			 * This is an non TCP/UDP IP frame, so
1854			 * the headers aren't split into a small
1855			 * buffer.  We have to use the small buffer
1856			 * that contains our sg list as our skb to
1857			 * send upstairs. Copy the sg list here to
1858			 * a local buffer and use it to find the
1859			 * pages to chain.
1860			 */
1861			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1862				     "%d bytes of headers & data in chain of large.\n",
1863				     length);
1864			skb = sbq_desc->p.skb;
1865			sbq_desc->p.skb = NULL;
1866			skb_reserve(skb, NET_IP_ALIGN);
1867		}
1868		while (length > 0) {
1869			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1870			size = (length < rx_ring->lbq_buf_size) ? length :
1871				rx_ring->lbq_buf_size;
1872
1873			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1874				     "Adding page %d to skb for %d bytes.\n",
1875				     i, size);
1876			skb_fill_page_desc(skb, i,
1877						lbq_desc->p.pg_chunk.page,
1878						lbq_desc->p.pg_chunk.offset,
1879						size);
1880			skb->len += size;
1881			skb->data_len += size;
1882			skb->truesize += size;
1883			length -= size;
1884			i++;
1885		}
1886		__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1887				VLAN_ETH_HLEN : ETH_HLEN);
1888	}
1889	return skb;
1890}
1891
1892/* Process an inbound completion from an rx ring. */
1893static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1894				   struct rx_ring *rx_ring,
1895				   struct ib_mac_iocb_rsp *ib_mac_rsp,
1896				   u16 vlan_id)
1897{
1898	struct net_device *ndev = qdev->ndev;
1899	struct sk_buff *skb = NULL;
1900
1901	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1902
1903	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1904	if (unlikely(!skb)) {
1905		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1906			     "No skb available, drop packet.\n");
1907		rx_ring->rx_dropped++;
1908		return;
1909	}
1910
1911	/* Frame error, so drop the packet. */
1912	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1913		netif_info(qdev, drv, qdev->ndev,
1914			  "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1915		dev_kfree_skb_any(skb);
1916		rx_ring->rx_errors++;
1917		return;
1918	}
1919
1920	/* The max framesize filter on this chip is set higher than
1921	 * MTU since FCoE uses 2k frames.
1922	 */
1923	if (skb->len > ndev->mtu + ETH_HLEN) {
1924		dev_kfree_skb_any(skb);
1925		rx_ring->rx_dropped++;
1926		return;
1927	}
1928
1929	/* loopback self test for ethtool */
1930	if (test_bit(QL_SELFTEST, &qdev->flags)) {
1931		ql_check_lb_frame(qdev, skb);
1932		dev_kfree_skb_any(skb);
1933		return;
1934	}
1935
1936	prefetch(skb->data);
1937	skb->dev = ndev;
1938	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1939		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1940			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1941			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1942			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1943			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1944			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1945			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1946		rx_ring->rx_multicast++;
1947	}
1948	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1949		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1950			     "Promiscuous Packet.\n");
1951	}
1952
1953	skb->protocol = eth_type_trans(skb, ndev);
1954	skb_checksum_none_assert(skb);
1955
1956	/* If rx checksum is on, and there are no
1957	 * csum or frame errors.
1958	 */
1959	if ((ndev->features & NETIF_F_RXCSUM) &&
1960		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1961		/* TCP frame. */
1962		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1963			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964				     "TCP checksum done!\n");
1965			skb->ip_summed = CHECKSUM_UNNECESSARY;
1966		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1967				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1968		/* Unfragmented ipv4 UDP frame. */
1969			struct iphdr *iph = (struct iphdr *) skb->data;
1970			if (!(iph->frag_off &
1971				ntohs(IP_MF|IP_OFFSET))) {
1972				skb->ip_summed = CHECKSUM_UNNECESSARY;
1973				netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1974					     "TCP checksum done!\n");
1975			}
1976		}
1977	}
1978
1979	rx_ring->rx_packets++;
1980	rx_ring->rx_bytes += skb->len;
1981	skb_record_rx_queue(skb, rx_ring->cq_id);
1982	if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1983		__vlan_hwaccel_put_tag(skb, vlan_id);
1984	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1985		napi_gro_receive(&rx_ring->napi, skb);
1986	else
1987		netif_receive_skb(skb);
1988}
1989
1990/* Process an inbound completion from an rx ring. */
1991static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1992					struct rx_ring *rx_ring,
1993					struct ib_mac_iocb_rsp *ib_mac_rsp)
1994{
1995	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1996	u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1997			((le16_to_cpu(ib_mac_rsp->vlan_id) &
1998			IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
1999
2000	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2001
2002	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2003		/* The data and headers are split into
2004		 * separate buffers.
2005		 */
2006		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2007						vlan_id);
2008	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2009		/* The data fit in a single small buffer.
2010		 * Allocate a new skb, copy the data and
2011		 * return the buffer to the free pool.
2012		 */
2013		ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2014						length, vlan_id);
2015	} else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2016		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2017		(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2018		/* TCP packet in a page chunk that's been checksummed.
2019		 * Tack it on to our GRO skb and let it go.
2020		 */
2021		ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2022						length, vlan_id);
2023	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2024		/* Non-TCP packet in a page chunk. Allocate an
2025		 * skb, tack it on frags, and send it up.
2026		 */
2027		ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2028						length, vlan_id);
2029	} else {
2030		/* Non-TCP/UDP large frames that span multiple buffers
2031		 * can be processed corrrectly by the split frame logic.
2032		 */
2033		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2034						vlan_id);
2035	}
2036
2037	return (unsigned long)length;
2038}
2039
2040/* Process an outbound completion from an rx ring. */
2041static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2042				   struct ob_mac_iocb_rsp *mac_rsp)
2043{
2044	struct tx_ring *tx_ring;
2045	struct tx_ring_desc *tx_ring_desc;
2046
2047	QL_DUMP_OB_MAC_RSP(mac_rsp);
2048	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2049	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2050	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2051	tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2052	tx_ring->tx_packets++;
2053	dev_kfree_skb(tx_ring_desc->skb);
2054	tx_ring_desc->skb = NULL;
2055
2056	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2057					OB_MAC_IOCB_RSP_S |
2058					OB_MAC_IOCB_RSP_L |
2059					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2060		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2061			netif_warn(qdev, tx_done, qdev->ndev,
2062				   "Total descriptor length did not match transfer length.\n");
2063		}
2064		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2065			netif_warn(qdev, tx_done, qdev->ndev,
2066				   "Frame too short to be valid, not sent.\n");
2067		}
2068		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2069			netif_warn(qdev, tx_done, qdev->ndev,
2070				   "Frame too long, but sent anyway.\n");
2071		}
2072		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2073			netif_warn(qdev, tx_done, qdev->ndev,
2074				   "PCI backplane error. Frame not sent.\n");
2075		}
2076	}
2077	atomic_inc(&tx_ring->tx_count);
2078}
2079
2080/* Fire up a handler to reset the MPI processor. */
2081void ql_queue_fw_error(struct ql_adapter *qdev)
2082{
2083	ql_link_off(qdev);
2084	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2085}
2086
2087void ql_queue_asic_error(struct ql_adapter *qdev)
2088{
2089	ql_link_off(qdev);
2090	ql_disable_interrupts(qdev);
2091	/* Clear adapter up bit to signal the recovery
2092	 * process that it shouldn't kill the reset worker
2093	 * thread
2094	 */
2095	clear_bit(QL_ADAPTER_UP, &qdev->flags);
2096	/* Set asic recovery bit to indicate reset process that we are
2097	 * in fatal error recovery process rather than normal close
2098	 */
2099	set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2100	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2101}
2102
2103static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2104				    struct ib_ae_iocb_rsp *ib_ae_rsp)
2105{
2106	switch (ib_ae_rsp->event) {
2107	case MGMT_ERR_EVENT:
2108		netif_err(qdev, rx_err, qdev->ndev,
2109			  "Management Processor Fatal Error.\n");
2110		ql_queue_fw_error(qdev);
2111		return;
2112
2113	case CAM_LOOKUP_ERR_EVENT:
2114		netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2115		netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2116		ql_queue_asic_error(qdev);
2117		return;
2118
2119	case SOFT_ECC_ERROR_EVENT:
2120		netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2121		ql_queue_asic_error(qdev);
2122		break;
2123
2124	case PCI_ERR_ANON_BUF_RD:
2125		netdev_err(qdev->ndev, "PCI error occurred when reading "
2126					"anonymous buffers from rx_ring %d.\n",
2127					ib_ae_rsp->q_id);
2128		ql_queue_asic_error(qdev);
2129		break;
2130
2131	default:
2132		netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2133			  ib_ae_rsp->event);
2134		ql_queue_asic_error(qdev);
2135		break;
2136	}
2137}
2138
2139static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2140{
2141	struct ql_adapter *qdev = rx_ring->qdev;
2142	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2143	struct ob_mac_iocb_rsp *net_rsp = NULL;
2144	int count = 0;
2145
2146	struct tx_ring *tx_ring;
2147	/* While there are entries in the completion queue. */
2148	while (prod != rx_ring->cnsmr_idx) {
2149
2150		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2151			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2152			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2153
2154		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2155		rmb();
2156		switch (net_rsp->opcode) {
2157
2158		case OPCODE_OB_MAC_TSO_IOCB:
2159		case OPCODE_OB_MAC_IOCB:
2160			ql_process_mac_tx_intr(qdev, net_rsp);
2161			break;
2162		default:
2163			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2164				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2165				     net_rsp->opcode);
2166		}
2167		count++;
2168		ql_update_cq(rx_ring);
2169		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2170	}
2171	if (!net_rsp)
2172		return 0;
2173	ql_write_cq_idx(rx_ring);
2174	tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2175	if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2176		if (atomic_read(&tx_ring->queue_stopped) &&
2177		    (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2178			/*
2179			 * The queue got stopped because the tx_ring was full.
2180			 * Wake it up, because it's now at least 25% empty.
2181			 */
2182			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2183	}
2184
2185	return count;
2186}
2187
2188static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2189{
2190	struct ql_adapter *qdev = rx_ring->qdev;
2191	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2192	struct ql_net_rsp_iocb *net_rsp;
2193	int count = 0;
2194
2195	/* While there are entries in the completion queue. */
2196	while (prod != rx_ring->cnsmr_idx) {
2197
2198		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2199			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2200			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2201
2202		net_rsp = rx_ring->curr_entry;
2203		rmb();
2204		switch (net_rsp->opcode) {
2205		case OPCODE_IB_MAC_IOCB:
2206			ql_process_mac_rx_intr(qdev, rx_ring,
2207					       (struct ib_mac_iocb_rsp *)
2208					       net_rsp);
2209			break;
2210
2211		case OPCODE_IB_AE_IOCB:
2212			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2213						net_rsp);
2214			break;
2215		default:
2216			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2217				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2218				     net_rsp->opcode);
2219			break;
2220		}
2221		count++;
2222		ql_update_cq(rx_ring);
2223		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2224		if (count == budget)
2225			break;
2226	}
2227	ql_update_buffer_queues(qdev, rx_ring);
2228	ql_write_cq_idx(rx_ring);
2229	return count;
2230}
2231
2232static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2233{
2234	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2235	struct ql_adapter *qdev = rx_ring->qdev;
2236	struct rx_ring *trx_ring;
2237	int i, work_done = 0;
2238	struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2239
2240	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2241		     "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2242
2243	/* Service the TX rings first.  They start
2244	 * right after the RSS rings. */
2245	for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2246		trx_ring = &qdev->rx_ring[i];
2247		/* If this TX completion ring belongs to this vector and
2248		 * it's not empty then service it.
2249		 */
2250		if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2251			(ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2252					trx_ring->cnsmr_idx)) {
2253			netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2254				     "%s: Servicing TX completion ring %d.\n",
2255				     __func__, trx_ring->cq_id);
2256			ql_clean_outbound_rx_ring(trx_ring);
2257		}
2258	}
2259
2260	/*
2261	 * Now service the RSS ring if it's active.
2262	 */
2263	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2264					rx_ring->cnsmr_idx) {
2265		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2266			     "%s: Servicing RX completion ring %d.\n",
2267			     __func__, rx_ring->cq_id);
2268		work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2269	}
2270
2271	if (work_done < budget) {
2272		napi_complete(napi);
2273		ql_enable_completion_interrupt(qdev, rx_ring->irq);
2274	}
2275	return work_done;
2276}
2277
2278static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2279{
2280	struct ql_adapter *qdev = netdev_priv(ndev);
2281
2282	if (features & NETIF_F_HW_VLAN_RX) {
2283		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2284				 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2285	} else {
2286		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2287	}
2288}
2289
2290static netdev_features_t qlge_fix_features(struct net_device *ndev,
2291	netdev_features_t features)
2292{
2293	/*
2294	 * Since there is no support for separate rx/tx vlan accel
2295	 * enable/disable make sure tx flag is always in same state as rx.
2296	 */
2297	if (features & NETIF_F_HW_VLAN_RX)
2298		features |= NETIF_F_HW_VLAN_TX;
2299	else
2300		features &= ~NETIF_F_HW_VLAN_TX;
2301
2302	return features;
2303}
2304
2305static int qlge_set_features(struct net_device *ndev,
2306	netdev_features_t features)
2307{
2308	netdev_features_t changed = ndev->features ^ features;
2309
2310	if (changed & NETIF_F_HW_VLAN_RX)
2311		qlge_vlan_mode(ndev, features);
2312
2313	return 0;
2314}
2315
2316static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2317{
2318	u32 enable_bit = MAC_ADDR_E;
2319	int err;
2320
2321	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2322				  MAC_ADDR_TYPE_VLAN, vid);
2323	if (err)
2324		netif_err(qdev, ifup, qdev->ndev,
2325			  "Failed to init vlan address.\n");
2326	return err;
2327}
2328
2329static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2330{
2331	struct ql_adapter *qdev = netdev_priv(ndev);
2332	int status;
2333	int err;
2334
2335	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2336	if (status)
2337		return status;
2338
2339	err = __qlge_vlan_rx_add_vid(qdev, vid);
2340	set_bit(vid, qdev->active_vlans);
2341
2342	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2343
2344	return err;
2345}
2346
2347static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2348{
2349	u32 enable_bit = 0;
2350	int err;
2351
2352	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2353				  MAC_ADDR_TYPE_VLAN, vid);
2354	if (err)
2355		netif_err(qdev, ifup, qdev->ndev,
2356			  "Failed to clear vlan address.\n");
2357	return err;
2358}
2359
2360static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2361{
2362	struct ql_adapter *qdev = netdev_priv(ndev);
2363	int status;
2364	int err;
2365
2366	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2367	if (status)
2368		return status;
2369
2370	err = __qlge_vlan_rx_kill_vid(qdev, vid);
2371	clear_bit(vid, qdev->active_vlans);
2372
2373	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2374
2375	return err;
2376}
2377
2378static void qlge_restore_vlan(struct ql_adapter *qdev)
2379{
2380	int status;
2381	u16 vid;
2382
2383	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2384	if (status)
2385		return;
2386
2387	for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2388		__qlge_vlan_rx_add_vid(qdev, vid);
2389
2390	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2391}
2392
2393/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2394static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2395{
2396	struct rx_ring *rx_ring = dev_id;
2397	napi_schedule(&rx_ring->napi);
2398	return IRQ_HANDLED;
2399}
2400
2401/* This handles a fatal error, MPI activity, and the default
2402 * rx_ring in an MSI-X multiple vector environment.
2403 * In MSI/Legacy environment it also process the rest of
2404 * the rx_rings.
2405 */
2406static irqreturn_t qlge_isr(int irq, void *dev_id)
2407{
2408	struct rx_ring *rx_ring = dev_id;
2409	struct ql_adapter *qdev = rx_ring->qdev;
2410	struct intr_context *intr_context = &qdev->intr_context[0];
2411	u32 var;
2412	int work_done = 0;
2413
2414	spin_lock(&qdev->hw_lock);
2415	if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2416		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2417			     "Shared Interrupt, Not ours!\n");
2418		spin_unlock(&qdev->hw_lock);
2419		return IRQ_NONE;
2420	}
2421	spin_unlock(&qdev->hw_lock);
2422
2423	var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2424
2425	/*
2426	 * Check for fatal error.
2427	 */
2428	if (var & STS_FE) {
2429		ql_queue_asic_error(qdev);
2430		netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2431		var = ql_read32(qdev, ERR_STS);
2432		netdev_err(qdev->ndev, "Resetting chip. "
2433					"Error Status Register = 0x%x\n", var);
2434		return IRQ_HANDLED;
2435	}
2436
2437	/*
2438	 * Check MPI processor activity.
2439	 */
2440	if ((var & STS_PI) &&
2441		(ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2442		/*
2443		 * We've got an async event or mailbox completion.
2444		 * Handle it and clear the source of the interrupt.
2445		 */
2446		netif_err(qdev, intr, qdev->ndev,
2447			  "Got MPI processor interrupt.\n");
2448		ql_disable_completion_interrupt(qdev, intr_context->intr);
2449		ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2450		queue_delayed_work_on(smp_processor_id(),
2451				qdev->workqueue, &qdev->mpi_work, 0);
2452		work_done++;
2453	}
2454
2455	/*
2456	 * Get the bit-mask that shows the active queues for this
2457	 * pass.  Compare it to the queues that this irq services
2458	 * and call napi if there's a match.
2459	 */
2460	var = ql_read32(qdev, ISR1);
2461	if (var & intr_context->irq_mask) {
2462		netif_info(qdev, intr, qdev->ndev,
2463			   "Waking handler for rx_ring[0].\n");
2464		ql_disable_completion_interrupt(qdev, intr_context->intr);
2465		napi_schedule(&rx_ring->napi);
2466		work_done++;
2467	}
2468	ql_enable_completion_interrupt(qdev, intr_context->intr);
2469	return work_done ? IRQ_HANDLED : IRQ_NONE;
2470}
2471
2472static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2473{
2474
2475	if (skb_is_gso(skb)) {
2476		int err;
2477		if (skb_header_cloned(skb)) {
2478			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479			if (err)
2480				return err;
2481		}
2482
2483		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2484		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2485		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2486		mac_iocb_ptr->total_hdrs_len =
2487		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2488		mac_iocb_ptr->net_trans_offset =
2489		    cpu_to_le16(skb_network_offset(skb) |
2490				skb_transport_offset(skb)
2491				<< OB_MAC_TRANSPORT_HDR_SHIFT);
2492		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2493		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2494		if (likely(skb->protocol == htons(ETH_P_IP))) {
2495			struct iphdr *iph = ip_hdr(skb);
2496			iph->check = 0;
2497			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2498			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2499								 iph->daddr, 0,
2500								 IPPROTO_TCP,
2501								 0);
2502		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2503			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2504			tcp_hdr(skb)->check =
2505			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2506					     &ipv6_hdr(skb)->daddr,
2507					     0, IPPROTO_TCP, 0);
2508		}
2509		return 1;
2510	}
2511	return 0;
2512}
2513
2514static void ql_hw_csum_setup(struct sk_buff *skb,
2515			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2516{
2517	int len;
2518	struct iphdr *iph = ip_hdr(skb);
2519	__sum16 *check;
2520	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2521	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2522	mac_iocb_ptr->net_trans_offset =
2523		cpu_to_le16(skb_network_offset(skb) |
2524		skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2525
2526	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2527	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2528	if (likely(iph->protocol == IPPROTO_TCP)) {
2529		check = &(tcp_hdr(skb)->check);
2530		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2531		mac_iocb_ptr->total_hdrs_len =
2532		    cpu_to_le16(skb_transport_offset(skb) +
2533				(tcp_hdr(skb)->doff << 2));
2534	} else {
2535		check = &(udp_hdr(skb)->check);
2536		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2537		mac_iocb_ptr->total_hdrs_len =
2538		    cpu_to_le16(skb_transport_offset(skb) +
2539				sizeof(struct udphdr));
2540	}
2541	*check = ~csum_tcpudp_magic(iph->saddr,
2542				    iph->daddr, len, iph->protocol, 0);
2543}
2544
2545static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2546{
2547	struct tx_ring_desc *tx_ring_desc;
2548	struct ob_mac_iocb_req *mac_iocb_ptr;
2549	struct ql_adapter *qdev = netdev_priv(ndev);
2550	int tso;
2551	struct tx_ring *tx_ring;
2552	u32 tx_ring_idx = (u32) skb->queue_mapping;
2553
2554	tx_ring = &qdev->tx_ring[tx_ring_idx];
2555
2556	if (skb_padto(skb, ETH_ZLEN))
2557		return NETDEV_TX_OK;
2558
2559	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2560		netif_info(qdev, tx_queued, qdev->ndev,
2561			   "%s: shutting down tx queue %d du to lack of resources.\n",
2562			   __func__, tx_ring_idx);
2563		netif_stop_subqueue(ndev, tx_ring->wq_id);
2564		atomic_inc(&tx_ring->queue_stopped);
2565		tx_ring->tx_errors++;
2566		return NETDEV_TX_BUSY;
2567	}
2568	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2569	mac_iocb_ptr = tx_ring_desc->queue_entry;
2570	memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2571
2572	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2573	mac_iocb_ptr->tid = tx_ring_desc->index;
2574	/* We use the upper 32-bits to store the tx queue for this IO.
2575	 * When we get the completion we can use it to establish the context.
2576	 */
2577	mac_iocb_ptr->txq_idx = tx_ring_idx;
2578	tx_ring_desc->skb = skb;
2579
2580	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2581
2582	if (vlan_tx_tag_present(skb)) {
2583		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2584			     "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2585		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2586		mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2587	}
2588	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2589	if (tso < 0) {
2590		dev_kfree_skb_any(skb);
2591		return NETDEV_TX_OK;
2592	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2593		ql_hw_csum_setup(skb,
2594				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2595	}
2596	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2597			NETDEV_TX_OK) {
2598		netif_err(qdev, tx_queued, qdev->ndev,
2599			  "Could not map the segments.\n");
2600		tx_ring->tx_errors++;
2601		return NETDEV_TX_BUSY;
2602	}
2603	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2604	tx_ring->prod_idx++;
2605	if (tx_ring->prod_idx == tx_ring->wq_len)
2606		tx_ring->prod_idx = 0;
2607	wmb();
2608
2609	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2610	netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2611		     "tx queued, slot %d, len %d\n",
2612		     tx_ring->prod_idx, skb->len);
2613
2614	atomic_dec(&tx_ring->tx_count);
2615	return NETDEV_TX_OK;
2616}
2617
2618
2619static void ql_free_shadow_space(struct ql_adapter *qdev)
2620{
2621	if (qdev->rx_ring_shadow_reg_area) {
2622		pci_free_consistent(qdev->pdev,
2623				    PAGE_SIZE,
2624				    qdev->rx_ring_shadow_reg_area,
2625				    qdev->rx_ring_shadow_reg_dma);
2626		qdev->rx_ring_shadow_reg_area = NULL;
2627	}
2628	if (qdev->tx_ring_shadow_reg_area) {
2629		pci_free_consistent(qdev->pdev,
2630				    PAGE_SIZE,
2631				    qdev->tx_ring_shadow_reg_area,
2632				    qdev->tx_ring_shadow_reg_dma);
2633		qdev->tx_ring_shadow_reg_area = NULL;
2634	}
2635}
2636
2637static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2638{
2639	qdev->rx_ring_shadow_reg_area =
2640	    pci_alloc_consistent(qdev->pdev,
2641				 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2642	if (qdev->rx_ring_shadow_reg_area == NULL) {
2643		netif_err(qdev, ifup, qdev->ndev,
2644			  "Allocation of RX shadow space failed.\n");
2645		return -ENOMEM;
2646	}
2647	memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2648	qdev->tx_ring_shadow_reg_area =
2649	    pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2650				 &qdev->tx_ring_shadow_reg_dma);
2651	if (qdev->tx_ring_shadow_reg_area == NULL) {
2652		netif_err(qdev, ifup, qdev->ndev,
2653			  "Allocation of TX shadow space failed.\n");
2654		goto err_wqp_sh_area;
2655	}
2656	memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2657	return 0;
2658
2659err_wqp_sh_area:
2660	pci_free_consistent(qdev->pdev,
2661			    PAGE_SIZE,
2662			    qdev->rx_ring_shadow_reg_area,
2663			    qdev->rx_ring_shadow_reg_dma);
2664	return -ENOMEM;
2665}
2666
2667static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2668{
2669	struct tx_ring_desc *tx_ring_desc;
2670	int i;
2671	struct ob_mac_iocb_req *mac_iocb_ptr;
2672
2673	mac_iocb_ptr = tx_ring->wq_base;
2674	tx_ring_desc = tx_ring->q;
2675	for (i = 0; i < tx_ring->wq_len; i++) {
2676		tx_ring_desc->index = i;
2677		tx_ring_desc->skb = NULL;
2678		tx_ring_desc->queue_entry = mac_iocb_ptr;
2679		mac_iocb_ptr++;
2680		tx_ring_desc++;
2681	}
2682	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2683	atomic_set(&tx_ring->queue_stopped, 0);
2684}
2685
2686static void ql_free_tx_resources(struct ql_adapter *qdev,
2687				 struct tx_ring *tx_ring)
2688{
2689	if (tx_ring->wq_base) {
2690		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2691				    tx_ring->wq_base, tx_ring->wq_base_dma);
2692		tx_ring->wq_base = NULL;
2693	}
2694	kfree(tx_ring->q);
2695	tx_ring->q = NULL;
2696}
2697
2698static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2699				 struct tx_ring *tx_ring)
2700{
2701	tx_ring->wq_base =
2702	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2703				 &tx_ring->wq_base_dma);
2704
2705	if ((tx_ring->wq_base == NULL) ||
2706	    tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2707		netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2708		return -ENOMEM;
2709	}
2710	tx_ring->q =
2711	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2712	if (tx_ring->q == NULL)
2713		goto err;
2714
2715	return 0;
2716err:
2717	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2718			    tx_ring->wq_base, tx_ring->wq_base_dma);
2719	return -ENOMEM;
2720}
2721
2722static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2723{
2724	struct bq_desc *lbq_desc;
2725
2726	uint32_t  curr_idx, clean_idx;
2727
2728	curr_idx = rx_ring->lbq_curr_idx;
2729	clean_idx = rx_ring->lbq_clean_idx;
2730	while (curr_idx != clean_idx) {
2731		lbq_desc = &rx_ring->lbq[curr_idx];
2732
2733		if (lbq_desc->p.pg_chunk.last_flag) {
2734			pci_unmap_page(qdev->pdev,
2735				lbq_desc->p.pg_chunk.map,
2736				ql_lbq_block_size(qdev),
2737				       PCI_DMA_FROMDEVICE);
2738			lbq_desc->p.pg_chunk.last_flag = 0;
2739		}
2740
2741		put_page(lbq_desc->p.pg_chunk.page);
2742		lbq_desc->p.pg_chunk.page = NULL;
2743
2744		if (++curr_idx == rx_ring->lbq_len)
2745			curr_idx = 0;
2746
2747	}
2748}
2749
2750static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2751{
2752	int i;
2753	struct bq_desc *sbq_desc;
2754
2755	for (i = 0; i < rx_ring->sbq_len; i++) {
2756		sbq_desc = &rx_ring->sbq[i];
2757		if (sbq_desc == NULL) {
2758			netif_err(qdev, ifup, qdev->ndev,
2759				  "sbq_desc %d is NULL.\n", i);
2760			return;
2761		}
2762		if (sbq_desc->p.skb) {
2763			pci_unmap_single(qdev->pdev,
2764					 dma_unmap_addr(sbq_desc, mapaddr),
2765					 dma_unmap_len(sbq_desc, maplen),
2766					 PCI_DMA_FROMDEVICE);
2767			dev_kfree_skb(sbq_desc->p.skb);
2768			sbq_desc->p.skb = NULL;
2769		}
2770	}
2771}
2772
2773/* Free all large and small rx buffers associated
2774 * with the completion queues for this device.
2775 */
2776static void ql_free_rx_buffers(struct ql_adapter *qdev)
2777{
2778	int i;
2779	struct rx_ring *rx_ring;
2780
2781	for (i = 0; i < qdev->rx_ring_count; i++) {
2782		rx_ring = &qdev->rx_ring[i];
2783		if (rx_ring->lbq)
2784			ql_free_lbq_buffers(qdev, rx_ring);
2785		if (rx_ring->sbq)
2786			ql_free_sbq_buffers(qdev, rx_ring);
2787	}
2788}
2789
2790static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2791{
2792	struct rx_ring *rx_ring;
2793	int i;
2794
2795	for (i = 0; i < qdev->rx_ring_count; i++) {
2796		rx_ring = &qdev->rx_ring[i];
2797		if (rx_ring->type != TX_Q)
2798			ql_update_buffer_queues(qdev, rx_ring);
2799	}
2800}
2801
2802static void ql_init_lbq_ring(struct ql_adapter *qdev,
2803				struct rx_ring *rx_ring)
2804{
2805	int i;
2806	struct bq_desc *lbq_desc;
2807	__le64 *bq = rx_ring->lbq_base;
2808
2809	memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2810	for (i = 0; i < rx_ring->lbq_len; i++) {
2811		lbq_desc = &rx_ring->lbq[i];
2812		memset(lbq_desc, 0, sizeof(*lbq_desc));
2813		lbq_desc->index = i;
2814		lbq_desc->addr = bq;
2815		bq++;
2816	}
2817}
2818
2819static void ql_init_sbq_ring(struct ql_adapter *qdev,
2820				struct rx_ring *rx_ring)
2821{
2822	int i;
2823	struct bq_desc *sbq_desc;
2824	__le64 *bq = rx_ring->sbq_base;
2825
2826	memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2827	for (i = 0; i < rx_ring->sbq_len; i++) {
2828		sbq_desc = &rx_ring->sbq[i];
2829		memset(sbq_desc, 0, sizeof(*sbq_desc));
2830		sbq_desc->index = i;
2831		sbq_desc->addr = bq;
2832		bq++;
2833	}
2834}
2835
2836static void ql_free_rx_resources(struct ql_adapter *qdev,
2837				 struct rx_ring *rx_ring)
2838{
2839	/* Free the small buffer queue. */
2840	if (rx_ring->sbq_base) {
2841		pci_free_consistent(qdev->pdev,
2842				    rx_ring->sbq_size,
2843				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
2844		rx_ring->sbq_base = NULL;
2845	}
2846
2847	/* Free the small buffer queue control blocks. */
2848	kfree(rx_ring->sbq);
2849	rx_ring->sbq = NULL;
2850
2851	/* Free the large buffer queue. */
2852	if (rx_ring->lbq_base) {
2853		pci_free_consistent(qdev->pdev,
2854				    rx_ring->lbq_size,
2855				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
2856		rx_ring->lbq_base = NULL;
2857	}
2858
2859	/* Free the large buffer queue control blocks. */
2860	kfree(rx_ring->lbq);
2861	rx_ring->lbq = NULL;
2862
2863	/* Free the rx queue. */
2864	if (rx_ring->cq_base) {
2865		pci_free_consistent(qdev->pdev,
2866				    rx_ring->cq_size,
2867				    rx_ring->cq_base, rx_ring->cq_base_dma);
2868		rx_ring->cq_base = NULL;
2869	}
2870}
2871
2872/* Allocate queues and buffers for this completions queue based
2873 * on the values in the parameter structure. */
2874static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2875				 struct rx_ring *rx_ring)
2876{
2877
2878	/*
2879	 * Allocate the completion queue for this rx_ring.
2880	 */
2881	rx_ring->cq_base =
2882	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2883				 &rx_ring->cq_base_dma);
2884
2885	if (rx_ring->cq_base == NULL) {
2886		netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2887		return -ENOMEM;
2888	}
2889
2890	if (rx_ring->sbq_len) {
2891		/*
2892		 * Allocate small buffer queue.
2893		 */
2894		rx_ring->sbq_base =
2895		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2896					 &rx_ring->sbq_base_dma);
2897
2898		if (rx_ring->sbq_base == NULL) {
2899			netif_err(qdev, ifup, qdev->ndev,
2900				  "Small buffer queue allocation failed.\n");
2901			goto err_mem;
2902		}
2903
2904		/*
2905		 * Allocate small buffer queue control blocks.
2906		 */
2907		rx_ring->sbq =
2908		    kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2909			    GFP_KERNEL);
2910		if (rx_ring->sbq == NULL) {
2911			netif_err(qdev, ifup, qdev->ndev,
2912				  "Small buffer queue control block allocation failed.\n");
2913			goto err_mem;
2914		}
2915
2916		ql_init_sbq_ring(qdev, rx_ring);
2917	}
2918
2919	if (rx_ring->lbq_len) {
2920		/*
2921		 * Allocate large buffer queue.
2922		 */
2923		rx_ring->lbq_base =
2924		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2925					 &rx_ring->lbq_base_dma);
2926
2927		if (rx_ring->lbq_base == NULL) {
2928			netif_err(qdev, ifup, qdev->ndev,
2929				  "Large buffer queue allocation failed.\n");
2930			goto err_mem;
2931		}
2932		/*
2933		 * Allocate large buffer queue control blocks.
2934		 */
2935		rx_ring->lbq =
2936		    kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2937			    GFP_KERNEL);
2938		if (rx_ring->lbq == NULL) {
2939			netif_err(qdev, ifup, qdev->ndev,
2940				  "Large buffer queue control block allocation failed.\n");
2941			goto err_mem;
2942		}
2943
2944		ql_init_lbq_ring(qdev, rx_ring);
2945	}
2946
2947	return 0;
2948
2949err_mem:
2950	ql_free_rx_resources(qdev, rx_ring);
2951	return -ENOMEM;
2952}
2953
2954static void ql_tx_ring_clean(struct ql_adapter *qdev)
2955{
2956	struct tx_ring *tx_ring;
2957	struct tx_ring_desc *tx_ring_desc;
2958	int i, j;
2959
2960	/*
2961	 * Loop through all queues and free
2962	 * any resources.
2963	 */
2964	for (j = 0; j < qdev->tx_ring_count; j++) {
2965		tx_ring = &qdev->tx_ring[j];
2966		for (i = 0; i < tx_ring->wq_len; i++) {
2967			tx_ring_desc = &tx_ring->q[i];
2968			if (tx_ring_desc && tx_ring_desc->skb) {
2969				netif_err(qdev, ifdown, qdev->ndev,
2970					  "Freeing lost SKB %p, from queue %d, index %d.\n",
2971					  tx_ring_desc->skb, j,
2972					  tx_ring_desc->index);
2973				ql_unmap_send(qdev, tx_ring_desc,
2974					      tx_ring_desc->map_cnt);
2975				dev_kfree_skb(tx_ring_desc->skb);
2976				tx_ring_desc->skb = NULL;
2977			}
2978		}
2979	}
2980}
2981
2982static void ql_free_mem_resources(struct ql_adapter *qdev)
2983{
2984	int i;
2985
2986	for (i = 0; i < qdev->tx_ring_count; i++)
2987		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2988	for (i = 0; i < qdev->rx_ring_count; i++)
2989		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2990	ql_free_shadow_space(qdev);
2991}
2992
2993static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2994{
2995	int i;
2996
2997	/* Allocate space for our shadow registers and such. */
2998	if (ql_alloc_shadow_space(qdev))
2999		return -ENOMEM;
3000
3001	for (i = 0; i < qdev->rx_ring_count; i++) {
3002		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3003			netif_err(qdev, ifup, qdev->ndev,
3004				  "RX resource allocation failed.\n");
3005			goto err_mem;
3006		}
3007	}
3008	/* Allocate tx queue resources */
3009	for (i = 0; i < qdev->tx_ring_count; i++) {
3010		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3011			netif_err(qdev, ifup, qdev->ndev,
3012				  "TX resource allocation failed.\n");
3013			goto err_mem;
3014		}
3015	}
3016	return 0;
3017
3018err_mem:
3019	ql_free_mem_resources(qdev);
3020	return -ENOMEM;
3021}
3022
3023/* Set up the rx ring control block and pass it to the chip.
3024 * The control block is defined as
3025 * "Completion Queue Initialization Control Block", or cqicb.
3026 */
3027static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3028{
3029	struct cqicb *cqicb = &rx_ring->cqicb;
3030	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3031		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3032	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3033		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3034	void __iomem *doorbell_area =
3035	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3036	int err = 0;
3037	u16 bq_len;
3038	u64 tmp;
3039	__le64 *base_indirect_ptr;
3040	int page_entries;
3041
3042	/* Set up the shadow registers for this ring. */
3043	rx_ring->prod_idx_sh_reg = shadow_reg;
3044	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3045	*rx_ring->prod_idx_sh_reg = 0;
3046	shadow_reg += sizeof(u64);
3047	shadow_reg_dma += sizeof(u64);
3048	rx_ring->lbq_base_indirect = shadow_reg;
3049	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3050	shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3051	shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3052	rx_ring->sbq_base_indirect = shadow_reg;
3053	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3054
3055	/* PCI doorbell mem area + 0x00 for consumer index register */
3056	rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3057	rx_ring->cnsmr_idx = 0;
3058	rx_ring->curr_entry = rx_ring->cq_base;
3059
3060	/* PCI doorbell mem area + 0x04 for valid register */
3061	rx_ring->valid_db_reg = doorbell_area + 0x04;
3062
3063	/* PCI doorbell mem area + 0x18 for large buffer consumer */
3064	rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3065
3066	/* PCI doorbell mem area + 0x1c */
3067	rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3068
3069	memset((void *)cqicb, 0, sizeof(struct cqicb));
3070	cqicb->msix_vect = rx_ring->irq;
3071
3072	bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3073	cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3074
3075	cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3076
3077	cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3078
3079	/*
3080	 * Set up the control block load flags.
3081	 */
3082	cqicb->flags = FLAGS_LC |	/* Load queue base address */
3083	    FLAGS_LV |		/* Load MSI-X vector */
3084	    FLAGS_LI;		/* Load irq delay values */
3085	if (rx_ring->lbq_len) {
3086		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
3087		tmp = (u64)rx_ring->lbq_base_dma;
3088		base_indirect_ptr = rx_ring->lbq_base_indirect;
3089		page_entries = 0;
3090		do {
3091			*base_indirect_ptr = cpu_to_le64(tmp);
3092			tmp += DB_PAGE_SIZE;
3093			base_indirect_ptr++;
3094			page_entries++;
3095		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3096		cqicb->lbq_addr =
3097		    cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3098		bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3099			(u16) rx_ring->lbq_buf_size;
3100		cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3101		bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3102			(u16) rx_ring->lbq_len;
3103		cqicb->lbq_len = cpu_to_le16(bq_len);
3104		rx_ring->lbq_prod_idx = 0;
3105		rx_ring->lbq_curr_idx = 0;
3106		rx_ring->lbq_clean_idx = 0;
3107		rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3108	}
3109	if (rx_ring->sbq_len) {
3110		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
3111		tmp = (u64)rx_ring->sbq_base_dma;
3112		base_indirect_ptr = rx_ring->sbq_base_indirect;
3113		page_entries = 0;
3114		do {
3115			*base_indirect_ptr = cpu_to_le64(tmp);
3116			tmp += DB_PAGE_SIZE;
3117			base_indirect_ptr++;
3118			page_entries++;
3119		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3120		cqicb->sbq_addr =
3121		    cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3122		cqicb->sbq_buf_size =
3123		    cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3124		bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3125			(u16) rx_ring->sbq_len;
3126		cqicb->sbq_len = cpu_to_le16(bq_len);
3127		rx_ring->sbq_prod_idx = 0;
3128		rx_ring->sbq_curr_idx = 0;
3129		rx_ring->sbq_clean_idx = 0;
3130		rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3131	}
3132	switch (rx_ring->type) {
3133	case TX_Q:
3134		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3135		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3136		break;
3137	case RX_Q:
3138		/* Inbound completion handling rx_rings run in
3139		 * separate NAPI contexts.
3140		 */
3141		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3142			       64);
3143		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3144		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3145		break;
3146	default:
3147		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3148			     "Invalid rx_ring->type = %d.\n", rx_ring->type);
3149	}
3150	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3151			   CFG_LCQ, rx_ring->cq_id);
3152	if (err) {
3153		netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3154		return err;
3155	}
3156	return err;
3157}
3158
3159static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3160{
3161	struct wqicb *wqicb = (struct wqicb *)tx_ring;
3162	void __iomem *doorbell_area =
3163	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3164	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3165	    (tx_ring->wq_id * sizeof(u64));
3166	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3167	    (tx_ring->wq_id * sizeof(u64));
3168	int err = 0;
3169
3170	/*
3171	 * Assign doorbell registers for this tx_ring.
3172	 */
3173	/* TX PCI doorbell mem area for tx producer index */
3174	tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3175	tx_ring->prod_idx = 0;
3176	/* TX PCI doorbell mem area + 0x04 */
3177	tx_ring->valid_db_reg = doorbell_area + 0x04;
3178
3179	/*
3180	 * Assign shadow registers for this tx_ring.
3181	 */
3182	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3183	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3184
3185	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3186	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3187				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3188	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3189	wqicb->rid = 0;
3190	wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3191
3192	wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3193
3194	ql_init_tx_ring(qdev, tx_ring);
3195
3196	err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3197			   (u16) tx_ring->wq_id);
3198	if (err) {
3199		netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3200		return err;
3201	}
3202	return err;
3203}
3204
3205static void ql_disable_msix(struct ql_adapter *qdev)
3206{
3207	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3208		pci_disable_msix(qdev->pdev);
3209		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3210		kfree(qdev->msi_x_entry);
3211		qdev->msi_x_entry = NULL;
3212	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3213		pci_disable_msi(qdev->pdev);
3214		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3215	}
3216}
3217
3218/* We start by trying to get the number of vectors
3219 * stored in qdev->intr_count. If we don't get that
3220 * many then we reduce the count and try again.
3221 */
3222static void ql_enable_msix(struct ql_adapter *qdev)
3223{
3224	int i, err;
3225
3226	/* Get the MSIX vectors. */
3227	if (qlge_irq_type == MSIX_IRQ) {
3228		/* Try to alloc space for the msix struct,
3229		 * if it fails then go to MSI/legacy.
3230		 */
3231		qdev->msi_x_entry = kcalloc(qdev->intr_count,
3232					    sizeof(struct msix_entry),
3233					    GFP_KERNEL);
3234		if (!qdev->msi_x_entry) {
3235			qlge_irq_type = MSI_IRQ;
3236			goto msi;
3237		}
3238
3239		for (i = 0; i < qdev->intr_count; i++)
3240			qdev->msi_x_entry[i].entry = i;
3241
3242		/* Loop to get our vectors.  We start with
3243		 * what we want and settle for what we get.
3244		 */
3245		do {
3246			err = pci_enable_msix(qdev->pdev,
3247				qdev->msi_x_entry, qdev->intr_count);
3248			if (err > 0)
3249				qdev->intr_count = err;
3250		} while (err > 0);
3251
3252		if (err < 0) {
3253			kfree(qdev->msi_x_entry);
3254			qdev->msi_x_entry = NULL;
3255			netif_warn(qdev, ifup, qdev->ndev,
3256				   "MSI-X Enable failed, trying MSI.\n");
3257			qdev->intr_count = 1;
3258			qlge_irq_type = MSI_IRQ;
3259		} else if (err == 0) {
3260			set_bit(QL_MSIX_ENABLED, &qdev->flags);
3261			netif_info(qdev, ifup, qdev->ndev,
3262				   "MSI-X Enabled, got %d vectors.\n",
3263				   qdev->intr_count);
3264			return;
3265		}
3266	}
3267msi:
3268	qdev->intr_count = 1;
3269	if (qlge_irq_type == MSI_IRQ) {
3270		if (!pci_enable_msi(qdev->pdev)) {
3271			set_bit(QL_MSI_ENABLED, &qdev->flags);
3272			netif_info(qdev, ifup, qdev->ndev,
3273				   "Running with MSI interrupts.\n");
3274			return;
3275		}
3276	}
3277	qlge_irq_type = LEG_IRQ;
3278	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3279		     "Running with legacy interrupts.\n");
3280}
3281
3282/* Each vector services 1 RSS ring and and 1 or more
3283 * TX completion rings.  This function loops through
3284 * the TX completion rings and assigns the vector that
3285 * will service it.  An example would be if there are
3286 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3287 * This would mean that vector 0 would service RSS ring 0
3288 * and TX completion rings 0,1,2 and 3.  Vector 1 would
3289 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3290 */
3291static void ql_set_tx_vect(struct ql_adapter *qdev)
3292{
3293	int i, j, vect;
3294	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3295
3296	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3297		/* Assign irq vectors to TX rx_rings.*/
3298		for (vect = 0, j = 0, i = qdev->rss_ring_count;
3299					 i < qdev->rx_ring_count; i++) {
3300			if (j == tx_rings_per_vector) {
3301				vect++;
3302				j = 0;
3303			}
3304			qdev->rx_ring[i].irq = vect;
3305			j++;
3306		}
3307	} else {
3308		/* For single vector all rings have an irq
3309		 * of zero.
3310		 */
3311		for (i = 0; i < qdev->rx_ring_count; i++)
3312			qdev->rx_ring[i].irq = 0;
3313	}
3314}
3315
3316/* Set the interrupt mask for this vector.  Each vector
3317 * will service 1 RSS ring and 1 or more TX completion
3318 * rings.  This function sets up a bit mask per vector
3319 * that indicates which rings it services.
3320 */
3321static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3322{
3323	int j, vect = ctx->intr;
3324	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3325
3326	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3327		/* Add the RSS ring serviced by this vector
3328		 * to the mask.
3329		 */
3330		ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3331		/* Add the TX ring(s) serviced by this vector
3332		 * to the mask. */
3333		for (j = 0; j < tx_rings_per_vector; j++) {
3334			ctx->irq_mask |=
3335			(1 << qdev->rx_ring[qdev->rss_ring_count +
3336			(vect * tx_rings_per_vector) + j].cq_id);
3337		}
3338	} else {
3339		/* For single vector we just shift each queue's
3340		 * ID into the mask.
3341		 */
3342		for (j = 0; j < qdev->rx_ring_count; j++)
3343			ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3344	}
3345}
3346
3347/*
3348 * Here we build the intr_context structures based on
3349 * our rx_ring count and intr vector count.
3350 * The intr_context structure is used to hook each vector
3351 * to possibly different handlers.
3352 */
3353static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3354{
3355	int i = 0;
3356	struct intr_context *intr_context = &qdev->intr_context[0];
3357
3358	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3359		/* Each rx_ring has it's
3360		 * own intr_context since we have separate
3361		 * vectors for each queue.
3362		 */
3363		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3364			qdev->rx_ring[i].irq = i;
3365			intr_context->intr = i;
3366			intr_context->qdev = qdev;
3367			/* Set up this vector's bit-mask that indicates
3368			 * which queues it services.
3369			 */
3370			ql_set_irq_mask(qdev, intr_context);
3371			/*
3372			 * We set up each vectors enable/disable/read bits so
3373			 * there's no bit/mask calculations in the critical path.
3374			 */
3375			intr_context->intr_en_mask =
3376			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3377			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3378			    | i;
3379			intr_context->intr_dis_mask =
3380			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3381			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3382			    INTR_EN_IHD | i;
3383			intr_context->intr_read_mask =
3384			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3385			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3386			    i;
3387			if (i == 0) {
3388				/* The first vector/queue handles
3389				 * broadcast/multicast, fatal errors,
3390				 * and firmware events.  This in addition
3391				 * to normal inbound NAPI processing.
3392				 */
3393				intr_context->handler = qlge_isr;
3394				sprintf(intr_context->name, "%s-rx-%d",
3395					qdev->ndev->name, i);
3396			} else {
3397				/*
3398				 * Inbound queues handle unicast frames only.
3399				 */
3400				intr_context->handler = qlge_msix_rx_isr;
3401				sprintf(intr_context->name, "%s-rx-%d",
3402					qdev->ndev->name, i);
3403			}
3404		}
3405	} else {
3406		/*
3407		 * All rx_rings use the same intr_context since
3408		 * there is only one vector.
3409		 */
3410		intr_context->intr = 0;
3411		intr_context->qdev = qdev;
3412		/*
3413		 * We set up each vectors enable/disable/read bits so
3414		 * there's no bit/mask calculations in the critical path.
3415		 */
3416		intr_context->intr_en_mask =
3417		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3418		intr_context->intr_dis_mask =
3419		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3420		    INTR_EN_TYPE_DISABLE;
3421		intr_context->intr_read_mask =
3422		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3423		/*
3424		 * Single interrupt means one handler for all rings.
3425		 */
3426		intr_context->handler = qlge_isr;
3427		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3428		/* Set up this vector's bit-mask that indicates
3429		 * which queues it services. In this case there is
3430		 * a single vector so it will service all RSS and
3431		 * TX completion rings.
3432		 */
3433		ql_set_irq_mask(qdev, intr_context);
3434	}
3435	/* Tell the TX completion rings which MSIx vector
3436	 * they will be using.
3437	 */
3438	ql_set_tx_vect(qdev);
3439}
3440
3441static void ql_free_irq(struct ql_adapter *qdev)
3442{
3443	int i;
3444	struct intr_context *intr_context = &qdev->intr_context[0];
3445
3446	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3447		if (intr_context->hooked) {
3448			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3449				free_irq(qdev->msi_x_entry[i].vector,
3450					 &qdev->rx_ring[i]);
3451			} else {
3452				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3453			}
3454		}
3455	}
3456	ql_disable_msix(qdev);
3457}
3458
3459static int ql_request_irq(struct ql_adapter *qdev)
3460{
3461	int i;
3462	int status = 0;
3463	struct pci_dev *pdev = qdev->pdev;
3464	struct intr_context *intr_context = &qdev->intr_context[0];
3465
3466	ql_resolve_queues_to_irqs(qdev);
3467
3468	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3469		atomic_set(&intr_context->irq_cnt, 0);
3470		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3471			status = request_irq(qdev->msi_x_entry[i].vector,
3472					     intr_context->handler,
3473					     0,
3474					     intr_context->name,
3475					     &qdev->rx_ring[i]);
3476			if (status) {
3477				netif_err(qdev, ifup, qdev->ndev,
3478					  "Failed request for MSIX interrupt %d.\n",
3479					  i);
3480				goto err_irq;
3481			}
3482		} else {
3483			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3484				     "trying msi or legacy interrupts.\n");
3485			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3486				     "%s: irq = %d.\n", __func__, pdev->irq);
3487			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3488				     "%s: context->name = %s.\n", __func__,
3489				     intr_context->name);
3490			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3491				     "%s: dev_id = 0x%p.\n", __func__,
3492				     &qdev->rx_ring[0]);
3493			status =
3494			    request_irq(pdev->irq, qlge_isr,
3495					test_bit(QL_MSI_ENABLED,
3496						 &qdev->
3497						 flags) ? 0 : IRQF_SHARED,
3498					intr_context->name, &qdev->rx_ring[0]);
3499			if (status)
3500				goto err_irq;
3501
3502			netif_err(qdev, ifup, qdev->ndev,
3503				  "Hooked intr %d, queue type %s, with name %s.\n",
3504				  i,
3505				  qdev->rx_ring[0].type == DEFAULT_Q ?
3506				  "DEFAULT_Q" :
3507				  qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3508				  qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3509				  intr_context->name);
3510		}
3511		intr_context->hooked = 1;
3512	}
3513	return status;
3514err_irq:
3515	netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3516	ql_free_irq(qdev);
3517	return status;
3518}
3519
3520static int ql_start_rss(struct ql_adapter *qdev)
3521{
3522	static const u8 init_hash_seed[] = {
3523		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3524		0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3525		0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3526		0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3527		0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3528	};
3529	struct ricb *ricb = &qdev->ricb;
3530	int status = 0;
3531	int i;
3532	u8 *hash_id = (u8 *) ricb->hash_cq_id;
3533
3534	memset((void *)ricb, 0, sizeof(*ricb));
3535
3536	ricb->base_cq = RSS_L4K;
3537	ricb->flags =
3538		(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3539	ricb->mask = cpu_to_le16((u16)(0x3ff));
3540
3541	/*
3542	 * Fill out the Indirection Table.
3543	 */
3544	for (i = 0; i < 1024; i++)
3545		hash_id[i] = (i & (qdev->rss_ring_count - 1));
3546
3547	memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3548	memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3549
3550	status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3551	if (status) {
3552		netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3553		return status;
3554	}
3555	return status;
3556}
3557
3558static int ql_clear_routing_entries(struct ql_adapter *qdev)
3559{
3560	int i, status = 0;
3561
3562	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3563	if (status)
3564		return status;
3565	/* Clear all the entries in the routing table. */
3566	for (i = 0; i < 16; i++) {
3567		status = ql_set_routing_reg(qdev, i, 0, 0);
3568		if (status) {
3569			netif_err(qdev, ifup, qdev->ndev,
3570				  "Failed to init routing register for CAM packets.\n");
3571			break;
3572		}
3573	}
3574	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3575	return status;
3576}
3577
3578/* Initialize the frame-to-queue routing. */
3579static int ql_route_initialize(struct ql_adapter *qdev)
3580{
3581	int status = 0;
3582
3583	/* Clear all the entries in the routing table. */
3584	status = ql_clear_routing_entries(qdev);
3585	if (status)
3586		return status;
3587
3588	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3589	if (status)
3590		return status;
3591
3592	status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3593						RT_IDX_IP_CSUM_ERR, 1);
3594	if (status) {
3595		netif_err(qdev, ifup, qdev->ndev,
3596			"Failed to init routing register "
3597			"for IP CSUM error packets.\n");
3598		goto exit;
3599	}
3600	status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3601						RT_IDX_TU_CSUM_ERR, 1);
3602	if (status) {
3603		netif_err(qdev, ifup, qdev->ndev,
3604			"Failed to init routing register "
3605			"for TCP/UDP CSUM error packets.\n");
3606		goto exit;
3607	}
3608	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3609	if (status) {
3610		netif_err(qdev, ifup, qdev->ndev,
3611			  "Failed to init routing register for broadcast packets.\n");
3612		goto exit;
3613	}
3614	/* If we have more than one inbound queue, then turn on RSS in the
3615	 * routing block.
3616	 */
3617	if (qdev->rss_ring_count > 1) {
3618		status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3619					RT_IDX_RSS_MATCH, 1);
3620		if (status) {
3621			netif_err(qdev, ifup, qdev->ndev,
3622				  "Failed to init routing register for MATCH RSS packets.\n");
3623			goto exit;
3624		}
3625	}
3626
3627	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3628				    RT_IDX_CAM_HIT, 1);
3629	if (status)
3630		netif_err(qdev, ifup, qdev->ndev,
3631			  "Failed to init routing register for CAM packets.\n");
3632exit:
3633	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3634	return status;
3635}
3636
3637int ql_cam_route_initialize(struct ql_adapter *qdev)
3638{
3639	int status, set;
3640
3641	/* If check if the link is up and use to
3642	 * determine if we are setting or clearing
3643	 * the MAC address in the CAM.
3644	 */
3645	set = ql_read32(qdev, STS);
3646	set &= qdev->port_link_up;
3647	status = ql_set_mac_addr(qdev, set);
3648	if (status) {
3649		netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3650		return status;
3651	}
3652
3653	status = ql_route_initialize(qdev);
3654	if (status)
3655		netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3656
3657	return status;
3658}
3659
3660static int ql_adapter_initialize(struct ql_adapter *qdev)
3661{
3662	u32 value, mask;
3663	int i;
3664	int status = 0;
3665
3666	/*
3667	 * Set up the System register to halt on errors.
3668	 */
3669	value = SYS_EFE | SYS_FAE;
3670	mask = value << 16;
3671	ql_write32(qdev, SYS, mask | value);
3672
3673	/* Set the default queue, and VLAN behavior. */
3674	value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3675	mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3676	ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3677
3678	/* Set the MPI interrupt to enabled. */
3679	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3680
3681	/* Enable the function, set pagesize, enable error checking. */
3682	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3683	    FSC_EC | FSC_VM_PAGE_4K;
3684	value |= SPLT_SETTING;
3685
3686	/* Set/clear header splitting. */
3687	mask = FSC_VM_PAGESIZE_MASK |
3688	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3689	ql_write32(qdev, FSC, mask | value);
3690
3691	ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3692
3693	/* Set RX packet routing to use port/pci function on which the
3694	 * packet arrived on in addition to usual frame routing.
3695	 * This is helpful on bonding where both interfaces can have
3696	 * the same MAC address.
3697	 */
3698	ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3699	/* Reroute all packets to our Interface.
3700	 * They may have been routed to MPI firmware
3701	 * due to WOL.
3702	 */
3703	value = ql_read32(qdev, MGMT_RCV_CFG);
3704	value &= ~MGMT_RCV_CFG_RM;
3705	mask = 0xffff0000;
3706
3707	/* Sticky reg needs clearing due to WOL. */
3708	ql_write32(qdev, MGMT_RCV_CFG, mask);
3709	ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3710
3711	/* Default WOL is enable on Mezz cards */
3712	if (qdev->pdev->subsystem_device == 0x0068 ||
3713			qdev->pdev->subsystem_device == 0x0180)
3714		qdev->wol = WAKE_MAGIC;
3715
3716	/* Start up the rx queues. */
3717	for (i = 0; i < qdev->rx_ring_count; i++) {
3718		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3719		if (status) {
3720			netif_err(qdev, ifup, qdev->ndev,
3721				  "Failed to start rx ring[%d].\n", i);
3722			return status;
3723		}
3724	}
3725
3726	/* If there is more than one inbound completion queue
3727	 * then download a RICB to configure RSS.
3728	 */
3729	if (qdev->rss_ring_count > 1) {
3730		status = ql_start_rss(qdev);
3731		if (status) {
3732			netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3733			return status;
3734		}
3735	}
3736
3737	/* Start up the tx queues. */
3738	for (i = 0; i < qdev->tx_ring_count; i++) {
3739		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3740		if (status) {
3741			netif_err(qdev, ifup, qdev->ndev,
3742				  "Failed to start tx ring[%d].\n", i);
3743			return status;
3744		}
3745	}
3746
3747	/* Initialize the port and set the max framesize. */
3748	status = qdev->nic_ops->port_initialize(qdev);
3749	if (status)
3750		netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3751
3752	/* Set up the MAC address and frame routing filter. */
3753	status = ql_cam_route_initialize(qdev);
3754	if (status) {
3755		netif_err(qdev, ifup, qdev->ndev,
3756			  "Failed to init CAM/Routing tables.\n");
3757		return status;
3758	}
3759
3760	/* Start NAPI for the RSS queues. */
3761	for (i = 0; i < qdev->rss_ring_count; i++)
3762		napi_enable(&qdev->rx_ring[i].napi);
3763
3764	return status;
3765}
3766
3767/* Issue soft reset to chip. */
3768static int ql_adapter_reset(struct ql_adapter *qdev)
3769{
3770	u32 value;
3771	int status = 0;
3772	unsigned long end_jiffies;
3773
3774	/* Clear all the entries in the routing table. */
3775	status = ql_clear_routing_entries(qdev);
3776	if (status) {
3777		netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3778		return status;
3779	}
3780
3781	end_jiffies = jiffies +
3782		max((unsigned long)1, usecs_to_jiffies(30));
3783
3784	/* Check if bit is set then skip the mailbox command and
3785	 * clear the bit, else we are in normal reset process.
3786	 */
3787	if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3788		/* Stop management traffic. */
3789		ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3790
3791		/* Wait for the NIC and MGMNT FIFOs to empty. */
3792		ql_wait_fifo_empty(qdev);
3793	} else
3794		clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3795
3796	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3797
3798	do {
3799		value = ql_read32(qdev, RST_FO);
3800		if ((value & RST_FO_FR) == 0)
3801			break;
3802		cpu_relax();
3803	} while (time_before(jiffies, end_jiffies));
3804
3805	if (value & RST_FO_FR) {
3806		netif_err(qdev, ifdown, qdev->ndev,
3807			  "ETIMEDOUT!!! errored out of resetting the chip!\n");
3808		status = -ETIMEDOUT;
3809	}
3810
3811	/* Resume management traffic. */
3812	ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3813	return status;
3814}
3815
3816static void ql_display_dev_info(struct net_device *ndev)
3817{
3818	struct ql_adapter *qdev = netdev_priv(ndev);
3819
3820	netif_info(qdev, probe, qdev->ndev,
3821		   "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3822		   "XG Roll = %d, XG Rev = %d.\n",
3823		   qdev->func,
3824		   qdev->port,
3825		   qdev->chip_rev_id & 0x0000000f,
3826		   qdev->chip_rev_id >> 4 & 0x0000000f,
3827		   qdev->chip_rev_id >> 8 & 0x0000000f,
3828		   qdev->chip_rev_id >> 12 & 0x0000000f);
3829	netif_info(qdev, probe, qdev->ndev,
3830		   "MAC address %pM\n", ndev->dev_addr);
3831}
3832
3833static int ql_wol(struct ql_adapter *qdev)
3834{
3835	int status = 0;
3836	u32 wol = MB_WOL_DISABLE;
3837
3838	/* The CAM is still intact after a reset, but if we
3839	 * are doing WOL, then we may need to program the
3840	 * routing regs. We would also need to issue the mailbox
3841	 * commands to instruct the MPI what to do per the ethtool
3842	 * settings.
3843	 */
3844
3845	if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3846			WAKE_MCAST | WAKE_BCAST)) {
3847		netif_err(qdev, ifdown, qdev->ndev,
3848			  "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3849			  qdev->wol);
3850		return -EINVAL;
3851	}
3852
3853	if (qdev->wol & WAKE_MAGIC) {
3854		status = ql_mb_wol_set_magic(qdev, 1);
3855		if (status) {
3856			netif_err(qdev, ifdown, qdev->ndev,
3857				  "Failed to set magic packet on %s.\n",
3858				  qdev->ndev->name);
3859			return status;
3860		} else
3861			netif_info(qdev, drv, qdev->ndev,
3862				   "Enabled magic packet successfully on %s.\n",
3863				   qdev->ndev->name);
3864
3865		wol |= MB_WOL_MAGIC_PKT;
3866	}
3867
3868	if (qdev->wol) {
3869		wol |= MB_WOL_MODE_ON;
3870		status = ql_mb_wol_mode(qdev, wol);
3871		netif_err(qdev, drv, qdev->ndev,
3872			  "WOL %s (wol code 0x%x) on %s\n",
3873			  (status == 0) ? "Successfully set" : "Failed",
3874			  wol, qdev->ndev->name);
3875	}
3876
3877	return status;
3878}
3879
3880static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3881{
3882
3883	/* Don't kill the reset worker thread if we
3884	 * are in the process of recovery.
3885	 */
3886	if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3887		cancel_delayed_work_sync(&qdev->asic_reset_work);
3888	cancel_delayed_work_sync(&qdev->mpi_reset_work);
3889	cancel_delayed_work_sync(&qdev->mpi_work);
3890	cancel_delayed_work_sync(&qdev->mpi_idc_work);
3891	cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3892	cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3893}
3894
3895static int ql_adapter_down(struct ql_adapter *qdev)
3896{
3897	int i, status = 0;
3898
3899	ql_link_off(qdev);
3900
3901	ql_cancel_all_work_sync(qdev);
3902
3903	for (i = 0; i < qdev->rss_ring_count; i++)
3904		napi_disable(&qdev->rx_ring[i].napi);
3905
3906	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3907
3908	ql_disable_interrupts(qdev);
3909
3910	ql_tx_ring_clean(qdev);
3911
3912	/* Call netif_napi_del() from common point.
3913	 */
3914	for (i = 0; i < qdev->rss_ring_count; i++)
3915		netif_napi_del(&qdev->rx_ring[i].napi);
3916
3917	status = ql_adapter_reset(qdev);
3918	if (status)
3919		netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3920			  qdev->func);
3921	ql_free_rx_buffers(qdev);
3922
3923	return status;
3924}
3925
3926static int ql_adapter_up(struct ql_adapter *qdev)
3927{
3928	int err = 0;
3929
3930	err = ql_adapter_initialize(qdev);
3931	if (err) {
3932		netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3933		goto err_init;
3934	}
3935	set_bit(QL_ADAPTER_UP, &qdev->flags);
3936	ql_alloc_rx_buffers(qdev);
3937	/* If the port is initialized and the
3938	 * link is up the turn on the carrier.
3939	 */
3940	if ((ql_read32(qdev, STS) & qdev->port_init) &&
3941			(ql_read32(qdev, STS) & qdev->port_link_up))
3942		ql_link_on(qdev);
3943	/* Restore rx mode. */
3944	clear_bit(QL_ALLMULTI, &qdev->flags);
3945	clear_bit(QL_PROMISCUOUS, &qdev->flags);
3946	qlge_set_multicast_list(qdev->ndev);
3947
3948	/* Restore vlan setting. */
3949	qlge_restore_vlan(qdev);
3950
3951	ql_enable_interrupts(qdev);
3952	ql_enable_all_completion_interrupts(qdev);
3953	netif_tx_start_all_queues(qdev->ndev);
3954
3955	return 0;
3956err_init:
3957	ql_adapter_reset(qdev);
3958	return err;
3959}
3960
3961static void ql_release_adapter_resources(struct ql_adapter *qdev)
3962{
3963	ql_free_mem_resources(qdev);
3964	ql_free_irq(qdev);
3965}
3966
3967static int ql_get_adapter_resources(struct ql_adapter *qdev)
3968{
3969	int status = 0;
3970
3971	if (ql_alloc_mem_resources(qdev)) {
3972		netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
3973		return -ENOMEM;
3974	}
3975	status = ql_request_irq(qdev);
3976	return status;
3977}
3978
3979static int qlge_close(struct net_device *ndev)
3980{
3981	struct ql_adapter *qdev = netdev_priv(ndev);
3982
3983	/* If we hit pci_channel_io_perm_failure
3984	 * failure condition, then we already
3985	 * brought the adapter down.
3986	 */
3987	if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
3988		netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
3989		clear_bit(QL_EEH_FATAL, &qdev->flags);
3990		return 0;
3991	}
3992
3993	/*
3994	 * Wait for device to recover from a reset.
3995	 * (Rarely happens, but possible.)
3996	 */
3997	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3998		msleep(1);
3999	ql_adapter_down(qdev);
4000	ql_release_adapter_resources(qdev);
4001	return 0;
4002}
4003
4004static int ql_configure_rings(struct ql_adapter *qdev)
4005{
4006	int i;
4007	struct rx_ring *rx_ring;
4008	struct tx_ring *tx_ring;
4009	int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4010	unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4011		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4012
4013	qdev->lbq_buf_order = get_order(lbq_buf_len);
4014
4015	/* In a perfect world we have one RSS ring for each CPU
4016	 * and each has it's own vector.  To do that we ask for
4017	 * cpu_cnt vectors.  ql_enable_msix() will adjust the
4018	 * vector count to what we actually get.  We then
4019	 * allocate an RSS ring for each.
4020	 * Essentially, we are doing min(cpu_count, msix_vector_count).
4021	 */
4022	qdev->intr_count = cpu_cnt;
4023	ql_enable_msix(qdev);
4024	/* Adjust the RSS ring count to the actual vector count. */
4025	qdev->rss_ring_count = qdev->intr_count;
4026	qdev->tx_ring_count = cpu_cnt;
4027	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4028
4029	for (i = 0; i < qdev->tx_ring_count; i++) {
4030		tx_ring = &qdev->tx_ring[i];
4031		memset((void *)tx_ring, 0, sizeof(*tx_ring));
4032		tx_ring->qdev = qdev;
4033		tx_ring->wq_id = i;
4034		tx_ring->wq_len = qdev->tx_ring_size;
4035		tx_ring->wq_size =
4036		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4037
4038		/*
4039		 * The completion queue ID for the tx rings start
4040		 * immediately after the rss rings.
4041		 */
4042		tx_ring->cq_id = qdev->rss_ring_count + i;
4043	}
4044
4045	for (i = 0; i < qdev->rx_ring_count; i++) {
4046		rx_ring = &qdev->rx_ring[i];
4047		memset((void *)rx_ring, 0, sizeof(*rx_ring));
4048		rx_ring->qdev = qdev;
4049		rx_ring->cq_id = i;
4050		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
4051		if (i < qdev->rss_ring_count) {
4052			/*
4053			 * Inbound (RSS) queues.
4054			 */
4055			rx_ring->cq_len = qdev->rx_ring_size;
4056			rx_ring->cq_size =
4057			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4058			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4059			rx_ring->lbq_size =
4060			    rx_ring->lbq_len * sizeof(__le64);
4061			rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4062			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4063			rx_ring->sbq_size =
4064			    rx_ring->sbq_len * sizeof(__le64);
4065			rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4066			rx_ring->type = RX_Q;
4067		} else {
4068			/*
4069			 * Outbound queue handles outbound completions only.
4070			 */
4071			/* outbound cq is same size as tx_ring it services. */
4072			rx_ring->cq_len = qdev->tx_ring_size;
4073			rx_ring->cq_size =
4074			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4075			rx_ring->lbq_len = 0;
4076			rx_ring->lbq_size = 0;
4077			rx_ring->lbq_buf_size = 0;
4078			rx_ring->sbq_len = 0;
4079			rx_ring->sbq_size = 0;
4080			rx_ring->sbq_buf_size = 0;
4081			rx_ring->type = TX_Q;
4082		}
4083	}
4084	return 0;
4085}
4086
4087static int qlge_open(struct net_device *ndev)
4088{
4089	int err = 0;
4090	struct ql_adapter *qdev = netdev_priv(ndev);
4091
4092	err = ql_adapter_reset(qdev);
4093	if (err)
4094		return err;
4095
4096	err = ql_configure_rings(qdev);
4097	if (err)
4098		return err;
4099
4100	err = ql_get_adapter_resources(qdev);
4101	if (err)
4102		goto error_up;
4103
4104	err = ql_adapter_up(qdev);
4105	if (err)
4106		goto error_up;
4107
4108	return err;
4109
4110error_up:
4111	ql_release_adapter_resources(qdev);
4112	return err;
4113}
4114
4115static int ql_change_rx_buffers(struct ql_adapter *qdev)
4116{
4117	struct rx_ring *rx_ring;
4118	int i, status;
4119	u32 lbq_buf_len;
4120
4121	/* Wait for an outstanding reset to complete. */
4122	if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4123		int i = 3;
4124		while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4125			netif_err(qdev, ifup, qdev->ndev,
4126				  "Waiting for adapter UP...\n");
4127			ssleep(1);
4128		}
4129
4130		if (!i) {
4131			netif_err(qdev, ifup, qdev->ndev,
4132				  "Timed out waiting for adapter UP\n");
4133			return -ETIMEDOUT;
4134		}
4135	}
4136
4137	status = ql_adapter_down(qdev);
4138	if (status)
4139		goto error;
4140
4141	/* Get the new rx buffer size. */
4142	lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4143		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4144	qdev->lbq_buf_order = get_order(lbq_buf_len);
4145
4146	for (i = 0; i < qdev->rss_ring_count; i++) {
4147		rx_ring = &qdev->rx_ring[i];
4148		/* Set the new size. */
4149		rx_ring->lbq_buf_size = lbq_buf_len;
4150	}
4151
4152	status = ql_adapter_up(qdev);
4153	if (status)
4154		goto error;
4155
4156	return status;
4157error:
4158	netif_alert(qdev, ifup, qdev->ndev,
4159		    "Driver up/down cycle failed, closing device.\n");
4160	set_bit(QL_ADAPTER_UP, &qdev->flags);
4161	dev_close(qdev->ndev);
4162	return status;
4163}
4164
4165static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4166{
4167	struct ql_adapter *qdev = netdev_priv(ndev);
4168	int status;
4169
4170	if (ndev->mtu == 1500 && new_mtu == 9000) {
4171		netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4172	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
4173		netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4174	} else
4175		return -EINVAL;
4176
4177	queue_delayed_work(qdev->workqueue,
4178			&qdev->mpi_port_cfg_work, 3*HZ);
4179
4180	ndev->mtu = new_mtu;
4181
4182	if (!netif_running(qdev->ndev)) {
4183		return 0;
4184	}
4185
4186	status = ql_change_rx_buffers(qdev);
4187	if (status) {
4188		netif_err(qdev, ifup, qdev->ndev,
4189			  "Changing MTU failed.\n");
4190	}
4191
4192	return status;
4193}
4194
4195static struct net_device_stats *qlge_get_stats(struct net_device
4196					       *ndev)
4197{
4198	struct ql_adapter *qdev = netdev_priv(ndev);
4199	struct rx_ring *rx_ring = &qdev->rx_ring[0];
4200	struct tx_ring *tx_ring = &qdev->tx_ring[0];
4201	unsigned long pkts, mcast, dropped, errors, bytes;
4202	int i;
4203
4204	/* Get RX stats. */
4205	pkts = mcast = dropped = errors = bytes = 0;
4206	for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4207			pkts += rx_ring->rx_packets;
4208			bytes += rx_ring->rx_bytes;
4209			dropped += rx_ring->rx_dropped;
4210			errors += rx_ring->rx_errors;
4211			mcast += rx_ring->rx_multicast;
4212	}
4213	ndev->stats.rx_packets = pkts;
4214	ndev->stats.rx_bytes = bytes;
4215	ndev->stats.rx_dropped = dropped;
4216	ndev->stats.rx_errors = errors;
4217	ndev->stats.multicast = mcast;
4218
4219	/* Get TX stats. */
4220	pkts = errors = bytes = 0;
4221	for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4222			pkts += tx_ring->tx_packets;
4223			bytes += tx_ring->tx_bytes;
4224			errors += tx_ring->tx_errors;
4225	}
4226	ndev->stats.tx_packets = pkts;
4227	ndev->stats.tx_bytes = bytes;
4228	ndev->stats.tx_errors = errors;
4229	return &ndev->stats;
4230}
4231
4232static void qlge_set_multicast_list(struct net_device *ndev)
4233{
4234	struct ql_adapter *qdev = netdev_priv(ndev);
4235	struct netdev_hw_addr *ha;
4236	int i, status;
4237
4238	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4239	if (status)
4240		return;
4241	/*
4242	 * Set or clear promiscuous mode if a
4243	 * transition is taking place.
4244	 */
4245	if (ndev->flags & IFF_PROMISC) {
4246		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4247			if (ql_set_routing_reg
4248			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4249				netif_err(qdev, hw, qdev->ndev,
4250					  "Failed to set promiscuous mode.\n");
4251			} else {
4252				set_bit(QL_PROMISCUOUS, &qdev->flags);
4253			}
4254		}
4255	} else {
4256		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4257			if (ql_set_routing_reg
4258			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4259				netif_err(qdev, hw, qdev->ndev,
4260					  "Failed to clear promiscuous mode.\n");
4261			} else {
4262				clear_bit(QL_PROMISCUOUS, &qdev->flags);
4263			}
4264		}
4265	}
4266
4267	/*
4268	 * Set or clear all multicast mode if a
4269	 * transition is taking place.
4270	 */
4271	if ((ndev->flags & IFF_ALLMULTI) ||
4272	    (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4273		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4274			if (ql_set_routing_reg
4275			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4276				netif_err(qdev, hw, qdev->ndev,
4277					  "Failed to set all-multi mode.\n");
4278			} else {
4279				set_bit(QL_ALLMULTI, &qdev->flags);
4280			}
4281		}
4282	} else {
4283		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4284			if (ql_set_routing_reg
4285			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4286				netif_err(qdev, hw, qdev->ndev,
4287					  "Failed to clear all-multi mode.\n");
4288			} else {
4289				clear_bit(QL_ALLMULTI, &qdev->flags);
4290			}
4291		}
4292	}
4293
4294	if (!netdev_mc_empty(ndev)) {
4295		status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4296		if (status)
4297			goto exit;
4298		i = 0;
4299		netdev_for_each_mc_addr(ha, ndev) {
4300			if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4301						MAC_ADDR_TYPE_MULTI_MAC, i)) {
4302				netif_err(qdev, hw, qdev->ndev,
4303					  "Failed to loadmulticast address.\n");
4304				ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4305				goto exit;
4306			}
4307			i++;
4308		}
4309		ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4310		if (ql_set_routing_reg
4311		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4312			netif_err(qdev, hw, qdev->ndev,
4313				  "Failed to set multicast match mode.\n");
4314		} else {
4315			set_bit(QL_ALLMULTI, &qdev->flags);
4316		}
4317	}
4318exit:
4319	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4320}
4321
4322static int qlge_set_mac_address(struct net_device *ndev, void *p)
4323{
4324	struct ql_adapter *qdev = netdev_priv(ndev);
4325	struct sockaddr *addr = p;
4326	int status;
4327
4328	if (!is_valid_ether_addr(addr->sa_data))
4329		return -EADDRNOTAVAIL;
4330	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4331	/* Update local copy of current mac address. */
4332	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4333
4334	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4335	if (status)
4336		return status;
4337	status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4338			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4339	if (status)
4340		netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4341	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4342	return status;
4343}
4344
4345static void qlge_tx_timeout(struct net_device *ndev)
4346{
4347	struct ql_adapter *qdev = netdev_priv(ndev);
4348	ql_queue_asic_error(qdev);
4349}
4350
4351static void ql_asic_reset_work(struct work_struct *work)
4352{
4353	struct ql_adapter *qdev =
4354	    container_of(work, struct ql_adapter, asic_reset_work.work);
4355	int status;
4356	rtnl_lock();
4357	status = ql_adapter_down(qdev);
4358	if (status)
4359		goto error;
4360
4361	status = ql_adapter_up(qdev);
4362	if (status)
4363		goto error;
4364
4365	/* Restore rx mode. */
4366	clear_bit(QL_ALLMULTI, &qdev->flags);
4367	clear_bit(QL_PROMISCUOUS, &qdev->flags);
4368	qlge_set_multicast_list(qdev->ndev);
4369
4370	rtnl_unlock();
4371	return;
4372error:
4373	netif_alert(qdev, ifup, qdev->ndev,
4374		    "Driver up/down cycle failed, closing device\n");
4375
4376	set_bit(QL_ADAPTER_UP, &qdev->flags);
4377	dev_close(qdev->ndev);
4378	rtnl_unlock();
4379}
4380
4381static const struct nic_operations qla8012_nic_ops = {
4382	.get_flash		= ql_get_8012_flash_params,
4383	.port_initialize	= ql_8012_port_initialize,
4384};
4385
4386static const struct nic_operations qla8000_nic_ops = {
4387	.get_flash		= ql_get_8000_flash_params,
4388	.port_initialize	= ql_8000_port_initialize,
4389};
4390
4391/* Find the pcie function number for the other NIC
4392 * on this chip.  Since both NIC functions share a
4393 * common firmware we have the lowest enabled function
4394 * do any common work.  Examples would be resetting
4395 * after a fatal firmware error, or doing a firmware
4396 * coredump.
4397 */
4398static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4399{
4400	int status = 0;
4401	u32 temp;
4402	u32 nic_func1, nic_func2;
4403
4404	status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4405			&temp);
4406	if (status)
4407		return status;
4408
4409	nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4410			MPI_TEST_NIC_FUNC_MASK);
4411	nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4412			MPI_TEST_NIC_FUNC_MASK);
4413
4414	if (qdev->func == nic_func1)
4415		qdev->alt_func = nic_func2;
4416	else if (qdev->func == nic_func2)
4417		qdev->alt_func = nic_func1;
4418	else
4419		status = -EIO;
4420
4421	return status;
4422}
4423
4424static int ql_get_board_info(struct ql_adapter *qdev)
4425{
4426	int status;
4427	qdev->func =
4428	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4429	if (qdev->func > 3)
4430		return -EIO;
4431
4432	status = ql_get_alt_pcie_func(qdev);
4433	if (status)
4434		return status;
4435
4436	qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4437	if (qdev->port) {
4438		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4439		qdev->port_link_up = STS_PL1;
4440		qdev->port_init = STS_PI1;
4441		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4442		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4443	} else {
4444		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4445		qdev->port_link_up = STS_PL0;
4446		qdev->port_init = STS_PI0;
4447		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4448		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4449	}
4450	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4451	qdev->device_id = qdev->pdev->device;
4452	if (qdev->device_id == QLGE_DEVICE_ID_8012)
4453		qdev->nic_ops = &qla8012_nic_ops;
4454	else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4455		qdev->nic_ops = &qla8000_nic_ops;
4456	return status;
4457}
4458
4459static void ql_release_all(struct pci_dev *pdev)
4460{
4461	struct net_device *ndev = pci_get_drvdata(pdev);
4462	struct ql_adapter *qdev = netdev_priv(ndev);
4463
4464	if (qdev->workqueue) {
4465		destroy_workqueue(qdev->workqueue);
4466		qdev->workqueue = NULL;
4467	}
4468
4469	if (qdev->reg_base)
4470		iounmap(qdev->reg_base);
4471	if (qdev->doorbell_area)
4472		iounmap(qdev->doorbell_area);
4473	vfree(qdev->mpi_coredump);
4474	pci_release_regions(pdev);
4475	pci_set_drvdata(pdev, NULL);
4476}
4477
4478static int __devinit ql_init_device(struct pci_dev *pdev,
4479				    struct net_device *ndev, int cards_found)
4480{
4481	struct ql_adapter *qdev = netdev_priv(ndev);
4482	int err = 0;
4483
4484	memset((void *)qdev, 0, sizeof(*qdev));
4485	err = pci_enable_device(pdev);
4486	if (err) {
4487		dev_err(&pdev->dev, "PCI device enable failed.\n");
4488		return err;
4489	}
4490
4491	qdev->ndev = ndev;
4492	qdev->pdev = pdev;
4493	pci_set_drvdata(pdev, ndev);
4494
4495	/* Set PCIe read request size */
4496	err = pcie_set_readrq(pdev, 4096);
4497	if (err) {
4498		dev_err(&pdev->dev, "Set readrq failed.\n");
4499		goto err_out1;
4500	}
4501
4502	err = pci_request_regions(pdev, DRV_NAME);
4503	if (err) {
4504		dev_err(&pdev->dev, "PCI region request failed.\n");
4505		return err;
4506	}
4507
4508	pci_set_master(pdev);
4509	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4510		set_bit(QL_DMA64, &qdev->flags);
4511		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4512	} else {
4513		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4514		if (!err)
4515		       err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4516	}
4517
4518	if (err) {
4519		dev_err(&pdev->dev, "No usable DMA configuration.\n");
4520		goto err_out2;
4521	}
4522
4523	/* Set PCIe reset type for EEH to fundamental. */
4524	pdev->needs_freset = 1;
4525	pci_save_state(pdev);
4526	qdev->reg_base =
4527	    ioremap_nocache(pci_resource_start(pdev, 1),
4528			    pci_resource_len(pdev, 1));
4529	if (!qdev->reg_base) {
4530		dev_err(&pdev->dev, "Register mapping failed.\n");
4531		err = -ENOMEM;
4532		goto err_out2;
4533	}
4534
4535	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4536	qdev->doorbell_area =
4537	    ioremap_nocache(pci_resource_start(pdev, 3),
4538			    pci_resource_len(pdev, 3));
4539	if (!qdev->doorbell_area) {
4540		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4541		err = -ENOMEM;
4542		goto err_out2;
4543	}
4544
4545	err = ql_get_board_info(qdev);
4546	if (err) {
4547		dev_err(&pdev->dev, "Register access failed.\n");
4548		err = -EIO;
4549		goto err_out2;
4550	}
4551	qdev->msg_enable = netif_msg_init(debug, default_msg);
4552	spin_lock_init(&qdev->hw_lock);
4553	spin_lock_init(&qdev->stats_lock);
4554
4555	if (qlge_mpi_coredump) {
4556		qdev->mpi_coredump =
4557			vmalloc(sizeof(struct ql_mpi_coredump));
4558		if (qdev->mpi_coredump == NULL) {
4559			dev_err(&pdev->dev, "Coredump alloc failed.\n");
4560			err = -ENOMEM;
4561			goto err_out2;
4562		}
4563		if (qlge_force_coredump)
4564			set_bit(QL_FRC_COREDUMP, &qdev->flags);
4565	}
4566	/* make sure the EEPROM is good */
4567	err = qdev->nic_ops->get_flash(qdev);
4568	if (err) {
4569		dev_err(&pdev->dev, "Invalid FLASH.\n");
4570		goto err_out2;
4571	}
4572
4573	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4574	/* Keep local copy of current mac address. */
4575	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4576
4577	/* Set up the default ring sizes. */
4578	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4579	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4580
4581	/* Set up the coalescing parameters. */
4582	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4583	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4584	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4585	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4586
4587	/*
4588	 * Set up the operating parameters.
4589	 */
4590	qdev->workqueue = create_singlethread_workqueue(ndev->name);
4591	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4592	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4593	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4594	INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4595	INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4596	INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4597	init_completion(&qdev->ide_completion);
4598	mutex_init(&qdev->mpi_mutex);
4599
4600	if (!cards_found) {
4601		dev_info(&pdev->dev, "%s\n", DRV_STRING);
4602		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4603			 DRV_NAME, DRV_VERSION);
4604	}
4605	return 0;
4606err_out2:
4607	ql_release_all(pdev);
4608err_out1:
4609	pci_disable_device(pdev);
4610	return err;
4611}
4612
4613static const struct net_device_ops qlge_netdev_ops = {
4614	.ndo_open		= qlge_open,
4615	.ndo_stop		= qlge_close,
4616	.ndo_start_xmit		= qlge_send,
4617	.ndo_change_mtu		= qlge_change_mtu,
4618	.ndo_get_stats		= qlge_get_stats,
4619	.ndo_set_rx_mode	= qlge_set_multicast_list,
4620	.ndo_set_mac_address	= qlge_set_mac_address,
4621	.ndo_validate_addr	= eth_validate_addr,
4622	.ndo_tx_timeout		= qlge_tx_timeout,
4623	.ndo_fix_features	= qlge_fix_features,
4624	.ndo_set_features	= qlge_set_features,
4625	.ndo_vlan_rx_add_vid	= qlge_vlan_rx_add_vid,
4626	.ndo_vlan_rx_kill_vid	= qlge_vlan_rx_kill_vid,
4627};
4628
4629static void ql_timer(unsigned long data)
4630{
4631	struct ql_adapter *qdev = (struct ql_adapter *)data;
4632	u32 var = 0;
4633
4634	var = ql_read32(qdev, STS);
4635	if (pci_channel_offline(qdev->pdev)) {
4636		netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4637		return;
4638	}
4639
4640	mod_timer(&qdev->timer, jiffies + (5*HZ));
4641}
4642
4643static int __devinit qlge_probe(struct pci_dev *pdev,
4644				const struct pci_device_id *pci_entry)
4645{
4646	struct net_device *ndev = NULL;
4647	struct ql_adapter *qdev = NULL;
4648	static int cards_found = 0;
4649	int err = 0;
4650
4651	ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4652			min(MAX_CPUS, (int)num_online_cpus()));
4653	if (!ndev)
4654		return -ENOMEM;
4655
4656	err = ql_init_device(pdev, ndev, cards_found);
4657	if (err < 0) {
4658		free_netdev(ndev);
4659		return err;
4660	}
4661
4662	qdev = netdev_priv(ndev);
4663	SET_NETDEV_DEV(ndev, &pdev->dev);
4664	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4665		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4666		NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4667	ndev->features = ndev->hw_features |
4668		NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
4669
4670	if (test_bit(QL_DMA64, &qdev->flags))
4671		ndev->features |= NETIF_F_HIGHDMA;
4672
4673	/*
4674	 * Set up net_device structure.
4675	 */
4676	ndev->tx_queue_len = qdev->tx_ring_size;
4677	ndev->irq = pdev->irq;
4678
4679	ndev->netdev_ops = &qlge_netdev_ops;
4680	SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4681	ndev->watchdog_timeo = 10 * HZ;
4682
4683	err = register_netdev(ndev);
4684	if (err) {
4685		dev_err(&pdev->dev, "net device registration failed.\n");
4686		ql_release_all(pdev);
4687		pci_disable_device(pdev);
4688		return err;
4689	}
4690	/* Start up the timer to trigger EEH if
4691	 * the bus goes dead
4692	 */
4693	init_timer_deferrable(&qdev->timer);
4694	qdev->timer.data = (unsigned long)qdev;
4695	qdev->timer.function = ql_timer;
4696	qdev->timer.expires = jiffies + (5*HZ);
4697	add_timer(&qdev->timer);
4698	ql_link_off(qdev);
4699	ql_display_dev_info(ndev);
4700	atomic_set(&qdev->lb_count, 0);
4701	cards_found++;
4702	return 0;
4703}
4704
4705netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4706{
4707	return qlge_send(skb, ndev);
4708}
4709
4710int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4711{
4712	return ql_clean_inbound_rx_ring(rx_ring, budget);
4713}
4714
4715static void __devexit qlge_remove(struct pci_dev *pdev)
4716{
4717	struct net_device *ndev = pci_get_drvdata(pdev);
4718	struct ql_adapter *qdev = netdev_priv(ndev);
4719	del_timer_sync(&qdev->timer);
4720	ql_cancel_all_work_sync(qdev);
4721	unregister_netdev(ndev);
4722	ql_release_all(pdev);
4723	pci_disable_device(pdev);
4724	free_netdev(ndev);
4725}
4726
4727/* Clean up resources without touching hardware. */
4728static void ql_eeh_close(struct net_device *ndev)
4729{
4730	int i;
4731	struct ql_adapter *qdev = netdev_priv(ndev);
4732
4733	if (netif_carrier_ok(ndev)) {
4734		netif_carrier_off(ndev);
4735		netif_stop_queue(ndev);
4736	}
4737
4738	/* Disabling the timer */
4739	del_timer_sync(&qdev->timer);
4740	ql_cancel_all_work_sync(qdev);
4741
4742	for (i = 0; i < qdev->rss_ring_count; i++)
4743		netif_napi_del(&qdev->rx_ring[i].napi);
4744
4745	clear_bit(QL_ADAPTER_UP, &qdev->flags);
4746	ql_tx_ring_clean(qdev);
4747	ql_free_rx_buffers(qdev);
4748	ql_release_adapter_resources(qdev);
4749}
4750
4751/*
4752 * This callback is called by the PCI subsystem whenever
4753 * a PCI bus error is detected.
4754 */
4755static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4756					       enum pci_channel_state state)
4757{
4758	struct net_device *ndev = pci_get_drvdata(pdev);
4759	struct ql_adapter *qdev = netdev_priv(ndev);
4760
4761	switch (state) {
4762	case pci_channel_io_normal:
4763		return PCI_ERS_RESULT_CAN_RECOVER;
4764	case pci_channel_io_frozen:
4765		netif_device_detach(ndev);
4766		if (netif_running(ndev))
4767			ql_eeh_close(ndev);
4768		pci_disable_device(pdev);
4769		return PCI_ERS_RESULT_NEED_RESET;
4770	case pci_channel_io_perm_failure:
4771		dev_err(&pdev->dev,
4772			"%s: pci_channel_io_perm_failure.\n", __func__);
4773		ql_eeh_close(ndev);
4774		set_bit(QL_EEH_FATAL, &qdev->flags);
4775		return PCI_ERS_RESULT_DISCONNECT;
4776	}
4777
4778	/* Request a slot reset. */
4779	return PCI_ERS_RESULT_NEED_RESET;
4780}
4781
4782/*
4783 * This callback is called after the PCI buss has been reset.
4784 * Basically, this tries to restart the card from scratch.
4785 * This is a shortened version of the device probe/discovery code,
4786 * it resembles the first-half of the () routine.
4787 */
4788static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4789{
4790	struct net_device *ndev = pci_get_drvdata(pdev);
4791	struct ql_adapter *qdev = netdev_priv(ndev);
4792
4793	pdev->error_state = pci_channel_io_normal;
4794
4795	pci_restore_state(pdev);
4796	if (pci_enable_device(pdev)) {
4797		netif_err(qdev, ifup, qdev->ndev,
4798			  "Cannot re-enable PCI device after reset.\n");
4799		return PCI_ERS_RESULT_DISCONNECT;
4800	}
4801	pci_set_master(pdev);
4802
4803	if (ql_adapter_reset(qdev)) {
4804		netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4805		set_bit(QL_EEH_FATAL, &qdev->flags);
4806		return PCI_ERS_RESULT_DISCONNECT;
4807	}
4808
4809	return PCI_ERS_RESULT_RECOVERED;
4810}
4811
4812static void qlge_io_resume(struct pci_dev *pdev)
4813{
4814	struct net_device *ndev = pci_get_drvdata(pdev);
4815	struct ql_adapter *qdev = netdev_priv(ndev);
4816	int err = 0;
4817
4818	if (netif_running(ndev)) {
4819		err = qlge_open(ndev);
4820		if (err) {
4821			netif_err(qdev, ifup, qdev->ndev,
4822				  "Device initialization failed after reset.\n");
4823			return;
4824		}
4825	} else {
4826		netif_err(qdev, ifup, qdev->ndev,
4827			  "Device was not running prior to EEH.\n");
4828	}
4829	mod_timer(&qdev->timer, jiffies + (5*HZ));
4830	netif_device_attach(ndev);
4831}
4832
4833static struct pci_error_handlers qlge_err_handler = {
4834	.error_detected = qlge_io_error_detected,
4835	.slot_reset = qlge_io_slot_reset,
4836	.resume = qlge_io_resume,
4837};
4838
4839static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4840{
4841	struct net_device *ndev = pci_get_drvdata(pdev);
4842	struct ql_adapter *qdev = netdev_priv(ndev);
4843	int err;
4844
4845	netif_device_detach(ndev);
4846	del_timer_sync(&qdev->timer);
4847
4848	if (netif_running(ndev)) {
4849		err = ql_adapter_down(qdev);
4850		if (!err)
4851			return err;
4852	}
4853
4854	ql_wol(qdev);
4855	err = pci_save_state(pdev);
4856	if (err)
4857		return err;
4858
4859	pci_disable_device(pdev);
4860
4861	pci_set_power_state(pdev, pci_choose_state(pdev, state));
4862
4863	return 0;
4864}
4865
4866#ifdef CONFIG_PM
4867static int qlge_resume(struct pci_dev *pdev)
4868{
4869	struct net_device *ndev = pci_get_drvdata(pdev);
4870	struct ql_adapter *qdev = netdev_priv(ndev);
4871	int err;
4872
4873	pci_set_power_state(pdev, PCI_D0);
4874	pci_restore_state(pdev);
4875	err = pci_enable_device(pdev);
4876	if (err) {
4877		netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4878		return err;
4879	}
4880	pci_set_master(pdev);
4881
4882	pci_enable_wake(pdev, PCI_D3hot, 0);
4883	pci_enable_wake(pdev, PCI_D3cold, 0);
4884
4885	if (netif_running(ndev)) {
4886		err = ql_adapter_up(qdev);
4887		if (err)
4888			return err;
4889	}
4890
4891	mod_timer(&qdev->timer, jiffies + (5*HZ));
4892	netif_device_attach(ndev);
4893
4894	return 0;
4895}
4896#endif /* CONFIG_PM */
4897
4898static void qlge_shutdown(struct pci_dev *pdev)
4899{
4900	qlge_suspend(pdev, PMSG_SUSPEND);
4901}
4902
4903static struct pci_driver qlge_driver = {
4904	.name = DRV_NAME,
4905	.id_table = qlge_pci_tbl,
4906	.probe = qlge_probe,
4907	.remove = __devexit_p(qlge_remove),
4908#ifdef CONFIG_PM
4909	.suspend = qlge_suspend,
4910	.resume = qlge_resume,
4911#endif
4912	.shutdown = qlge_shutdown,
4913	.err_handler = &qlge_err_handler
4914};
4915
4916static int __init qlge_init_module(void)
4917{
4918	return pci_register_driver(&qlge_driver);
4919}
4920
4921static void __exit qlge_exit(void)
4922{
4923	pci_unregister_driver(&qlge_driver);
4924}
4925
4926module_init(qlge_init_module);
4927module_exit(qlge_exit);