Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PXA168 ethernet driver.
4 * Most of the code is derived from mv643xx ethernet driver.
5 *
6 * Copyright (C) 2010 Marvell International Ltd.
7 * Sachin Sanap <ssanap@marvell.com>
8 * Zhangfei Gao <zgao6@marvell.com>
9 * Philip Rakity <prakity@marvell.com>
10 * Mark Brown <markb@marvell.com>
11 */
12
13#include <linux/bitops.h>
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/in.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/ip.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_net.h>
27#include <linux/phy.h>
28#include <linux/platform_device.h>
29#include <linux/pxa168_eth.h>
30#include <linux/tcp.h>
31#include <linux/types.h>
32#include <linux/udp.h>
33#include <linux/workqueue.h>
34#include <linux/pgtable.h>
35
36#include <asm/cacheflush.h>
37
38#define DRIVER_NAME "pxa168-eth"
39#define DRIVER_VERSION "0.3"
40
41/*
42 * Registers
43 */
44
45#define PHY_ADDRESS 0x0000
46#define SMI 0x0010
47#define PORT_CONFIG 0x0400
48#define PORT_CONFIG_EXT 0x0408
49#define PORT_COMMAND 0x0410
50#define PORT_STATUS 0x0418
51#define HTPR 0x0428
52#define MAC_ADDR_LOW 0x0430
53#define MAC_ADDR_HIGH 0x0438
54#define SDMA_CONFIG 0x0440
55#define SDMA_CMD 0x0448
56#define INT_CAUSE 0x0450
57#define INT_W_CLEAR 0x0454
58#define INT_MASK 0x0458
59#define ETH_F_RX_DESC_0 0x0480
60#define ETH_C_RX_DESC_0 0x04A0
61#define ETH_C_TX_DESC_1 0x04E4
62
63/* smi register */
64#define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
65#define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
66#define SMI_OP_W (0 << 26) /* Write operation */
67#define SMI_OP_R (1 << 26) /* Read operation */
68
69#define PHY_WAIT_ITERATIONS 10
70
71#define PXA168_ETH_PHY_ADDR_DEFAULT 0
72/* RX & TX descriptor command */
73#define BUF_OWNED_BY_DMA (1 << 31)
74
75/* RX descriptor status */
76#define RX_EN_INT (1 << 23)
77#define RX_FIRST_DESC (1 << 17)
78#define RX_LAST_DESC (1 << 16)
79#define RX_ERROR (1 << 15)
80
81/* TX descriptor command */
82#define TX_EN_INT (1 << 23)
83#define TX_GEN_CRC (1 << 22)
84#define TX_ZERO_PADDING (1 << 18)
85#define TX_FIRST_DESC (1 << 17)
86#define TX_LAST_DESC (1 << 16)
87#define TX_ERROR (1 << 15)
88
89/* SDMA_CMD */
90#define SDMA_CMD_AT (1 << 31)
91#define SDMA_CMD_TXDL (1 << 24)
92#define SDMA_CMD_TXDH (1 << 23)
93#define SDMA_CMD_AR (1 << 15)
94#define SDMA_CMD_ERD (1 << 7)
95
96/* Bit definitions of the Port Config Reg */
97#define PCR_DUPLEX_FULL (1 << 15)
98#define PCR_HS (1 << 12)
99#define PCR_EN (1 << 7)
100#define PCR_PM (1 << 0)
101
102/* Bit definitions of the Port Config Extend Reg */
103#define PCXR_2BSM (1 << 28)
104#define PCXR_DSCP_EN (1 << 21)
105#define PCXR_RMII_EN (1 << 20)
106#define PCXR_AN_SPEED_DIS (1 << 19)
107#define PCXR_SPEED_100 (1 << 18)
108#define PCXR_MFL_1518 (0 << 14)
109#define PCXR_MFL_1536 (1 << 14)
110#define PCXR_MFL_2048 (2 << 14)
111#define PCXR_MFL_64K (3 << 14)
112#define PCXR_FLOWCTL_DIS (1 << 12)
113#define PCXR_FLP (1 << 11)
114#define PCXR_AN_FLOWCTL_DIS (1 << 10)
115#define PCXR_AN_DUPLEX_DIS (1 << 9)
116#define PCXR_PRIO_TX_OFF 3
117#define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
118
119/* Bit definitions of the SDMA Config Reg */
120#define SDCR_BSZ_OFF 12
121#define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
122#define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
123#define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
124#define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
125#define SDCR_BLMR (1 << 6)
126#define SDCR_BLMT (1 << 7)
127#define SDCR_RIFB (1 << 9)
128#define SDCR_RC_OFF 2
129#define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
130
131/*
132 * Bit definitions of the Interrupt Cause Reg
133 * and Interrupt MASK Reg is the same
134 */
135#define ICR_RXBUF (1 << 0)
136#define ICR_TXBUF_H (1 << 2)
137#define ICR_TXBUF_L (1 << 3)
138#define ICR_TXEND_H (1 << 6)
139#define ICR_TXEND_L (1 << 7)
140#define ICR_RXERR (1 << 8)
141#define ICR_TXERR_H (1 << 10)
142#define ICR_TXERR_L (1 << 11)
143#define ICR_TX_UDR (1 << 13)
144#define ICR_MII_CH (1 << 28)
145
146#define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
147 ICR_TXERR_H | ICR_TXERR_L |\
148 ICR_TXEND_H | ICR_TXEND_L |\
149 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
150
151#define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
152
153#define NUM_RX_DESCS 64
154#define NUM_TX_DESCS 64
155
156#define HASH_ADD 0
157#define HASH_DELETE 1
158#define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
159#define HOP_NUMBER 12
160
161/* Bit definitions for Port status */
162#define PORT_SPEED_100 (1 << 0)
163#define FULL_DUPLEX (1 << 1)
164#define FLOW_CONTROL_DISABLED (1 << 2)
165#define LINK_UP (1 << 3)
166
167/* Bit definitions for work to be done */
168#define WORK_TX_DONE (1 << 1)
169
170/*
171 * Misc definitions.
172 */
173#define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
174
175struct rx_desc {
176 u32 cmd_sts; /* Descriptor command status */
177 u16 byte_cnt; /* Descriptor buffer byte count */
178 u16 buf_size; /* Buffer size */
179 u32 buf_ptr; /* Descriptor buffer pointer */
180 u32 next_desc_ptr; /* Next descriptor pointer */
181};
182
183struct tx_desc {
184 u32 cmd_sts; /* Command/status field */
185 u16 reserved;
186 u16 byte_cnt; /* buffer byte count */
187 u32 buf_ptr; /* pointer to buffer for this descriptor */
188 u32 next_desc_ptr; /* Pointer to next descriptor */
189};
190
191struct pxa168_eth_private {
192 struct platform_device *pdev;
193 int port_num; /* User Ethernet port number */
194 int phy_addr;
195 int phy_speed;
196 int phy_duplex;
197 phy_interface_t phy_intf;
198
199 int rx_resource_err; /* Rx ring resource error flag */
200
201 /* Next available and first returning Rx resource */
202 int rx_curr_desc_q, rx_used_desc_q;
203
204 /* Next available and first returning Tx resource */
205 int tx_curr_desc_q, tx_used_desc_q;
206
207 struct rx_desc *p_rx_desc_area;
208 dma_addr_t rx_desc_dma;
209 int rx_desc_area_size;
210 struct sk_buff **rx_skb;
211
212 struct tx_desc *p_tx_desc_area;
213 dma_addr_t tx_desc_dma;
214 int tx_desc_area_size;
215 struct sk_buff **tx_skb;
216
217 struct work_struct tx_timeout_task;
218
219 struct net_device *dev;
220 struct napi_struct napi;
221 u8 work_todo;
222 int skb_size;
223
224 /* Size of Tx Ring per queue */
225 int tx_ring_size;
226 /* Number of tx descriptors in use */
227 int tx_desc_count;
228 /* Size of Rx Ring per queue */
229 int rx_ring_size;
230 /* Number of rx descriptors in use */
231 int rx_desc_count;
232
233 /*
234 * Used in case RX Ring is empty, which can occur when
235 * system does not have resources (skb's)
236 */
237 struct timer_list timeout;
238 struct mii_bus *smi_bus;
239
240 /* clock */
241 struct clk *clk;
242 struct pxa168_eth_platform_data *pd;
243 /*
244 * Ethernet controller base address.
245 */
246 void __iomem *base;
247
248 /* Pointer to the hardware address filter table */
249 void *htpr;
250 dma_addr_t htpr_dma;
251};
252
253struct addr_table_entry {
254 __le32 lo;
255 __le32 hi;
256};
257
258/* Bit fields of a Hash Table Entry */
259enum hash_table_entry {
260 HASH_ENTRY_VALID = 1,
261 SKIP = 2,
262 HASH_ENTRY_RECEIVE_DISCARD = 4,
263 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
264};
265
266static int pxa168_init_hw(struct pxa168_eth_private *pep);
267static int pxa168_init_phy(struct net_device *dev);
268static void eth_port_reset(struct net_device *dev);
269static void eth_port_start(struct net_device *dev);
270static int pxa168_eth_open(struct net_device *dev);
271static int pxa168_eth_stop(struct net_device *dev);
272
273static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
274{
275 return readl_relaxed(pep->base + offset);
276}
277
278static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
279{
280 writel_relaxed(data, pep->base + offset);
281}
282
283static void abort_dma(struct pxa168_eth_private *pep)
284{
285 int delay;
286 int max_retries = 40;
287
288 do {
289 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
290 udelay(100);
291
292 delay = 10;
293 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
294 && delay-- > 0) {
295 udelay(10);
296 }
297 } while (max_retries-- > 0 && delay <= 0);
298
299 if (max_retries <= 0)
300 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
301}
302
303static void rxq_refill(struct net_device *dev)
304{
305 struct pxa168_eth_private *pep = netdev_priv(dev);
306 struct sk_buff *skb;
307 struct rx_desc *p_used_rx_desc;
308 int used_rx_desc;
309
310 while (pep->rx_desc_count < pep->rx_ring_size) {
311 int size;
312
313 skb = netdev_alloc_skb(dev, pep->skb_size);
314 if (!skb)
315 break;
316 if (SKB_DMA_REALIGN)
317 skb_reserve(skb, SKB_DMA_REALIGN);
318 pep->rx_desc_count++;
319 /* Get 'used' Rx descriptor */
320 used_rx_desc = pep->rx_used_desc_q;
321 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
322 size = skb_end_pointer(skb) - skb->data;
323 p_used_rx_desc->buf_ptr = dma_map_single(&pep->pdev->dev,
324 skb->data,
325 size,
326 DMA_FROM_DEVICE);
327 p_used_rx_desc->buf_size = size;
328 pep->rx_skb[used_rx_desc] = skb;
329
330 /* Return the descriptor to DMA ownership */
331 dma_wmb();
332 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
333 dma_wmb();
334
335 /* Move the used descriptor pointer to the next descriptor */
336 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
337
338 /* Any Rx return cancels the Rx resource error status */
339 pep->rx_resource_err = 0;
340
341 skb_reserve(skb, ETH_HW_IP_ALIGN);
342 }
343
344 /*
345 * If RX ring is empty of SKB, set a timer to try allocating
346 * again at a later time.
347 */
348 if (pep->rx_desc_count == 0) {
349 pep->timeout.expires = jiffies + (HZ / 10);
350 add_timer(&pep->timeout);
351 }
352}
353
354static inline void rxq_refill_timer_wrapper(struct timer_list *t)
355{
356 struct pxa168_eth_private *pep = from_timer(pep, t, timeout);
357 napi_schedule(&pep->napi);
358}
359
360static inline u8 flip_8_bits(u8 x)
361{
362 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
363 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
364 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
365 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
366}
367
368static void nibble_swap_every_byte(unsigned char *mac_addr)
369{
370 int i;
371 for (i = 0; i < ETH_ALEN; i++) {
372 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
373 ((mac_addr[i] & 0xf0) >> 4);
374 }
375}
376
377static void inverse_every_nibble(unsigned char *mac_addr)
378{
379 int i;
380 for (i = 0; i < ETH_ALEN; i++)
381 mac_addr[i] = flip_8_bits(mac_addr[i]);
382}
383
384/*
385 * ----------------------------------------------------------------------------
386 * This function will calculate the hash function of the address.
387 * Inputs
388 * mac_addr_orig - MAC address.
389 * Outputs
390 * return the calculated entry.
391 */
392static u32 hash_function(const unsigned char *mac_addr_orig)
393{
394 u32 hash_result;
395 u32 addr0;
396 u32 addr1;
397 u32 addr2;
398 u32 addr3;
399 unsigned char mac_addr[ETH_ALEN];
400
401 /* Make a copy of MAC address since we are going to performe bit
402 * operations on it
403 */
404 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
405
406 nibble_swap_every_byte(mac_addr);
407 inverse_every_nibble(mac_addr);
408
409 addr0 = (mac_addr[5] >> 2) & 0x3f;
410 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
411 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
412 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
413
414 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
415 hash_result = hash_result & 0x07ff;
416 return hash_result;
417}
418
419/*
420 * ----------------------------------------------------------------------------
421 * This function will add/del an entry to the address table.
422 * Inputs
423 * pep - ETHERNET .
424 * mac_addr - MAC address.
425 * skip - if 1, skip this address.Used in case of deleting an entry which is a
426 * part of chain in the hash table.We can't just delete the entry since
427 * that will break the chain.We need to defragment the tables time to
428 * time.
429 * rd - 0 Discard packet upon match.
430 * - 1 Receive packet upon match.
431 * Outputs
432 * address table entry is added/deleted.
433 * 0 if success.
434 * -ENOSPC if table full
435 */
436static int add_del_hash_entry(struct pxa168_eth_private *pep,
437 const unsigned char *mac_addr,
438 u32 rd, u32 skip, int del)
439{
440 struct addr_table_entry *entry, *start;
441 u32 new_high;
442 u32 new_low;
443 u32 i;
444
445 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
446 | (((mac_addr[1] >> 0) & 0xf) << 11)
447 | (((mac_addr[0] >> 4) & 0xf) << 7)
448 | (((mac_addr[0] >> 0) & 0xf) << 3)
449 | (((mac_addr[3] >> 4) & 0x1) << 31)
450 | (((mac_addr[3] >> 0) & 0xf) << 27)
451 | (((mac_addr[2] >> 4) & 0xf) << 23)
452 | (((mac_addr[2] >> 0) & 0xf) << 19)
453 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
454 | HASH_ENTRY_VALID;
455
456 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
457 | (((mac_addr[5] >> 0) & 0xf) << 11)
458 | (((mac_addr[4] >> 4) & 0xf) << 7)
459 | (((mac_addr[4] >> 0) & 0xf) << 3)
460 | (((mac_addr[3] >> 5) & 0x7) << 0);
461
462 /*
463 * Pick the appropriate table, start scanning for free/reusable
464 * entries at the index obtained by hashing the specified MAC address
465 */
466 start = pep->htpr;
467 entry = start + hash_function(mac_addr);
468 for (i = 0; i < HOP_NUMBER; i++) {
469 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
470 break;
471 } else {
472 /* if same address put in same position */
473 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
474 (new_low & 0xfffffff8)) &&
475 (le32_to_cpu(entry->hi) == new_high)) {
476 break;
477 }
478 }
479 if (entry == start + 0x7ff)
480 entry = start;
481 else
482 entry++;
483 }
484
485 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
486 (le32_to_cpu(entry->hi) != new_high) && del)
487 return 0;
488
489 if (i == HOP_NUMBER) {
490 if (!del) {
491 netdev_info(pep->dev,
492 "%s: table section is full, need to "
493 "move to 16kB implementation?\n",
494 __FILE__);
495 return -ENOSPC;
496 } else
497 return 0;
498 }
499
500 /*
501 * Update the selected entry
502 */
503 if (del) {
504 entry->hi = 0;
505 entry->lo = 0;
506 } else {
507 entry->hi = cpu_to_le32(new_high);
508 entry->lo = cpu_to_le32(new_low);
509 }
510
511 return 0;
512}
513
514/*
515 * ----------------------------------------------------------------------------
516 * Create an addressTable entry from MAC address info
517 * found in the specifed net_device struct
518 *
519 * Input : pointer to ethernet interface network device structure
520 * Output : N/A
521 */
522static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
523 unsigned char *oaddr,
524 const unsigned char *addr)
525{
526 /* Delete old entry */
527 if (oaddr)
528 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
529 /* Add new entry */
530 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
531}
532
533static int init_hash_table(struct pxa168_eth_private *pep)
534{
535 /*
536 * Hardware expects CPU to build a hash table based on a predefined
537 * hash function and populate it based on hardware address. The
538 * location of the hash table is identified by 32-bit pointer stored
539 * in HTPR internal register. Two possible sizes exists for the hash
540 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
541 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
542 * 1/2kB.
543 */
544 /* TODO: Add support for 8kB hash table and alternative hash
545 * function.Driver can dynamically switch to them if the 1/2kB hash
546 * table is full.
547 */
548 if (!pep->htpr) {
549 pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
550 HASH_ADDR_TABLE_SIZE,
551 &pep->htpr_dma, GFP_KERNEL);
552 if (!pep->htpr)
553 return -ENOMEM;
554 } else {
555 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
556 }
557 wrl(pep, HTPR, pep->htpr_dma);
558 return 0;
559}
560
561static void pxa168_eth_set_rx_mode(struct net_device *dev)
562{
563 struct pxa168_eth_private *pep = netdev_priv(dev);
564 struct netdev_hw_addr *ha;
565 u32 val;
566
567 val = rdl(pep, PORT_CONFIG);
568 if (dev->flags & IFF_PROMISC)
569 val |= PCR_PM;
570 else
571 val &= ~PCR_PM;
572 wrl(pep, PORT_CONFIG, val);
573
574 /*
575 * Remove the old list of MAC address and add dev->addr
576 * and multicast address.
577 */
578 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
579 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
580
581 netdev_for_each_mc_addr(ha, dev)
582 update_hash_table_mac_address(pep, NULL, ha->addr);
583}
584
585static void pxa168_eth_get_mac_address(struct net_device *dev,
586 unsigned char *addr)
587{
588 struct pxa168_eth_private *pep = netdev_priv(dev);
589 unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
590 unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
591
592 addr[0] = (mac_h >> 24) & 0xff;
593 addr[1] = (mac_h >> 16) & 0xff;
594 addr[2] = (mac_h >> 8) & 0xff;
595 addr[3] = mac_h & 0xff;
596 addr[4] = (mac_l >> 8) & 0xff;
597 addr[5] = mac_l & 0xff;
598}
599
600static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
601{
602 struct sockaddr *sa = addr;
603 struct pxa168_eth_private *pep = netdev_priv(dev);
604 unsigned char oldMac[ETH_ALEN];
605 u32 mac_h, mac_l;
606
607 if (!is_valid_ether_addr(sa->sa_data))
608 return -EADDRNOTAVAIL;
609 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
610 eth_hw_addr_set(dev, sa->sa_data);
611
612 mac_h = dev->dev_addr[0] << 24;
613 mac_h |= dev->dev_addr[1] << 16;
614 mac_h |= dev->dev_addr[2] << 8;
615 mac_h |= dev->dev_addr[3];
616 mac_l = dev->dev_addr[4] << 8;
617 mac_l |= dev->dev_addr[5];
618 wrl(pep, MAC_ADDR_HIGH, mac_h);
619 wrl(pep, MAC_ADDR_LOW, mac_l);
620
621 netif_addr_lock_bh(dev);
622 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
623 netif_addr_unlock_bh(dev);
624 return 0;
625}
626
627static void eth_port_start(struct net_device *dev)
628{
629 unsigned int val = 0;
630 struct pxa168_eth_private *pep = netdev_priv(dev);
631 int tx_curr_desc, rx_curr_desc;
632
633 phy_start(dev->phydev);
634
635 /* Assignment of Tx CTRP of given queue */
636 tx_curr_desc = pep->tx_curr_desc_q;
637 wrl(pep, ETH_C_TX_DESC_1,
638 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
639
640 /* Assignment of Rx CRDP of given queue */
641 rx_curr_desc = pep->rx_curr_desc_q;
642 wrl(pep, ETH_C_RX_DESC_0,
643 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
644
645 wrl(pep, ETH_F_RX_DESC_0,
646 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
647
648 /* Clear all interrupts */
649 wrl(pep, INT_CAUSE, 0);
650
651 /* Enable all interrupts for receive, transmit and error. */
652 wrl(pep, INT_MASK, ALL_INTS);
653
654 val = rdl(pep, PORT_CONFIG);
655 val |= PCR_EN;
656 wrl(pep, PORT_CONFIG, val);
657
658 /* Start RX DMA engine */
659 val = rdl(pep, SDMA_CMD);
660 val |= SDMA_CMD_ERD;
661 wrl(pep, SDMA_CMD, val);
662}
663
664static void eth_port_reset(struct net_device *dev)
665{
666 struct pxa168_eth_private *pep = netdev_priv(dev);
667 unsigned int val = 0;
668
669 /* Stop all interrupts for receive, transmit and error. */
670 wrl(pep, INT_MASK, 0);
671
672 /* Clear all interrupts */
673 wrl(pep, INT_CAUSE, 0);
674
675 /* Stop RX DMA */
676 val = rdl(pep, SDMA_CMD);
677 val &= ~SDMA_CMD_ERD; /* abort dma command */
678
679 /* Abort any transmit and receive operations and put DMA
680 * in idle state.
681 */
682 abort_dma(pep);
683
684 /* Disable port */
685 val = rdl(pep, PORT_CONFIG);
686 val &= ~PCR_EN;
687 wrl(pep, PORT_CONFIG, val);
688
689 phy_stop(dev->phydev);
690}
691
692/*
693 * txq_reclaim - Free the tx desc data for completed descriptors
694 * If force is non-zero, frees uncompleted descriptors as well
695 */
696static int txq_reclaim(struct net_device *dev, int force)
697{
698 struct pxa168_eth_private *pep = netdev_priv(dev);
699 struct tx_desc *desc;
700 u32 cmd_sts;
701 struct sk_buff *skb;
702 int tx_index;
703 dma_addr_t addr;
704 int count;
705 int released = 0;
706
707 netif_tx_lock(dev);
708
709 pep->work_todo &= ~WORK_TX_DONE;
710 while (pep->tx_desc_count > 0) {
711 tx_index = pep->tx_used_desc_q;
712 desc = &pep->p_tx_desc_area[tx_index];
713 cmd_sts = desc->cmd_sts;
714 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
715 if (released > 0) {
716 goto txq_reclaim_end;
717 } else {
718 released = -1;
719 goto txq_reclaim_end;
720 }
721 }
722 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
723 pep->tx_desc_count--;
724 addr = desc->buf_ptr;
725 count = desc->byte_cnt;
726 skb = pep->tx_skb[tx_index];
727 if (skb)
728 pep->tx_skb[tx_index] = NULL;
729
730 if (cmd_sts & TX_ERROR) {
731 if (net_ratelimit())
732 netdev_err(dev, "Error in TX\n");
733 dev->stats.tx_errors++;
734 }
735 dma_unmap_single(&pep->pdev->dev, addr, count, DMA_TO_DEVICE);
736 if (skb)
737 dev_kfree_skb_irq(skb);
738 released++;
739 }
740txq_reclaim_end:
741 netif_tx_unlock(dev);
742 return released;
743}
744
745static void pxa168_eth_tx_timeout(struct net_device *dev, unsigned int txqueue)
746{
747 struct pxa168_eth_private *pep = netdev_priv(dev);
748
749 netdev_info(dev, "TX timeout desc_count %d\n", pep->tx_desc_count);
750
751 schedule_work(&pep->tx_timeout_task);
752}
753
754static void pxa168_eth_tx_timeout_task(struct work_struct *work)
755{
756 struct pxa168_eth_private *pep = container_of(work,
757 struct pxa168_eth_private,
758 tx_timeout_task);
759 struct net_device *dev = pep->dev;
760 pxa168_eth_stop(dev);
761 pxa168_eth_open(dev);
762}
763
764static int rxq_process(struct net_device *dev, int budget)
765{
766 struct pxa168_eth_private *pep = netdev_priv(dev);
767 struct net_device_stats *stats = &dev->stats;
768 unsigned int received_packets = 0;
769 struct sk_buff *skb;
770
771 while (budget-- > 0) {
772 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
773 struct rx_desc *rx_desc;
774 unsigned int cmd_sts;
775
776 /* Do not process Rx ring in case of Rx ring resource error */
777 if (pep->rx_resource_err)
778 break;
779 rx_curr_desc = pep->rx_curr_desc_q;
780 rx_used_desc = pep->rx_used_desc_q;
781 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
782 cmd_sts = rx_desc->cmd_sts;
783 dma_rmb();
784 if (cmd_sts & (BUF_OWNED_BY_DMA))
785 break;
786 skb = pep->rx_skb[rx_curr_desc];
787 pep->rx_skb[rx_curr_desc] = NULL;
788
789 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
790 pep->rx_curr_desc_q = rx_next_curr_desc;
791
792 /* Rx descriptors exhausted. */
793 /* Set the Rx ring resource error flag */
794 if (rx_next_curr_desc == rx_used_desc)
795 pep->rx_resource_err = 1;
796 pep->rx_desc_count--;
797 dma_unmap_single(&pep->pdev->dev, rx_desc->buf_ptr,
798 rx_desc->buf_size,
799 DMA_FROM_DEVICE);
800 received_packets++;
801 /*
802 * Update statistics.
803 * Note byte count includes 4 byte CRC count
804 */
805 stats->rx_packets++;
806 stats->rx_bytes += rx_desc->byte_cnt;
807 /*
808 * In case received a packet without first / last bits on OR
809 * the error summary bit is on, the packets needs to be droped.
810 */
811 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
812 (RX_FIRST_DESC | RX_LAST_DESC))
813 || (cmd_sts & RX_ERROR)) {
814
815 stats->rx_dropped++;
816 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
817 (RX_FIRST_DESC | RX_LAST_DESC)) {
818 if (net_ratelimit())
819 netdev_err(dev,
820 "Rx pkt on multiple desc\n");
821 }
822 if (cmd_sts & RX_ERROR)
823 stats->rx_errors++;
824 dev_kfree_skb_irq(skb);
825 } else {
826 /*
827 * The -4 is for the CRC in the trailer of the
828 * received packet
829 */
830 skb_put(skb, rx_desc->byte_cnt - 4);
831 skb->protocol = eth_type_trans(skb, dev);
832 netif_receive_skb(skb);
833 }
834 }
835 /* Fill RX ring with skb's */
836 rxq_refill(dev);
837 return received_packets;
838}
839
840static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
841 struct net_device *dev)
842{
843 u32 icr;
844 int ret = 0;
845
846 icr = rdl(pep, INT_CAUSE);
847 if (icr == 0)
848 return IRQ_NONE;
849
850 wrl(pep, INT_CAUSE, ~icr);
851 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
852 pep->work_todo |= WORK_TX_DONE;
853 ret = 1;
854 }
855 if (icr & ICR_RXBUF)
856 ret = 1;
857 return ret;
858}
859
860static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
861{
862 struct net_device *dev = (struct net_device *)dev_id;
863 struct pxa168_eth_private *pep = netdev_priv(dev);
864
865 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
866 return IRQ_NONE;
867 /* Disable interrupts */
868 wrl(pep, INT_MASK, 0);
869 napi_schedule(&pep->napi);
870 return IRQ_HANDLED;
871}
872
873static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
874{
875 int skb_size;
876
877 /*
878 * Reserve 2+14 bytes for an ethernet header (the hardware
879 * automatically prepends 2 bytes of dummy data to each
880 * received packet), 16 bytes for up to four VLAN tags, and
881 * 4 bytes for the trailing FCS -- 36 bytes total.
882 */
883 skb_size = pep->dev->mtu + 36;
884
885 /*
886 * Make sure that the skb size is a multiple of 8 bytes, as
887 * the lower three bits of the receive descriptor's buffer
888 * size field are ignored by the hardware.
889 */
890 pep->skb_size = (skb_size + 7) & ~7;
891
892 /*
893 * If NET_SKB_PAD is smaller than a cache line,
894 * netdev_alloc_skb() will cause skb->data to be misaligned
895 * to a cache line boundary. If this is the case, include
896 * some extra space to allow re-aligning the data area.
897 */
898 pep->skb_size += SKB_DMA_REALIGN;
899
900}
901
902static int set_port_config_ext(struct pxa168_eth_private *pep)
903{
904 int skb_size;
905
906 pxa168_eth_recalc_skb_size(pep);
907 if (pep->skb_size <= 1518)
908 skb_size = PCXR_MFL_1518;
909 else if (pep->skb_size <= 1536)
910 skb_size = PCXR_MFL_1536;
911 else if (pep->skb_size <= 2048)
912 skb_size = PCXR_MFL_2048;
913 else
914 skb_size = PCXR_MFL_64K;
915
916 /* Extended Port Configuration */
917 wrl(pep, PORT_CONFIG_EXT,
918 PCXR_AN_SPEED_DIS | /* Disable HW AN */
919 PCXR_AN_DUPLEX_DIS |
920 PCXR_AN_FLOWCTL_DIS |
921 PCXR_2BSM | /* Two byte prefix aligns IP hdr */
922 PCXR_DSCP_EN | /* Enable DSCP in IP */
923 skb_size | PCXR_FLP | /* do not force link pass */
924 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
925
926 return 0;
927}
928
929static void pxa168_eth_adjust_link(struct net_device *dev)
930{
931 struct pxa168_eth_private *pep = netdev_priv(dev);
932 struct phy_device *phy = dev->phydev;
933 u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
934 u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
935
936 cfg = cfg_o & ~PCR_DUPLEX_FULL;
937 cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
938
939 if (phy->interface == PHY_INTERFACE_MODE_RMII)
940 cfgext |= PCXR_RMII_EN;
941 if (phy->speed == SPEED_100)
942 cfgext |= PCXR_SPEED_100;
943 if (phy->duplex)
944 cfg |= PCR_DUPLEX_FULL;
945 if (!phy->pause)
946 cfgext |= PCXR_FLOWCTL_DIS;
947
948 /* Bail out if there has nothing changed */
949 if (cfg == cfg_o && cfgext == cfgext_o)
950 return;
951
952 wrl(pep, PORT_CONFIG, cfg);
953 wrl(pep, PORT_CONFIG_EXT, cfgext);
954
955 phy_print_status(phy);
956}
957
958static int pxa168_init_phy(struct net_device *dev)
959{
960 struct pxa168_eth_private *pep = netdev_priv(dev);
961 struct ethtool_link_ksettings cmd;
962 struct phy_device *phy = NULL;
963 int err;
964
965 if (dev->phydev)
966 return 0;
967
968 phy = mdiobus_scan_c22(pep->smi_bus, pep->phy_addr);
969 if (IS_ERR(phy))
970 return PTR_ERR(phy);
971
972 err = phy_connect_direct(dev, phy, pxa168_eth_adjust_link,
973 pep->phy_intf);
974 if (err)
975 return err;
976
977 cmd.base.phy_address = pep->phy_addr;
978 cmd.base.speed = pep->phy_speed;
979 cmd.base.duplex = pep->phy_duplex;
980 linkmode_copy(cmd.link_modes.advertising, PHY_BASIC_FEATURES);
981 cmd.base.autoneg = AUTONEG_ENABLE;
982
983 if (cmd.base.speed != 0)
984 cmd.base.autoneg = AUTONEG_DISABLE;
985
986 return phy_ethtool_set_link_ksettings(dev, &cmd);
987}
988
989static int pxa168_init_hw(struct pxa168_eth_private *pep)
990{
991 int err = 0;
992
993 /* Disable interrupts */
994 wrl(pep, INT_MASK, 0);
995 wrl(pep, INT_CAUSE, 0);
996 /* Write to ICR to clear interrupts. */
997 wrl(pep, INT_W_CLEAR, 0);
998 /* Abort any transmit and receive operations and put DMA
999 * in idle state.
1000 */
1001 abort_dma(pep);
1002 /* Initialize address hash table */
1003 err = init_hash_table(pep);
1004 if (err)
1005 return err;
1006 /* SDMA configuration */
1007 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
1008 SDCR_RIFB | /* Rx interrupt on frame */
1009 SDCR_BLMT | /* Little endian transmit */
1010 SDCR_BLMR | /* Little endian receive */
1011 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1012 /* Port Configuration */
1013 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1014 set_port_config_ext(pep);
1015
1016 return err;
1017}
1018
1019static int rxq_init(struct net_device *dev)
1020{
1021 struct pxa168_eth_private *pep = netdev_priv(dev);
1022 struct rx_desc *p_rx_desc;
1023 int size = 0, i = 0;
1024 int rx_desc_num = pep->rx_ring_size;
1025
1026 /* Allocate RX skb rings */
1027 pep->rx_skb = kcalloc(rx_desc_num, sizeof(*pep->rx_skb), GFP_KERNEL);
1028 if (!pep->rx_skb)
1029 return -ENOMEM;
1030
1031 /* Allocate RX ring */
1032 pep->rx_desc_count = 0;
1033 size = pep->rx_ring_size * sizeof(struct rx_desc);
1034 pep->rx_desc_area_size = size;
1035 pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1036 &pep->rx_desc_dma,
1037 GFP_KERNEL);
1038 if (!pep->p_rx_desc_area)
1039 goto out;
1040
1041 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1042 p_rx_desc = pep->p_rx_desc_area;
1043 for (i = 0; i < rx_desc_num; i++) {
1044 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1045 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1046 }
1047 /* Save Rx desc pointer to driver struct. */
1048 pep->rx_curr_desc_q = 0;
1049 pep->rx_used_desc_q = 0;
1050 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1051 return 0;
1052out:
1053 kfree(pep->rx_skb);
1054 return -ENOMEM;
1055}
1056
1057static void rxq_deinit(struct net_device *dev)
1058{
1059 struct pxa168_eth_private *pep = netdev_priv(dev);
1060 int curr;
1061
1062 /* Free preallocated skb's on RX rings */
1063 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1064 if (pep->rx_skb[curr]) {
1065 dev_kfree_skb(pep->rx_skb[curr]);
1066 pep->rx_desc_count--;
1067 }
1068 }
1069 if (pep->rx_desc_count)
1070 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1071 pep->rx_desc_count);
1072 /* Free RX ring */
1073 if (pep->p_rx_desc_area)
1074 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1075 pep->p_rx_desc_area, pep->rx_desc_dma);
1076 kfree(pep->rx_skb);
1077}
1078
1079static int txq_init(struct net_device *dev)
1080{
1081 struct pxa168_eth_private *pep = netdev_priv(dev);
1082 struct tx_desc *p_tx_desc;
1083 int size = 0, i = 0;
1084 int tx_desc_num = pep->tx_ring_size;
1085
1086 pep->tx_skb = kcalloc(tx_desc_num, sizeof(*pep->tx_skb), GFP_KERNEL);
1087 if (!pep->tx_skb)
1088 return -ENOMEM;
1089
1090 /* Allocate TX ring */
1091 pep->tx_desc_count = 0;
1092 size = pep->tx_ring_size * sizeof(struct tx_desc);
1093 pep->tx_desc_area_size = size;
1094 pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1095 &pep->tx_desc_dma,
1096 GFP_KERNEL);
1097 if (!pep->p_tx_desc_area)
1098 goto out;
1099 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1100 p_tx_desc = pep->p_tx_desc_area;
1101 for (i = 0; i < tx_desc_num; i++) {
1102 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1103 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1104 }
1105 pep->tx_curr_desc_q = 0;
1106 pep->tx_used_desc_q = 0;
1107 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1108 return 0;
1109out:
1110 kfree(pep->tx_skb);
1111 return -ENOMEM;
1112}
1113
1114static void txq_deinit(struct net_device *dev)
1115{
1116 struct pxa168_eth_private *pep = netdev_priv(dev);
1117
1118 /* Free outstanding skb's on TX ring */
1119 txq_reclaim(dev, 1);
1120 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1121 /* Free TX ring */
1122 if (pep->p_tx_desc_area)
1123 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1124 pep->p_tx_desc_area, pep->tx_desc_dma);
1125 kfree(pep->tx_skb);
1126}
1127
1128static int pxa168_eth_open(struct net_device *dev)
1129{
1130 struct pxa168_eth_private *pep = netdev_priv(dev);
1131 int err;
1132
1133 err = pxa168_init_phy(dev);
1134 if (err)
1135 return err;
1136
1137 err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1138 if (err) {
1139 dev_err(&dev->dev, "can't assign irq\n");
1140 return -EAGAIN;
1141 }
1142 pep->rx_resource_err = 0;
1143 err = rxq_init(dev);
1144 if (err != 0)
1145 goto out_free_irq;
1146 err = txq_init(dev);
1147 if (err != 0)
1148 goto out_free_rx_skb;
1149 pep->rx_used_desc_q = 0;
1150 pep->rx_curr_desc_q = 0;
1151
1152 /* Fill RX ring with skb's */
1153 rxq_refill(dev);
1154 pep->rx_used_desc_q = 0;
1155 pep->rx_curr_desc_q = 0;
1156 netif_carrier_off(dev);
1157 napi_enable(&pep->napi);
1158 eth_port_start(dev);
1159 return 0;
1160out_free_rx_skb:
1161 rxq_deinit(dev);
1162out_free_irq:
1163 free_irq(dev->irq, dev);
1164 return err;
1165}
1166
1167static int pxa168_eth_stop(struct net_device *dev)
1168{
1169 struct pxa168_eth_private *pep = netdev_priv(dev);
1170 eth_port_reset(dev);
1171
1172 /* Disable interrupts */
1173 wrl(pep, INT_MASK, 0);
1174 wrl(pep, INT_CAUSE, 0);
1175 /* Write to ICR to clear interrupts. */
1176 wrl(pep, INT_W_CLEAR, 0);
1177 napi_disable(&pep->napi);
1178 del_timer_sync(&pep->timeout);
1179 netif_carrier_off(dev);
1180 free_irq(dev->irq, dev);
1181 rxq_deinit(dev);
1182 txq_deinit(dev);
1183
1184 return 0;
1185}
1186
1187static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1188{
1189 struct pxa168_eth_private *pep = netdev_priv(dev);
1190
1191 dev->mtu = mtu;
1192 set_port_config_ext(pep);
1193
1194 if (!netif_running(dev))
1195 return 0;
1196
1197 /*
1198 * Stop and then re-open the interface. This will allocate RX
1199 * skbs of the new MTU.
1200 * There is a possible danger that the open will not succeed,
1201 * due to memory being full.
1202 */
1203 pxa168_eth_stop(dev);
1204 if (pxa168_eth_open(dev)) {
1205 dev_err(&dev->dev,
1206 "fatal error on re-opening device after MTU change\n");
1207 }
1208
1209 return 0;
1210}
1211
1212static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1213{
1214 int tx_desc_curr;
1215
1216 tx_desc_curr = pep->tx_curr_desc_q;
1217 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1218 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1219 pep->tx_desc_count++;
1220
1221 return tx_desc_curr;
1222}
1223
1224static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1225{
1226 struct pxa168_eth_private *pep =
1227 container_of(napi, struct pxa168_eth_private, napi);
1228 struct net_device *dev = pep->dev;
1229 int work_done = 0;
1230
1231 /*
1232 * We call txq_reclaim every time since in NAPI interupts are disabled
1233 * and due to this we miss the TX_DONE interrupt,which is not updated in
1234 * interrupt status register.
1235 */
1236 txq_reclaim(dev, 0);
1237 if (netif_queue_stopped(dev)
1238 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1239 netif_wake_queue(dev);
1240 }
1241 work_done = rxq_process(dev, budget);
1242 if (work_done < budget) {
1243 napi_complete_done(napi, work_done);
1244 wrl(pep, INT_MASK, ALL_INTS);
1245 }
1246
1247 return work_done;
1248}
1249
1250static netdev_tx_t
1251pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1252{
1253 struct pxa168_eth_private *pep = netdev_priv(dev);
1254 struct net_device_stats *stats = &dev->stats;
1255 struct tx_desc *desc;
1256 int tx_index;
1257 int length;
1258
1259 tx_index = eth_alloc_tx_desc_index(pep);
1260 desc = &pep->p_tx_desc_area[tx_index];
1261 length = skb->len;
1262 pep->tx_skb[tx_index] = skb;
1263 desc->byte_cnt = length;
1264 desc->buf_ptr = dma_map_single(&pep->pdev->dev, skb->data, length,
1265 DMA_TO_DEVICE);
1266
1267 skb_tx_timestamp(skb);
1268
1269 dma_wmb();
1270 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1271 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1272 wmb();
1273 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1274
1275 stats->tx_bytes += length;
1276 stats->tx_packets++;
1277 netif_trans_update(dev);
1278 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1279 /* We handled the current skb, but now we are out of space.*/
1280 netif_stop_queue(dev);
1281 }
1282
1283 return NETDEV_TX_OK;
1284}
1285
1286static int smi_wait_ready(struct pxa168_eth_private *pep)
1287{
1288 int i = 0;
1289
1290 /* wait for the SMI register to become available */
1291 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1292 if (i == PHY_WAIT_ITERATIONS)
1293 return -ETIMEDOUT;
1294 msleep(10);
1295 }
1296
1297 return 0;
1298}
1299
1300static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1301{
1302 struct pxa168_eth_private *pep = bus->priv;
1303 int i = 0;
1304 int val;
1305
1306 if (smi_wait_ready(pep)) {
1307 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1308 return -ETIMEDOUT;
1309 }
1310 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1311 /* now wait for the data to be valid */
1312 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1313 if (i == PHY_WAIT_ITERATIONS) {
1314 netdev_warn(pep->dev,
1315 "pxa168_eth: SMI bus read not valid\n");
1316 return -ENODEV;
1317 }
1318 msleep(10);
1319 }
1320
1321 return val & 0xffff;
1322}
1323
1324static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1325 u16 value)
1326{
1327 struct pxa168_eth_private *pep = bus->priv;
1328
1329 if (smi_wait_ready(pep)) {
1330 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1331 return -ETIMEDOUT;
1332 }
1333
1334 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1335 SMI_OP_W | (value & 0xffff));
1336
1337 if (smi_wait_ready(pep)) {
1338 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1339 return -ETIMEDOUT;
1340 }
1341
1342 return 0;
1343}
1344
1345#ifdef CONFIG_NET_POLL_CONTROLLER
1346static void pxa168_eth_netpoll(struct net_device *dev)
1347{
1348 disable_irq(dev->irq);
1349 pxa168_eth_int_handler(dev->irq, dev);
1350 enable_irq(dev->irq);
1351}
1352#endif
1353
1354static void pxa168_get_drvinfo(struct net_device *dev,
1355 struct ethtool_drvinfo *info)
1356{
1357 strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1358 strscpy(info->version, DRIVER_VERSION, sizeof(info->version));
1359 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
1360 strscpy(info->bus_info, "N/A", sizeof(info->bus_info));
1361}
1362
1363static const struct ethtool_ops pxa168_ethtool_ops = {
1364 .get_drvinfo = pxa168_get_drvinfo,
1365 .nway_reset = phy_ethtool_nway_reset,
1366 .get_link = ethtool_op_get_link,
1367 .get_ts_info = ethtool_op_get_ts_info,
1368 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1369 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1370};
1371
1372static const struct net_device_ops pxa168_eth_netdev_ops = {
1373 .ndo_open = pxa168_eth_open,
1374 .ndo_stop = pxa168_eth_stop,
1375 .ndo_start_xmit = pxa168_eth_start_xmit,
1376 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1377 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1378 .ndo_validate_addr = eth_validate_addr,
1379 .ndo_eth_ioctl = phy_do_ioctl,
1380 .ndo_change_mtu = pxa168_eth_change_mtu,
1381 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1382#ifdef CONFIG_NET_POLL_CONTROLLER
1383 .ndo_poll_controller = pxa168_eth_netpoll,
1384#endif
1385};
1386
1387static int pxa168_eth_probe(struct platform_device *pdev)
1388{
1389 struct pxa168_eth_private *pep = NULL;
1390 struct net_device *dev = NULL;
1391 struct clk *clk;
1392 struct device_node *np;
1393 int err;
1394
1395 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1396
1397 clk = devm_clk_get(&pdev->dev, NULL);
1398 if (IS_ERR(clk)) {
1399 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1400 return -ENODEV;
1401 }
1402 clk_prepare_enable(clk);
1403
1404 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1405 if (!dev) {
1406 err = -ENOMEM;
1407 goto err_clk;
1408 }
1409
1410 platform_set_drvdata(pdev, dev);
1411 pep = netdev_priv(dev);
1412 pep->dev = dev;
1413 pep->clk = clk;
1414
1415 pep->base = devm_platform_ioremap_resource(pdev, 0);
1416 if (IS_ERR(pep->base)) {
1417 err = PTR_ERR(pep->base);
1418 goto err_netdev;
1419 }
1420
1421 err = platform_get_irq(pdev, 0);
1422 if (err == -EPROBE_DEFER)
1423 goto err_netdev;
1424 BUG_ON(dev->irq < 0);
1425 dev->irq = err;
1426 dev->netdev_ops = &pxa168_eth_netdev_ops;
1427 dev->watchdog_timeo = 2 * HZ;
1428 dev->base_addr = 0;
1429 dev->ethtool_ops = &pxa168_ethtool_ops;
1430
1431 /* MTU range: 68 - 9500 */
1432 dev->min_mtu = ETH_MIN_MTU;
1433 dev->max_mtu = 9500;
1434
1435 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1436
1437 err = of_get_ethdev_address(pdev->dev.of_node, dev);
1438 if (err) {
1439 u8 addr[ETH_ALEN];
1440
1441 /* try reading the mac address, if set by the bootloader */
1442 pxa168_eth_get_mac_address(dev, addr);
1443 if (is_valid_ether_addr(addr)) {
1444 eth_hw_addr_set(dev, addr);
1445 } else {
1446 dev_info(&pdev->dev, "Using random mac address\n");
1447 eth_hw_addr_random(dev);
1448 }
1449 }
1450
1451 pep->rx_ring_size = NUM_RX_DESCS;
1452 pep->tx_ring_size = NUM_TX_DESCS;
1453
1454 pep->pd = dev_get_platdata(&pdev->dev);
1455 if (pep->pd) {
1456 if (pep->pd->rx_queue_size)
1457 pep->rx_ring_size = pep->pd->rx_queue_size;
1458
1459 if (pep->pd->tx_queue_size)
1460 pep->tx_ring_size = pep->pd->tx_queue_size;
1461
1462 pep->port_num = pep->pd->port_number;
1463 pep->phy_addr = pep->pd->phy_addr;
1464 pep->phy_speed = pep->pd->speed;
1465 pep->phy_duplex = pep->pd->duplex;
1466 pep->phy_intf = pep->pd->intf;
1467
1468 if (pep->pd->init)
1469 pep->pd->init();
1470 } else if (pdev->dev.of_node) {
1471 of_property_read_u32(pdev->dev.of_node, "port-id",
1472 &pep->port_num);
1473
1474 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1475 if (!np) {
1476 dev_err(&pdev->dev, "missing phy-handle\n");
1477 err = -EINVAL;
1478 goto err_netdev;
1479 }
1480 of_property_read_u32(np, "reg", &pep->phy_addr);
1481 of_node_put(np);
1482 err = of_get_phy_mode(pdev->dev.of_node, &pep->phy_intf);
1483 if (err && err != -ENODEV)
1484 goto err_netdev;
1485 }
1486
1487 /* Hardware supports only 3 ports */
1488 BUG_ON(pep->port_num > 2);
1489 netif_napi_add_weight(dev, &pep->napi, pxa168_rx_poll,
1490 pep->rx_ring_size);
1491
1492 memset(&pep->timeout, 0, sizeof(struct timer_list));
1493 timer_setup(&pep->timeout, rxq_refill_timer_wrapper, 0);
1494
1495 pep->smi_bus = mdiobus_alloc();
1496 if (!pep->smi_bus) {
1497 err = -ENOMEM;
1498 goto err_netdev;
1499 }
1500 pep->smi_bus->priv = pep;
1501 pep->smi_bus->name = "pxa168_eth smi";
1502 pep->smi_bus->read = pxa168_smi_read;
1503 pep->smi_bus->write = pxa168_smi_write;
1504 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1505 pdev->name, pdev->id);
1506 pep->smi_bus->parent = &pdev->dev;
1507 pep->smi_bus->phy_mask = 0xffffffff;
1508 err = mdiobus_register(pep->smi_bus);
1509 if (err)
1510 goto err_free_mdio;
1511
1512 pep->pdev = pdev;
1513 SET_NETDEV_DEV(dev, &pdev->dev);
1514 pxa168_init_hw(pep);
1515 err = register_netdev(dev);
1516 if (err)
1517 goto err_mdiobus;
1518 return 0;
1519
1520err_mdiobus:
1521 mdiobus_unregister(pep->smi_bus);
1522err_free_mdio:
1523 mdiobus_free(pep->smi_bus);
1524err_netdev:
1525 free_netdev(dev);
1526err_clk:
1527 clk_disable_unprepare(clk);
1528 return err;
1529}
1530
1531static void pxa168_eth_remove(struct platform_device *pdev)
1532{
1533 struct net_device *dev = platform_get_drvdata(pdev);
1534 struct pxa168_eth_private *pep = netdev_priv(dev);
1535
1536 cancel_work_sync(&pep->tx_timeout_task);
1537 if (pep->htpr) {
1538 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1539 pep->htpr, pep->htpr_dma);
1540 pep->htpr = NULL;
1541 }
1542 if (dev->phydev)
1543 phy_disconnect(dev->phydev);
1544
1545 clk_disable_unprepare(pep->clk);
1546 mdiobus_unregister(pep->smi_bus);
1547 mdiobus_free(pep->smi_bus);
1548 unregister_netdev(dev);
1549 free_netdev(dev);
1550}
1551
1552static void pxa168_eth_shutdown(struct platform_device *pdev)
1553{
1554 struct net_device *dev = platform_get_drvdata(pdev);
1555 eth_port_reset(dev);
1556}
1557
1558#ifdef CONFIG_PM
1559static int pxa168_eth_resume(struct platform_device *pdev)
1560{
1561 return -ENOSYS;
1562}
1563
1564static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1565{
1566 return -ENOSYS;
1567}
1568
1569#else
1570#define pxa168_eth_resume NULL
1571#define pxa168_eth_suspend NULL
1572#endif
1573
1574static const struct of_device_id pxa168_eth_of_match[] = {
1575 { .compatible = "marvell,pxa168-eth" },
1576 { },
1577};
1578MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1579
1580static struct platform_driver pxa168_eth_driver = {
1581 .probe = pxa168_eth_probe,
1582 .remove_new = pxa168_eth_remove,
1583 .shutdown = pxa168_eth_shutdown,
1584 .resume = pxa168_eth_resume,
1585 .suspend = pxa168_eth_suspend,
1586 .driver = {
1587 .name = DRIVER_NAME,
1588 .of_match_table = pxa168_eth_of_match,
1589 },
1590};
1591
1592module_platform_driver(pxa168_eth_driver);
1593
1594MODULE_LICENSE("GPL");
1595MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1596MODULE_ALIAS("platform:pxa168_eth");
1/*
2 * PXA168 ethernet driver.
3 * Most of the code is derived from mv643xx ethernet driver.
4 *
5 * Copyright (C) 2010 Marvell International Ltd.
6 * Sachin Sanap <ssanap@marvell.com>
7 * Zhangfei Gao <zgao6@marvell.com>
8 * Philip Rakity <prakity@marvell.com>
9 * Mark Brown <markb@marvell.com>
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 */
25
26#include <linux/init.h>
27#include <linux/dma-mapping.h>
28#include <linux/in.h>
29#include <linux/ip.h>
30#include <linux/tcp.h>
31#include <linux/udp.h>
32#include <linux/etherdevice.h>
33#include <linux/bitops.h>
34#include <linux/delay.h>
35#include <linux/ethtool.h>
36#include <linux/platform_device.h>
37#include <linux/module.h>
38#include <linux/kernel.h>
39#include <linux/workqueue.h>
40#include <linux/clk.h>
41#include <linux/phy.h>
42#include <linux/io.h>
43#include <linux/interrupt.h>
44#include <linux/types.h>
45#include <asm/pgtable.h>
46#include <asm/cacheflush.h>
47#include <linux/pxa168_eth.h>
48
49#define DRIVER_NAME "pxa168-eth"
50#define DRIVER_VERSION "0.3"
51
52/*
53 * Registers
54 */
55
56#define PHY_ADDRESS 0x0000
57#define SMI 0x0010
58#define PORT_CONFIG 0x0400
59#define PORT_CONFIG_EXT 0x0408
60#define PORT_COMMAND 0x0410
61#define PORT_STATUS 0x0418
62#define HTPR 0x0428
63#define SDMA_CONFIG 0x0440
64#define SDMA_CMD 0x0448
65#define INT_CAUSE 0x0450
66#define INT_W_CLEAR 0x0454
67#define INT_MASK 0x0458
68#define ETH_F_RX_DESC_0 0x0480
69#define ETH_C_RX_DESC_0 0x04A0
70#define ETH_C_TX_DESC_1 0x04E4
71
72/* smi register */
73#define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
74#define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
75#define SMI_OP_W (0 << 26) /* Write operation */
76#define SMI_OP_R (1 << 26) /* Read operation */
77
78#define PHY_WAIT_ITERATIONS 10
79
80#define PXA168_ETH_PHY_ADDR_DEFAULT 0
81/* RX & TX descriptor command */
82#define BUF_OWNED_BY_DMA (1 << 31)
83
84/* RX descriptor status */
85#define RX_EN_INT (1 << 23)
86#define RX_FIRST_DESC (1 << 17)
87#define RX_LAST_DESC (1 << 16)
88#define RX_ERROR (1 << 15)
89
90/* TX descriptor command */
91#define TX_EN_INT (1 << 23)
92#define TX_GEN_CRC (1 << 22)
93#define TX_ZERO_PADDING (1 << 18)
94#define TX_FIRST_DESC (1 << 17)
95#define TX_LAST_DESC (1 << 16)
96#define TX_ERROR (1 << 15)
97
98/* SDMA_CMD */
99#define SDMA_CMD_AT (1 << 31)
100#define SDMA_CMD_TXDL (1 << 24)
101#define SDMA_CMD_TXDH (1 << 23)
102#define SDMA_CMD_AR (1 << 15)
103#define SDMA_CMD_ERD (1 << 7)
104
105/* Bit definitions of the Port Config Reg */
106#define PCR_HS (1 << 12)
107#define PCR_EN (1 << 7)
108#define PCR_PM (1 << 0)
109
110/* Bit definitions of the Port Config Extend Reg */
111#define PCXR_2BSM (1 << 28)
112#define PCXR_DSCP_EN (1 << 21)
113#define PCXR_MFL_1518 (0 << 14)
114#define PCXR_MFL_1536 (1 << 14)
115#define PCXR_MFL_2048 (2 << 14)
116#define PCXR_MFL_64K (3 << 14)
117#define PCXR_FLP (1 << 11)
118#define PCXR_PRIO_TX_OFF 3
119#define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
120
121/* Bit definitions of the SDMA Config Reg */
122#define SDCR_BSZ_OFF 12
123#define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
124#define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
125#define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
126#define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
127#define SDCR_BLMR (1 << 6)
128#define SDCR_BLMT (1 << 7)
129#define SDCR_RIFB (1 << 9)
130#define SDCR_RC_OFF 2
131#define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
132
133/*
134 * Bit definitions of the Interrupt Cause Reg
135 * and Interrupt MASK Reg is the same
136 */
137#define ICR_RXBUF (1 << 0)
138#define ICR_TXBUF_H (1 << 2)
139#define ICR_TXBUF_L (1 << 3)
140#define ICR_TXEND_H (1 << 6)
141#define ICR_TXEND_L (1 << 7)
142#define ICR_RXERR (1 << 8)
143#define ICR_TXERR_H (1 << 10)
144#define ICR_TXERR_L (1 << 11)
145#define ICR_TX_UDR (1 << 13)
146#define ICR_MII_CH (1 << 28)
147
148#define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
149 ICR_TXERR_H | ICR_TXERR_L |\
150 ICR_TXEND_H | ICR_TXEND_L |\
151 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
152
153#define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
154
155#define NUM_RX_DESCS 64
156#define NUM_TX_DESCS 64
157
158#define HASH_ADD 0
159#define HASH_DELETE 1
160#define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
161#define HOP_NUMBER 12
162
163/* Bit definitions for Port status */
164#define PORT_SPEED_100 (1 << 0)
165#define FULL_DUPLEX (1 << 1)
166#define FLOW_CONTROL_ENABLED (1 << 2)
167#define LINK_UP (1 << 3)
168
169/* Bit definitions for work to be done */
170#define WORK_LINK (1 << 0)
171#define WORK_TX_DONE (1 << 1)
172
173/*
174 * Misc definitions.
175 */
176#define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
177
178struct rx_desc {
179 u32 cmd_sts; /* Descriptor command status */
180 u16 byte_cnt; /* Descriptor buffer byte count */
181 u16 buf_size; /* Buffer size */
182 u32 buf_ptr; /* Descriptor buffer pointer */
183 u32 next_desc_ptr; /* Next descriptor pointer */
184};
185
186struct tx_desc {
187 u32 cmd_sts; /* Command/status field */
188 u16 reserved;
189 u16 byte_cnt; /* buffer byte count */
190 u32 buf_ptr; /* pointer to buffer for this descriptor */
191 u32 next_desc_ptr; /* Pointer to next descriptor */
192};
193
194struct pxa168_eth_private {
195 int port_num; /* User Ethernet port number */
196
197 int rx_resource_err; /* Rx ring resource error flag */
198
199 /* Next available and first returning Rx resource */
200 int rx_curr_desc_q, rx_used_desc_q;
201
202 /* Next available and first returning Tx resource */
203 int tx_curr_desc_q, tx_used_desc_q;
204
205 struct rx_desc *p_rx_desc_area;
206 dma_addr_t rx_desc_dma;
207 int rx_desc_area_size;
208 struct sk_buff **rx_skb;
209
210 struct tx_desc *p_tx_desc_area;
211 dma_addr_t tx_desc_dma;
212 int tx_desc_area_size;
213 struct sk_buff **tx_skb;
214
215 struct work_struct tx_timeout_task;
216
217 struct net_device *dev;
218 struct napi_struct napi;
219 u8 work_todo;
220 int skb_size;
221
222 /* Size of Tx Ring per queue */
223 int tx_ring_size;
224 /* Number of tx descriptors in use */
225 int tx_desc_count;
226 /* Size of Rx Ring per queue */
227 int rx_ring_size;
228 /* Number of rx descriptors in use */
229 int rx_desc_count;
230
231 /*
232 * Used in case RX Ring is empty, which can occur when
233 * system does not have resources (skb's)
234 */
235 struct timer_list timeout;
236 struct mii_bus *smi_bus;
237 struct phy_device *phy;
238
239 /* clock */
240 struct clk *clk;
241 struct pxa168_eth_platform_data *pd;
242 /*
243 * Ethernet controller base address.
244 */
245 void __iomem *base;
246
247 /* Pointer to the hardware address filter table */
248 void *htpr;
249 dma_addr_t htpr_dma;
250};
251
252struct addr_table_entry {
253 __le32 lo;
254 __le32 hi;
255};
256
257/* Bit fields of a Hash Table Entry */
258enum hash_table_entry {
259 HASH_ENTRY_VALID = 1,
260 SKIP = 2,
261 HASH_ENTRY_RECEIVE_DISCARD = 4,
262 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
263};
264
265static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
266static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
267static int pxa168_init_hw(struct pxa168_eth_private *pep);
268static void eth_port_reset(struct net_device *dev);
269static void eth_port_start(struct net_device *dev);
270static int pxa168_eth_open(struct net_device *dev);
271static int pxa168_eth_stop(struct net_device *dev);
272static int ethernet_phy_setup(struct net_device *dev);
273
274static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
275{
276 return readl(pep->base + offset);
277}
278
279static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
280{
281 writel(data, pep->base + offset);
282}
283
284static void abort_dma(struct pxa168_eth_private *pep)
285{
286 int delay;
287 int max_retries = 40;
288
289 do {
290 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
291 udelay(100);
292
293 delay = 10;
294 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
295 && delay-- > 0) {
296 udelay(10);
297 }
298 } while (max_retries-- > 0 && delay <= 0);
299
300 if (max_retries <= 0)
301 printk(KERN_ERR "%s : DMA Stuck\n", __func__);
302}
303
304static int ethernet_phy_get(struct pxa168_eth_private *pep)
305{
306 unsigned int reg_data;
307
308 reg_data = rdl(pep, PHY_ADDRESS);
309
310 return (reg_data >> (5 * pep->port_num)) & 0x1f;
311}
312
313static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
314{
315 u32 reg_data;
316 int addr_shift = 5 * pep->port_num;
317
318 reg_data = rdl(pep, PHY_ADDRESS);
319 reg_data &= ~(0x1f << addr_shift);
320 reg_data |= (phy_addr & 0x1f) << addr_shift;
321 wrl(pep, PHY_ADDRESS, reg_data);
322}
323
324static void ethernet_phy_reset(struct pxa168_eth_private *pep)
325{
326 int data;
327
328 data = phy_read(pep->phy, MII_BMCR);
329 if (data < 0)
330 return;
331
332 data |= BMCR_RESET;
333 if (phy_write(pep->phy, MII_BMCR, data) < 0)
334 return;
335
336 do {
337 data = phy_read(pep->phy, MII_BMCR);
338 } while (data >= 0 && data & BMCR_RESET);
339}
340
341static void rxq_refill(struct net_device *dev)
342{
343 struct pxa168_eth_private *pep = netdev_priv(dev);
344 struct sk_buff *skb;
345 struct rx_desc *p_used_rx_desc;
346 int used_rx_desc;
347
348 while (pep->rx_desc_count < pep->rx_ring_size) {
349 int size;
350
351 skb = netdev_alloc_skb(dev, pep->skb_size);
352 if (!skb)
353 break;
354 if (SKB_DMA_REALIGN)
355 skb_reserve(skb, SKB_DMA_REALIGN);
356 pep->rx_desc_count++;
357 /* Get 'used' Rx descriptor */
358 used_rx_desc = pep->rx_used_desc_q;
359 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
360 size = skb->end - skb->data;
361 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
362 skb->data,
363 size,
364 DMA_FROM_DEVICE);
365 p_used_rx_desc->buf_size = size;
366 pep->rx_skb[used_rx_desc] = skb;
367
368 /* Return the descriptor to DMA ownership */
369 wmb();
370 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
371 wmb();
372
373 /* Move the used descriptor pointer to the next descriptor */
374 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
375
376 /* Any Rx return cancels the Rx resource error status */
377 pep->rx_resource_err = 0;
378
379 skb_reserve(skb, ETH_HW_IP_ALIGN);
380 }
381
382 /*
383 * If RX ring is empty of SKB, set a timer to try allocating
384 * again at a later time.
385 */
386 if (pep->rx_desc_count == 0) {
387 pep->timeout.expires = jiffies + (HZ / 10);
388 add_timer(&pep->timeout);
389 }
390}
391
392static inline void rxq_refill_timer_wrapper(unsigned long data)
393{
394 struct pxa168_eth_private *pep = (void *)data;
395 napi_schedule(&pep->napi);
396}
397
398static inline u8 flip_8_bits(u8 x)
399{
400 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
401 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
402 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
403 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
404}
405
406static void nibble_swap_every_byte(unsigned char *mac_addr)
407{
408 int i;
409 for (i = 0; i < ETH_ALEN; i++) {
410 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
411 ((mac_addr[i] & 0xf0) >> 4);
412 }
413}
414
415static void inverse_every_nibble(unsigned char *mac_addr)
416{
417 int i;
418 for (i = 0; i < ETH_ALEN; i++)
419 mac_addr[i] = flip_8_bits(mac_addr[i]);
420}
421
422/*
423 * ----------------------------------------------------------------------------
424 * This function will calculate the hash function of the address.
425 * Inputs
426 * mac_addr_orig - MAC address.
427 * Outputs
428 * return the calculated entry.
429 */
430static u32 hash_function(unsigned char *mac_addr_orig)
431{
432 u32 hash_result;
433 u32 addr0;
434 u32 addr1;
435 u32 addr2;
436 u32 addr3;
437 unsigned char mac_addr[ETH_ALEN];
438
439 /* Make a copy of MAC address since we are going to performe bit
440 * operations on it
441 */
442 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
443
444 nibble_swap_every_byte(mac_addr);
445 inverse_every_nibble(mac_addr);
446
447 addr0 = (mac_addr[5] >> 2) & 0x3f;
448 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
449 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
450 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
451
452 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
453 hash_result = hash_result & 0x07ff;
454 return hash_result;
455}
456
457/*
458 * ----------------------------------------------------------------------------
459 * This function will add/del an entry to the address table.
460 * Inputs
461 * pep - ETHERNET .
462 * mac_addr - MAC address.
463 * skip - if 1, skip this address.Used in case of deleting an entry which is a
464 * part of chain in the hash table.We can't just delete the entry since
465 * that will break the chain.We need to defragment the tables time to
466 * time.
467 * rd - 0 Discard packet upon match.
468 * - 1 Receive packet upon match.
469 * Outputs
470 * address table entry is added/deleted.
471 * 0 if success.
472 * -ENOSPC if table full
473 */
474static int add_del_hash_entry(struct pxa168_eth_private *pep,
475 unsigned char *mac_addr,
476 u32 rd, u32 skip, int del)
477{
478 struct addr_table_entry *entry, *start;
479 u32 new_high;
480 u32 new_low;
481 u32 i;
482
483 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
484 | (((mac_addr[1] >> 0) & 0xf) << 11)
485 | (((mac_addr[0] >> 4) & 0xf) << 7)
486 | (((mac_addr[0] >> 0) & 0xf) << 3)
487 | (((mac_addr[3] >> 4) & 0x1) << 31)
488 | (((mac_addr[3] >> 0) & 0xf) << 27)
489 | (((mac_addr[2] >> 4) & 0xf) << 23)
490 | (((mac_addr[2] >> 0) & 0xf) << 19)
491 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
492 | HASH_ENTRY_VALID;
493
494 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
495 | (((mac_addr[5] >> 0) & 0xf) << 11)
496 | (((mac_addr[4] >> 4) & 0xf) << 7)
497 | (((mac_addr[4] >> 0) & 0xf) << 3)
498 | (((mac_addr[3] >> 5) & 0x7) << 0);
499
500 /*
501 * Pick the appropriate table, start scanning for free/reusable
502 * entries at the index obtained by hashing the specified MAC address
503 */
504 start = pep->htpr;
505 entry = start + hash_function(mac_addr);
506 for (i = 0; i < HOP_NUMBER; i++) {
507 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
508 break;
509 } else {
510 /* if same address put in same position */
511 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
512 (new_low & 0xfffffff8)) &&
513 (le32_to_cpu(entry->hi) == new_high)) {
514 break;
515 }
516 }
517 if (entry == start + 0x7ff)
518 entry = start;
519 else
520 entry++;
521 }
522
523 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
524 (le32_to_cpu(entry->hi) != new_high) && del)
525 return 0;
526
527 if (i == HOP_NUMBER) {
528 if (!del) {
529 printk(KERN_INFO "%s: table section is full, need to "
530 "move to 16kB implementation?\n",
531 __FILE__);
532 return -ENOSPC;
533 } else
534 return 0;
535 }
536
537 /*
538 * Update the selected entry
539 */
540 if (del) {
541 entry->hi = 0;
542 entry->lo = 0;
543 } else {
544 entry->hi = cpu_to_le32(new_high);
545 entry->lo = cpu_to_le32(new_low);
546 }
547
548 return 0;
549}
550
551/*
552 * ----------------------------------------------------------------------------
553 * Create an addressTable entry from MAC address info
554 * found in the specifed net_device struct
555 *
556 * Input : pointer to ethernet interface network device structure
557 * Output : N/A
558 */
559static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
560 unsigned char *oaddr,
561 unsigned char *addr)
562{
563 /* Delete old entry */
564 if (oaddr)
565 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
566 /* Add new entry */
567 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
568}
569
570static int init_hash_table(struct pxa168_eth_private *pep)
571{
572 /*
573 * Hardware expects CPU to build a hash table based on a predefined
574 * hash function and populate it based on hardware address. The
575 * location of the hash table is identified by 32-bit pointer stored
576 * in HTPR internal register. Two possible sizes exists for the hash
577 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
578 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
579 * 1/2kB.
580 */
581 /* TODO: Add support for 8kB hash table and alternative hash
582 * function.Driver can dynamically switch to them if the 1/2kB hash
583 * table is full.
584 */
585 if (pep->htpr == NULL) {
586 pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
587 HASH_ADDR_TABLE_SIZE,
588 &pep->htpr_dma, GFP_KERNEL);
589 if (pep->htpr == NULL)
590 return -ENOMEM;
591 }
592 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
593 wrl(pep, HTPR, pep->htpr_dma);
594 return 0;
595}
596
597static void pxa168_eth_set_rx_mode(struct net_device *dev)
598{
599 struct pxa168_eth_private *pep = netdev_priv(dev);
600 struct netdev_hw_addr *ha;
601 u32 val;
602
603 val = rdl(pep, PORT_CONFIG);
604 if (dev->flags & IFF_PROMISC)
605 val |= PCR_PM;
606 else
607 val &= ~PCR_PM;
608 wrl(pep, PORT_CONFIG, val);
609
610 /*
611 * Remove the old list of MAC address and add dev->addr
612 * and multicast address.
613 */
614 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
615 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
616
617 netdev_for_each_mc_addr(ha, dev)
618 update_hash_table_mac_address(pep, NULL, ha->addr);
619}
620
621static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
622{
623 struct sockaddr *sa = addr;
624 struct pxa168_eth_private *pep = netdev_priv(dev);
625 unsigned char oldMac[ETH_ALEN];
626
627 if (!is_valid_ether_addr(sa->sa_data))
628 return -EADDRNOTAVAIL;
629 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
630 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
631 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
632 netif_addr_lock_bh(dev);
633 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
634 netif_addr_unlock_bh(dev);
635 return 0;
636}
637
638static void eth_port_start(struct net_device *dev)
639{
640 unsigned int val = 0;
641 struct pxa168_eth_private *pep = netdev_priv(dev);
642 int tx_curr_desc, rx_curr_desc;
643
644 /* Perform PHY reset, if there is a PHY. */
645 if (pep->phy != NULL) {
646 struct ethtool_cmd cmd;
647
648 pxa168_get_settings(pep->dev, &cmd);
649 ethernet_phy_reset(pep);
650 pxa168_set_settings(pep->dev, &cmd);
651 }
652
653 /* Assignment of Tx CTRP of given queue */
654 tx_curr_desc = pep->tx_curr_desc_q;
655 wrl(pep, ETH_C_TX_DESC_1,
656 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
657
658 /* Assignment of Rx CRDP of given queue */
659 rx_curr_desc = pep->rx_curr_desc_q;
660 wrl(pep, ETH_C_RX_DESC_0,
661 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
662
663 wrl(pep, ETH_F_RX_DESC_0,
664 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
665
666 /* Clear all interrupts */
667 wrl(pep, INT_CAUSE, 0);
668
669 /* Enable all interrupts for receive, transmit and error. */
670 wrl(pep, INT_MASK, ALL_INTS);
671
672 val = rdl(pep, PORT_CONFIG);
673 val |= PCR_EN;
674 wrl(pep, PORT_CONFIG, val);
675
676 /* Start RX DMA engine */
677 val = rdl(pep, SDMA_CMD);
678 val |= SDMA_CMD_ERD;
679 wrl(pep, SDMA_CMD, val);
680}
681
682static void eth_port_reset(struct net_device *dev)
683{
684 struct pxa168_eth_private *pep = netdev_priv(dev);
685 unsigned int val = 0;
686
687 /* Stop all interrupts for receive, transmit and error. */
688 wrl(pep, INT_MASK, 0);
689
690 /* Clear all interrupts */
691 wrl(pep, INT_CAUSE, 0);
692
693 /* Stop RX DMA */
694 val = rdl(pep, SDMA_CMD);
695 val &= ~SDMA_CMD_ERD; /* abort dma command */
696
697 /* Abort any transmit and receive operations and put DMA
698 * in idle state.
699 */
700 abort_dma(pep);
701
702 /* Disable port */
703 val = rdl(pep, PORT_CONFIG);
704 val &= ~PCR_EN;
705 wrl(pep, PORT_CONFIG, val);
706}
707
708/*
709 * txq_reclaim - Free the tx desc data for completed descriptors
710 * If force is non-zero, frees uncompleted descriptors as well
711 */
712static int txq_reclaim(struct net_device *dev, int force)
713{
714 struct pxa168_eth_private *pep = netdev_priv(dev);
715 struct tx_desc *desc;
716 u32 cmd_sts;
717 struct sk_buff *skb;
718 int tx_index;
719 dma_addr_t addr;
720 int count;
721 int released = 0;
722
723 netif_tx_lock(dev);
724
725 pep->work_todo &= ~WORK_TX_DONE;
726 while (pep->tx_desc_count > 0) {
727 tx_index = pep->tx_used_desc_q;
728 desc = &pep->p_tx_desc_area[tx_index];
729 cmd_sts = desc->cmd_sts;
730 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
731 if (released > 0) {
732 goto txq_reclaim_end;
733 } else {
734 released = -1;
735 goto txq_reclaim_end;
736 }
737 }
738 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
739 pep->tx_desc_count--;
740 addr = desc->buf_ptr;
741 count = desc->byte_cnt;
742 skb = pep->tx_skb[tx_index];
743 if (skb)
744 pep->tx_skb[tx_index] = NULL;
745
746 if (cmd_sts & TX_ERROR) {
747 if (net_ratelimit())
748 printk(KERN_ERR "%s: Error in TX\n", dev->name);
749 dev->stats.tx_errors++;
750 }
751 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
752 if (skb)
753 dev_kfree_skb_irq(skb);
754 released++;
755 }
756txq_reclaim_end:
757 netif_tx_unlock(dev);
758 return released;
759}
760
761static void pxa168_eth_tx_timeout(struct net_device *dev)
762{
763 struct pxa168_eth_private *pep = netdev_priv(dev);
764
765 printk(KERN_INFO "%s: TX timeout desc_count %d\n",
766 dev->name, pep->tx_desc_count);
767
768 schedule_work(&pep->tx_timeout_task);
769}
770
771static void pxa168_eth_tx_timeout_task(struct work_struct *work)
772{
773 struct pxa168_eth_private *pep = container_of(work,
774 struct pxa168_eth_private,
775 tx_timeout_task);
776 struct net_device *dev = pep->dev;
777 pxa168_eth_stop(dev);
778 pxa168_eth_open(dev);
779}
780
781static int rxq_process(struct net_device *dev, int budget)
782{
783 struct pxa168_eth_private *pep = netdev_priv(dev);
784 struct net_device_stats *stats = &dev->stats;
785 unsigned int received_packets = 0;
786 struct sk_buff *skb;
787
788 while (budget-- > 0) {
789 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
790 struct rx_desc *rx_desc;
791 unsigned int cmd_sts;
792
793 /* Do not process Rx ring in case of Rx ring resource error */
794 if (pep->rx_resource_err)
795 break;
796 rx_curr_desc = pep->rx_curr_desc_q;
797 rx_used_desc = pep->rx_used_desc_q;
798 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
799 cmd_sts = rx_desc->cmd_sts;
800 rmb();
801 if (cmd_sts & (BUF_OWNED_BY_DMA))
802 break;
803 skb = pep->rx_skb[rx_curr_desc];
804 pep->rx_skb[rx_curr_desc] = NULL;
805
806 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
807 pep->rx_curr_desc_q = rx_next_curr_desc;
808
809 /* Rx descriptors exhausted. */
810 /* Set the Rx ring resource error flag */
811 if (rx_next_curr_desc == rx_used_desc)
812 pep->rx_resource_err = 1;
813 pep->rx_desc_count--;
814 dma_unmap_single(NULL, rx_desc->buf_ptr,
815 rx_desc->buf_size,
816 DMA_FROM_DEVICE);
817 received_packets++;
818 /*
819 * Update statistics.
820 * Note byte count includes 4 byte CRC count
821 */
822 stats->rx_packets++;
823 stats->rx_bytes += rx_desc->byte_cnt;
824 /*
825 * In case received a packet without first / last bits on OR
826 * the error summary bit is on, the packets needs to be droped.
827 */
828 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
829 (RX_FIRST_DESC | RX_LAST_DESC))
830 || (cmd_sts & RX_ERROR)) {
831
832 stats->rx_dropped++;
833 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
834 (RX_FIRST_DESC | RX_LAST_DESC)) {
835 if (net_ratelimit())
836 printk(KERN_ERR
837 "%s: Rx pkt on multiple desc\n",
838 dev->name);
839 }
840 if (cmd_sts & RX_ERROR)
841 stats->rx_errors++;
842 dev_kfree_skb_irq(skb);
843 } else {
844 /*
845 * The -4 is for the CRC in the trailer of the
846 * received packet
847 */
848 skb_put(skb, rx_desc->byte_cnt - 4);
849 skb->protocol = eth_type_trans(skb, dev);
850 netif_receive_skb(skb);
851 }
852 }
853 /* Fill RX ring with skb's */
854 rxq_refill(dev);
855 return received_packets;
856}
857
858static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
859 struct net_device *dev)
860{
861 u32 icr;
862 int ret = 0;
863
864 icr = rdl(pep, INT_CAUSE);
865 if (icr == 0)
866 return IRQ_NONE;
867
868 wrl(pep, INT_CAUSE, ~icr);
869 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
870 pep->work_todo |= WORK_TX_DONE;
871 ret = 1;
872 }
873 if (icr & ICR_RXBUF)
874 ret = 1;
875 if (icr & ICR_MII_CH) {
876 pep->work_todo |= WORK_LINK;
877 ret = 1;
878 }
879 return ret;
880}
881
882static void handle_link_event(struct pxa168_eth_private *pep)
883{
884 struct net_device *dev = pep->dev;
885 u32 port_status;
886 int speed;
887 int duplex;
888 int fc;
889
890 port_status = rdl(pep, PORT_STATUS);
891 if (!(port_status & LINK_UP)) {
892 if (netif_carrier_ok(dev)) {
893 printk(KERN_INFO "%s: link down\n", dev->name);
894 netif_carrier_off(dev);
895 txq_reclaim(dev, 1);
896 }
897 return;
898 }
899 if (port_status & PORT_SPEED_100)
900 speed = 100;
901 else
902 speed = 10;
903
904 duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
905 fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
906 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
907 "flow control %sabled\n", dev->name,
908 speed, duplex ? "full" : "half", fc ? "en" : "dis");
909 if (!netif_carrier_ok(dev))
910 netif_carrier_on(dev);
911}
912
913static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
914{
915 struct net_device *dev = (struct net_device *)dev_id;
916 struct pxa168_eth_private *pep = netdev_priv(dev);
917
918 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
919 return IRQ_NONE;
920 /* Disable interrupts */
921 wrl(pep, INT_MASK, 0);
922 napi_schedule(&pep->napi);
923 return IRQ_HANDLED;
924}
925
926static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
927{
928 int skb_size;
929
930 /*
931 * Reserve 2+14 bytes for an ethernet header (the hardware
932 * automatically prepends 2 bytes of dummy data to each
933 * received packet), 16 bytes for up to four VLAN tags, and
934 * 4 bytes for the trailing FCS -- 36 bytes total.
935 */
936 skb_size = pep->dev->mtu + 36;
937
938 /*
939 * Make sure that the skb size is a multiple of 8 bytes, as
940 * the lower three bits of the receive descriptor's buffer
941 * size field are ignored by the hardware.
942 */
943 pep->skb_size = (skb_size + 7) & ~7;
944
945 /*
946 * If NET_SKB_PAD is smaller than a cache line,
947 * netdev_alloc_skb() will cause skb->data to be misaligned
948 * to a cache line boundary. If this is the case, include
949 * some extra space to allow re-aligning the data area.
950 */
951 pep->skb_size += SKB_DMA_REALIGN;
952
953}
954
955static int set_port_config_ext(struct pxa168_eth_private *pep)
956{
957 int skb_size;
958
959 pxa168_eth_recalc_skb_size(pep);
960 if (pep->skb_size <= 1518)
961 skb_size = PCXR_MFL_1518;
962 else if (pep->skb_size <= 1536)
963 skb_size = PCXR_MFL_1536;
964 else if (pep->skb_size <= 2048)
965 skb_size = PCXR_MFL_2048;
966 else
967 skb_size = PCXR_MFL_64K;
968
969 /* Extended Port Configuration */
970 wrl(pep,
971 PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
972 PCXR_DSCP_EN | /* Enable DSCP in IP */
973 skb_size | PCXR_FLP | /* do not force link pass */
974 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
975
976 return 0;
977}
978
979static int pxa168_init_hw(struct pxa168_eth_private *pep)
980{
981 int err = 0;
982
983 /* Disable interrupts */
984 wrl(pep, INT_MASK, 0);
985 wrl(pep, INT_CAUSE, 0);
986 /* Write to ICR to clear interrupts. */
987 wrl(pep, INT_W_CLEAR, 0);
988 /* Abort any transmit and receive operations and put DMA
989 * in idle state.
990 */
991 abort_dma(pep);
992 /* Initialize address hash table */
993 err = init_hash_table(pep);
994 if (err)
995 return err;
996 /* SDMA configuration */
997 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
998 SDCR_RIFB | /* Rx interrupt on frame */
999 SDCR_BLMT | /* Little endian transmit */
1000 SDCR_BLMR | /* Little endian receive */
1001 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1002 /* Port Configuration */
1003 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1004 set_port_config_ext(pep);
1005
1006 return err;
1007}
1008
1009static int rxq_init(struct net_device *dev)
1010{
1011 struct pxa168_eth_private *pep = netdev_priv(dev);
1012 struct rx_desc *p_rx_desc;
1013 int size = 0, i = 0;
1014 int rx_desc_num = pep->rx_ring_size;
1015
1016 /* Allocate RX skb rings */
1017 pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1018 GFP_KERNEL);
1019 if (!pep->rx_skb)
1020 return -ENOMEM;
1021
1022 /* Allocate RX ring */
1023 pep->rx_desc_count = 0;
1024 size = pep->rx_ring_size * sizeof(struct rx_desc);
1025 pep->rx_desc_area_size = size;
1026 pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1027 &pep->rx_desc_dma, GFP_KERNEL);
1028 if (!pep->p_rx_desc_area) {
1029 printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1030 dev->name, size);
1031 goto out;
1032 }
1033 memset((void *)pep->p_rx_desc_area, 0, size);
1034 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1035 p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
1036 for (i = 0; i < rx_desc_num; i++) {
1037 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1038 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1039 }
1040 /* Save Rx desc pointer to driver struct. */
1041 pep->rx_curr_desc_q = 0;
1042 pep->rx_used_desc_q = 0;
1043 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1044 return 0;
1045out:
1046 kfree(pep->rx_skb);
1047 return -ENOMEM;
1048}
1049
1050static void rxq_deinit(struct net_device *dev)
1051{
1052 struct pxa168_eth_private *pep = netdev_priv(dev);
1053 int curr;
1054
1055 /* Free preallocated skb's on RX rings */
1056 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1057 if (pep->rx_skb[curr]) {
1058 dev_kfree_skb(pep->rx_skb[curr]);
1059 pep->rx_desc_count--;
1060 }
1061 }
1062 if (pep->rx_desc_count)
1063 printk(KERN_ERR
1064 "Error in freeing Rx Ring. %d skb's still\n",
1065 pep->rx_desc_count);
1066 /* Free RX ring */
1067 if (pep->p_rx_desc_area)
1068 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1069 pep->p_rx_desc_area, pep->rx_desc_dma);
1070 kfree(pep->rx_skb);
1071}
1072
1073static int txq_init(struct net_device *dev)
1074{
1075 struct pxa168_eth_private *pep = netdev_priv(dev);
1076 struct tx_desc *p_tx_desc;
1077 int size = 0, i = 0;
1078 int tx_desc_num = pep->tx_ring_size;
1079
1080 pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1081 GFP_KERNEL);
1082 if (!pep->tx_skb)
1083 return -ENOMEM;
1084
1085 /* Allocate TX ring */
1086 pep->tx_desc_count = 0;
1087 size = pep->tx_ring_size * sizeof(struct tx_desc);
1088 pep->tx_desc_area_size = size;
1089 pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1090 &pep->tx_desc_dma, GFP_KERNEL);
1091 if (!pep->p_tx_desc_area) {
1092 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1093 dev->name, size);
1094 goto out;
1095 }
1096 memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1097 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1098 p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
1099 for (i = 0; i < tx_desc_num; i++) {
1100 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1101 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1102 }
1103 pep->tx_curr_desc_q = 0;
1104 pep->tx_used_desc_q = 0;
1105 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1106 return 0;
1107out:
1108 kfree(pep->tx_skb);
1109 return -ENOMEM;
1110}
1111
1112static void txq_deinit(struct net_device *dev)
1113{
1114 struct pxa168_eth_private *pep = netdev_priv(dev);
1115
1116 /* Free outstanding skb's on TX ring */
1117 txq_reclaim(dev, 1);
1118 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1119 /* Free TX ring */
1120 if (pep->p_tx_desc_area)
1121 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1122 pep->p_tx_desc_area, pep->tx_desc_dma);
1123 kfree(pep->tx_skb);
1124}
1125
1126static int pxa168_eth_open(struct net_device *dev)
1127{
1128 struct pxa168_eth_private *pep = netdev_priv(dev);
1129 int err;
1130
1131 err = request_irq(dev->irq, pxa168_eth_int_handler,
1132 IRQF_DISABLED, dev->name, dev);
1133 if (err) {
1134 dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
1135 return -EAGAIN;
1136 }
1137 pep->rx_resource_err = 0;
1138 err = rxq_init(dev);
1139 if (err != 0)
1140 goto out_free_irq;
1141 err = txq_init(dev);
1142 if (err != 0)
1143 goto out_free_rx_skb;
1144 pep->rx_used_desc_q = 0;
1145 pep->rx_curr_desc_q = 0;
1146
1147 /* Fill RX ring with skb's */
1148 rxq_refill(dev);
1149 pep->rx_used_desc_q = 0;
1150 pep->rx_curr_desc_q = 0;
1151 netif_carrier_off(dev);
1152 eth_port_start(dev);
1153 napi_enable(&pep->napi);
1154 return 0;
1155out_free_rx_skb:
1156 rxq_deinit(dev);
1157out_free_irq:
1158 free_irq(dev->irq, dev);
1159 return err;
1160}
1161
1162static int pxa168_eth_stop(struct net_device *dev)
1163{
1164 struct pxa168_eth_private *pep = netdev_priv(dev);
1165 eth_port_reset(dev);
1166
1167 /* Disable interrupts */
1168 wrl(pep, INT_MASK, 0);
1169 wrl(pep, INT_CAUSE, 0);
1170 /* Write to ICR to clear interrupts. */
1171 wrl(pep, INT_W_CLEAR, 0);
1172 napi_disable(&pep->napi);
1173 del_timer_sync(&pep->timeout);
1174 netif_carrier_off(dev);
1175 free_irq(dev->irq, dev);
1176 rxq_deinit(dev);
1177 txq_deinit(dev);
1178
1179 return 0;
1180}
1181
1182static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1183{
1184 int retval;
1185 struct pxa168_eth_private *pep = netdev_priv(dev);
1186
1187 if ((mtu > 9500) || (mtu < 68))
1188 return -EINVAL;
1189
1190 dev->mtu = mtu;
1191 retval = set_port_config_ext(pep);
1192
1193 if (!netif_running(dev))
1194 return 0;
1195
1196 /*
1197 * Stop and then re-open the interface. This will allocate RX
1198 * skbs of the new MTU.
1199 * There is a possible danger that the open will not succeed,
1200 * due to memory being full.
1201 */
1202 pxa168_eth_stop(dev);
1203 if (pxa168_eth_open(dev)) {
1204 dev_printk(KERN_ERR, &dev->dev,
1205 "fatal error on re-opening device after "
1206 "MTU change\n");
1207 }
1208
1209 return 0;
1210}
1211
1212static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1213{
1214 int tx_desc_curr;
1215
1216 tx_desc_curr = pep->tx_curr_desc_q;
1217 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1218 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1219 pep->tx_desc_count++;
1220
1221 return tx_desc_curr;
1222}
1223
1224static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1225{
1226 struct pxa168_eth_private *pep =
1227 container_of(napi, struct pxa168_eth_private, napi);
1228 struct net_device *dev = pep->dev;
1229 int work_done = 0;
1230
1231 if (unlikely(pep->work_todo & WORK_LINK)) {
1232 pep->work_todo &= ~(WORK_LINK);
1233 handle_link_event(pep);
1234 }
1235 /*
1236 * We call txq_reclaim every time since in NAPI interupts are disabled
1237 * and due to this we miss the TX_DONE interrupt,which is not updated in
1238 * interrupt status register.
1239 */
1240 txq_reclaim(dev, 0);
1241 if (netif_queue_stopped(dev)
1242 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1243 netif_wake_queue(dev);
1244 }
1245 work_done = rxq_process(dev, budget);
1246 if (work_done < budget) {
1247 napi_complete(napi);
1248 wrl(pep, INT_MASK, ALL_INTS);
1249 }
1250
1251 return work_done;
1252}
1253
1254static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1255{
1256 struct pxa168_eth_private *pep = netdev_priv(dev);
1257 struct net_device_stats *stats = &dev->stats;
1258 struct tx_desc *desc;
1259 int tx_index;
1260 int length;
1261
1262 tx_index = eth_alloc_tx_desc_index(pep);
1263 desc = &pep->p_tx_desc_area[tx_index];
1264 length = skb->len;
1265 pep->tx_skb[tx_index] = skb;
1266 desc->byte_cnt = length;
1267 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1268
1269 skb_tx_timestamp(skb);
1270
1271 wmb();
1272 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1273 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1274 wmb();
1275 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1276
1277 stats->tx_bytes += length;
1278 stats->tx_packets++;
1279 dev->trans_start = jiffies;
1280 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1281 /* We handled the current skb, but now we are out of space.*/
1282 netif_stop_queue(dev);
1283 }
1284
1285 return NETDEV_TX_OK;
1286}
1287
1288static int smi_wait_ready(struct pxa168_eth_private *pep)
1289{
1290 int i = 0;
1291
1292 /* wait for the SMI register to become available */
1293 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1294 if (i == PHY_WAIT_ITERATIONS)
1295 return -ETIMEDOUT;
1296 msleep(10);
1297 }
1298
1299 return 0;
1300}
1301
1302static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1303{
1304 struct pxa168_eth_private *pep = bus->priv;
1305 int i = 0;
1306 int val;
1307
1308 if (smi_wait_ready(pep)) {
1309 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1310 return -ETIMEDOUT;
1311 }
1312 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1313 /* now wait for the data to be valid */
1314 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1315 if (i == PHY_WAIT_ITERATIONS) {
1316 printk(KERN_WARNING
1317 "pxa168_eth: SMI bus read not valid\n");
1318 return -ENODEV;
1319 }
1320 msleep(10);
1321 }
1322
1323 return val & 0xffff;
1324}
1325
1326static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1327 u16 value)
1328{
1329 struct pxa168_eth_private *pep = bus->priv;
1330
1331 if (smi_wait_ready(pep)) {
1332 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1333 return -ETIMEDOUT;
1334 }
1335
1336 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1337 SMI_OP_W | (value & 0xffff));
1338
1339 if (smi_wait_ready(pep)) {
1340 printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1341 return -ETIMEDOUT;
1342 }
1343
1344 return 0;
1345}
1346
1347static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1348 int cmd)
1349{
1350 struct pxa168_eth_private *pep = netdev_priv(dev);
1351 if (pep->phy != NULL)
1352 return phy_mii_ioctl(pep->phy, ifr, cmd);
1353
1354 return -EOPNOTSUPP;
1355}
1356
1357static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1358{
1359 struct mii_bus *bus = pep->smi_bus;
1360 struct phy_device *phydev;
1361 int start;
1362 int num;
1363 int i;
1364
1365 if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1366 /* Scan entire range */
1367 start = ethernet_phy_get(pep);
1368 num = 32;
1369 } else {
1370 /* Use phy addr specific to platform */
1371 start = phy_addr & 0x1f;
1372 num = 1;
1373 }
1374 phydev = NULL;
1375 for (i = 0; i < num; i++) {
1376 int addr = (start + i) & 0x1f;
1377 if (bus->phy_map[addr] == NULL)
1378 mdiobus_scan(bus, addr);
1379
1380 if (phydev == NULL) {
1381 phydev = bus->phy_map[addr];
1382 if (phydev != NULL)
1383 ethernet_phy_set_addr(pep, addr);
1384 }
1385 }
1386
1387 return phydev;
1388}
1389
1390static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1391{
1392 struct phy_device *phy = pep->phy;
1393 ethernet_phy_reset(pep);
1394
1395 phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1396
1397 if (speed == 0) {
1398 phy->autoneg = AUTONEG_ENABLE;
1399 phy->speed = 0;
1400 phy->duplex = 0;
1401 phy->supported &= PHY_BASIC_FEATURES;
1402 phy->advertising = phy->supported | ADVERTISED_Autoneg;
1403 } else {
1404 phy->autoneg = AUTONEG_DISABLE;
1405 phy->advertising = 0;
1406 phy->speed = speed;
1407 phy->duplex = duplex;
1408 }
1409 phy_start_aneg(phy);
1410}
1411
1412static int ethernet_phy_setup(struct net_device *dev)
1413{
1414 struct pxa168_eth_private *pep = netdev_priv(dev);
1415
1416 if (pep->pd->init)
1417 pep->pd->init();
1418 pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1419 if (pep->phy != NULL)
1420 phy_init(pep, pep->pd->speed, pep->pd->duplex);
1421 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1422
1423 return 0;
1424}
1425
1426static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1427{
1428 struct pxa168_eth_private *pep = netdev_priv(dev);
1429 int err;
1430
1431 err = phy_read_status(pep->phy);
1432 if (err == 0)
1433 err = phy_ethtool_gset(pep->phy, cmd);
1434
1435 return err;
1436}
1437
1438static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1439{
1440 struct pxa168_eth_private *pep = netdev_priv(dev);
1441
1442 return phy_ethtool_sset(pep->phy, cmd);
1443}
1444
1445static void pxa168_get_drvinfo(struct net_device *dev,
1446 struct ethtool_drvinfo *info)
1447{
1448 strncpy(info->driver, DRIVER_NAME, 32);
1449 strncpy(info->version, DRIVER_VERSION, 32);
1450 strncpy(info->fw_version, "N/A", 32);
1451 strncpy(info->bus_info, "N/A", 32);
1452}
1453
1454static const struct ethtool_ops pxa168_ethtool_ops = {
1455 .get_settings = pxa168_get_settings,
1456 .set_settings = pxa168_set_settings,
1457 .get_drvinfo = pxa168_get_drvinfo,
1458 .get_link = ethtool_op_get_link,
1459 .get_ts_info = ethtool_op_get_ts_info,
1460};
1461
1462static const struct net_device_ops pxa168_eth_netdev_ops = {
1463 .ndo_open = pxa168_eth_open,
1464 .ndo_stop = pxa168_eth_stop,
1465 .ndo_start_xmit = pxa168_eth_start_xmit,
1466 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1467 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1468 .ndo_validate_addr = eth_validate_addr,
1469 .ndo_do_ioctl = pxa168_eth_do_ioctl,
1470 .ndo_change_mtu = pxa168_eth_change_mtu,
1471 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1472};
1473
1474static int pxa168_eth_probe(struct platform_device *pdev)
1475{
1476 struct pxa168_eth_private *pep = NULL;
1477 struct net_device *dev = NULL;
1478 struct resource *res;
1479 struct clk *clk;
1480 int err;
1481
1482 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1483
1484 clk = clk_get(&pdev->dev, "MFUCLK");
1485 if (IS_ERR(clk)) {
1486 printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1487 DRIVER_NAME);
1488 return -ENODEV;
1489 }
1490 clk_enable(clk);
1491
1492 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1493 if (!dev) {
1494 err = -ENOMEM;
1495 goto err_clk;
1496 }
1497
1498 platform_set_drvdata(pdev, dev);
1499 pep = netdev_priv(dev);
1500 pep->dev = dev;
1501 pep->clk = clk;
1502 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1503 if (res == NULL) {
1504 err = -ENODEV;
1505 goto err_netdev;
1506 }
1507 pep->base = ioremap(res->start, resource_size(res));
1508 if (pep->base == NULL) {
1509 err = -ENOMEM;
1510 goto err_netdev;
1511 }
1512 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1513 BUG_ON(!res);
1514 dev->irq = res->start;
1515 dev->netdev_ops = &pxa168_eth_netdev_ops;
1516 dev->watchdog_timeo = 2 * HZ;
1517 dev->base_addr = 0;
1518 SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1519
1520 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1521
1522 printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1523 eth_hw_addr_random(dev);
1524
1525 pep->pd = pdev->dev.platform_data;
1526 pep->rx_ring_size = NUM_RX_DESCS;
1527 if (pep->pd->rx_queue_size)
1528 pep->rx_ring_size = pep->pd->rx_queue_size;
1529
1530 pep->tx_ring_size = NUM_TX_DESCS;
1531 if (pep->pd->tx_queue_size)
1532 pep->tx_ring_size = pep->pd->tx_queue_size;
1533
1534 pep->port_num = pep->pd->port_number;
1535 /* Hardware supports only 3 ports */
1536 BUG_ON(pep->port_num > 2);
1537 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1538
1539 memset(&pep->timeout, 0, sizeof(struct timer_list));
1540 init_timer(&pep->timeout);
1541 pep->timeout.function = rxq_refill_timer_wrapper;
1542 pep->timeout.data = (unsigned long)pep;
1543
1544 pep->smi_bus = mdiobus_alloc();
1545 if (pep->smi_bus == NULL) {
1546 err = -ENOMEM;
1547 goto err_base;
1548 }
1549 pep->smi_bus->priv = pep;
1550 pep->smi_bus->name = "pxa168_eth smi";
1551 pep->smi_bus->read = pxa168_smi_read;
1552 pep->smi_bus->write = pxa168_smi_write;
1553 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1554 pdev->name, pdev->id);
1555 pep->smi_bus->parent = &pdev->dev;
1556 pep->smi_bus->phy_mask = 0xffffffff;
1557 err = mdiobus_register(pep->smi_bus);
1558 if (err)
1559 goto err_free_mdio;
1560
1561 pxa168_init_hw(pep);
1562 err = ethernet_phy_setup(dev);
1563 if (err)
1564 goto err_mdiobus;
1565 SET_NETDEV_DEV(dev, &pdev->dev);
1566 err = register_netdev(dev);
1567 if (err)
1568 goto err_mdiobus;
1569 return 0;
1570
1571err_mdiobus:
1572 mdiobus_unregister(pep->smi_bus);
1573err_free_mdio:
1574 mdiobus_free(pep->smi_bus);
1575err_base:
1576 iounmap(pep->base);
1577err_netdev:
1578 free_netdev(dev);
1579err_clk:
1580 clk_disable(clk);
1581 clk_put(clk);
1582 return err;
1583}
1584
1585static int pxa168_eth_remove(struct platform_device *pdev)
1586{
1587 struct net_device *dev = platform_get_drvdata(pdev);
1588 struct pxa168_eth_private *pep = netdev_priv(dev);
1589
1590 if (pep->htpr) {
1591 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1592 pep->htpr, pep->htpr_dma);
1593 pep->htpr = NULL;
1594 }
1595 if (pep->clk) {
1596 clk_disable(pep->clk);
1597 clk_put(pep->clk);
1598 pep->clk = NULL;
1599 }
1600 if (pep->phy != NULL)
1601 phy_detach(pep->phy);
1602
1603 iounmap(pep->base);
1604 pep->base = NULL;
1605 mdiobus_unregister(pep->smi_bus);
1606 mdiobus_free(pep->smi_bus);
1607 unregister_netdev(dev);
1608 cancel_work_sync(&pep->tx_timeout_task);
1609 free_netdev(dev);
1610 platform_set_drvdata(pdev, NULL);
1611 return 0;
1612}
1613
1614static void pxa168_eth_shutdown(struct platform_device *pdev)
1615{
1616 struct net_device *dev = platform_get_drvdata(pdev);
1617 eth_port_reset(dev);
1618}
1619
1620#ifdef CONFIG_PM
1621static int pxa168_eth_resume(struct platform_device *pdev)
1622{
1623 return -ENOSYS;
1624}
1625
1626static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1627{
1628 return -ENOSYS;
1629}
1630
1631#else
1632#define pxa168_eth_resume NULL
1633#define pxa168_eth_suspend NULL
1634#endif
1635
1636static struct platform_driver pxa168_eth_driver = {
1637 .probe = pxa168_eth_probe,
1638 .remove = pxa168_eth_remove,
1639 .shutdown = pxa168_eth_shutdown,
1640 .resume = pxa168_eth_resume,
1641 .suspend = pxa168_eth_suspend,
1642 .driver = {
1643 .name = DRIVER_NAME,
1644 },
1645};
1646
1647module_platform_driver(pxa168_eth_driver);
1648
1649MODULE_LICENSE("GPL");
1650MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1651MODULE_ALIAS("platform:pxa168_eth");