Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bitfield.h>
   5#include <linux/delay.h>
   6#include <linux/if_ether.h>
 
 
   7#include "e1000_mac.h"
   8#include "e1000_phy.h"
   9
  10static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
  11static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
  12					     u16 *phy_ctrl);
  13static s32  igb_wait_autoneg(struct e1000_hw *hw);
  14static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
  15
  16/* Cable length tables */
  17static const u16 e1000_m88_cable_length_table[] = {
  18	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  19
  20static const u16 e1000_igp_2_cable_length_table[] = {
  21	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
  22	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
  23	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
  24	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
  25	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
  26	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
  27	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
  28	104, 109, 114, 118, 121, 124};
 
 
 
 
 
 
  29
  30/**
  31 *  igb_check_reset_block - Check if PHY reset is blocked
  32 *  @hw: pointer to the HW structure
  33 *
  34 *  Read the PHY management control register and check whether a PHY reset
  35 *  is blocked.  If a reset is not blocked return 0, otherwise
  36 *  return E1000_BLK_PHY_RESET (12).
  37 **/
  38s32 igb_check_reset_block(struct e1000_hw *hw)
  39{
  40	u32 manc;
  41
  42	manc = rd32(E1000_MANC);
  43
  44	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
 
  45}
  46
  47/**
  48 *  igb_get_phy_id - Retrieve the PHY ID and revision
  49 *  @hw: pointer to the HW structure
  50 *
  51 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  52 *  revision in the hardware structure.
  53 **/
  54s32 igb_get_phy_id(struct e1000_hw *hw)
  55{
  56	struct e1000_phy_info *phy = &hw->phy;
  57	s32 ret_val = 0;
  58	u16 phy_id;
  59
  60	/* ensure PHY page selection to fix misconfigured i210 */
  61	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
  62		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
  63
  64	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
  65	if (ret_val)
  66		goto out;
  67
  68	phy->id = (u32)(phy_id << 16);
  69	udelay(20);
  70	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
  71	if (ret_val)
  72		goto out;
  73
  74	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  75	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  76
  77out:
  78	return ret_val;
  79}
  80
  81/**
  82 *  igb_phy_reset_dsp - Reset PHY DSP
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Reset the digital signal processor.
  86 **/
  87static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
  88{
  89	s32 ret_val = 0;
  90
  91	if (!(hw->phy.ops.write_reg))
  92		goto out;
  93
  94	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
  95	if (ret_val)
  96		goto out;
  97
  98	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
  99
 100out:
 101	return ret_val;
 102}
 103
 104/**
 105 *  igb_read_phy_reg_mdic - Read MDI control register
 106 *  @hw: pointer to the HW structure
 107 *  @offset: register offset to be read
 108 *  @data: pointer to the read data
 109 *
 110 *  Reads the MDI control register in the PHY at offset and stores the
 111 *  information read to data.
 112 **/
 113s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 114{
 115	struct e1000_phy_info *phy = &hw->phy;
 116	u32 i, mdic = 0;
 117	s32 ret_val = 0;
 118
 119	if (offset > MAX_PHY_REG_ADDRESS) {
 120		hw_dbg("PHY Address %d is out of range\n", offset);
 121		ret_val = -E1000_ERR_PARAM;
 122		goto out;
 123	}
 124
 125	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 126	 * Control register.  The MAC will take care of interfacing with the
 127	 * PHY to retrieve the desired data.
 128	 */
 129	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 130		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 131		(E1000_MDIC_OP_READ));
 132
 133	wr32(E1000_MDIC, mdic);
 134
 135	/* Poll the ready bit to see if the MDI read completed
 
 136	 * Increasing the time out as testing showed failures with
 137	 * the lower time out
 138	 */
 139	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 140		udelay(50);
 141		mdic = rd32(E1000_MDIC);
 142		if (mdic & E1000_MDIC_READY)
 143			break;
 144	}
 145	if (!(mdic & E1000_MDIC_READY)) {
 146		hw_dbg("MDI Read did not complete\n");
 147		ret_val = -E1000_ERR_PHY;
 148		goto out;
 149	}
 150	if (mdic & E1000_MDIC_ERROR) {
 151		hw_dbg("MDI Error\n");
 152		ret_val = -E1000_ERR_PHY;
 153		goto out;
 154	}
 155	*data = (u16) mdic;
 156
 157out:
 158	return ret_val;
 159}
 160
 161/**
 162 *  igb_write_phy_reg_mdic - Write MDI control register
 163 *  @hw: pointer to the HW structure
 164 *  @offset: register offset to write to
 165 *  @data: data to write to register at offset
 166 *
 167 *  Writes data to MDI control register in the PHY at offset.
 168 **/
 169s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 170{
 171	struct e1000_phy_info *phy = &hw->phy;
 172	u32 i, mdic = 0;
 173	s32 ret_val = 0;
 174
 175	if (offset > MAX_PHY_REG_ADDRESS) {
 176		hw_dbg("PHY Address %d is out of range\n", offset);
 177		ret_val = -E1000_ERR_PARAM;
 178		goto out;
 179	}
 180
 181	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 182	 * Control register.  The MAC will take care of interfacing with the
 183	 * PHY to retrieve the desired data.
 184	 */
 185	mdic = (((u32)data) |
 186		(offset << E1000_MDIC_REG_SHIFT) |
 187		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 188		(E1000_MDIC_OP_WRITE));
 189
 190	wr32(E1000_MDIC, mdic);
 191
 192	/* Poll the ready bit to see if the MDI read completed
 
 193	 * Increasing the time out as testing showed failures with
 194	 * the lower time out
 195	 */
 196	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 197		udelay(50);
 198		mdic = rd32(E1000_MDIC);
 199		if (mdic & E1000_MDIC_READY)
 200			break;
 201	}
 202	if (!(mdic & E1000_MDIC_READY)) {
 203		hw_dbg("MDI Write did not complete\n");
 204		ret_val = -E1000_ERR_PHY;
 205		goto out;
 206	}
 207	if (mdic & E1000_MDIC_ERROR) {
 208		hw_dbg("MDI Error\n");
 209		ret_val = -E1000_ERR_PHY;
 210		goto out;
 211	}
 212
 213out:
 214	return ret_val;
 215}
 216
 217/**
 218 *  igb_read_phy_reg_i2c - Read PHY register using i2c
 219 *  @hw: pointer to the HW structure
 220 *  @offset: register offset to be read
 221 *  @data: pointer to the read data
 222 *
 223 *  Reads the PHY register at offset using the i2c interface and stores the
 224 *  retrieved information in data.
 225 **/
 226s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
 227{
 228	struct e1000_phy_info *phy = &hw->phy;
 229	u32 i, i2ccmd = 0;
 230
 231	/* Set up Op-code, Phy Address, and register address in the I2CCMD
 
 
 232	 * register.  The MAC will take care of interfacing with the
 233	 * PHY to retrieve the desired data.
 234	 */
 235	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 236		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 237		  (E1000_I2CCMD_OPCODE_READ));
 238
 239	wr32(E1000_I2CCMD, i2ccmd);
 240
 241	/* Poll the ready bit to see if the I2C read completed */
 242	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 243		udelay(50);
 244		i2ccmd = rd32(E1000_I2CCMD);
 245		if (i2ccmd & E1000_I2CCMD_READY)
 246			break;
 247	}
 248	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 249		hw_dbg("I2CCMD Read did not complete\n");
 250		return -E1000_ERR_PHY;
 251	}
 252	if (i2ccmd & E1000_I2CCMD_ERROR) {
 253		hw_dbg("I2CCMD Error bit set\n");
 254		return -E1000_ERR_PHY;
 255	}
 256
 257	/* Need to byte-swap the 16-bit value. */
 258	*data = ((i2ccmd >> 8) & 0x00FF) | FIELD_PREP(0xFF00, i2ccmd);
 259
 260	return 0;
 261}
 262
 263/**
 264 *  igb_write_phy_reg_i2c - Write PHY register using i2c
 265 *  @hw: pointer to the HW structure
 266 *  @offset: register offset to write to
 267 *  @data: data to write at register offset
 268 *
 269 *  Writes the data to PHY register at the offset using the i2c interface.
 270 **/
 271s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
 272{
 273	struct e1000_phy_info *phy = &hw->phy;
 274	u32 i, i2ccmd = 0;
 275	u16 phy_data_swapped;
 276
 277	/* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
 278	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
 279		hw_dbg("PHY I2C Address %d is out of range.\n",
 280			  hw->phy.addr);
 281		return -E1000_ERR_CONFIG;
 282	}
 283
 284	/* Swap the data bytes for the I2C interface */
 285	phy_data_swapped = ((data >> 8) & 0x00FF) | FIELD_PREP(0xFF00, data);
 286
 287	/* Set up Op-code, Phy Address, and register address in the I2CCMD
 
 288	 * register.  The MAC will take care of interfacing with the
 289	 * PHY to retrieve the desired data.
 290	 */
 291	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 292		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 293		  E1000_I2CCMD_OPCODE_WRITE |
 294		  phy_data_swapped);
 295
 296	wr32(E1000_I2CCMD, i2ccmd);
 297
 298	/* Poll the ready bit to see if the I2C read completed */
 299	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 300		udelay(50);
 301		i2ccmd = rd32(E1000_I2CCMD);
 302		if (i2ccmd & E1000_I2CCMD_READY)
 303			break;
 304	}
 305	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 306		hw_dbg("I2CCMD Write did not complete\n");
 307		return -E1000_ERR_PHY;
 308	}
 309	if (i2ccmd & E1000_I2CCMD_ERROR) {
 310		hw_dbg("I2CCMD Error bit set\n");
 311		return -E1000_ERR_PHY;
 312	}
 313
 314	return 0;
 315}
 316
 317/**
 318 *  igb_read_sfp_data_byte - Reads SFP module data.
 319 *  @hw: pointer to the HW structure
 320 *  @offset: byte location offset to be read
 321 *  @data: read data buffer pointer
 322 *
 323 *  Reads one byte from SFP module data stored
 324 *  in SFP resided EEPROM memory or SFP diagnostic area.
 325 *  Function should be called with
 326 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
 327 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
 328 *  access
 329 **/
 330s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
 331{
 332	u32 i = 0;
 333	u32 i2ccmd = 0;
 334	u32 data_local = 0;
 335
 336	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
 337		hw_dbg("I2CCMD command address exceeds upper limit\n");
 338		return -E1000_ERR_PHY;
 339	}
 340
 341	/* Set up Op-code, EEPROM Address,in the I2CCMD
 342	 * register. The MAC will take care of interfacing with the
 343	 * EEPROM to retrieve the desired data.
 344	 */
 345	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 346		  E1000_I2CCMD_OPCODE_READ);
 347
 348	wr32(E1000_I2CCMD, i2ccmd);
 349
 350	/* Poll the ready bit to see if the I2C read completed */
 351	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 352		udelay(50);
 353		data_local = rd32(E1000_I2CCMD);
 354		if (data_local & E1000_I2CCMD_READY)
 355			break;
 356	}
 357	if (!(data_local & E1000_I2CCMD_READY)) {
 358		hw_dbg("I2CCMD Read did not complete\n");
 359		return -E1000_ERR_PHY;
 360	}
 361	if (data_local & E1000_I2CCMD_ERROR) {
 362		hw_dbg("I2CCMD Error bit set\n");
 363		return -E1000_ERR_PHY;
 364	}
 365	*data = (u8) data_local & 0xFF;
 366
 367	return 0;
 368}
 369
 370/**
 371 *  igb_read_phy_reg_igp - Read igp PHY register
 372 *  @hw: pointer to the HW structure
 373 *  @offset: register offset to be read
 374 *  @data: pointer to the read data
 375 *
 376 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 377 *  and storing the retrieved information in data.  Release any acquired
 378 *  semaphores before exiting.
 379 **/
 380s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 381{
 382	s32 ret_val = 0;
 383
 384	if (!(hw->phy.ops.acquire))
 385		goto out;
 386
 387	ret_val = hw->phy.ops.acquire(hw);
 388	if (ret_val)
 389		goto out;
 390
 391	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 392		ret_val = igb_write_phy_reg_mdic(hw,
 393						 IGP01E1000_PHY_PAGE_SELECT,
 394						 (u16)offset);
 395		if (ret_val) {
 396			hw->phy.ops.release(hw);
 397			goto out;
 398		}
 399	}
 400
 401	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 402					data);
 403
 404	hw->phy.ops.release(hw);
 405
 406out:
 407	return ret_val;
 408}
 409
 410/**
 411 *  igb_write_phy_reg_igp - Write igp PHY register
 412 *  @hw: pointer to the HW structure
 413 *  @offset: register offset to write to
 414 *  @data: data to write at register offset
 415 *
 416 *  Acquires semaphore, if necessary, then writes the data to PHY register
 417 *  at the offset.  Release any acquired semaphores before exiting.
 418 **/
 419s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 420{
 421	s32 ret_val = 0;
 422
 423	if (!(hw->phy.ops.acquire))
 424		goto out;
 425
 426	ret_val = hw->phy.ops.acquire(hw);
 427	if (ret_val)
 428		goto out;
 429
 430	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 431		ret_val = igb_write_phy_reg_mdic(hw,
 432						 IGP01E1000_PHY_PAGE_SELECT,
 433						 (u16)offset);
 434		if (ret_val) {
 435			hw->phy.ops.release(hw);
 436			goto out;
 437		}
 438	}
 439
 440	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 441					 data);
 442
 443	hw->phy.ops.release(hw);
 444
 445out:
 446	return ret_val;
 447}
 448
 449/**
 450 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
 451 *  @hw: pointer to the HW structure
 452 *
 453 *  Sets up Carrier-sense on Transmit and downshift values.
 454 **/
 455s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
 456{
 457	struct e1000_phy_info *phy = &hw->phy;
 458	s32 ret_val;
 459	u16 phy_data;
 460
 
 461	if (phy->reset_disable) {
 462		ret_val = 0;
 463		goto out;
 464	}
 465
 466	if (phy->type == e1000_phy_82580) {
 467		ret_val = hw->phy.ops.reset(hw);
 468		if (ret_val) {
 469			hw_dbg("Error resetting the PHY.\n");
 470			goto out;
 471		}
 472	}
 473
 474	/* Enable CRS on TX. This must be set for half-duplex operation. */
 475	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
 476	if (ret_val)
 477		goto out;
 478
 479	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
 480
 481	/* Enable downshift */
 482	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
 483
 484	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
 485	if (ret_val)
 486		goto out;
 487
 488	/* Set MDI/MDIX mode */
 489	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
 490	if (ret_val)
 491		goto out;
 492	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
 493	/* Options:
 494	 *   0 - Auto (default)
 495	 *   1 - MDI mode
 496	 *   2 - MDI-X mode
 497	 */
 498	switch (hw->phy.mdix) {
 499	case 1:
 500		break;
 501	case 2:
 502		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
 503		break;
 504	case 0:
 505	default:
 506		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
 507		break;
 508	}
 509	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
 510
 511out:
 512	return ret_val;
 513}
 514
 515/**
 516 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 520 *  and downshift values are set also.
 521 **/
 522s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
 523{
 524	struct e1000_phy_info *phy = &hw->phy;
 525	s32 ret_val;
 526	u16 phy_data;
 527
 528	if (phy->reset_disable) {
 529		ret_val = 0;
 530		goto out;
 531	}
 532
 533	/* Enable CRS on TX. This must be set for half-duplex operation. */
 534	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 535	if (ret_val)
 536		goto out;
 537
 538	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 539
 540	/* Options:
 
 541	 *   MDI/MDI-X = 0 (default)
 542	 *   0 - Auto for all speeds
 543	 *   1 - MDI mode
 544	 *   2 - MDI-X mode
 545	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 546	 */
 547	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 548
 549	switch (phy->mdix) {
 550	case 1:
 551		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 552		break;
 553	case 2:
 554		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 555		break;
 556	case 3:
 557		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 558		break;
 559	case 0:
 560	default:
 561		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 562		break;
 563	}
 564
 565	/* Options:
 
 566	 *   disable_polarity_correction = 0 (default)
 567	 *       Automatic Correction for Reversed Cable Polarity
 568	 *   0 - Disabled
 569	 *   1 - Enabled
 570	 */
 571	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 572	if (phy->disable_polarity_correction == 1)
 573		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 574
 575	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 576	if (ret_val)
 577		goto out;
 578
 579	if (phy->revision < E1000_REVISION_4) {
 580		/* Force TX_CLK in the Extended PHY Specific Control Register
 
 581		 * to 25MHz clock.
 582		 */
 583		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 584					    &phy_data);
 585		if (ret_val)
 586			goto out;
 587
 588		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 589
 590		if ((phy->revision == E1000_REVISION_2) &&
 591		    (phy->id == M88E1111_I_PHY_ID)) {
 592			/* 82573L PHY - set the downshift counter to 5x. */
 593			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 594			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 595		} else {
 596			/* Configure Master and Slave downshift values */
 597			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 598				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 599			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 600				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 601		}
 602		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 603					     phy_data);
 604		if (ret_val)
 605			goto out;
 606	}
 607
 608	/* Commit the changes. */
 609	ret_val = igb_phy_sw_reset(hw);
 610	if (ret_val) {
 611		hw_dbg("Error committing the PHY changes\n");
 612		goto out;
 613	}
 
 
 
 
 
 614
 615out:
 616	return ret_val;
 617}
 618
 619/**
 620 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
 621 *  @hw: pointer to the HW structure
 622 *
 623 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
 624 *  Also enables and sets the downshift parameters.
 625 **/
 626s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
 627{
 628	struct e1000_phy_info *phy = &hw->phy;
 629	s32 ret_val;
 630	u16 phy_data;
 631
 632	if (phy->reset_disable)
 633		return 0;
 
 
 634
 635	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 636	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 637	if (ret_val)
 638		return ret_val;
 639
 640	/* Options:
 
 641	 *   MDI/MDI-X = 0 (default)
 642	 *   0 - Auto for all speeds
 643	 *   1 - MDI mode
 644	 *   2 - MDI-X mode
 645	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 646	 */
 647	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 648
 649	switch (phy->mdix) {
 650	case 1:
 651		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 652		break;
 653	case 2:
 654		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 655		break;
 656	case 3:
 657		/* M88E1112 does not support this mode) */
 658		if (phy->id != M88E1112_E_PHY_ID) {
 659			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 660			break;
 661		}
 662		fallthrough;
 663	case 0:
 664	default:
 665		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 666		break;
 667	}
 668
 669	/* Options:
 
 670	 *   disable_polarity_correction = 0 (default)
 671	 *       Automatic Correction for Reversed Cable Polarity
 672	 *   0 - Disabled
 673	 *   1 - Enabled
 674	 */
 675	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 676	if (phy->disable_polarity_correction == 1)
 677		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 678
 679	/* Enable downshift and setting it to X6 */
 680	if (phy->id == M88E1543_E_PHY_ID) {
 681		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
 682		ret_val =
 683		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 684		if (ret_val)
 685			return ret_val;
 686
 687		ret_val = igb_phy_sw_reset(hw);
 688		if (ret_val) {
 689			hw_dbg("Error committing the PHY changes\n");
 690			return ret_val;
 691		}
 692	}
 693
 694	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
 695	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
 696	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
 697
 698	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 699	if (ret_val)
 700		return ret_val;
 701
 702	/* Commit the changes. */
 703	ret_val = igb_phy_sw_reset(hw);
 704	if (ret_val) {
 705		hw_dbg("Error committing the PHY changes\n");
 706		return ret_val;
 707	}
 708	ret_val = igb_set_master_slave_mode(hw);
 709	if (ret_val)
 710		return ret_val;
 711
 712	return 0;
 
 713}
 714
 715/**
 716 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 717 *  @hw: pointer to the HW structure
 718 *
 719 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 720 *  igp PHY's.
 721 **/
 722s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
 723{
 724	struct e1000_phy_info *phy = &hw->phy;
 725	s32 ret_val;
 726	u16 data;
 727
 728	if (phy->reset_disable) {
 729		ret_val = 0;
 730		goto out;
 731	}
 732
 733	ret_val = phy->ops.reset(hw);
 734	if (ret_val) {
 735		hw_dbg("Error resetting the PHY.\n");
 736		goto out;
 737	}
 738
 739	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 
 740	 * timeout issues when LFS is enabled.
 741	 */
 742	msleep(100);
 743
 744	/* The NVM settings will configure LPLU in D3 for
 
 745	 * non-IGP1 PHYs.
 746	 */
 747	if (phy->type == e1000_phy_igp) {
 748		/* disable lplu d3 during driver init */
 749		if (phy->ops.set_d3_lplu_state)
 750			ret_val = phy->ops.set_d3_lplu_state(hw, false);
 751		if (ret_val) {
 752			hw_dbg("Error Disabling LPLU D3\n");
 753			goto out;
 754		}
 755	}
 756
 757	/* disable lplu d0 during driver init */
 758	ret_val = phy->ops.set_d0_lplu_state(hw, false);
 759	if (ret_val) {
 760		hw_dbg("Error Disabling LPLU D0\n");
 761		goto out;
 762	}
 763	/* Configure mdi-mdix settings */
 764	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 765	if (ret_val)
 766		goto out;
 767
 768	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 769
 770	switch (phy->mdix) {
 771	case 1:
 772		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 773		break;
 774	case 2:
 775		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 776		break;
 777	case 0:
 778	default:
 779		data |= IGP01E1000_PSCR_AUTO_MDIX;
 780		break;
 781	}
 782	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
 783	if (ret_val)
 784		goto out;
 785
 786	/* set auto-master slave resolution settings */
 787	if (hw->mac.autoneg) {
 788		/* when autonegotiation advertisement is only 1000Mbps then we
 
 789		 * should disable SmartSpeed and enable Auto MasterSlave
 790		 * resolution as hardware default.
 791		 */
 792		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 793			/* Disable SmartSpeed */
 794			ret_val = phy->ops.read_reg(hw,
 795						    IGP01E1000_PHY_PORT_CONFIG,
 796						    &data);
 797			if (ret_val)
 798				goto out;
 799
 800			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 801			ret_val = phy->ops.write_reg(hw,
 802						     IGP01E1000_PHY_PORT_CONFIG,
 803						     data);
 804			if (ret_val)
 805				goto out;
 806
 807			/* Set auto Master/Slave resolution process */
 808			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 809			if (ret_val)
 810				goto out;
 811
 812			data &= ~CR_1000T_MS_ENABLE;
 813			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 814			if (ret_val)
 815				goto out;
 816		}
 817
 818		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 819		if (ret_val)
 820			goto out;
 821
 822		/* load defaults for future use */
 823		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 824			((data & CR_1000T_MS_VALUE) ?
 825			e1000_ms_force_master :
 826			e1000_ms_force_slave) :
 827			e1000_ms_auto;
 828
 829		switch (phy->ms_type) {
 830		case e1000_ms_force_master:
 831			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 832			break;
 833		case e1000_ms_force_slave:
 834			data |= CR_1000T_MS_ENABLE;
 835			data &= ~(CR_1000T_MS_VALUE);
 836			break;
 837		case e1000_ms_auto:
 838			data &= ~CR_1000T_MS_ENABLE;
 839			break;
 840		default:
 841			break;
 842		}
 843		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 844		if (ret_val)
 845			goto out;
 846	}
 847
 848out:
 849	return ret_val;
 850}
 851
 852/**
 853 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 854 *  @hw: pointer to the HW structure
 855 *
 856 *  Performs initial bounds checking on autoneg advertisement parameter, then
 857 *  configure to advertise the full capability.  Setup the PHY to autoneg
 858 *  and restart the negotiation process between the link partner.  If
 859 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 860 **/
 861static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
 862{
 863	struct e1000_phy_info *phy = &hw->phy;
 864	s32 ret_val;
 865	u16 phy_ctrl;
 866
 867	/* Perform some bounds checking on the autoneg advertisement
 
 868	 * parameter.
 869	 */
 870	phy->autoneg_advertised &= phy->autoneg_mask;
 871
 872	/* If autoneg_advertised is zero, we assume it was not defaulted
 
 873	 * by the calling code so we set to advertise full capability.
 874	 */
 875	if (phy->autoneg_advertised == 0)
 876		phy->autoneg_advertised = phy->autoneg_mask;
 877
 878	hw_dbg("Reconfiguring auto-neg advertisement params\n");
 879	ret_val = igb_phy_setup_autoneg(hw);
 880	if (ret_val) {
 881		hw_dbg("Error Setting up Auto-Negotiation\n");
 882		goto out;
 883	}
 884	hw_dbg("Restarting Auto-Neg\n");
 885
 886	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 
 887	 * the Auto Neg Restart bit in the PHY control register.
 888	 */
 889	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
 890	if (ret_val)
 891		goto out;
 892
 893	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 894	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
 895	if (ret_val)
 896		goto out;
 897
 898	/* Does the user want to wait for Auto-Neg to complete here, or
 
 899	 * check at a later time (for example, callback routine).
 900	 */
 901	if (phy->autoneg_wait_to_complete) {
 902		ret_val = igb_wait_autoneg(hw);
 903		if (ret_val) {
 904			hw_dbg("Error while waiting for autoneg to complete\n");
 
 905			goto out;
 906		}
 907	}
 908
 909	hw->mac.get_link_status = true;
 910
 911out:
 912	return ret_val;
 913}
 914
 915/**
 916 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 917 *  @hw: pointer to the HW structure
 918 *
 919 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 920 *  register and if the PHY is already setup for auto-negotiation, then
 921 *  return successful.  Otherwise, setup advertisement and flow control to
 922 *  the appropriate values for the wanted auto-negotiation.
 923 **/
 924static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
 925{
 926	struct e1000_phy_info *phy = &hw->phy;
 927	s32 ret_val;
 928	u16 mii_autoneg_adv_reg;
 929	u16 mii_1000t_ctrl_reg = 0;
 930
 931	phy->autoneg_advertised &= phy->autoneg_mask;
 932
 933	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 934	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 935	if (ret_val)
 936		goto out;
 937
 938	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 939		/* Read the MII 1000Base-T Control Register (Address 9). */
 940		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
 941					    &mii_1000t_ctrl_reg);
 942		if (ret_val)
 943			goto out;
 944	}
 945
 946	/* Need to parse both autoneg_advertised and fc and set up
 
 947	 * the appropriate PHY registers.  First we will parse for
 948	 * autoneg_advertised software override.  Since we can advertise
 949	 * a plethora of combinations, we need to check each bit
 950	 * individually.
 951	 */
 952
 953	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 
 954	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 955	 * the  1000Base-T Control Register (Address 9).
 956	 */
 957	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 958				 NWAY_AR_100TX_HD_CAPS |
 959				 NWAY_AR_10T_FD_CAPS   |
 960				 NWAY_AR_10T_HD_CAPS);
 961	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 962
 963	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 964
 965	/* Do we want to advertise 10 Mb Half Duplex? */
 966	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 967		hw_dbg("Advertise 10mb Half duplex\n");
 968		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 969	}
 970
 971	/* Do we want to advertise 10 Mb Full Duplex? */
 972	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 973		hw_dbg("Advertise 10mb Full duplex\n");
 974		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 975	}
 976
 977	/* Do we want to advertise 100 Mb Half Duplex? */
 978	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 979		hw_dbg("Advertise 100mb Half duplex\n");
 980		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 981	}
 982
 983	/* Do we want to advertise 100 Mb Full Duplex? */
 984	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 985		hw_dbg("Advertise 100mb Full duplex\n");
 986		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 987	}
 988
 989	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 990	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 991		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
 992
 993	/* Do we want to advertise 1000 Mb Full Duplex? */
 994	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 995		hw_dbg("Advertise 1000mb Full duplex\n");
 996		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
 997	}
 998
 999	/* Check for a software override of the flow control settings, and
 
1000	 * setup the PHY advertisement registers accordingly.  If
1001	 * auto-negotiation is enabled, then software will have to set the
1002	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1003	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1004	 * negotiation.
1005	 *
1006	 * The possible values of the "fc" parameter are:
1007	 *      0:  Flow control is completely disabled
1008	 *      1:  Rx flow control is enabled (we can receive pause frames
1009	 *          but not send pause frames).
1010	 *      2:  Tx flow control is enabled (we can send pause frames
1011	 *          but we do not support receiving pause frames).
1012	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1013	 *  other:  No software override.  The flow control configuration
1014	 *          in the EEPROM is used.
1015	 */
1016	switch (hw->fc.current_mode) {
1017	case e1000_fc_none:
1018		/* Flow control (RX & TX) is completely disabled by a
 
1019		 * software over-ride.
1020		 */
1021		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1022		break;
1023	case e1000_fc_rx_pause:
1024		/* RX Flow control is enabled, and TX Flow control is
 
1025		 * disabled, by a software over-ride.
1026		 *
1027		 * Since there really isn't a way to advertise that we are
1028		 * capable of RX Pause ONLY, we will advertise that we
1029		 * support both symmetric and asymmetric RX PAUSE.  Later
1030		 * (in e1000_config_fc_after_link_up) we will disable the
1031		 * hw's ability to send PAUSE frames.
1032		 */
1033		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1034		break;
1035	case e1000_fc_tx_pause:
1036		/* TX Flow control is enabled, and RX Flow control is
 
1037		 * disabled, by a software over-ride.
1038		 */
1039		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1040		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1041		break;
1042	case e1000_fc_full:
1043		/* Flow control (both RX and TX) is enabled by a software
 
1044		 * over-ride.
1045		 */
1046		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1047		break;
1048	default:
1049		hw_dbg("Flow control param set incorrectly\n");
1050		ret_val = -E1000_ERR_CONFIG;
1051		goto out;
1052	}
1053
1054	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1055	if (ret_val)
1056		goto out;
1057
1058	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1059
1060	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1061		ret_val = phy->ops.write_reg(hw,
1062					     PHY_1000T_CTRL,
1063					     mii_1000t_ctrl_reg);
1064		if (ret_val)
1065			goto out;
1066	}
1067
1068out:
1069	return ret_val;
1070}
1071
1072/**
1073 *  igb_setup_copper_link - Configure copper link settings
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Calls the appropriate function to configure the link for auto-neg or forced
1077 *  speed and duplex.  Then we check for link, once link is established calls
1078 *  to configure collision distance and flow control are called.  If link is
1079 *  not established, we return -E1000_ERR_PHY (-2).
1080 **/
1081s32 igb_setup_copper_link(struct e1000_hw *hw)
1082{
1083	s32 ret_val;
1084	bool link;
1085
 
1086	if (hw->mac.autoneg) {
1087		/* Setup autoneg and flow control advertisement and perform
 
1088		 * autonegotiation.
1089		 */
1090		ret_val = igb_copper_link_autoneg(hw);
1091		if (ret_val)
1092			goto out;
1093	} else {
1094		/* PHY will be set to 10H, 10F, 100H or 100F
 
1095		 * depending on user settings.
1096		 */
1097		hw_dbg("Forcing Speed and Duplex\n");
1098		ret_val = hw->phy.ops.force_speed_duplex(hw);
1099		if (ret_val) {
1100			hw_dbg("Error Forcing Speed and Duplex\n");
1101			goto out;
1102		}
1103	}
1104
1105	/* Check link status. Wait up to 100 microseconds for link to become
 
1106	 * valid.
1107	 */
1108	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
 
 
 
1109	if (ret_val)
1110		goto out;
1111
1112	if (link) {
1113		hw_dbg("Valid link established!!!\n");
1114		igb_config_collision_dist(hw);
1115		ret_val = igb_config_fc_after_link_up(hw);
1116	} else {
1117		hw_dbg("Unable to establish link!!!\n");
1118	}
1119
1120out:
1121	return ret_val;
1122}
1123
1124/**
1125 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1126 *  @hw: pointer to the HW structure
1127 *
1128 *  Calls the PHY setup function to force speed and duplex.  Clears the
1129 *  auto-crossover to force MDI manually.  Waits for link and returns
1130 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1131 **/
1132s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1133{
1134	struct e1000_phy_info *phy = &hw->phy;
1135	s32 ret_val;
1136	u16 phy_data;
1137	bool link;
1138
1139	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1140	if (ret_val)
1141		goto out;
1142
1143	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1144
1145	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1146	if (ret_val)
1147		goto out;
1148
1149	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
 
1150	 * forced whenever speed and duplex are forced.
1151	 */
1152	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1153	if (ret_val)
1154		goto out;
1155
1156	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1157	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1158
1159	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1160	if (ret_val)
1161		goto out;
1162
1163	hw_dbg("IGP PSCR: %X\n", phy_data);
1164
1165	udelay(1);
1166
1167	if (phy->autoneg_wait_to_complete) {
1168		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1169
1170		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
 
 
 
1171		if (ret_val)
1172			goto out;
1173
1174		if (!link)
1175			hw_dbg("Link taking longer than expected.\n");
1176
1177		/* Try once more */
1178		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
 
 
 
1179		if (ret_val)
1180			goto out;
1181	}
1182
1183out:
1184	return ret_val;
1185}
1186
1187/**
1188 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1189 *  @hw: pointer to the HW structure
1190 *
1191 *  Calls the PHY setup function to force speed and duplex.  Clears the
1192 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1193 *  changes.  If time expires while waiting for link up, we reset the DSP.
1194 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1195 *  successful completion, else return corresponding error code.
1196 **/
1197s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1198{
1199	struct e1000_phy_info *phy = &hw->phy;
1200	s32 ret_val;
1201	u16 phy_data;
1202	bool link;
1203
1204	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1205	if (phy->type != e1000_phy_i210) {
1206		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1207		 * requires MDI forced whenever speed and duplex are forced.
1208		 */
1209		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1210					    &phy_data);
1211		if (ret_val)
1212			goto out;
1213
1214		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1215		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1216					     phy_data);
1217		if (ret_val)
1218			goto out;
1219
1220		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1221	}
1222
1223	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1224	if (ret_val)
1225		goto out;
1226
1227	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1228
1229	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1230	if (ret_val)
1231		goto out;
1232
1233	/* Reset the phy to commit changes. */
1234	ret_val = igb_phy_sw_reset(hw);
1235	if (ret_val)
1236		goto out;
1237
1238	if (phy->autoneg_wait_to_complete) {
1239		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1240
1241		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1242		if (ret_val)
1243			goto out;
1244
1245		if (!link) {
1246			bool reset_dsp = true;
1247
1248			switch (hw->phy.id) {
1249			case I347AT4_E_PHY_ID:
1250			case M88E1112_E_PHY_ID:
1251			case M88E1543_E_PHY_ID:
1252			case M88E1512_E_PHY_ID:
1253			case I210_I_PHY_ID:
1254				reset_dsp = false;
1255				break;
1256			default:
1257				if (hw->phy.type != e1000_phy_m88)
1258					reset_dsp = false;
1259				break;
1260			}
1261			if (!reset_dsp) {
1262				hw_dbg("Link taking longer than expected.\n");
1263			} else {
1264				/* We didn't get link.
 
1265				 * Reset the DSP and cross our fingers.
1266				 */
1267				ret_val = phy->ops.write_reg(hw,
1268						M88E1000_PHY_PAGE_SELECT,
1269						0x001d);
1270				if (ret_val)
1271					goto out;
1272				ret_val = igb_phy_reset_dsp(hw);
1273				if (ret_val)
1274					goto out;
1275			}
1276		}
1277
1278		/* Try once more */
1279		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1280					   100000, &link);
1281		if (ret_val)
1282			goto out;
1283	}
1284
1285	if (hw->phy.type != e1000_phy_m88 ||
1286	    hw->phy.id == I347AT4_E_PHY_ID ||
1287	    hw->phy.id == M88E1112_E_PHY_ID ||
1288	    hw->phy.id == M88E1543_E_PHY_ID ||
1289	    hw->phy.id == M88E1512_E_PHY_ID ||
1290	    hw->phy.id == I210_I_PHY_ID)
1291		goto out;
1292
1293	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1294	if (ret_val)
1295		goto out;
1296
1297	/* Resetting the phy means we need to re-force TX_CLK in the
 
1298	 * Extended PHY Specific Control Register to 25MHz clock from
1299	 * the reset value of 2.5MHz.
1300	 */
1301	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1302	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1303	if (ret_val)
1304		goto out;
1305
1306	/* In addition, we must re-enable CRS on Tx for both half and full
 
1307	 * duplex.
1308	 */
1309	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1310	if (ret_val)
1311		goto out;
1312
1313	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1314	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1315
1316out:
1317	return ret_val;
1318}
1319
1320/**
1321 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1322 *  @hw: pointer to the HW structure
1323 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1324 *
1325 *  Forces speed and duplex on the PHY by doing the following: disable flow
1326 *  control, force speed/duplex on the MAC, disable auto speed detection,
1327 *  disable auto-negotiation, configure duplex, configure speed, configure
1328 *  the collision distance, write configuration to CTRL register.  The
1329 *  caller must write to the PHY_CONTROL register for these settings to
1330 *  take affect.
1331 **/
1332static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1333					     u16 *phy_ctrl)
1334{
1335	struct e1000_mac_info *mac = &hw->mac;
1336	u32 ctrl;
1337
1338	/* Turn off flow control when forcing speed/duplex */
1339	hw->fc.current_mode = e1000_fc_none;
1340
1341	/* Force speed/duplex on the mac */
1342	ctrl = rd32(E1000_CTRL);
1343	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1344	ctrl &= ~E1000_CTRL_SPD_SEL;
1345
1346	/* Disable Auto Speed Detection */
1347	ctrl &= ~E1000_CTRL_ASDE;
1348
1349	/* Disable autoneg on the phy */
1350	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1351
1352	/* Forcing Full or Half Duplex? */
1353	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1354		ctrl &= ~E1000_CTRL_FD;
1355		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1356		hw_dbg("Half Duplex\n");
1357	} else {
1358		ctrl |= E1000_CTRL_FD;
1359		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1360		hw_dbg("Full Duplex\n");
1361	}
1362
1363	/* Forcing 10mb or 100mb? */
1364	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1365		ctrl |= E1000_CTRL_SPD_100;
1366		*phy_ctrl |= MII_CR_SPEED_100;
1367		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1368		hw_dbg("Forcing 100mb\n");
1369	} else {
1370		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1371		*phy_ctrl |= MII_CR_SPEED_10;
1372		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1373		hw_dbg("Forcing 10mb\n");
1374	}
1375
1376	igb_config_collision_dist(hw);
1377
1378	wr32(E1000_CTRL, ctrl);
1379}
1380
1381/**
1382 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1383 *  @hw: pointer to the HW structure
1384 *  @active: boolean used to enable/disable lplu
1385 *
1386 *  Success returns 0, Failure returns 1
1387 *
1388 *  The low power link up (lplu) state is set to the power management level D3
1389 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1390 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1391 *  is used during Dx states where the power conservation is most important.
1392 *  During driver activity, SmartSpeed should be enabled so performance is
1393 *  maintained.
1394 **/
1395s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1396{
1397	struct e1000_phy_info *phy = &hw->phy;
1398	s32 ret_val = 0;
1399	u16 data;
1400
1401	if (!(hw->phy.ops.read_reg))
1402		goto out;
1403
1404	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1405	if (ret_val)
1406		goto out;
1407
1408	if (!active) {
1409		data &= ~IGP02E1000_PM_D3_LPLU;
1410		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1411					     data);
1412		if (ret_val)
1413			goto out;
1414		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1415		 * during Dx states where the power conservation is most
1416		 * important.  During driver activity we should enable
1417		 * SmartSpeed, so performance is maintained.
1418		 */
1419		if (phy->smart_speed == e1000_smart_speed_on) {
1420			ret_val = phy->ops.read_reg(hw,
1421						    IGP01E1000_PHY_PORT_CONFIG,
1422						    &data);
1423			if (ret_val)
1424				goto out;
1425
1426			data |= IGP01E1000_PSCFR_SMART_SPEED;
1427			ret_val = phy->ops.write_reg(hw,
1428						     IGP01E1000_PHY_PORT_CONFIG,
1429						     data);
1430			if (ret_val)
1431				goto out;
1432		} else if (phy->smart_speed == e1000_smart_speed_off) {
1433			ret_val = phy->ops.read_reg(hw,
1434						     IGP01E1000_PHY_PORT_CONFIG,
1435						     &data);
1436			if (ret_val)
1437				goto out;
1438
1439			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1440			ret_val = phy->ops.write_reg(hw,
1441						     IGP01E1000_PHY_PORT_CONFIG,
1442						     data);
1443			if (ret_val)
1444				goto out;
1445		}
1446	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1447		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1448		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1449		data |= IGP02E1000_PM_D3_LPLU;
1450		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1451					      data);
1452		if (ret_val)
1453			goto out;
1454
1455		/* When LPLU is enabled, we should disable SmartSpeed */
1456		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1457					    &data);
1458		if (ret_val)
1459			goto out;
1460
1461		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1462		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1463					     data);
1464	}
1465
1466out:
1467	return ret_val;
1468}
1469
1470/**
1471 *  igb_check_downshift - Checks whether a downshift in speed occurred
1472 *  @hw: pointer to the HW structure
1473 *
1474 *  Success returns 0, Failure returns 1
1475 *
1476 *  A downshift is detected by querying the PHY link health.
1477 **/
1478s32 igb_check_downshift(struct e1000_hw *hw)
1479{
1480	struct e1000_phy_info *phy = &hw->phy;
1481	s32 ret_val;
1482	u16 phy_data, offset, mask;
1483
1484	switch (phy->type) {
1485	case e1000_phy_i210:
1486	case e1000_phy_m88:
1487	case e1000_phy_gg82563:
1488		offset	= M88E1000_PHY_SPEC_STATUS;
1489		mask	= M88E1000_PSSR_DOWNSHIFT;
1490		break;
1491	case e1000_phy_igp_2:
1492	case e1000_phy_igp:
1493	case e1000_phy_igp_3:
1494		offset	= IGP01E1000_PHY_LINK_HEALTH;
1495		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1496		break;
1497	default:
1498		/* speed downshift not supported */
1499		phy->speed_downgraded = false;
1500		ret_val = 0;
1501		goto out;
1502	}
1503
1504	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1505
1506	if (!ret_val)
1507		phy->speed_downgraded = (phy_data & mask) ? true : false;
1508
1509out:
1510	return ret_val;
1511}
1512
1513/**
1514 *  igb_check_polarity_m88 - Checks the polarity.
1515 *  @hw: pointer to the HW structure
1516 *
1517 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1518 *
1519 *  Polarity is determined based on the PHY specific status register.
1520 **/
1521s32 igb_check_polarity_m88(struct e1000_hw *hw)
1522{
1523	struct e1000_phy_info *phy = &hw->phy;
1524	s32 ret_val;
1525	u16 data;
1526
1527	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1528
1529	if (!ret_val)
1530		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1531				      ? e1000_rev_polarity_reversed
1532				      : e1000_rev_polarity_normal;
1533
1534	return ret_val;
1535}
1536
1537/**
1538 *  igb_check_polarity_igp - Checks the polarity.
1539 *  @hw: pointer to the HW structure
1540 *
1541 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1542 *
1543 *  Polarity is determined based on the PHY port status register, and the
1544 *  current speed (since there is no polarity at 100Mbps).
1545 **/
1546static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1547{
1548	struct e1000_phy_info *phy = &hw->phy;
1549	s32 ret_val;
1550	u16 data, offset, mask;
1551
1552	/* Polarity is determined based on the speed of
 
1553	 * our connection.
1554	 */
1555	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1556	if (ret_val)
1557		goto out;
1558
1559	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1560	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1561		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1562		mask	= IGP01E1000_PHY_POLARITY_MASK;
1563	} else {
1564		/* This really only applies to 10Mbps since
 
1565		 * there is no polarity for 100Mbps (always 0).
1566		 */
1567		offset	= IGP01E1000_PHY_PORT_STATUS;
1568		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1569	}
1570
1571	ret_val = phy->ops.read_reg(hw, offset, &data);
1572
1573	if (!ret_val)
1574		phy->cable_polarity = (data & mask)
1575				      ? e1000_rev_polarity_reversed
1576				      : e1000_rev_polarity_normal;
1577
1578out:
1579	return ret_val;
1580}
1581
1582/**
1583 *  igb_wait_autoneg - Wait for auto-neg completion
1584 *  @hw: pointer to the HW structure
1585 *
1586 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1587 *  limit to expire, which ever happens first.
1588 **/
1589static s32 igb_wait_autoneg(struct e1000_hw *hw)
1590{
1591	s32 ret_val = 0;
1592	u16 i, phy_status;
1593
1594	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1595	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1596		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1597		if (ret_val)
1598			break;
1599		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1600		if (ret_val)
1601			break;
1602		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1603			break;
1604		msleep(100);
1605	}
1606
1607	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
 
1608	 * has completed.
1609	 */
1610	return ret_val;
1611}
1612
1613/**
1614 *  igb_phy_has_link - Polls PHY for link
1615 *  @hw: pointer to the HW structure
1616 *  @iterations: number of times to poll for link
1617 *  @usec_interval: delay between polling attempts
1618 *  @success: pointer to whether polling was successful or not
1619 *
1620 *  Polls the PHY status register for link, 'iterations' number of times.
1621 **/
1622s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1623		     u32 usec_interval, bool *success)
1624{
1625	s32 ret_val = 0;
1626	u16 i, phy_status;
1627
1628	for (i = 0; i < iterations; i++) {
1629		/* Some PHYs require the PHY_STATUS register to be read
 
1630		 * twice due to the link bit being sticky.  No harm doing
1631		 * it across the board.
1632		 */
1633		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1634		if (ret_val && usec_interval > 0) {
1635			/* If the first read fails, another entity may have
 
1636			 * ownership of the resources, wait and try again to
1637			 * see if they have relinquished the resources yet.
1638			 */
1639			if (usec_interval >= 1000)
1640				mdelay(usec_interval/1000);
1641			else
1642				udelay(usec_interval);
1643		}
1644		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1645		if (ret_val)
1646			break;
1647		if (phy_status & MII_SR_LINK_STATUS)
1648			break;
1649		if (usec_interval >= 1000)
1650			mdelay(usec_interval/1000);
1651		else
1652			udelay(usec_interval);
1653	}
1654
1655	*success = (i < iterations) ? true : false;
1656
1657	return ret_val;
1658}
1659
1660/**
1661 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1662 *  @hw: pointer to the HW structure
1663 *
1664 *  Reads the PHY specific status register to retrieve the cable length
1665 *  information.  The cable length is determined by averaging the minimum and
1666 *  maximum values to get the "average" cable length.  The m88 PHY has four
1667 *  possible cable length values, which are:
1668 *	Register Value		Cable Length
1669 *	0			< 50 meters
1670 *	1			50 - 80 meters
1671 *	2			80 - 110 meters
1672 *	3			110 - 140 meters
1673 *	4			> 140 meters
1674 **/
1675s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1676{
1677	struct e1000_phy_info *phy = &hw->phy;
1678	s32 ret_val;
1679	u16 phy_data, index;
1680
1681	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1682	if (ret_val)
1683		goto out;
1684
1685	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1686	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
 
1687		ret_val = -E1000_ERR_PHY;
1688		goto out;
1689	}
1690
1691	phy->min_cable_length = e1000_m88_cable_length_table[index];
1692	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1693
1694	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1695
1696out:
1697	return ret_val;
1698}
1699
1700s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1701{
1702	struct e1000_phy_info *phy = &hw->phy;
1703	s32 ret_val;
1704	u16 phy_data, phy_data2, index, default_page, is_cm;
1705	int len_tot = 0;
1706	u16 len_min;
1707	u16 len_max;
1708
1709	switch (hw->phy.id) {
1710	case M88E1543_E_PHY_ID:
1711	case M88E1512_E_PHY_ID:
1712	case I347AT4_E_PHY_ID:
1713	case I210_I_PHY_ID:
 
1714		/* Remember the original page select and set it to 7 */
1715		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1716					    &default_page);
1717		if (ret_val)
1718			goto out;
1719
1720		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1721		if (ret_val)
1722			goto out;
1723
1724		/* Check if the unit of cable length is meters or cm */
1725		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1726		if (ret_val)
1727			goto out;
1728
1729		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1730
1731		/* Get cable length from Pair 0 length Regs */
1732		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1733		if (ret_val)
1734			goto out;
1735
1736		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1737		len_tot = phy->pair_length[0];
1738		len_min = phy->pair_length[0];
1739		len_max = phy->pair_length[0];
1740
1741		/* Get cable length from Pair 1 length Regs */
1742		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1743		if (ret_val)
1744			goto out;
1745
1746		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1747		len_tot += phy->pair_length[1];
1748		len_min = min(len_min, phy->pair_length[1]);
1749		len_max = max(len_max, phy->pair_length[1]);
1750
1751		/* Get cable length from Pair 2 length Regs */
1752		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1753		if (ret_val)
1754			goto out;
1755
1756		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1757		len_tot += phy->pair_length[2];
1758		len_min = min(len_min, phy->pair_length[2]);
1759		len_max = max(len_max, phy->pair_length[2]);
1760
1761		/* Get cable length from Pair 3 length Regs */
1762		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1763		if (ret_val)
1764			goto out;
1765
1766		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1767		len_tot += phy->pair_length[3];
1768		len_min = min(len_min, phy->pair_length[3]);
1769		len_max = max(len_max, phy->pair_length[3]);
1770
1771		/* Populate the phy structure with cable length in meters */
1772		phy->min_cable_length = len_min;
1773		phy->max_cable_length = len_max;
1774		phy->cable_length = len_tot / 4;
1775
1776		/* Reset the page selec to its original value */
1777		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1778					     default_page);
1779		if (ret_val)
1780			goto out;
1781		break;
1782	case M88E1112_E_PHY_ID:
1783		/* Remember the original page select and set it to 5 */
1784		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1785					    &default_page);
1786		if (ret_val)
1787			goto out;
1788
1789		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1790		if (ret_val)
1791			goto out;
1792
1793		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1794					    &phy_data);
1795		if (ret_val)
1796			goto out;
1797
1798		index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1799		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
 
1800			ret_val = -E1000_ERR_PHY;
1801			goto out;
1802		}
1803
1804		phy->min_cable_length = e1000_m88_cable_length_table[index];
1805		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1806
1807		phy->cable_length = (phy->min_cable_length +
1808				     phy->max_cable_length) / 2;
1809
1810		/* Reset the page select to its original value */
1811		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1812					     default_page);
1813		if (ret_val)
1814			goto out;
1815
1816		break;
1817	default:
1818		ret_val = -E1000_ERR_PHY;
1819		goto out;
1820	}
1821
1822out:
1823	return ret_val;
1824}
1825
1826/**
1827 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1828 *  @hw: pointer to the HW structure
1829 *
1830 *  The automatic gain control (agc) normalizes the amplitude of the
1831 *  received signal, adjusting for the attenuation produced by the
1832 *  cable.  By reading the AGC registers, which represent the
1833 *  combination of coarse and fine gain value, the value can be put
1834 *  into a lookup table to obtain the approximate cable length
1835 *  for each channel.
1836 **/
1837s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1838{
1839	struct e1000_phy_info *phy = &hw->phy;
1840	s32 ret_val = 0;
1841	u16 phy_data, i, agc_value = 0;
1842	u16 cur_agc_index, max_agc_index = 0;
1843	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1844	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1845		IGP02E1000_PHY_AGC_A,
1846		IGP02E1000_PHY_AGC_B,
1847		IGP02E1000_PHY_AGC_C,
1848		IGP02E1000_PHY_AGC_D
1849	};
1850
1851	/* Read the AGC registers for all channels */
1852	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1853		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1854		if (ret_val)
1855			goto out;
1856
1857		/* Getting bits 15:9, which represent the combination of
 
1858		 * coarse and fine gain values.  The result is a number
1859		 * that can be put into the lookup table to obtain the
1860		 * approximate cable length.
1861		 */
1862		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1863				IGP02E1000_AGC_LENGTH_MASK;
1864
1865		/* Array index bound check. */
1866		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1867		    (cur_agc_index == 0)) {
1868			ret_val = -E1000_ERR_PHY;
1869			goto out;
1870		}
1871
1872		/* Remove min & max AGC values from calculation. */
1873		if (e1000_igp_2_cable_length_table[min_agc_index] >
1874		    e1000_igp_2_cable_length_table[cur_agc_index])
1875			min_agc_index = cur_agc_index;
1876		if (e1000_igp_2_cable_length_table[max_agc_index] <
1877		    e1000_igp_2_cable_length_table[cur_agc_index])
1878			max_agc_index = cur_agc_index;
1879
1880		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1881	}
1882
1883	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1884		      e1000_igp_2_cable_length_table[max_agc_index]);
1885	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1886
1887	/* Calculate cable length with the error range of +/- 10 meters. */
1888	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1889				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1890	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1891
1892	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1893
1894out:
1895	return ret_val;
1896}
1897
1898/**
1899 *  igb_get_phy_info_m88 - Retrieve PHY information
1900 *  @hw: pointer to the HW structure
1901 *
1902 *  Valid for only copper links.  Read the PHY status register (sticky read)
1903 *  to verify that link is up.  Read the PHY special control register to
1904 *  determine the polarity and 10base-T extended distance.  Read the PHY
1905 *  special status register to determine MDI/MDIx and current speed.  If
1906 *  speed is 1000, then determine cable length, local and remote receiver.
1907 **/
1908s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1909{
1910	struct e1000_phy_info *phy = &hw->phy;
1911	s32  ret_val;
1912	u16 phy_data;
1913	bool link;
1914
1915	if (phy->media_type != e1000_media_type_copper) {
1916		hw_dbg("Phy info is only valid for copper media\n");
1917		ret_val = -E1000_ERR_CONFIG;
1918		goto out;
1919	}
1920
1921	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1922	if (ret_val)
1923		goto out;
1924
1925	if (!link) {
1926		hw_dbg("Phy info is only valid if link is up\n");
1927		ret_val = -E1000_ERR_CONFIG;
1928		goto out;
1929	}
1930
1931	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1932	if (ret_val)
1933		goto out;
1934
1935	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1936				   ? true : false;
1937
1938	ret_val = igb_check_polarity_m88(hw);
1939	if (ret_val)
1940		goto out;
1941
1942	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1943	if (ret_val)
1944		goto out;
1945
1946	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1947
1948	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1949		ret_val = phy->ops.get_cable_length(hw);
1950		if (ret_val)
1951			goto out;
1952
1953		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1954		if (ret_val)
1955			goto out;
1956
1957		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1958				? e1000_1000t_rx_status_ok
1959				: e1000_1000t_rx_status_not_ok;
1960
1961		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1962				 ? e1000_1000t_rx_status_ok
1963				 : e1000_1000t_rx_status_not_ok;
1964	} else {
1965		/* Set values to "undefined" */
1966		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1967		phy->local_rx = e1000_1000t_rx_status_undefined;
1968		phy->remote_rx = e1000_1000t_rx_status_undefined;
1969	}
1970
1971out:
1972	return ret_val;
1973}
1974
1975/**
1976 *  igb_get_phy_info_igp - Retrieve igp PHY information
1977 *  @hw: pointer to the HW structure
1978 *
1979 *  Read PHY status to determine if link is up.  If link is up, then
1980 *  set/determine 10base-T extended distance and polarity correction.  Read
1981 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1982 *  determine on the cable length, local and remote receiver.
1983 **/
1984s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1985{
1986	struct e1000_phy_info *phy = &hw->phy;
1987	s32 ret_val;
1988	u16 data;
1989	bool link;
1990
1991	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1992	if (ret_val)
1993		goto out;
1994
1995	if (!link) {
1996		hw_dbg("Phy info is only valid if link is up\n");
1997		ret_val = -E1000_ERR_CONFIG;
1998		goto out;
1999	}
2000
2001	phy->polarity_correction = true;
2002
2003	ret_val = igb_check_polarity_igp(hw);
2004	if (ret_val)
2005		goto out;
2006
2007	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2008	if (ret_val)
2009		goto out;
2010
2011	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2012
2013	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2014	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2015		ret_val = phy->ops.get_cable_length(hw);
2016		if (ret_val)
2017			goto out;
2018
2019		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2020		if (ret_val)
2021			goto out;
2022
2023		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2024				? e1000_1000t_rx_status_ok
2025				: e1000_1000t_rx_status_not_ok;
2026
2027		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2028				 ? e1000_1000t_rx_status_ok
2029				 : e1000_1000t_rx_status_not_ok;
2030	} else {
2031		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2032		phy->local_rx = e1000_1000t_rx_status_undefined;
2033		phy->remote_rx = e1000_1000t_rx_status_undefined;
2034	}
2035
2036out:
2037	return ret_val;
2038}
2039
2040/**
2041 *  igb_phy_sw_reset - PHY software reset
2042 *  @hw: pointer to the HW structure
2043 *
2044 *  Does a software reset of the PHY by reading the PHY control register and
2045 *  setting/write the control register reset bit to the PHY.
2046 **/
2047s32 igb_phy_sw_reset(struct e1000_hw *hw)
2048{
2049	s32 ret_val = 0;
2050	u16 phy_ctrl;
2051
2052	if (!(hw->phy.ops.read_reg))
2053		goto out;
2054
2055	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2056	if (ret_val)
2057		goto out;
2058
2059	phy_ctrl |= MII_CR_RESET;
2060	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2061	if (ret_val)
2062		goto out;
2063
2064	udelay(1);
2065
2066out:
2067	return ret_val;
2068}
2069
2070/**
2071 *  igb_phy_hw_reset - PHY hardware reset
2072 *  @hw: pointer to the HW structure
2073 *
2074 *  Verify the reset block is not blocking us from resetting.  Acquire
2075 *  semaphore (if necessary) and read/set/write the device control reset
2076 *  bit in the PHY.  Wait the appropriate delay time for the device to
2077 *  reset and release the semaphore (if necessary).
2078 **/
2079s32 igb_phy_hw_reset(struct e1000_hw *hw)
2080{
2081	struct e1000_phy_info *phy = &hw->phy;
2082	s32  ret_val;
2083	u32 ctrl;
2084
2085	ret_val = igb_check_reset_block(hw);
2086	if (ret_val) {
2087		ret_val = 0;
2088		goto out;
2089	}
2090
2091	ret_val = phy->ops.acquire(hw);
2092	if (ret_val)
2093		goto out;
2094
2095	ctrl = rd32(E1000_CTRL);
2096	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2097	wrfl();
2098
2099	udelay(phy->reset_delay_us);
2100
2101	wr32(E1000_CTRL, ctrl);
2102	wrfl();
2103
2104	udelay(150);
2105
2106	phy->ops.release(hw);
2107
2108	ret_val = phy->ops.get_cfg_done(hw);
2109
2110out:
2111	return ret_val;
2112}
2113
2114/**
2115 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2116 *  @hw: pointer to the HW structure
2117 *
2118 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2119 **/
2120s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2121{
2122	hw_dbg("Running IGP 3 PHY init script\n");
2123
2124	/* PHY init IGP 3 */
2125	/* Enable rise/fall, 10-mode work in class-A */
2126	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2127	/* Remove all caps from Replica path filter */
2128	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2129	/* Bias trimming for ADC, AFE and Driver (Default) */
2130	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2131	/* Increase Hybrid poly bias */
2132	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2133	/* Add 4% to TX amplitude in Giga mode */
2134	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2135	/* Disable trimming (TTT) */
2136	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2137	/* Poly DC correction to 94.6% + 2% for all channels */
2138	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2139	/* ABS DC correction to 95.9% */
2140	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2141	/* BG temp curve trim */
2142	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2143	/* Increasing ADC OPAMP stage 1 currents to max */
2144	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2145	/* Force 1000 ( required for enabling PHY regs configuration) */
2146	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2147	/* Set upd_freq to 6 */
2148	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2149	/* Disable NPDFE */
2150	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2151	/* Disable adaptive fixed FFE (Default) */
2152	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2153	/* Enable FFE hysteresis */
2154	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2155	/* Fixed FFE for short cable lengths */
2156	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2157	/* Fixed FFE for medium cable lengths */
2158	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2159	/* Fixed FFE for long cable lengths */
2160	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2161	/* Enable Adaptive Clip Threshold */
2162	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2163	/* AHT reset limit to 1 */
2164	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2165	/* Set AHT master delay to 127 msec */
2166	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2167	/* Set scan bits for AHT */
2168	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2169	/* Set AHT Preset bits */
2170	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2171	/* Change integ_factor of channel A to 3 */
2172	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2173	/* Change prop_factor of channels BCD to 8 */
2174	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2175	/* Change cg_icount + enable integbp for channels BCD */
2176	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2177	/* Change cg_icount + enable integbp + change prop_factor_master
 
2178	 * to 8 for channel A
2179	 */
2180	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2181	/* Disable AHT in Slave mode on channel A */
2182	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2183	/* Enable LPLU and disable AN to 1000 in non-D0a states,
 
2184	 * Enable SPD+B2B
2185	 */
2186	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2187	/* Enable restart AN on an1000_dis change */
2188	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2189	/* Enable wh_fifo read clock in 10/100 modes */
2190	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2191	/* Restart AN, Speed selection is 1000 */
2192	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2193
2194	return 0;
2195}
2196
2197/**
2198 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2199 *  @hw: pointer to the HW structure
2200 *
2201 *  Initialize Marvel 1512 to work correctly with Avoton.
2202 **/
2203s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2204{
2205	struct e1000_phy_info *phy = &hw->phy;
2206	s32 ret_val = 0;
2207
2208	/* Switch to PHY page 0xFF. */
2209	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2210	if (ret_val)
2211		goto out;
2212
2213	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2214	if (ret_val)
2215		goto out;
2216
2217	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2218	if (ret_val)
2219		goto out;
2220
2221	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2222	if (ret_val)
2223		goto out;
2224
2225	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2226	if (ret_val)
2227		goto out;
2228
2229	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2230	if (ret_val)
2231		goto out;
2232
2233	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2234	if (ret_val)
2235		goto out;
2236
2237	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2238	if (ret_val)
2239		goto out;
2240
2241	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2242	if (ret_val)
2243		goto out;
2244
2245	/* Switch to PHY page 0xFB. */
2246	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2247	if (ret_val)
2248		goto out;
2249
2250	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2251	if (ret_val)
2252		goto out;
2253
2254	/* Switch to PHY page 0x12. */
2255	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2256	if (ret_val)
2257		goto out;
2258
2259	/* Change mode to SGMII-to-Copper */
2260	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2261	if (ret_val)
2262		goto out;
2263
2264	/* Return the PHY to page 0. */
2265	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2266	if (ret_val)
2267		goto out;
2268
2269	ret_val = igb_phy_sw_reset(hw);
2270	if (ret_val) {
2271		hw_dbg("Error committing the PHY changes\n");
2272		return ret_val;
2273	}
2274
2275	/* msec_delay(1000); */
2276	usleep_range(1000, 2000);
2277out:
2278	return ret_val;
2279}
2280
2281/**
2282 *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2283 *  @hw: pointer to the HW structure
2284 *
2285 *  Initialize Marvell 1543 to work correctly with Avoton.
2286 **/
2287s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2288{
2289	struct e1000_phy_info *phy = &hw->phy;
2290	s32 ret_val = 0;
2291
2292	/* Switch to PHY page 0xFF. */
2293	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2294	if (ret_val)
2295		goto out;
2296
2297	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2298	if (ret_val)
2299		goto out;
2300
2301	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2302	if (ret_val)
2303		goto out;
2304
2305	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2306	if (ret_val)
2307		goto out;
2308
2309	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2310	if (ret_val)
2311		goto out;
2312
2313	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2314	if (ret_val)
2315		goto out;
2316
2317	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2318	if (ret_val)
2319		goto out;
2320
2321	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2322	if (ret_val)
2323		goto out;
2324
2325	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2326	if (ret_val)
2327		goto out;
2328
2329	/* Switch to PHY page 0xFB. */
2330	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2331	if (ret_val)
2332		goto out;
2333
2334	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2335	if (ret_val)
2336		goto out;
2337
2338	/* Switch to PHY page 0x12. */
2339	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2340	if (ret_val)
2341		goto out;
2342
2343	/* Change mode to SGMII-to-Copper */
2344	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2345	if (ret_val)
2346		goto out;
2347
2348	/* Switch to PHY page 1. */
2349	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2350	if (ret_val)
2351		goto out;
2352
2353	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2354	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2355	if (ret_val)
2356		goto out;
2357
2358	/* Return the PHY to page 0. */
2359	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2360	if (ret_val)
2361		goto out;
2362
2363	ret_val = igb_phy_sw_reset(hw);
2364	if (ret_val) {
2365		hw_dbg("Error committing the PHY changes\n");
2366		return ret_val;
2367	}
2368
2369	/* msec_delay(1000); */
2370	usleep_range(1000, 2000);
2371out:
2372	return ret_val;
2373}
2374
2375/**
2376 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2377 * @hw: pointer to the HW structure
2378 *
2379 * In the case of a PHY power down to save power, or to turn off link during a
2380 * driver unload, restore the link to previous settings.
2381 **/
2382void igb_power_up_phy_copper(struct e1000_hw *hw)
2383{
2384	u16 mii_reg = 0;
 
2385
2386	/* The PHY will retain its settings across a power down/up cycle */
2387	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2388	mii_reg &= ~MII_CR_POWER_DOWN;
 
 
 
 
 
2389	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2390}
2391
2392/**
2393 * igb_power_down_phy_copper - Power down copper PHY
2394 * @hw: pointer to the HW structure
2395 *
2396 * Power down PHY to save power when interface is down and wake on lan
2397 * is not enabled.
2398 **/
2399void igb_power_down_phy_copper(struct e1000_hw *hw)
2400{
2401	u16 mii_reg = 0;
 
2402
2403	/* The PHY will retain its settings across a power down/up cycle */
2404	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2405	mii_reg |= MII_CR_POWER_DOWN;
 
 
 
 
 
 
 
2406	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2407	usleep_range(1000, 2000);
2408}
2409
2410/**
2411 *  igb_check_polarity_82580 - Checks the polarity.
2412 *  @hw: pointer to the HW structure
2413 *
2414 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2415 *
2416 *  Polarity is determined based on the PHY specific status register.
2417 **/
2418static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2419{
2420	struct e1000_phy_info *phy = &hw->phy;
2421	s32 ret_val;
2422	u16 data;
2423
2424
2425	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2426
2427	if (!ret_val)
2428		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2429				      ? e1000_rev_polarity_reversed
2430				      : e1000_rev_polarity_normal;
2431
2432	return ret_val;
2433}
2434
2435/**
2436 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2437 *  @hw: pointer to the HW structure
2438 *
2439 *  Calls the PHY setup function to force speed and duplex.  Clears the
2440 *  auto-crossover to force MDI manually.  Waits for link and returns
2441 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2442 **/
2443s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2444{
2445	struct e1000_phy_info *phy = &hw->phy;
2446	s32 ret_val;
2447	u16 phy_data;
2448	bool link;
2449
 
2450	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2451	if (ret_val)
2452		goto out;
2453
2454	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2455
2456	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2457	if (ret_val)
2458		goto out;
2459
2460	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
 
2461	 * forced whenever speed and duplex are forced.
2462	 */
2463	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2464	if (ret_val)
2465		goto out;
2466
2467	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
 
2468
2469	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2470	if (ret_val)
2471		goto out;
2472
2473	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2474
2475	udelay(1);
2476
2477	if (phy->autoneg_wait_to_complete) {
2478		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2479
2480		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
 
 
 
2481		if (ret_val)
2482			goto out;
2483
2484		if (!link)
2485			hw_dbg("Link taking longer than expected.\n");
2486
2487		/* Try once more */
2488		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
 
 
 
2489		if (ret_val)
2490			goto out;
2491	}
2492
2493out:
2494	return ret_val;
2495}
2496
2497/**
2498 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2499 *  @hw: pointer to the HW structure
2500 *
2501 *  Read PHY status to determine if link is up.  If link is up, then
2502 *  set/determine 10base-T extended distance and polarity correction.  Read
2503 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2504 *  determine on the cable length, local and remote receiver.
2505 **/
2506s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2507{
2508	struct e1000_phy_info *phy = &hw->phy;
2509	s32 ret_val;
2510	u16 data;
2511	bool link;
2512
 
2513	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2514	if (ret_val)
2515		goto out;
2516
2517	if (!link) {
2518		hw_dbg("Phy info is only valid if link is up\n");
2519		ret_val = -E1000_ERR_CONFIG;
2520		goto out;
2521	}
2522
2523	phy->polarity_correction = true;
2524
2525	ret_val = igb_check_polarity_82580(hw);
2526	if (ret_val)
2527		goto out;
2528
2529	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2530	if (ret_val)
2531		goto out;
2532
2533	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2534
2535	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2536	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2537		ret_val = hw->phy.ops.get_cable_length(hw);
2538		if (ret_val)
2539			goto out;
2540
2541		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2542		if (ret_val)
2543			goto out;
2544
2545		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2546				? e1000_1000t_rx_status_ok
2547				: e1000_1000t_rx_status_not_ok;
2548
2549		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2550				 ? e1000_1000t_rx_status_ok
2551				 : e1000_1000t_rx_status_not_ok;
2552	} else {
2553		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2554		phy->local_rx = e1000_1000t_rx_status_undefined;
2555		phy->remote_rx = e1000_1000t_rx_status_undefined;
2556	}
2557
2558out:
2559	return ret_val;
2560}
2561
2562/**
2563 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2564 *  @hw: pointer to the HW structure
2565 *
2566 * Reads the diagnostic status register and verifies result is valid before
2567 * placing it in the phy_cable_length field.
2568 **/
2569s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2570{
2571	struct e1000_phy_info *phy = &hw->phy;
2572	s32 ret_val;
2573	u16 phy_data, length;
2574
 
2575	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2576	if (ret_val)
2577		goto out;
2578
2579	length = FIELD_GET(I82580_DSTATUS_CABLE_LENGTH, phy_data);
 
2580
2581	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2582		ret_val = -E1000_ERR_PHY;
2583
2584	phy->cable_length = length;
2585
2586out:
2587	return ret_val;
2588}
2589
2590/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2592 *  @hw: pointer to the HW structure
2593 *
2594 *  Sets up Master/slave mode
2595 **/
2596static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2597{
2598	s32 ret_val;
2599	u16 phy_data;
2600
2601	/* Resolve Master/Slave mode */
2602	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2603	if (ret_val)
2604		return ret_val;
2605
2606	/* load defaults for future use */
2607	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2608				   ((phy_data & CR_1000T_MS_VALUE) ?
2609				    e1000_ms_force_master :
2610				    e1000_ms_force_slave) : e1000_ms_auto;
2611
2612	switch (hw->phy.ms_type) {
2613	case e1000_ms_force_master:
2614		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2615		break;
2616	case e1000_ms_force_slave:
2617		phy_data |= CR_1000T_MS_ENABLE;
2618		phy_data &= ~(CR_1000T_MS_VALUE);
2619		break;
2620	case e1000_ms_auto:
2621		phy_data &= ~CR_1000T_MS_ENABLE;
2622		fallthrough;
2623	default:
2624		break;
2625	}
2626
2627	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2628}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
 
 
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30
  31#include "e1000_mac.h"
  32#include "e1000_phy.h"
  33
  34static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
  35static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
  36					       u16 *phy_ctrl);
  37static s32  igb_wait_autoneg(struct e1000_hw *hw);
  38static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
  39
  40/* Cable length tables */
  41static const u16 e1000_m88_cable_length_table[] =
  42	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  43#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  44                (sizeof(e1000_m88_cable_length_table) / \
  45                 sizeof(e1000_m88_cable_length_table[0]))
  46
  47static const u16 e1000_igp_2_cable_length_table[] =
  48    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
  49      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
  50      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
  51      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
  52      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
  53      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
  54      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
  55      104, 109, 114, 118, 121, 124};
  56#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  57		(sizeof(e1000_igp_2_cable_length_table) / \
  58		 sizeof(e1000_igp_2_cable_length_table[0]))
  59
  60/**
  61 *  igb_check_reset_block - Check if PHY reset is blocked
  62 *  @hw: pointer to the HW structure
  63 *
  64 *  Read the PHY management control register and check whether a PHY reset
  65 *  is blocked.  If a reset is not blocked return 0, otherwise
  66 *  return E1000_BLK_PHY_RESET (12).
  67 **/
  68s32 igb_check_reset_block(struct e1000_hw *hw)
  69{
  70	u32 manc;
  71
  72	manc = rd32(E1000_MANC);
  73
  74	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
  75	       E1000_BLK_PHY_RESET : 0;
  76}
  77
  78/**
  79 *  igb_get_phy_id - Retrieve the PHY ID and revision
  80 *  @hw: pointer to the HW structure
  81 *
  82 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  83 *  revision in the hardware structure.
  84 **/
  85s32 igb_get_phy_id(struct e1000_hw *hw)
  86{
  87	struct e1000_phy_info *phy = &hw->phy;
  88	s32 ret_val = 0;
  89	u16 phy_id;
  90
 
 
 
 
  91	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
  92	if (ret_val)
  93		goto out;
  94
  95	phy->id = (u32)(phy_id << 16);
  96	udelay(20);
  97	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
  98	if (ret_val)
  99		goto out;
 100
 101	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 102	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 103
 104out:
 105	return ret_val;
 106}
 107
 108/**
 109 *  igb_phy_reset_dsp - Reset PHY DSP
 110 *  @hw: pointer to the HW structure
 111 *
 112 *  Reset the digital signal processor.
 113 **/
 114static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
 115{
 116	s32 ret_val = 0;
 117
 118	if (!(hw->phy.ops.write_reg))
 119		goto out;
 120
 121	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 122	if (ret_val)
 123		goto out;
 124
 125	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
 126
 127out:
 128	return ret_val;
 129}
 130
 131/**
 132 *  igb_read_phy_reg_mdic - Read MDI control register
 133 *  @hw: pointer to the HW structure
 134 *  @offset: register offset to be read
 135 *  @data: pointer to the read data
 136 *
 137 *  Reads the MDI control regsiter in the PHY at offset and stores the
 138 *  information read to data.
 139 **/
 140s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 141{
 142	struct e1000_phy_info *phy = &hw->phy;
 143	u32 i, mdic = 0;
 144	s32 ret_val = 0;
 145
 146	if (offset > MAX_PHY_REG_ADDRESS) {
 147		hw_dbg("PHY Address %d is out of range\n", offset);
 148		ret_val = -E1000_ERR_PARAM;
 149		goto out;
 150	}
 151
 152	/*
 153	 * Set up Op-code, Phy Address, and register offset in the MDI
 154	 * Control register.  The MAC will take care of interfacing with the
 155	 * PHY to retrieve the desired data.
 156	 */
 157	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 158		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 159		(E1000_MDIC_OP_READ));
 160
 161	wr32(E1000_MDIC, mdic);
 162
 163	/*
 164	 * Poll the ready bit to see if the MDI read completed
 165	 * Increasing the time out as testing showed failures with
 166	 * the lower time out
 167	 */
 168	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 169		udelay(50);
 170		mdic = rd32(E1000_MDIC);
 171		if (mdic & E1000_MDIC_READY)
 172			break;
 173	}
 174	if (!(mdic & E1000_MDIC_READY)) {
 175		hw_dbg("MDI Read did not complete\n");
 176		ret_val = -E1000_ERR_PHY;
 177		goto out;
 178	}
 179	if (mdic & E1000_MDIC_ERROR) {
 180		hw_dbg("MDI Error\n");
 181		ret_val = -E1000_ERR_PHY;
 182		goto out;
 183	}
 184	*data = (u16) mdic;
 185
 186out:
 187	return ret_val;
 188}
 189
 190/**
 191 *  igb_write_phy_reg_mdic - Write MDI control register
 192 *  @hw: pointer to the HW structure
 193 *  @offset: register offset to write to
 194 *  @data: data to write to register at offset
 195 *
 196 *  Writes data to MDI control register in the PHY at offset.
 197 **/
 198s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 199{
 200	struct e1000_phy_info *phy = &hw->phy;
 201	u32 i, mdic = 0;
 202	s32 ret_val = 0;
 203
 204	if (offset > MAX_PHY_REG_ADDRESS) {
 205		hw_dbg("PHY Address %d is out of range\n", offset);
 206		ret_val = -E1000_ERR_PARAM;
 207		goto out;
 208	}
 209
 210	/*
 211	 * Set up Op-code, Phy Address, and register offset in the MDI
 212	 * Control register.  The MAC will take care of interfacing with the
 213	 * PHY to retrieve the desired data.
 214	 */
 215	mdic = (((u32)data) |
 216		(offset << E1000_MDIC_REG_SHIFT) |
 217		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 218		(E1000_MDIC_OP_WRITE));
 219
 220	wr32(E1000_MDIC, mdic);
 221
 222	/*
 223	 * Poll the ready bit to see if the MDI read completed
 224	 * Increasing the time out as testing showed failures with
 225	 * the lower time out
 226	 */
 227	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 228		udelay(50);
 229		mdic = rd32(E1000_MDIC);
 230		if (mdic & E1000_MDIC_READY)
 231			break;
 232	}
 233	if (!(mdic & E1000_MDIC_READY)) {
 234		hw_dbg("MDI Write did not complete\n");
 235		ret_val = -E1000_ERR_PHY;
 236		goto out;
 237	}
 238	if (mdic & E1000_MDIC_ERROR) {
 239		hw_dbg("MDI Error\n");
 240		ret_val = -E1000_ERR_PHY;
 241		goto out;
 242	}
 243
 244out:
 245	return ret_val;
 246}
 247
 248/**
 249 *  igb_read_phy_reg_i2c - Read PHY register using i2c
 250 *  @hw: pointer to the HW structure
 251 *  @offset: register offset to be read
 252 *  @data: pointer to the read data
 253 *
 254 *  Reads the PHY register at offset using the i2c interface and stores the
 255 *  retrieved information in data.
 256 **/
 257s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
 258{
 259	struct e1000_phy_info *phy = &hw->phy;
 260	u32 i, i2ccmd = 0;
 261
 262
 263	/*
 264	 * Set up Op-code, Phy Address, and register address in the I2CCMD
 265	 * register.  The MAC will take care of interfacing with the
 266	 * PHY to retrieve the desired data.
 267	 */
 268	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 269	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 270	          (E1000_I2CCMD_OPCODE_READ));
 271
 272	wr32(E1000_I2CCMD, i2ccmd);
 273
 274	/* Poll the ready bit to see if the I2C read completed */
 275	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 276		udelay(50);
 277		i2ccmd = rd32(E1000_I2CCMD);
 278		if (i2ccmd & E1000_I2CCMD_READY)
 279			break;
 280	}
 281	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 282		hw_dbg("I2CCMD Read did not complete\n");
 283		return -E1000_ERR_PHY;
 284	}
 285	if (i2ccmd & E1000_I2CCMD_ERROR) {
 286		hw_dbg("I2CCMD Error bit set\n");
 287		return -E1000_ERR_PHY;
 288	}
 289
 290	/* Need to byte-swap the 16-bit value. */
 291	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
 292
 293	return 0;
 294}
 295
 296/**
 297 *  igb_write_phy_reg_i2c - Write PHY register using i2c
 298 *  @hw: pointer to the HW structure
 299 *  @offset: register offset to write to
 300 *  @data: data to write at register offset
 301 *
 302 *  Writes the data to PHY register at the offset using the i2c interface.
 303 **/
 304s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
 305{
 306	struct e1000_phy_info *phy = &hw->phy;
 307	u32 i, i2ccmd = 0;
 308	u16 phy_data_swapped;
 309
 310	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
 311	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
 312		hw_dbg("PHY I2C Address %d is out of range.\n",
 313			  hw->phy.addr);
 314		return -E1000_ERR_CONFIG;
 315	}
 316
 317	/* Swap the data bytes for the I2C interface */
 318	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
 319
 320	/*
 321	 * Set up Op-code, Phy Address, and register address in the I2CCMD
 322	 * register.  The MAC will take care of interfacing with the
 323	 * PHY to retrieve the desired data.
 324	 */
 325	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 326	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 327	          E1000_I2CCMD_OPCODE_WRITE |
 328	          phy_data_swapped);
 329
 330	wr32(E1000_I2CCMD, i2ccmd);
 331
 332	/* Poll the ready bit to see if the I2C read completed */
 333	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 334		udelay(50);
 335		i2ccmd = rd32(E1000_I2CCMD);
 336		if (i2ccmd & E1000_I2CCMD_READY)
 337			break;
 338	}
 339	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 340		hw_dbg("I2CCMD Write did not complete\n");
 341		return -E1000_ERR_PHY;
 342	}
 343	if (i2ccmd & E1000_I2CCMD_ERROR) {
 344		hw_dbg("I2CCMD Error bit set\n");
 345		return -E1000_ERR_PHY;
 346	}
 347
 348	return 0;
 349}
 350
 351/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352 *  igb_read_phy_reg_igp - Read igp PHY register
 353 *  @hw: pointer to the HW structure
 354 *  @offset: register offset to be read
 355 *  @data: pointer to the read data
 356 *
 357 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 358 *  and storing the retrieved information in data.  Release any acquired
 359 *  semaphores before exiting.
 360 **/
 361s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 362{
 363	s32 ret_val = 0;
 364
 365	if (!(hw->phy.ops.acquire))
 366		goto out;
 367
 368	ret_val = hw->phy.ops.acquire(hw);
 369	if (ret_val)
 370		goto out;
 371
 372	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 373		ret_val = igb_write_phy_reg_mdic(hw,
 374						   IGP01E1000_PHY_PAGE_SELECT,
 375						   (u16)offset);
 376		if (ret_val) {
 377			hw->phy.ops.release(hw);
 378			goto out;
 379		}
 380	}
 381
 382	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 383					data);
 384
 385	hw->phy.ops.release(hw);
 386
 387out:
 388	return ret_val;
 389}
 390
 391/**
 392 *  igb_write_phy_reg_igp - Write igp PHY register
 393 *  @hw: pointer to the HW structure
 394 *  @offset: register offset to write to
 395 *  @data: data to write at register offset
 396 *
 397 *  Acquires semaphore, if necessary, then writes the data to PHY register
 398 *  at the offset.  Release any acquired semaphores before exiting.
 399 **/
 400s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 401{
 402	s32 ret_val = 0;
 403
 404	if (!(hw->phy.ops.acquire))
 405		goto out;
 406
 407	ret_val = hw->phy.ops.acquire(hw);
 408	if (ret_val)
 409		goto out;
 410
 411	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 412		ret_val = igb_write_phy_reg_mdic(hw,
 413						   IGP01E1000_PHY_PAGE_SELECT,
 414						   (u16)offset);
 415		if (ret_val) {
 416			hw->phy.ops.release(hw);
 417			goto out;
 418		}
 419	}
 420
 421	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 422					   data);
 423
 424	hw->phy.ops.release(hw);
 425
 426out:
 427	return ret_val;
 428}
 429
 430/**
 431 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
 432 *  @hw: pointer to the HW structure
 433 *
 434 *  Sets up Carrier-sense on Transmit and downshift values.
 435 **/
 436s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
 437{
 438	struct e1000_phy_info *phy = &hw->phy;
 439	s32 ret_val;
 440	u16 phy_data;
 441
 442
 443	if (phy->reset_disable) {
 444		ret_val = 0;
 445		goto out;
 446	}
 447
 448	if (phy->type == e1000_phy_82580) {
 449		ret_val = hw->phy.ops.reset(hw);
 450		if (ret_val) {
 451			hw_dbg("Error resetting the PHY.\n");
 452			goto out;
 453		}
 454	}
 455
 456	/* Enable CRS on TX. This must be set for half-duplex operation. */
 457	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
 458	if (ret_val)
 459		goto out;
 460
 461	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
 462
 463	/* Enable downshift */
 464	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
 465
 466	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468out:
 469	return ret_val;
 470}
 471
 472/**
 473 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 474 *  @hw: pointer to the HW structure
 475 *
 476 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 477 *  and downshift values are set also.
 478 **/
 479s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
 480{
 481	struct e1000_phy_info *phy = &hw->phy;
 482	s32 ret_val;
 483	u16 phy_data;
 484
 485	if (phy->reset_disable) {
 486		ret_val = 0;
 487		goto out;
 488	}
 489
 490	/* Enable CRS on TX. This must be set for half-duplex operation. */
 491	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 492	if (ret_val)
 493		goto out;
 494
 495	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 496
 497	/*
 498	 * Options:
 499	 *   MDI/MDI-X = 0 (default)
 500	 *   0 - Auto for all speeds
 501	 *   1 - MDI mode
 502	 *   2 - MDI-X mode
 503	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 504	 */
 505	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 506
 507	switch (phy->mdix) {
 508	case 1:
 509		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 510		break;
 511	case 2:
 512		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 513		break;
 514	case 3:
 515		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 516		break;
 517	case 0:
 518	default:
 519		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 520		break;
 521	}
 522
 523	/*
 524	 * Options:
 525	 *   disable_polarity_correction = 0 (default)
 526	 *       Automatic Correction for Reversed Cable Polarity
 527	 *   0 - Disabled
 528	 *   1 - Enabled
 529	 */
 530	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 531	if (phy->disable_polarity_correction == 1)
 532		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 533
 534	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 535	if (ret_val)
 536		goto out;
 537
 538	if (phy->revision < E1000_REVISION_4) {
 539		/*
 540		 * Force TX_CLK in the Extended PHY Specific Control Register
 541		 * to 25MHz clock.
 542		 */
 543		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 544					     &phy_data);
 545		if (ret_val)
 546			goto out;
 547
 548		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 549
 550		if ((phy->revision == E1000_REVISION_2) &&
 551		    (phy->id == M88E1111_I_PHY_ID)) {
 552			/* 82573L PHY - set the downshift counter to 5x. */
 553			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 554			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 555		} else {
 556			/* Configure Master and Slave downshift values */
 557			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 558				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 559			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 560				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 561		}
 562		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 563					     phy_data);
 564		if (ret_val)
 565			goto out;
 566	}
 567
 568	/* Commit the changes. */
 569	ret_val = igb_phy_sw_reset(hw);
 570	if (ret_val) {
 571		hw_dbg("Error committing the PHY changes\n");
 572		goto out;
 573	}
 574	if (phy->type == e1000_phy_i210) {
 575		ret_val = igb_set_master_slave_mode(hw);
 576		if (ret_val)
 577			return ret_val;
 578	}
 579
 580out:
 581	return ret_val;
 582}
 583
 584/**
 585 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
 586 *  @hw: pointer to the HW structure
 587 *
 588 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
 589 *  Also enables and sets the downshift parameters.
 590 **/
 591s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
 592{
 593	struct e1000_phy_info *phy = &hw->phy;
 594	s32 ret_val;
 595	u16 phy_data;
 596
 597	if (phy->reset_disable) {
 598		ret_val = 0;
 599		goto out;
 600	}
 601
 602	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 603	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 604	if (ret_val)
 605		goto out;
 606
 607	/*
 608	 * Options:
 609	 *   MDI/MDI-X = 0 (default)
 610	 *   0 - Auto for all speeds
 611	 *   1 - MDI mode
 612	 *   2 - MDI-X mode
 613	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 614	 */
 615	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 616
 617	switch (phy->mdix) {
 618	case 1:
 619		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 620		break;
 621	case 2:
 622		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 623		break;
 624	case 3:
 625		/* M88E1112 does not support this mode) */
 626		if (phy->id != M88E1112_E_PHY_ID) {
 627			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 628			break;
 629		}
 
 630	case 0:
 631	default:
 632		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 633		break;
 634	}
 635
 636	/*
 637	 * Options:
 638	 *   disable_polarity_correction = 0 (default)
 639	 *       Automatic Correction for Reversed Cable Polarity
 640	 *   0 - Disabled
 641	 *   1 - Enabled
 642	 */
 643	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 644	if (phy->disable_polarity_correction == 1)
 645		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 646
 647	/* Enable downshift and setting it to X6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
 649	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
 650	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
 651
 652	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 653	if (ret_val)
 654		goto out;
 655
 656	/* Commit the changes. */
 657	ret_val = igb_phy_sw_reset(hw);
 658	if (ret_val) {
 659		hw_dbg("Error committing the PHY changes\n");
 660		goto out;
 661	}
 
 
 
 662
 663out:
 664	return ret_val;
 665}
 666
 667/**
 668 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 669 *  @hw: pointer to the HW structure
 670 *
 671 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 672 *  igp PHY's.
 673 **/
 674s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
 675{
 676	struct e1000_phy_info *phy = &hw->phy;
 677	s32 ret_val;
 678	u16 data;
 679
 680	if (phy->reset_disable) {
 681		ret_val = 0;
 682		goto out;
 683	}
 684
 685	ret_val = phy->ops.reset(hw);
 686	if (ret_val) {
 687		hw_dbg("Error resetting the PHY.\n");
 688		goto out;
 689	}
 690
 691	/*
 692	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 693	 * timeout issues when LFS is enabled.
 694	 */
 695	msleep(100);
 696
 697	/*
 698	 * The NVM settings will configure LPLU in D3 for
 699	 * non-IGP1 PHYs.
 700	 */
 701	if (phy->type == e1000_phy_igp) {
 702		/* disable lplu d3 during driver init */
 703		if (phy->ops.set_d3_lplu_state)
 704			ret_val = phy->ops.set_d3_lplu_state(hw, false);
 705		if (ret_val) {
 706			hw_dbg("Error Disabling LPLU D3\n");
 707			goto out;
 708		}
 709	}
 710
 711	/* disable lplu d0 during driver init */
 712	ret_val = phy->ops.set_d0_lplu_state(hw, false);
 713	if (ret_val) {
 714		hw_dbg("Error Disabling LPLU D0\n");
 715		goto out;
 716	}
 717	/* Configure mdi-mdix settings */
 718	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 719	if (ret_val)
 720		goto out;
 721
 722	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 723
 724	switch (phy->mdix) {
 725	case 1:
 726		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 727		break;
 728	case 2:
 729		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 730		break;
 731	case 0:
 732	default:
 733		data |= IGP01E1000_PSCR_AUTO_MDIX;
 734		break;
 735	}
 736	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
 737	if (ret_val)
 738		goto out;
 739
 740	/* set auto-master slave resolution settings */
 741	if (hw->mac.autoneg) {
 742		/*
 743		 * when autonegotiation advertisement is only 1000Mbps then we
 744		 * should disable SmartSpeed and enable Auto MasterSlave
 745		 * resolution as hardware default.
 746		 */
 747		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 748			/* Disable SmartSpeed */
 749			ret_val = phy->ops.read_reg(hw,
 750						    IGP01E1000_PHY_PORT_CONFIG,
 751						    &data);
 752			if (ret_val)
 753				goto out;
 754
 755			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 756			ret_val = phy->ops.write_reg(hw,
 757						     IGP01E1000_PHY_PORT_CONFIG,
 758						     data);
 759			if (ret_val)
 760				goto out;
 761
 762			/* Set auto Master/Slave resolution process */
 763			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 764			if (ret_val)
 765				goto out;
 766
 767			data &= ~CR_1000T_MS_ENABLE;
 768			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 769			if (ret_val)
 770				goto out;
 771		}
 772
 773		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 774		if (ret_val)
 775			goto out;
 776
 777		/* load defaults for future use */
 778		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 779			((data & CR_1000T_MS_VALUE) ?
 780			e1000_ms_force_master :
 781			e1000_ms_force_slave) :
 782			e1000_ms_auto;
 783
 784		switch (phy->ms_type) {
 785		case e1000_ms_force_master:
 786			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 787			break;
 788		case e1000_ms_force_slave:
 789			data |= CR_1000T_MS_ENABLE;
 790			data &= ~(CR_1000T_MS_VALUE);
 791			break;
 792		case e1000_ms_auto:
 793			data &= ~CR_1000T_MS_ENABLE;
 
 794		default:
 795			break;
 796		}
 797		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 798		if (ret_val)
 799			goto out;
 800	}
 801
 802out:
 803	return ret_val;
 804}
 805
 806/**
 807 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 808 *  @hw: pointer to the HW structure
 809 *
 810 *  Performs initial bounds checking on autoneg advertisement parameter, then
 811 *  configure to advertise the full capability.  Setup the PHY to autoneg
 812 *  and restart the negotiation process between the link partner.  If
 813 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 814 **/
 815static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
 816{
 817	struct e1000_phy_info *phy = &hw->phy;
 818	s32 ret_val;
 819	u16 phy_ctrl;
 820
 821	/*
 822	 * Perform some bounds checking on the autoneg advertisement
 823	 * parameter.
 824	 */
 825	phy->autoneg_advertised &= phy->autoneg_mask;
 826
 827	/*
 828	 * If autoneg_advertised is zero, we assume it was not defaulted
 829	 * by the calling code so we set to advertise full capability.
 830	 */
 831	if (phy->autoneg_advertised == 0)
 832		phy->autoneg_advertised = phy->autoneg_mask;
 833
 834	hw_dbg("Reconfiguring auto-neg advertisement params\n");
 835	ret_val = igb_phy_setup_autoneg(hw);
 836	if (ret_val) {
 837		hw_dbg("Error Setting up Auto-Negotiation\n");
 838		goto out;
 839	}
 840	hw_dbg("Restarting Auto-Neg\n");
 841
 842	/*
 843	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
 844	 * the Auto Neg Restart bit in the PHY control register.
 845	 */
 846	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
 847	if (ret_val)
 848		goto out;
 849
 850	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 851	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
 852	if (ret_val)
 853		goto out;
 854
 855	/*
 856	 * Does the user want to wait for Auto-Neg to complete here, or
 857	 * check at a later time (for example, callback routine).
 858	 */
 859	if (phy->autoneg_wait_to_complete) {
 860		ret_val = igb_wait_autoneg(hw);
 861		if (ret_val) {
 862			hw_dbg("Error while waiting for "
 863			       "autoneg to complete\n");
 864			goto out;
 865		}
 866	}
 867
 868	hw->mac.get_link_status = true;
 869
 870out:
 871	return ret_val;
 872}
 873
 874/**
 875 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 876 *  @hw: pointer to the HW structure
 877 *
 878 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 879 *  register and if the PHY is already setup for auto-negotiation, then
 880 *  return successful.  Otherwise, setup advertisement and flow control to
 881 *  the appropriate values for the wanted auto-negotiation.
 882 **/
 883static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
 884{
 885	struct e1000_phy_info *phy = &hw->phy;
 886	s32 ret_val;
 887	u16 mii_autoneg_adv_reg;
 888	u16 mii_1000t_ctrl_reg = 0;
 889
 890	phy->autoneg_advertised &= phy->autoneg_mask;
 891
 892	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 893	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 894	if (ret_val)
 895		goto out;
 896
 897	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 898		/* Read the MII 1000Base-T Control Register (Address 9). */
 899		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
 900					    &mii_1000t_ctrl_reg);
 901		if (ret_val)
 902			goto out;
 903	}
 904
 905	/*
 906	 * Need to parse both autoneg_advertised and fc and set up
 907	 * the appropriate PHY registers.  First we will parse for
 908	 * autoneg_advertised software override.  Since we can advertise
 909	 * a plethora of combinations, we need to check each bit
 910	 * individually.
 911	 */
 912
 913	/*
 914	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 915	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 916	 * the  1000Base-T Control Register (Address 9).
 917	 */
 918	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 919				 NWAY_AR_100TX_HD_CAPS |
 920				 NWAY_AR_10T_FD_CAPS   |
 921				 NWAY_AR_10T_HD_CAPS);
 922	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 923
 924	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 925
 926	/* Do we want to advertise 10 Mb Half Duplex? */
 927	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 928		hw_dbg("Advertise 10mb Half duplex\n");
 929		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 930	}
 931
 932	/* Do we want to advertise 10 Mb Full Duplex? */
 933	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 934		hw_dbg("Advertise 10mb Full duplex\n");
 935		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 936	}
 937
 938	/* Do we want to advertise 100 Mb Half Duplex? */
 939	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 940		hw_dbg("Advertise 100mb Half duplex\n");
 941		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 942	}
 943
 944	/* Do we want to advertise 100 Mb Full Duplex? */
 945	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 946		hw_dbg("Advertise 100mb Full duplex\n");
 947		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 948	}
 949
 950	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 951	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 952		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
 953
 954	/* Do we want to advertise 1000 Mb Full Duplex? */
 955	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 956		hw_dbg("Advertise 1000mb Full duplex\n");
 957		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
 958	}
 959
 960	/*
 961	 * Check for a software override of the flow control settings, and
 962	 * setup the PHY advertisement registers accordingly.  If
 963	 * auto-negotiation is enabled, then software will have to set the
 964	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 965	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
 966	 * negotiation.
 967	 *
 968	 * The possible values of the "fc" parameter are:
 969	 *      0:  Flow control is completely disabled
 970	 *      1:  Rx flow control is enabled (we can receive pause frames
 971	 *          but not send pause frames).
 972	 *      2:  Tx flow control is enabled (we can send pause frames
 973	 *          but we do not support receiving pause frames).
 974	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
 975	 *  other:  No software override.  The flow control configuration
 976	 *          in the EEPROM is used.
 977	 */
 978	switch (hw->fc.current_mode) {
 979	case e1000_fc_none:
 980		/*
 981		 * Flow control (RX & TX) is completely disabled by a
 982		 * software over-ride.
 983		 */
 984		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 985		break;
 986	case e1000_fc_rx_pause:
 987		/*
 988		 * RX Flow control is enabled, and TX Flow control is
 989		 * disabled, by a software over-ride.
 990		 *
 991		 * Since there really isn't a way to advertise that we are
 992		 * capable of RX Pause ONLY, we will advertise that we
 993		 * support both symmetric and asymmetric RX PAUSE.  Later
 994		 * (in e1000_config_fc_after_link_up) we will disable the
 995		 * hw's ability to send PAUSE frames.
 996		 */
 997		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 998		break;
 999	case e1000_fc_tx_pause:
1000		/*
1001		 * TX Flow control is enabled, and RX Flow control is
1002		 * disabled, by a software over-ride.
1003		 */
1004		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1005		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1006		break;
1007	case e1000_fc_full:
1008		/*
1009		 * Flow control (both RX and TX) is enabled by a software
1010		 * over-ride.
1011		 */
1012		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1013		break;
1014	default:
1015		hw_dbg("Flow control param set incorrectly\n");
1016		ret_val = -E1000_ERR_CONFIG;
1017		goto out;
1018	}
1019
1020	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1021	if (ret_val)
1022		goto out;
1023
1024	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1025
1026	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1027		ret_val = phy->ops.write_reg(hw,
1028					     PHY_1000T_CTRL,
1029					     mii_1000t_ctrl_reg);
1030		if (ret_val)
1031			goto out;
1032	}
1033
1034out:
1035	return ret_val;
1036}
1037
1038/**
1039 *  igb_setup_copper_link - Configure copper link settings
1040 *  @hw: pointer to the HW structure
1041 *
1042 *  Calls the appropriate function to configure the link for auto-neg or forced
1043 *  speed and duplex.  Then we check for link, once link is established calls
1044 *  to configure collision distance and flow control are called.  If link is
1045 *  not established, we return -E1000_ERR_PHY (-2).
1046 **/
1047s32 igb_setup_copper_link(struct e1000_hw *hw)
1048{
1049	s32 ret_val;
1050	bool link;
1051
1052
1053	if (hw->mac.autoneg) {
1054		/*
1055		 * Setup autoneg and flow control advertisement and perform
1056		 * autonegotiation.
1057		 */
1058		ret_val = igb_copper_link_autoneg(hw);
1059		if (ret_val)
1060			goto out;
1061	} else {
1062		/*
1063		 * PHY will be set to 10H, 10F, 100H or 100F
1064		 * depending on user settings.
1065		 */
1066		hw_dbg("Forcing Speed and Duplex\n");
1067		ret_val = hw->phy.ops.force_speed_duplex(hw);
1068		if (ret_val) {
1069			hw_dbg("Error Forcing Speed and Duplex\n");
1070			goto out;
1071		}
1072	}
1073
1074	/*
1075	 * Check link status. Wait up to 100 microseconds for link to become
1076	 * valid.
1077	 */
1078	ret_val = igb_phy_has_link(hw,
1079	                           COPPER_LINK_UP_LIMIT,
1080	                           10,
1081	                           &link);
1082	if (ret_val)
1083		goto out;
1084
1085	if (link) {
1086		hw_dbg("Valid link established!!!\n");
1087		igb_config_collision_dist(hw);
1088		ret_val = igb_config_fc_after_link_up(hw);
1089	} else {
1090		hw_dbg("Unable to establish link!!!\n");
1091	}
1092
1093out:
1094	return ret_val;
1095}
1096
1097/**
1098 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1099 *  @hw: pointer to the HW structure
1100 *
1101 *  Calls the PHY setup function to force speed and duplex.  Clears the
1102 *  auto-crossover to force MDI manually.  Waits for link and returns
1103 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1104 **/
1105s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1106{
1107	struct e1000_phy_info *phy = &hw->phy;
1108	s32 ret_val;
1109	u16 phy_data;
1110	bool link;
1111
1112	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1113	if (ret_val)
1114		goto out;
1115
1116	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1117
1118	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1119	if (ret_val)
1120		goto out;
1121
1122	/*
1123	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1124	 * forced whenever speed and duplex are forced.
1125	 */
1126	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1127	if (ret_val)
1128		goto out;
1129
1130	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1131	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1132
1133	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1134	if (ret_val)
1135		goto out;
1136
1137	hw_dbg("IGP PSCR: %X\n", phy_data);
1138
1139	udelay(1);
1140
1141	if (phy->autoneg_wait_to_complete) {
1142		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1143
1144		ret_val = igb_phy_has_link(hw,
1145						     PHY_FORCE_LIMIT,
1146						     100000,
1147						     &link);
1148		if (ret_val)
1149			goto out;
1150
1151		if (!link)
1152			hw_dbg("Link taking longer than expected.\n");
1153
1154		/* Try once more */
1155		ret_val = igb_phy_has_link(hw,
1156						     PHY_FORCE_LIMIT,
1157						     100000,
1158						     &link);
1159		if (ret_val)
1160			goto out;
1161	}
1162
1163out:
1164	return ret_val;
1165}
1166
1167/**
1168 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1169 *  @hw: pointer to the HW structure
1170 *
1171 *  Calls the PHY setup function to force speed and duplex.  Clears the
1172 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1173 *  changes.  If time expires while waiting for link up, we reset the DSP.
1174 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1175 *  successful completion, else return corresponding error code.
1176 **/
1177s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1178{
1179	struct e1000_phy_info *phy = &hw->phy;
1180	s32 ret_val;
1181	u16 phy_data;
1182	bool link;
1183
1184	/*
1185	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1186	 * forced whenever speed and duplex are forced.
1187	 */
1188	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1189	if (ret_val)
1190		goto out;
 
 
1191
1192	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1193	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1194	if (ret_val)
1195		goto out;
 
1196
1197	hw_dbg("M88E1000 PSCR: %X\n", phy_data);
 
1198
1199	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1200	if (ret_val)
1201		goto out;
1202
1203	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1204
1205	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1206	if (ret_val)
1207		goto out;
1208
1209	/* Reset the phy to commit changes. */
1210	ret_val = igb_phy_sw_reset(hw);
1211	if (ret_val)
1212		goto out;
1213
1214	if (phy->autoneg_wait_to_complete) {
1215		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1216
1217		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1218		if (ret_val)
1219			goto out;
1220
1221		if (!link) {
1222			bool reset_dsp = true;
1223
1224			switch (hw->phy.id) {
1225			case I347AT4_E_PHY_ID:
1226			case M88E1112_E_PHY_ID:
 
 
1227			case I210_I_PHY_ID:
1228				reset_dsp = false;
1229				break;
1230			default:
1231				if (hw->phy.type != e1000_phy_m88)
1232					reset_dsp = false;
1233				break;
1234			}
1235			if (!reset_dsp)
1236				hw_dbg("Link taking longer than expected.\n");
1237			else {
1238				/*
1239				 * We didn't get link.
1240				 * Reset the DSP and cross our fingers.
1241				 */
1242				ret_val = phy->ops.write_reg(hw,
1243							     M88E1000_PHY_PAGE_SELECT,
1244							     0x001d);
1245				if (ret_val)
1246					goto out;
1247				ret_val = igb_phy_reset_dsp(hw);
1248				if (ret_val)
1249					goto out;
1250			}
1251		}
1252
1253		/* Try once more */
1254		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1255					   100000, &link);
1256		if (ret_val)
1257			goto out;
1258	}
1259
1260	if (hw->phy.type != e1000_phy_m88 ||
1261	    hw->phy.id == I347AT4_E_PHY_ID ||
1262	    hw->phy.id == M88E1112_E_PHY_ID ||
 
 
1263	    hw->phy.id == I210_I_PHY_ID)
1264		goto out;
1265
1266	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1267	if (ret_val)
1268		goto out;
1269
1270	/*
1271	 * Resetting the phy means we need to re-force TX_CLK in the
1272	 * Extended PHY Specific Control Register to 25MHz clock from
1273	 * the reset value of 2.5MHz.
1274	 */
1275	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1276	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1277	if (ret_val)
1278		goto out;
1279
1280	/*
1281	 * In addition, we must re-enable CRS on Tx for both half and full
1282	 * duplex.
1283	 */
1284	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1285	if (ret_val)
1286		goto out;
1287
1288	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1289	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1290
1291out:
1292	return ret_val;
1293}
1294
1295/**
1296 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1297 *  @hw: pointer to the HW structure
1298 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1299 *
1300 *  Forces speed and duplex on the PHY by doing the following: disable flow
1301 *  control, force speed/duplex on the MAC, disable auto speed detection,
1302 *  disable auto-negotiation, configure duplex, configure speed, configure
1303 *  the collision distance, write configuration to CTRL register.  The
1304 *  caller must write to the PHY_CONTROL register for these settings to
1305 *  take affect.
1306 **/
1307static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1308					       u16 *phy_ctrl)
1309{
1310	struct e1000_mac_info *mac = &hw->mac;
1311	u32 ctrl;
1312
1313	/* Turn off flow control when forcing speed/duplex */
1314	hw->fc.current_mode = e1000_fc_none;
1315
1316	/* Force speed/duplex on the mac */
1317	ctrl = rd32(E1000_CTRL);
1318	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1319	ctrl &= ~E1000_CTRL_SPD_SEL;
1320
1321	/* Disable Auto Speed Detection */
1322	ctrl &= ~E1000_CTRL_ASDE;
1323
1324	/* Disable autoneg on the phy */
1325	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1326
1327	/* Forcing Full or Half Duplex? */
1328	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1329		ctrl &= ~E1000_CTRL_FD;
1330		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1331		hw_dbg("Half Duplex\n");
1332	} else {
1333		ctrl |= E1000_CTRL_FD;
1334		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1335		hw_dbg("Full Duplex\n");
1336	}
1337
1338	/* Forcing 10mb or 100mb? */
1339	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1340		ctrl |= E1000_CTRL_SPD_100;
1341		*phy_ctrl |= MII_CR_SPEED_100;
1342		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1343		hw_dbg("Forcing 100mb\n");
1344	} else {
1345		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1346		*phy_ctrl |= MII_CR_SPEED_10;
1347		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1348		hw_dbg("Forcing 10mb\n");
1349	}
1350
1351	igb_config_collision_dist(hw);
1352
1353	wr32(E1000_CTRL, ctrl);
1354}
1355
1356/**
1357 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1358 *  @hw: pointer to the HW structure
1359 *  @active: boolean used to enable/disable lplu
1360 *
1361 *  Success returns 0, Failure returns 1
1362 *
1363 *  The low power link up (lplu) state is set to the power management level D3
1364 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1365 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1366 *  is used during Dx states where the power conservation is most important.
1367 *  During driver activity, SmartSpeed should be enabled so performance is
1368 *  maintained.
1369 **/
1370s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1371{
1372	struct e1000_phy_info *phy = &hw->phy;
1373	s32 ret_val = 0;
1374	u16 data;
1375
1376	if (!(hw->phy.ops.read_reg))
1377		goto out;
1378
1379	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1380	if (ret_val)
1381		goto out;
1382
1383	if (!active) {
1384		data &= ~IGP02E1000_PM_D3_LPLU;
1385		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1386					     data);
1387		if (ret_val)
1388			goto out;
1389		/*
1390		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1391		 * during Dx states where the power conservation is most
1392		 * important.  During driver activity we should enable
1393		 * SmartSpeed, so performance is maintained.
1394		 */
1395		if (phy->smart_speed == e1000_smart_speed_on) {
1396			ret_val = phy->ops.read_reg(hw,
1397						    IGP01E1000_PHY_PORT_CONFIG,
1398						    &data);
1399			if (ret_val)
1400				goto out;
1401
1402			data |= IGP01E1000_PSCFR_SMART_SPEED;
1403			ret_val = phy->ops.write_reg(hw,
1404						     IGP01E1000_PHY_PORT_CONFIG,
1405						     data);
1406			if (ret_val)
1407				goto out;
1408		} else if (phy->smart_speed == e1000_smart_speed_off) {
1409			ret_val = phy->ops.read_reg(hw,
1410						     IGP01E1000_PHY_PORT_CONFIG,
1411						     &data);
1412			if (ret_val)
1413				goto out;
1414
1415			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1416			ret_val = phy->ops.write_reg(hw,
1417						     IGP01E1000_PHY_PORT_CONFIG,
1418						     data);
1419			if (ret_val)
1420				goto out;
1421		}
1422	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1423		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1424		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1425		data |= IGP02E1000_PM_D3_LPLU;
1426		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1427					      data);
1428		if (ret_val)
1429			goto out;
1430
1431		/* When LPLU is enabled, we should disable SmartSpeed */
1432		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1433					     &data);
1434		if (ret_val)
1435			goto out;
1436
1437		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1438		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1439					      data);
1440	}
1441
1442out:
1443	return ret_val;
1444}
1445
1446/**
1447 *  igb_check_downshift - Checks whether a downshift in speed occurred
1448 *  @hw: pointer to the HW structure
1449 *
1450 *  Success returns 0, Failure returns 1
1451 *
1452 *  A downshift is detected by querying the PHY link health.
1453 **/
1454s32 igb_check_downshift(struct e1000_hw *hw)
1455{
1456	struct e1000_phy_info *phy = &hw->phy;
1457	s32 ret_val;
1458	u16 phy_data, offset, mask;
1459
1460	switch (phy->type) {
1461	case e1000_phy_i210:
1462	case e1000_phy_m88:
1463	case e1000_phy_gg82563:
1464		offset	= M88E1000_PHY_SPEC_STATUS;
1465		mask	= M88E1000_PSSR_DOWNSHIFT;
1466		break;
1467	case e1000_phy_igp_2:
1468	case e1000_phy_igp:
1469	case e1000_phy_igp_3:
1470		offset	= IGP01E1000_PHY_LINK_HEALTH;
1471		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1472		break;
1473	default:
1474		/* speed downshift not supported */
1475		phy->speed_downgraded = false;
1476		ret_val = 0;
1477		goto out;
1478	}
1479
1480	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1481
1482	if (!ret_val)
1483		phy->speed_downgraded = (phy_data & mask) ? true : false;
1484
1485out:
1486	return ret_val;
1487}
1488
1489/**
1490 *  igb_check_polarity_m88 - Checks the polarity.
1491 *  @hw: pointer to the HW structure
1492 *
1493 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1494 *
1495 *  Polarity is determined based on the PHY specific status register.
1496 **/
1497s32 igb_check_polarity_m88(struct e1000_hw *hw)
1498{
1499	struct e1000_phy_info *phy = &hw->phy;
1500	s32 ret_val;
1501	u16 data;
1502
1503	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1504
1505	if (!ret_val)
1506		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1507				      ? e1000_rev_polarity_reversed
1508				      : e1000_rev_polarity_normal;
1509
1510	return ret_val;
1511}
1512
1513/**
1514 *  igb_check_polarity_igp - Checks the polarity.
1515 *  @hw: pointer to the HW structure
1516 *
1517 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1518 *
1519 *  Polarity is determined based on the PHY port status register, and the
1520 *  current speed (since there is no polarity at 100Mbps).
1521 **/
1522static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1523{
1524	struct e1000_phy_info *phy = &hw->phy;
1525	s32 ret_val;
1526	u16 data, offset, mask;
1527
1528	/*
1529	 * Polarity is determined based on the speed of
1530	 * our connection.
1531	 */
1532	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1533	if (ret_val)
1534		goto out;
1535
1536	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1537	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1538		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1539		mask	= IGP01E1000_PHY_POLARITY_MASK;
1540	} else {
1541		/*
1542		 * This really only applies to 10Mbps since
1543		 * there is no polarity for 100Mbps (always 0).
1544		 */
1545		offset	= IGP01E1000_PHY_PORT_STATUS;
1546		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1547	}
1548
1549	ret_val = phy->ops.read_reg(hw, offset, &data);
1550
1551	if (!ret_val)
1552		phy->cable_polarity = (data & mask)
1553				      ? e1000_rev_polarity_reversed
1554				      : e1000_rev_polarity_normal;
1555
1556out:
1557	return ret_val;
1558}
1559
1560/**
1561 *  igb_wait_autoneg - Wait for auto-neg compeletion
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1565 *  limit to expire, which ever happens first.
1566 **/
1567static s32 igb_wait_autoneg(struct e1000_hw *hw)
1568{
1569	s32 ret_val = 0;
1570	u16 i, phy_status;
1571
1572	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1573	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1574		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1575		if (ret_val)
1576			break;
1577		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1578		if (ret_val)
1579			break;
1580		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1581			break;
1582		msleep(100);
1583	}
1584
1585	/*
1586	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1587	 * has completed.
1588	 */
1589	return ret_val;
1590}
1591
1592/**
1593 *  igb_phy_has_link - Polls PHY for link
1594 *  @hw: pointer to the HW structure
1595 *  @iterations: number of times to poll for link
1596 *  @usec_interval: delay between polling attempts
1597 *  @success: pointer to whether polling was successful or not
1598 *
1599 *  Polls the PHY status register for link, 'iterations' number of times.
1600 **/
1601s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1602			       u32 usec_interval, bool *success)
1603{
1604	s32 ret_val = 0;
1605	u16 i, phy_status;
1606
1607	for (i = 0; i < iterations; i++) {
1608		/*
1609		 * Some PHYs require the PHY_STATUS register to be read
1610		 * twice due to the link bit being sticky.  No harm doing
1611		 * it across the board.
1612		 */
1613		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1614		if (ret_val) {
1615			/*
1616			 * If the first read fails, another entity may have
1617			 * ownership of the resources, wait and try again to
1618			 * see if they have relinquished the resources yet.
1619			 */
1620			udelay(usec_interval);
 
 
 
1621		}
1622		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1623		if (ret_val)
1624			break;
1625		if (phy_status & MII_SR_LINK_STATUS)
1626			break;
1627		if (usec_interval >= 1000)
1628			mdelay(usec_interval/1000);
1629		else
1630			udelay(usec_interval);
1631	}
1632
1633	*success = (i < iterations) ? true : false;
1634
1635	return ret_val;
1636}
1637
1638/**
1639 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1640 *  @hw: pointer to the HW structure
1641 *
1642 *  Reads the PHY specific status register to retrieve the cable length
1643 *  information.  The cable length is determined by averaging the minimum and
1644 *  maximum values to get the "average" cable length.  The m88 PHY has four
1645 *  possible cable length values, which are:
1646 *	Register Value		Cable Length
1647 *	0			< 50 meters
1648 *	1			50 - 80 meters
1649 *	2			80 - 110 meters
1650 *	3			110 - 140 meters
1651 *	4			> 140 meters
1652 **/
1653s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1654{
1655	struct e1000_phy_info *phy = &hw->phy;
1656	s32 ret_val;
1657	u16 phy_data, index;
1658
1659	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1660	if (ret_val)
1661		goto out;
1662
1663	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1664		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1665	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1666		ret_val = -E1000_ERR_PHY;
1667		goto out;
1668	}
1669
1670	phy->min_cable_length = e1000_m88_cable_length_table[index];
1671	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1672
1673	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1674
1675out:
1676	return ret_val;
1677}
1678
1679s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1680{
1681	struct e1000_phy_info *phy = &hw->phy;
1682	s32 ret_val;
1683	u16 phy_data, phy_data2, index, default_page, is_cm;
 
 
 
1684
1685	switch (hw->phy.id) {
 
 
 
1686	case I210_I_PHY_ID:
1687	case I347AT4_E_PHY_ID:
1688		/* Remember the original page select and set it to 7 */
1689		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1690					    &default_page);
1691		if (ret_val)
1692			goto out;
1693
1694		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1695		if (ret_val)
1696			goto out;
1697
1698		/* Get cable length from PHY Cable Diagnostics Control Reg */
1699		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1700					    &phy_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701		if (ret_val)
1702			goto out;
1703
1704		/* Check if the unit of cable length is meters or cm */
1705		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
 
 
 
 
 
1706		if (ret_val)
1707			goto out;
1708
1709		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
 
 
 
1710
1711		/* Populate the phy structure with cable length in meters */
1712		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1713		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1714		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1715
1716		/* Reset the page selec to its original value */
1717		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1718					     default_page);
1719		if (ret_val)
1720			goto out;
1721		break;
1722	case M88E1112_E_PHY_ID:
1723		/* Remember the original page select and set it to 5 */
1724		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1725					    &default_page);
1726		if (ret_val)
1727			goto out;
1728
1729		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1730		if (ret_val)
1731			goto out;
1732
1733		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1734					    &phy_data);
1735		if (ret_val)
1736			goto out;
1737
1738		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1739			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1740		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1741			ret_val = -E1000_ERR_PHY;
1742			goto out;
1743		}
1744
1745		phy->min_cable_length = e1000_m88_cable_length_table[index];
1746		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1747
1748		phy->cable_length = (phy->min_cable_length +
1749				     phy->max_cable_length) / 2;
1750
1751		/* Reset the page select to its original value */
1752		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1753					     default_page);
1754		if (ret_val)
1755			goto out;
1756
1757		break;
1758	default:
1759		ret_val = -E1000_ERR_PHY;
1760		goto out;
1761	}
1762
1763out:
1764	return ret_val;
1765}
1766
1767/**
1768 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1769 *  @hw: pointer to the HW structure
1770 *
1771 *  The automatic gain control (agc) normalizes the amplitude of the
1772 *  received signal, adjusting for the attenuation produced by the
1773 *  cable.  By reading the AGC registers, which represent the
1774 *  combination of coarse and fine gain value, the value can be put
1775 *  into a lookup table to obtain the approximate cable length
1776 *  for each channel.
1777 **/
1778s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1779{
1780	struct e1000_phy_info *phy = &hw->phy;
1781	s32 ret_val = 0;
1782	u16 phy_data, i, agc_value = 0;
1783	u16 cur_agc_index, max_agc_index = 0;
1784	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1785	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1786	       IGP02E1000_PHY_AGC_A,
1787	       IGP02E1000_PHY_AGC_B,
1788	       IGP02E1000_PHY_AGC_C,
1789	       IGP02E1000_PHY_AGC_D
1790	};
1791
1792	/* Read the AGC registers for all channels */
1793	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1794		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1795		if (ret_val)
1796			goto out;
1797
1798		/*
1799		 * Getting bits 15:9, which represent the combination of
1800		 * coarse and fine gain values.  The result is a number
1801		 * that can be put into the lookup table to obtain the
1802		 * approximate cable length.
1803		 */
1804		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1805				IGP02E1000_AGC_LENGTH_MASK;
1806
1807		/* Array index bound check. */
1808		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1809		    (cur_agc_index == 0)) {
1810			ret_val = -E1000_ERR_PHY;
1811			goto out;
1812		}
1813
1814		/* Remove min & max AGC values from calculation. */
1815		if (e1000_igp_2_cable_length_table[min_agc_index] >
1816		    e1000_igp_2_cable_length_table[cur_agc_index])
1817			min_agc_index = cur_agc_index;
1818		if (e1000_igp_2_cable_length_table[max_agc_index] <
1819		    e1000_igp_2_cable_length_table[cur_agc_index])
1820			max_agc_index = cur_agc_index;
1821
1822		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1823	}
1824
1825	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1826		      e1000_igp_2_cable_length_table[max_agc_index]);
1827	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1828
1829	/* Calculate cable length with the error range of +/- 10 meters. */
1830	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1831				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1832	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1833
1834	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1835
1836out:
1837	return ret_val;
1838}
1839
1840/**
1841 *  igb_get_phy_info_m88 - Retrieve PHY information
1842 *  @hw: pointer to the HW structure
1843 *
1844 *  Valid for only copper links.  Read the PHY status register (sticky read)
1845 *  to verify that link is up.  Read the PHY special control register to
1846 *  determine the polarity and 10base-T extended distance.  Read the PHY
1847 *  special status register to determine MDI/MDIx and current speed.  If
1848 *  speed is 1000, then determine cable length, local and remote receiver.
1849 **/
1850s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1851{
1852	struct e1000_phy_info *phy = &hw->phy;
1853	s32  ret_val;
1854	u16 phy_data;
1855	bool link;
1856
1857	if (phy->media_type != e1000_media_type_copper) {
1858		hw_dbg("Phy info is only valid for copper media\n");
1859		ret_val = -E1000_ERR_CONFIG;
1860		goto out;
1861	}
1862
1863	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1864	if (ret_val)
1865		goto out;
1866
1867	if (!link) {
1868		hw_dbg("Phy info is only valid if link is up\n");
1869		ret_val = -E1000_ERR_CONFIG;
1870		goto out;
1871	}
1872
1873	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1874	if (ret_val)
1875		goto out;
1876
1877	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1878				   ? true : false;
1879
1880	ret_val = igb_check_polarity_m88(hw);
1881	if (ret_val)
1882		goto out;
1883
1884	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1885	if (ret_val)
1886		goto out;
1887
1888	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1889
1890	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1891		ret_val = phy->ops.get_cable_length(hw);
1892		if (ret_val)
1893			goto out;
1894
1895		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1896		if (ret_val)
1897			goto out;
1898
1899		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1900				? e1000_1000t_rx_status_ok
1901				: e1000_1000t_rx_status_not_ok;
1902
1903		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1904				 ? e1000_1000t_rx_status_ok
1905				 : e1000_1000t_rx_status_not_ok;
1906	} else {
1907		/* Set values to "undefined" */
1908		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1909		phy->local_rx = e1000_1000t_rx_status_undefined;
1910		phy->remote_rx = e1000_1000t_rx_status_undefined;
1911	}
1912
1913out:
1914	return ret_val;
1915}
1916
1917/**
1918 *  igb_get_phy_info_igp - Retrieve igp PHY information
1919 *  @hw: pointer to the HW structure
1920 *
1921 *  Read PHY status to determine if link is up.  If link is up, then
1922 *  set/determine 10base-T extended distance and polarity correction.  Read
1923 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1924 *  determine on the cable length, local and remote receiver.
1925 **/
1926s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1927{
1928	struct e1000_phy_info *phy = &hw->phy;
1929	s32 ret_val;
1930	u16 data;
1931	bool link;
1932
1933	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1934	if (ret_val)
1935		goto out;
1936
1937	if (!link) {
1938		hw_dbg("Phy info is only valid if link is up\n");
1939		ret_val = -E1000_ERR_CONFIG;
1940		goto out;
1941	}
1942
1943	phy->polarity_correction = true;
1944
1945	ret_val = igb_check_polarity_igp(hw);
1946	if (ret_val)
1947		goto out;
1948
1949	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1950	if (ret_val)
1951		goto out;
1952
1953	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1954
1955	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1956	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1957		ret_val = phy->ops.get_cable_length(hw);
1958		if (ret_val)
1959			goto out;
1960
1961		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1962		if (ret_val)
1963			goto out;
1964
1965		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1966				? e1000_1000t_rx_status_ok
1967				: e1000_1000t_rx_status_not_ok;
1968
1969		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1970				 ? e1000_1000t_rx_status_ok
1971				 : e1000_1000t_rx_status_not_ok;
1972	} else {
1973		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1974		phy->local_rx = e1000_1000t_rx_status_undefined;
1975		phy->remote_rx = e1000_1000t_rx_status_undefined;
1976	}
1977
1978out:
1979	return ret_val;
1980}
1981
1982/**
1983 *  igb_phy_sw_reset - PHY software reset
1984 *  @hw: pointer to the HW structure
1985 *
1986 *  Does a software reset of the PHY by reading the PHY control register and
1987 *  setting/write the control register reset bit to the PHY.
1988 **/
1989s32 igb_phy_sw_reset(struct e1000_hw *hw)
1990{
1991	s32 ret_val = 0;
1992	u16 phy_ctrl;
1993
1994	if (!(hw->phy.ops.read_reg))
1995		goto out;
1996
1997	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1998	if (ret_val)
1999		goto out;
2000
2001	phy_ctrl |= MII_CR_RESET;
2002	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2003	if (ret_val)
2004		goto out;
2005
2006	udelay(1);
2007
2008out:
2009	return ret_val;
2010}
2011
2012/**
2013 *  igb_phy_hw_reset - PHY hardware reset
2014 *  @hw: pointer to the HW structure
2015 *
2016 *  Verify the reset block is not blocking us from resetting.  Acquire
2017 *  semaphore (if necessary) and read/set/write the device control reset
2018 *  bit in the PHY.  Wait the appropriate delay time for the device to
2019 *  reset and relase the semaphore (if necessary).
2020 **/
2021s32 igb_phy_hw_reset(struct e1000_hw *hw)
2022{
2023	struct e1000_phy_info *phy = &hw->phy;
2024	s32  ret_val;
2025	u32 ctrl;
2026
2027	ret_val = igb_check_reset_block(hw);
2028	if (ret_val) {
2029		ret_val = 0;
2030		goto out;
2031	}
2032
2033	ret_val = phy->ops.acquire(hw);
2034	if (ret_val)
2035		goto out;
2036
2037	ctrl = rd32(E1000_CTRL);
2038	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2039	wrfl();
2040
2041	udelay(phy->reset_delay_us);
2042
2043	wr32(E1000_CTRL, ctrl);
2044	wrfl();
2045
2046	udelay(150);
2047
2048	phy->ops.release(hw);
2049
2050	ret_val = phy->ops.get_cfg_done(hw);
2051
2052out:
2053	return ret_val;
2054}
2055
2056/**
2057 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2058 *  @hw: pointer to the HW structure
2059 *
2060 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2061 **/
2062s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2063{
2064	hw_dbg("Running IGP 3 PHY init script\n");
2065
2066	/* PHY init IGP 3 */
2067	/* Enable rise/fall, 10-mode work in class-A */
2068	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2069	/* Remove all caps from Replica path filter */
2070	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2071	/* Bias trimming for ADC, AFE and Driver (Default) */
2072	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2073	/* Increase Hybrid poly bias */
2074	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2075	/* Add 4% to TX amplitude in Giga mode */
2076	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2077	/* Disable trimming (TTT) */
2078	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2079	/* Poly DC correction to 94.6% + 2% for all channels */
2080	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2081	/* ABS DC correction to 95.9% */
2082	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2083	/* BG temp curve trim */
2084	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2085	/* Increasing ADC OPAMP stage 1 currents to max */
2086	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2087	/* Force 1000 ( required for enabling PHY regs configuration) */
2088	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2089	/* Set upd_freq to 6 */
2090	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2091	/* Disable NPDFE */
2092	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2093	/* Disable adaptive fixed FFE (Default) */
2094	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2095	/* Enable FFE hysteresis */
2096	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2097	/* Fixed FFE for short cable lengths */
2098	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2099	/* Fixed FFE for medium cable lengths */
2100	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2101	/* Fixed FFE for long cable lengths */
2102	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2103	/* Enable Adaptive Clip Threshold */
2104	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2105	/* AHT reset limit to 1 */
2106	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2107	/* Set AHT master delay to 127 msec */
2108	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2109	/* Set scan bits for AHT */
2110	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2111	/* Set AHT Preset bits */
2112	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2113	/* Change integ_factor of channel A to 3 */
2114	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2115	/* Change prop_factor of channels BCD to 8 */
2116	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2117	/* Change cg_icount + enable integbp for channels BCD */
2118	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2119	/*
2120	 * Change cg_icount + enable integbp + change prop_factor_master
2121	 * to 8 for channel A
2122	 */
2123	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2124	/* Disable AHT in Slave mode on channel A */
2125	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2126	/*
2127	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2128	 * Enable SPD+B2B
2129	 */
2130	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2131	/* Enable restart AN on an1000_dis change */
2132	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2133	/* Enable wh_fifo read clock in 10/100 modes */
2134	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2135	/* Restart AN, Speed selection is 1000 */
2136	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2137
2138	return 0;
2139}
2140
2141/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2143 * @hw: pointer to the HW structure
2144 *
2145 * In the case of a PHY power down to save power, or to turn off link during a
2146 * driver unload, restore the link to previous settings.
2147 **/
2148void igb_power_up_phy_copper(struct e1000_hw *hw)
2149{
2150	u16 mii_reg = 0;
2151	u16 power_reg = 0;
2152
2153	/* The PHY will retain its settings across a power down/up cycle */
2154	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2155	mii_reg &= ~MII_CR_POWER_DOWN;
2156	if (hw->phy.type == e1000_phy_i210) {
2157		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2158		power_reg &= ~GS40G_CS_POWER_DOWN;
2159		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2160	}
2161	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2162}
2163
2164/**
2165 * igb_power_down_phy_copper - Power down copper PHY
2166 * @hw: pointer to the HW structure
2167 *
2168 * Power down PHY to save power when interface is down and wake on lan
2169 * is not enabled.
2170 **/
2171void igb_power_down_phy_copper(struct e1000_hw *hw)
2172{
2173	u16 mii_reg = 0;
2174	u16 power_reg = 0;
2175
2176	/* The PHY will retain its settings across a power down/up cycle */
2177	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2178	mii_reg |= MII_CR_POWER_DOWN;
2179
2180	/* i210 Phy requires an additional bit for power up/down */
2181	if (hw->phy.type == e1000_phy_i210) {
2182		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2183		power_reg |= GS40G_CS_POWER_DOWN;
2184		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2185	}
2186	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2187	msleep(1);
2188}
2189
2190/**
2191 *  igb_check_polarity_82580 - Checks the polarity.
2192 *  @hw: pointer to the HW structure
2193 *
2194 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2195 *
2196 *  Polarity is determined based on the PHY specific status register.
2197 **/
2198static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2199{
2200	struct e1000_phy_info *phy = &hw->phy;
2201	s32 ret_val;
2202	u16 data;
2203
2204
2205	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2206
2207	if (!ret_val)
2208		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2209		                      ? e1000_rev_polarity_reversed
2210		                      : e1000_rev_polarity_normal;
2211
2212	return ret_val;
2213}
2214
2215/**
2216 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2217 *  @hw: pointer to the HW structure
2218 *
2219 *  Calls the PHY setup function to force speed and duplex.  Clears the
2220 *  auto-crossover to force MDI manually.  Waits for link and returns
2221 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2222 **/
2223s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2224{
2225	struct e1000_phy_info *phy = &hw->phy;
2226	s32 ret_val;
2227	u16 phy_data;
2228	bool link;
2229
2230
2231	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2232	if (ret_val)
2233		goto out;
2234
2235	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2236
2237	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2238	if (ret_val)
2239		goto out;
2240
2241	/*
2242	 * Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2243	 * forced whenever speed and duplex are forced.
2244	 */
2245	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2246	if (ret_val)
2247		goto out;
2248
2249	phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2250	phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2251
2252	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2253	if (ret_val)
2254		goto out;
2255
2256	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2257
2258	udelay(1);
2259
2260	if (phy->autoneg_wait_to_complete) {
2261		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2262
2263		ret_val = igb_phy_has_link(hw,
2264		                           PHY_FORCE_LIMIT,
2265		                           100000,
2266		                           &link);
2267		if (ret_val)
2268			goto out;
2269
2270		if (!link)
2271			hw_dbg("Link taking longer than expected.\n");
2272
2273		/* Try once more */
2274		ret_val = igb_phy_has_link(hw,
2275		                           PHY_FORCE_LIMIT,
2276		                           100000,
2277		                           &link);
2278		if (ret_val)
2279			goto out;
2280	}
2281
2282out:
2283	return ret_val;
2284}
2285
2286/**
2287 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2288 *  @hw: pointer to the HW structure
2289 *
2290 *  Read PHY status to determine if link is up.  If link is up, then
2291 *  set/determine 10base-T extended distance and polarity correction.  Read
2292 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2293 *  determine on the cable length, local and remote receiver.
2294 **/
2295s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2296{
2297	struct e1000_phy_info *phy = &hw->phy;
2298	s32 ret_val;
2299	u16 data;
2300	bool link;
2301
2302
2303	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2304	if (ret_val)
2305		goto out;
2306
2307	if (!link) {
2308		hw_dbg("Phy info is only valid if link is up\n");
2309		ret_val = -E1000_ERR_CONFIG;
2310		goto out;
2311	}
2312
2313	phy->polarity_correction = true;
2314
2315	ret_val = igb_check_polarity_82580(hw);
2316	if (ret_val)
2317		goto out;
2318
2319	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2320	if (ret_val)
2321		goto out;
2322
2323	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2324
2325	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2326	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2327		ret_val = hw->phy.ops.get_cable_length(hw);
2328		if (ret_val)
2329			goto out;
2330
2331		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2332		if (ret_val)
2333			goto out;
2334
2335		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2336		                ? e1000_1000t_rx_status_ok
2337		                : e1000_1000t_rx_status_not_ok;
2338
2339		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2340		                 ? e1000_1000t_rx_status_ok
2341		                 : e1000_1000t_rx_status_not_ok;
2342	} else {
2343		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2344		phy->local_rx = e1000_1000t_rx_status_undefined;
2345		phy->remote_rx = e1000_1000t_rx_status_undefined;
2346	}
2347
2348out:
2349	return ret_val;
2350}
2351
2352/**
2353 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2354 *  @hw: pointer to the HW structure
2355 *
2356 * Reads the diagnostic status register and verifies result is valid before
2357 * placing it in the phy_cable_length field.
2358 **/
2359s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2360{
2361	struct e1000_phy_info *phy = &hw->phy;
2362	s32 ret_val;
2363	u16 phy_data, length;
2364
2365
2366	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2367	if (ret_val)
2368		goto out;
2369
2370	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2371	         I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2372
2373	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2374		ret_val = -E1000_ERR_PHY;
2375
2376	phy->cable_length = length;
2377
2378out:
2379	return ret_val;
2380}
2381
2382/**
2383 *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2384 *  @hw: pointer to the HW structure
2385 *  @offset: lower half is register offset to write to
2386 *     upper half is page to use.
2387 *  @data: data to write at register offset
2388 *
2389 *  Acquires semaphore, if necessary, then writes the data to PHY register
2390 *  at the offset.  Release any acquired semaphores before exiting.
2391 **/
2392s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2393{
2394	s32 ret_val;
2395	u16 page = offset >> GS40G_PAGE_SHIFT;
2396
2397	offset = offset & GS40G_OFFSET_MASK;
2398	ret_val = hw->phy.ops.acquire(hw);
2399	if (ret_val)
2400		return ret_val;
2401
2402	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2403	if (ret_val)
2404		goto release;
2405	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2406
2407release:
2408	hw->phy.ops.release(hw);
2409	return ret_val;
2410}
2411
2412/**
2413 *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2414 *  @hw: pointer to the HW structure
2415 *  @offset: lower half is register offset to read to
2416 *     upper half is page to use.
2417 *  @data: data to read at register offset
2418 *
2419 *  Acquires semaphore, if necessary, then reads the data in the PHY register
2420 *  at the offset.  Release any acquired semaphores before exiting.
2421 **/
2422s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2423{
2424	s32 ret_val;
2425	u16 page = offset >> GS40G_PAGE_SHIFT;
2426
2427	offset = offset & GS40G_OFFSET_MASK;
2428	ret_val = hw->phy.ops.acquire(hw);
2429	if (ret_val)
2430		return ret_val;
2431
2432	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2433	if (ret_val)
2434		goto release;
2435	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2436
2437release:
2438	hw->phy.ops.release(hw);
2439	return ret_val;
2440}
2441
2442/**
2443 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2444 *  @hw: pointer to the HW structure
2445 *
2446 *  Sets up Master/slave mode
2447 **/
2448static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2449{
2450	s32 ret_val;
2451	u16 phy_data;
2452
2453	/* Resolve Master/Slave mode */
2454	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2455	if (ret_val)
2456		return ret_val;
2457
2458	/* load defaults for future use */
2459	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2460				   ((phy_data & CR_1000T_MS_VALUE) ?
2461				    e1000_ms_force_master :
2462				    e1000_ms_force_slave) : e1000_ms_auto;
2463
2464	switch (hw->phy.ms_type) {
2465	case e1000_ms_force_master:
2466		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2467		break;
2468	case e1000_ms_force_slave:
2469		phy_data |= CR_1000T_MS_ENABLE;
2470		phy_data &= ~(CR_1000T_MS_VALUE);
2471		break;
2472	case e1000_ms_auto:
2473		phy_data &= ~CR_1000T_MS_ENABLE;
2474		/* fall-through */
2475	default:
2476		break;
2477	}
2478
2479	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2480}